CRYSTAL-CHEMICAL PECULIARITIES OF RARE-EARTH ALUMOSILICIDES AND ALUMOGERMANIDES

R. Gladyshevskii¹ N. Nakonechna¹ E. Gladyshevskii¹

¹Ivan Franko National University of Lviv Department of Inorganic Chemistry Kyryla I Mefodiya Str., 6 LVIV UA-79005 UKRAINE

The chemical class grouping rare-earth alumosilicides and alumogermanides includes 145 ternary compounds, characterized by simple stoichiometries and a rare-earth metal content between 20 and 60 at.%. The majority of the compounds are located along the RX2-RAl2, RX2-Al and RX-Al (R - rare-earth metal, X - Si or Ge) cross-sections of the ternary systems and 50 compounds contain 33 at.% R. The compounds crystallize with 23 different, but related, structure types, 10 of which (La2AlGe6, Ce3Al4Si6, CeAlSi2, Y2Al3Si2, YAl14Si06, YAlGe, Y2AlGe3, Yb7Al5Ge8, Pr4Al3Ge3 and Tb6Al3Si) are defined on a rare-earth alumosilicide or alumogermanide. For 18 structure types rows of isotypic compounds containing from 3 to 28 representatives are known, whereas only four types have one single representative. The CaAl₂Si₂ (28 compounds), YAIGe (15), α -ThSi₂ (13) and AlB₂ (11) structure types are common to rare-earth alumosilicides and alumogermanides. A differentiation with respect to the crystal structure is observed between compounds of light and heavy rare-earth metals for > 23% R atoms. In 18 structure types all or part of the X atoms centre trigonal prisms, formed either by R atoms, or by R and Al atoms in different ratios. The X and Al atoms are characterized by short interatomic distances and form pairs, chains, nets or three-dimensional frameworks. In some structures X and Al atoms are distributed statistically, however, phases with significant homogeneity ranges are not observed. Exceptions are the alpha-ThSi2 type phases with up to 17 at.% broad homogeneity ranges.

Keywords: CRYSTAL CHEMISTRY ALUMOSILICIDES ALUMOGERMANIDES

Acta Cryst. (2002). A58 (Supplement), C155

NEW OXIDE MATERIALS BASED ON STRONTIUM LITHIUM TITANIUM OXIDE PHASE SrLi₂Ti₆O₁₄

P. Gravereau¹ I. Koseva² P. Peshev² S. Pechev¹ J. P. Chaminade¹

¹Institut De Chimie De La Matiere Condensee De Bordeaux Universite Bordeaux I 87, Avenue Du Docteur A. Schweitzer 33608 - PESSAC 33608 FRANCE ²Institute of General and Inorganic Chemistry , BULGARIAN ACADEMY OF SCIENCES , Acad. G. BONCHEV str., Building 11 , 1113 SOFIA , BULGARIA

A new strontium lithium titanate SrLi₂Ti₆O₁₄ has been discovered in the ternary oxide system SrO-Li2O-TiO2. Single crystals of this compound have been grown by the flux method from a solution containing LiBO₂, SrO and TiO₂ in a ratio of 65:10:25 [mol%]. The structure of SrLi₂Ti₆O₁₄ has been solved using X-ray data collected on a CAD4-Enraf Nonius four-circle automatic diffractometer (MoKa radiation). The unit cell is orthorhombic, space group Cmca, with a = 16.570(5) Å, b = 11.150(2) Å, c = 11.458(2) Å, V = 2116.9(8) $Å^3$. The crystal structure is built by edge and corner sharing TiO₆ octahedra which form layers parallel to the (100) plane. Consecutive layers are linked by common corners in the [100] direction. Lithium atoms in tetrahedral coordination occupy vacancies of the titanium octahedra framework, while strontium atoms lie in 11-coordinated sites between two successive layers. Based on the structure of SrLi₂Ti₆O₁₄, a whole group of new oxide materials with various properties can be obtained by substitutions in different crystallographic sites : - BaLi₂Ti₆O₁₄ and PbLi₂Ti₆O₁₄ single crystals grown by the flux method. Preliminary X-ray powder diffraction studies indicate that these compounds are isostructural with SrLi₂Ti₆O₁₄; - a new phase, KLi2Ti5NbO14, resulting from replacement of Sr by K and one of the Ti atoms by Nb. Single crystals of this compound have been grown by the flux method. The X-ray diffraction pattern can be indexed in orthorhombic lattice mode F, with cell parameters a = 5.793 Å, b = 11.205 Å, c = 16.785 Å, $V = 1089.5 \text{ Å}^3$.

Keywords: SrLi_2Ti_6O_{14} SrLi_2Ti_6O_{14} SUBSTITUTED COMPOUNDS FLUX CRYSTALS GROWTH

Acta Cryst. (2002). A58 (Supplement), C155

RARE EARTH (R) TRANSITION METAL (T) ALUMINIDES R₃T₄Al₁₂ AND STRUCTURAL SYSTEMATICS OF RELATED INTER-METALLICS

J. Niermann W. Jeitschko

Westfaelische Wilhelms-Universitaet Muenster Institut Fuer Anorganische Und Analytische Chemie Wilhelm Klemm Str. 8 MUENSTER 48149 GERMANY

The new isotypic intermetallic compounds R3Ru4Al12 (R=Y, Pr, Nd, Sm, Tb-Tm) and R₃Os₄Al₁₂ (R=Y, Ce-Nd, Sm, Gd-Tm) were prepared by reaction of the elemental components in an arc-melting furnace. Their Gd₃Ru₄Al₁₂ type strucure [1] was determined from four-circle X-ray diffractometer data of $Y_3Ru_4Al_{12}$: a = 877.7(1) pm, c = 952.3(1) pm, Z = 2, R = 0.028 for 361 structure factors and 28 variable parameters. It was also refined for Nd₃Os₄Al₁₂ (a = 889.2(1) pm, c = 960.3(1) pm, R = 0.025 for 425 F values and 21variables) and Gd₃Os₄Al₁₂ (a = 884.7(1) pm, c = 955.3(2) pm, R = 0.023; 427 F values, 21 variables). The refinements of the occupancy parameters revealed a mixed T/Al occupancy for one of the seven atomic sites resulting in the compositions $Y_3Ru4.060(3)A111.940(3)$, $Nd_3Os4.304(1)A111.696(1)$, and Gd₃Os4.309(2)Al11.691(2), respectively. The structure is related to those found for Y2C03Ga9, Er4Pt9Al24, CeOsGa4, H03Ru4Ga15, YbFe2Al10, TbRe2Al10, and LuRe₂Al₁₀. Topologically all of these structures may be viewed as consisting of atomic layers, although chemical bonding within and between the layers is of similar character. Two kinds of layers can be distinguished in these structures. One kind contains all of the rare earth and in addition aluminum or gallium atoms. The other kind of layers consists of the transition metal atoms and again aluminum or gallium atoms. These latter layers are hexagonally close packed and slightly puckered. The three different structures of the disilicides TiSi2, CrSi2, and MoSi2 also contain these layers; however, in the disilicides these layers are flat.

References

[1] R. E. Gladyshevskii, O. R. Strusievicz, K. Cenzual & E. Parthe, Acta Cryst. B49, 474-478.

Keywords: STRUCTURAL SYSTEMATICS INTERMETAL LICS TERNARY ALUMINIDES Acta Cryst. (2002). A58 (Supplement), C155

METAL -RICH RARE EARTH COMPOUNDS - DISORDER AND DIFFUSE SCATTERING

<u>O. Oeckler¹ Hj. Mattausch¹ J. Bauer² A. Simon¹</u> ¹Max-Planck-Institut Fuer Festkoerperforschung Heisenbergstr. 1 STUTTGART 70569 GERMANY ²Laboratoire de Chimie du Solide et Inorganique Moleculaire, CNRS, Rennes, France

Among a large number of metal-rich rare earth halides as well as boride carbides there are quite a few where parts of the structure exhibit short-range order only, leading to diffuse scattering. The structure of aluminium stabilised lanthanum monoiodide is derived from the rocksalt type, however, the diffraction patterns show spheres of diffuse intensity around the weak uneven Bragg reflections. Upon annealing, a complex arrangement of weak, but sharp additional reflections occur. Terbium boride halide Tb₁₃Br₁₈B₃ (average structure: Immm, a = 3.96 Å, b = 16.91 Å, c = 28.11 Å) is characterised by trans-edge sharing Tb6 octahedra which are connected via Br atoms to form a framework of layers with channel-like voids. These channels contain additional Tb octahedra which form a superstructure (C centred with 2a, 2b). Stacking disorder of the layers leads to diffuse scattering along rods hkl (h, k = 2n+1) instead of superstructure reflections. The intensity along these rods is modulated with a translation period corresponding to c/7. In tetragonal rare earth boride carbides a large variation of lattice parameters is caused by variation of interstitial boron carbon anions in the voids of a metal atom substructure. If different kinds of interstitials are present, they may be completely disordered, however, ordered variants and phase separation has also been observed. In some cases the tendency towards ordering or segregation is not strong enough to produce long-range order and then diffuse scattering occurs.

Keywords: DIFFUSE SCATTERING RARE EARTH HALIDES RARE EARTH BORIDE CARBIDES