Proquest gives a friendly interface with which to check out the content of a CIF file, giving interactive graphic display of the 3D molecular structure. Messages are given if items normally expected in CSD entries are missing from the CIF.

Proquest also accepts other common formats such as CSD. Cartesian coordinates from modelling or theoretical calculations may be input in MOL2 format. Fragments of proteins may be inserted from PDB format with automatic generation of connections and bond types. Generation of 2D chemical diagrams with bond-type from the 3D coordinates is provided, either automatically or by direct 2D drawing. Checks are made for matching of 2D/3D connectivity before storage.

For further details see http://www.ccdc.cam.ac.uk

PS22.01.09 STRUCTURAL LIBRARY OF COMMONLY DISORDERED COUNTER IONS AND INCLUDED MOLECULES. EMBARASSMENT OF SELECTION CRITERIA AND METHODOLOGY. Richard J. Staples, University of Idaho and Joseph H. Reibenspies, Texas A&M University.

Disordered counter ions and/or included molecules often pose a difficult task to model in crystal structure elucidation. The disordered molecules are often modeled by restraining their molecular dimensions to known or estimated parameters or by least squares fitting to structural models taken from the literature or molecular modeling programs. Unfortunately, there appears to be no universally accepted molecular parameters for these common molecules. The first purpose of this work is to establish an ordered set of selection criteria that can be utilized in database searches for the recovery of these molecules. The second purpose is to develop a useful format for rapid incorporation of these results in crystallographic programs. Presentation of these criteria and examples of their use will be presented.

PS22.01.10 INTERMOLECULAR INTERACTIONS A FIVE-MEMBERED RING PATTERN CONTAINING HALOGEN-HALOGEN AND HALOGEN-HYDROGEN INTERACTIONS. Oshrit Navon and Joel Bernstein, Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105 Israel.

In the course of a structural study on halogen-substituted benzylideneanilines we noted the presence of a five-membered ring pattern of the benzylideneanilines family[1]. Of the six structures studied four are isostructural structures that contain this ring and exhibit an unusual planar molecular conformation, while the remaining two are not planar and do not contain this pattern. The pattern may be defined as an intermolecular ring containing five atoms with hal-hal, C-H-hal interactions:

[Diagram of intermolecular interactions]

Using the Cambridge Structural Database (CSD) we have identified and characterized this intermolecular pattern in many other structures.

We will present detailed results for the case where X, Y = Br, Cl. Br on aromatic systems. In addition there is evidence that this pattern may persist over a much wider range of chemical functionality, and preliminary results on such patterns will also be presented.

PS22.01.11 TURN AND HELIX MIMETICS FOR PEPTIDE DESIGN. Anice Mueller-Fahnau & Ursula Egner, Research Laboratories of Schering AG, D-13342 Berlin, F.R.G.

Peptides play an important role in the regulation of a wide variety of biological functions, acting as hormones, neurotransmitters or inhibitors. The therapeutic use of peptides is often hampered by their lack of metabolic stability and their inadequate transport properties. To overcome these problems, the substitution of e.g. helices and turns with appropriate peptidomimetics has been tested.

To build up a database of peptidomimetics, we have performed a thorough search in the recent literature, classified the available beta-turn and helix mimetics according to different criteria and analyzed the results with respect to activity and structure elucidation via X-ray crystallography, NMR spectroscopy or modeling studies. We are currently in the process of incorporating these mimetics as easy to use building blocks in the library of our modeling software.

Although the interest in peptidomimetics is growing permanently and their usefulness in modeling projects is not questioned, only a few beta-turn and helix mimetics have been published and even less characterized with respect to the three-dimensional structure, the potency and the binding mode. Moreover, the application of some of these compounds is restricted due to a time consuming or difficult synthesis.

The opinions expressed above are solely those of the author and are not necessarily those of the Schering AG.

Databases II-Inorganic Materials, Powder Diffraction and Polymers

MS22.02.01 COMPUTATIONAL MATERIALS DESIGN: SYNERGY OF FIRST-PRINCIPLES CALCULATIONS AND EXPERIMENTAL DATABASES. E. Wimmer, Molecular Simulations, Inc., Orsay, France

Progress in computational methods combined with the development of novel experimental techniques have created exciting opportunities for materials design. Both computations and experiments are generating data at an increasing rate. Thus, it is of utmost importance to define and implement comprehensive data models to accommodate these results and to create software systems which can operate on this wealth of information. The first part of this contribution provides an overview of current theoretical and computational methods for the prediction of materials properties [1,2]. A particular emphasis is on first-principles density functional methods, which have become truly remarkable tools for structural predictions for a wide variety of systems including organic molecules, organometallic compounds, semiconductors, metals, and ionic compounds. In addition to giving structural information with an accuracy of a few hundredths of one Angstrom, quantum mechanical methods generate detailed information on the electronic structure and related properties, which is usually complementary to the results of experimental methods such as x-ray diffraction methods, x-ray photoemission spectroscopy, scanning tunneling microscopy, and vibrational spectroscopies. This complementarity can be exploited for analytical purposes, for example in solving crystal structures. In the second part, the capability of present computational methods are illustrated in the context of semiconductors, inorganic pigments, and materials for energy storage. The third part provides an outline of a data model to capture both experimental and computational information. A perspective on emerging computational methods, computer technologies, and communications will conclude this contribution.