15-Crystal Growth

PS-15.02.22 SURFACE SUPERSATURATION ON GROWING OF CRYSTAL by A. M. Askhabov

Inst. of Geol., Komi Science Center, RAS, Syktyvkar, Russia

Supersaturation σ on growing surface of crystal as a function of volume supersaturation σ is nonlinear and determined by equation (Askhabov, 1993):

$$\sigma = \frac{\sigma^*}{2 \left(1 + \frac{\sigma^*}{\sigma} \right)^{1/\epsilon} - 1}$$

The parameter σ* in (1) depends mainly on correlation of volume diffusion and surface kinetics processes during crystal growth. The values of σ* for the growing faces of crystal are found based on experimental data R(σ), where R is growth rate of crystal faces. Equation (1) may be used for determination σ*(σ) for the crystal growing in the conditions of free and forced convection. For example, for the K-alum crystals growing in the free convection condition, the dependence σ* (σ) based on experimental data R(σ) is following:

$$\sigma^* = 0.02 \left(1 + 10^{10\sigma} - 1\right) \quad \text{for (111)}$$

$$\sigma^* = 0.031 \left(1 + 54.5e^{-6\sigma} - 1\right) \quad \text{for (001)}$$

On the growth center σ* is more, than one far from center. Because of it, gradients of supersaturation are appear on the faces, and cause the formation of macrosteps. When the gradient achieve critical values the morphological stability of growing crystal faces are lost. For the crystal growing in the dynamic conditions, σ* achieves 0. 80-0. 90σ. Absolutely kinetic regime for the crystal growth from solution can not be achieved. That's why only experimental dependences V(σ*) get as result of calculating σ* from σ, can be compared to theoretical models of crystal growth.

References: A. M. Askhabov, Crystal growth from solution. Syktyvkar, 1993, 22p (Russ.)

PS-15.02.23 GROWTH DEFECT INVESTIGATIONS IN SILVER THIOGALLATE. by E. N. Fedorova*, A. P. Yelisseyev, B. G. Nenashev, T. N. Moroz.

United Inst. of Geology, Geophysics and Mineralogy, Sib. Br. Acad. Sc. 630090, Novosibirsk, Russia

Silver thio gallate, AgGaS₂, is a well known commercial crystal for nonlinear application and belongs to the chalcopyrite type structure. As a rule, AgGaS₂ crystals exhibit twinning defects in (112) crystallographic planes and there is a problem in obtaining crystals of sufficient size which contain no defects and could be used in optical elements manufacture. The crystals of different technological stages of synthesis and growth have been investigated by Infra-red and Raman spectroscopy methods. The nonstoichiometry can result in appearance of modes forbidden by ideal symmetry in the region of Siatoms valence vibration. Thus IR spectra of some powder samples have an absorption band at 300 cm⁻¹ assigned to A₁ forbidden mode. A single crystal used in the Raman measurements has been grown by Bridgeman-Stockbarger technique and orientated along the principal crystallographic axes.

At examination in polarized microscope the sample looks like one large domain with visible twinning defects in (112) plane at one end. From the low-energy side of the A₁ (295 cm⁻¹) mode one can observe a 275 cm⁻¹ mode as a shoulder which was identified as vacancy-sulphur vibration rather than the second-order, the structure of which vanishes at 80K. As a result of our experimental study of the defects present in AgGaS₂ it is possible to discuss the influence of stoichiometry on the optical quality of single crystals and twinning phenomena.

PS-15.02.24 ON THE PREPARATION OF 11GaO · 7Al₂O₃ · CaF₂ SINGLE CRYSTAL. Xiu - ji Feng* and Qi - jun Yu.

Department of Materials Engineering, Wuhan University of Technology, Wuhan, China

The preparation of 11GaO · 7Al₂O₃ · CaF₂(Ca₁₉₆ · CaF₂ for short in the following) single crystals is important for the analysis of its structure. Generally it is recognized that it is impossible to obtain a stoichiometric Ca₁₉₆ · CaF₂ crystal due to the evaporation of fluorine at high temperature. After studying the growing mechanism, dynamics and proper conditions Ca₁₉₆ · CaF₂ single crystals with a trigonal trilateralonon habit of 40 ~ 120 µm have been prepared for the first time by using appropriate amount of PbF₂ as flux. The formation process and stability of Ca₁₉₆ · CaF₂ at high temperatures as well as the effect of doped ions on them have also been determined by Powder XRD, XQRD, IR spectrum, Raman spectrum, HT - DTA and HTM techniques with the theory and methods of solid chemistry and physical chemistry. The results show that the formation mechanism of Ca₁₉₆ · CaF₂ at high temperature is in accordance with the equation suggested by Ginstling - Brounshtein, and if there is an appropriate amount of fluorine in the raw meal the final product is only Ca₁₉₆ · CaF₂ and no other calcium aluminates such as Ca₅Al₄O₁₃ and Ca₅AlO₃ can be found. Based on sufficient experimental results and theoretical deduction we have concluded that Ca₁₉₆ · CaF₂ is congruently melted at 1465°C.