Multiple beam diffraction can be applied to determine phase relationships between the waves involved. We are concerned with the 4-beam case where apart from 0 or three further reciprocal lattice points b_1, b_2, b_3 lie simultaneously on or close to the single sphere or - with other words - three Kossel cones have a common generator coinciding with the direction of the incoming beam. In practice this may be accomplished by utilizing the crystal around a basic vector h_1 and simultaneously adjusting an appropriate wavelength. The active area in reciprocal space is determined by the wavelength band, instrumental parameters and the sample mosaic. Making the observations in the direction of a forbidden reflection (here h_1) interference effects may be studied between beams which are all due to "Umweganregung", i.e. their intensities are of the same order of magnitude. Compared with the 3-beam case the dominating influence of b, is avoided, i.e. interference effects may be studied over the whole pattern. The resultant wave bears information about phase differences $\{s(h_1) + s(h, - h_1)\} - \{s(h_1) + s(h, - h_1)\}$

(\textit{other due to double Umweganregung-effect})

Experiments were carried out with neutrons for three reasons: (i) absorption is negligible, (ii) a tunable wavelength band is easily available, (iii) polarization in a multiple-beam experiment in the transition regime between kinematical and dynamical theory of diffraction.

Non-monochromators: Ge(333), mosaic: 8°; wavelength band: E; sample: ω-quartz; mosaic: 9°; h_1, 001. Due to Umweganregung the sample acts as a secondary monochromator narrowing the wavelength band. 3- and 4-beam cases were calculated in dependence on h_1, the setting angle ω and the azimuthal orientation ϕ_1. Scanning through the 4-beam case is either performed by variation of ω in which turn affects ϕ_1 or ϕ_2, the detectors are fixed at the 2θ(001)-position. Intensity curves were recorded in both ways. The intensity profiles are fully reproducible. Asymmetric peaks may be understood as a consequence of phase differences $\Phi(h_1), \Phi(h_2)$. The interference pattern is remarkably extended both in dependence on h_1 and ϕ_2, and subsidiary maxima occur possibly due to other multiple beam cases. These observations seem to be in agreement with results from calculations based on dynamical theory of diffraction of ω-quartz (Kon, physs. stat.sol.a 5(1979)375 and priv. comm.) and - in favourable cases - might offer a possibility for the ab initio determination of phases. It should be emphasized, however, that crystal perfection is no necessary condition for these observations since asymmetric line profiles may also be explained with the aid of kinematical theory of diffraction.

Work was supported by funds of the BMT of the Fed. Rep. Germany.

\subsection*{11.7-9 \textbf{TEMPERATURE EFFECT OF X-RAY DIFFRACTION INTENSITIES FROM A PERFECT CRYSTAL FOR THE 4-BEAM CASE}}

Sun Zhaonde

(Bojiing University, Beijjng CHINA)

Haizhongming Ge Pemaw

(Institute of Physics, Chinese Academy of Sciences, Beijjng CHINA)

Considering the variance of susceptibility, χ, produced by the change of temperature, from the revised Taupl-Takagi equation we derived the expression of X-ray diffraction intensities from a perfect crystal as a function of temperature.

We have reported the dynamical diffraction equations for a perfect crystal (Sun Zhaonde, Acta cryst., to be published).

$$
\begin{align*}
\sigma^2_{D_k} &= -4\pi|\langle K_0 | \phi_1 \rangle D_k + 4\pi^2 K_0^2 \chi_2 D_k |^2 \\
+ 4\pi^2 K_0^2 \chi_2 D_k & = 0 \\
\sigma^2_{D_k} &= -4\pi|\langle K_0 | \phi_1 \rangle D_k + 4\pi^2 K_0^2 \chi_2 D_k |^2 \\
+ 4\pi^2 K_0^2 \chi_2 D_k & = 0
\end{align*}
$$

Assuming that the crystal is non-absorbing, the susceptibility of medium could be given by:

$$
\chi = -\frac{1}{2\pi n} \frac{d^2}{dx^2} e^x
$$

there n is the number of atoms in unit volume; ϕ_1 the number of electrons in an atom; x the frequency of incident X-ray. Under an action of temperature, the average local deformation of lattice, δ, is obtained by:

$$
\delta = \int \frac{4\pi}{\lambda} |\phi_1| \frac{d\phi_1}{dx} \approx \frac{2\delta_0}{\lambda}
$$

\textit{For a cubic crystal and the symmetric Laue case, the X-ray diffraction intensities at exit surface is derived}:

$$
\begin{align*}
I &= D_{k} \chi = \frac{2}{n_0^2 K_0^2} \left\{ \frac{1}{n_0^2 |\langle K_0 | \phi_1 \rangle |^2} \right\} \\
S = n_0^2 \left\{ \pi K_0^2 |\langle K_0 | \phi_1 \rangle |^2 - \frac{2\delta_0}{\lambda} \right\}
\end{align*}
$$

\textit{there} $\chi_{_K} (\phi_1) = \left\{ \begin{array}{l}
\frac{1}{\lambda} \int_j \left(2, 1 \right) \\
J_1 (2, 1, \phi_1) \end{array} \right\} $ \textit{for K_k}

\textit{there} $\chi_{_K} (\phi_1) = \left\{ \begin{array}{l}
\frac{1}{\lambda} \int_j \left(2, -1 \right) \\
J_1 (2, -1, \phi_1) \end{array} \right\} $ \textit{for K_k}

$$
\delta = -\frac{1}{2} \left[n_0^2 |\langle K_0 | \phi_1 \rangle |^2 \right]
$$

$$
\chi = \frac{2}{\lambda} \left(\frac{2\delta_0}{\lambda} \right) \left(\chi_{_K} (\phi_1) \right)^{-1}
$$

The results of computer calculation show: (1) The criterion of geometrical optics is $\phi = 1/2$; t is the thickness of sample, r will increase with the temperature going up. (2) The distribution of X-ray diffraction intensities would be the pendulous fringe when the temperature is very low. (3) The intensities decrease and the positions of fringes move outward when the temperature increase.