RNA HELICASES IN ACTION

L. Sagüí, A. Henn, B. Akabayov
The Weizmann Institute of Science Structural Biology P.O. Box 26
REHOVOT 76100 ISRAEL

The Escherichia coli protein, DbpA, is unique in its subclass of DEAD box RNA helicases because it possesses ATPase specific activity toward the peptidyl transferase center in 23S rRNA. Although its remarkable ATPase activity is well defined toward various substrates, its RNA helicase activity remained to be characterized. Here we show by using biochemical assays and Atomic Force Microscopy (AFM) that DbpA exhibits ATP-stimulated unwinding activity of RNA duplex regardless of its primary sequence. This work presents an attempt to investigate the action of DEAD-box proteins by a single-molecule visualization methodology. Our AFM images enabled us to directly observe the unwinding reaction of a DEAD box helicase on long stretches of double stranded RNA (dsRNA). Specifically, we could differentiate between the binding of DbpA to RNA in the absence of ATP and the formation of a Y shaped intermediate after its progression through dsRNA in the presence of ATP. Recent studies have questioned the designation of DbpA, in particular, and DEAD-box proteins in general as RNA helicases. However, accumulated evidences and the results reported here suggest that these proteins are indeed helicases that resemble in many aspects the DNA helicases.

Keywords: RNA HELICASES, AFM, ATP

ACTOMIC FORCE MICROSCOPY IN THE STUDY OF VIRUS PARTICLES, VIRUS CRYSTALS, AND VIRAL INFECTED CELLS

A. McPherson, Yu G. Kuznetsov, A. J. Malkin, P. M. Plopm
University of California, Irvine, Dept. of Molecular Biology and Biochemistry, 560 Steinhaus, Irvine, CA 92697-3900 USA

Atomic Force Microscopy (AFM) is an effective technique for imaging virus particles within purified preparations, in crystalline form, and as they emerge from infected host cells. While the resolution of AFM does not approach that of X-ray crystallography, it can, in many cases, resolve capsomeres and other structural features on virion surfaces. Its investigative range in three dimensions serves to bridge the size interval of 1 nm to 1 µm lying between diffraction methods and light microscopy. We have used AFM to record a broad range of viruses ranging in diameter from 17 nm satellite plant viruses, to larger animal viruses such as herpes simplex (HSV) and mouse leukemic virus (MuLV) having diameters of about 100 nm, to even larger specimens from small protrusions from the tip contacting the sample surface. It is difficult or impossible to measure tip features on the order of several angstroms. In a attempt to overcome these difficulties and obtain high resolution information, we strive to collect images in a manner that permits the ‘rigid surfaces’ approximation to be approximately valid. We then construct a molecular model of the surface and find the tip geometry that, when convoluted with the model, yields a theoretical image that best agrees with the experimental image. The plausibility of the model is judged by the agreement between the two images. The model and tip are then adjusted to maximize this agreement. While obtaining a unique model of the surface from a single image is not possible, constraining the molecular model with known stereochemistry and analyzing multiple images limits the structures to be considered.

Keywords: AFM CRystal GROWTH

VISUALIZING MOLECULAR PACKING ARRANGEMENTS ON PROTEIN CRYSTAL FACES BY AFM

J. Kossaft
US Naval Research Laboratory Code 6030 4555 Overlook Avenue, S.W. WASHINGTON DC 20375 USA

The objective is to determine the structure of the protein surface. Realizing this goal is difficult because the image observed is dependent upon many parameters. If both the sample and the tip consisted of rigid, uncharged atoms, one would have to consider only the topology of the atoms on the surface of the tip and the sample. However, the surface atoms may be displaced from their equilibrium positions by interactions with the tip. Additionally, various sample regions interact differently with the tip. Low resolution images may directly indicate the low resolution morphology of the scanned surface. However, when features within individual molecules are observed, they result from small protrusions from the tip contacting the sample surface. It is difficult or impossible to measure tip features on the order of several angstroms. In an attempt to overcome these difficulties and obtain high resolution information, we strive to collect images in a manner that permits the ‘rigid surfaces’ approximation to be approximately valid. We then construct a molecular model of the surface and find the tip geometry that, when convoluted with the model, yields a theoretical image that best agrees with the experimental image. The plausibility of the model is judged by the agreement between the two images. The model and tip are then adjusted to maximize this agreement. While obtaining a unique model of the surface from a single image is not possible, constraining the molecular model with known stereochemistry and analyzing multiple images limits the structures to be considered.

Keywords: AFM MOLECULAR CHAPERONE