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PS—19.01.09 SINGLE CRYSTAL X-RAY STRUCTURE ANALYSIS:
THE DEVELOPMENT OF AN ANALYTICAL TECHNIQUE FROM THE
iNITIAL STEPS TAKEN BY KKEPLER TO ITS APPLICATION IN CHE-
MICAL RESEARCH, ILLUSTRATED BY INTERNATIONAL POSTAGE
STAMPS. By Hans Preut, Fachbereich Chemie, Universitit Dortmund,
Postfach 50 05 00, D-4600 Dortmud 50, Germany.

"lt is not often the case in science that the steps of the intellectual
process are so clearly apparent as they are in crystallography.” (200
Ans de Crystallographie en France, [UCr Bordeaux 1990)

1611 Johannes Kepler: De Nive Sexangula; 1661 Niels Stensen:
Law of constancy of interfacial angles; 1891 Ewgraf Stepanovich
Fedorov and Arthur Moritz Schoenflies: 230 space groups; 1895
Wilhelm Conrad Réntgen: X-rays; 1912 Walter Friedrich, Paul
Knipping and Maz von Laue: X-ray diffraction; 1913 William
Henry Bragg and William Lawrence Bragg: Crystal structure de-
termination; 1934 Arthur Lindo Patterson: Heavy atom method;
1941 Konrad Zuse: Computer; 1947 : Synchrotron radiation:
1953 Herbert Hauptman and Jerome Karle: Dirdct methods; 1969
: First protein structure (Insulin).

‘X-ray crystal structure analysis is an excellent exaniple to demonstrate

how different fields of science and technology contributed to form a
complex analytical method. Postage stamps from all over the world
will be used as a basis of a review of the method, its development
from Johannes Kepler (1571-1630) to protein engineering, and some
of the most important milestones in its history (Preut, H. (1989).
Chemie in unserer Zeit, 23 , 121-129) .

PS-19.01.10 TEACHING TENSORIAL PROPERTIES WITH
REPRESENTATIONS. By V. Kopsky, Department of Physics,
University of the South Pacific, POBox 1168, Suva, Fiji.

Classical teaching of crystallography relies heavily on geometrical
intuition. Though group theory accompanies crystallography from
its early stages throughout the history of its development, the power
and simplicity of group-theoretical methods, especially of represen-
tation theory, is not yet fully recognized.

This is to show how effective the approach of representation theory
can be in calculation of tensorial properties. A standard approach
1s based on a direct inspection of invariance under the symmetry
group. The procedure must be, in principle, performed separately
for each tensor and each symmetry group though there exist some
simplifying tricks, partly connected with parity arguments.

To show the full extent to which representation theory together
with parity arguments can be exploited, let us consider {our tensors:
u, eu, Ty, and e7u under the action of magnetic point groups of
the same oriented Laue class G (say 4,2,2,). Here u is a tensor
which is invariant both under space inversion ¢ and magnetic (time)
inversion e’ and hence also under combined inversion 1’ = te’.

€ is an i-pseudoscalar which changes its sign under space inversion ¢,
T isa c-scalar which changes itssign under time inversion e’ and
€7 is a c-pseudoscalar which changes its sign under both inversions.
G is the group of proper rotations which defines the Laue class.

It is clear that tensor u will have the same equilibrium. form for
all groups of the given Laue class. Four centrosymmetric groups
(4:/mamomyy, 4, [momim!, &, [m.m.m},, and 4;/m,m.m,,) con-
tain explicitly ¢, four paramagnetic groups (4,2,2;,.1', 4,momy,. 1,
4,2:mqy. 1, and 4,m;2;,.1") contain explicitly ¢’ and four groups
(4ofmim o, 4, [mimome,, 4, /mimm’ , and 4. /m'm’m.,) con-
tain explicitly ¢, Finally, the centrosymmetric paramagnetic group
4,/m,mymy,.1' contains explicitly all three inversions.

Parity arguments lead to selection rules. Tensor eu is forbidden by
groups which contain : and for ¢, tensor Tu by groups which contain
e’ and/or ¢, and tensor eru by groups which contain i and/or ¢’.
All tensors except u are therefore forbidden by the centrosymmetric
paramagnetic group. '
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There are 16 magnetic point groups isomorphic with 4,2,2., which
differ only in the way in which inversions are combined with proper
rotation elements. The four scalars: 1, €, r, and e7 transform by
one-dimensional ireps I'y, T3, I's, and Ty, the first of which is iden-
tity, the remaining alternate. Since ¢ transforms by T'; in groups
4,2:2:y, 4,2,2;,, 4,2, 2cy, and 4,2,2}, the tensor eu will transform
in the same way and hence it will have the same equilibrium form
as the tensor u for these groups. The tensor ru will have this form
in groups 4,2,2:y, 4,MsMyy, 4,2:Mmyy, and 4,m:2., and the tensor
eru in groups 4,2:2.y, 4,mim;,, 4:2£m’xy, and T,m’2.,.

The pseudoscalar ¢ transforms by I'; in groups 4,m m.,, 4mom;,
4,memy,, and 4;m_m.,, c-scalar 7 in groups 4,22, 4,m;m,,,
4,2;my,, and 4,m}2, , and c-pseudoscalar 7 in groups 4,202,
4, memgy, Z;%mry, and Z’,mﬂgy. Accordingly, the corresponding
tensors have the same transformation properties and hence equilib-
rium forms in respective groups. Analogously we use the ireps I'
and T’y and a slight modification applies to groups which contain
some inversions explicitely.

This consideration has an interesting consequence. There exist only
four possible nontrivial forms of tensors u, £u, 7u, and e7u in Laue
class 4,2,2,,. Quite generally, the number of possible forms equals
to the number of real one-dimensional ireps of the group G, which
is either one, two or four.

The method is even more effective if taught together with Clebsch-
Gordan multiplication which enables easy calculation of tensors u.
One table of transformation properties of tensors u under the group
G together with a table of transformation properties of scalars un-
der groups of Laue class G give then a transparent scheme which
provides not only equilibrium tensors but also decomposition of ten-
sors into bases of ireps. This relationship between tensors has been
used recently (Grimmer, H. (1991). Acta Cryst. A47, 226-232),
but the complete scheme has been described by the author a time
ago (Kopsky, V. (1979). Acta Cryst. A35, 83-95 and 95-101).

An elementary knowledge of representation theory is the price for
this transparent approach which gives an insight into the system of
mutual relations between tensors and symmetry groups.

PS-19.01.1 TEACHING STUDENTS ABOUT PROTEIN
STRUCTURE AND FUNCTION. D.A Waller*, C.E.Sansom &
A.J.Geddes, Department of Biochemistry and Molecular Biology,
University of Leeds, Leeds, England

The advent of relatively low cost computer graphics workstations
has enabled us to teach undergraduates about various aspects of
protein structure and function using molecular graphics to display
and manipulate the structures.

There are many advantages to this approach:

i) Particular features of a structure can be examined in detail and
accurate measurements made.

ii) Protein—-protein .and protein-ligand interactions
dissected and docking processes simulated

iii) Every student can have their "own molecule”

" Some of our recent work devising practicals to examine molecules
such as-haemoglobin, the D1.3 antibody-antigen complex, the
photosynthetic reaction centre and the Met J repressor—operator
complex using a variety of graphics packages and presentation
software running on Silicon Graphics workstations will be
described.
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PS-19.01.12 THE USE OF OPTICAL TRANSFORMS AS
TEACHING AIDS. By T.R. Welberry*, Research School of
Chemistry,” Australian National University, GPO Box 4, -
Canberra City, ACT 0200, Australia.
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