Electron density distribution in stishovite, SiO$_2$: a high energy synchrotron radiation study. A. Kirfel1, T. Lippmann2. 1Mineralogisch-Petrologisches Institut, Universität Bonn, Poppelsdorfer Schloss, D-53115 Bonn, 2GKSS, Max-Planck-Str., D-21502 Geesthacht

Keywords: electron density, topological analysis, oxides

The electron density distribution of the high-pressure polymorph of SiO$_2$, stishovite (a = 4.1773, c = 2.6655 Å, S.G. P4$_2$/mmn, Z = 2), has been redetermined by single-crystal diffractometry using synchrotron radiation of 100.42 keV in order to obtain absorption and extinction free data. The room temperature diffraction experiments on a sample of irregular shape obtained from [1] were performed on the Triple-Crystal Diffractometer installed at beamline BW5 at HASY-LAB/DESY, Hamburg [2]. For a full sphere up to sinΘ/λ = 1.35 Å$^{-1}$, 3795 reflections were recorded resulting in a set of 269 unique reflections with an internal agreement factor $R(F^2) = 0.0117$. The structure refinements using the VALRAY programme package [3] converged at $R(F) = 0.0111$, $wR(F) = 0.0131$, GoF = 2.45 for the IAM and at $R(F) = 0.0055$, $wR(F) = 0.0044$, GoF = 0.90 for a multipole model featuring neutral atoms and multipole expansions up to hexadecapoles. For each atom, the radial expansion coefficients of the multipole orders (l>0) were constrained to a common value. Absence of extinction was indicated by a refined correction parameter equalling zero within error limit. The excellent quality of the data is also illustrated by a HO-refinement (s > 0.7 Å$^{-1}$) yielding $R(F) = 0.0068$, $wR(F) = 0.0053$, GoF = 0.85. Both static deformation densities and structure amplitudes compare well with corresponding results from LAPW calculations [4].

Ensuing topological analysis of the total model electron density distribution revealed bond critical point properties for the two unique Si-O bonds, Si-O$_{eq}$ (d = 1.757 Å, $\rho_c = 0.74$ eÅ$^{-3}$, $\nabla^2\rho_c = 11.0$ eÅ$^{-5}$) and Si-O$_{ap}$ (d = 1.808 Å, $\rho_c = 0.62$ eÅ$^{-3}$, $\nabla^2\rho_c = 8.5$ eÅ$^{-5}$). Calculations of the atomic basins and related properties [4] resulted in charges of +3.45 e and −1.72 e for Si and O, respectively. The volumes of the respective basins are 2.32 and 10.48 Å3, corresponding to spheres with radii of 0.82 and 1.36 Å.

The comparison with the results derived from earlier X-ray tube data [5] combining single-crystal and powder intensities shows also reasonable agreement.