s2.m10.p1 **Direct observation of charge ordering in (EDO-TTF)2PF6.** <u>Shinobu Aoyagi</u>,^{*a*} Kenichi Kato,^{*b*} Akira Ota,^{*c*} Hideki Yamochi,^{*d*} Gunzi Saito,^{*c*} Hiroyoshi Suematsu,^{*b*} Makoto Sakata^{*a*} and Masaki Takata^{*b*}, ^{*a*}Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan, ^{*b*}SPring-8/JASRI, Kouto, Mikazuki, Sayo, Hyogo 679-5198, Japan, ^{*c*}Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan, and dResearch Center for Low Temperature and Materials Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan. *E-mail: aoyagi@mcr.nuap.nagoya-u.ac.jp*

Keywords: Charge ordering; Organic conductors; Charge density study

The metal-insulator (MI) transition in an organic conductor (EDO-TTF)₂PF₆ (C₁₆H₁₂S₈O₄PF₆) has been considered as the particular example which shows the cooperative action of Peierls distortion, charge ordering and anion ordering together with a molecular deformation. [1] The transition appears at $T_{\rm MI}$ = 280 K, accompanying the changeover from para- to diamagnetism. The charge ordering of EDO-TTF donor molecules in the insulating low-temperature phase has been pointed out from the comparison of the bond length and the Raman spectra. In this presentation, we report direct evidence for an ordering of $(EDO-TTF)^+$ and $(EDO-TTF)^0$ visualized in the (EDO-TTF)₂PF₆ charge density distributions. The charge distributions obtained from density were the synchrotron-radiation (SR) powder-diffraction data by a combination of the MEM (maximum entropy method) and the Rietveld method. [2] The SR experiment was carried out with the large Debye-Scherrer camera at SPring-8 BL02B2. The equi-charge-density surface at 260 K is shown in Figure with a level of 0.7 eÅ⁻³. The charge on each donor molecule, coulombic interactions between PF6- anions and donor molecules, and the hole concentration on each sulfure atom in (EDO-TTF)⁺ were revealed by the charge densities. The charge ordering of donor molecules was observed with a $2k_{\rm F}$ periodicity ($2k_{\rm F}$: nesting vector of Fermi surface). As a result, the [0,0,+1,+1,...] charge-ordering is formed along the nesting vector. Changes in the bonding during the MI transition that is dimerization of (EDO-TTF)⁺ molecules also became evident, which can explain the existence of the insulator singlet state. In addition, a bonding between the donor molecules that suggests quasi 1D properties was found in the charge density of metallic phase.

- Ota, A., Yamochi, H. & Saito, G. (2002). J. Mater. Chem. 12, 2600-2602.
- [2] Takata, M., Nishibori, E. & Sakata, M. (2001). Z. Kristallogr. 216, 71-86.

s2.m10.p2 Intra and inter-molecular charge transfer in metal-insulator switching compound (EDO-TTF)₂-PF₆. Nicolas Claiser ^a, Brice Arnaud ^a, Gwenaëlle Roger ^a, Loic Toupet ^a, Thierry Roisnel ^b, Akira Ota ^c, Hideki Yamochi ^c, Gunzi Saito ^c and Philippe Rabiller ^{a. a} GMCM UMR CNRS 6626, Université de Rennes 1, ^b LCSIM UMR CNRS 6626, Université de Rennes 1 and c Division of Chemistry, Graduate School of Science, Kyoto University, Japan. E-mail: philippe.rabiller@univ-rennes1.fr

Keywords: Electron density; Topological analysis; Molecular switching

Among molecular switching materials, $(EDO-TTF)_2-PF_6$ compound presents very interesting metal-insulator phase transition where co-operative order-disorder and charge ordering take place [1,2]. In the low temperature insulating phase, the anions (PF₆-) are well ordered whereas two kinds of EDO-TTF molecules exist with different molecular charges: positively charged bent molecules and quasi neutral flat ones. Results of topological analysis on gridded electron density [3] derived from multipolar refinement of 40K high resolution x-ray data will be presented. Crystal effect will also be addressed based on ab-initio calculations.

- [1] A. Ota, H. Yamochi, G. Saito, Synthetic Metals 9431 (2002) 1-3
- [2] A. Ota, H. Yamochi , G. Saito, J. Mater. Chem., 2002, 12, 2600-2602
- [3] C. Katan, P. Rabiller, C. Lecomte, M. Guezo, V. Oison, M. Souhassou, J. Appl. Cryst. (2003) 36, 65-73