12. ADVANCES IN POWDER DIFFRACTION

12.6.1 PROFILE FITTING PROCEDURES IN THE X-RAY LINE BROADENING ANALYSIS OF POLYCRYSTALLINE MATERIALS. By A. Benedetti, S. Enzo and G. Fascherazi, Dipartimento di Chimica-Fisica, Universita di Venezia, Italy;

The advantages of using profile fitting procedures for X-ray line broadening analysis have recently been pointed out and applied to several cases. It is also possible to analyze peaks which are blurred within envelopes of unwanted peaks. After correction for the K_a, K_b doublet the K_b peaks can be parameterized by means of suitable symmetrical functions such as Pearson VII, Voigt and pseudo-Voigt. Owing to instrumental aberrations, asymmetry is generally present, especially in the narrow peak profiles occurring below diffraction angles of about 40° in 2θ. In particular, the following problems will be discussed in the practical cases investigated here (supported metal catalysts, metallic oxides such as ZrO_2), polymers:

i) peak asymmetry due to instrumental causes and its parameterization (symmetry due to structural causes is excluded from the present analysis);

ii) acquisition of representative parameters, free from instrumental broadening, in terms of Voigt, pseudo-Voigt or Pearson VII functions;

iii) Fourier transform of the best-fitted profiles corrected for the instrumental line broadening; application of Warren-Averbach and related methods operating on the Fourier coefficients in order to determine crystallite size and lattice distortions;

iv) comparison of the results obtained by the different procedures employed.

12.6.2 NUMERICAL APPROXIMATION TO HIGH RESOLUTION TIME-OF-FLIGHT NEUTRON POWDER DIFFRACTION DATA. By Allen C. Larson, Gary C. Christoph, P. Gary Eiler, John D. Furson, John D. Gaertt, R. A. Penneman and Gary B. Rinehart, Los Alamos National Laboratory, University of California, Los Alamos, NM 87545 (USA)

The three dimensional crystal structure of barium plutonate, BaPuO$_4$, has been determined by Rietveld refinement of time-of-flight neutron powder diffraction data using the newly developed Generalized Crystal Structure Analysis System (GSAS). Data were collected at the Los Alamos Neutron Scattering Center (LANSCE) using the NPDF diffractometer. Three banks of detectors centered at ±150° and 90° 2θ angles were used in the refinement. D-spacing ranges were 0.35 to 1.41 Å for the two 150° banks and 0.83 to 1.60 Å for the 90° bank. The maximum number of reflections contributing to one profile point was 364. Final profile R-factors were 0.0231, 0.0255 and 0.0290 and final weighted profile R-factors were 0.0221, 0.0214 and 0.0277. Crystal data: PbPuO$_4$, $a = 6.1298(21)$, $b = 6.1938(22)$ and $c = 8.7447(31)$ Å; $Z = 4$. Integrated reflection $9 = 0.001$ for all of the reflections in the three profiles.

The structure is a distorted perovskite structure (GdFeO$_3$ type) which contains nearly regular PuO$_4$ octahedra with Pu-O distances of 2.2307 ± 0.0002, 2.3013 ± 0.0007 and 2.2229 ± 0.0003 Å, for all of the reflections. The deviations from the idealized cubic perovskite structure are in excellent accord with expectations based on crystal chemical models.

12.6.3 DIFFERENCE METHODS IN QUALITATIVE AND QUANTITATIVE POWDER DIFFRACTION ANALYSIS. By I.G. Wood, Soil and Plant Nutrition Department, Rothamsted Experimental Station, Harpenden, Herts, England

The sensitivity and accuracy of X-ray powder diffraction analysis may often be enhanced by difference methods, which compare diffraction patterns collected from samples that have been altered either chemically or physically. These methods are particularly useful in analyses of complex systems such as soil clays. Indeed, they have been used for many years in clay mineralogy to distinguish structurally similar minerals by their responses to heating, solvation with ethylene glycol etc. Other treatments include size fractionation, alteration of preferred orientation and chemical dissolution of one or more of the components present. Recently, it was shown that difference methods can be combined with least-squares profile refinement techniques to produce accurate quantitative analyses of iron oxides in soil clays containing as little as 1% of these minerals (Brown, O. and Wood, I.G. (1985); Clay Minerals 20, 15-27). Further developments of this work will be described, including an extension of the method to determination of the degree of Al for Fe substitute in the iron oxides (via the cell parameters) and their "particle sizes" (via the widths of the diffraction maxima).

An alternative means of producing differences patterns is to use more than one wavelength, so as to exploit anomalous scattering effects. This method has the advantage that it requires only a single, chemically untreated, specimen. Although it is perhaps best suited to use with synchrotron sources it is also feasible in a conventional laboratory, particularly when the compounds studied contain transition metals (Wood, I.G., Nicholls, L. and Brown, G. (1986); J. Appl. Cryst. 19, 364-71). Applications of this technique to soil clay analysis will also be presented.