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modification based on satisfying the Sayre equation. In the event that
the structure contains one type of heavy atom then a modified
equation can be used which involves both squaring and cubing the
current electron density (Woolfson, M M, 1958, Acta Cryst 11,
287-283).

A process has been devised, the ABC method, which enables density
to be modified to satisfy the constraints of solvent flattening,
histogram matching, Sayre's equation and the magnitudes of structure
factors, all in terms of refining only a few (4-6) parameters. It may
also be possible to introduce other constraints, for example a model
distribution of atomic environments.

Preliminary results will be described and their potentiality discussed -
in particular for ab initio phasing.

PS-02.01.11 A DENSITY MODIFICATION PROCEDURE
FOR SOLVING SMALL & MIDDLE SIZE STRUCTURES
AND PHASE REFINEMENT FOR PROTEINS. By M.Shiono,
Y.Yada*, Department of Physics, Kyushu University, Higashi-ku,
Fukuoka, Japan. L. S. Refaat and M. M. Woolfson, Department
of Physics, University of York, Heslington, York, YO1 5DD.

The Low Density Elimination (LDE) procedure (Shiono, M. and
Woolfson, M. M., Acta Cryst.(1992),A48,451-456) which was de-
veloped for phase extension and refinement in order to solve macro-
molecules has been investigated regarding its power to solve small
and middle size structures starting from random phase sets. In
fact, the method is competitive against conventional direct meth-
ods. The LDE method, however, is time-consuming compared
with conventional direct methods (e.g. MULTAN) since the pro-
cedure includes two Fourier transforms in one cycle. We have,
therefore, combined MULTAN and LDE procedure. The LDE can
be run in three different modes as follows.

Mode 1. Run the LDE with phases estimated by anomalous scat-
terings or isomorphous replacements.. Mode 2. Employing multi-
solution strategy, run the LDE individually assigning all reflexions
random phases. Mode 3. Run MULTAN and then proceed to the
LDE using MULTAN phases as initial phase sets in order of figures
of merit.

For small and middle size structures, mode 3 is most effective. We
might eventually solve the structures with MULTAN trial. Even if
MULTAN fails to find any useful structural configurations, MUL-
TAN phases increase the power of the LDE in solving structures.

P8§-02.01.12DIRECT PHASING OF MACROMOLECULAR
STRUCTURES BY MULTIPLE BEAM DIFFRACTION

E. Weckert*, W. Schwegle and K. Himmer

Inst. f. Kristallographie, Universitit, D-7500 Karlsruhe 1,
Kaiserstr. 12, Germany

The feasibility of experimental phase determination of
small protein structures using three-beam diffraction has
already been demonstrated (K. Himmer, W. Schwegle & E.
Weckert (1991) Acta Cryst. A47. 60-62). It has been shown
that triplet-phase invariants ¢=-P(h)+¥(g)+P(h-g) can be
deduced from three-beam interference profiles (K. Himmer,
E. Weckert & H.Bondza (1989) Acta Cryst. A45, 182-187),

where the ¥’s are the phases of individual structure factors
of the involved reflections with recipriocal lattice vectors h,
g, and h-g.

In experimental phase determination of macromolecular
structure significant differences compared to small molecule
structures occur. Among others they concern the weaker
scattering power of individual reflections, increasing over-
lap of multiple-beam interference effects due to larger unit
cells and in general higher sensitivity to radiation damage.

Because of the large number of overlapping multiple-beam
interference patterns in protein crystal structures only three-
beam cases of reflections with large structure factors are
suitable for phase determination. It was possible to deter-
mine about 80 triplet phases of the small protein lysozyme
in the low and medium resolution range with a mean phase
error of about 17°,

Radiation damage can often be significantly reduced by
using higher energy radiation, i.e. A=0.7 & . Therefore,
interference effects of lysozyme were systematically inves-
tigated in the range from 0.7 Ato 1.58 R . As a result
also in the short wavelength regime phase determination is
possible.

Theoretical calculations by dynamical theory and experimen-
tal results confirm the existence of three-beam interference
effects even for crystal sizes smaller than the "Pendellsung”
lengths. Further investigations show that it is this range
where an unique correlation exists between the interference
profiles and the triplet phases independent whether the
primary reflection is in Bragg- or Laue-diffraction geometry.
In general the crystal size of proteins is smaller than the
"Pendelldsung" length.

Due to the weak reflectivity of protein crystals "Aufhellung"
effects are weaker compared to the higher reflectivity of
small molecule structures. Therefore, the high number of
overlapping three-beam cases does not severely affect the
phase exploitation in proteins.

First experiments with catalase crystals  (space group
P4,212, a=106.78, ¢=106,3 A) indicate that even for
large proteins experimental phase determination may be
feasible.

The possibilities to integrate measured triplet-phase in-
variants into statistical structure solution methods are
discussed. First results to extend this phase information by
an approach using maximum entropy will be presented.

This work has been funded by the German Federal Minister
of Research and Technology (BMFT) under the contract No.
05 5VKIXI and the Deutsche Forschungsgemeinschaft.

PS-02.01.13 FOURIER SERIES PROBABILITY
DISTRIBUTION OF STRUCTURE FACTORS
AND ITS RELATION WITH OTHER DISTRI-

BUTIONS. By G. B. Mitra", CSS Department, Indian
Association for the Cultivation of Science, Calcutta-700 032, In-
dia and Sabita Das, Victoria Institution (College), Calcutta-700
009, India.

In his pioneering work, Wilson (Acta Cryst, 1949, 2, 318),
showed that the distribution of structure factor components was
Gaussian. Later, introduction of Edgeworth series (Mitra and
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Belgaumkar, Proc. Ind. Nat. Sei. Acad. , 1973, 39, 95), the
Gram-Charlier Series (Shmueli and Wilson, Acta Cryst, 1981,
A37,342) and Cauchy distribution (Mitra and Das, Acta Cryst,
1989, A45, 314) were ushered in. Meanwhile Hauptman and
Karle (Acta Cryst, 1952, 5, 48) and Karle and Hauptman (Acta
Cryst, 1953, 6, 31D invoked, for this purpose, the theory of
random walk developed by Rayleigh. They showed that, for a
centrosymmelric crystal, the probability density function P
for the structure factor F becomes

P(F) = (zm—ﬂ:/\(x)cosl-‘(x)dx] 50
N/m
where A(x):]._[lq(flx) with m = symmetry numbers
and q(f,x):l[(, pe)eos(efx)de
Again, shmueli, Weiss, Kieffer and Wilson (Acta Cryst, 1984.
A40, 651-666) expressed P(F) as a Fourier series

PR = (29)-1{1 + 2 3} A(m)cos (2rmF/s) | 2)
N/m. m=1 E.\
where A(m)= Tl Yo (2mmi;/s) and s= S_IJf,
=

when Jo(R) signifies the Bessel function of first kind and order
zero with argument R and f; being the atomiic scattering factor of
the jth atom.

Changing over to E = F/( Z £2)1% eq. (2) becomes
)

P(E) = {1 4+ 22 Alm)cos (2rmak) } (3
m=

where

N M
- ( 2 flz)l/Z/EfJJ
1=1 =1
For equal atom case eq. (3) is given by

P(E) = N"””{l + ZEA(nl)coéZKmEN_”z} 1)

me=]
when A (m) reduces to [Jo(2rmN7' ]2
Changing from the standardised amplitude E to the correspond-
ing intensity Z = E?, eq. (4) may be written as
p(2) = N~Z=[1 4+ 23] Alm)coszrmZAN"V2 ) (5)
m=1

Let the cumulative probability function Q(z) be
7

Q) ZJp(z)dz
0
Then

2
Q(z) =27 N"VEHANTVEF N2 \L B(m)sin2amZAN "¢

where B(m):/\(m)‘/zﬂ.ml\]—-l/z ter e rae e (7))
A plot of Q (2) against z, based on eq. (6) and (7) for different
values of N shows that for N = 60. Q (2) is very nearly equal to
the Gaussian distribution (Howells, Philips and Rogers, Acta
Cryst. » 1950, 3, 210) and that for N = 30 corresponds very
closely to the Cauchy bicentric case (Mitra and Das, Ind. .
Phys. , 1992, 66A (3). 375). Relations with other distributions

are under study.
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MS—-02.02.01 THE FORM FACTOR FORMALISM : SHOULD
HIGHER ORDER TENSOR REPRESENTATIONS BE USED?
By D.C.Creagh, Physics Department, University College,
University of New South Wales, Northcott Drive, Canberra,
Australia.

In its normal usage by crystallographers the form factor of an atom
describes the scattering by an isolated spherical atom of the
incident x radiation. Using this single formalism it has been
possible to solve a wide range of problems in crystallography. The
formalism works equally as well for powdered as for single crystal
samples.

It does, however, have deficiencies, and these arise from the
assumption that each atom scatters independently of its
neighbours. The existence of XAFS and XANES demonstrates that
this simplistic assumption fails near absorption edges. This
modulation due to the interaction of the ejected photo-electrons
with the crystalline structure is, however, a small modulation to
the total scattering power of the atom. For most atomic species the
overall scattering by an atom in the neighbourhood is
approximated well by theory (Creagh & McAuley, 1992,
International Tables for Crystallography, Vol. C, Section 4.2.6) as
seen in Figure 1.

The difference in scattering is due to XAFS and may be accounted
for by the scalar addition of the XAFS amplitude calculated using
Rehr's FEFF Code.

For most materials no angular distribution of scattering is
observed: the atomic form factor behaves at if it were a scalar
quality. However, in some types of crystal dichroic effects occur,
and these may be explained by the addition of a second rank tensor
to the scalar form factor tensor (Templeton & Templeton, 1986,
Acta Cryst., Ad2, 478-86). This second rank tensor has its elements
determined by the crystalline charge distributions of the dichroic
crystals under investigation.

For some rare earth magnetic materials such as holmium and
erbium, magnetic scattering can give rise to additional points in
the reciprocal lattice, and the position and dynamics of these
lattice points can be described in terms of a fourth order tensor as
shown by Blume (Blume, 1992, ICAS Meeting, Malente).

This paper will discuss the tensor form of the atomic scattering
factor formalism and its use in solving problems in
crystallography.
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Figure 1. Comparison of a varicty of experimental
results with theory.
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