MS-03.06.03 CRYSTAL STRUCTURE OF PEANUT LECTIN, A PROTEIN WITH AN OPEN QUATERNARY ARRANGEMENT. By Rahul Sanjeev, Sekhar C. Mande, V. Ganesh, Kalpan Das, V. Dharaj, Sanjeev K. Mahanta, K. Sugana, A. Saroja and M. Vijayan, Molecular Biophysics Unit, Indian Institute of Science, Bangalore - 560012, India.

The crystal structure of the tetrameric anti-T lectin from peanut, Mr 1,10,000, has been determined by the multiple isomorphous replacement method and refined to 2.95 Å resolution. The crystal asymmetric unit contains the whole tetramer. The 85% fold in each subunit is similar to that observed in other legume lectins. The association of monomers into dimers is four of the six known structures of legume lectins.

The second subunit involves the formation of a 12-stranded β-sheet, six strands from each monomer. Interactions involving covalently linked sugar have been suggested to be responsible for the different modes of association found in the other two lectins. Dimerization in peanut lectin does not involve the formation of the 12-stranded sheet, although the molecule does not contain covalently linked sugar. Thus, the structure demonstrates that differences in subunit arrangement in legume lectins could be caused by factors intrinsic to the protein molecule. The most interesting feature of the peanut lectin molecule is its quaternary structure. Unlike other well-characterized tetrameric proteins with identical subunits, the molecule has neither 222 nor fourfold symmetry. Two halves of the molecule, each half probably corresponding to the natural dimer, are related by a non-crystallographic twofold axis. The two monomers in each half are related by a local twofold axis. The mutual disposition of the axes is such that they do not lead to a closed point group.

03-Crystallography of Biological Macromolecules

03-Crystallography of Biological Macromolecules

MS-03.06.04 THREE-DIMENSIONAL STRUCTURE OF CHOLERATOXIN'S B PENTAMER (COMPLEX WITH ITS PENTASACCHARIDE RECEPTOR AND COMPARISON WITH THE STRUCTURE OF THE RELATED ENTEROTOXIN FROM E.COLL). 


Choleratoxin (CT) and heat-labile enterotoxin of E.coli (LT) are two closely related major virulence factors of two bacterial species responsible for the death of hundreds of thousands of people annually. In particular, young children in third world countries. Both toxins are heterocomplexes with a B pentamer responsible for binding to the carbohydrate moiety of the gut epithelial cells. The single enzymatic A subunit carries out the ADP-ribosylation of Gsα, causing this G protein to remain in a biologically active state, stimulating adenylate cyclase, thereby increasing AMP levels in the cell. This leads to dehydration which, if untreated, has often fatal consequences. Healthy adults can succumb to an attack of Vibrio cholerae within 6 to 8 hours.

The structure elucidations of LT showed a remarkable architecture with the B pentamer forming a ring in the shape of a crown, and the A subunit extending its terminus through the central pore of the B pentamer forming a unique association of these two components of the toxin. Lactose binding studies to LT revealed the position of the terminal galactose of the receptor GM1, a ganglioside. Recently, we have succeeded in elucidating the structure of the B-pentamer of choleratoxin complexed with the full pentasaccharide of its receptor. This confirmed the binding site of the terminal galactose and revealed that of neuraminic acid as well plus, in one of the subunits a well-resolved density for the entire pentasaccharide. The carbohydrate binding sites are at the "convoluted" side of the B pentamer. This makes it most intriguing how the A-subunit, which after binding of the toxin to the cell is pointing away from the cell surface, can be translocated across the membrane.

Choleratoxin and heat-labile enterotoxin are also some of the most potent mucosal immune stimulating proteins know to date. We are involved in the engineering and structural studies of fusion proteins where the toxin is used as a framework molecule to which epitopes from "pathogenic" proteins are attached. One such fusion protein has been crystallized as well as a mutant where an essential residue in the active site has been mutated rendering the A subunit inactive. Progress on these studies will be reported.

We like to thank our collaborators for their support and enthusiasm: Bernard Wibault and Jaya Krishna in Grenoble for purified LT; Tim Hird, Canterbury, for introducing us to engineering LT; Joseph Merritt and Cécile L'Hoître in Liège for providing CT-pentamer and fusion proteins; and Rino Rappuoli and Mario Domenighini, Sienna, for sending us LT mutants.

1. The Biocentre Structure Program, Department of Biological Structure, SM-20, University of Washington, School of Medicine, Seattle, Washington 98195 U.S.A.


MS-03.06.05 CALCIUM-DEPENDENT CARBOHYDRATE RECOGNITION BY C-TYPE ANIMAL LECTINS. By William J. Weg, Kurt Eriksson, and Wayne A. Hendrickson, Department of Biochemistry and Molecular Biophysics and Edward Hughes Medical Institute, Columbia University, New York, NY 10032 USA. (Present address: Department of Cell Biology, Stanford University School of Medicine, Stanford, CA 94305).

Proteins that specifically recognize saccharide moieties on glycoproteins and cell surfaces are involved in a number of important biological processes. A remarkably diverse set of such carbohydrate-recognition proteins are the C-type lectins, which have in common a calcium-dependence and homologous domains that are responsible for carbohydrate-binding. C-type lectins include the asialoglycoprotein receptors, which are involved in clearing desialylated proteins by endocytosis; the selectins, which target leukocytes to sites of inflammation; and mannose-binding proteins, which are involved in an antibody-independent immune defense. We have determined structures for the carbohydrate-recognition domain (CRD) of a rat mannose-binding protein (MBP). The structure has been solved both with and without a high mannose ligand. The asymmetric unit of the complex crystal contains two CRD units that bind to distinctive terminal mannose residues from the oligosaccharide. The mode of binding is similar to that of other sugar-protein interactions, including other calcium-containing lectins. In the case of MBP, the mannose residues coordinate directly to one of the calcium ions, displacing a water ligand with the 3- and 4-hydroxyl oxygen atoms of the sugar. Each of these hydroxyls also donates a hydrogen bond to a carbonyl oxygen atom of a glutamate residue and receives one from the amide group of an asparagine residue. Thus, the sugar group is fixed specifically to the protein by ionic tetrahedral interactions, as if perched on two three-legged stools. The mode of binding seen here helps to rationalize the specificity observed for various C-type lectins.


Copyright © 1993 International Union of Crystallography