The crystallographic R-factor of current model is 19.2% for 69,264 unique reflections withFo > 2σF in the range of 8.0 - 2.3 Å. The root mean square deviations from ideal stereochemistry are 0.008 Å for bond lengths and 1.095° for bond angles. The structural basis for the extreme thermostability of this enzyme will be discussed.

The bifunctional protein pterin-4a-carbinolamine dehydratases from human liver and Pseudomonas aeruginosa. Dietrich Suck, Ralf Figuer, Uwe H. Sauer, Gunter Stier, EMBL, Meyerhostrasse 1, 69117 Heidelberg, Germany

The bifunctional protein pterin-4a-carbinolamine dehydratase (PCD) is a cytosolic enzyme involved in the regeneration of tetrahydrobiopterin, an essential cofactor of several monoxygenases. PCD is also found in cell nuclei forming a tight complex with the transcription factor HNF1. PCD binds to the dimerization domain of HNF1 and accordingly it is called dimerization cofactor of HNF1 (DCoH) as well. The functional enzyme PCD is a homotrimer while it interacts as a dimer with the dimeric HNF1.

The crystal structure of tetrameric PCD/DCoH from rat/human liver was solved by MIR and refined to a R-factor of 2.7 Å resolution (1). The single domain monomer (12 kDa) comprises three α-helices packed against one side of a fourstranded, antiparallel β-sheet. The homotrimer displays 222 symmetry and can be viewed as a dimer of dimers. In the dimer two monomers form an eight-stranded, antiparallel β-sheet with all helices packing against it on one side. In the tetramer the interface between both dimers is a central four helix bundle where each of the monomers contributes one helix to it. The concave, hydrophobic surface of the eightstranded β-sheet of the dimers is reminiscent of the saddle like shape seen in the TATA-box binding protein.

Recently, a bacterial homologue of PCD/DCoH, called Phb, was found in Pseudomonas aeruginosa showing a dehydratase activity similar to the mammalian PCD. This procaryotic PCD is also bifunctional, as it regulates the expression of the P. aeruginosa phenylalanine hydroxylation gene.

Here we present the overexpression, purification, and crystallization of the procaryotic PCD. The crystal structure was solved by means of MAD using selenomethionine modified PCD and the refinement is currently in progress. The comparison of the mammalian PCD structure with the bacterial one, and preliminary results of mutational studies provide insight into the catalytic mechanism.


PS04.01.115 CRYSTAL STRUCTURE OF ADP-RIBOSYL CYCLASE. C. D. Stout, G. Sridhar Prasad, E. A. Stura, D. E. McRee, Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, D. G. Levitt, H. McRee, Department of Molecular Biology, The University of Minnesota, Minneapolis, MN 55455

The crystal structure of ADP-ribosyl (ADPR) cyclase reveals a novel dimer in which the deep active site clefts of the monomers face toward the local two-fold axis. The monomers associate in such a way that a solvent filled tunnel connects the active sites. ADPR cyclase catalyzes the synthesis of cyclic ADP-ribose (cADPR) from NAD in a reaction that requires displacement of nicotinamide followed by refolding of the nucleotide such that the N1 of adenine is covalently bonded to the C1 carbon of the terminal ribose with retention of configuration (1). The structure implies that the dual nature of the cyclic active sites is critical to carrying out this reaction. Soaking experiments coupled with modeling of difference Fourier maps in progress may define the binding site of the substrate, intermediates or product. These results may infer an enzyme mechanism.

cADPR is emerging as an endogenous regulator of Ca2+-induced Ca2+ release in cells (2). ADPR cyclase is abundant in Aplysia ovotestes and this source has been used for obtaining crystals (3). The enzyme was discovered in sea urchin eggs and is ubiquitous in tissues of marine invertebrates, amphibians, avians, and mammals, including humans (2). ADPR cyclase exhibits significant sequence homology to CD38, a lymphocyte differentiation antigen, which is a bifunctional ectoenzyme, also catalyzing the hydrolysis of cADPR.

The ADPR cyclase L-shaped monomer is comprised of a N-terminal helical domain and a C-terminal β-sheet containing domain resembling flavodoxin. There are 5 disulfides. The structure, and alignment of ADPR cyclase and CD38 sequences, suggests that the active site resides in the cleft between domains. Key residues for activity appear to be Trp77, Tyr81, His85, Thr96, Glu98, Asp99, Gly103, Tyr104, Asn107, Ser108 and Trp140. The structure was solved using a NCS averaged MIR map based on 6 derivatives. The current R-factor for all data in the range 8.0-2.4 Å is 0.22 (Rfree 0.31).

Supported by NSF grant 95-13421.

PS04.01.116 STRUCTURAL STUDIES OF A BACTERIAL HELICASE. Helga Hoier, Dietmar Röke, Cornelia Burgt and Wolfram Saenger, Institut für Kristallographie, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany

Helicase RepA is a typical helicase of the bacterial replication system. The enzyme unwinds double stranded DNA after binding to a flanking single stranded region. This process is fueled by ATP hydrolysis.

Single crystals of suitable size for x-ray crystallographic studies have been grown by the vapour diffusion method. They diffract to 2.8 Å resolution using synchrotron radiation. Space group was assigned to P21, with cell dimensions of a=105 Å, b=180 Å, c=115 Å, β=95°. In agreement with electron microscopy studies we found that the protein is comprised of 6 identical 30 kDa subunits, forming a hexameric ring. The search for heavy atom derivatives is in progress.

PS04.01.117 THREE-DIMENSIONAL STRUCTURE OF O-ACETYLSERYL SULPHHYDROLASE FROM SALMONELLA TYPHIMURIUM. P. Burghardt*, E. Hohenester*, G.S.J. Rao#, P.F. Cook# and J.N. Jansonius*. *Department of Structural Biology, Biozentrum, University of Basel, Switzerland. #Department of Biochemistry, The University of Texas Southwestern Medical Center, Forth Worth, Texas, U.S.A

The γ-isozyme of O-acetylseryl sulphhydrylase (OASS), an α-dimeric pyridoxal 5'-phosphate-dependent enzyme isolated from Salmonella typhimurium catalyses the synthesis of L-cysteine from O-acetyl-L-serine and sulfide. The pyridoxal form of the enzyme has been crystallized in the ortho-rombic space group P212121 with cell constants a=54.3 Å, b=96.9 Å and c=144.4 Å. The crystals diffract to 2.3 Å and contain one dimer per asymmetric unit. The subunit molecular weight is 34000.

The structure has been solved by MIRAS-phasing of six heavy atom derivatives and refinement is underway (current R-factor is 22% at 2.7 Å). OASS has a sequence similarity of about 30% to tryptophan synthase-B (TRPSB) but less than 20% of the residues are identical. Both enzymes have the same fold, but there are some major differences: The interface to the α-subunit in TRPSB
C-126

CRYSTALLOGRAPHY OF BIOLOGICAL MACROMOLECULES

(residues 89-822 and 8275-8295) is missing in OASS. There are two additional surface helices in TRPS8 (residues 823-854) and an additional loop (8260-8266). The active site cleft of OASS is wider and therefore more exposed to the solvent. The hydrophobic channel for indole transport from the α to the β active site is, not unexpectedly, missing in OASS. The dimer interface, however, is more or less conserved in the two enzymes.

The only cysteine residue of OASS (which is the residue following the active site lysine in the sequence) cannot be directly involved in the reaction mechanism, since it is completely buried and more than 10 Å away from the P2L cofactor. Further investigations on substrate binding and possible reaction mechanisms are planned.


PS04.01.118 CRYSTAL STRUCTURE OF AN ACTIVE FORM OF PORCIN TRYPSIN. A. Johnson, Vasunda Pattabhi and P.V.Sundaram+ Department of Biophysics, University of Madras, Guindy Campus, Madras-600025, INDIA, +Protein Engineering and Biomedical Research Voluntary Health Services Campus, Madras-600013, INDIA

An active form of porcine trypsin has been crystallised from acetate buffer at pH 6.7 using 0.4M ammonium sulphate as a precipitant at 20°C. The crystals belong to P21 21 21 space group with cell dimensions a=47.07, b=53.82, c=77.7 Å. Three dimensional data has been collected up to 1.8 Å resolution. The structure solution is by molecular replacement. Conformational comparisons of the active site residues with those of the inactive form of porcine trypsin will be presented.

PS04.01.119 CRYSTAL STRUCTURE OF CALCIUM-FREE C-TERMINAL DOMAIN OF SMALL SUBUNIT OF RAT CALPAIN. P. Grochulski*, H. Blanchard†, Y. Li†, J.S.C. Arthur*, J.S. Elce*, P.L. Davies* & M. Cygler*. "Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec H4P 3R2. +Department of Biochemistry, Queen's University, Kingston, Ontario K7L 5N6

Calpain is a name given to a family of Ca2+-dependent cysteine proteases. Although the physiological function of calpain is unknown, a role in signal transduction has been suggested. Rat calpain II is a heterodimer containing an 80 kDa catalytic subunit, and a 30 kDa regulatory subunit. The 21 kDa calcium-binding C-terminal domain of the small subunit has been expressed, purified and crystallized (Blanchard et al.). The crystal form depends on the presence or absence of calcium in the crystallization drop.

We report the crystal structure of the calcium-free form, space group C2221, cell dimensions of a=67.6, b=73.1 and c=156.6 Å, with two molecules in the asymmetric unit. Due to nonisomorphism of heavy atom derivatives we have used the multi-wavelength anomalous dispersion (MAD) method to derive protein phases. Native crystals are very sensitive to mercurials, but a mercury derivative was obtained using a C60S mutant. Data for this mutant were collected using a rotating anode and synchrotron radiation at beamline X4A at the Brookhaven National Synchrotron Light Source (NSLS). These data were combined with data collected on the X12C beamline at NSLS for a crystal of selenomethionyl protein. Data collected at X4A for the mercury derivative indicated one major site and one minor site and allowed us to find the positions of all sixteen selenium atoms from cross Bijvoet difference Fourier and cross difference Fourier maps. The electron density maps calculated for the mercury crystal and selenomethionine crystal possessed similar features but neither were easy to interpret. Combination of phases from both sources resulted in a much better map. Almost a complete model was traced in a 2.5 Å combined MAD map. One monomer seems to be built from repeats of a basic unit consisting of two short and one long helix, suggesting a gene duplication.

Metalloenzymes

MS04.02.01 A UNIQUE ACTIVE SITE IN A ROBUST ENZYME. Evelyn Jabri, P. Andrew Karplus. Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY, 14853.

The structure of the nickel metalloenzyme urease from Klebsiella aerogenes was solved at 2.2Å resolution (1). The enzyme is a trimer of three (coP)-units, each consisting of four structural domains. The α-subunit contains the active site in an (coP)- barrel domain which is homologous to the Zn-dependent enzymes adenosine deaminase and phosphotriesterase. The two active site nickels are 3.5Å apart and have nonstandard coordination geometry. Ni-1 has an unusual tricordinate geometry whereas Ni-2 is pentacoordinate. Both ions are coordinated by a carbamylated lysine, Lys317, explaining why CO2 is required for the activation of the apoenzyme. We have analyzed the 2.3Å resolution structure (R=19%) of the apoenzyme, and the 2.5Å resolution structures (R=17.9% and 18%, respectively) of the two catalytically impaired active site mutants, H219A and H320A. The final apoenzyme model lacks the CO2 modification of the lysine and the two nickel ions. Otherwise, the structure of the apoapoenzyme is nearly identical to that of the holoenzyme, suggesting a high degree of preorganization which helps explain the tight binding of the nickel ions. The major change in the structure of H219A involves a conformational shift and ordering of the active site loop, and a small shift in the side chain of Asp221. This latter movement may contribute to the lower activity of H219A. In the structure of H320A, the catalytic water, primarily a Ni-2 ligand in the holoenzyme, shifts into a bridging position. This result shows that the nickel ligation is rather sensitive to the environment at the active site and provides an alternate explanation for the 10-fold lower activity of H320A. These results also show that urease is robust to the loss of nickel ions and active site mutations. Analysis of the tertiary/quaternary structure suggests that the stability of urease may be due to the burial of an unusually large fraction of its residues.