o.m2.p3 Neutron and X-ray powder diffraction study of the antiferromagnet-ferromagnet and insulator-metal transitions in the TbBaCo_{1.9}Fe_{0.1}O_{5.5} perovskite. D.D. Khalyavin¹, I.O. Troyanchuk¹, A.N. Pirogov², ¹Institute of Solids and Semiconductors Physics, NAS, P.Brovki str. 17, 220072 Minsk, Belarus. ²Institute for Metal Physics, Ekaterinburg.

Keywords: 112 perovskite structure, oxygen vacancies ordering, GMR.

It has been recently found that oxygen deficient orthocobaltites (Gd,Tb)BaCo₂O_{5.5} with crystal structure similar to the 112 type perovskite structure where oxygen vacancies are ordered exhibit first order phase transitions antiferromagnet-ferromagnet (AF-F) at $T_i{\approx}250~K$ and insulator-metal (M-I) at T_M≈340 K^{1,2}. The AF-F transition is accompanied by a jump of conductivity and giant magnetoresistance. Above T_i the value of the spontaneous magnetization M_S is ~ 0.18 μ_B . This value M_S is too low for ferromagnetic ordering of magnetic moments of Co³⁺ ions in the case of the intermediate or high spin states. In order to explain this fact authors of the work³ suppose that TbBaCo₂O_{5.5} undergoes transition from antiferromagnetic into weak ferromagnetic state. In this work results are reported for the neutron and X-ray powder diffraction study of phase transitions at T_i and T_M for TbBaCo_{1.9}Fe_{0.1}O₅₅ We have established that small (~10%) substitution of Co ions by Fe ones leads to decreasing T down to 195 K and increasing the temperature of the magnetic ordering T_N up to 305 K. This enables to carry out investigation of the AF-F phase transition by the neutron diffraction method (since $T_i \ll T_N$). According to our results obtained for $TbBaCo_{1.9}Fe_{0.1}O_{5.5}$ the neutron diffraction picture caused by magnetic superlattice does not change due to phase transition at Ti. This fact is argument in favour of the assumption made in work³. The temperature X-ray diffraction study has shown that M-I transition is accompanied by the crystal structure transformation resulting from the change of the unit cell parameters without change of orthorhombic symmetry. In the work³ by analogy with the SrFeO_{3-1/n}⁴ it was suggested that the first order phase transition at T_M results from oxygen vacancies ordering. On the base of this assumption it is impossible to explain the invariance of the orthorhombic symmetry of the crystal structure above T_M since in the case of random distribution of the vacancies the symmetry should be rather tetragonal than orthorhombic. In contrast with AF-F phase transition the M-I one is not accompanied by any crystal structure transformations. In this way the anomaly of conductivity at T_i is not connected with modification the energy-bond structure due to a crystal structure transition.

o.m2.p4 Preparation and structure of a new perovskite-like ternary oxide Sr₃ReO₆. K.G. Bramnik^a, A.M. Abakumov^b, H. Fuess^a, ^{a)}Department of Materials Science, University of Technology Darmstadt, D-64287, Darmstadt, Germany. ^{b)}Department of Chemistry, Moscow State University, 119899 Moscow, Russia Keywords: perovskites.

A new ternary Sr₃ReO₆ oxide has been synthesized using ceramic technique in an evacuated silica tube under controlled partial oxygen pressure $p(O_2) = 4.6 \times 10^{-15}$ bar at 740°C. To control partial oxygen pressure a mixture of metallic Ni and NiO was used. The preliminary structure investigation of the Sr₃ReO₆ complex oxide was carried out using X-ray powder diffraction data ($R_I = 0.077$, $R_P =$ 0.135). Its cation composition was determined by EDX analysis. The Sr_3ReO_6 oxide has a monoclinic cell with a =8.1177(8) Å, b = 5.9103(6) Å, c = 5.9422(6) Å, $\beta =$ 90.47(1)° (S.G. I 2/m) and adopts a distorted perovskite structure with Sr and Re ordered on the B-sites in "rocksalt" manner. Formally the Sr₃ReO₆ formula can be written as Sr₂SrReO₆. The Sr₃ReO₆ complex oxide could be considered as a Ba₂SbBiO₆ type of perovskite structure distortion¹. The ReO₆ and SrO₆ octahedra are cooperatively rotated about $[011]_{perovskite}$ and tilted with respect to a^0bb^- Glazer notation². The A-sites in a perovskite cell are occupied by the rest of Sr atoms. This compound is stable in the narrow range of partial oxygen pressure of 4.6×10^{-10} 17 -2.3×10⁻¹⁵ bar only. At the higher partial oxygen pressure the Sr₃ReO₆ oxide decomposes to a mixture of SrO and $Sr_{11}Re_4O_{24}^{3}$ compounds. The formal Re valence in the Sr₃ReO₆ increases from +6 to +6.5 due to a formation of cation vacancies in the A-sublattice, that leads to changing the coordination number of the Sr atoms in the B-sublattice from 6 to 8. The further increasing of a partial oxygen pressure to 1.1×10^{-3} bar leads to decomposition of the Sr₁₁Re₄O₂₄ compound to Sr₅Re₂O₁₂⁴ and SrO. In this case the rest of the Re atoms with the oxidation state +6 in the $Sr_{11}Re_4O_{24}$ oxidizes to the Re^{+7} and vacancies in the Bsublattice are formed. This oxidation sequence could be considered as a stepwise increase of the amount of cation vacancies in the A- and B-sublattices from Sr₆Re₂O₁₂ through Sr_{5.5}Re₂O₁₂ to Sr₅Re₂O₁₂. Further structure investigations of the Sr₃ReO₆ are in progress now.

- [1] Troyanchuk I.O., et al. "Phase Transition in the Gd_{0.5}Ba_{0.5}CoO₃ Perovskite.", Phys. Rev. Lett., (1998), 80: 3380-3383.
- [2] Maignan A., et al. "Structural and magnetic studies of ordered oxygen deficient perovskites $LnBaCo_{2}O_{5+\delta}$, closely related to the "112" structure.", J. Sol. St. Chem., (1999), 142: 247-254.
- [3] Troyanchuk I.O., et al "Magnetic and structural phase transitions in orthocobaltites doped by Ba or Sr ions.", J. Phys.: Cond. Matter. (1998), 10: 6381-6389.
- [4] Takeda et al. "Phase Relation in Oxygen Nonstoichiometric System, SrFeO_X ($2.5 \le x \le 3.0$).", J. Sol. St. Chem., (1986), 63: 237-249.
- [1] Thornton G., Jacobson A.J. "A neutron diffraction determination of the structures of $Ba_2Sb^VBi^{III}O_6$ and $Ba_2Bi^VBi^{III}O_6$.", Acta Cryst., (1978), B34: 351-354.
- [2]. Glazer A.M, Acta Cryst., (1972), B 28, 3384
- [3] Bramnik K.G., Miehe G., Ehrenberg H., Fuess H., Abakumov A.M., Shpanchenko R.V., Pomjakushin V.Yu., Balagurov A.M., "Preparation, structure and magnetic studies of a new $Sr_{11}Re_4O_{24}$ double oxide.", J.Solid State Chem., (2000), 149: 49-55.
- [4] Mons H.A., Schriewer M.S., Jeitschko W. "The crystal structures of the isotypic perrhenates Ca₅Re₂O₁₂ and Sr₅Re₂O₁₂.", J.Solid State Chem., (1992), 99: 149-157.