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One of the applications of the maximum-entropy method (MEM) in crystal-

lography is the reconstruction of the electron density from phased structure

factors. Here the application of the MEM to incommensurately modulated

crystals and incommensurate composite crystals is considered. The MEM is

computed directly in superspace, where the electron density in the (3+d)-

dimensional unit cell (d > 0) is determined from the scattering data of aperiodic

crystals. Periodic crystals (d = 0) are treated as a special case of the general

formalism. The use of symmetry in the MEM is discussed and an ef®cient

algorithm is proposed for handling crystal symmetry. The method has been

implemented into a computer program BayMEM and applications are

presented to the electron density of the periodic crystal NaV2O5 and the

electron density of the incommensurate composite crystal (LaS)1.14NbS2. The

MEM in superspace is shown to provide a model-independent estimate of the

shapes of the modulation functions of incommensurate crystals. The discrete

character of the electron density is found to be the major source of error,

limiting the accuracy of the reconstructed modulation functions to approxi-

mately 10% of the sizes of the pixels. MaxEnt optimization using the Cambridge

and Sakata±Sato algorithms are compared. The Cambridge algorithm is found

to perform better than the Sakata±Sato algorithm, being faster, always reaching

convergence, and leading to more reliable density maps. Nevertheless, the

Sakata±Sato algorithm leads to similar density maps, even in cases where it does

not reach complete convergence.

1. Introduction

The maximum-entropy method (MEM) is a powerful tool for

model-free image reconstruction in many scienti®c applica-

tions (von der Linden et al., 1998). The MEM has been applied

in crystallography in several ways, including the determination

of the phases of the structure factors and the extraction of

re¯ection intensities from powder diffraction data (Gilmore,

1996). Furthermore, the MEM has been used as an alternative

method to multipole re®nements, with the purpose to compute

accurate electron densities that reveal the bonding electrons.

After the ®rst promising applications in this ®eld (Collins,

1982; Sakata & Sato, 1990), several warnings concerning the

reliability and possible pathologies of the method appeared

(Jauch, 1994; de Vries et al., 1996).

In a previous publication (Palatinus & van Smaalen, 2002),

we have investigated these problems and it was demonstrated

that the MEM with a uniform prior leads to artifacts that are

larger than the differences between the true electron density

and the electron density of a procrystal that is based on

spherical atoms. A new constraint was proposed that is based

on the higher-order central moments of the distribution of

�FMEM�H� ÿ Fobs�H��=��H�. Although this constraint reduced

the sizes of the artifacts, the resulting density still is not

accurate enough to determine the effects of chemical bonding

on the electron densities. The use of a non-uniform prior

density appeared to be necessary (de Vries et al., 1994;

Papoular et al., 2002).

A different goal of the MEM is to describe the effects of

disorder or anharmonic temperature movements on the

electron density. These effects are larger than the effects of the

chemical bonding. It has been demonstrated in a series of

publications that disorder (Dinnebier et al., 1999; Wang et al.,

2001) and anharmonic displacements (Kumazawa et al., 1995;

Bagautdinov et al., 1998) can be determined by the MEM.

A similarly large effect on the electron density is provided

by the displacements of the atoms in aperiodic crystals out of

their basic structure positions. The shifts are characterized by

modulation functions that have arbitrary shapes. However,

only one or a few parameters of the Fourier expansions of

these functions can be obtained from structure re®nements

employing the superspace formalism (de Wolff et al., 1981; van

Smaalen, 1995). An ab initio determination of the shapes of

the modulation has turned out to be dif®cult.
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A model-independent reconstruction of the shapes of the

modulation functions of aperiodic crystals is possible with the

MEM in superspace. The application of the MEM to the

generalized electron density in superspace was independently

proposed by Papoular et al. (1991) and Steurer (1991). Weber

& Yamamoto (1997) have employed the MEM in a procedure

to determine the shapes and positions of the occupation

domains in ®ve-dimensional (5D) superspace of the decagonal

quasicrystal Al70Mn17Pd13. However, most publications report

applications of the MEM to special two-dimensional (2D) and

three-dimensional (3D) sections of the superspace structure of

quasicrystals, thus circumventing the full nD problem [e.g. see

Haibach et al. (2000) and Perez-Etxebarria et al. (2001)]. The

application of the MEM to an incommensurately modulated

structure has been considered only once, however without a

quantitative analysis of the resulting electron density (Steurer,

1991).

In the present manuscript, a critical evaluation is made of

the MEM as it can be applied to incommensurately modulated

structures and incommensurate composite crystals. An ef®-

cient algorithm is used for the Fourier transform in nD

superspace (Schneider & van Smaalen, 2000), and a general

algorithm is presented for handling symmetry as it applies to

the re¯ection data as well as the electron density in arbitrary

dimensions. These algorithms have been incorporated into a

computer program, BayMEM, for MaxEnt calculation on

periodic density functions in arbitrary dimensions. BayMEM

can be used for full superspace MaxEnt calculations on

problems of suf®cient sizes, and thus it overcomes the

previously noted problems of too large memory requirements

for unrestricted MaxEnt calculations in superspace (de Bois-

sieu et al., 1991; Yamamoto et al., 1996; Perez-Etxebarria et al.,

2001)

BayMEM has been applied to the (3+1)D structure of the

incommensurate composite crystal (LaS)1.14NbS2. With

calculated structure factors of the best structure model

employed as `experimental' data in the MaxEnt procedure, it

is shown that the MEM can quantitatively reconstruct the

modulation functions. The sources for the remaining discre-

pancies between model and reconstructed modulation func-

tions are analysed, and it is shown that these discrepancies are

mainly determined by the resolution of the discrete electron

density (by the pixel size). These conclusions are con®rmed by

the application of BayMEM to the experimental data of

(LaS)1.14NbS2.

3D space is but one realization of arbitrary dimensions, and

BayMEM allows for MaxEnt computations of periodic crys-

tals too. Thus, we have employed BayMEM to study the

electron densities of the periodic crystal structures of oxalic

acid dihydrate (Palatinus & van Smaalen, 2002), silicon and

NaV2O5. Both the Sakata±Sato algorithm (Sakata & Sato,

1990) and the Cambridge algorithm (Skilling & Bryan, 1984)

have been implemented in BayMEM. The results obtained by

these two methods are compared. The performance of

BayMEM is compared with the performance of the MEED

program, the latter being restricted to three-dimensional space

(Kumazawa et al., 1993).

2. Theory

2.1. The entropy in superspace

The crystal structures of aperiodic crystals are described by

the superspace formalism (de Wolff et al., 1981; van Smaalen,

1995). Within this theory, d additional dimensions are intro-

duced that are orthogonal to the three dimensions of physical

space. Together they de®ne (3+d)D superspace. Bragg

re¯ections of aperiodic crystals can be indexed with (3+d)

integers �h1; . . . ; h3�d� with respect to a set of (3+d) reciprocal

vectors:

H � P3�d

k�1

hk a�k: �1�

They can be considered to be the projections of reciprocal-

lattice points in superspace along the d additional dimensions

onto 3D physical space. In this way, a reciprocal lattice is

de®ned in superspace.

The superspace theory shows that the electron density of

the crystal can be obtained as a 3D section of a generalized

electron density in superspace perpendicular to the d addi-

tional dimensions. The generalized electron density �s�xs� is a

periodic function of the superspace coordinates xs according

to the direct lattice corresponding to the reciprocal lattice

de®ned by the re¯ections. This lattice is skew with respect to

3D space, resulting in a crystal structure that lacks 3D trans-

lational symmetry.

The entropy functional for an aperiodic crystal should be

de®ned in direct analogy to the entropy for periodic crystals

by employing �s�xs� instead of the electron density itself

(Papoular et al., 1991; Steurer, 1991). The appropriateness of

this de®nition is supported by the observation that properties

that depend on the electron density itself can be computed

in superspace (e.g. the structure factor and interatomic

distances), while quantities that depend on derivatives of the

density cannot be generalized towards superspace (e.g. lattice

vibrations). The entropy is a functional of the density and it

does not depend on derivatives of this quantity.

The generalized electron density in the (3+d)D unit cell is

discretized on a grid of

Npix � N1 � . . .� N3�d pixels �2�
(Schneider & van Smaalen, 2000). The discretized electron-

density function is then de®ned by the values of �s�xs� on this

grid,

�k � �s�xs�k��; �3�
where k enumerates the Npix pixels according to the scheme

de®ned in Schneider & van Smaalen (2000). Then the entropy

is de®ned as

S � ÿPNpix

k�1

�k log��k=�k�; �4�

where �k are the values of the reference density.

The MEM de®nes �MEM
s �xs� as the generalized electron

density that maximizes S, while it ful®ls a series of constraints

of the form Cj � 0 � j � 1; . . . ;Nc�. The constraints include the



®t to the experimental data. This can be the so-called F

constraint, de®ned by (Sakata & Takata, 1996)

CF � ÿ1� 1

NF

XNF

i�1

jFi
obs�H� ÿ Fi

MEM�H�j
�i�H�

� �2

; �5�

where the summation runs over all independent measured

structure factors NF. Fobs�H� are the observed structure factors

including phases and ��H� are their standard uncertainties.

The structure factors FMEM�H� are obtained by numerical

Fourier transform from the trial electron density f�kg. Other

choices for the constraint on the data are possible too. In

particular, the F constraint can be replaced by a constraint on

higher-order moments of the distribution of residuals of

structure factors. This Fn constraint is de®ned as (Palatinus &

van Smaalen, 2002)

CFn
� ÿ1� 1

mn

1

NF

XNF

i�1

jFi
obs�H� ÿ Fi

MEM�H�j
�i�H�

� �n

; �6�

where mn is chosen so as to make the expectation value of CFn

equal to zero in the case of a Gaussian distribution. The

original F constraint is equal to the F2 constraint in (6).

The second constraint is the normalization of the electron

density

�V=Npix�
PNpix

k�1

�k ÿ Nel � 0; �7�

where Nel is the number of electrons and V is the volume of

the unit cell. The actual value of Nel is determined by the scale

of the experimental data, which can be easily derived from the

superspace re®nement.

2.2. Symmetry of the electron density

The electron density is required to obey the symmetry of

the crystal. The independent values are the values de®ned on

the coordinates within the asymmetric part of the unit cell. For

all space groups, the asymmetric unit is known (Hahn, 1995),

but an automated procedure does not exist for generating the

asymmetric unit for space groups of arbitrary dimensions

(Engel, 1986). However, it is much easier to derive the

symmetry properties of the discretized density and the

(discrete) structure factors. The independent density values

�au
j � j � 1; . . . ;Nau

pix� are determined by consecutively

considering all the points xk and selecting only those values for

which xk is not equivalent by symmetry to a previously

selected value, i.e. we arbitrarily select from each orbit the xk

with the lowest k. Within the same procedure, a table is

generated that stores for each independent �au
j the k values of

all points in its orbit as well as its multiplicity m�
j (the � table).

This table completely de®nes the symmetry of f�kg. It can be

used to expand the unique values f�au
j g into the density of the

entire unit cell, and to extract the unique values from the

density f�kg of the unit cell. In a similar procedure, a table is

made that de®nes all the points k corresponding to the unique

structure factors F�H� (the F table).

The symmetry has consequences for the choice of the grid

of the discrete density. The pixels must be chosen such that

each symmetry operator transforms a pixel onto itself or onto

another pixel. This implies that the voxels (the space around

each pixel) must have the shape of the Wigner±Seitz unit cell

of the lattice (Schneider & van Smaalen, 2000).

Secondly, symmetry puts severe restrictions on the divisions

along the axes, i.e. on the numbers Nj [equation (2)]. Because

symmetry elements, like twofold axes and mirror planes, are

repeated half-way between the lattice points, Nj must be an

even integer for almost all (super-)space groups. If higher-

order rotation axes are present, further restrictions apply. For

example, in hexagonal space groups, Nj along directions

perpendicular to the unique axis must be a threefold integer. If

a 61 screw axis is present, the division along the direction of

the axis must be a sixfold integer. If directions in the lattice are

equivalent by symmetry, the divisions along these directions

must be equal. These restrictions lead to the notion that a

symmetry-adapted grid should be used for the de®nition of the

electron-density function (Fig. 1) (Schneider & van Smaalen,

2000).

Symmetry restricts the choice of the origin of the grid.

Either symmetry elements coincide with grid points or

symmetry elements coincide with the boundaries of the voxels

(which are in between grid points) (Fig. 2). We believe that the

better choice is that the grid points are chosen on the

symmetry elements. In this case, each grid point has a multi-

plicity m
�
j assigned to it, which counts the number of equiva-

lent grid points in the unit cell. The second choice of the origin

would result in artifacts represented by rows or plains of pairs
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Figure 1
Base plane of a hexagonal unit cell with a symmetry-adapted grid of
N1 � N2 � 6. The symmetry elements of the space group P321 as well as
the Wigner±Seitz shape of one voxel are indicated.

Figure 2
Unit cell of a two-dimensional rectangular lattice with a symmetry-
adapted grid of N1 � 6 and N2 � 10. (a) More favourable, and (b) less
favourable choices of the positions of the grid points de®ning �k

[equation (3)]. The symmetry elements of the space group p2mm are
indicated. Voxels (pixels) that are equivalent by symmetry are indicated
by the same shading.
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of points with equal densities (Fig. 2). Then each grid point

would be at a general position.

2.3. Symmetry and the Fourier transform

The structure factors FMEM�H� are computed from the

electron density f�kg by a discrete Fourier transform,

employing a generalization of the Beevers±Lipson algorithm

in combination with a 1D fast Fourier transform (FFT)

(Schneider & van Smaalen, 2000). With the exception of some

symmetry operators in 2D and 3D space, it is not possible to

incorporate the effects of symmetry into the Beevers±Lipson

and FFT algorithms. Therefore, we have designed BayMEM to

always compute the Fourier transforms for the complete unit

cell. This requires storage of 2Npix real numbers. The

computational complexity was shown to be proportional to

Npix log�Npix� (Schneider & van Smaalen, 2000).

In the Fourier transform, symmetry is handled by expanding

the independent density values f�au
j g using the � table,

computing the Fourier transform, and ®nally extracting the

unique structure factors F�H� using the F table. All other

Fourier transforms are handled in a similar way, using the �
table in direct space and the F table for the re¯ections. Other

computations directly use the stored unique density values

f�au
j g and the observed unique re¯ections F�H�.

2.4. Symmetry and the entropy

Continuity requires that the entropy of a map with

symmetry is again de®ned by (4). With respect to the unique

density values f�au
j g, this transforms into

S � ÿPNau
pix

j�1

m
�
j �

au
j log��au

j =�
au
j �: �8�

This de®nition is opposite to the de®nition of the F constraint,

which usually pertains to a sum over the unique re¯ections

only [equation (5)]. It results in the modi®ed formal solution

of the MaxEnt equations, given by

�au
j � �au

j exp ÿ� 1

m
�
j

@CF

@�au
j

" #
: �9�

The occurrence of m�
j in (9) cancels against the occurrence of

m�
j in the expression of the structure factor, resulting in

1

m
�
j

@CF

@�au
j

�
XNF

i�1

1

�i�H�2 �F
i
obs�H� ÿ Fi

MEM�H��

� exp�2�iHi � xj� � c:c:; �10�
where c.c. indicates complex conjugate.

3. The computer program BayMEM

Based on the considerations in x2, a computer program

BayMEM was written for the application of the MEM to

aperiodic crystals. Both the Sakata±Sato algorithm (Sakata &

Sato, 1990) and the Cambridge algorithm (Skilling & Bryan,

1984) can be used. New computer code was written for the

Sakata±Sato algorithm, whereas the Cambridge algorithm was

made available by incorporating the set of subroutines

MEMSYS5 v. 1.2 (Gull & Skilling, 1999a) into BayMEM. It is

noticed that BayMEM contains a special algorithm for the nD

fast Fourier transform (Schneider & van Smaalen, 2000), and

that it contains a newly developed algorithm for handling the

symmetry in arbitrary dimensions (xx2.2±2.4). The two

MaxEnt algorithms solely pertain to how equation (9) is

iteratively solved for variation of the unique pixels.

3.1. Periodic crystals

Electron densities of periodic crystals in three-dimensional

space can be computed with BayMEM too �d � 0�. We have

tested BayMEM for the case of silicon, using the accurate

structure factors of Si as measured by Saka & Kato (1986).

The resulting electron-density maps are indistinguishable

from those obtained with the computer program MEED

(Kumazawa et al., 1993), and we have observed the same

features and artifacts as have been extensively discussed in the

literature (de Vries et al., 1996; Takata & Sakata, 1996).

As a second test case, we have computed the electron

density of NaV2O5, using X-ray intensity data measured up to

Table 1
Experimental data and results for the electron density of NaV2O5 at room
temperature.

Chemical formula NaV2O5

Chemical formula weight 172.87
Space group Pmmn
Lattice parameters a; b; c (AÊ ) 11.3113 (1), 3.6098 (1), 4.8018 (1)
Volume (AÊ 3) 196.065 (5)
Z 2
Radiation type Mo K�
Wavelength (AÊ ) 0.7107
Absorption coef®cient (mmÿ1) 4.706
Crystal size (mm3) 0:1� 0:1� 0:1
Crystal colour Colourless
Diffractometer Nonius MACH3
Detector Scintillation
Data-collection method !ÿ 2� scans
Absorption correction  scans
No. of measured re¯ections 4342
No of independent re¯ections 1158
No. of observed re¯ections 2979
No. of independent observed re¯ections 930
Criterion for observed re¯ections I> 3:0��I�
Rint (all re¯ections) 0.023
Rint (observed re¯ections) 0.020
Maximum of sin���=� (AÊ ÿ1) 1:08
Range of h; k; l ÿ24! h! 24

0! k! 7
ÿ10! l! 10

Re®nement on F
Weighting scheme ��2�F� � �0:009F�2�ÿ1

R (observed re¯ections) 0.023
wR (observed re¯ections) 0.025
R (all re¯ections) 0.037
wR (all re¯ections) 0.026
Goodness of ®t (obs., all) 1.40, 1.30
No. of parameters 28
Extinction correction Isotropic type I

(Becker & Coppens, 1974)
Extinction coef®cient 0.065 (4)
Source of atomic scattering factors Su & Coppens (1997)



high angles (Table 1). Structure re®nements were performed

with JANA98 (Petricek & Dusek, 1998), using atomic form

factors for spherical atoms and anisotropic temperature

factors. The atomic coordinates published in Smolinski et al.

(1998) were con®rmed. MaxEnt reconstructions of the elec-

tron density were computed from the observed structure-

factor amplitudes together with the phases of the calculated

structure factors of the ®nal re®nement. The electron density

was discretized on a grid of 128� 64� 64 pixels.

Separate runs of BayMEM were made using the Cambridge

and Sakata±Sato algorithms. A third computation was per-

formed with the MEED program (Kumazawa et al., 1993). The

calculations were considered to be converged when the F

constraint was ful®lled (Table 2). The resulting electron

densities �MEM were similar to each other, with the differences

between them less than the apparent noise in the individual

maps. The electron density of NaV2O5 is well reproduced by

�MEM.

Our results for Si and NaV2O5 show that BayMEM and

MEED give the same result for the reconstructed electron

density in the case of periodic crystals. A second point of

comparison is the computational ef®ciency of the two

computer programs. Table 2 shows that BayMEM needs much

less RAM and is much faster than MEED for the case of

NaV2O5. This result re¯ects the ef®ciency of FFT algorithms

(Schneider & van Smaalen, 2000). For problems of smaller

sizes (less pixels and less re¯ections), the differences between

the two programs become smaller and, in the case of silicon

(1649 unique pixels and 30 re¯ections), MEED is even faster

than BayMEM (Schneider, 2001). However, MaxEnt compu-

tations for larger structures require the use of FFT algorithms

combined with an ef®cient handling of symmetry, as is

implemented into BayMEM.

3.2. Algorithms

BayMEM works with both the Cambridge and the Sakata±

Sato algorithms. Thus the performance of the two algorithms

can be compared under otherwise identical conditions. To be

able to assess the quality of the MaxEnt reconstructions, we

have used simulated noisy data of oxalic acid dihydrate that

were obtained from calculated structure factors of a model

electron density [for details see Palatinus & van Smaalen

(2002)].

For the optimum electron density �MEM, the entropy and

constraint should ful®l the following set of equations:

@S

@�i

� � @C
@�i

�11�

for i � 1; . . . ;Nau
pix. Alternatively, they should ful®l the

equivalent set of equations in reciprocal space:

@S

@Fj

� � @C
@Fj

�12�

for j � 1; . . . ;NF .

The Cambridge algorithm is supposed to produce an elec-

tron density that is close to the real MaxEnt solution because

� and � are optimized simultaneously. On the other hand,

there is no a priori reason to expect that the Sakata±Sato

algorithm will produce an electron density that ful®ls (11) and

(12), because the Sakata±Sato algorithm uses an estimated

value for � and it determines �MEM by an approximate itera-

tive procedure. The numerical evaluation for the case of oxalic

acid dihydrate con®rms these expectations. The electron

density produced by the Cambridge algorithm is relatively

close to the perfect solution, while the Sakata±Sato algorithm

produces distributions far from the optimum (Fig. 3).

Of practical importance is to know how close the optimized

electron density �MEM is to the true electron density �true. The

latter is known for the simulated data that were used here. For
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Table 2
Results and computational details for the MEM applied to NaV2O5.

BayMEM:
Cambridge algorithm

BayMEM:
Sakata±Sato algorithm MEED

Npix 524288
Nau

pix 68641
Nref 1158
RAM (Mbyte) 25 25 1220
CPU (min) 6.7 12.4 275.0
R 0.0248 0.0282 0.0282
wR 0.0206 0.0205 0.0205

Figure 3
Graphical representation of (a) equation (11), and (b) equation (12).
Grey squares: Sakata±Sato algorithm. Black circles: Cambridge algor-
ithm. Only about 1% of all points shown in (a). For an ideal MaxEnt
solution, all points lie on a straight line.
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the Sakata±Sato algorithm, it was shown in a previous publi-

cation that ��Sakata � �MEM�SakataÿSato� ÿ �true is small in

the case of a procrystal prior while it has variations up to a few

electrons per AÊ 3 in the case of a ¯at prior (Palatinus & van

Smaalen, 2002). Here we will directly compare the optimized

electron densities of the Sakata±Sato and Cambridge algor-

ithms, employing the quantity

j��Cambridgej
j��Cambridgej � j��Sakataj

; �13�

where ��Cambridge is de®ned analogously to ��Sakata. A value

less than 0.5 indicates a point where the Cambridge algorithm

was better, while values larger than 0.5 indicate points where

the Sakata±Sato algorithm was better. Depending on the

resolution of the map and the noise level of the data, average

values of (13) were found to lie between 0.46 and 0.47 in the

case of a ¯at prior and between 0.495 and 0.499 in the case of a

procrystal prior. These values show that on the average the

Cambridge algorithm produces a slightly better density than

the Sakata±Sato algorithm. However, none of the algorithms

is clearly superior and the variations of the values of (13) over

the individual points show that there are regions where one or

the other algorithm performs better (Fig. 4).

The third criterion for comparison is the speed of conver-

gence of the algorithms. In our tests, the Cambridge algorithm

was usually faster than the Sakata±Sato algorithm if the

classical F2 constraint was used. A serious problem with the

Sakata±Sato algorithm is that the convergence sometimes

effectively stops before the constraint is ful®lled. This happens

especially for large problems and cases where the standard

uncertainties have been underestimated.

Because the Cambridge algorithm produces an electron

density that is closer to the true electron density than the

Sakata±Sato algorithm, and because it converges faster and

more reliably, its use is recommended if the F2 constraint is

used. However, the Cambridge algorithm does not allow use

of any other constraint than the F2 constraint. The Fn

constraint with n equal to 4 or 6 was shown to converge

signi®cantly faster and to lead to better results than the F2

constraint, especially in the medium- and low-density regions

(Palatinus & van Smaalen, 2002). This improvement turns out

to be larger than the difference between the electron densities

obtained with the Cambridge and Sakata±Sato algorithms.

Thus, if the ®ne features of the electron density are investi-

gated, the use of the Sakata±Sato algorithm with F4 or F6

constraint is preferred.

Finally, it is noticed that a truly Bayesian analysis corre-

sponds to a stopping criterion other than the ful®lment of the

F2 constraint. This leads to convergence beyond the point

CF � 0 (Gull & Skilling, 1999b). This approach is imple-

mented in the MEMSYS5 package and has been tested, too.

Our results show that using this `true Bayesian' maximum

entropy leads to strong over®tting of the data and conse-

quently to much noisier density maps than the classical

constraint. We conclude that this approach in its present form

is not suitable for crystallographic MaxEnt applications.

4. The inorganic misfit layer compound (LaS)1.14NbS2

Inorganic mis®t layer compounds belong to the class of

incommensurate composite crystals (van Smaalen, 1995;

Wiegers, 1996). We have performed MaxEnt calculations on

the two isostructural mis®t layer compounds (LaS)1.14NbS2

and (LaS)1.13TaS2, employing the computer program

BayMEM. The results for both compounds turned out to be

Figure 4
Comparison of the electron densities obtained with the Sakata±Sato and
Cambridge algorithms. (a) For a ¯at prior, and (b) for a procrystal prior.
A section through the plane of the oxalic acid molecule is shown. Contour
lines at intervals 2n, n � ÿ2; . . . ; 5, indicate �true. The values of equation
(13) are represented on a greyscale. Light tones mark areas where the
Cambridge algorithm produces better density values and dark tones mark
areas where the Sakata±Sato algorithm produces better values.
Computations were performed with BayMEM employing the data set
n1r1.00 (for details, see Palatinus & van Smaalen, 2002).



similar in every way. Therefore, we present here in detail only

the results for (LaS)1.14NbS2.

4.1. The structure model and experimental data

The structure has been solved and re®ned using conven-

tional crystallographic methods (van Smaalen, 1991; Jobst &

van Smaalen, 2002). The data and model published in Jobst &

van Smaalen (2002) were used in the present work, and we

refer to Jobst & van Smaalen (2002) for experimental details

and structural parameters (Fig. 5).

Important for the present analysis is that a complete data

set is available up to sin���=� = 1.01 AÊ ÿ1. Almost all (98%) of

the main re¯ections are of the type observed [they have

I> 3��I�], whereas about half of the ®rst- and second-order

satellites are observed. The model included the

Fourier components up to second harmonics for the

modulation functions for the displacements and the

temperature factors. Furthermore, the average

occupation of La was re®ned towards 0.949 (2), and

the modulation function for this occupancy was

included in the model.

The phases of the re¯ections were taken from the

calculated structure factors of the ®nal structure

model [model D in Jobst & van Smaalen (2002)].

Together with the observed structure-factor ampli-

tudes, they formed the observed data (subscript obs)

that were used in the MaxEnt calculations. Standard

uncertainties are based on counting statistics. The

scaling towards the scattering of the unit cell and the

corrections for the anomalous scattering were

obtained by a procedure described elsewhere (Bagautdinov et

al., 1998).

A second data set was formed by the structure factors

computed for the ®nal structure model, albeit without the

contributions of the anomalous scattering factors. They were

denoted as calculated data (subscript calc). To be able to apply

the MaxEnt procedure, non-zero standard uncertainties must

be assigned to each re¯ection. Standard uncertainties of the

calculated data were set equal to the standard uncertainties of

the observed data. The calculated data correspond to the

Fourier transform of the model electron density. Their use as

`observed' data in the MEM [equation (6)] thus allows one to

quantitatively estimate the quality of the MaxEnt recon-

struction of the electron density for a model that is as close as

possible to the real electron density.

4.2. Details of the computations

The electron density was calculated on a grid of

32� 64� 256� 32 pixels. This corresponded to a resolution
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Figure 5
The average structure of (LaS)1.14NbS2. (a) Projection along the
incommensurate a axis. (b) Projection along the common b axis. Large
circles denote S atoms, small circles represent the metal atoms. Shaded
and white circles represent atoms at different positions of the projected
coordinate. Lattice constants at T = 115 K are: a1 � 3:3065, a2 � 5:7983,
b � 5:7960 and c � 22:957 AÊ .

Figure 6
Sections of the electron density �MEM

obs at the position of La. (a) x1±x4
section with �max � 961:1 e AÊ ÿ4; (b) x2±x4 section with
�max � 1409:9 e AÊ ÿ4; (c) x3±x4 section with �max � 1161:4 e AÊ ÿ4.
Contour lines are shown at intervals of 10% of the maximum value
�max of the electron density in the corresponding sections.

Table 3
Computational details and results for the MEM calculations on LaS114NbS2.

Observed data Calculated data

Cambridge
algorithm

Sakata±Sato
algorithm

Cambridge
algorithm

Sakata±Sato
algorithm

No. of re¯ections 10237
Npix 16777216
Nau

pix 1052736
RAM (Mbyte) 678
Computation time (h) 76.8 73.9 11.4 4.4
Constraint [equation (6)] F2 F4 F2 F4

Final value of constraint 1.0 58.4 1.0 1.0
R values obs.=all (%):

All re¯ections 2.1/4.1 2.8/6.4 3.2/3.1 2.7/3.4
Main re¯ections 1.6/1.7 2.2/2.3 3.9/3.9 2.7/2.8
First-order satellites 3.7/8.6 4.8/14.1 0.6/0.8 2.4/3.4
Second-order satellites 3.8/16.8 6.2/28.7 0.6/1.6 3.3/8.7



research papers

466 Sander van Smaalen et al. � Maximum-entropy method in superspace Acta Cryst. (2003). A59, 459±469

of 0:103� 0:092� 0:090� 0:181 AÊ . A ®ner grid might be

desirable but then the calculations would have been too time

consuming. A ¯at prior was used throughout the whole

analysis.

�MEM
obs was obtained from a run of BayMEM using the

observed data and the Cambridge algorithm (Fig. 6). In a

similar way, �MEM
calc was obtained from the calculated data.

Calculations with the Sakata±Sato algorithm and the F4

constraint did not converge within a reasonable time (see x3.2)

and the iteration had to be stopped before the F4 criterion was

ful®lled. Therefore, we have only used the results obtained

with the Cambridge algorithm in the present analysis. Details

of the MaxEnt computations are summarized in Table 3.

BayMEM can save the electron densities in several

formats. An internal format is used to store all independent

density values in the full double precision that is necessary

to maintain the accuracy of the calculations. The computer

program JANA2000 (Petricek & Dusek, 2000) is used for

the visualization of the electron density and BayMEM

can save the electron density in a format suitable for

JANA2000.

A principal task of the analysis of the �MEM is to extract the

modulation functions for the displacive modulation of the

atoms from it. This involves:

(a) The computation of the electron densities in 3D sections

of superspace from �MEM for a series of t values (t maps), each

of them representing the electron density in physical space.

(b) Determination of the maxima in each t map. The

maxima of the electron density in physical space are then

identi®ed with the atomic positions in this particular section.

For each step, it is necessary to be able to compute the elec-

tron density for arbitrary values of the coordinates. Because

�MEM is de®ned on a grid only, an interpolation method is

required. We have used the bicubic spline method (Press et al.,

1996), generalized to arbitrary dimensions.

Using this two-step procedure, it is possible to extract the

positions of the individual atoms from the �MEM as a function

of the parameter t with arbitrary dense sampling in t. The

difference between the modulated and the average positions

then de®nes the modulation function. For all four crystal-

lographically independent atoms of (LaS)1.14NbS2, we have

extracted the modulation functions from �MEM
calc and �MEM

obs

Figure 7
Overview of the modulation functions of the independent atoms of LaS1.14NbS2. Full lines: model modulation functions; open circles: modulation
extracted from �MEM

calc ; crosses: modulation extracted from �MEM
obs ; dashed line for uc of S2: best harmonic ®t to the �MEM

obs . Horizontal scale: t, vertical scale:
deviation from the average position along the respective directions a, b and c in AÊ .



accordingly, employing 50 equally spaced points on the

interval 0 � t< 1 (Fig. 7).

4.3. Discussion

With the calculated data as `observed' data [equation (5)],

BayMEM should reproduce the electron density of the model

that was used to generate the calculated structure factors.

Fig. 7 shows that the modulation functions that are determined

from �MEM
calc indeed follow the modulation functions of the

structure model quite well. For some modulation functions,

the match is almost perfect (e.g. the modulation of La along y),

while for other modulation functions differences between

the model and �MEM
calc are found (e.g. the modulation of Nb

along x).

A number of reasons exist why �MEM
calc will not reproduce the

electron density of the model exactly (see below). However,

the major source of the difference between the reconstructed

modulation functions and the model is the ®nite resolution of

the grid that is used to de®ne the electron density in the

MaxEnt calculations. First of all, it is noted that the sizes of the

modulation functions are of the same order as the grid size of

about 0.1 AÊ . It then becomes apparent that the differences

between the model and the modulation functions extracted

from �MEM
calc are only a few percent of the pixel size, with the

largest deviation being less than 10% of the pixel size. Indeed,

it cannot be expected to obtain a more accurate estimate of

the positions of the maxima in �MEM than a few percent of the

pixel size that was used to discretize this function.

In order to test the effects of the sizes of the pixels on the

reconstructed density, we have performed an additional

computation with a double number of pixels along x1 and x4.

That is, the additional computation used a grid of

64� 64� 256� 64 pixels, and the resulting density is denoted

by �0MEM
calc . Modulation functions were derived from �0MEM

calc by

the procedure described above. The result showed that the

agreement between the model and the reconstructed modu-

lation functions along x1 (x of the ®rst subsystem) and x4 (x of

the second subsystem) has improved considerably (Table 4).

In fact, the difference between these two has become less than

half the value it was before (Table 5), in accordance with the

double resolution along these directions.

We have thus shown that the major part of the discrepancies

between the reconstructed density and the model is due to the

discrete nature of �MEM and that the accuracy of the modu-

lation functions is limited to a fraction less than about 10% of

the size of the pixels. Nevertheless, this ®nding still leaves

several possibilities for the dependence of the result on the

pixel size. It can be due to the fact that �MEM does not

represent the values of the electron density on the grid points

but that it represents some type of average density, where the

average involves all values of � within the space around the

grid point. Alternatively, the problem can lie in the method of

interpolation that was used to obtain the values of �MEM

between the grid points.

Even if a suf®ciently ®ne grid had been selected, sources of

error remain. They include

(i) An inaccuracy of the MaxEnt algorithm resulting in an

electron density that is not the density with the maximum

value of the entropy.

(ii) An inaccuracy that is intrinsic to the method. Only a

®nite number of re¯ections can be used. This causes series-

termination effects and the so-called aliasing effect, resulting

in artifacts and noise in �MEM (Jauch, 1994; Roversi et al., 1998;

Palatinus & van Smaalen, 2002).

(iii) Problems related to the estimated standard uncertain-

ties. Although the calculated data are noise-free, the MEM

requires that non-zero standard uncertainties be assigned to

them. Therefore, the MEM will never converge to a perfect ®t

to the data.

At present, we do not have a quantitative estimate of the

importance of these different effects. However, for the case of

(LaS)1.14NbS2 with the extensive data set that was available to

us, the sources of error listed above apparently are less

important than the effects of the limited resolution.

The reconstructed electron density �MEM
obs may show features

that are not described by the model. The analysis shows that

the modulation functions derived from �MEM
obs follow the model

quite well and in particular they match the modulation func-
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Table 4
The difference between the modulation functions extracted from �0MEM

calc

and those contained in the model.

Given is the value of the difference averaged over t, both in units of length (AÊ )
and as fraction of the pixel size (%). Only values for the modulation along the
a axis are given. �0MEM

calc was obtained with a grid of 64� 64� 256� 64 pixels.
The values are given for both the Cambridge and Sakata±Sato algorithms.

Cambridge algorithm Sakata±Sato algorithm

Atom AÊ % AÊ %

Nb 0.0010 2.1 0.0028 5.6
S1 0.0017 3.3 0.0023 4.7
La 0.0026 2.9 0.0027 3.0
S2 0.0010 1.1 0.0016 1.8

Table 5
The difference between the modulation functions extracted from �MEM

calc

and those contained in the model.

Given is the value of the difference averaged over t, both in units of length (AÊ )
and as fraction of the pixel size (%). The values are given for �MEM

calc obtained
with the Cambridge algorithm and for �MEM

calc obtained with the Sakata±Sato
algorithm. Note that both algorithms lead to results of comparable quality.

Cambridge algorithm Sakata±Sato algorithm

Atom Axis AÊ % AÊ %

Nb a 0.0057 5.6 0.0065 6.4
b 0.0028 3.0 0.0019 2.1
c 0.0018 2.0 0.0023 2.5

S1 a 0.0043 4.2 0.0041 3.9
b 0.0024 2.6 0.0023 2.5
c 0.0018 2.0 0.0019 2.2

La a 0.0120 6.7 0.0114 6.3
b 0.0020 2.2 0.0012 1.3
c 0.0009 1.0 0.0015 1.7

S2 a 0.0049 2.7 0.0046 2.5
b 0.0025 2.8 0.0023 2.5
c 0.0031 3.5 0.0023 2.5
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tions derived from �MEM
calc very well (Fig. 7). The differences

between �MEM
obs and the model are larger than the differences

between �MEM
calc and the model but they still represent a small

fraction of the pixel size only. In this respect, it should be

noted that additional sources of error are present when the

MEM is applied to the experimental data instead of the

calculated data. They include the following points:

(iv) The data contain noise. Although it is known that the

MEM operates as a noise ®lter (Skilling & Bryan, 1984), the

optimized density might still be different from the one

obtained with noiseless data.

(v) The standard uncertainties of the data contain noise.

(vi) Both the standard uncertainties and the measured

amplitudes may contain systematic deviations from their true

values because of systematic errors, like an absorption

correction or extinction correction that is not perfect.

Point (iv) particularly applies to the satellite re¯ections.

About half of them are less thans and the MEM cannot ®t

their noisy values (Table 3). On the other hand, all of these

re¯ections do have correct values in the calculated data. The

discrepancies between the modulation functions derived from

the calculated data and those derived from the observed data

will thus be heavily affected by the many satellites for which

signi®cant intensity values are missing. Although these sources

of error may also affect the values of the parameters in the

model that has been re®ned, the two methods are affected in

different ways by errors in the data and differences between

the two are expected accordingly.

In view of (i)±(vi) and the pixel-size effect, we believe that

the major part of the differences between the model and the

reconstructed modulation functions is artifacts and noise.

However, in estimating the reliability of the reconstructed

modulation functions, one also needs to take into account the

scattering powers of the individual atoms. For the weaker

scatterers S1 and S2, we believe that the differences between

the modulation functions derived from �MEM
obs and �MEM

calc are

indeeed artifacts and noise. But for Nb it is found that

modulation functions of the model are followed by the

reconstructed functions much better than for the S atoms,

although the displacements of Nb are smaller than for S1 and

S2. Noise is visible but it is an order of magnitude smaller than

for S1 and S2. Lanthanum is the strongest scatterer, and it is

thus tempting to interpret the deviations between model and

reconstructed functions as a true structural effect. This is

especially so for the displacements along x3. Although we

believe that the reconstructed modulation does indicate that

there are deviations from the harmonic model, we refrain from

a detailed analysis. We maintain our interpretation that the

modulations in (LaS)1.14NbS2 are described well by modula-

tion functions based on the combinations of two harmonics

(Fig. 7).

We have identi®ed the positions of the atoms with the

maxima in the electron density. In the case of anharmonic

temperature movements, the electron density is asymmetric

and its maximum does not need to coincide with the position

of the atom. For (LaS)1.14NbS2, both the re®nements and the

reconstructed electron density do not give any indication for

anharmonic temperature factors and we believe that this

source of error in deriving the displacement modulations is

not important here.

Other effects that were important for the successful

modelling of the structure were the modulations of the

harmonic temperature factors and the occupancy of the La site

(Jobst & van Smaalen, 2002). Both modulations lead to a

modulation of the value of the electron density along the trace

of its maximum as a function of t. For both �MEM
calc and �MEM

obs , the

values of the electron density at the positions of La indeed

exhibit a variation with t, which matches with the modulations

of the temperature factors and the occupancy (Fig. 8). It can

be concluded that the MEM is able to reconstruct these

aspects of the modulations too.

5. Conclusions

The maximum-entropy method is critically evaluated for

application to incommensurately modulated structures and

incommensurate composite crystals. An ef®cient algorithm

is described that allows the complete superspace group

symmetry to be used (xx2.2±2.4).

The method has been implemented into a computer

program, BayMEM, that performs MaxEnt optimization of

the electron density in superspace against phased structure

factors. It uses the full space group or superspace group

symmetry and it allows computations in superspace of arbi-

trary dimensions. Periodic crystals are treated as the special

case with d � 0.

Numerical applications to the scattering data of the periodic

crystals silicon, NaV2O5 and oxalic acid have revealed the

following features.

The Cambridge and Sakata±Sato algorithms lead to similar

results for �MEM. The differences between the two algorithms

are less than the apparent noise in the resulting densities

(x3.2). The Cambridge algorithm converges faster and more

reliably than the Sakata±Sato algorithm, when the F2

constraint is used.

Figure 8
Modulation of the temperature factor (Ueq) and the occupancy of La
(occ) compared with the values of �MEM

calc (circles) and �MEM
obs (crosses) at

the positions of the La atoms [�MEM
max (La)].



Applications of the MEM to problems of intermediate and

large sizes (e.g. NaV2O5) require the use of ef®cient algor-

ithms for the Fourier transform and the handling of symmetry.

BayMEM has been used to study the modulation functions

in the crystal structure of the inorganic mis®t layer compound

(LaS)1.14NbS2. This compound belongs to the class of incom-

mensurate composite crystals, and its structure is described in

(3+1)-dimensional superspace. It has been shown that:

The MEM is able to reconstruct the modulation functions

for the displacement modulations of the atoms. �MEM even

shows features that can be identi®ed with the modulations of

the temperature factors and the occupancy of the La site.

The accuracy is limited to a fraction of about 10% of the

sizes of the pixels. This represents the major problem for the

accurate determination of small modulation amplitudes,

because the pixel size is limited by the amount of computa-

tional power that is available. For d � 1, an increase of the

resolution by a factor of two along each direction in super-

space implies an increase of the computational time by about a

factor of 16. At present, the resolution that can be attained is

of the order of 0.1 AÊ , thus limiting the accuracy to about

0.01 AÊ .

The quality of the MaxEnt reconstruction is negatively

affected when many satellite re¯ections are of the type less

than. Improvements to the reconstruction can be expected

when a method will be developed for designing a non-uniform

prior in superspace.

Finally, it is noticed that the purpose of the application of

the MEM to aperiodic crystals is to construct modulation

functions in cases where they cannot be modelled by a few

harmonics. This has been done successfully for the incom-

mensurate composite crystal structure of the high-pressure

phase III of bismuth, as will be reported elsewhere (McMahon

et al., 2003).
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