04-Crystallography of Biological Small Molecules

The database of RNA sequences is now rapidly expanding. However, only the structural information of a few RNA molecules is known in detail. RNA's main biological functions are determined largely by its tertiary structure. To predict RNA's structure through its sequence information is reasonable and important.

The first step to modeling an RNA molecule is to predict its secondary structure. Many programs have been developed, nevertheless, the problem of RNA secondary structure prediction has not been solved. The main difficulty is that the algorithms may not reflect the real folding process of an RNA molecule and the energy parameters need to be optimized before final results obtained. Our program simulates a stepwise folding process, and the free energy parameters are optimized for each kind of loops. Five possible pseudoknot structures are permitted to occur if they were reasonable. This program has been tested on a number of RNA sequences, and it gives some better results than the published programs.

04.02.12 IMPROVED METHOD FOR RNA SECONDARY STRUCTURE PREDICTION. by Xuemei Yuan*, Yu Luo, Zhuhui Lai, Xiajie Xu, Department of Chemistry, Peking University, Beijing 100871, CHINA

04.02.13 STRUCTURE OF HIGHLY CONCENTRATED PHASES OF DNA BY X-RAY DIFFRACTION D Durand1, J Ducruix2, J.L. Lefrançois1, L. Larcher1, U.R.E., Université Paris-Sud, 91405 Orsay Cedex, France, 2Centre de Biologie Cellulaire, 67 rue Maurice Coustou, 94268 Ivry-sur-Seine Cedex, France.

In aqueous solution, pure DNA forms multiple liquid crystalline and crystalline phases whose nature depends on the polymer concentration. The following phase sequence is observed when the DNA concentration increases: isotropic \(\rightarrow\) cholesteric \(\rightarrow\) columnar hexagonal \(\rightarrow\) crystalline phases. The aim of this work is to obtain structural information about the highly concentrated phases formed by DNA long DNA molecules, in particular about the cholesteric phases by means of X-ray diffraction. We show that in the two-dimensional (2D) ordered hexagonal phase a longitudinal order progressively appears between neighboring DNA helices leading to a three-dimensional (3D) ordered hexagonal phase (D.Durand, J Ducruix, J.L. Lefrançois, J Phys. II France 1992, 2, 1769-1783). For higher concentrations the specimen undergoes a discontinuous transition towards an orthorhombic phase. The characteristic structural parameters of these different phases have been determined. The most important result is that the number of nucleotides per helix turn decreases continuously when the DNA concentration increases, from 10.350.1 in the cholesteric \(\rightarrow\) hexagonal transition down to 9.1 with no apparent change of the B conformation of the molecules.

04.02.14 ORTHORHOMBIC AND TETRAGONAL STRUCTURES OF THE OCTAMER (GTACGTAC) BY M. Hospital*, B. Langlois, A. Dabat, C. Cançolle, G. Couhert and G. Privéongs, Laboratoire de Cristallographie, Université de Bordeaux I, 33405 Talence, France.

The synthetic self-complementary deoxyoligonucleotide (GTACGTAC) crystallized as an A type DNA double helix in both space group P4\(_3\)2\(_1\)2 and P2\(_1\)2\(_1\)2. The tetragonal structure was refined at 2.4 Å with an R factor of 17.9.

The orthorhombic one was refined at 2.2 Å with an R factor of 16%. The tetragonal structure is similar to the other octamers crystallizing in the same P4\(_3\)2\(_1\)2 space group, and displays two single stranded and 36 water molecules in the asymmetric unit. The orthorhombic structure presents a double stranded molecule stabilized by 66 water molecules in its asymmetric unit. It is the first time that such a crystal form has been observed for long DNA oligonucleotides. The molecule adopts a bend with a valley X° sharper in the orthorhombic structure than in the tetragonal one and an unusual packing between symmetry-related molecules generating a pseudo-hexagonal molecule.

As we observed here the same sequence of DNA crystallized in two different space groups, with local distortions and a more significant bend for the molecule crystallizing in the orthorhombic space group, we cannot rule out that the overall conformation is totally independent of crystal packing forces.

In a crystal, the packing forces are strong enough to induce local constraints on the DNA, i.e., an octamer is obviously too short a sequence and does not contain a full turn of DNA. Therefore it is impossible to guess how a longer piece of DNA, displaying similar structural parameters, would look like and would pack within the crystal. The present study is a contribution to the analyses emphasizing the very high degree of flexibility of DNA molecules, whether this flexibility is determined by base sequence and/or by crystal packing forces.

04.03 - Open Commission Meeting on Small Molecules - New Viewpoints in Structure Analysis

04.03.01 NEW IN SITU CRYSTALLIZATION TECHNIQUES WITH IR LASER. By R. Boese* and M. Nussbaumer, Institut für Anorganische Chemie, University of Essen, Universitätsstr. 5-7, 4300 Essen 1, Germany.

Single crystal structure investigations of low melting compounds calls for special techniques. Crystalization must be performed in situ, e.g. directly in a capillary mounted on a diffractometer which is equipped with a low temperature device. Simple cooling of liquid samples in capillaries could produce single crystals of polycrystalline materials. The most appropriate procedure for growing single crystals is by controlled local heating, producing a fine molten zone. By focusing a computer controlled position and intensity) IR laser beam to the capillary, the monitoring of the crystallization process is possible and single crystals can be produced easily. The high intensity of the laser allows purifying of the sample by performing a miniature zone melting procedure in the capillary. Sublimation, skipping of intermediate solid phases or even chemical reactions are possible in the capillaries. A complete device (see Figure 1), including a video monitoring of the process has been developed and will be presented.