18.4-1 RIETVELD METHOD RUNS ON IMB-AT
By J.Schneider, Institut für Kristallographie und Mineralogie, Universität München, F.R.Germany

For structure refinement from neutron or X-ray powder diffraction data the Rietveld method (J.Appl.Cryst.1969, 2, 65-71) is widely used. Up to now this mostly required expensive mainframes- or mini-computers of computing centers. The availability of cheap and fast (by use of floating-point coprocessors) and sufficiently accurate (32-bit single precision floating point variables in FORTRAN-77) 16-bit microprocessors together with optimizing compilers have made it promising to perform profile refinement calculations at laboratory level. Commercially available X-ray position sensitive detectors also increase the demand for decentralized, quasi on-line profile refinement. For this reason the Rietveld-version of D.B.Miles and R.A. Young hitherto called WYRIET (J.Appl. Cryst. 1981, 14, 149-151) has been implemented on an IBM-AT microcomputer using the Ryan-Hofland FORTRAN-77 compiler.

For the convenience of the routine-user several features have been added:
1. An interactive preprocessor for the correct set up of the input-file to the main program.
3. An interactive graphics postprocessor using the GKS-graphics system to plot the resulting spectra and to model the residual background for iterative refinement of the powder spectra by:
 -cubic spline function smoothing with user selectable dynamic weight functions
 -linear interpolation scheme with user selectable averaging range
 -cursor addressable point modelling of background polynome

Typical runtimes are 1.1 minutes per cycle for a two-phase neutron spectrum of 33 Bragg peaks measured with 1181 data points and varying 16 parameters using single precision WYRIET. A comparison with runs on a Cyber 175 60-bit computer yields identical results within several percent of standard deviation at the cost of additional refinement cycles to achieve convergence. Examples will be demonstrated. The programs are available from the author on floppy-discs. Helpful discussions with H.Boysen and H.Schrader are acknowledged. This work was supported by funds of the BMFT.

18.4-2 A MICROPRESSOR VERSION OF THE XTL SYSTEM. By Sidney Hall, Lizzi Engelhardt and Tanya Schmah, Crystallography, University of Western Australia, Nedlands 6009.

The XTL System is a large suite of crystallographic programs suitable for any laboratory computer. It is currently implemented on computers ranging in size from the CRAY II to the Apollo DN3000. The XTL software is written in the preprocessor language rascal and is identical for all machines. When implemented, the source code is adapted by the preprocessor to the target computer, using a macro library containing machine-specific edit commands.

The portability and the universality of the source code, along with the versatility of file structure, are considered essential properties of the XTL package; properties that cannot be compromised for any particular implementation. For this reason no attempt has been made until now to adapt XTL to smaller machines. However, the latest generation of 16-bit personal computers now provide a performance, both in speed and precision, that is comparable to existing laboratory machines, but at much lower cost.

XTL has been implemented on an IBM PC/AT with a Definicon DSI-780 coprocessor board (Motorola 68020/68881, 16 MHz, 2 Mb RAM). The performance of this microprocessor package may be gauged from the times for a typical mixture of about 77 calculations.

Machine: mVAXII Sun/310 DSS780
Time(s): 86 85 98

The AT/DSI configuration also has a 30Mb hard disk, a 1.2Mb floppy and Matrix PG-640 colour graphics and monitor. The problems in implementing the XTL package are mainly from the current limitations of the current coprocessor, linker and loader software supplied for the coprocessor. This required the development of pseudo overlay leading procedure. No changes to the XTL source were needed. A similar development is also anticipated on the Commodore Amiga or Macintosh II. Microprocessors using XTAL will be on view at the Congress microcomputing exhibit.

This work is supported by the UNESCO's CIS-Net program, the UWA Development Assistance Committee, the Asian Network for Analytical and Inorganic Chemistry and the Network for the Chemistry of Biologically Important Natural Products.

18.5-1 VISUALIZATION AND FAST ENERGY CALCULATION OF PROTEIN - LIGAND INTERACTION ON 3D GRAPHIC DISPLAY. By A. Itai, N. Tomioka and Y. Iitaka, Faculty of Pharmaceutical Sciences, University of Tokyo, Japan.

Docking simulation study on 3D graphic display between protein and ligand molecule is powerful means both for interpreting protein-ligand interactions or its biological activities, and for designing new drugs rationally, in case of protein structure is known by x-ray crystallography. We have developed a new method using three-dimensional grid points placed inside the ligand binding site of the protein. At each grid point, various physical and chemical properties, such as non-bonded interactions for various probe atoms, electrostatic potential and expected hydrogen bonding sites, are calculated and stored for the later repeated use. These tabulated data are used 1) for visualizing the spatial circumstances of ligand binding site, 2) for realtime estimation of protein-ligand interaction energy throughout the docking process. The former facilitates to find the appropriate initial location of a new ligand molecule, and the latter facilitates to find the rough energetically favorable location by local manipulation of ligand molecule. To illustrate the usefulness of this method, we have applied the program to several enzyme systems, fitting their substrates and inhibitors.

1. Symposium on Medicinal Chemistry (1984, Tokyo)
2. Symposium on Three-Dimensional Structures and Drug Action (1986, Tokyo)