MS12.01.05
STRUCTURE ANALYSIS OF CoSi2/Si-
/adhesive/Ge/Si(001) INTERFACES. M. Rodewald, TH Darmstadt,
FB21, FG Strukturforschung, Petersenstr. 20, D64287
Darmstadt, Germany

In the last decade silicide growth and silicide/silicon
interfaces have become of interest in solid state science because
epitaxial metal silicides are a promising material for novel
micro-electronic devices like the metal-base and the permeable
base transistors.

In the present investigation monocristalline (001)
oriented films of CoSi2 have been formed on Si1-xGex/
Silicon(001) heterostructures with Ge-contents up to 25at.%
by molecular beam epitaxy (1). The atomic structure of the
CoSi2/Si-xGex interface has been investigated by high
resolution electron microscopy (HREM) combined with image
contrast simulations.

A domain-like structure is observed consisting of areas
with different interface structure interconnected with steps.
Two different atomic structure models for the different
interface areas have been found by comparison of simulated
and experimental images. In the first model evidence for a
2x1 (and 1x2) interface reconstruction was found. This
interface reconstruction is different from the already known
interface reconstruction of CoSi2/Si(001) interfaces (2, 3). In
the second model the Co-atom are 6fold coordinated at the
interface and the tetrahedral coordination of the silicon atoms
is everywhere maintained. This model is well known from
CoSi2/Si(001) interfaces.

63(3) 298-301 (1989)
E. W., Phil. Mag. A64(2) 255-280 (1991)

MS12.01.06
ORDERED STRUCTURES AT THE METAL
electrodesolution INTERFACE. C. A. Lucas, N. M.
Markovic and P. N. Ross. Materials Sciences Division, Lawrence
Berkeley National Laboratory, University of California, Berkeley,
CA 94720

Unraveling the atomic structure at the metal-electrode/solution
interface presents a great challenge to the experimentalist due to its
inhertly complex nature. X-ray diffraction is an ideal tool for
studying this structure and the related surface electrochemical
phenomena, as the penetrating nature of x-ray radiation allows in-
situ study of the metal surface. In contrast to studies of adsorbate
systems in ultrahigh-vacuum, adsorbate structures at the electrode
surface are complicated by the range of possible adsorbing species
in solution. We have performed a series of experiments with Pt(hkl)
electrodes to determine the role of anion adsorption in surface
reconstruction, surface relaxation and during the underpotential
deposition (UPD) of metals. Information is obtained via measurement
of the in-plane diffraction satellites due to ordered 2D adlayers and
by measurement of the the 'crystal truncation rods' (CTR's) to relate
the positions of the surface atoms with respect to the bulk Pt lattice.

Monitoring the scattered intensity at selected reciprocal lattice points
as a function of the electrode potential is key to understanding
the sequence of adsorbed structures. Interpretation of the x-ray results
is aided by the use of anomalous scattering methods to obtain
chemical sensitivity in deriving structural models.

This work was supported by the Director, Office of Energy Research,
Office of Basic Energy Science, Materials Sciences Division (MSD)
of the U.S. Department of Energy (DOE) under Contract No. DE-
AC03-76SF00598.

MS12.01.07
SCALING OF SUBMONOLAYER Cu ISLANDS
grown on Cu(110). D.A. Walco, K.L. Whiteaker, and L.K.
Robinson, University of Illinois, Urbana, IL 61801

The structure and properties of a thin film are often determined
by the growth conditions as the first monolayer is deposited. We
have studied the influence of an anisotropic substrate on the
nucleation, growth, and coalescence of homoepitaxial islands.
Surface x-ray diffraction was used in situ to study submonolayer
deposition of Cu on Cu(110). After deposition, we found diffuse
scattering near the out-of-phase condition featuring an elliptical ring,
which is due to the anisotropic island morphologies. The major
and minor axes of the ellipse are proportional to the island densities
or inversely proportional to the island spacing in the in-plane [101]
and [110] directions respectively. The density of islands in each
of these directions scales with deposition rate and with substrate
temperature. However, the scaling results are not well-described
by mean-field rate equation formulations which fail to account for
the full complexity of the fcc(110) surface. Evidence for a transition
from one to two-dimensional island growth is seen at T ~ 208 K.

PS12.01.08
3-D STRUCTURAL ANALYSIS OF AG/Si(111)
INTERFACES BY X-RAY DIFFRACTION. R. D. Aburano,
Hawoong Hong, J. M. Roesler, K.-S. Chung, H. Chen and T.-C.
Chiang, University of Illinois, and P. Zschack, ORISE.

The interface of the "prototypical nonreactive" Ag/Si(111)
system exhibits different structures depending upon the interfacial
preparation. Room temperature deposition of a Ag film on a clean
Si(111)-(7x7) surface results in an Ag-modified (7x7) structure at the
interface. This structure transforms to a bulk-like (1x1) structure when
annealed above 200°C. This temperature is characteristic for the
formation of the (orbed on Si(111), This (3x3)R30°-Ag reconstruction
is also not retained at the interface even when it is buried under a
room temperature deposited Ag film. Crystal truncation rod analysis
of the Ag-modified (7x7) and (1x1) structures revealed the
preservation of the Si stacking fault in the former and a Ag-Si mixed
layer at the interface in the latter. These results may provide some
insight into the observed Shottky barrier height difference for these
two interfaces.

PS12.01.09
ANALYSIS OF IN-PLANE STRUCTURES OF
THE As-DEPOSITED Si SURFACES USING GRAZING-
ANGLE X-RAY STANDING WAVES. O. Sakata, S. Kumanono, N.
Eng. Mater., Tokyo Institute of Technology, Nagatsuta, Midori,
Yokohama 226, Japan

We applied grazing-angle X-ray standing waves to a Si(111):As
ex11 surface to determine the in-plane position and order of As atoms
under UHV condition (Sakata & Hashizume (1995)). As K emission
profiles showed As atoms located in the threefold coordinated sites
of the bulklike Si(111) surface with little disorder. The displacement
is smaller than 2% of the d spacing of the (2 20) planes and the
coherent fraction is higher than 80%. This technique has now been

deployed to the Si(100):As surface. The substrate Si surface was cut
off the (100) plane to favor the 2x1 structure over the 1x2 structure.
The As emission data collected in the vicinities of the 022 and 0 2
Bragg peaks under UHV condition at the Photon Factory
synchrotron source were fit to a model including parameters for the
area ratio of the 2x1 and 1x2 domains (M2, M1) and the normalized
As-As dimer bondlength (2f). The fits determined η parameters
defined by η=Mi+Mj·cos(2θf) (i, j = 1, 2). Solving the equations
using the values of η=0.42 and η=0.066 obtained from the fit under
the assumption l=0.664, corresponding to 2.55 Å, gave M1=0.38 and
M2=0.62. This indicates a highly ordered surface with no As atoms
in random positions.