## 08-Inorganic and Mineralogical Crystallography

255

The structure is based on a framework built up by connecting [001] double chains of octahedra; wide [001] channels in the framework are occupied by a single chain of face-sharing octahedra [M(1) site] and by the Si-tetrahedra.

By putting 2.88 Si + 0.02 P in the T sites, the cell with a = 12.02(3), b = 20.22(3), c = 4.732(2)Å (s.g. Pmcn) contains four f.u. with composition  $[(^{Mg}_{0.49}^{Ti}_{0.19}^{Fe}_{0.01}^{\Box}_{0.31})(^{Al}_{0.71}^{Mg}_{0.25}^{\Box}_{0.04})_{2}$ 

 $(Al_{0.95}\square_{0.05})_4][Si(Si_{0.94}P_{0.01}\square_{0.05})_2O_{15.04}OH)_{2.96}]B$ in agreement with electron- and ion-microprobe analyses. Only one hydrogen atom has been found in the difference Fourier. The further two hydrogens required oy the chemical formula are disordered over more than two oxygens; their presence is confirmed by calculations of the charge distribution.

Smaller Al-free tetrahedra and lower contents of high-charge cations in the face-sharing octahedra under compression, are proposed to be the crystallochemical basis for the formation of magnesiodumortierite under the Dora-Maira metamorphic conditions.

The following general formula for the minerals of the dumortierite group is proposed

where: M'=Al, Mg, Ti, Fe, RE(?)  $\{M(1) \ site\}$ ; M''=Al, Mg  $\{M(4) \ site\}$ ; M'''=Al  $\{M(2) \ and \ M(3) \ sites\}$ ; T'=Si, Al, P  $\{T(1) \ and \ T(2) \ sites\}$ ; T''=Sb occurs in holtite (Hoskins, Mumme and Pryce, 1989, Min. Mag., 53, 457-463) and forms a pyramidal group with three oxygen atoms  $\{T(1) \text{ and } T(2) \text{ sites}\}$ . In all sites, particulary in M(1), vacances can occur.

PS-08.01.31structural model and polytypism in

TUNGUSITE. G.Ferraris<sup>1</sup>

1 Dip. Sci.Miner.Petr., Univ. Torino, Italy.
2 Dip. Sci.Terra, Univ. Milano, Italy.

3 IGEM, Russian Acad.Sci., Moscow, Russia.

Tungusite is a light green hydrous silicate of Ca and Fe reported from different locali-

of Ca and Fe reported from different localities of the Siberian Platform and described the first time by V.I. Kudriashova (1966, Dokl. Akad. Nauk SSSR, 171, 1167-1170). On the basis of X-ray (powder patterns) and electron diffraction studies (selected area and oblique texture patterns) and of comparison with the crystal structures of reyerite (Merlino, 1989, Min. Mag., 52, 247-256) and gyrolite (Merlino, 1989, Min. Mag., 52, 377-387) new data on tungusite have been obtained. tained.

No single crystals suitable for X-ray structural studies have been found and the electron diffraction shows a widespread stacking tron diffraction shows a widespread stacking disorder along the c\* axis. The most ordered sample shows a metrically monoclinic C-centred cell, with a = 9.66, b = a $\sqrt{3}$ , c = 21.86 Å,  $\alpha \approx 100$ ,  $\beta = 90$ ,  $\gamma = 90^{\circ}$ . By analogy with gyrolite, the structural model is based on a triclinic (PI) cell with a  $\approx b = 9.66$ , c = 21.86 Å,  $\alpha \approx 98.6$ ,  $\beta = 90$ ,  $\gamma = 120^{\circ}$ . The proposed model maintains the S<sub>1</sub>OS<sub>2</sub>X $\overline{S}$ 2 $\overline{O}$ S<sub>1</sub> sequence of tetrahedral (S), octahedral (O) and complex (X) sheets reported in gyrolite and complex (X) sheets reported in gyrolite by Merlino; it differs from this structure pratically only for the contents of the

complex sheet X. While in gyrolite the Xsheet contains only one Na and two Ca octaheand two ca octane-dra plus water molecules, in tungusite this sheet is completely filled by nine octahedra. The following ideal crystallochemical formula is derived for tungusite:

$$(Ca_{14}M_{9}^{2+})[T_{8}O_{20}(OH)_{6}][T'_{8}O_{20}(OH)_{8}]_{2},$$

where M is mainly a bivalent with minor monovalent and trivalent cation (Fe $^2+\approx 6$ , Na $^+\approx 2$ , Fe $^{3+}\approx 1$ , in our samples); T and T' are mainly Si with, in our samples, a maximum of 2Al which should stay in T' (S $_2$  sheet). This type of substitutions in M requires that some OH are replaced by  $\rm H_2O$ . Some of our samples ("white tungusite") show clearly a composition which is intermediate between tungusite and gyrolite. With reference to the C-centred cell, possible polytypes can be derived by shifts only along the b axis (±1/9, ±2/9, ±4/9; monoclin-

along the b axis  $(\pm 1/9, \pm 2/9, \pm 4/9;$  monoclinic cells) and along a axis as well  $(\pm 1/3, \pm 1/2, \pm 1/6;$  triclinic cells). The shifts are referred to the O sheets with respect to the  $S_1$  and  $S_2$  sheets.

## PS-08.01.32

CRYSTAL STRUCTURE OF Sr(ReO4)2.H2O

T. Todorov and J. Macicek<sup>\*</sup>, Institute of Applied Mineralogy, Bulg. Acad. Sci., Rakovski str. 92, 1000, Sofia, Bulgaria.

The existence of strontium perrhenate monohydrate was mentioned for the first time by Smith & Maxwell (J. Am. Chem. Soc., 1951, 73, 858-860) and proven by means of X-ray powder and TGA analysis by Wassilopulos (Uber Polinare Oxide des 4 and 7 wertigen Technetium mit Erdaklalien. Karlsruhe. Kernf. Inst. Radiochem., 1965, S. 67)

Our STA analysis of fresh Sr(ReO4)2.2H2O prepared according to Smith & Maxwell (1951) supported the existence of the monohydrate in the temperature range of  $66-155\,^{\circ}\text{C}$ . Complete powder data were evaluated (PDF 42-682; Macicek). We managed to grow single crystals of Sr(ReO4)2.H2O from absolute CH3OH. Crystal data: M = 606.03, orthorhombic, Pbca (51), a = 11.594(2), b = 12.304(1), c = 23.885(4)Å, V = 3407 Å^3,

Z = 16,  $D_{_{\rm J}} = 4.73~{\rm g.cm^{-3}}$ ,  $R = 0.042~{\rm for}~2151~{\rm reflections}$ with  $I > 2\sigma(I)$ .

Coordination polyhedron of Sr(1) consists of nine oxygen atoms from eight ReO4 tetrahedra and one water molecule at 2.548(16) - 2.688(15)Å. Sr(2) is coordinated to eight oxygen atoms from seven ReO4 groups and the second H2O molecule (2.507(15) - 2.614(20)Å]. Sr(1) atom participates in seven double (Sr...Sr 6.175(3) - 6.530(3)Å] and one single Sr-T-Sr (Sr...Sr 6.818(3)Å] bridges, while Sr(2) forms six double (Sr...Sr 6.325(3) - 6.558(3)Å] and three single (Sr...Sr 6.532(3) - 6.818(3)Å] bridges. The ReO4 tetrahedra have irregular geometry with Re-O distances and [O-Re-O] angles within 1.702(15)-1.742(15)Å and [106.7(8)-111.8(7)°]. Three of the ReO4 groups are linked to four Sr ions, and the fourth one only to three. The non-coordinated oxygen from Re(4)O4 has three closest neighbours: O(22) at 3.233(22)Å, O(23) at 3.282(23)Å and O(13) at 3.368(22)Å.

## PS-08.01.33

STRUCTURES OF CALCIUM AND LEAD PERRHENATE UREA HYDRATES. By J. Macicek', R. Petrova, O. Angelova, Bulgarian Academy of Science, Rakovski str. 92, 1000, Sofia, (Bulgaria)

Preliminary investigation of the system  $M(ReO4) \circ Urea-H \circ O$ , M = large divalent cations, indicate formation of 1:1:1 addition compounds. Single crystals of lead and calcium species have been studied on an Enraf-Nonius CAD4/SDP44 diffractometric