18.01 – Crystallographic Data Bases

MS-98.01.01 STRUCTURAL DATA IN A CHEMICAL CONTEXT: SEARCH AND RESEARCH USING THE CAMBRIDGE STRUCTURAL DATABASE. Frank P. Allen, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, England.

The CSD currently holds information on over 100,000 organo-carbon crystal structures. This information is not only of interest to crystallographers, but also to a very broad spectrum of chemists. Search systems have been devised that employ the graphical language of chemistry for query construction and for display of hits. The system also permits the systematic analysis of geometric structure, a process that leads to the acquisition of new structural knowledge from the data accumulated in the CSD. The study of conformational preferences, the mapping of structural interconversions and reaction pathways and their relation to the potential energy hypersurface, and the systematic study of hydrogen-bonded and non-bonded interactions will be illustrated. The possibilities for storing this derived information in a computerised knowledge base will be discussed.


The Brookhaven Protein Data Bank (PDB) is very much a resource in transition. In fulfilling its mission to provide the international community with access to information on 3-D structures of biological macromolecules, PDB is developing increasingly automated procedures for data entry, validation, and distribution. PDB is also actively planning to expand its role as a center for coordination and development of the new database management, manipulation, and analysis tools required in the future if we are to effectively utilize the rapidly growing mass of information available in structural biology.

Coverage of PDB is now up-to-date and the complete collection of approximately 2,000 structures is available from Brookhaven and from affiliated centers located in Europe, Japan, and North America. Increasingly, distribution is via Internet. PDB is also now available on CD-ROM as well as in the traditional magnetic tape formats, and the database has been incorporated into a number of commercial molecular graphics, simulation, database, and computer-aided molecular design packages.

Important new developments now underway at PDB include:
- An on-line PDB database will be developed which will support intelligent interactive query and analysis from Brookhaven via Internet. This on-line system will be the primary access vehicle for the PDB of the future.
- We thank our many PDB consultants and collaborators for their numerous valuable contributions and the PDB International Advisory Board for their continuing advice and guidance. Financial support for PDB is provided by US DOE, NIH, NSF, affiliated PDB distribution centres, and user fees. Brookhaven National Laboratory operates under contract DE-AC02-76 CH00016 with the US DOE.

MS-98.01.03 NEW DEVELOPMENTS FOR THE INORGANIC CRYSTAL STRUCTURE DATABASE (ICSD) By M. Berndt, K. Brandsborg and G. Bergerhoff*, University of Bonn, Germany.

The Inorganic Crystal Structure Database is now continuously updated jointly by the Fachinformationszentrum Karlsruhe and the Göttingen-Institut, Frankfurt. The 35,000 datasets in the version of January 1993 represent the considerable amount of primary information available in Inorganic Crystal Chemistry. It is now necessary to develop tools by which the relations between structures such as isomorphous, subgroup-supergroup relations, etc. may be found.

For this purpose it is necessary to standardize the structures E. Parthé and L. Gelato (J. Appl. Cryst. 20 (1987) 135-141) have shown the way and M. Berndt implemented STRUCTURE TIDY in such a way that all structures can now in principle be standardized automatically. Following this a COMPARE function puts together similar sites of isomorphous structures and calculates the means of differences between corresponding coordinate values. 0.05 seems to be a good limit to differentiate non-isomorphic structures.

Of course in the case of more complicated structures it will not be easy to do such a comparison automatically. Therefore a graphics program CVIS has been designed by K. Brandsborg. For all structures in the ICSD it states from the crystallographic database by applying the symmetry operators of all space group settings using an internal list of atomic distances. The wide variation of interatomic distances in inorganic chemistry can be taken into account by setting upper and lower limits to a display of distance distributions of selected atom pairs. Molecules and other discrete building units are then found and drawn automatically. The infinite lattices very common in inorganic structures can be drawn arising from one arbitrary atom of the framework which is then built up in steps by simple commands. Subsequently these structures will be exposed for comparison.

To enable chemists to use ICSD and the new programs for their daily work they are now available on CD-ROM to run on a PC. A mouse-driven RETRIEVE program (M. Berndt) searches for all descriptors known from CRYSTAL in a user-friendly way. To further develop ICSD on CD-ROM to be a handy, complete and up-to-date catalogue of all (inorganic) crystal structures, users can help by transferring errors, missing structures and... just but not less... new structures via e-mail to CASTOR or CIF files to c001@fzrrv.bfr.de.