conventional nets supersposition. We have used the unique set of programs - Crystal Chemistry Analysis of Structure Similarity by Plane Atomic Nets (CCASS-PAN, Blinov, N. A.; Borisov S. V., Zh. Strukt. Khim. 32, N. 2, 284-304 (1992)). The type of a cation matrix is defined as a set of layers with certain atomic nets which are interconnected in a given way. As an example let us consider a small group of crystal structures U$_2$F$_6$, Cu$_2$F$_4$, BaZrF$_6$, 2H$_2$O, Ti$_2$F$_6$, Ti$_2$ZrF$_6$, etc. in which are presented nets of cations 3F$_4$ (1 rhomb $+ 1$ square per unit cell). An ideal example is the cubic structure of U$_2$F$_6$ in which cation nets 3F$_4$ are available in 3 orientations, (002), (020), (200). There are two more close-packed crystallographic layers (110) and (002) for the given structure type. Another group of crystal structures with cation nets 3F$_4$+32 (2 rhomb, 1 square per unit cell) may be attributed to the structure type F-K$_2$UF$_6$. The high symmetry structure has the ideal type of the net 3F$_4$+32 in the (110) layer. Thus it was selected as the standard for a calculation of a similarity measure of the cation arrangement in the structures of K$_2$UF$_6$, K$_2$YbF$_6$, K$_2$GdF$_6$, BaTmF$_6$, K$_2$ThF$_6$, et al. with the same nets. There is a rich variety of crystal structures with cation nets 3F$_4$+32 in the "fluorite-like" type. The consideration of fluoride structure types allows to conclude that a set of close-packed layers is more conservative to a composition - change and a loss of some symmetry elements. This work was supported by a grant of Soros fund.

08.02 - The Crystallography of Zeolites and Other Porous Materials

MS-08.02.01
IN SITU STUDIES OF DEHYDRATION PROCESSES IN ZEOLITES USING POWDER DIFFRACTION.
By K. Stahl, Inorganic Chemistry 2, University of Lund, Sweden.

Diffraction studies of dehydration processes of zeolites have given valuable insight in the chemistry of zeolites and may provide important cues to the synthesis and applications of these materials. The so far studied zeolites showed a variety of dehydration behaviours, involving phase transitions, ripensider transitions before the final breakdown of the crystal structure. The standard method for structural studies has been to heat a powdered or single crystal sample to a given temperature, seal it off and cool it to room temperature before data collection. Obviously this method will give information from a limited set of dehydration temperatures only, and the results may in some extent be obscured by the 'cooling' effect. Preferably one would like to repeatedly collect complete data sets while the samples are slowly heated.

With the combination of a position sensitive detector (PSS120 by INEL) and a synchrotron X-ray source (X7B, NSLS, USA), the data acquisition time for zeolite powder diffraction pattern, suitable for Rietveld analysis, can be brought down to the order of minutes. Complete powder diffraction data sets collected every five minutes during intermittent (5 Ksteps) heating have with this method given detailed insight of the dehydration processes in a set of natural zeolites. The nature of the water evaporation, gradual or almost instantaneous, stability limits of cation coordination numbers, and the crystal structures immediately below and above phase transitions are among the directly obtainable results. Details of the water and sometimes cation diffusion can be extracted. The method itself and the results will be discussed and where available, compared to data obtained with the standard, fixed dehydration temperature method.

MS-08.02.02
EVALUATION OF ZEOLITE FRAMEWORKS WITH THE VIEW TO CLASSIFICATION, ENUMERATION AND SOLUTION OF STRUCTURES.
Duncan Akpataye
SINTEF-SI, P.O. Box 124 Blindern, N-0314 Oslo, Norway.

An overview of the current range of zeolite frameworks is presented as defined by their systematic relationships derived from their classification in terms of constituent 3-connected spheres. The application of the various methods for the classification and enumeration of zeolite frameworks and their usefulness in structure classification and solution is considered. Novel tests of hypothetical frameworks are evaluated, including a survey for which the channel characteristics are pre-defined in two-dimensions.

MS-08.02.03
RECENT ADVANCES IN THE STRUCTURAL CRYSTALLOGRAPHY AND CRYSTAL CHEMISTRY OF NATURAL ZEO- LITES. By G. Attioni, Dipartimento di Scienze della Terra, Università di Milano, Italy.

The number of known natural zeolites has considerably increased in recent years. Several new mineral species are natural analogues of known synthetic phases (e.g., FEG, phosphates [RHO], zeolite KAN, tektosilicate [BEA]), and other natural species show novel framework topologies (e.g., ROQ, microporous, mesoporous [MON], zeolite-like).

The crystal structure of the new minerals will be discussed, together with the recent advances in the structural analysis and modelling in other zeolite groups: the crystal structure of garnetite (GHS) has been determined, peridolite (ZIT) was shown to have the zeolite-L framework topology, daciteite (DAC) shows consisting domains having different frameworks, and the study of the fully hydrated structure of laumontite (LAC) allows interpretations of the boehmite-hematite reversible transformation.

Several new zeolite structures were also recently studied in detail and partly solved: lepidolite (LGO), rossengite (ROQ), taygite (SOD), gismondite (NAS). The presence of tetrahedrally coordinated beryllium in natural zeolite minerals, and the stability of interrupted framework structures are to be considered common features in zeolites. Natural (chausanite [CH], palygrose [PAR], rossengite [ROQ], zeolite [WEN]) and synthetic (clorwite [CZO]) interrupted framework structures will be described.

MS-08.02.04
QUANTITATIVE IMAGING AND DIFFRACTION OF ZEOLITES USING A LOW-SCAN CCD CAMERA. By M. Pan* and P.A. Crouzet Center for Solid State Science, Arizona State University, USA.

Zeolites are an important class of low-density aluminosilicate framework structures with applications to the field of catalysis, electronic materials and molecular sieves (D.W. Breck, Zeolite Molecular Sieves, John Wiley & Sons, New York 1974). Structural determination is usually carried out by X-ray diffraction. Unfortunately, it fails partially or completely if the synthesized zeolites have a small grain size (e.g., <10 nm) or the structure contains defects. In this case, high resolution electron microscopy (HREM) and electron diffraction can be powerful techniques to help solve the structures (M. Newham, et al., Proc. R. Soc. Lond. A420 (1985) 375). Zeolites undergo rapid structural damage when exposed to electron irradiation because of the low density and open framework structures. Hence it is necessary to employ low-dose techniques to perform high-resolution structure imaging of zeolites.

Recently, the technology in solid state electronic devices has led to the development of commercially available low-scan CCD (charge-coupled device) cameras for electron microscopy (P.E. Mooney, et al., Proc. Xth Congr. for Elec. Microsc., Seattle, WA, Vol. I (1990) 164). The main advantages of such a device include linear response, large dynamic range (4x10⁶), high sensitivity and digital data storage. All of these are suited to acquiring image and diffraction data from radiation sensitive materials.