20.4.7 CRYSTAL STRUCTURE AND MORPHOLOGY OF THE INCOMMENSURATELY MODULATED COMPOUND Au₄₋₅Te₂₋₃ CALAVERITE.

By W.J. Schutte, B. Dam, A. Janner, and J.L. de Boer, Department of Ind. and Mining Chemistry, Padagogische, Groningen, and Research Institute for Materials, Faculty of Science, Nijmegen, The Netherlands.

The present investigation started from a suggestion by J.D.B. Donnay to reconsider an almost hundred year old problem of the non-applicability of the Law of Rational Indices to crystal growth forms of calaverite Au₄Ag₃Te₅ (pK0.15) (Herbert Smith, Min. Mag. 11 1902, 125; Goldschmidt, Palache and Peacock, Neues Jahrb. Min. B.B.(A), 63 1931, 1). The reinterpretation of the 1931 data within a superspace approach (Dam et al., Phys. Rev. Lett. 55 1985, 2301) allows a consistent four integers indexing of all 92 different faces observed by Goldschmidt et al. and a precise determination of the modulation wave vector g. The basic structure, a deformed CdI₂ type, was determined by Tunell and Pauling (Acta Cryst. 2 1952, 375). In 1979 Sueno (Hawaii AIP Conf. Proc., 53, 333) recognized the incommensurately modulated character of the structure. That was confirmed in 1985 by electron diffraction (Tendeloo et al., J. Sol. St. Chem. 50 1985, 331). We determined the crystal structure of natural (Cripple Creek, Colorado) calaverite at 298 K and at 100 K. The superspace group is C21/a(0.0,0.7) (4,2) with a=9.488 and c=14.488 for the modulation wave vector g, in excellent agreement with the morphological results. All parameters (modulation wave vector to third order) were refined with Yamomoto's (Acta Cryst. A28 1982, 67) program. Overall R for 1899 (2008) reflections of which about 2/3 are satellites is 4.6% (4.3%). The values at 100 K are in parentheses. Modulation parameters hardly vary with temperature. The largest modulation occurs for γ(Te). The infinite Te—Te chains of the basic structure along b are now disrupted. Binding distances vary as well. The figure displays, as a function of t (=e module 1, g is the average site position) the six Au₄Te distances from Au(0,0,0) to Tel(x=0.31,y=0.29), Telz=Tel, Telz′(x=1/2,1/2,1/2), Telz′′(1/2,1/2,1/2,1/2). The regions I (t=0.0,5) with two short metal-Te distances in linear coordination alternate with regions II (t=0.25, 0.75) having four short distances in square coordination. This strongly resembles the situation in sylvanite where Ag⁺ (d¹⁰ configuration) is linearly and Au⁵⁺ (d°) is square coordinated. For calaverite we therefore observe a modulated valence state for Au around Au⁴⁺ with the extremes Au⁴⁺ and Au⁵⁺ located in regions I and II, respectively. This interpretation is reinforced when considering the occupation modulation of the Ag fraction at Au⁴⁺ positions in calaverite. The tellurium (its polarizability and electronic band structure) certainly plays a role as well as driving force for the modulation.

20.4.8 ELECTRON DIFFRACTION PATTERNS DISPLAYING 8, 10 AND 12 FOLD SYMMETRIES BUT NO BRAVAIS TRANSLATION SYMMETRY. By K.H. Kuo, Beijing Laboratory of Electron Microscopy, Academia Sinica, P.O. Box 2794, Beijing, P.R. China.

It has been shown earlier (H.Q. Ye, D.N. Wang and K.H. Kuo, Ultramicroscopy, 1985, 15, 275) that an electron diffraction pattern (EDP) displaying 10 fold symmetry may appear if the crystal size of a pentagonal Frank-Kasper phase consisting mainly of icosahedra or pentagonal antiprisms diminished to the order of only a few nanometers. In such a case, the translation symmetry is very much suppressed while the orientation of icosahedra in various domains is still similar. This has now been explored in great details in Cu₆-Mg₅ and its relation to the icosahedral quasicrystal is discussed. Moreover, EDPs displaying 8 and 12 fold symmetries have also been obtained in Cr₆-Mi₅ and V₆-Mi alloys, respectively, after rapid solidification. The crystalline phase in the former alloy has the f⁺⁴th structure consisting mainly of octahedra and icosahedra while that in the latter alloy the phase consisting of octahedra and icosahedra is disrupted by a rotation about the non-crystallographic 5-fold symmetry. Both alloys are of the microdomain structure and the translation order is also severely suppressed. On the other hand, the point group symmetry of the crystalline polyhedra in these structures can be transformed. For instance, similarly oriented hexagonal antiprisms, where the larger part of the direction parallel to these antiprisms, will show 10 fold symmetry. In other words, these non-crystallographic rotation symmetries in EDPs reflect the existence of oriented polyhedra with related rotation symmetries in microdomains of only a few nanometers in size. Such a conclusion has been proved by high resolution electron microscopic images.

20.4.9 ELECTRON DIFRACTION STUDY OF ICOSAHEDRAL QUASICRYSTALS OF AN Al₇₅Mg₅₅Si₅ ALLOY. By M. TANAKA, H. TERAUCHI, K. HISAGA and M. HIRABAYASHI*, Department of Physics, Faculty of Science, Tohoku University, Sendai 980, Japan. *The Research Institute for Iron, Steel and Other Metals, Tohoku University, Sendai 980, Japan.

Convergent-beam electron diffraction (CBED) and small-areas-parallel-beam electron diffraction have revealed the crystallographic nature oficosahedral quasicrystals in a meltquenched Al₇₅Mg₅₅Si₅ alloy. Electron micrographs show grains of um scale dimensions. Misorientation between neighbouring grains is a few 10⁻⁴ rad. Such grains, however, consists of a number of subgrains less than 50 nm in diameter, making a misorientation of a few 10⁻⁴ rad. This quasicrystal possesses a much greater ordering in its atomic arrangement than an Al₇₅Mg₅₅Si₅ (M. Tanaka et al., Ultramicroscopy 18 (1986), 279-285) and Al₇₅Mg₅₅Si₅ (L.A. Bandersky and M.J. Kaliman, Phil. Mag., 1986, 653, L7-L80). That is, the diffraction patterns of the present quasicrystal show the refractions of a lattice spacing 2.77 nm, which were not observed in those two quasicrystals and provide a larger number of weak spots between strong reflections. The reflection intensity shows a slower damping with scattering angle. The quasicrystal may have more than three different sized atomic sites and appears to be stabilized by an adequate addition of a different sized atom, Si. The intensities of the reflections appearing at high scattering angles hardly increase, even when the specimen is cooled down to the temperature of 150 °K, indicating a small change in Debye-Waller factor. The quasicrystal has two variants in its orientation, which are related with each other by 180° rotation about the five- or three-fold axis. Notwithstanding a much better ordering, there still exists a zig-zag deviation of the reflections from the radial line in a diffraction pattern.