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Landau-type theories describe the observed behaviour of phase transitions in

ferroelastic and co-elastic minerals and materials with a high degree of accuracy.

In this review, the derivation of the Landau potential G = 1
2A�S [coth(�S/T) ÿ

coth(�S/TC)]Q2 + 1
4BQ4 + . . . is derived as a solution of the general �4 model.

The coupling between the order parameter and spontaneous strain of a phase

transition brings the behaviour of many phase transitions to the mean-®eld limit,

even when the atomistic mechanism of the transition is spin-like. Strain coupling

is also a common mechanism for the coupling between multiple order

parameters in a single system. As well as changes on the crystal structure scale,

phase transitions modify the microstructure of materials, leading to anomalous

mesoscopic features at domain boundaries. The mesostructure of a domain wall

is studied experimentally using X-ray diffraction, and interpreted theoretically

using Ginzburg±Landau theory. One important consequence of twin meso-

structures is their modi®ed transport properties relative to the bulk. Domain

wall motion also provides a mechanism for superelastic behaviour in

ferroelastics. At surfaces, the relaxations that occur can be described in terms

of order parameters and Landau theory. This leads to an exponential pro®le of

surface relaxations. This in turn leads to an exponential interaction energy

between surfaces, which can, if large enough, destabilize symmetrical

morphologies in favour of a platelet morphology. Surface relaxations may also

affect the behaviour of twin walls as they intersect surfaces, since the surface

relaxation may lead to an incompatibility of the two domains at the surface,

generating large strains at the relaxation. Landau theory may also be extended

to describe the kinetics of phase transitions. Time-dependent Landau theory

may be used to describe the kinetics of order±disorder phase transitions in which

the order parameter is homogeneous. However, the time-dependent Landau

theory equations also have microstructural solutions, explaining the formation

of microstructures such as tweed.

1. Introduction

In crystalline materials, the ideal crystal structure (a motif

convolved with an effectively in®nite lattice) is often modi®ed

by microstructural features such as grain boundaries, twins

and dislocations. Here, the term `microstructure' re¯ects the

fact that these features are generally easily observed with

optical or electron microscopy. An important subset of

microstructural effects is the consequences of phase transi-

tions and the resulting reduction in crystallographic symmetry.

Examples of this are the formation of antiphase domains, due

to loss of translational symmetry, and twin domains, due to the

loss of point-group symmetry.

Phase transitions therefore have the potential to affect

the structure (and, hence, properties) of crystals on three

main levels. The most obvious ± and extensively studied ±

is the modi®cation of the crystal structure itself. Then, in

order to accommodate the crystal structure change, mate-

rials tend to develop microstructures. The third aspect to

consider is the local structure in the vicinity of the domain

boundaries. The atomic structure at the domain boundary

will not, in general, be the same as in the bulk, due to

differences in the forces acting on atoms. We thus have an

intermediate structural length scale ± the mesostructure, as

reviewed by Imry (2001). Relevant questions about the

mesostructure include (i) what is the local structure of the

domain wall, and (ii) over what distance does the domain

wall structure relax back to the bulk structure? In a similar

vein, atomic arrangements near surfaces differ from the

bulk crystal structures. We will argue later that such surface

effects are also subtly modi®ed by interactions with phase

transitions.



In this review, we describe progress made in the use of

Landau theory to study phase transitions, at both the crystal

structure and mesostructure levels. We begin in x2 by outlining

the derivation of the classical Landau potential from micro-

scopic interactions, and considering the interaction between

the order parameter of a phase transition and the associated

spontaneous strain. The analysis of microstructures and

mesostructures in the context of Landau theory is considered

in x3. We then describe two problems where the properties of

domain walls are important: the possibility that the chemical

properties of the domain walls will differ, causing different

transport properties and allowing chemical reactions to be

con®ned to speci®c narrow planes; and the interaction

between domain wall mobility and macroscopic anelastic

behaviour. Relaxed structures at crystal surfaces have obvious

parallels with domain boundaries, and in x4 we discuss the

relaxation of surface structures and the interaction between

crystal surfaces and domain walls. In x5, we examine the

relationship between these equilibrium descriptions of phase

transitions and microstructures and kinetic descriptions of the

non-equilibrium behaviour. We conclude by outlining some

key unanswered questions and suggesting some further ®elds

where application of these concepts may prove fruitful.

2. Theoretical basis

2.1. From a microscopic to a macroscopic model

Although the original applications of Landau-type theories

to describe the thermodynamics of phase transitions (Landau,

1937; Devonshire, 1949) were essentially phenomenological

attempts to describe the excess free energy as a function of an

order parameter Q with mathematically simple functions, the

success of this approach to describe phase transitions in real

systems has inspired theoretical projects relating macroscopic

free-energy functions to fundamental microscopic theory

(Chihara et al., 1973; Bruce, 1980; Rae, 1982; Salje et al., 1991;

Dove et al., 1992; Radescu et al., 1995; PeÂrez-Mato & Salje,

2000). Here, we outline the rather general approach adopted

by Salje et al. (1991) and adapted by PeÂrez-Mato & Salje

(2000).

The starting point is to consider the Hamiltonian of the �4

model,

H �
X

l

1

2m
p2

l � V�Ql� � 1
4

X
l;l0
�l;l0 �Ql ÿQl0 �2

V�Ql� � E0�ÿ2Q2
l �Q4

l �;
�1�

where Ql are the local variables (such as the local displace-

ments), pl are the associated momenta and V(Ql) is the local

potential. In a mechanical analogue, as shown in Fig. 1, the

three terms in the Hamiltonian represent the kinetic energy of

the particles, the potential energy of the surrounding ®eld, and

the pair interactions between particles. It is convenient to

write the summation of the pair interactions as �l �
P

l0 �l;l0.

One important aspect of the Hamiltonian in equation (1) is

the balance of � (describing the interparticle interactions) and

E0 (the local potential). The limits � � E0 and � � E0

correspond to extreme displacive and order±disorder phase

transitions, respectively. The thermodynamic limit of the

model is then found by the Einstein quasi-harmonic

approximation. We thus have a characteristic Einstein

frequency 
 and a variance in the order parameter �;

� � h�Ql ÿ hQli�2i �
h-

2m


� �
coth

h- 


2kBT

� �
m
2 � �ÿ 4E0 � 1

2E0�Q2 � ��:
�2�

The Einstein frequency in the absence of any perturbation is

given by m
2
0 � �ÿ 4E0.

In a mean-®eld model, the Gibbs free energy is related to

the Hamiltonian by

G � Tr��H � kBT� ln ��; �3�
where � is the density matrix of states. Using the appropriate

Boltzmann expression for �, and evaluating the terms in the

thermodynamic limit, we obtain

G � N

�
2E0�3� ÿ 1�Q2 � E0Q4 � 1

2 ��ÿ 4E0�� � 3E0�
2

ÿ 1
4 h- 
 coth

h- 


2kBT

� �
� kBT ln 2 sinh

h- 


2kBT

� �� ��
; �4�

where N is the number of particles in the system. Although

equation (4) does not have a simple general analytical solu-

tion, the general case is not dif®cult to solve numerically.

Further progress may be made by considering the distance of a

given transition from the displacive limit, �:

� � �=m
2
0 ÿ 1; �5�

so that the displacive limit is �! 0. Then,

G � 6���T� ÿ �C�E0Q2 � E0Q4 � . . . �6�
and the mean-square ¯uctuations are given by

��T� � h-

2m
0

� �
coth

h- 
0

2kBT

� �
� kB�S

m
2
0

� �
coth

�S

T

� �
; �7�

with �S = (�
0/kB). The Gibbs free energy then becomes

G � A�S

2
coth

�S

T

� �
ÿ coth

�S

TC

� �� �
Q2 � B

4
Q4 � . . . ; �8�

or, when T � �S,

G � A

2
�T ÿ TC�Q2 � B

4
Q4 � . . . ; �9�

which is the standard classical Landau potential. Equation (8)

is thus a Landau-like model that describes the behaviour of

phase transitions
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Figure 1
A mechanical analogue to the Hamiltonian for a generic phase transition.
The positions of the particles represent the local variables (which become
the order parameter in the thermodynamic limit). These particles move in
a local potential, and are linked by harmonic springs.



phase transitions including quantum-mechanical effects at low

temperatures.

Having established a microscopic basis for the macroscopic

Landau potential, we may go on to consider a number of

problems of phase-transition behaviour from a macroscopic

point of view. To what extent do the parameters of the Landau

free-energy expression have a macroscopic basis? In systems

where more than one structural instability is possible, how do

they interact? How do the structural changes associated with

phase transitions interact with other solid-state phenomena,

such as solute atoms or grain surfaces? The underlying

simplicity of the Landau potential causes it to be an excellent

building block for models of more complex behaviour. One of

the most important examples of this is the coupling of order

parameters with spontaneous strain effects.

2.2. Phase transitions and spontaneous strain

A true proper ferroelastic material is one where the phase

transition is strictly associated with the softening of an

acoustic phonon, and the order parameter of the transition is

the spontaneous strain. Whilst such transitions are rather rare,

most solid-state phase transitions have associated changes in

the lattice parameters (Carpenter, 2000). As a result, the

macroscopic Landau free energy may be decomposed into

contributions from the bare order parameter Q, the elastic

energy of the spontaneous strain tensor ei and the coupling

between Q and ei:

G � a

2
�T ÿ TC�Q2 � b

4
Q4 � . . .�P

i

��1ieiQ� �2ieiQ
2�

� 1
2

P
i;k

C0
ikeiek: �10�

The values of the coupling constants � and, in particular,

which � are permitted to have non-zero values, are

constrained by the symmetry of the order parameter. The

group-theoretical details of these constraints are beyond the

scope of this article, but are reviewed by Carpenter et al.

(1998) and Stokes & Hatch (1988).

Several important points follow from equation (10). The

®rst is that, even in phase transitions that are not proper

ferroelastics, a substantial part of the driving force for the

phase transition is associated with the spontaneous strain, due

to the coupling between Q and e. By de®nition, such inter-

actions have a long correlation length. In the context of the

microscopic approach adopted in x2.1, the effect of this is to

emphasize the long-range correlations within the material and

to force phase transitions closer to the displacive limit. As a

result, phase transitions whose underlying mechanisms are

clearly of an order±disorder type may have macroscopic

behaviour which is Landau-like, and hence apparently

displacive. Examples of this behaviour include cation ordering

in minerals, such as (Al, Si) ordering in feldspars (Salje et al.,

1985; Carpenter, 1992; Salje et al., 1993), (Fe, Mg, Mn)

ordering in olivine (Redfern, 1998; Redfern et al., 2000), (Al,

Fe) and (Ca, Na) ordering in omphacite (Carpenter et al.,

1990a). Similarly, the behaviours of many ferroelectric and

antiferroelectric systems, such as BaTiO3 (Zalar et al., 2003),

squaric acid (Dalal et al., 1998) and KDP (Bussmann-Holder et

al., 2001) have been observed to depend on a combination of

order±disorder and displacive aspects, usually associated with

the orientational ordering of a dipole and some sort of

surrounding matrix, respectively. Goto & LuÈ thi (2003) show

that charge-ordering processes in compounds such as Yb4As3,

Fe3O4, NaV2O5 and the CMR perovskites La1ÿxSrxMnO3 and

Pr1ÿxCaxMnO3 interact strongly with elastic behaviour. To

emphasize the importance of elastic interactions even in cases

where crystals are not ferroelastic (e.g. for symmetry reasons),

Salje (1990) described such crystals as `co-elastic'.

The second consequence is that measurements of the

spontaneous strain provide a quantitative probe of the order

parameter, even when the order parameter is not a displacive

soft mode. Starting from equation (10), the equilibrium rela-

tionship between Q and e is found by setting @G/@e = 0. The

most common situations are �1 6� 0 and �2 is negligible, and

�1 = 0 and �2 is signi®cant. These two cases lead to e / Q and

e / Q2, respectively. Typically, the symmetry-breaking strain

(if there is one) behaves as e / Q, and other strains as e / Q2,

though these rules are not universal. Higher-order couplings

between e and Q are allowed but seem to be unimportant in

most cases. One geologically important exception is the

P6422 $ P3121 phase transition in quartz (Carpenter et al.,

1988), where comparison of the spontaneous strains with the

intensity of the second harmonic signal, the relationships

(e1ÿ e3)/Q2 and (e1 + e3)/ k2 Q2 + k4 Q4 are observed. This

more complex behaviour appears to be related to the

combination of tilting, shearing and stretching of the SiO4

tetrahedral units in the phase-transition mechanism.

The third point is that consideration of the spontaneous

strain in this way can help rationalize the magnitudes of the

observed free-energy coef®cients. Given that the spontaneous

strain is a function of Q and will relax on a phonon timescale,

equation (10) may be recast to eliminate the strain contribu-

tions and express the free energy as a function of Q and T

alone. The effect of this is to modify, or renormalize, the

coef®cients of the Landau free energy. As an example,

consider the case where �1 in equation (10) is zero, and �2 is

non-zero, so that ei / Q2. The coupling energy and the

spontaneous strain energy are then proportional to Q4 and

have the effect of reducing the `bare' value of B to a lower,

`observed' value. The coupling of the spontaneous strain to the

order parameter thus helps to justify the observation that

many phase transitions with ei / Q2, such as SrTiO3, KMnF3,

quartz and calcite, are far from the second-order limit Q2 /
jTÿ TCj, being either near the tricritical point (B = 0), or ®rst

order (B < 0).

The spontaneous strain is also a common mechanism for

coupling between order parameters in systems undergoing

more than one phase transition. Following Salje (1990),

consider two order parameters, each interacting with the

spontaneous strain via bilinear coupling [that is the only

signi®cant coupling terms in equation (10) are of the form

�i1eiQ];
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G � a1

2
�T ÿ TC1�Q2

1 �
b1

4
Q4

1 � . . .� �1Q1e

� a2

2
�T ÿ TC2�Q2

2 �
b2

4
Q4

2 � . . .� �2Q2e� 1
2C

0e2: �11�

By applying the stress-free condition (@G/@e = 0), we obtain

C0e = ÿ(�1Q1 + �2Q2), and so

G � a1

2
T ÿ TC1 ÿ

�2
1

C0

� �
Q2

1 �
b1

4
Q4

1 � . . .

� a2

2
T ÿ TC2 ÿ

�2
2

C0

� �
Q2

2 �
b2

4
Q4

2 � . . .ÿ �1�2

C0
Q1Q2:

�12�
The same method applies to other forms of coupling between

the order parameters and the spontaneous strain; see Salje et

al. (1985), Salje & Devarajan (1986) and Salje (1990) for

details of the mathematical form of G(Q) and the resulting

(Q1, Q2) versus T topologies.

The derivation of order parameter coupling shows that

Landau-like models are very well suited to dealing with the

interactions between multiple phase-transition processes. A

common application of this concept in minerals is to study the

effect of some (generally rather slowly equilibrating) cation-

ordering process on a (phonon time scale) displacive change in

a mineral's structural framework. Coupling models have been

used to describe the interaction between the displacive mode

and (Al, Si) ordering in albite (Salje et al., 1985; Hayward &

Salje, 1996) and anorthite (Phillips et al., 1997), and between

the displacive mode and (Fe, Mg) ordering in pyroxene

(CaÂmara et al., 2003). The same concept has also been applied

to the interaction between the antiferroelectric and ZrO6

tilting modes in PbZrO3 (Fujishita et al., 2003), to the two tilt

modes (the M3 and R25 soft modes) in NaMgF3 perovskite

(Zhao et al., 1993), and to the interaction between ferroelec-

tricity and Li-ion conduction in LiNbO3 (Lehnert et al., 1997).

Strain interactions also play an important role in controlling

the behaviour of materials where the primary interest is in the

ferroelectric or ferromagnetic properties of the system. From a

microscopic point of view, spontaneous strain interacts with

ferroelectric or ferromagnetic behaviour via electron±lattice

coupling, as reviewed by Millis (1998). Furthermore,

mechanical stresses and strains lead to rather complex

microstructures, as described in x3 below. Bishop et al. (2003)

and Ahn et al. (2004) show that the coupling between elec-

tronic properties and mechanical stress and strain lead to

nanometre-scale textures in the ferroelectric and ferromag-

netic domain structures of materials. In systems such as

manganite perovskites, the strain textures lead to useful

microstructures of metallic and insulating regions.

The term `multiferroic' was adopted by Schmid (1994) to

describe systems that are simultaneously ferromagnetic and

ferroelectric. Examples of multiferroic materials include the

perovskites YMnO3 and BiMnO3 (Hill & Filippeti, 2002)

TbMn2O5 (Hur et al., 2004). Such materials have several

attractive device applications, resulting from the potential to

switch a magnetic state with an electrical ®eld, or vice versa. In

particular, multiple state memory elements, exploiting both

the magnetic and electrical states of the system, have been

envisaged (Wood & Austin, 1975). However, multiferroics are

rare and, from a chemical point of view, it is not obvious that

such materials should exist at all. Hill & Filippeti (2002) note

that magnetism requires transition-metal d electrons, which, in

a simple model, would destabilize the atomic displacements

associated with ferroelectricity. Zheng et al. (2004) have used

macroscopic thermodynamic arguments to show that the

ferroelectric±magnetic coupling in BaTiO3±CoFe2O4 nano-

structures has an essentially elastic basis.

3. Phase transitions, microstructures and
mesostructures

3.1. Theoretical basis

Minerals that undergo phase transformations are likely to

show microstructures with twin structures as a typical ®nger-

print for ferroelastic behaviour (Salje, 1990, 2000; Bismayer et

al., 1994, 2000; Bosbach et al., 1997; Roewer et al., 1997; Salje et

al., 2000). The interaction between twin walls leads to the

formation of corner domains, needle domains and comb

patterns. These possibilities are illustrated in Fig. 2. Such

complex patterns occur on a length scale that bridges the

atomic scale and the truly macroscopic scale, a fact that leads

to the term `mesoscopic structures' as being in between these

two classic regimes. The patterns are also hierarchical because

of the general principle that any pattern can be decomposed

into simpler patterns until the most elementary unit, namely

phase transitions
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Figure 2
Sequence of domain structures in superconducting YBa2Cu3O7 doped
with Co. These images show: (a) and (b) simple lamellar twins (0 and 1%
Co replacing Cu, respectively); (c) two perpendicular twin orientations
with junctions and needles (2.5%); and (d) tweed microstructure (2.8%).
Images from Schmahl et al. (1989). The scale bar is 0.1 mm.



the twin wall, is found. Twin domains and their boundaries are

the dominant microstructures in many materials and have

been shown to be important, theoretically and experimentally,

for the interpretation of the thermodynamic behaviour of

minerals as well as for the design and growth of single crystals

and thin ®lms for speci®c applications.

The application of twin walls to control desirable behaviour

in materials or to understand natural behaviour of minerals

depends on a proper understanding of the fundamental unit of

these hierarchical mesostructures, the twin wall. In the context

of the derivation of Landau theory presented in x2.1 above,

the energy associated with spatial variations of Q is in the

�ll0(Ql ÿ Ql0)
2 term. Following a similar argument to the one

presented above, we obtain

G � A�S

2
coth

�S

T

� �
ÿ coth

�S

TC

� �� �
Q2 � B

4
Q4 � . . .

� 1
2 g�rQ�2: �13�

The equilibrium variation of Q(x) across a twin wall is then

found by Euler±Lagrangian energy minimization. For a

limiting second-order phase transition,

Q�x� � Q0 tanh
x

w

� �
;

w � 2g

A�S�coth��S=TC� ÿ coth��S=T�
� �1=2

: �14�

There are slight variations in the solution for tricritical phase

transitions, but the tanh pro®le still holds to a good approxi-

mation and the wall width shows essentially the same

temperature dependence.

The next step in the exploration of twin wall behaviour is to

determine the Ginzburg parameter g or the wall thickness w.

This task was ®rst attempted using electron microscopy

(Yamamoto et al., 1977; Roucau et al., 1979; Boulestieux et al.,

1983; Tsai et al., 1992). Electron paramagnetic resonance

(EPR) spectroscopy has also been used to probe the structure

and thickness of twin walls (Zapart, 2003).

X-ray diffraction methods have proved to be a powerful

tool to study twinning microstructures and their associated

domain boundaries, provided care is taken to optimize the

collection and processing of the diffraction signal (Chrosch &

Salje, 1994, 1999; Wruck et al., 1994; Hayward & Salje, 1996;

Locherer et al., 1998). Reciprocal-space studies (that is,

diffraction rather than microscopy) are preferable since,

although each individual twin boundary occupies a tiny

volume (and hence will give a very small experimental signal),

diffraction experiments allow for the superposition of the

signals from a large number of essentially identical twin walls.

The characteristic diffraction pattern from a single twin wall,

or a set of parallel twin walls, is a weak streak between two

twin related diffraction peaks, as shown in Fig. 3.

Comparing the relative intensities of the bulk and wall

diffraction signals allows the twin wall width to be estimated.

Results from a number of X-ray experiments are given in

Table 1. These half-widths are typically of the order of 2±5 unit

cells, so that there are up to 10 unit cells within the domain

wall. Similar results were obtained in a Monte Carlo simula-

tion study of a [001] 90� rotation twin wall in CaTiO3 by

Calleja et al. (2003), who found w = 5.7 AÊ .

By studying the evolution of the twin wall signal with

temperature, the temperature dependence of w has been

studied in a disordered (Na, K) feldspar (Hayward & Salje,

1996) and the ferroelastic perovskite LaAlO3 (Chrosch &

Salje, 1999). In both these systems, the predicted behaviour

w / jT ÿ TCjÿ1/2 was observed.

Twin microstructures thus lead to narrow (but not insig-

ni®cant) volumes that have a different local structure to the

bulk crystalline material. Whilst the domain walls are rather

extended in two dimensions, they are extremely con®ned in

the third. In the following sections, we explore some of the

consequences of these structural effects on the macroscopic

properties of twinned materials.

3.2. Transport and trapping of defects and solutes

Whereas a structural phase transition reduces the crystal-

lographic symmetry of a material in the bulk, the twin

boundaries will act as localized pseudosymmetries, relating

one twin domain to another by the lost symmetry operation. It

is therefore clear that the local atomic structure of the domain

boundary will differ from that of the bulk, and so the chemical

and transport properties of the twin walls will also differ from
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Figure 3
Isointensity surface plot of the 400/040 peak pair in a crystal of WO3 at
room temperature after deconvolution with a Gaussian detector response
function. The two Bragg maxima are joined by a weak streak of
diffraction signal due to the twin wall between the two domains.

Table 1
Values of the twin wall half-width w at room temperature (T� TC) for a
number of materials showing ferroelastic domains, measured by X-ray
diffraction methods.

Material w (AÊ ) Reference

Pb3(PO4)2 <72 Wruck et al. (1994)
Pb3(P0.77As0.23O4)2 21 Bismayer et al. (2000)
YBa2Cu3O7ÿd 7 Chrosch & Salje (1994)
(Na, K)AlSi3O8 13 Hayward et al. (1996)
WO3 16 Locherer et al. (1998)
LaAlO3 20 Chrosch & Salje (1999)



those of the bulk. Lee et al. (2003) review the factors that may

affect the transport properties of the twin wall. As well as

changes in atomic bonding geometry, they note that the

density, electric charge and vacancy concentration can vary

between the bulk domains and the domain walls. A number of

studies have examined these effects experimentally either by

observing diffusion in real time or by studying the distribution

of elements across a twinned material.

Aird & Salje (2000) diffused Na into twinned crystals of

WO3, to create sheets of the superconducting phase NaxWO3.

In this experiment, WO3 was reduced at 730 K in the presence

of Na vapour. The different phases were found to have

different optical properties, allowing the Na diffusion to be

followed in an optical microscope. The concentration of Na on

the twin walls was con®rmed by microprobe analysis, as shown

in Fig. 4.

Whilst Na transport in WO3 is enhanced along the twin

boundaries, this effect is not universal. Calleja et al. (2001)

simulated the transport of Na+ and Li+ through a quartz

crystal with {100} DauphineÂ twinning. These results showed

that twinning reduced the transport rate along the twin wall

(through the [001] channels). This is related to the local

structure of quartz at the twin boundary; structural continuity

across the twin boundary requires that the [001] channels are

somewhat more distorted in the twin wall than in the bulk

material. However, transport in the [110] direction was

enhanced in the twin walls. On the other hand, Redfern &

Sartbaeva (2002) measured the diffusion of Li+ along [001] in

quartz, and found that the Li+ transport rate had a peak just

below the �±� phase transition. This peak is evidence that Li+

diffusion is faster along the DauphineÂ twin walls than in the

bulk material. One possible reason for this discrepancy is that

the simulations of Calleja et al. (2001) did not include the

possibility that the vacancy concentration may differ between

the bulk and wall structures.

Along with the relative diffusion constants along and within

the domain walls, there is the question of the relative stability

of a given solute species in the bulk phase and in the twin wall.

The common observation is that many defects will collect on

twin walls, indicating that at least some defect species are

stabilized by interaction with the twin wall structure. From this

follows the idea of domain wall pinning in ferroelectrics and

ferroelastics.

One further consequence of this is the twin memory effect,

that a ferroelastic material heated into its paraphase and then

cooled back into the ferrophase will often recall its original

domain structure. This process is explained by the decoration

of the twin wall with defects, which will homogenize relatively

slowly in the paraphase structure (Fig. 5).

The ®rst system to have a twin memory effect noted was

quartz (Frondel, 1945; Heaney & Veblen, 1991; Xu & Heaney,

1997). The DauphineÂ twins are pinned strongly by extended

defects, such as grain boundaries, dislocations and Brazil twins.

There is also a pinning of the DauphineÂ twins by point defects.

From a kinetic analysis of the loss of this twin memory, these

defects were identi®ed as interstitial solute ions within the

quartz structure. Voronkova & Wolf (1993) found that

YBa2Cu3O7ÿx has ferroelastic twin memory, associated with

oxygen defects, though it was unclear whether these defects

are vacancies or excess O atoms.

Hayward & Salje (2000) found twin memory for the albite

twins in anorthoclase. Based on the time and temperature

dependence of the loss of twin memory in the high-tempera-

ture phase, they concluded that the likely atomic mechanism

of the twin memory was the collection of K atoms on the

domain boundaries. CaÂmara et al. (2000) performed a highly

sensitive microanalysis of the same mineral sample. These

measurements showed an enhancement of K atoms near the

twin walls, and a segregation of Ca atoms into the bulk. These

observations are consistent with the idea that the albite twin

phase transitions
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Figure 4
(a) Twinned crystal of WO3, with domains from the tetragonal±
orthorhombic phase transition. The white line (length = 25 mm) shows
the line scanned in the microprobe analysis (b), which shows that the Na
ions are preferentially transported along the twin walls.

Figure 5
Schematic illustration of atomic scale mechanism of twin memory.
Defects that collect on the twin boundary in the ferrophase provide
nucleation sites for twin walls when the sample is brie¯y heated into the
paraphase and subsequently cooled.



wall has a slightly more open crystal structure than the triclinic

bulk. However, Parsons et al. (1999) do not ®nd enhanced Ar

atom transport along twin walls in feldspar. It is not clear

whether this is because Ar atoms are pinned on the walls or

that Ar atoms do not enter the twin walls.

3.3. Domain walls and anelasticity

The idea that the motion of domain walls, leading to the

growth and shrinkage of domains, is an important mechanism

in explaining the macroscopic polarization hysteresis of

ferroelectric materials is well established (see, for example, the

review of Strukov & Levanyuk, 1998). One interesting study

of this effect is the in situ electron-microscopy study of

domains in BaTiO3 under an applied electric ®eld (Snoeck et

al., 1994).

The equivalent effect in ferroelasticity has been described

as `superelasticity' (Kityk et al., 2000). For slow strain rates,

macroscopic deformation may result from changes in the

microstructure of a polydomain material, rather than elastic

deformation of atomic bonds. Superelastic materials show

hysteresis, substantial softening relative to single-domain

elasticity, and strong frequency and temperature dependence,

with superelastic softening below the transition temperature

and a freezing temperature below which the domains become

immobile.

A number of studies of superelasticity exist in the literature,

often on systems that are primarily considered as ferroelectric,

but which have an associated ferroelastic or co-elastic

anomaly. Examples include the softening of c66 in KD2AsO4

(Fally et al., 1995), and internal friction measurements in KDP,

DKDP and TGS (Huang et al., 1997). Bourim et al. (2002)

have observed anelastic behaviour in PZT, associated with the

ferroelectric domains.

An important development of this work was the observa-

tion of domain wall softening in (NH4)4LiH3(SO4)4

(Zimmermann & Schranz, 1996), which is a pure ferroelastic

material. Huang et al. (1997) found evidence of superelasticity

in the CuAlZnNi alloy. Kityk et al. (2000) systematically

compared the elastic behaviour of SrTiO3 as measured at low

frequencies (10±45 Hz) with the results of ultrasonic and

Brillouin scattering experiments, which operate in the kHz±

GHz range. Schranz et al. (2003) have found superelasticity in

KMnF3, though the superelasticity is lost in a sample with

0.3% Ca doping. The most likely reason for this is some

chemical heterogeneity in the sample, possibly Ca on the

domain walls, leading to strong pinning of the domain walls.

Building on this work, Harrison and co-workers have

recently investigated superelastic effects in oxide perovskite

systems (Harrison & Redfern, 2002; Harrison et al., 2003,

2004) as a function of temperature, frequency and composi-

tion. Experimentally, the dynamic Young's modulus is repre-

sented by a complex number (Schranz, 1997), which may be

re-expressed as a storage modulus (the real part of the

dynamic Young's modulus) and a loss tangent. Fig. 6 shows the

temperature dependence of these quantities in LaAlO3, as

measured by Harrison et al. (2004). There is a dramatic soft-

ening of LaAlO3 below 823 K, associated with the onset of

twinning at the cubic±rhombohedral phase transition

(Chrosch & Salje, 1999). On cooling, LaAlO3 remains super-

elastic over a wide temperature range. By recording rocking

curves of the sample in situ during the dynamic mechanical

analysis (DMA) experiments, it has been con®rmed that the

microstructure of LaAlO3 does evolve dynamically in

response to a varying stress, as shown in Fig. 7.

However, at suf®ciently low temperatures, a peak in tan � is

observed, analogous to a Debye dielectric resonance (Fig. 6).

The crossover from superelasticity to frozen domain walls is

associated with the pinning of the walls by defects, and is thus

affected by the strain rate.

Harrison et al. (2003) found qualitatively similar results for

the cubic±tetragonal twin domains in polycrystalline

Ca1ÿxSrxTiO3. In both these systems, the activation energy for

domain wall motion (determined from the temperature and

frequency dependence of the storage modulus and loss

tangent), is of the order of 85±105 kJ molÿ1, which is

comparable with the activation energy for O-atom diffusion

through a perovskite structure. O-atom vacancies are there-

fore the most likely pinning mechanism for ferroelastic

domain walls in both LaAlO3 and Ca1ÿxSrxTiO3 perovskites.

Lagraff & Payne (1992) found that the ferroelastic domain

mobility in YBa2Cu3O7ÿ� was also constrained by O-atom

mobility, and simulations by Calleja et al. (2003) found that

O-atom vacancies were stabilized on twin boundaries in

CaTiO3, with �E = 1.2 eV between O-atom vacancies in the

bulk and in the twin wall. Whilst tetragonal Ca1ÿxSrxTiO3

shows superelastic behaviour, the orthorhombic phase

appears not to be superelastic to a signi®cant degree. The

reasons for this are, at present, unclear.
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Figure 6
Normalized storage modulus (closed symbols, left axis) and tan � (open
symbols, right axis) as a function of temperature for LaAlO3. Data from
Harrison et al. (2004).



4. Surfaces

Modelling the surface of crystals is important for under-

standing properties such as morphology, catalytic properties

and all transport from outside the crystal. The atomic scale

structure of a surface can differ topologically from the unre-

laxed surface or not. Topological changes to the surface are

called surface reconstruction, non-topological changes are

called surface relaxation. In this section, we focus on surface

relaxations. Including the effects of surface relaxations in

calculations of surface or attachment energies can improve the

accuracy of morphological predictions. For a monoatomic

solid, it can be shown that, provided that the interaction

potentials can be approximated by a second-order Taylor

series in the atomic displacements, the atomic displacements

are exponential in form, possibly modulated by an oscillatory

envelope with a wavelength that need not be commensurate

with the lattice. Including the effect of chemical degrees of

freedom increases the length scale of the relaxation and may

increase or decrease the magnitude of the displacements at the

surface. The overlap of surface relaxations from different

surfaces can cause the surfaces to interact, the interaction

energy also being exponential in nature. If the interaction

energy is suf®ciently large compared to the surface energy

then, for small crystal sizes, the symmetrical growth

morphology is destabilized and a platelet morphology is

stabilized. It is not known however whether this effect occurs

in practice. Surface relaxations also affect the properties of

microstructural units such as twin walls and needle domains

that intersect the surface.

At a surface, there are two types of phase-transition-related

phenomena that can occur. The ®rst is reconstruction, a

topological change of the surface. The second is relaxation, a

distortion of the surface that does not result in any topological

changes. Fig. 8 illustrates generic examples of surface relaxa-

tions and reconstructions. In this section, we focus on the

second of these phenomena: the surface relaxation. For more

information about surface reconstruction, the reader is

referred to Zangwill (1988), LaFemina (1992) and LuÈ th

(1993). The surface relaxation results in a lowering of the

energy of a surface from that of a truncated bulk crystal.

Attempting to measure the atomic scale details of the surface

relaxation by experiment has the same dif®culties as

measuring the structure of domain walls (see x3 above).

Although surface relaxations can sometimes be detected by

the broadening of diffracted peaks (e.g. Harrison & Salje,

1994), the atomic scale details of surface relaxations are hard

to measure directly by experiment, but can be investigated by

simulation studies.

Simulations of surfaces make use of either ab initio or

interatomic force®eld calculations. These models can be used

to predict morphologies and how morphologies are affected

by additives, as well as investigating the binding energies of

surface adsorbed species, see for example Gay & Rohl (1995),

Titiloye et al. (1993), Parker et al. (1993) and de Leeuw &

Parker (1997). Relaxation of the surface is important in

performing these calculations since the energy of relaxation is

comparable with the differences between the surface and

attachment energies of candidate surfaces, leading to different

morphologies being calculated for relaxed and unrelaxed

surfaces. There are two recipes for calculating growth

morphologies (see for example Gay & Rohl, 1995), both of

which make use of the Wulff plot (Wulff, 1901). Equilibrium

phase transitions
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Figure 8
Generic examples of a surface relaxation and a surface reconstruction
(Philips 2001; LuÈ th, 1993).

Figure 7
Stroboscopic XRD rocking curves as a function of temperature for
LaAlO3, recorded at 1 Hz. Each peak in the rocking curve represents a
different ferroelastic domain orientation. The four components of the
rocking curve correspond to different parts of the dynamic stress cycle:
solid line: minimum force ~20 mN; dotted line: maximum force ~380 mN;
medium-dashed line: maximum rate of increasing force; long-dashed line:
maximum rate of decreasing force. From Harrison et al. (2004).



morphologies are calculated from surface energies and are

considered to apply to crystal nuclei of sizes smaller than

about a micrometre. Growth morphologies are calculated from

attachment energies (the energy needed to add an extra layer

of unit cells to a crystal) and are considered applicable to

larger crystals (Hartman & Bennema, 1980).

Mackrodt et al. (1987) calculated equilibrium morphologies

from unrelaxed and relaxed surfaces for �-Al2O3 and �-Fe2O3.

They found substantial differences between the relaxed and

unrelaxed morphologies, highlighting the importance of

including surface relaxations in morphological calculations.

Gay & Rohl (1995) calculated growth morphologies of the

minerals zircon, quartz and corundum. They used the program

MARVIN (Gay & Rohl, 1995) to carry out calculations of the

attachment energies of relaxed surfaces. Their calculated

growth morphologies of zircon and quartz were consistent

with those found in natural samples. Their corundum

morphology was not the same as that observed in natural

corundums. The explanation for this discrepancy is believed to

be due to the adsorption of foreign atoms onto {111} surfaces

during growth (Hartman, 1989).

One question one can ask oneself is, what generic form do

surface relaxations take? Are surface relaxations in different

crystals expected to have any features in common? Starting

from a general model of interacting layers of atoms parallel to

a free surface, Houchmandzadeh et al. (1992) determined a

universal exponential pro®le for the surface relaxation. The

only assumption that goes into the proof is that the interac-

tions between the planes of atoms can be expanded as a Taylor

series. The simplest non-trivial model of this class is shown in

Fig. 9. In this model, there are interactions between ®rst-

neighbour and second-neighbour planes: these interactions

are necessary and suf®cient to produce a surface relaxation of

®nite width. (The model that only has nearest-neighbour

interactions is indifferent to the presence of a surface.)

Nearest neighbours are connected by springs described by a

spring constant of k and an equilibrium length of a, second

neighbours are connected by springs of spring constant K and

equilibrium length A. The spring parameters may be inter-

preted as the result of a second-order Taylor expansion of the

energy of interaction between the planes. For a surface

relaxation to occur, 2a 6� A.

The surface relaxation takes the form

" � "0 fn exp�ÿn=��; �15�
where n is the layer number (starting with 0 at the surface), the

modulating function fn is (�1)n. Which form is taken depends

on the relative values of k and K. The phase diagram of this

system is shown in Fig. 10. Examples of relaxation pro®les are

shown in Fig. 11. This model may also be used to investigate

phase transitions in the system. If the spring constant K > 0

and the constant k is decreased, the length scale of the oscil-

latory relaxation, �, increases, while the magnitude of the

relaxation "0 decreases. At the point k = 0, the length scale

becomes in®nite and the magnitude becomes zero. Beyond

this point, higher-order interactions stabilize an anti-

ferroelastic phase. A similar behaviour takes place in the K < 0

part of the phase diagram as the K = ÿk/4 line is approached,

except that the new phase produced on crossing the line is

ferroelastic.

Two generalizations to the above model are possible. The

®rst is that interactions between third or more distant neigh-

bour planes may be signi®cant. The second is that the

substance need not be monoatomic. If relaxations between

more distant neighbour planes are signi®cant then the

modulating factor fn takes the form of a sinusoidal modula-

tion. This modulation need not be commensurate with the

lattice, in which case the phase transition that occurs on

crossing a stability line on the phase diagram may produce an

incommensurate phase. If the solid is not monoatomic then

the surface relaxation has more degrees of freedom, e.g. the

surface relaxation can involve polarization as well as strains.

However, the displacements of the atoms will still be given by

linear combinations of modulated exponentials.

The picture of surface relaxations may be generalized by an

appeal to the Landau theory of phase transitions, see x2 (Lee

et al., 1999, 2000). Phase transitions and surfaces share the

common feature of a broken symmetry. In the case of a

surface, the symmetry is broken at the surface and restored in

the bulk of the material. This broken symmetry can be

measured by one or more symmetry-adapted order param-

eters. A Landau±Ginzburg free energy can be used to describe

the behaviour of the order parameter(s) measuring this
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Figure 9
The simplest model with a long-range surface relaxation. It consists of
atomic layers parallel to the surface. Nearest-neighbour and second-
neighbour layers interact harmonically.

Figure 10
Phase diagram of the system shown in Fig. 9. The possible stable states of
the system are (a) an oscillatory exponential relaxation or (b) an
unmodulated exponential relaxation.



symmetry breaking. In the case in which a single order par-

ameter is needed, the Landau±Ginzburg free energy takes the

form

G�Q� � ÿ�Q�0� �
Z1
0

a

2
Q2 � g

2

@Q

@z

� �2
" #

dz: �16�

The ®rst term describes the surface: the broken symmetry at

the surface allows terms linear in the order parameter. The

integral is the usual Landau±Ginzburg form, the coef®cient a

is positive indicating that minimum free energy of the system

is that in which the symmetry broken at the surface is restored.

Because a is positive, terms of higher order in Q are not

needed. In general, more than one symmetry will be broken by

the surface, in which case several order parameters are

needed.

The Landau±Ginzburg free-energy description of the

surface relaxation readily allows chemical degrees of freedom

to be included. If some chemical process (e.g. incorporation of

substitutional atoms) has the same symmetry as the surface

relaxation order parameter, there will be linear coupling terms

between the two (Lee & Salje, 2000). The free energy becomes

F�Q; �� � ÿ�Q�0� ÿ ���0�

�
Z1
0

a

2
Q2 � b

2
�2 � cQ� � 1

2

@Q

@z

� �� �
dz; �17�

where � is a chemical order parameter. The coupling between

the order parameter and the concentration will result in an

increase in the length scale of the relaxation. The magnitude

of the relaxation at the surface will be either increased or

decreased depending on the coef®cient �.

A consequence of the ®nite size of the surface relaxation is

that, in crystals of size comparable to the length scale of the

surface relaxation, there will be an interaction energy between

relaxations at opposite surfaces (Lee et al., 1999). The inter-

action energy will take the form of an exponential, modulated

by fn and may be attractive or repulsive depending on the

symmetry of the relaxation. For example, a strain relaxation of

even symmetry will give an attractive interaction, whereas a

polarization relaxation of odd symmetry will give a repulsive

interaction. This interaction, if of suf®cient magnitude, may

result in the growth of crystals with a platelet morphology,

even if that morphology is of lower symmetry than the point

group of the crystal.

This can be seen by considering a crystal of cubic symmetry

for which the {100} surfaces have the lowest surface energy.

The free energy of a growing crystal nucleus with edges a, b

and c will have the form

G � 2��ab� bc� ca� � 2���ab exp�ÿc=�� � bc exp�ÿa=��
� ca exp�ÿb=��� ÿ 
abc; �18�

in which � is the surface energy of a (100) surface in an in®nite

crystal, � measures the size of the interaction energy between

surfaces relative to the surface energy and 
 is the bulk free

energy of the crystal. The growth of the crystal can be deter-

mined by gradient ¯ow equations of the form

@a

@t
� ÿ 1

bc

@G

@a
@b

@t
� ÿ 1

ca

@G

@b
@c

@t
� ÿ 1

ab

@G

@c
:

�19�

If the parameter � is positive or greater than ÿ1, the inter-

action between the surfaces has no effect on morphology.

Small crystal nuclei dissolve and larger nuclei grow into

macroscopic crystals of cubic morphology. However, if � is

smaller than ÿ1, small nuclei grow into platelets while nuclei

large compared with the range of the interaction between the

surfaces grow into macroscopic cubic crystals as before. These

results can be seen in Fig. 12, which shows the gradient ¯ow

directions.

This mechanism has been proposed as an explanation of

cases where platelet morphologies of lower symmetry than the

point group of the crystal have been observed, e.g. growth of

hydroxyapatite in bones (Lee et al., 2002) and the crystal-

lization of apoferritin (Yau & Vekilov, 2000). However, at the

phase transitions
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Figure 12
Growth of cubic and platelet crystals. The edge lengths of the crystals are
a = b and c. No arrows are shown for needle morphologies c > a because
these morphologies are unstable. Arrows show gradient ¯ow directions
for two cases. (a) � > ÿ1, showing the usual case of either growth into
macroscopic crystals with morphologies determined by the point group of
the crystal, in this case cubes or dissolution. (b) � < ÿ1. In this case,
whereas large nuclei grow into macroscopic cubes as before, small nuclei
grow into platelets.

Figure 11
Modulated and unmodulated exponential relaxations. In the model
shown in Fig. 9, the only possible modulations are (a) ferroelastic or (b)
antiferroelastic. In models in which third or higher neighbour interactions
are signi®cant, incommensurate modulations may occur.



time of writing this proposal remains speculative. Calculations

of the surface relaxation of the (100) surface of hydroxyapatite

have been carried out showing that the polarization perpen-

dicular to the surface and the interaction between two oppo-

site surfaces show modulated exponential behaviours (Lee et

al., 2000), as shown in Fig. 13.

Microstructural features such as twin walls may intersect

with surfaces. Understanding the behaviour of a twin wall

intersecting a surface is of great importance for understanding

the diffusion of particles from the surface into the bulk if, as

discussed in x3.2, domain walls are the primary conduits of

chemical transport into the bulk. The behaviour of twin walls

intersecting a surface will be affected by two factors, ®rstly the

surface relaxation (Novak & Salje, 1998; Conti & Salje, 2001)

and secondly by secondary strains coupling to the order

parameter (Lee et al., 2002). So far investigations have been

limited to the case of domain walls intersecting a surface at

90�.
The in¯uence of a surface relaxation on the surface struc-

ture of a domain wall has been investigated both numerically

(Novak & Salje, 1998) and analytically (Conti & Salje, 2001).

The system under investigation shows a tetragonal to ortho-

rhombic transition by a shear in the tetragonal plane. At the

surface, the equilibrium shear is different to the equilibrium

shear in the bulk, thus there is a surface relaxation. The key

fact in determining the surface relaxation of the wall is that the

surface relaxations are not compatible at the surface; see Fig.

14. The lines of isostrain reveal that the domain wall has a

trumpet-like pro®le close to the surface, ®rst narrowing and

then widening (Fig. 15). So far experimental determination of

the twin wall pro®le by atomic force microscopy has been

constrained by the low resolution of the technique (Whittborn

et al. 2002).

A second factor that can in¯uence the surface structure of a

twin wall is the presence of a secondary strain across a domain

wall, e.g. a volume strain "11 + "22 which shows a linear±

quadratic coupling to the shear strain order parameter (Lee et

al., 2002). In the bulk, the strain compatibility condition

ensures that, while "11 can vary across the wall, "22 is

constrained to be zero. There is a stress �22 associated with this

unrelaxed shear. At the surface, a more general relaxation is

possible with the boundary condition requiring that �22 = 0.

The result of this relaxation is quite different and the strains at

the two surfaces are asymmetric, which is not the case for a

surface relaxation.

The effect of the surface on other more complex mesoscopic

structures such as needle domains has also been investigated.

Novak et al. (2002) investigated the elastic behaviour of a

needle domain at various depths below the surface. They

found that, as the domain wall approached the surface, a

region of reduced order parameter extended from the needle

tip to the surface, followed by the break-up of the needle into

two separate domain walls, see Fig. 16, in¯uencing the surface

topography. They were also able to compare their results for

needles far from the surface with the quadratic pro®le

predicted by non-local continuum elasticity theory (Salje &

Devarajan, 1986; Pertsev et al., 2000), see Fig. 17.
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Figure 14
The key factor in determining the surface structure of a domain wall
intersecting a surface at 90� is the incompatibility of the surface
relaxations at the twin wall.

Figure 13
Surface relaxations in hydroxyapatite with two (100) surfaces. (a) shows
the polarization of a system ten layers thick, ®tted to an oscillatory
exponential relaxation at each surface. (b) shows the interaction energy
between surfaces ®tted to an oscillatory exponential (Lee et al., 2000).

Figure 15
Lines of isostrain at the intersection of a twin wall and a surface (Novak
& Salje, 1998).



5. Kinetics

The equations describing the kinetics of a phase transition can

be derived from a master equation describing transitions

between con®gurations of local order parameters qi. This

equation can be coarse grained to produce equations

describing the time evolution of the macroscopic order

parameter Q. The form of these equations depends on two

factors, namely, whether the local order parameters are

continuous or discrete, and whether the order parameter is a

conserved quantity. If the local order parameter is continuous

then the dynamics of the system are described by time-

dependent Landau theory, which interpolates between

complete conservation and non-conservation of the order

parameter. In these limiting cases, the Cahn±Hilliard equation

and the Ginzburg±Landau equations, respectively, can be

recovered as special cases of the time-dependent Landau

equation. If the order parameter is discrete then the time

evolution of the order parameter is described by Ising±

Kawasaki or Ising±Glauber dynamics, depending on whether

the order parameter is conserved (Ising±Kawasaki) or not

(Ising±Glauber). Although Ising dynamics and time-depen-

dent Landau theory predict different rates of ordering far

from TC, it is dif®cult to obtain experimental data in this

region, making it dif®cult to decide which of the two rate laws

is applicable to transitions. Microstructural solutions, e.g.

stripes and tweed, result from the kinetics of phase transitions

in which the order parameter is conserved or partially

conserved.

The starting point for deriving equations describing the

kinetics of the phase transitions is a master equation

describing transitions between microscopic states of the

system. This equation only contains the assumption that the

state of the system can be described by a vector of local order

parameters q and that the evolution of the system is Marko-

vian, i.e. that the state of the system at time t + dt depends only

on its state at time t. Thus the system has no memory. The

master equation takes the form (Glauber, 1963)

dP�q; t�
dt

�
X

q0
�ÿ�q0 ! q�P�q0; t� ÿ ÿ�q! q0�P�q; t��; �20�

where q is a vector describing the state of the system (its

components qi may be thought of as a set of local microscopic

order parameters). P(q, t) is the probability that at time t the

system is in the state q. The coef®cients ÿ(q0 ! q) and

ÿ(q ! q0) describe the probability per unit time that the

system makes transitions from the state q0 to the state q and

from the state q to the state q0, respectively. To convert this

equation into an equation describing the time evolution of the

macroscopic order parameter Q, we must coarse-grain the

equation, integrating out microscopic degrees of freedom. The

results of this procedure depend on whether the microscopic

order parameters qi are discrete or continuous and whether or

not the order parameters are conserved.

5.1. Ising dynamics

In the case where only transitions between discreet states of

the system are allowed, coarse graining the master equation

(20) results in Ising dynamics. There are two important special

cases of Ising dynamics. These are Ising±Kawasaki (Kawasaki,

1966) and Ising±Glauber (Glauber, 1963). In Ising±Kawasaki

dynamics, the order parameter is conserved and the most

important type of transition that the system makes is the

exchange of two adjacent spins. In Ising±Glauber dynamics,

the order parameter is not conserved and the principal type of

transition the system makes is the ¯ipping of a single spin.

These two processes are illustrated in Fig. 18. The equations

phase transitions
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Figure 16
Needle domain close to a surface. Dark colours indicate domains, light
colours domain walls. The left side of the ®gure is a free surface. (a) As
the needle domain approaches the surface, the needle tip extends to
touch the surface. (b) When the needle domain approaches the surface
more closely, it breaks up into two separate twin walls (Novak et al.,
2002).

Figure 17
Comparison of the calculated needle wall trajectory with the quadratic
pro®le predicted by theory (Salje & Ishibashi, 1996; Pertsev et al., 2000).

Figure 18
Transitions in Ising models. (a) In Kawasaki dynamics, the order
parameter is conserved and equilibration is achieved by neighbouring
sites exchanging spins. (b) In Glauber dynamics, the order parameter is
not conserved and equilibration is achieved by individual sites changing
their spin states.



describing the time evolution of the macroscopic order par-

ameter for Kawasaki and Glauber dynamics, respectively, in

the mean ®eld limit are

dQ

dt
� ÿ� 2Q

Q2 � 1
ÿ tanh

QTC

T

� �� �
dQ

dt
� ÿ� Qÿ tanh

QTC

T

� �� �
:

�21�

5.2. Time-dependent Landau theory

In the case in which continuous transitions of the local order

parameters are allowed, coarse graining of the master equa-

tion (20) introduces two length scales. The ®rst length scale is

the correlation length � (Meitu et al., 1976a,b). This describes

the length scale of interactions in the system. The second

length scale is the conservation length �C (Salje, 1988;

Carpenter & Salje, 1990), describing the length scale over

which the order parameter is conserved. This parameter

allows interpolation between the extreme cases of an uncon-

served order parameter �C = 0 and a fully conserved order

parameter �C = �. The time-dependent Landau equation is

given by (Marais & Salje, 1991)

dQ

dt
� ÿ� 1ÿ �

2
C

�2

sinh��r�
�r

� �
@G

@Q
; �22�

where � is a mobility with Arrhenius behaviour, the activation

energy G�may depend on the value of the order parameter. G

is a Landau free energy describing the phase transition. The

meaning of the differential operator inside the sinh function

can be interpreted as meaning the series expansion of the

function in terms of the operator. Time-dependent Landau

theory gives two important equations used in the study of

phase-transition kinetics as special cases. In the fully

conserved case �C ! �, the Cahn±Hilliard equation (Cahn,

1961, 1962, 1968; Hilliard, 1970; Langer, 1971) is recovered

when equation (22) is expanded to lowest order in �:

dQ

dt
� ��2

Cr2 @G

@Q

� �
: �23�

The Ginzburg±Landau equation (Lifshitz & Pitaevskii, 1981)

is obtained in the limit �C=�! 0, in which the order param-

eter is not conserved:

dQ

dt
� ÿ� @G

@Q
: �24�

One example of the use of the Ginzburg±Landau equation is

given by the kinetics of cation ordering in omphacite

(Carpenter et al., 1990b). Carpenter et al. calculated order

parameters from superlattice re¯ection intensities and

compared them with solutions to the Ginzburg±Landau

equation, Fig. 19. The structural changes due to the phase

transition required them to use an order parameter dependent

on �.

An important question that has to be addressed is the

location of the changeover point between Ising kinetics and

time-dependent Landau theory. At what point can an order

parameter be treated as `continuous'? The Ising model itself

clearly must be described in terms of a discrete order par-

ameter. However, the generalization of the Ising model, the

n-state Potts model, in which each spin site can be in one of n

states, is well described by continuous order parameter

kinetics for n > 4 (Salje & Marais, 1992).

Close to the transition temperature, Ising kinetics and time-

dependent Landau theory predict similar evolution rates of

the order parameter; it is only for temperatures T ~ 0.5TC that

the two rate laws show signi®cant degrees of divergence, with

time-dependent Landau theory predicting faster kinetics than

Ising±Kawasaki and Ising±Glauber. Molecular dynamics

simulations show that time-dependent Landau theory

correctly predicts the ordering kinetics of a system with a

continuous order parameter, while Ising kinetics predictions

are too slow (Marais, Heine & Salje, 1991). Experimental

studies of processes such as cation ordering in minerals are

typically performed at rather high temperatures (often of the

order of 0.9TC), so that the thermally activated mechanisms

proceed at a reasonably fast rate. Unfortunately, the predic-

tions of Ising kinetics and time-dependent Landau theory are

practically indistinguishable in this temperature range, so most

kinetic experiments are unable to distinguish between these

different paradigms of kinetic behaviour. A study was

undertaken of Al±Si ordering in CaAl2Si2O8, with a very high

transition temperature TC ' 2800 K (Salje et al., 1993). This

unusually high TC made it possible to study ordering at

0.5TC ' 1400 K. A ®t of both equilibrium and kinetic data to

Ising±Glauber kinetics and time-dependent Landau theory

showed a good match for time-dependent Landau theory (Fig.
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Figure 19
Comparison between experimental cation ordering in omphacite and
solutions to the Ginzburg±Landau equation. Reprinted with permission
from Carpenter et al. (1990). Eur. J. Mineral. 2, 19±28. Copyright (1990)
Schweizerbart, http://www.schweizerbart.de.



20) but a poor ®t to Ising±Glauber, thus showing that ordering

schemes can be described by continuous order parameters.

An important consequence of the existence of conserved or

partially conserved order parameters is the existence of

microstructural solutions to the kinetic equations. Experi-

mental examples of such systems include O-atom vacancy

ordering in YBa2Cu3O7 superconductors, see Fig. 2 (Schmahl

et al., 1989; Krekels et al., 1991) and Al±Si ordering in feldspars

and cordierites (Putnis et al., 1987; Wruck et al., 1991; Putnis &

Salje, 1994). The microstructures observed in these materials

take the form of `stripe' or `tweed' patterns. `Stripes' consist of

more or less regular arrays of parallel domain walls, while

`tweeds' consist of interwoven wall segments. Computer

simulations of annealing kinetics using generic models in

which elastic degrees of freedom are coupled to chemical

ordering develop a tweed pattern initially, which some models

show evolving into a stripe pattern on further annealing

(Marais, Heine, Nex & Salje, 1991; Parlinski et al., 1993; Parker

et al., 1993; Bratkovsky et al., 1994; Marais et al., 1994). It has

been shown that for certain regions of parameter space the

one-dimensional form of the time-dependent Landau-theory

equations predict stripe phases (Tsatskis et al., 1994).

6. Conclusions and prospects

As shown above, phase transitions in¯uence not just the bulk

structure of materials but also their microstructure. While we

have a good understanding, through techniques such as X-ray

diffraction, of bulk domains, our understanding of the struc-

ture and properties of interfaces such as twin walls lags

behind. Diffraction techniques cannot easily resolve the

atomic level structure of interfaces. Simulation studies do offer

us a window into these structures, but they typically investi-

gate topologically perfect interfaces in pure crystals,

neglecting the chemical degrees of freedom possessed by real

crystals.

The most important tool for the interpretation of phase-

transition-induced microstructures is Landau theory. Origin-

ally, Landau theory was developed to study single domains at

temperatures close to the transition temperature (but outside

the Ginzburg interval). In fact, simple Landau potentials often

provide a good description of the thermodynamics of phase

transitions over a wide temperature range. With the addition

of the Ginzburg term, Landau theory can describe, on a

mesoscopic level, the structure of domain walls and surfaces.

Through time-dependent Landau theory, the kinetic equations

that lead to tweed and twin wall microstructures can be

determined. The results of Landau theory are consistent with

the results of experiment and, where experimental data are

lacking, with simulation results.

There are many experimental questions that need to be

answered. For instance, is the anomalously fast domain wall

diffusion of Na ions and O-atom vacancies seen in WO3 seen

in any other materials and do the doped walls in those

materials show unusual properties, such as the super-

conductivity of Na-doped WO3 walls? So far only a handful of

systems have been investigated either experimentally or by

simulation. Furthermore, the reason why WO3 shows this

behaviour is also unknown, although the most reasonable

explanation seems to be that there is a large concentration of

vacancies within the wall. The answer to this question will

probably come from simulation studies, since advances in

computing power and simulation methodologies such as the

linear scaling code SIESTA (Soler et al., 2002) make possible

the atomic level simulation of mesoscopic systems.

It is possible to imagine a large number of technological

applications for doped twin walls. It is already possible to

engineer twin wall microstructures using techniques such as

lithography. For example, doped WO3 twin wall micro-

structures could be used as superconducting Josephson junc-

tions. Another possibility could be to use twin walls as reaction

chambers. Reactants could be diffused in from opposite

surfaces intersecting a twin wall. Inside the wall, the reactants

would be forced to occupy a ®xed orientation by steric effects.

Thus the reactants would only come together at a speci®c

orientation, forming products that would not occur in

conventional reactions.

phase transitions
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Figure 20
(Al, Si) order/disorder phase transition in anorthite. These ®gures show
the (a) equilibrium and (b) kinetic behaviours of anorthite ®tted using
Landau theory. The phase transition is close to tricritical, with TC �
3475 K (Salje et al., 1993).
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