The data were collected at 25°C using the 0/2 Osca mode, variable scan speed, scan width 0.5°. Two standard reflections (012, 111) monitored every 50 measurements and showed no systematic variation of intensity. Only Lorentz-Polarization corrections were applied, data adjusted to an approximately absolute scale, overall \(U = 0.04\AA^2\).

The structure was solved by direct methods, using the program SHELXL86 (Sheldrick, 1990). Least-Squares refinement of all non-H atoms with anisotropic thermal parameters and all of the H atoms were located by a difference synthesis and refined with isotropic temperature factors \((\beta)\) from 0.19 to 0.14e\(^{-\lambda}\), final \(R = 0.045, wR = 0.067\).

The X-Ray study shows that in this compound there is an intermolecular approach of 3,4,4',5-trimethoxyphenyl non-H atoms: N...O, 0.3017(8)Å. The molecules are held in the crystal by hydrogen bonds along \(a\).

PS-06.05.04 THE STRUCTURES OF THE PRODUCTS OF DIENE CONDENSATIONS WITH PARTICIPATION OF 3-HYDROXYALKENES

L.A. Aleskanov, N.G. Sokolov, V.A. Tafurova, M.V. Vakhrova, Moscow State University

The structures of the products of Diels-Alder reaction between 3-3-bromo-3-alkenones (ROCOCH\(_2\)C=CH\(_2\)) and dienes were determined by means of X-ray structure analysis (9 structures in all).

\[
\begin{align*}
\text{(a)} & \quad \text{(b)} \\
\text{(c)} & \quad \text{(d)} \\
\text{(e)} & \quad \text{(f)} \\
\text{(g)} & \quad \text{(h)} \\
\text{(i)} & \quad \text{(j)}
\end{align*}
\]

The influence of direct substituents' interactions on stabilization of the formed compounds and their spectral properties is discussed.

PS-06.05.05 CRYSTAL AND MOLECULAR STRUCTURES OF INDIRUBIN MONOXIME (1) AND INDIRUBIN MONOXIME ETHYL ETHER (2)

By Gao Yunhong, Li Chunmin*, Wu Shouyuan, Zhou Zhonghun, Department of Chemistry, Sichuan University, Sichuan, Sichuan, PRC

In order to search for a new kind of antileukemia drug, a series of derivatives of indirubin have been synthesized. Both indirubin monoxime (1) and indirubin monoxime ethyl ether (2) have been determined to possess antileukemia activity, the latter being better.

In this paper we report their molecular and crystal structures.

On CAD4 diffractometer with Weissenberg and Weissenberg methods, and in w/θR mode in the range of θ = 2θ = 50° for (1) and 2θ = 25° for (2), a total of 4902 and 2237 unique reflections were collected respectively. The 1840 and 1380 reflections having I > 3σ(I) were used in the respective determinations. On a PDP 11/44 computer with SDP Program package, the structures of compounds (1) and (2) were solved by direct methods and Fourier synthesis techniques. The crystallographic data are as follows: crystal (1) (preparation), C\(_{22}\)H\(_{18}\)N\(_{2}\)O\(_{5}\) · CH\(_{3}\)COOH, \(M = 335.39,\) monoclinic space group \(\text{C}2\text{c} \cdot \text{c} = 2.4697(9), b = 0.7243(2), c = 2.4199(9)\text{Å}, \beta = 129.98(2)\text{°}, \gamma = 3.3171(2)\text{°}, \delta = 8.\text{°}, \text{Dc} = 1.110\text{g/cm}^3, R = 0.0590, \text{Rw} = 0.0590, \text{crystal (1)} \cdot \text{C}_{22}\text{H}_{18}\text{N}_{2}\text{O}_{5}\text{ · CH}_{3}\text{COOH}, \text{M} = 325.36,\text{monoclinic space group P2}_{1}/\text{c} \cdot \text{c} = 0.9743(1), \text{b} = 1.3445(1), \text{c} = 1.1807(3)\text{Å}, \beta = 101.05(1)\text{°}, \gamma = 1.5180(1)\text{°}, \delta = 4.\text{°}, \text{Dc} = 1.363\text{g/cm}^3, R = 0.0393, \text{Rw} = 0.0418. This investigation was undertaken as one part of our ongoing study in the link between the structures and antileukemia activity of derivatives of indirubin.

PS-06.06.06 CRYSTAL STRUCTURE OF AN INDIGO DERIVATIVE (A DIMER) By S. Eswarenathen*, R.N. Perumal and T.S. Saju, Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Madras - 600025, INDIA.

The common feature of the naturally occurring pyrrole-related antibiotics like proflavine and ethidium is the possession of a planar chromophore with three fused rings. These planar compounds can be inserted in between adjacent base pairs of DNA molecules. The compound, Di(2-(3,4-dimethyl-1-indole-3-yl)methanone) belongs to monoclinic space group \(\text{P2}_{1}/\text{c}\). The unit cell values are \(a = 22.688(2)\text{Å}, b = 0.3559(2), c = 15.856(4)\text{Å}, \beta = 92.13(1)\text{°}, \gamma = 92.05(1)\text{°}, \delta = 132.0\text{°}\). The structure is solved by direct methods. One half of the molecule forms the asymmetric unit. The two asymmetric units are connected through a carbon atom which lies at the centre of inversion of the dimer. The monoclinic cell is refined by full-matrix least-squares methods. The indole moiety is planar and the phenyl ring is perpendicular to the indole moiety. Both of the methoxy groups lie in the plane of the phenyl ring. Four dimeric molecules occupy the unit cell and packed with N-H...O type of hydrogen bonding between the molecules.