CRYSTAL STRUCTURE OF PHOSPHOENOLPYRUVATE CARBOXYLASE: THE REACTION MECHANISM AND REGULATION

Y. Kawai1, H. Matsumura1, S. Shirakata1, T. Inoue1, T. Yoshinaga2, Y. Ueno3, K. Izui1

1Osaka University Department of Materials Chemistry Yamada-Oka 2-1
SUITA 565-0871 JAPAN 2Department of Public Health, Kyoto University 3Division of Integrated Life Science, Kyoto University

Phosphoenolpyruvate carboxylase (PEPC) catalyzes the irreversible carboxylation of phosphoenolpyruvate (PEP) to form oxaloacetate (OAA) and phosphate in the presence of the divalent cation such as Mg2+ or Mn2+ during C4 and crassulacean acid metabolism (CAM) photosynthesis. Despite the knowledge of the structure of the E. coli PEPC (EcPEPC) complexed with L-aspartate, there has been no understanding of the overall mechanism for the carboxylation reaction and the allosteric regulation, since no structural information on the activated R state of the enzyme and on the substrate binding site has been available. We determined the crystal structure of active state (R-state) C4-form maize PEPC (ZmPEPC) at 3.0 Å resolution by molecular replacement using EcPEPC as a probe. The structure includes sulfate ion at the plausible binding site of an allosteric activator, glucose-6-phosphate. The crystal structure of inactive state (T state) EcPEPC has also been determined as the quaternary complex of Mn2+, PEP analogs (DCDP, 3,3-dichloro-2-dihydroxyphosphinomethyl-2-propionate), and an allosteric inhibitor, L-aspartate, at 2.6 Å resolution. In the complex, PEP analogs and Mn2+ were tightly bound in the active site of the enzyme in the similar mode as we have proposed previously. From the structure comparison between R and T states PEPCs, the dynamic movements were revealed in ZmPEPC around two loops near the C-terminal side of the β-barrel where the catalytic site locates. Based on these molecular structures, we will propose the mechanisms for carboxylation reaction and for the allosteric regulation of PEPC.

Keywords: CARBOXYLASE, ACTIVE FORM STRUCTURE, REACTION MECHANISM

CRYSTAL STRUCTURE OF 4-HYDROXYPHENYLACETATE 3-MONOXYGENASE LARGE CHAIN (HPAA) FROM THERMUS THERMOPHILUS HB8

S. H. Kim1, H. Miyatake1, T. Hisaoka1, K. Miki1

1RIKEN Harima Institute/SPring-8 Structure Research Group, Metabolic Proteins Research Team 1-1-1, Kouto, Sayo-Gun, Hyogo MIKAZUKI-CHO 679-5148 JAPAN 2Graduate School of Science, Kyoto University 3Laboratory of Chemistry and Molecular Biology, The University of Tokyo 4RIKEN Harima Institute/SPring-8 Structure Research Group, Bioorganic Chemistry, Research Institute, 3-5-1, Kamigamo, Sakyo-ku, Kyoto 606-8502, Japan

The regulation of the pg promoter controls the expression of the meta operon of the 4-hydroxyphenylacetyl acid (4-hp) catabolic pathway of thermus thermophilus HB8 in the course of the nutritional adaptation. These proteins expressed by the hp gene clusters cooperatively mediate the degradation of aromatic energy sources. Such energetic catabolism process is first mediated by hydroxphenylacetate monoxygenases that catalyze hydroxyl groups of phenolic substrates to catechol products. 4-hydroxyphenylacetate 3-monoxygenase large chain (hpaa: mw = 54000) from T. Thermophilus HB8 is one of the monoxygenases and mediates the biodegradation of the aromatic compounds to generate living energy. We determined crystal structure of hpaa to establish structure-function relationships of the bacterial energy metabolism. Purified hpaa (by "structurome project" of Riken Harima Institute) was crystallized by vapor diffusion method. The crystal belongs to the space group F222, with cell dimensions of a = 91.8, b = 99.6 and c = 151.1 Å. Diffraction data were collected at the Bij1400 and Bij145xu stations, spring-8, Japan. Phase information was determined by the mad method using one crystal of a ph derivative at 2.5 Å resolution. Additional high resolution data set was collected at 1.6 Å resolution using a native crystal. Hpaa molecules form homo-dimer, with approximately dimensions of 90*100*130 Å. One subunit of hpaa molecule comprises of 22 α-helices and 13 β-strands. This is the first crystal structure for bacterial phenolic monoxygenases. Preparation of the complex with substrate analogues, and functional analysis are now underway.

Keywords: HPA GENE OPERON, PHENOLIC MONOOXYGENASE, BIODEGRADATION

CRYSTAL STRUCTURE OF THE COMPLEX BETWEEN CALYCLIN A AND PROTEIN PHOSPHATASE 1 CATALYTIC SUBUNIT

A. Kiya1, S. Matsunaga2, A. Takai1, H. Kataiwa1, T. Wakimoto2, N. Fusetani2, M. Isobe1, K. Miki1

1Kyoto University Department of Chemistry Graduate School of Science Sakyo-Ku KYOTO 606-8502 JAPAN 2Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo 3Laboratory of Bioorganic Chemistry, Graduate School of Bioagricultural Science, Nagoya University 4RIKEN Harima Institute/SPring-8 Structure Research Group

The crystal structure of the catalytic subunit of protein phosphatase1 (PP1), PP1γ, in complex with a marine toxin, calyculin A, was determined at 2.0 Å resolution. The metal binding site contains the phosphate group of calyculin A and forms a tight network via the hydrophilic interactions between PP1 and calyculin A. Calyculin A is located in two of the three grooves, namely, in the hydrophobic groove and the acidic groove. This is the first observation to note that the inhibitor adopts not a pseudocyclic conformation but an extended conformation in the hydrophobic groove and acidic groove on the PP1γ surface in order to form a complex with the protein. The conformation of β12-13 loop, which is located to play an important role for binding inhibitors, is similar to that of PP1γ-okadaic acid complex, and not similar to that of PP1γ-microcystin-LR complex. In PP1γ-calyculin A β12-13 loop, only the Tyr272 residue interacted with the inhibitor. The crystal structure indicates that the amino acid terminus of calyculin A contributes in a limited manner to the binding to PP1γ. This result is consistent with findings from the studies of dose-inhibition analysis, which showed that the inhibitory activity is largely retained in hemicalyculin A, a derivative which lacks the C29-C37 component. The crystal structure also shows the importance of two salt bridges formed between calyculin A and two arginine residues (Arg96 and Arg221) in the substrate recognition site.

Keywords: PROTEIN PHOSPHATASE 1, PP1C CALYCLIN A COMPLEX, PP1C INHIBITOR COMPLEX