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PS—19.01.09 SINGLE CRYSTAL X-RAY STRUCTURE ANALYSIS:
THE DEVELOPMENT OF AN ANALYTICAL TECHNIQUE FROM THE
iNITIAL STEPS TAKEN BY KKEPLER TO ITS APPLICATION IN CHE-
MICAL RESEARCH, ILLUSTRATED BY INTERNATIONAL POSTAGE
STAMPS. By Hans Preut, Fachbereich Chemie, Universitit Dortmund,
Postfach 50 05 00, D-4600 Dortmud 50, Germany.

"lt is not often the case in science that the steps of the intellectual
process are so clearly apparent as they are in crystallography.” (200
Ans de Crystallographie en France, [UCr Bordeaux 1990)

1611 Johannes Kepler: De Nive Sexangula; 1661 Niels Stensen:
Law of constancy of interfacial angles; 1891 Ewgraf Stepanovich
Fedorov and Arthur Moritz Schoenflies: 230 space groups; 1895
Wilhelm Conrad Réntgen: X-rays; 1912 Walter Friedrich, Paul
Knipping and Maz von Laue: X-ray diffraction; 1913 William
Henry Bragg and William Lawrence Bragg: Crystal structure de-
termination; 1934 Arthur Lindo Patterson: Heavy atom method;
1941 Konrad Zuse: Computer; 1947 : Synchrotron radiation:
1953 Herbert Hauptman and Jerome Karle: Dirdct methods; 1969
: First protein structure (Insulin).

‘X-ray crystal structure analysis is an excellent exaniple to demonstrate

how different fields of science and technology contributed to form a
complex analytical method. Postage stamps from all over the world
will be used as a basis of a review of the method, its development
from Johannes Kepler (1571-1630) to protein engineering, and some
of the most important milestones in its history (Preut, H. (1989).
Chemie in unserer Zeit, 23 , 121-129) .

PS-19.01.10 TEACHING TENSORIAL PROPERTIES WITH
REPRESENTATIONS. By V. Kopsky, Department of Physics,
University of the South Pacific, POBox 1168, Suva, Fiji.

Classical teaching of crystallography relies heavily on geometrical
intuition. Though group theory accompanies crystallography from
its early stages throughout the history of its development, the power
and simplicity of group-theoretical methods, especially of represen-
tation theory, is not yet fully recognized.

This is to show how effective the approach of representation theory
can be in calculation of tensorial properties. A standard approach
1s based on a direct inspection of invariance under the symmetry
group. The procedure must be, in principle, performed separately
for each tensor and each symmetry group though there exist some
simplifying tricks, partly connected with parity arguments.

To show the full extent to which representation theory together
with parity arguments can be exploited, let us consider {our tensors:
u, eu, Ty, and e7u under the action of magnetic point groups of
the same oriented Laue class G (say 4,2,2,). Here u is a tensor
which is invariant both under space inversion ¢ and magnetic (time)
inversion e’ and hence also under combined inversion 1’ = te’.

€ is an i-pseudoscalar which changes its sign under space inversion ¢,
T isa c-scalar which changes itssign under time inversion e’ and
€7 is a c-pseudoscalar which changes its sign under both inversions.
G is the group of proper rotations which defines the Laue class.

It is clear that tensor u will have the same equilibrium. form for
all groups of the given Laue class. Four centrosymmetric groups
(4:/mamomyy, 4, [momim!, &, [m.m.m},, and 4;/m,m.m,,) con-
tain explicitly ¢, four paramagnetic groups (4,2,2;,.1', 4,momy,. 1,
4,2:mqy. 1, and 4,m;2;,.1") contain explicitly ¢’ and four groups
(4ofmim o, 4, [mimome,, 4, /mimm’ , and 4. /m'm’m.,) con-
tain explicitly ¢, Finally, the centrosymmetric paramagnetic group
4,/m,mymy,.1' contains explicitly all three inversions.

Parity arguments lead to selection rules. Tensor eu is forbidden by
groups which contain : and for ¢, tensor Tu by groups which contain
e’ and/or ¢, and tensor eru by groups which contain i and/or ¢’.
All tensors except u are therefore forbidden by the centrosymmetric
paramagnetic group. '
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There are 16 magnetic point groups isomorphic with 4,2,2., which
differ only in the way in which inversions are combined with proper
rotation elements. The four scalars: 1, €, r, and e7 transform by
one-dimensional ireps I'y, T3, I's, and Ty, the first of which is iden-
tity, the remaining alternate. Since ¢ transforms by T'; in groups
4,2:2:y, 4,2,2;,, 4,2, 2cy, and 4,2,2}, the tensor eu will transform
in the same way and hence it will have the same equilibrium form
as the tensor u for these groups. The tensor ru will have this form
in groups 4,2,2:y, 4,MsMyy, 4,2:Mmyy, and 4,m:2., and the tensor
eru in groups 4,2:2.y, 4,mim;,, 4:2£m’xy, and T,m’2.,.

The pseudoscalar ¢ transforms by I'; in groups 4,m m.,, 4mom;,
4,memy,, and 4;m_m.,, c-scalar 7 in groups 4,22, 4,m;m,,,
4,2;my,, and 4,m}2, , and c-pseudoscalar 7 in groups 4,202,
4, memgy, Z;%mry, and Z’,mﬂgy. Accordingly, the corresponding
tensors have the same transformation properties and hence equilib-
rium forms in respective groups. Analogously we use the ireps I'
and T’y and a slight modification applies to groups which contain
some inversions explicitely.

This consideration has an interesting consequence. There exist only
four possible nontrivial forms of tensors u, £u, 7u, and e7u in Laue
class 4,2,2,,. Quite generally, the number of possible forms equals
to the number of real one-dimensional ireps of the group G, which
is either one, two or four.

The method is even more effective if taught together with Clebsch-
Gordan multiplication which enables easy calculation of tensors u.
One table of transformation properties of tensors u under the group
G together with a table of transformation properties of scalars un-
der groups of Laue class G give then a transparent scheme which
provides not only equilibrium tensors but also decomposition of ten-
sors into bases of ireps. This relationship between tensors has been
used recently (Grimmer, H. (1991). Acta Cryst. A47, 226-232),
but the complete scheme has been described by the author a time
ago (Kopsky, V. (1979). Acta Cryst. A35, 83-95 and 95-101).

An elementary knowledge of representation theory is the price for
this transparent approach which gives an insight into the system of
mutual relations between tensors and symmetry groups.

PS-19.01.1 TEACHING STUDENTS ABOUT PROTEIN
STRUCTURE AND FUNCTION. D.A Waller*, C.E.Sansom &
A.J.Geddes, Department of Biochemistry and Molecular Biology,
University of Leeds, Leeds, England

The advent of relatively low cost computer graphics workstations
has enabled us to teach undergraduates about various aspects of
protein structure and function using molecular graphics to display
and manipulate the structures.

There are many advantages to this approach:

i) Particular features of a structure can be examined in detail and
accurate measurements made.

ii) Protein—-protein .and protein-ligand interactions
dissected and docking processes simulated

iii) Every student can have their "own molecule”

" Some of our recent work devising practicals to examine molecules
such as-haemoglobin, the D1.3 antibody-antigen complex, the
photosynthetic reaction centre and the Met J repressor—operator
complex using a variety of graphics packages and presentation
software running on Silicon Graphics workstations will be
described.

can bse

PS-19.01.12 THE USE OF OPTICAL TRANSFORMS AS
TEACHING AIDS. By T.R. Welberry*, Research School of
Chemistry,” Australian National University, GPO Box 4, -
Canberra City, ACT 0200, Australia.
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The idea of using optical analogues (or Optical Transforms)
to aid in the interpretation of X-ray diffraction patterns
originated with Sir Lawrence Bragg round about 1938, and
the method has developed considerably since that time.
Prior to the advent of digital computers calculation of the
diffraction pattern of even a fairly simple crystal structure
was an enormous task, and use of optical diffraction from
a model had obvious benefits, particularly for testing trial
structures. With the advent of computers the task of
obtaining a calculated diffraction pattern of an ordered
crystal structure for comparison with observed
measurements became a rather trivial exercise and use of
the optical method for this purpose began to fall into
disuse. On the other hand for the structural elucidation of
disordered structures, amorphous materials and even
liquids the transform method has continued to be used
even though the diffraction pattern of even the most
complex structural model can in principle be calculated
quite readily with modern computers.
Optical Transforms are particularly useful in a teaching
context where the student is able to verify for him/herself
the relationship between a real-space object and its
diffraction pattern. In this demonstration we present
examples of optical diffraction masks, the structural
details of which can be inspected with the use of an
ordinary imicro-fiche viewer or 35mm slide projector, and
whose diffraction patterns can be observed using only
“simple apparatus. A varied selection of masks will be
available to demonstrate the diversity of diffraction effects
which may be achieved by the technique.
In recent years we have sought to develop methods to
allow the routine production of optical diffraction masks
(or screens) for use as aids in the interpretation of X-ray or
electron diffraction patterns. We are now able to produce,
rapidly and easily, an optical diffaction mask which is a
good representation of almost any real diffraction problem
-encountered with X-rays or electrons. Among the diverse
range of problems that we have studied with the aid of
such diffraction masks are: short-range order in molecular
crystals; size-effect distortions in alloys; thermal and
disorder diffuse scattering in minerals; small-angle
scattering in microemulsions; fluctuations -of local order
in liquids; quasi-crystals.

PS-19.01.13 CENET, A CRYSTALLOGRAPHIC NETWORK IN
THE EUROPEAN COMMUNITY ERASMUS PROGRAM. By
Henk Schenk™;. Laboratory for Crystallography, University of
Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam

The Erasmus scheme of the European Community provides
.opportunities for. tertiary education to exchange students and staff and
to set up new . teaching. Emphasis lies on the student exchanges.
Students are studying in between 3 and 12 months in another
country within the European Community. The most important
constraint for these stays is that the full period should be recognized
by the home-university for the curriculum of the student. Since a
few years the Erasmus scheme is also open to the Efta countries.
At present crystallography groups of 10 universities work together in
the CENET -Erasmus project: Amsterdam, Bologna (Lodovico Riva di
Sanseverino), Bordeaux (Michel Hospital), Copenhagen (Ingrid K.
Larsen), Dublin (Christine Cardin), Edinburgh (Bob Gould), Erlangen
(Hans Burzlaff), Leuven (Camiel de Ranter), Lisbon (Maria Armenia
Carrondo) and Thessaloniki (Panos Rentzeperis), originating from the
* faculties of chemistry, physics. pharmacy and geology. In CENET
students of the 4th, 5th and 6th year at University are heing
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exchanged for 3 months. This has the advantage that their stay
abroad can easily be recognized as part of the research period they
have to complete in nearly all curricula of the participating
universities. Three students are being exchanged per group, they go
to different countries and the visiting students not necessarily
originate from the same countries, it rather depends on the
individual research interests. To achieve this there is a complicated
exchange scheme, supervised by the Amsterdam group, run via Email.
The results of the student exchanges are very encouraging. The main
result is an increase of mobility; it had been always. possible for
active students to follow courses in other countries, but mostly they
lost time by doing so. In this scheme where it is obligatory for the
universities involved to recognize foreign periods in the own
curricula, this problem has been overcome. As a result ail students
may include a foreign period in their curriculum without any penalty.
Individual students appreciate the possibiliti€s very much. The
teaching staff sees as major advantages the increased self-reliance of
individual students and the international orientation of their groups.

PS-19.01.14 SYMBAD, A CAI PROGRAM FOR TEACHING THE
SYMBOLIC ADDITION METHOD. By Yuan-Fang Wang® and Henk
Schenk, Laboratory for Crystallography, University of Amsterdam,
Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.

Since Direct Methods are still of growing importance as a tool of
solving crystal structures from single crystal data and most program
systems for Direct Methods are not very transparant, we developed a
small Computer Assisted Instruction (CAI) for the TRS80, in which
the chemistry students are guided to work with the Symbolic Addition
method. The main task of the computer is to teach the student
direct methods and to do the administration, while the students learn
to take the essential decisions and is doing a phase extension process.
With these experiences as background we wrote a CAI system in
BASIC for PC's which allows more flexibility to the user. The
program system is menu driven with an integrated manual. Input
data for a projection of a structure are provided on disk, however,
it is easy to create a local file of a suitable structure in which the
overlap in projection is minimal as Direct Methods function better at
atomic resolution. The program can handle projections with triclinic
centrosymmetric symmetry only, and as a result in particular
structures with one short axis can be used successfully.

The menu gives the following options:

— Manual: A short explanation of the method and how to handle it.
— Input data: The student can choose between an input by keyboard
or by disk. Keyboard data can be saved on disk for future use.

.— Generation of triplets: is fully automatic and generates triplets with

an E3 value higher than a limit value, to be given by the student.
— Symbolic addition:«In this part the computer does only the
administration; the student makes the decisions,.i.e. she/he chooses
the sign/symbol of the the reflections in the starting set and decides
whether the calculated phase of a reflection is being accepted.

~ E-map: The student defines the values of the symbols and then
the program calculates on the basis of the phases E—maps.

The program is accompanied by a programmed text, which teaches
the triplet relation along the lines of chapter 1 of the proceedings of
this conference and uses a similar approach o teach the principles
of the symbolic addition method. The work has been sponsored in
part by the Erasmus Scheme of the European Community.

PS-19.01.15AFRICAN PATCHWORK PATTERNS
AS SYMMETRY TEACHING TOOL.S. By Yves
BILLIET © and Marie-Paule BILLIET-NYBELEN, Département
de Chimie, Faculté des Sciences, Boite Postale 825, Niamey,
Niger.
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