CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES OF Pr₄₋ₓTbxMnₓGe₂

A. Elmali, Y. Elerman, E. Duman, M. Acet

Ankara University, Faculty of Engineering, Engineering Physics, Ankara University, Faculty of Engineering, Physics, Ankara University

Temperature and field dependence of the magnetic behavior of magnetic moments of the rare earth and Mn sublattices of RMnₓGe₂, where R is a rare earth element, leads to a variety of interesting magnetic properties. These compounds crystallize in the tetragonal ThCrSi₂-type crystal structure with space group I4/mmm which consist of layers along the c-axis with sequence R-Ge-Mn-Ge-R. When light rare-earth elements (Pr, La, Ce or Nd) use in title compounds, the interlayer magnetic coupling in the Mn sublattice is ferromagnetic, whereas it is antiferromagnetic in the case of Gd, Tb or Dy. At low temperatures, the rare earth sublattice also orders and reconfigures the ordering in the Mn sublattice. In this study, crystal structure and magnetic properties of Pr₄₋ₓTbxMnₓGe₂ compounds were investigated by X-ray diffraction and magnetic measurements. The results of earlier neutron diffraction and Mössbauer studies on samples with x = 0 and x = 1 are also used for interpreting the magnetization data and to give an account on the competing effects between various magnetic structures in the Mn and rare earth sublattices. In low field, we have observed that, temperature dependence of zero field cooled and field cooled magnetizations shows large difference at the Curie temperature of Mn sublattices (Tc). This behavior is related to pinning of the ferromagnetic components of Mn sublattices and proved that there is an antiferromagnetic ordering of Mn sublattices with Neel temperature TN > Tc, which has been observed only by using neutron diffraction techniques.

Keywords: LAYERED MAGNETIC STRUCTURE, RARE EARTH MAGNETISM, PINNING

CRYSTAL STRUCTURE AND SUPERCONDUCTING PROPERTIES OF Sr₂YCu₃(Fe,Co)O₆±δ


1National Institute For Materials Science, 2Superconducting Materials Center, 1-1 Sengen, Tsukuba, Ibaraki 305-0047 Japan, 2Japan Atomic Energy Research Institute, 3Institute of Materials Science, University of Tsukuba, 4National Institute of Advanced Industrial Science and Technology

Crystal structure of Sr₂YCu₃FeO₆±δ and Sr₂YCu₃CoO₆±δ has been analyzed using neutron powder diffraction. These compounds consist of nanometer-scale sequence of alternating double CuO₂ sheets as those in high-Tc superconductors, and (Fe,Co)O₂ sheet similar to that in the Sr₁Fe₁Co₁O₆±δ magnetic compound with brownmillerite-type structure. Sr₂YCu₃FeO₆±δ exhibits superconductivity around 5 K when it is annealed under N₂ atmosphere and subsequently under O₂ atmosphere, while Sr₂YCu₃CoO₆±δ with the same annealing process does not exhibit superconductivity. Neutron diffraction study indicates that it is easy to substitute Cu for Fe in Sr₂YCu₃FeO₆±δ and the N₂-annealing suppresses this substitution, while Cu is hardly substituted for Co in Sr₂YCu₃CoO₆±δ. The annealing process is very effective on the control of oxygen content, 6+δ, in Sr₂YCu₃FeO₆±δ, although the δ value do not deviate substantially from unity by the annealing process in Sr₂YCu₃CoO₆±δ. These results show that enough amount of oxygen cannot be supplied onto the CoO₂ sheet to exhibit superconductivity in Sr₂YCu₃CoO₆±δ.

Keywords: HIGH-TC SUPERCONDUCTOR, NEUTRON DIFFRACTION, 1212 PHASE

RAPID HTXRD ANALYSIS OF PHASE EVOLUTION IN CERAMIC MATERIALS


1Materials Science And Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 USA, 3Argonne National Laboratory, 4National Renewable Energy Laboratory

Inorganic chemical reactions responsible for the development of the microstructure and phases of technologically significant ceramic materials have been investigated with the use of rapid high-temperature x-ray diffraction. To assist in the dynamic in situ study of materials processes involving volatile agents, X-ray transparent reaction vessels have been developed. These chemically inert and hermetically sealed cells serve to uniformly heat the sample and its enclosed environment while minimizing the loss of aggressive vapor species from the cells. Currently these cells are being employed in the previously impossible studies of applications such as the reduction of oxide ceramic precursors by reactive alloy liquids and phase evolution in thallium-based cuprates. The investigation of such processes has been greatly enhanced by the use of a two-dimensional GADDS X-ray detector system, which enables the simultaneous analysis of texture and phase identification. Results of the 2D texture analysis of HTSC thin film materials prepared by Inclined Substrate Deposition and melt-texturing as well as phase evolution in several ceramic systems are presented.

Keywords: POWDER DIFFRACTION, HIGH TEMPERATURE DIFFRACTION, IN SITU DIFFRACTION