17.X-7 DIRECT METHODS OUTSIDE TRADITIOHAL FIEtD By Finn Hailfu, Institute of physics, Academia Sinica, Beijing, China.

After 40 years of development, direct methods arg entering into new riglds of application. Hem procedures are under examination in the Institute of Physics in Beijing.

1. In protein crystallography, the combinetion of diract methods with isomorphous replacement or anomalous scattering data may play an important role in the near future. The wethod proposed in our group [Fan (1965) Actia Phys. Sin. 21, 1114; Fan, Han, Qian \& Yao (1984) Rcta Cryst. A 40, 489; Fin Gu (1985) Actacryst. A41, $280 . J$ has been tested with experimental protsin data in the one-anylength anomalous scattaring casa yielding a thousand of initimi phasey with average error of about 40 degrees. 2. In high resolution electron wicroscopy, diract methods ay becone powerful tool of image processing. It has bean proved by simulation that direct apthods arm useful in image deconvolution and resolution enhancement t Fan, zhong, Zheng z^{2} (1985) Acta Cryst. A41, 163f Han, Fan \& Li (1986) Acta Cryst. A42, 353; Liu, Fan zheng (1986) tuCr CSH He\&ting, Beijing, China.J.
2. Hodulated structures are important in both solid state physics and structural chemistry. Howner there Nas no straightformard way to solve their structure. Recentiy a direct method has been proposed and used successfully to solve the phase problem of an incomeensurate structure.This implies that direct methods mill no longer be lizited in solving z-dimensional periodic structures. Hopefully, the method can be extended to solve the phase problen in the deteraination of quasicrystal structures.

17.X-8

FIfURE METHODOLOGY, SOME PROBABLES AND SOME POSSIbLES. By Jerome Karle, Laboratory for the Structure of Matter, Naval Hesearch Laboratory, Washington, D. C. 20375, U.S.A.

In the area of macromolecuiar structure determination, there are several developments which indicate the potentiai for enhanced analytical capability. In addition to the development of tunable, high-intensity sources (synchrotron radiation) and the continuing improvement of computing facilities, the resuits of theoretical studies of the isomorphous replacement and the anomaious dispersion techniques in recent years imply the potential for enhanced speed and facility in performing structure determinations. An aigebraic analysis of multiple-waveiength. anomaious dispersion, for example, has resuited in a set of simultaneous equations that are both exact and linear (J. Karle, Int. J. Quantum Chem. Symp., 1980, I, 357-367). The exact algebraic analysis is valid for any number of anomalous scatterers and any variety of types of anomelous scatterer. The unknown quantities, which do not vary with wavelength, are composed of intensities, phase differences, or a combination of the two. The part that varies with wevelength occurs only as coefficients of the unknowns. The unknown phases and intensities are thosel that would be obtained from individuai types of atoms as if each type were present in isolation from the rest. Knowledge of the intensities for the structure formed by a particular type of atom can facilitate the determination of the structure formed by this perticuiar type of atom. Once the structure is known for any of the types of atom present, the entire structure can be readily determined. The determination of the structure of anonalous scatterers may not always be successful. In those cases, the structures of nonanomalously scattering atoms may, perhaps be obtainable from known values for triplet
phase invariants of the type $\phi_{h^{+}} \phi_{k}+\phi_{-h-k}$. Values for triplet phase invariants may be obtained from the exact algebraic analysis (J. Karle, Acta Cryst., 1984, A40, 526-531). Evaluations of triplet phase invariants have also been made from use of probability theory (H, Hauptman, Acta Cryst., 1982, A38, 289-294, 632-641; C. Giacovazzo, Acta Cryst., 1983, $\overline{\mathrm{A} 39}, 585-592 ;$ S. Fortier, N. J. Moore and M. E, Fraser, Acta Cryst., 1985, A41, 571-577) and alternative algebraic analyses that make use of special mathematical and physical properties of the isomorphous replacement and the anomalous dispersion phenomena (J. Karle, Acta Cryst., 1983, A39, 800-805; J. Karle, Acta Cryst., 1984 A40, 4-11, 366-373, 374-379; J. Karle, Acta Cryst., 1985, A41, 182-189). It has been further shown that by use of algebraic enalysis essentially unique values can be obtained with one-wavelength anomalous dispersion data for the 2-phase invariant (J. Karle, Acta Cryst., 1985, A41, 387-394). This analysis was limited to the case of one predominant type of anomalous scatterer in a one-wavelength experiment. Another investigation has shown that with use of values obtained for 2-phase invariants in one-wavelength anomalous dispersion experiments and single isomorphous replacement experiments, knowiedge of the structures of the anomalously scattering atoms or heavy atoms couid afford a large number of phase values for initiation of a structure determination of a native or nonanomalously scattering structure (J. Karle, Acta Cryst., 1986, A42, 246-253). This could also provide a possible strategy for use of triplet phase invariants.
17.X-9 THE ROLE OF STATISTICS IN STRUCTURE REFINEMENT. E. Prince, Institute for Materials Sclence and Engineering, National Bureau of Standards, Gaithersburg, MD 20899, U. S. A.
Mathematical statistics provides some powerful tools for the extraction of information from experimental data. These tools are, however, frequently misused for purposes for which they were never intended, and for which they are ill suited, with the result that there is much confusion when a result is stated in statistical terms. In the context of crystallography, if structure factors, amplitude and phase, were known throughout reciprocal space, all possible information about the crystal would be known, but the only quantites that can be measured, with inevitably limited precision, are intensities at a finite number of lattice points within a bounded region of reolprocal space. The problem, then, is to estimate as precisely as possible the values of all structure factors given the finfte set of measured intensities, or, mathematically, to find the means and variances of a set of conditional probability density functions (pdfs) of structure factors, given a set of intensities. Because crystals are composed of atoms, each structure factor can be expressed in terms of a model that is a function of a finite set of atom parameters, $F(h)=$ $M(h, x)$, so that if the elements of x can be estimated, the values of all $F(h)$ can be estimated.
An estimator is a function of observations that, under some conditions, approximates an unknown parameter of a population pdf. If the expected value of the estimate is equal to the parameter, the estimator is unbiased. If the expected values of a set of observations, y, are linear functions of the parameters, so that $\langle y\rangle=A x$, where A is some matrix, and w is a positive definite weight matrix, usually, but not necessarily, diagonal, then the least squares estimate, $\hat{x}=\left(A^{T} W A\right)^{-1} A^{T}$ Wy is an unbiased estimate of x. If, in addition, $w=V^{-1}$, where v is the variance-covariance matrix for the elements of
y, then the variances of the parameter estimates are minimum. Only for this cholce of welghts are the diagonal elements of $\left(\mathrm{A}^{\mathrm{T}} \mathrm{wA}\right)^{-1}$ unblased estimates of the variances of the parameter estimates. A nonlinear model like the structure factor formula may be replaced dy a linear approximation. The estimates are then unblased only to the extent that the linear approximation is valid, but biases can be reduced to arbitrarily small values by sufficiently precise observations. The "observarions" may be raw data (as in the Rietveld method), net integrated intensities, or simple functions of the net integrated intensities, provided that the condition $\left\langle\underline{y}_{\underline{i}}\right\rangle=M_{i}(x)$ is maintained. If the function is nonlinea \bar{r}, such as the extraction of a square root, some care must be taken to ensure this condition, but that care can be rewarded by improved precision in the parameter estimates.
If the model is correct, the properly weighted sum of squared residuals should equal $n-\underline{y}$, where n is the number of observations and p is the number of parameters. Values larger than this are indicators of lack of fit. The common practice of assuming that these values are due to an incorrect scaling of weights that have the correct relative values is questionable, and inferences drawn from it should be viewed with caution. The positive square root of an estimated variance is an estimated standard devietion, or e. s. d. It is an indicator only of precision, which sets a lower limit to the uncertainty in the correspondence between estimated parameters and nature's values when the model is exactly correct. Statistical analysis can tell whether the model plausibly explains the observations. It cannot rule out the existence of systematic effects that bias the parameter estimates without contributing to lack of fit, nor can it rule out the existence of an entirely different model that would explain the observations as well or betten. It therefore tells nothing about the actual accuracy of a measurement.

17. x - 10

THE EFFECPS OF WEIGHTING SCHEMES ON ESTIMATED STANDARD DEVIATIONS AND ON ACCURACY.
By B.E. Robertson, Department of Physios and Astronomy, University of Regina, Regina, Sask., S4S 0A2, Canada,

Weights used in crystallographic least squares should be the reciprocals of the variances of the observations, but in a real experiment the variances of the observations are not, known, other than their contribution from the Poisson counting statistics. other errors which do not contribute to the difference between the estimate and the best value of a quantity used to describe a model (ie, they are not systematic errors) should also be used to determine the variances and the least-squares weights. How this should be done will depend on one's knowledge of the nature of other errors, and on the goals of the experiment. This is done by; (i) adding a contribution to the variance derived from the extent to which the sample variance of the intensities of the standard reflections exceeds the experimental variance (ii) replacing the experimentally determined variance with the sample variance obtained from the consistency of observations which should be identical according to the model, or adding to the experimentally determined variance a quantity such that the average modified experimental variance and sample variances are equal, or (iii) adding quantities to the variance such that the average value of Δ / σ^{2} approaghes $(\mathrm{n}-\mathrm{m}) / \pi$ (where $\Delta=\left|\left|\mathrm{F}_{0}\right|\right.$ $|\mathrm{F}|$ |or $|I-I|, \sigma^{2}$ is the relevant variance, n is the number of observations and m is the number of least-square variables) for any groups of observations which may be averased. All of these procedures may
introduce systematic error into the weighting scheme. They normally lead to enhanced precision. However, if the values of the parameters which are to be estimated by the experiment are influenced by any of the systematic errors which are preaent, then the incorporation of systematic error into the leastsquares weights is a "feed-back" process which may enhance or diminish the influence of systematic error. Furthermore, the enhanced precision obtained with modified weights may not imply enhanced accuracy. In onder to determine the effecta of weizht modification on the parameters of interest in routine structure determinations, we assume that an independent measure of the accuracy of the estimates of parameters from a refinement is their consistency; ie, more accurate refinements will lead to smaller sample variances amons molecular parameters that are assumed to be exactly equal. This includes (I) chemically equivalent bonds which are not constrained to be equivalent by symmetry, (II) bonds in molecules in structures with more than one molecule per asymnetric unjit, (III) multiple determinations of the same crystal structure. Consistency so determined has been used to investigate such questions as (a) the nature of the feedback from the contribution of systematic errors to the weights on accuracy, (b) the relation between accuracy and precision for various weighting schemes, (c) the effects of including weak reflections, (d) the merits of refinement on $|F|$ or I, etc.
17.X-11 ThR bAYESIAN VIEWPOINT OF STATISTICAL pROCEDURES IN CRYSTALLOGRAPHY, by H. D. Flack, Laboratolre de Cristallographie, University of Geneva, 24 quai Ernest Ansermat, $\mathrm{CH}-1211$ Genève 4, Switzerland.

From a Bayegian viewpoint, probability is subjective. A probnbility density function provides a measure of the crystallographex's degree of belief in the value of a random variable, a hypothesis, the estimate of physical parameters or $\&$ phyaical model used to interpret experimental reaults, objectivity la regarded as being 1llusory - experimental observations axe always interpreted through a model and one always has soav priox idea of the numerical values entaring into the model. Consider examples such as: weighting bchemes to take account of gystematic exrors in the data or model, multiplication of e.s.d.'s by the goodness of fit value, averaging of aymetry-equivalent reflections, use of restraints (soft constraints, pseudo-observations), robust-resistant refinement. Such procedures are without any theoretical foundstion in Statistics when viewed with the classical, Frequentist, notion of probability. On the other hand the Bayesian viewpofnt does provide a clear framework within which to elaboxate and criticize the abovemmentionned procedures.

The Bayesian Three-Stage Model is a particularly fruttful

