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The classification of twinning by merohedry has been
recently revisited1,2 to include some cases absent in
Friedel’s analysis 3. Commonly, the symmetry of the
Bravais lattice corresponds to the holohedry of the
syngony (crystal system) to which the space-group of the
structure belongs, but in some cases it may accidentally
correspond to a higher holohedry. For example, an
orthorhombic crystal belongs to the orthorhombic syngony,
to which the proper holohedry is mmm and usually the
Bravais lattice is oP or oS. Let us suppose that the relation
b = a is accidentally obeyed, within the experimental
uncertainties, by an orthorhombic crystal: the Bravais
lattice of the crystal is tP or tI and has holohedry 4/mmm.
The twin elements by merohedry, which in absence of the
higher lattice symmetry would belong to the mmm
holohedry, have to be subdivided into two kinds,
depending on whether they belong to both mmm and
4/mmm holohedries or only to 4/mmm. The latter case is
termed metric merohedry (class IIB) and corresponds to
the degeneration of reticular merohedry to twin index 1 or
of pseudo-merohedry to zero obliquity. The former
corresponds to the classic merohedry3 and is called
syngonic merohedry (class I for hemihedral non-
centrosymmetric crystals; otherwise class IIA)2,4. A class
IIB twin generally gives a diffraction pattern with a metric
symmetry higher than the syngony obtained from the
intensity distribution, and non-equivalent reflections are
overlapped with consequent problems in the crystal
structure determination.

When twinning by merohedry involves an OD structure
(i.e. a polytype in which the layer pairs are geometrically
equivalent)5 the twin law may belong or not to the point
group of the family structure, i.e. the fictitious structure
obtained by completing all the space groupoid operations
of the polytype to space group operations.
Correspondingly, twinning is subdivided into selective
merohedry and complete merohedry. Twinning by selective
merohedry corresponds to reticular merohedry for the
family structure but to merohedry for the OD structure. It
produces violation of some of the non-space-group
absences typical of the OD structure, by overlapping
present reflections of one individual to absent reflections
of another individual, modifying thus the geometry of the
diffraction pattern. If the OD character of the structure is
known the presence of twinning by selective merohedry
clearly appears at simple inspection1.
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In the following we consider a pair of orientation states
S1 and S2 which are connected by transformation g so that
S2 = gS1. If the symmetry of the state S1 is F1, then
symmetry of the state S2 is F2 = gF1g

–1. The ``twinning
group" K = {F1,g} is defined as the group generated by the
symmetry F1 and by the twinning operation g. Notice that
it is also K = {F1,g–1} = {F2,g–1} = {F2,g}. The two states
can be formally considered as a pair of domain states
arising in a structural phase transition in which the
twinning group K plays the rôle of the parent group, while
the groups F1 and F2 represent the low symmetry groups.

Domains pairs can be now classified into four types
depending on the double coset F1gF1which can be either
``simple" or ``multiple" , and ``polar"  or ``ambivalent". Up
to this point we can use this approach in structural studies
where F1 and F2 are space groups and g is an isometry.
The first step in an analysis of posssible structure of
interfaces between S1 and S2 is to find the distinction
between the two states. A method has been developed for
macroscopic (continuous) approximation where F1 and F2

are point groups and is a point operation.
Distinction of the two states by their macroscopic

(tensorial) properties is determined by a two-step method.
Tensors of interest are decomposed into their covariant
components which transform as the bases of ireps (real
ireducible representations) of the twinning group. These
components are linear combinations of cartesian
components and they can be interpreted as tensor
parameters of domain states. In the first step, called
``labelling of covariants" , certain symbols are assigned to
these parameters. In the second step, ``conversion
equations"  are found in which cartesian components are
expressed as linear combinations of these parameters.
These equations facilitate consideration of the change of
material properties on a path across the domain wall or
twin boundary. They represent, in a certain sense, the basic
equations of tensor calculus for an analysis of ferroic
transitions and twinning.

Information about explixit tensor characteristics of
domain states for tensors up to fourth rank is prepared in
the form of a software which covers all symmetry descents
between crystallographic point groups. This will constitute
part of a CD ROM supplement to Vol. D: ``Physical
Properties of Crystals"  of the International Tables for
Crystallography. This software will be demonstrated and
possibilities of its extension to magnetic point groups and
magnetic properties will be explained.


