We have investigated pressure induced structural changes of the rare-earth gallides \(\text{REGa}_2 \) (RE = Tb, Er, Ho) by means of x-ray powder diffraction using diamond anvil cell techniques. At ambient pressure \(\text{ErGa}_2 \) and \(\text{HoGa}_2 \) crystallize in the \(\text{AlB}_2 \)-type structure (\(\text{P6}_3\text{mmm} \)) consisting of six-membered Gallium layers forming hexagonal prisms centered by the RE atoms. A common feature of all \(\text{AlB}_2 \)-type compounds \(\text{REGa}_2 \) is an \(c/a \) ratio close to the ideal value of 1.07 for touching spheres. \(\text{ErGa}_2 \) undergoes a discontinuous transition to the \(\text{KHg}_2 \)-type structure (\(\text{Imma} \)) near 6 GPa. The interlayer Ga-Ga distance 2.788(5) Å (7.6 GPa) is close to the Ga-Ga distance in \(\text{TmGa}_2 \) which crystallizes in this structure type at ambient pressure. In the \(\text{KHg}_2 \)-type the Ga atoms form six-membered rings in chair conformation. The layers are connected by Ga-Ga bonds along the crystallographic c-axis thus forming a three dimensional covalent gallium network of distorted tetrahedra with the RE atoms occupying the voids. \(\text{ErGa}_2 \) and \(\text{TmGa}_2 \) transform into the \(\text{KHg}_2 \)-type structure at 24 and 22 GPa respectively. The \(\text{UHg}_2 \)-type is a branch of the \(\text{AlB}_2 \)-type having a \(c/a \) ratio of 0.59 and 0.87. The pressure induced change of hybridization in these compounds results in a transition of a three-dimensional covalent network (\(\text{KHg}_2 \)) to a layered gallium partial structure. The breaking of the interlayer Ga-Ga bonds was observed in other perovskite compounds displaying the same space group (\(\text{Pbnm} \)) and \(\text{P6}_3\text{mmm} \) at continuous and spallation high pressure conditions. The pressure induced electronic transition plays an important role in stabilizing such low-symmetry structures. As examples we will review the changes in the crystal structures of \(\text{Cs} \) and \(\text{Ba} \) under high pressure. Other unique crystal structures will also be presented including the singularity in the hcp structure recently found for \(\text{Zn} \) and \(\text{Cd} \).