06-Crystallography of Organic Compounds

PS-06.06.07 CRYSTAL STRUCTURE AND CONFORMATION OF N- T-BUTOXYCARBONYL-C-N'-BENZYLOXY CARBONYL - L-LYSYL- L-ISOLEUCINE METHYL ESTER By N. Sukumar* and M.N. Ponnuswamy, Department of Crystallography and Biophysics, University of Madras, Buindy campus, Madras - 600 025, India and R. Jayakumar, Chemical Lab, CLRI, Adyar, Madras - 600 020, India.

The dipeptide, a fragment of an inhibitor of converting angiotensin enzyme and bradykinin-destroying plasma kinases, is at room temperature. The crystal data are P2,, as follows: monoclinic, space group a = 5.003(1), b = 19.199(3), c = 15.270(2)A, β = 93.42(1)⁹, V = 1464.10Å, μ =6.18mm⁷. The structure is solved by direct methods and refined by full matrix least-squares to R=0.10 for the 1379 observed reflections[I \geq 1.5v(I)]. The tabor around matrix The t-boc group exists in trans-trans conformation. The peptide linkage is in trans in trans-trans conformation. The backbone torsion angles are as follows: $\theta_0 = -177(2)^\circ$, $\omega_0 = 175(2)^\circ$, $\phi_1 =$ $-108(2)^{\circ}, \psi_{i} = -100(2)^{\circ}, \omega_{i} = -175(2)^{\circ},$ ¢2[≈] $121(2)^{\circ}, \psi_{21} = 144(2)^{\circ}, \psi_{22} = 54(2)^{\circ}.$ The side chain conformation of isoleucine has $x_{11} =$ -43(3), $x_{12} = 169(3)$ and $x_2 = 160(3)$ and the configuration can be described 35 $[\gamma(III), \delta(II)]$. The sidechain conformation of lysine has $x_1 = -74(2)$, $x_2 = -169(2)$, $x_3 =$ -180(2), $x_4 = -172(2)$. The crystal structure is stabilized by N-H...O hydrogen bonds.

PS-06.06.08 THE MOLECULAR STRUCTURE OF A CYCLO-PROPYLIDENE DIMER. By R.J.Greenwood and M.F. Mackay,* Department of Chemistry, La Trobe University, Bundoora, Victoria 3083, Australia, and M.G. Banwell, J.N. Lambert and J.M. Walter, School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia.

An X-ray crystallographic analysis has unequivocally established that the dimerization reaction given below yields the unexpected symbis{ $3a\alpha$, $4a\alpha$, $5a\alpha$, $6a\alpha$ -2, 2-dimethyl-4 H-

cyclopropa[f]-1,3-benzodioxal-5-ylidene} with no *anti*-isomer detected. We believe the stereochemical outcome observed in the reaction could be quite generablisable and that the stereoselectivity associated with the initial halogen-metal exchange reaction determines whether the *sym*- or *anti*-dimer is obtained. The significance of the formation of the *sym*-dimer will be discussed.

Monoclinic crystals of $C_{20}H_{28}O_4$ belong to the space group C2/c with a = 35.245(5), b = 6.335(1), c = 29.090(4) Å, $\beta = 143.49(1)^{\circ}$ and Z = 8. Refinement with 1246 observed data converged at R = 0.055 and S = 2.46 (219 parameters varied).

193

As the molecule adopts the syn conformation it has approximate $C_{2\nu}$ point group symmetry so that the four oxygen atoms of the two *cis*-fused dioxalane rings lie on the same side of the molecule. The cyclohexane rings have regular boat forms as indicated by the asymmetry parameters ΔC_s 3.7 and 0.50°. One dioxalane ring has a conformation between an envelope and half chair (pseudo-rotational parameters Δ 15.6° and ψ_m -34.6° while the other is envelope (Δ -27.0° and Ψ_m -38.2°). The six atoms of the central dicyclopropylethene moiety are coplanar and the central C=C bond length is 1.31(1) Å.

PS-06.06.09 CRYSTAL STRUCTURE STUDIES ON N-PIPERIDIN-4-ONES by N.Sukumar and M.N.Ponnuswamy*, Department of Crystallography and Biophysics, University of Madras, Guindy campus, Madras-600025, India and R.Jeyaraman and J.C.Thenmozhiyal, Department of Chemistry, Btharathidasan University, Trichi-620024, INDIA.

Many nitrosamines are known to be carcinogenic Some N-nitroso urea are used as antitumor agents or antibiotics. Their activity depends on the nature and position of the side group attached to it. The aim is to study the stereo dynamics of N-nitroso piperidines and correlate the stereochemistry with their cancer/anticancer properties. To determine the conformational features of the piperidines the X-ray study was undertaken. The piperidine ring without N-nitroso group was found to assume chair conformation.Depending upon the electronic and steric nature of substituents, there will be a deformation from the perfect chair conformation. The introduction of the N-nitroso group at the position of nitrogen atom is known to exert a large influence on the conformation of the substituents. The following compounds has been solved.

(ii) 2,6 - difuryl -3,5 - dimethyl - N - nitrosopiperdin - 4 - one (DFMPNO): Mr=288.30, orthorhombic P2₁2₁2₁, a=9.330(1), b=20.517(2), c=7.708(1)A, V=1475.58A³, ρ =1.299gmcm⁻³, R=0.069. (iii)2,6-Di(o-chloro)phenyl-3,5-dimethyl-N-nitrosopiperidin-4 -one(NOCDMPO): Mr=377.25 Monoclinic, P2₁/n, a=13.062(2), b=10.931(2),c=13.120(2)A, \beta=104.57(1), V=1816.92A³, R=0.047.

In DTMP, the piperidin ring is in the chair conformation, while DFMPNO and NOCDMPO adopt a conformation close to boat form. The angle between thienyl rings in DTMP is $139.8(2)^{\circ}$ and furyl rings in DFMPNO is $116.0(1)^{\circ}$ respectively. The angle between phenyl rings in NOCDMPO is $73.0(1)^{\circ}$. In all the three compounds, the packing of the molecule is stabilized by van der Waals interactions. Further, conformational analysis are in progress and details will be presented.