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In U4O9, most of the atoms are in general 48-fold [48(e)] sites of the space group

I�43d and yet the hkl re¯ections obey the extinction rules for atoms occupying

special 12-fold [12(b)] sites. An explanation is given for this effect, which can be

generalized to any space group.

1. Introduction

The crystal structure of the � phase of U4O9, which is stable

above 353 K, was determined by Bevan et al. (1986) from the

analysis of single-crystal neutron-diffraction data. They

showed that most of the atoms in the unit cell occupy general

48-fold [48(e)] sites of the I�43d space group. Nevertheless,

experiments using X-ray, neutron and electron diffraction

have all con®rmed that the hkl re¯ections conform to the

re¯ection conditions of the special 12-fold [12(b)] sites. How is

it possible for most of the atoms to occupy general positions

and yet to give systematic hkl absences corresponding to

special positions? In the following section, we shall show that

the answer to this question is that the structure consists of

several types of atomic clusters that are centred on the special

sites. The cluster associated with each type must possess just

one kind of atom, have the point-group symmetry of the

crystal, and have the same orientation on being translated

between equivalent positions of the special site. Before

proceeding to detailed calculations, we shall summarize the

extensive data on the symmetry of the diffraction pattern of

U4O9.

Belbeoch et al. (1961) studied U4O9 using single-crystal and

powder X-ray diffraction. They found that all the observed

re¯ections, which covered an intensity range from 1 to 2500,

obeyed the extinction rules of the 12(b) positions of the I�43d

space group. On account of these rules, they stated that the

structure consists of a `unique motif' placed around the 12(b)

sites and that this motif preserves the same orientation

wherever it is applied. We shall use a similar concept in the

treatment below.

Single crystals of U4O9 in the form of thin foils were

examined by Blank & Ronchi (1968) employing electron

diffraction. The diffraction pattern revealed numerous

superlattice re¯ections including some not found by X-rays,

especially at small angles of scattering. The conditions for

possible re¯ections corresponded to the space group I�43d, and

all the superlattice extinctions were those associated with the

subgroup 12(b).

Neutron diffraction studies of single crystals have been

undertaken by Willis (1964), Masaki & Doi (1968), Bevan et

al. (1986) and Lauriat et al. (1989). Masaki & Doi observed

two weak re¯ections, 770 and 990, and so they re-assigned the

space group as I4132. The other workers failed to con®rm the

existence of these weak re¯ections, and they all agreed with

Perio's assignment of I�43d. Lauriat et al. (1989) stated: `We

®nd that superlattice re¯ections whose indices are h, k, l =

8n � 1, 8n � 1, 4n and 8n � 3, 8n � 3, 4n are unobservable

without exception. These indices correspond to the extinction

rules of the 12(a), 12(b) positions of the I�43d space group.'

Bevan et al. (1986) found that these extinction rules are

obeyed at a temperature of 503 K, but Cooper & Willis (2004)

found that they break down at 773 K. We shall proceed on the

assumption that the re¯ections obey the 12(b) extinction rules

of I�43d at low temperatures.

The complete set of rules for 12(b) [or 12(a)] is given in

Table 1, where N denotes an integer. They imply that

approximately one in four of the re¯ections that are expected

for atoms occupying 48(e) Wyckoff sites are, in fact, forbidden.

2. Diffraction from atomic clusters centred on 12(b)
sites

Consider the case of a crystal with space group I�43d in which

all the atoms are of the same type and occupy general 48(e)

positions. The number of atoms in the unit cell is a multiple of

48, so that there are 48n atoms, n� 1. They can be divided into

two groups, each of 24n atoms, which are related by a trans-

lation with the lattice vector C = (1
2,

1
2,

1
2) (body centring). The

diffraction amplitude of the unit cell is then



F�hkl�

� f
P24n

m�1

exp�ÿWm�fexp�2�iH � rm� � exp�2�iH � �rm � C��g

� f �1� cos ��h� k� l�� P24n

m�1

exp�ÿWm��exp�2�iH � rm��;

�1�
where f is the (X-ray, neutron, electron) scattering amplitude

for a spherical atom, H(hkl) is the reciprocal-lattice vector, rm

is the position vector of the atom m and exp(ÿWm) is the

Debye±Waller temperature factor, which may be anisotropic.

If we apply (1) to the special site 12(b), we need to take into

account only the six Wyckoff sites

�78 ; 0; 1
4�; �14 ; 7

8 ; 0�; �0; 1
4 ;

7
8�; �58 ; 0; 3

4�; �34 ; 5
8 ; 0�; �0; 3

4 ;
5
8� �2�

because the remaining six 12(b) sites are related to those in (2)

by the lattice vector C.

The point symmetry of a 12(b) site is �4. If we start from a

single atom in a general xyz position, giving this atom the

coordinates (a, b, c) with respect to the site (7
8, 0, 1

4) chosen as

origin of coordinates, we shall have a total of four atoms in a

cluster of �4 symmetry surrounding this site. These atoms will

have the coordinates (a, b, c), (a,ÿb,ÿc), (ÿa, c,ÿb) and

(ÿa,ÿc, b). The other 20 symmetry-related general positions

will yield similar four-atom clusters around the other ®ve 12(b)

sites in (2). Three of the four-atom clusters will be the same,

but oriented along the three cell-axis directions (effect of

threefold axes); the other three will be related via diagonal

mirrors. Since we started with 24 atoms in general positions,

there are no hkl selection-rule simpli®cations. We shall show,

however, that the 12(b) selection-rule simpli®cation arises if a

copy of the atom with coordinates (a, b, c) is placed at each of

the six sites in (2), where the origin of coordinates for each

copy is the site itself. This procedure generates a total of

24 � 6 or 144 atoms, consisting of 24-atom clusters at the six

sites in the unit cell. The clusters are identical to one another

in geometry and orientation, have the point group �43m, and

are related by a translation vector that is not a lattice vector.

Although the 24-atom clusters around 12(b) sites are

identical to one another, they are formed from non-equivalent

atoms. Thus only four atoms in every cluster are equivalent

and these atoms correspond to the axis �4 [the point group of

the sites 12(b)]. The other 20 atoms are equivalent four-by-

four with atoms from different clusters. For example, in the

cluster centred on (7
8, 0, 1

4), only the atoms (a, b, c), (a,ÿb,ÿc),

(ÿa, c,ÿb) and (ÿa,ÿc, b) are equivalent and they corre-

spond to the axis �4 oriented along [100]. The atoms (b, c, a),

(b,ÿc,ÿa), (ÿb, a,ÿc) and (ÿb,ÿa, c) from the same cluster

are not equivalent with the previous four, but with the atoms

(a, b, c), (ÿa, b,ÿc), (c,ÿb, a) and (ÿc,ÿb, a) from the

cluster centred on (1
4,

7
8, 0), and so on. In other words, the

clusters are identical and have the point-group symmetry �43m,

not because all atoms of the cluster are equivalent but because

an identical atom (a copy) was placed at the point (a, b, c)

around each 12(b) site. By applying to these atoms all

operations of the space group, we obtain identical clusters in

both geometry and orientation.

Let Ri be the position vector of the ith Wyckoff 12(b) site

with respect to the origin of the unit cell and let rij be the

position vector of the jth atom in the cluster Si surrounding the

ith site with respect to an origin at that site. The position

vector in the unit cell of the atom j is Ri + rij and, denoting by

exp(ÿWij) the corresponding Debye±Waller factor, in place of

(1) we have:

F�hkl� � f �1� cos��h� k� l��

�P6

i�1

P4n

j�1

exp�ÿWij� exp�2�iH � �Ri � rij��

� f �1� cos��h� k� l��

�P6

i�1

h
exp�2�iH � Ri�

P4n

j�1

exp�ÿWij� exp�2�iH � rij�
i
:

�3�

Because the clusters are identical in both geometry and

orientation, the quantities rij, Wij in the inner sum of (3) are

the same for each cluster Si and so they are independent of the

index i. Hence,

rij � rj 6� 0; Wij � Wj: �4�

Equation (3) can then be factorized to yield the expression

F�hkl� � f �1� cos��h� k� l��

�
�P4n

j�1

exp�ÿWj� exp�2�iH � rj�
��P6

i�1

exp�2�iH � Ri�
�
:

�5�

The factor
P6

i�1 exp�2�iH � Ri� in (5) is the sum of the

amplitudes of unit scatterers at the special positions 12(b), and

follows the special selection rules for that site. On the other

hand, there are no selection rules for the factorP4n
j�1 exp�ÿWj� exp�2�iH � rj� in (5).
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Table 1
12(b) extinction rules.

h k l

h, k, l = even, even, even allowed 4N+2 4N+2 4N
4N+2 8N+4 4N
4N 4N 4N

h, k, l = even, even, even disallowed 4N+2 4N+2 4N+2
4N+2 8N 8N
4N+2 8N+4 8N+4

h, k, l = odd, odd, even allowed 2N+1 2N+1 4N+2
8N+1 8N+3 4N
8N+1 8N+5 4N
8N+3 8N+7 4N
8N+5 8N+7 4N

h, k, l = odd, odd, even disallowed 8N+1 8N+1 4N
8N+1 8N+7 4N
8N+3 8N+3 4N
8N+3 8N+5 4N
8N+5 8N+5 4N
8N+7 8N+7 4N
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Hitherto, we have considered only one type of atom in the

unit cell. For several types of atom (as in U4O9), there are

different clusters for each type and equation (5) must be

summed over each atomic species with the corresponding

scattering factor and thermal parameters.

To determine the xyz coordinates of the atoms in the

clusters surrounding the special sites in (2), we start with the

six atoms in different clusters with local coordinates (a, b, c).

For these atoms,

�xyz�i � Ri � �a; b; c� 2 Si � �xi � a; yi � b; zi � c�; �6�
where (xi, yi, zi) are the coordinates of the special sites. The

expression (a, b, c) 2 Si denotes the vector (a, b, c) translated

to the centre of Si as origin. The six atoms take the same

exponent of the Debye±Waller factor:

W � 2�2h�u �H�2i
� 2�2�hu2

xih2 � hu2
yik2 � hu2

zil2

� 2huxuyihk� 2huyuzikl � 2huxuzihl�: �7�
Here the symbol h...i represents the average value and u �
(ux, uy, uz) is the atomic displacement vector due to thermal

vibrations.

For each atom in (6), there exists another 23 equivalent

atoms spread across the unit cell. Their coordinates are

calculated as follows. The general equivalent positions of the

space group I�43d are

x; y; z; 1
2� x; 1

2ÿ y;ÿz;ÿx; 1
2� y; 1

2ÿ z; 1
2ÿ x;ÿy; 1

2� z; . . .

�8�
and, as an example, we take the general position

(1
2 + y, 1

2ÿ z,ÿx) operating on the atom at (a, b, c) in the ®rst

cluster S1, centred on �78 ; 0; 1
4�. From (6), we have

x � 7
8� a; y � b; z � 1

4� c

and the unit-cell coordinates of the transposed atom are

�12� y; 1
2ÿ z;ÿx�1 � �12� b; 1

4ÿ c; 1
8ÿ a�

� �12 ; 1
2 ;

1
2� � �b; 3

4ÿ c; 5
8ÿ a�; �9a�

where the subscript on the left-hand side refers to the ®rst

cluster, S1. The sixth special site in (2) is at (0, 3
4,

5
8) and so

�12� y; 1
2ÿ z;ÿx�1 � R6 � �b;ÿc;ÿa� 2 S6.

Similarly, for the atom at (a, b, c) in the third cluster S3,

centred on �0; 1
4 ;

7
8�, x � a; y � 1

4� b; z � 7
8� c. The general

equivalent position (ÿy, 1
2 + z, 1

2ÿ x) operating on this atom

gives the coordinates

�ÿy; 1
2� z; 1

2ÿ x�3 � �ÿ 1
4ÿ b; 3

8� c; 1
2ÿ a�

� �12 ; 1
2 ;

1
2� � �14ÿ b; 7

8� c;ÿa�
� R2 � �ÿb; c;ÿa� 2 S2: �9b�

By proceeding systematically in this way, we can calculate all

the atomic positions of (6). n in equation (5) is equal to 6, and

the complete set of coordinates is then given by expressions

such as (9a), (9b) with the following permutations of (a, b, c):

�a; b; c�; �a;ÿb;ÿc�; �ÿa; b;ÿc�; �ÿa;ÿb; c�;
�b; c; a�; �b;ÿc;ÿa�; �ÿb; c;ÿa�; �ÿb;ÿc; a�;
�c; a; b�; �c;ÿa;ÿb�; �ÿc; a;ÿb�; �ÿc;ÿa; b�;
�a; c; b�; �a;ÿc;ÿb�; �ÿa; c;ÿb�; �ÿa;ÿc; b�;
�c; b; a�; �c;ÿb;ÿa�; �ÿc; b;ÿa�; �ÿc;ÿb; a�;
�b; a; c�; �b;ÿa;ÿc�; �ÿb; a;ÿc�; �ÿb;ÿa; c�:

�10�

This set of 24 values describes a hexatetrahedral cluster of 24

atoms centred on every 12(b) site. The cluster has the point

symmetry �43m, which is the point symmetry of the space group

I�43d. The coordinates in (10) are those of the general positions

of the primitive symmorphic group P�43m

For a 6� b 6� c 6� 0, there are 24 � 6 � 2 � 288 atoms in the

unit cell (including the body centring condition) but there are

fewer atoms [i.e. n < 6 in equation (5)] if constraints are

imposed on a, b, c. For b � c 6� a, there are 12 atoms in the

cluster (144 in the unit cell); for a 6� 0 and b � c � 0, there are

six atoms (octahedral grouping); for a � b � c, there are only

four atoms (tetrahedral grouping); and, for a � b � ÿc, there

are similarly four atoms (inverse tetrahedral grouping). In

these particular cases, the atoms in the cluster sit in special

positions of the space group P�43m. Thus, in the tetrahedral

cluster, the atoms sit in the special position 3m of P�43m and

the multiplicity is that of the point group �4. Clearly, there is the

possibility of accommodating many different clusters for a

given type of atom by taking different sets of (a, b, c) and also

by using the second special position 12(a). We shall see in the

subsequent paper that clusters with tetrahedral, octahedral

and hexatetrahedral symmetry all exist in U4O9.

It is an easy matter to ®nd the Debye±Waller factors of the

24 atoms in (10). Indeed, the equivalents of the thermal

displacement vector u are just those given by (10), changing

only (a, b, c) into (ux, uy, uz). Thus, for example, we have for

the tenth atom in the list of coordinates in (10):

W10 � 2�2�hu2
yih2 � hu2

zik2 � hu2
xil2

ÿ 2huyuzihk� 2huxuzikl ÿ 2huxuyihl�:

3. Generalization to any space group

The treatment presented in the previous section can be

generalized to any space group if the atoms occupy a general

position but the diffraction pattern shows selection rules for a

special position. Let us denote by ng the number of general

equivalent sites, by ns the number of special equivalent sites,

both without counting the lattice condition of face or body

centring, and by nc the number of vectors Cm giving the lattice

centring (nc � 1, 2 or 4, and nc � 3 for the rhombohedrally

centred hexagonal lattice).

We start by placing one atom close to each of the ns sites.

This atom is in a general position given by (xyz)i � Ri �
(a, b, c) 2 Si (i � 1, ng).

(a, b, c) is an arbitrary vector r1 referred to an origin at the

ith special site. The ng equivalents of every one of these atoms



are spread across all ns subgroups S1, . . . , Sns
, with ng=ns atoms

in every subgroup. Thus there are ns identical clusters, each

containing ng atoms centred on a special site. These clusters

have the point-group symmetry of the space group and are

related to one another by translation only. The coordinates

and the Debye±Waller factors of all atoms from these clusters

are then

�xyz�ij � Ri � rj 2 Si; Wij � Wj � 2�2h�uj �H�i2
�i � 1; ns; j � 1; ng�;

where rj � r1 ��j and uj � u1 ��j. Here �j is an operation of

the point group.

In practice, we need not calculate rj and uj because they are

listed in International Tables for X-ray Crystallography (1969)

as general positions of the corresponding primitive

symmorphic space group, having the same point group as the

actual space group. Including the lattice centring, the number

of atoms in the unit cell for one set of a, b, c is nc � ng � ns and

the diffraction amplitude can be written as follows:

F�hkl� � f

�Pnc

m�1

exp�2�iH � Cm�
��Png

j�1

exp�ÿWj� exp�2�iH � rj�
�

�
�Pns

i�1

exp�2�iH � Ri�
�
: �11�

The terms within the ®rst square brackets in (11) represent the

amplitude due to the centring. The second square brackets

contain the amplitude of the cluster, which has no selection

rules. The terms in the last square brackets contain the sum of

amplitudes of the special sites, which (together with the terms

in the ®rst parentheses) follow the selection rules of these

sites, although the atoms sit in general positions. For more

than one type of atom in the unit cell, equation (11) must be

summed over the different atomic species with corresponding

scattering factors and thermal parameters.

4. Conclusions

We have shown that the re¯ection conditions of a special

Wyckoff site are unchanged when a single atom occupying

that site is replaced by a cluster of the same type of atom

which possesses the point-group symmetry of the space group.

It is also necessary that the clusters at the equivalent positions

of the special sites are related by pure translation operators.

More generally, if the point-group symmetry of the cluster is

equal to the point-group symmetry of the space group or a

supergroup of this space group, then the re¯ection conditions

are identical to those found when a single spherical unit is

placed exactly at the special position. These statements are

generalizations of the comment in International Tables for

X-ray Crystallography (1969): `It should be remembered that

the special conditions only apply when the special positions

are assumed to be occupied by spherical groups.' The related

topic of the diffraction enhancement of symmetry has been

treated by Iwasaki et al. (see Perez-Mato & Iglesias, 1977), in

which the point-group symmetry of the diffraction pattern is

higher than the point-group symmetry of the crystal. This

treatment does not apply to the present case where the two

symmetries are the same.

In the structure of U4O9 described by Bevan et al. (1986), it

was found that the unit cell contains clusters of atoms centred

on the 12(b) sites. Each cluster possesses point-group

symmetry �43m and contains just one kind of atom, U or O.

Most of the atoms were allocated to 15 general xyz sites but

the data were too few to allow re®nement of these 45 posi-

tional parameters individually. Using the present analysis, the

number of independent parameters is substantially reduced,

and in the following paper we shall describe the re®nement of

neutron diffraction data for U4O9, taking into account the

special extinction rules for 12(b) sites.

The authors are indebted to Professor D. W. J. Cruickshank

for numerous suggestions for improving the manuscript.
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