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One of the classical problems in the application of the maximum-entropy

method (MEM) to electron-density reconstructions is the uneven distribution of

the normalized residuals of the structure factors �jFobs�H�j ÿ jFcalc�H�j�=��H� of

the resulting electron density. This distribution does not correspond to the

expected Gaussian distribution and it leads to erroneous features in the MEM

reconstructions. It is shown that the classical �2 constraint is only one of many

possible constraints, and that it is too weak to restrict the resulting distribution

to the expected Gaussian shape. It is proposed that constraints should be used

that are based on the higher-order central moments of the distribution of the

structure-factor residuals. In this work, the in¯uence of different constraints on

the quality of the MEM reconstruction is investigated. It is proposed that the use

of a combined constraint on more than one central moment simultaneously

would lead to again improved results. Oxalic acid dihydrate was chosen as model

structure, from which several data sets with different resolutions and different

levels of noise were calculated and subsequently used in the MEM. The results

clearly show that the use of different constraints leads to signi®cantly improved

results.

1. Introduction

The maximum-entropy method (MEM) is used as a powerful

tool for a model-free image reconstruction in many scienti®c

applications (von der Linden et al., 1998). In crystallography,

one particular application is the investigation of the electron

density in the crystal structure. After the ®rst promising

applications in this ®eld (Collins, 1982; Sakata & Sato, 1990),

several warnings concerning the reliability and possible

pathologies of the method appeared (Jauch, 1994; de Vries

et al., 1996). One of the obvious problems was that the

distribution of the normalized residuals of the structure

factors �F�H�=��H� � �jFobs�H�j ÿ jFcalc�H�j�=��H� strongly

deviated from the expected Gaussian distribution. Some of the

re¯ections ± usually strong re¯ections at low angles ± had very

large �F�H�=��H�, while the others were ®tted almost exactly.

The large deviation of the histogram of �F�H�=��H� from the

Gaussian distribution was responsible for unphysical features

in the corresponding electron density. A solution to this

problem was proposed by de Vries et al. (1994), who employed

an ad hoc weighting scheme within the classical �2 constraint.

However, a theoretical basis for this weighting scheme does

not exist.

Here we propose new constraints based on the higher-order

central moments of the distribution of �F�H�=��H�. We show

that the use of these constraints produces results with better

distributions of �F�H�=��H� and with less artifacts in the

reconstructed electron density than the classical �2 constraint.

The method is tested against data sets of various resolutions

and with various noise levels that were computed for a known

electron density of oxalic acid dihydrate.

2. The method

The basic principle of the MEM is that the optimal image is

de®ned to be the image with the maximum value of the

entropy functional S, while one or more constraints of the type

Cj � 0 �j � 1; . . . ;Nc� are ful®lled. For our purposes, the

image is the electron density (�) in the unit cell, which is

de®ned by its values �i on a grid of Np � N1 � N2 � N3 points.

The entropy is de®ned as

S � ÿPNp

i�1

�i log��i=�i�; �1�

where the values �i de®ne the prior or reference electron

density. For an overview of the crystallographic applications of

the MEM, see Gilmore (1996). The constraints should be

selected so as to de®ne which image is in agreement with the

observed data. The ®rst reasonable constraint is the normal-

ization of � to the expected number of electrons per unit-cell

volume: R
V

� dV ÿ Nel � 0: �2�

Traditionally, the constraint to the scattering data is the least-

squares likelihood criterion �2 ÿ 1 � 0, with
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�2 � 1

NF

XNF

i�1

jFi
obs�H�j ÿ jFi

MEM�H�j
�i�H�

� �2

; �3�

where the summation runs over all measured structure factors

NF . This de®nition of the constraint cannot be used directly,

since it does not contain the information about the phases of

the structure factors and does not lead to convergence.

Therefore, the so-called F constraint is usually employed:

CF � ÿ1� 1

NF

XNF

i�1

jFi
obs�H� ÿ Fi

MEM�H�j
�i�H�

� �2

: �4�

The value of CF depends on both the amplitudes and phases of

Fobs and FMEM. CF is minimal if the phases of all Fi
obs are equal

to the corresponding Fi
MEM. In that case, CF � �2 ÿ 1.

The use of the �2 statistics (and its phased modi®cation in

the CF constraint) is based on an assumption that the

experimental errors on jFobsj are random with a Gaussian

distribution:

jFobs�H�j ÿ jFtrue�H�j
��H� � "Gauss; �5�

where "Gauss is a sample of the random variable with normal-

ized Gaussian distribution. Since the resulting electron density

�MEM should be the best estimate of the true density, the

corresponding calculated structure factors FMEM should be the

best estimate of Ftrue and the distribution of the normalized

residuals should be Gaussian too.

It is obvious that the Gaussian distribution of errors does

imply the validity of the �2 (or CF) constraint, but not vice

versa. Constraining only �2 is not suf®cient to ensure the

proper Gaussian form of the resulting error distribution.

A probability distribution of a random variable x is char-

acterized by the values of its central moments mn. For the

normalized Gaussian distribution, the central moments are

mn�Gauss� � R1
ÿ1

xn�2��ÿ1=2 exp�ÿx2=2� dx: �6�

The values of the moments of odd order are all zero and the

moments of even order are:

m2k�Gauss� � Qk
i�1

�2iÿ 1�: �7�

In the case of N samples of the variable x, the central moments

mn can be computed from

mn � �1=N�P
N

xn
i : �8�

It follows from (3) and (8) that �2 is the m2 central moment of

the distribution of �F�H�=��H�. Thus, the concept of gener-

alized F constraint can be introduced, with F2 referring to the

classical constraint on the second-order moment, and with Fn

de®ning a constraint based on the moment of order n:

CFn
� ÿ1� 1

mn�Gauss�
1

NF

XNF

i�1

jFi
obs�H� ÿ Fi

MEM�H�j
�i�H�

� �n

: �9�

Only the constraints with n even restrict the width of the

histogram, constraints with n odd are sensitive only to the

symmetry of the distribution with respect to the origin.

Therefore, only the constraints with n even are used in this

work.

It has been suggested that more simultaneous constraints

(up to the number of independent observations) of the form

�jFobs�H�j ÿ jFcalc�H�j�=��H� could be used instead of the

single �2 constraint (Carvalho et al., 1996). This requires some

additional criterion for de®ning the point of convergence and

strongly restricts the role of the MEM as the noise ®lter. We

suggest that the use of several Fn constraints simultaneously is

the proper way to handle noisy data, since the expected shape

of the histogram is the only information about the noise that is

available. However, the available algorithms do not allow such

a generalization. Therefore, in the present stage of the work,

the in¯uence of different choices of a single constraint based

on (9) on the result of MEM was investigated.

3. Computational details

The method was tested on the structure of oxalic acid dihy-

drate. The main reason for this choice was that this compound

has become a kind of standard for charge-density studies. In

addition, the structure of oxalic acid dihydrate is very suitable

for this type of work, since it is centrosymmetric and the

central molecule is planar. This allows an easy interpretation

of the majority of the features using only one section of the

electron density. The basic characteristics of the structure are

summarized in Table 1.

First, the electron density of the procrystal structure

(superposition of independent atoms, �pro) was created. This

was done by a method due to Papoular et al. (2002). The

analytical approximation to spherical atomic scattering factors

(Su & Coppens, 1997) for each atom of the structure was

multiplied by the anisotropic displacement factor of that atom.

The resulting three-dimensional distribution in reciprocal

space was then transformed by means of the analytical

Fourier transform to obtain the electron density of that atom.

The density was sampled on the 64� 32� 128 pixel grid,

which corresponds to a pixel size of approximately

0:1� 0:1� 0:1 AÊ . The positional and displacement param-

eters from the re®nement due to SÆ louf (2001) were used. The

electron densities of the individual atoms were then summed

to obtain �pro. The `true' electron density �true was then

constructed by summing �pro with the dynamic deformation

density �def, as determined by the multipole re®nement of

Table 1
Basic characteristics of the structure of oxalic acid dihydrate.

Chemical formula HOOCÐCOOH �2H2O
Chemical formula weight 126.06
Cell setting, space group Monoclinic, unique axis b, P21=n
a, b, c (AÊ ) 6.101, 3.500, 11.955
� (�) 105.78
V (AÊ 2) 245.64
Z 2



SÆ louf (2001) (Fig. 1a). This caused 1.65% of the pixels of the

resulting electron density to be negative. The lowest density

wasÿ0.021 e AÊ ÿ3. The negative areas were located in the low-

density intermolecular regions. This unphysical feature prob-

ably originates from the inaccuracy of the multipole expansion

in these very low density regions. The MEM cannot handle

these negative regions and very low density regions increase

the dynamic ratio of the electron density inadequately.

Therefore, the pixels with �< 0:005 e AÊ ÿ3 were set to

0.005 e AÊ ÿ3. 2.45% of the pixels were corrected.

The electron density obtained by this procedure is certainly

not the true electron density of oxalic acid dihydrate. The

analytical approximation used in the ®rst step is not absolutely

accurate and the structure parameters and multipole defor-

mation density can contain a substantial degree of inaccuracy,

too. However, this model of electron density is good enough to

be used as the reference electron density for MaxEnt calcu-

lations and will be denoted as �true (Fig. 1b).

The structure factors corresponding to the original map

were calculated by means of a numerical Fourier transform. To

investigate the in¯uence of noise and resolution on the quality

of the MEM reconstruction, 16 different data sets were

created. The value �sin �=��max is used as a measure of reso-

lution in this paper. It was chosen to be 0.5, 0.75, 1.0 and

1.25 AÊ ÿ1 for the respective data sets, and for each resolution

four different levels of Gaussian noise were added to the

calculated structure factors. To simulate the error distribution

in real experimental data, ��Fobs� were calculated from

��Fobs� � ��pjFobsj2 � ��� jFobsj2�=jFobsj2�1=2; �10�
where � de®nes the noise level, � simulates the in¯uence of

non-zero background and p is the commonly used instability

factor. The noisy `observed' structure factors were then

calculated to ful®l the equation

Fobs � Ftrue � ��Fobs�"Gauss: �11�
Here, "Gauss is a random variable with normalized Gaussian

probability distribution. Three different non-zero noise levels

were created this way. The noiseless data sets at each resolu-

tion were included for checking purposes. Although the

structure factors in the noiseless data sets were exact, which

means they should be assigned a zero standard deviation, this

is not possible owing to the nature of the constraints [equation

(9)]. Therefore, the value of ��Fobs� was set to 0.005 for all

structure factors so as to be low enough and to allow the

computations to ®nish in a reasonable time. The parameters of

different noise levels and resolutions are summarized in Table

2 and Fig. 2.

It is interesting to compare the phases of structure factors

corresponding to �true with the phases corresponding to �pro.

In the present case, which is representative for investigations

of accurate electron densities, the amount of the unknown

structure is minute and the phases of the true structure factors

are very well estimated by the phases of the structure

factors of �pro. Among all 4029 structure factors, up to

�sin �=��max � 1:25 AÊ ÿ1, only nine have different phases for

�true and �pro. Moreover, equation (11) allows for changes of

phases between Fobs and Ftrue. As a consequence of the

introduction of the noise, there have been many more phases

changed in each noisy data set than nine. Thus, the results

presented here are not in¯uenced by the preliminary multi-

pole re®nement and can be regarded as being obtained using

just the standard re®nement.

We have developed our own computer program BayMEM

(®rst version by Schneider, 2001) for the application of the

MEM in charge-density analysis. This program is designed to

work in general n-dimensional space to allow computations of

the MEM electron density of incommensurately modulated

structures, but can be used for standard three-dimensional

structures too without any restrictions. BayMEM can use both

the algorithm of Sakata & Sato (1990) and the MEMSys5

package (Gull & Skilling, 1999). The program was extended to
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Figure 1
The sections of the true electron density showing the oxalic acid molecule.
(a) The dynamic deformation density �def obtained by the multipole
re®nement (SÆ louf, 2001). (b) The total electron density �true. Scale
in AÊ , contours 0.07 e AÊ ÿ3, cut-off 2.0 e AÊ ÿ3, zero contour omitted.
Maximum of the deformation density 0.56 e AÊ ÿ3, maximum of the total
density 56.79 e AÊ ÿ3.
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deal with the generalized F constraint. For the present study,

the algorithm by Sakata & Sato (1990) was used.

The following characteristics are used to compare the

quality of the MaxEnt reconstructions:

(i) the values of the even central moments of the distribu-

tion of normalized residuals;

(ii) the overall shape of the histogram;

(iii) the section through �MEM in the plane of the HOOCÐ

COOH molecule;

(iv) the section through the difference map �diff �
�MEM ÿ �true in the plane of the HOOCÐCOOH molecule;

(v) the MEM deformation density �MEMÿpro � �MEM ÿ �pro

in the plane of the HOOCÐCOOH molecule;

(vi) the coincidence factor C, which allows for an easy

comparison among different reconstructions by one number:

C �PNp

i�1

j�i
MEM ÿ �i

truej
.PNp

i�1

�i
true: �12�

For all n1, n2 and n3 data sets, the computations using the

Fn constraints of order 2 to 8 were performed, for the n0 data

set only the orders 2 to 6 were used, since there was no visible

in¯uence of the constraint on the results. For comparison, the

computations using the ad hoc weighting (de Vries et al., 1996,

referred to as static weighting hereafter) were performed on

the noisy data sets. The F constraint with additional static

weighting is de®ned as

Cw � ÿ1� 1

NF

XNF

i�1

w�Fobs�
jFi

obs�H� ÿ Fi
calc�H�j

�i�H�
� �2

: �13�

Weights of the form w � 1=jHjn (jHj is the length of the

diffraction vector) with n equal to 3, 4 and 5 were used in this

work. To investigate the in¯uence of the prior electron density,

two series of calculations were performed. The ®rst series was

made with the uniform prior, the second series with the

procrystal prior �pro.

The quality of the MEM reconstructions can be compared

with Fourier maps. The Fourier transform of the observed

structure factors with calculated phases results in an electron

density (�fou) that can be compared with �MEM as obtained

with the uniform prior. Inspection of �fou shows that the noise

is much larger than in �MEM. This is quanti®ed by the C values

(Table 4).

The classical method to derive information about electron

densities beyond the model is the difference Fourier. We have

computed the difference Fourier for Fobs ÿ Fpro (�df). To be

able to compare the result with �MEM, we have added �pro to

�df. Again, the noise in �fou � �df is signi®cantly larger than in

�MEM (Table 5).

4. Results and discussion

4.1. The uniform prior

In the ®rst series of calculations, a uniform electron density

was used as prior. The dominating structure of �diff is the

oscillatory electron density around each atomic position (Fig.

3). Its presence is independent of the constraint and of the

noise level. However, at high noise levels these features are

partly camou¯aged by the noise of �MEM itself. The oscillations

are most pronounced at the zero noise level. Clearly, this

effect is a demonstration of the series-termination error

intrinsically present in the method, as pointed out already by

Table 2
Parameters of the data sets.

Re¯ections with jFobsj< 5��Fobs� [which corresponds to I< 2:5��I�] are
considered unobserved. The shorthand notation used in text and ®gures for a
given data set consists of the letter n and the noise level followed by the letter r
and the value of �sin �=��max of the resolution. For example, n1r0.75 denotes
data set with noise level 1 and resolution �sin �=��max � 0:75 AÊ ÿ1. For
de®nitions of �, � and p, see equation (10).

Noise levels

Level 0 Level 1 Level 2 Level 3

� 0.005 0.025 0.1 0.25
� 0 1 10 15
p 0 0.0001 0.0001 0.0001

Resolution

Shells in Independent
Observed/unobserved

sin �=� (AÊ ÿ1) re¯ections Level 1 Level 2 Level 3

<0; 0:5> 258 253/5 235/23 217/41
�0:5; 0:75> 608 574/34 468/140 358/250
�0:75; 1:00> 1182 1042/140 714/468 425/757
�1:00; 1:25> 1981 1480/501 604/1377 165/1816

Figure 2
Distribution of jFobs ÿ Fpriorj=��Fobs� as a function of the resolution for
different noise levels. Note that for uniform prior Fprior = 0 for all
structure factors except F�000�. Black: �F < 2�; dark gray:
2� <�F < 5�; light gray: 5� <�F< 10�; white: 10� <�F.



Jauch (1994) and later discussed in detail by Roversi et al.

(1998). The present results show the extent of this effect and

its dependence on the resolution of the data set. The ampli-

tude of the artifacts ��max
diff ÿ �min

diff � decreases with resolution,

but even at resolution 1.25 AÊ remains signi®cant (Fig. 3, Table

3). Further lowering of the artifacts by increasing the resolu-

tion is in practice not possible due to the experimental

limitations. Possible ways to overcome this problem are

summarized in x5.

The �MEM obtained for different noise levels and different

resolutions is characterized by the C values (Table 4), by the

shapes of the histograms of �F�H�=��H� (Fig. 4), and by the

values of the central moments of the distribution of

�F�H�=��H� (Fig. 5). The following conclusions can be made

based upon the table and the ®gures:

(i) The use of the higher-order constraints signi®cantly

improves the quality of �MEM. The improvement is largest

between the F2 and F4 constraints. Only for the noiseless data

sets does the use of different constraints not have any effect on

the resulting C value, although the effect on the histogram is

large. This is because at this noise level the C value is deter-

mined mainly by the series-termination artifacts, which are

almost independent of the particular constraint. The

improvement is generally better with increasing resolution.

The probable reason for this is not the higher resolution itself

but rather the higher number of re¯ections in the data set.

(ii) The histograms of the higher-order constraints are much

closer to the ideal Gaussian distribution than the F2 histo-

grams and the number of very large normalized residuals is

reduced (Fig. 4). On the other hand, these histograms are not

free of systematic errors either. The histograms of the higher-

order constraints tend to be slightly asymmetric towards

positive differences. For a smaller number of re¯ections and/or

lower noise level, the histograms tend to have a ¯atter peak

with respect to the ideal shape and in the extreme case split

into two distinct peaks (Fig. 4). The two peaks tend to be at the

positions ��mn�Gauss��1=n, which correspond to the average

value of normalized residual necessary to ful®l the given

constraint. This is not the exclusive property of higher-order
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Figure 3
Sections through the difference electron-density map �diff showing one
COOH group. Uniform prior. (a) n0r0.75, contours 0.2 e AÊ ÿ3, cut-off
3.0 e AÊ ÿ3. (b) n0r1.00, contours 0.05 e AÊ ÿ3, cut-off 1.0 e AÊ ÿ3. (c) n0r1.25,
contours as in (b). The decreasing width of the waves of the difference
density with increasing resolution and the interference of the waves is
clearly visible.

Table 3
Extremals of the artifacts at different resolutions for n0 noise level and F2

constraint.

max min

r0.50 4.36 ÿ28.62
r0.75 3.32 ÿ10.87
r1.00 4.94 ÿ1.84
r1.25 3.42 ÿ0.95

Figure 4
The histograms of �F�H�=��H� for different constraints. Uniform prior.
For the F2 histograms, only the central section is shown for good
comparability; the full histogram is shown in the inset. The ideal Gaussian
shape is shown as the grey area in each histogram. The counts of
normalized residuals in classes higher than 4.0 are multiplied by 10.
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constraints, similar splitting can appear in the F2 histograms,

too, although only in very extreme cases (n0r0.50).

(iii) The quality of the result (measured by the C value) is

perfectly correlated with the quality of the histogram

expressed by the values of its central moments. The best

results are obtained with that constraint, which produces a

histogram closest to the expected normalized Gaussian

(compare Table 4 and Fig. 5). With increasing order of the

constraint, the resulting histograms get better ®rst (the large

positive slope of the curve in Fig. 5 gets smaller) and then the

high-order central moments of the histograms become over-

estimated (the slope of the curves in Fig. 5 becomes negative).

The best result is obtained when the slope of the curve is close

to zero. We suggest that, if there are two constraints close to

the optimal slope, the one with positive slope should be

preferred. This can be understood to be a choice between

slightly underestimating and slightly overestimating the data.

Using the constraint with positive slope means possibly losing

some information present in the data, using the one with

negative slope means letting the MEM ®t some noise and thus

introducing some false features in the resulting �MEM. But in

practice the difference between the two results is negligible.

The improvement of the �MEM is visible in both the

total and difference electron-density maps �MEM and

�diff (Fig. 6). The waviness of the low-density contours

in �MEM is suppressed, the overall amount of the

residual structure in �diff decreases. It should be noted

that the total density maps do not give suf®cient

insight into the accuracy of the result and cannot be

used as a single criterion of the quality of the MaxEnt

reconstruction. This can be seen from the comparison of the

total and difference maps (Fig. 6). The largest errors occur in

the medium and high density levels, where the total density

map seems to be smooth and well behaved. This is especially

true for the low-resolution maps, which seem to be smooth at

®rst sight, but which exhibit large differences in comparison to

the original map.

Despite the signi®cant improvement of the MEM recon-

structions obtained with the constraints on the higher-order

moments, the quality of the reconstructions using the static

weighting was in our case even better (Table 4). This

Table 4
The coincidence factors C �PNp

i�1 j�MEM
i ÿ �true

i j
�PNp

i�1 �
true
i for MaxEnt calculations using the uniform prior and �fou.

Fn denotes the generalized F constraint of order n, swn denotes the static weighting with weight w � 1=jHjn [for de®nition see equation (13), for de®nition of
shorthand notation of different data sets see Table 2]. Note: Some calculations could not be ®nished using the algorithm of Sakata & Sato (1990) due to
convergence problems. For static weighting computations, this could be overcome by using the MEMSys5 package (Gull & Skilling, 1999). These results are shown
in italic. Generally, the differences between the results of the two algorithms are not very large, but the results of the latter algorithm seem to be slightly better. The
calculation with the F6 constraint on the n0r0.50 data set did not converge (denoted by n.c.).

Data set F2 F4 F6 F8 sw3 sw4 sw5 �fou

n3r0.50 0.3515 0.2971 0.2942 0.2961 0.2884 0.2631 0.2548 1.3375
n3r0.75 0.3455 0.2237 0.2180 0.2230 0.1836 0.1546 0.1567 1.2187
n3r1.00 0.4137 0.2021 0.1873 0.1885 0.1569 0.1119 0.1179 1.1329
n3r1.25 0.4880 0.2316 0.1976 0.1970 0.1709 0.1073 0.1046 1.1434

n2r0.50 0.2730 0.2498 0.2515 0.2539 0.2447 0.2353 0.2326 1.3323
n2r0.75 0.2126 0.1476 0.1469 0.1502 0.1359 0.1212 0.1209 1.2073
n2r1.00 0.2250 0.1059 0.1010 0.1033 0.0935 0.0661 0.0685 1.1000
n2r1.25 0.2755 0.1063 0.0967 0.0969 0.1018 0.0632 0.0629 1.0440

n1r0.50 0.2287 0.2250 0.2254 0.2260 0.2233 0.2221 0.2457 1.3290
n1r0.75 0.1186 0.1026 0.1026 0.1033 0.1017 0.0998 0.1303 1.2061
n1r1.00 0.0815 0.0458 0.0448 0.0456 0.0451 0.0382 0.0708 1.0977
n1r1.25 0.0952 0.0365 0.0343 0.0353 0.0355 0.0255 0.0247 1.0339

n0r0.50 0.2199 0.2199 n.c.
n0r0.75 0.0949 0.0949 0.0950
n0r1.00 0.0286 0.0289 0.0290
n0r1.25 0.0147 0.0151 0.0155

Figure 5
The even central moments m2 to m16 of the histograms of all MEM runs
on the n2 data sets. Uniform prior. Horizontal axis = order of the
moment, vertical axis = normalized values of the moments
mn�MEM�=mn�Gauss� on a logarithmic scale. Each curve corresponds
to one histogram and is labeled with the constraint used for the MaxEnt
calculation.



surprising effectiveness of the idea of the static weighting

suggests that there might exist some fundamental reason for it.

A closer investigation of possible theoretical foundations of

this type of weighting is desirable.

The systematic investigation of the large number of

different data sets allows one to make some general conclu-

sions about the in¯uence of the noise and the resolution on the

quality of the result. The expected improvement of the C

factors with decreasing noise level is clearly visible. The

improvement with the increasing resolution is visible, too, but

not as an absolute rule (compare C values of n3r1.00 and

n3r1.25, n2r1.00 and n2r1.25 in Table 4). This can be correlated

with Fig. 2. The larger the fraction of unobserved re¯ections

present in the outer shell, the smaller is the amount of infor-

mation it contains. In the data sets with the high noise level,

almost all re¯ections in the outer shells are less-than's, and

they cannot contribute to the improvement of the MEM

reconstruction.

4.2. The procrystal prior

In the second series of calculations, the procrystal electron

density �pro was used as prior. The summary of the resulting C

values is given in Table 5. The deformation density

�MEM ÿ �pro obtained with data sets n2r1.00 and n1r0.75 is

shown in Fig. 7. We believe that these examples are quite close

to the data sets obtainable in practice.

As expected, the artifacts are strongly reduced and visible

only in the vicinity of the atomic center. The deformation

density resembles the true deformation density quite well

even for the medium noise level. The differences in C factors

among the different Fn constraints and the different static

weighting are much smaller than in the case of the uniform

prior, but they are still signi®cant, especially for the low noise

levels.

With increasing noise level, the outer shells of structure

factors contain so much noise that it masks their statistical
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Figure 6
�MEM and �diff obtained with the n2r1.00 data set and with the uniform prior. (a) �MEM, F2 constraint. (b) �MEM, F6 constraint. (c) �diff , F2 constraint.
(d) �diff , F6 constraint. All contours as in Fig. 1.



research papers

566 Palatinus and van Smaalen � Generalized F constraint Acta Cryst. (2002). A58, 559±567

difference from the prior structure factors. Such re¯ections do

not improve the result and can even lead to a slightly worse

�MEM (compare Table 5 and Fig. 2). In an extreme case ± noise

level 3 ± the re¯ections do not provide any additional infor-

mation at all and �MEM is almost identical with the prior. In

other words, the MEM indicates that the data do not contain

any evidence for deviation from the prior.

The results con®rm that, with procrystal prior information,

the MEM is able to reveal the deformation electron density

even from the medium-resolution data, provided they are

suf®ciently accurate.

5. Conclusions

The intrinsic presence of the series-termination effect in the

crystallographic applications of the MEM is demonstrated.

The extent of this effect depends on the resolution of the data

set and on the kind of prior electron density. For the uniform

prior, the artifacts are signi®cantly higher than the bonding

electron-density level and make this version of the MEM

unsuitable for investigation of ®ne features in the electron

density. Nevertheless, it is still a useful method for investiga-

tion of more robust features like anharmonic atomic move-

ment or disorder (Bagautdinov et al., 1998; Dinnebier et al.,

1999; Wang et al., 2001).

The procrystal prior electron density lowers the artifacts

and the reconstructions with this prior contain the information

about the ®ne features of the electron density. Further

lowering of the artifacts could probably be achieved with the

two-channel MEM (Papoular et al., 1996) or with the valence-

only MEM proposed by Roversi et al. (1998). The latter

method uses the re®ned structure parameters to create a core

electron-density fragment, which is then considered to be

known and is not included in the MaxEnt optimization. Only

the valence electron density is modi®ed. However, this

Table 5
The coincidence factors C �PNp

i�1 j�MEM
i ÿ �true

i j
�PNp

i�1 �
true
i for MaxEnt calculations using the procrystal prior and �pro � �df .

For explanation of the symbols see Table 4. The C factor of the procrystal prior is 0.0598.

Data set F2 F4 F6 F8 sw3 sw4 sw5 �pro � �df

n3r0.50 0.0538 0.0560 0.0589 0.0585 0.0554 0.0574 0.0575 0.1015
n3r0.75 0.0554 0.0552 0.0580 0.0574 0.0534 0.0513 0.0533 0.2023
n3r1.00 0.0598 0.0597 0.0590 0.0592 0.0598 0.0598 0.0545 0.3308
n3r1.25 0.0598 0.0598 0.0598 0.0598 0.0598 0.0598 0.0555 0.4856

n2r0.50 0.0421 0.0423 0.0443 0.0458 0.0400 0.0403 0.0386 0.0598
n2r0.75 0.0434 0.0404 0.0414 0.0433 0.0361 0.0353 0.0328 0.1016
n2r1.00 0.0496 0.0447 0.0453 0.0466 0.0420 0.0358 0.0372 0.1744
n2r1.25 0.0545 0.0491 0.0486 0.0496 0.0483 0.0473 0.0350 0.2702

n1r0.50 0.0285 0.0259 0.0258 0.0262 0.0253 0.0248 0.0236 0.0340
n1r0.75 0.0275 0.0233 0.0219 0.0224 0.0209 0.0184 0.0172 0.0206
n1r1.00 0.0290 0.0220 0.0208 0.0211 0.0205 0.0170 0.0157 0.0339
n1r1.25 0.0321 0.0245 0.0229 0.0229 0.0218 0.0174 0.0150 0.0563

n0r0.50 0.0224 0.0223 0.0223
n0r0.75 0.0106 0.0105 0.0104
n0r1.00 0.0057 0.0056 0.0057
n0r1.25 0.0038 0.0041 0.0045

Figure 7
MEM deformation electron density, �MEM ÿ �pro. Calculations with �pro

prior. (a) n2r0.75 data set, F4 constraint. (b) n1r1.00 data set, F6

constraint. All contours as in Fig. 1.



method is of practical use only for extremely accurate data

from simple structures, since it relies on the knowledge of the

temperature parameters, which are often inaccurate and

correlated with systematic errors in the data sets.

The use of the generalized F constraint dramatically

improves the quality of the MEM results. The selection

criterion for the proper order is the best coincidence of the

histogram with the expected Gaussian distribution. From our

experience, the order 4 or 6 gives the best result.

Static weighting still gives better results than the non-

weighted Fn constraints. But this type of weighting lacks any

theoretical foundation, and the choice of the best weighting is

very data set dependent (Yamamoto et al., 1996). On the other

hand, the constraints based on the expected moments of the

distribution of �F�H�=��H� have a clear interpretation. One

can expect that the new algorithms that will allow the simul-

taneous use of several constraints in the MEM will again lead

to improved results.

One more advantage of the higher-order F constraints in

comparison to the classical F2 constraint or static weighting

is faster convergence, which makes the computation time

signi®cantly shorter.
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