Research was sponsored in part by the Division of Materials Sciences, US DOE under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.

PS-01.02.10 MULTIPLE SMALL-ANGLE SCATTERING— A BLESSING IN DISGUISE? By S. Mazumder* and A. Sequiera. Solid State Physics Division, Bhabha Atomic Research Centre, Bombay-85, India.

In small-angle scattering (SAS) studies, multiple scattering is generally viewed as an unavoidable complication. The common practice as it stands today, is to obtain correction factors to eliminate the effect of multiple scattering in analysing the scattering data. A recent formalism on multiple SAS (S. Mazumder S. and Sequiera A., Pramana, 1992, 38, 95-159) indicates the following facts which we consider to be blessings in disguise if properly exploited:

- By merely scaling down the wave-vector transfer, the Guinier law can be extended for multiple SAS. Porod law remains invariant under multiple scattering as far as the functional dependence of the scattered intensity on wave-vector transfer is concerned. For polydisperse systems, the extractable structural parameters are the moment ratios \(R' / R'' \) and \(R' / R'' \) where \(R' \) is linear dimension of the \(i \)-th type of inhomogeneity. The averging is over the population density.

In this paper, it is emphasized that the second moment of the single scattering cross-section manifests predominantly in the Guinier regime of the multiple scattering profile. Consequently, so far as the curvature in the Guinier regime is concerned, multiple scattering profile does not bear the signature of the interparticle interference function to any significant level. The significance of the interparticle interference function in multiple scattering profile can be exploited to extract particle size distribution of inhomogeneities in dense systems with the help of variational technique like the maximum entropy. It is to be noted here that in a traditional SAS study, the extraction of particle size distribution from dense systems is not possible due to interparticle interference effect.

A methodology for extraction of integral and differential parameters from a multiple scattering profile, as also for the elimination of the effect of multiple scattering when it is a nuisance will be presented. The results of an experimental investigation on two bidisperse alumina samples demonstrating the validity of some of the above mentioned aspects will also be discussed.

PS-01.02.11 OMEGA ENERGY FILTERING TEM: APPLICATIONS IN QUANTITATIVE ELECTRON DIFFRACTION. C. Dettinger and J. Mayer, Max-Planck-Institut für Metallforschung Stuttgart, Germany.

With imaging energy filters becoming commercially available in transmission electron microscopy many of the limitations of conventional TEM instruments can be overcome. Energy filtered images or diffraction patterns can now be recorded without scanning using efficient parallel (2-dimensional) detection. We have evaluated a prototype of the ZEISS EM 912 Omega, the first commercially available electron microscope with integrated imaging Omega energy filter. In quantitative electron diffraction the filter is used to remove the inelastically scattered electrons (elastic or zero-loss filtering) and by this quantifiable intensity data without background can be obtained. In selected area diffraction (SAD) weak reflections can be recorded even in thick samples. Another example is the determination of amorphous structure factors of amorphous materials. The most accurately quantifiable data can be obtained by elastically filtered convergent beam electron diffraction (CBED). Structure factor amplitudes and phases can be determined very accurately. For phase measurements in non-centrosymmetric crystals, three beam patterns have to be used. Two dimensional energy filtered data are necessary (without scanning) can only be obtained with an imaging filter and a CCD camera as (linear) detector. From a whole set of such structure factors the charge density distribution in a crystal can be calculated. Furthermore, in the electron spectroscopic diffraction (ESD) mode of operation the angular distribution of inelastically scattered electrons can be imaged. This can be used in the ALCHEMI method to determine atom positions within a unit cell.

PS-01.02.12 DEVELOPMENT OF CCD-BASED AREA DETECTORS FOR MACROMOLECULAR CRYSTALLOGRAPHY USING SYNCHROTRON AND LABORATORY SOURCES. By Walter L. Phillips, Martin Stanley, Yong Li, Daniel O'Malley, Jane Liu, Rosedale Basic Medical Sciences Research Center, Brandeis University, Wal- kenn, MA 02084-9010, Edwin M. Westhofen, Ismay Nadav, Steve Ross, Mary L. Westphol, MKM Kanno, Argonne National Laboratory, Argonne, IL 60439 and James W. Plagrhath, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 11724, U.S.A.

We are developing CCD-based area detectors for collecting macromolecular crystallographic data using synchrotron and laboratory sources. The basic unit of our detectors is a module which consists of a demagnifying fiber optic taper with a phosphor x-ray converter bonded to the larger face of the taper and a CCD bonded to the smaller face. In order to achieve a large area, detectors are assembled from a number of identical modules. Currently, two detectors are being developed: (1) a high-performance detector for synchrotron applications, and (2) a detector in which a variable number modules can be assembled for a range of applications. The first detector is designed to have a large area, high spatial resolution, high DQE and low noise.

These goals are achieved by using a fixed 3x3 array of nine 5x5 cm square modules, forming a 15x15 cm area. Each module has a taper demagnification of 2:1, and uses a 1024x1024 pixel Tektronix CCD. As a result this detector has 3972x3972 50um pixels and a high DQE. The second detector is designed so that a single module will form a useful instrument at a reasonable cost, while multiple modules can be used to increase the efficiency of data collection. Each module has a 5x10 cm front surface and a taper demagnification of 4:1, providing a pixel size of 100 μm with a 1024x1024 Tektronix CCD. Because of the larger taper demagnification and in this detector, the cost per unit area is lower, and the performance (as measured by the DQE) is decreased. In both detectors the CCDs are read out in parallel using two amplifiers on each CCD, with a total read time 1.7 s for the array of up to 9 modules. The pixels can be binned, reducing the readout time to 0.4 s.

01- Instrumentation and Experimental Techniques (X-rays, Neutrons, Electrons)

This work is supported by NIH grant RR06017, NSF grants DIR-8914829 and DIR-902303, and the USDOE, Office of Health and Environmental Research.

01.03 - Open Commission Meeting on Crystallographic Apparatus – Developments and Directions in Crystallographic Instrumentation

FUNDAMENTAL PARAMETERS; A REPORT OF THE ACTIVITIES OF THE COMMISSION ON CRYSTALLOGRAPHIC APPARATUS by D.C. Creagh; Physics Department, University College UNSW Northcott Drive CANBERRA ACT 2600 AUSTRALIA

For some time the commission has been involved in the theoretical calculation and experimental determination of the fundamental parameters of x-ray scattering. We have been involved in questions concerning the validity of the form factor formalism (Creagh (1990) Nucl Instrum Methods A280 180-188), the dispersion corrections f and f' (Creagh and Mc Aulty (1992) in International Tables for Crystallography Vol C (ed AJC Wilson) Kluwer, Dordrecht, Ch 4.2.6 pp206-220), and x-ray absorption coefficients (Creagh and Hubbell (1992) Ibid, Ch 4.2.4, pp189-200). As well we have been active in the development of appropriate standards and criteria for use in XAFS experiments (Creagh (1992) Ibid, Ch 4.2.3, pp182-189). We shall discuss the implications of crystallographic research of our studies in these fields.

With the completion of the foregoing work the role of the commission will shift to the measurement of another important experimental parameter: the emission wavelengths of the elements. It has long been known that the existing tables in International Tables for X-Ray Crystallography Vol IV, and its reprinted version in International Tables for Crystallography Vol C contain many errors. Details will be given of a plan to set up an international project to undertake the measurement of emission wavelengths for all possible elements. Other commission projects will be mentioned briefly, including the role of the commission in the evaluation of x-ray area detectors.