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Symmetry and physical aspects of ‘forbidden’ reflections excited by a local

polarization anisotropy of the X-ray susceptibility are surveyed. Such reflections

are observed near absorption edges where the anisotropy is caused by

distortions of the atomic electronic states owing to interaction with

neighbouring atoms. As a consequence, they allow for extracting nontrivial

information about the resonant atom’s local environment and their physical

conditions. The unusual polarization properties of the considered reflections are

helpful to distinguish them from other types of ‘forbidden’ reflections. When

such reflections are excited, it is, for example, possible to determine not only the

intrinsic anisotropy of an atomic form factor but also additional anisotropy

induced by thermal motion, point defects and/or incommensurate modulations.

Even the local ‘chirality’ of atoms in centrosymmetric crystals is accessible.

Unsolved key problems and possible future developments are addressed.

1. Introduction

Polarization phenomena are very typical for crystalline

material interacting with electromagnetic radiations in

different energy bands including the X-ray region. They result

from distortions of the electronic states of the atoms by crystal

fields of different nature, for instance, by the local environ-

ment. While X-ray absorption measurements at an absorption

edge of an element (XANES, EXAFS) are quite sensitive to

the local environment of the ‘edge atom’, they involve forward

scattering and can therefore only yield information averaged

over the unit cell. With a momentum transfer, however, the

X-ray experiment combines the chemical short-range sensi-

tivity of near-edge absorption with the long-range order of

crystalline material and hence with the site sensitivity of

diffraction. Owing to atomic nature, i.e. electrons tied to the

nucleus, diffraction is in principle always resonant and the

resulting so-called anomalous dispersion is taken into account

by adding to the free atom’s scattering-factor function a scalar

complex correction term, f 0ðEÞ þ if 00ðEÞ [see, for instance,

Ramaseshan & Abrahams (1975) and Materlik et al. (1994)].

Normally, f 0 and f 00 are polarization-independent monotonic

functions of the radiation energy, except for the direct vicinity

of an absorption edge, where f 00 exhibits a sharp increase while

the Kramers–Kronig-related f 0 passes a deep trough. Non-

negligible scalar anomalous scattering is systematically

exploited in solving crystal structures (e.g. MAD phasing),

absolute structure determinations or element discriminations

by making use of inherent or deliberately produced scattering

contrasts. A much more complicated situation arises, however,

when the radiation energy approaches an absorption edge.

Then, prior to the production of photoelectrons, core electrons

can be excited into vacant states above the Fermi level, which

depend on chemical bonding and are distorted by the local

environment. As a consequence, f 0 and f 00 of the ‘edge atom’

turn into tensors, which leads to a complex atomic scattering

factor (ASF), to structure-factor tensors in general and hence

to special polarization-dependent diffraction.

In 1980, Templeton & Templeton noticed that an anisotropy

of resonant scattering, i.e. an anisotropic X-ray susceptibility,

can give rise to the excitation of so-called ‘forbidden’ reflec-

tions otherwise systematically absent owing to the presence of

symmetry elements with translation components, i.e. screw

axes and glide planes. The physics of this phenomenon is fairly

clear: the incident waves ‘see’ symmetry-related but differ-

ently oriented ASF tensors giving rise to non-vanishing

structure-factor tensors and violations of extinction rules

owing to screw rotations and glide reflections. This effect may

be considered an unwanted complication that can be circum-

vented by simply avoiding the say 50 eV wide region of

resonance energies but, as immediately recognized by

Templeton & Templeton (1982), ‘where there is a complica-

tion there is also the opportunity of sharper, more penetrating

methods for extracting information from diffraction experi-

ments’. And indeed, while anisotropic resonant scattering

principally affects all Bragg reflections, the ‘forbidden’ ones

have attracted most attention in the past two decades, mainly

because they are exclusively signals from the partial structure



of the edge atom(s) and thus most sensitive element and site-

specific probes of the atomic local environments.

Following a general theoretical treatment of the ‘forbidden’

reflections by Dmitrienko (1983, 1984) and the first experi-

mental verification, namely the observation of the excitement

of ‘forbidden’ 00l ðl ¼ 2nþ 1Þ reflections in cubic NaBrO3

(Templeton & Templeton, 1985a, 1986), similar effects have

been found and studied in various other crystals like Cu2O

(Eichhorn et al., 1988), TiO2, MnF2 (Kirfel et al., 1991),

LiHSeO3 (Kirfel & Petcov, 1992), Ba(BrO3)2 �H2O

(Templeton & Templeton, 1992), Fe3O4 (Kirfel et al., 1995a;

Hagiwara et al., 1999; Garcı́a et al., 2000; Garcı́a, Subı́as et al.,

2001), FeS2 (Nagano et al., 1996; Templeton & Templeton,

1997; Kokubun, Nagano et al., 1998), HoFe2 (Collins et al.,

2001); for further details see below. Such experiments are time

consuming because once a resonance is detected the transition

has to be proved and characterized by means of energy scans

in steps of about 1 eV and numerous measurements at

different polarizations and different  settings in order to

reveal the azimuthal variation of the ‘forbidden’ reflection’s

intensity in the often very disturbing presence of generally

much larger multiple scattering effects. In a theoretical

treatment within the dipole–dipole approximation, explicit

expressions were developed for calculating the intensity and

polarization properties of ‘forbidden’ reflections and results

have been compiled in tabular form for space groups up to

tetragonal symmetry (Kirfel & Morgenroth, 1993; Morgenroth

et al., 1994a).

Most of the experimental studies involved dipole–dipole

(dd) transitions, but also higher-order transitions like the

much weaker pure quadrupole–quadrupole (qq) and/or mixed

dipole–quadrupole (dq) transitions have been observed, e.g. in

hematite, �-Fe2O3 (Finkelstein et al., 1992; Watanabe et al.,

2001; Kokubun, Watanabe et al., 2005), and in magnetite,

Fe3O4 (Kirfel et al., 1995a; Hagiwara et al., 1999; Garcı́a et al.,

2000; Kanazawa et al., 2002; Subı́as, Garcı́a, Proietti et al.,

2004), where the polarization and spectral analysis of the

scattered radiation revealed site-specific dq transitions for the

pre-edge peak. The latter type was also assumed to cause the

‘forbidden’ hk0 ðhþ k ¼ 4nþ 2Þ reflections in the diamond

structure of germanium (Templeton, 1994; Templeton &

Templeton, 1994) but later it was found (Kokubun et al., 2001;

Kirfel et al., 2002b) that a thermal-motion-induced dd

contribution is the reason for this class of reflections, at least at

ambient and elevated temperatures (see x8 below).

This paper presents a survey of the observations of the pure

crystalline ‘forbidden’ reflections with emphasis on the

experimental features; their theoretical treatment has been

reviewed before by Belyakov & Dmitrienko (1989), Carra &

Thole (1994) and Dmitrienko & Ovchinnikova (2003).

Problems related to ‘forbidden’ reflections induced by

magnetic and orbital ordering can be found elsewhere [see, for

instance, Lovesey & Collins (1996) and Ishihara & Maekawa

(2002)]. In fact, calculations show that structural distortions

(probably of the Jahn–Teller type) are the main reasons for

‘forbidden’ reflections near the Mn K edge in crystals with

orbital ordering like LaMnO3 (Elfimov et al., 1999; Benfatto et

al., 1999; Takahashi et al., 1999) as experimentally confirmed

by Garcı́a, Sánchez et al. (2001) and Herrero-Martı́n et al.

(2004). Orbital ordering can be directly probed by soft X-ray

resonant scattering at the Mn LII and LIII edges (Wilkins et al.,

2003); however, such activities are beyond the scope of our

present paper.

2. ‘Forbidden’ reflections

Conditions limiting possible reflections (extinction rules) were

calculated many years ago for all crystallographic space

groups and are listed in International Tables for Crystal-

lography (1996), Vol. A. They follow from the phase differ-

ences between the atomic scattering amplitudes of symmetry-

equivalent atoms positioned at different points in the unit cell,

and those differences depend on the crystal symmetry and the

occupied atomic sites. Systematic absences of certain types of

reflections (called forbidden reflections or extinctions) allow

for discriminating between the space groups (though not

always unambiguously).

More generally, however, the sets of allowed and forbidden

reflections depend not only on the crystal symmetry and

structure but also on details of the physical interaction

between the incoming and scattered radiation and the atoms

in the unit cell. In fact, the conditions listed in International

Tables apply only to point scalar scatterers placed at the

atomic positions or to atoms with spherically symmetric

electron-density distributions. If one takes, however, into

account distortions of the electronic states by neighbouring

atoms, then the structure amplitudes of the ‘forbidden’

reflections can deviate from zero and the extinction conditions

should be modified. The best known example is the 222-type

reflection in the diamond structure (see, for instance, Dawson,

1975), which is excited because the atomic electron-density

distribution is distorted by chemical bonding to the neigh-

bouring atoms or by anharmonic thermal motion. Other

examples are supplied by pure magnetic reflections observed

in magnetic crystals by neutron (Izyumov et al., 1991), X-ray

(Gibbs et al., 1985; Hannon et al., 1988; Lovesey & Collins,

1996) and Mössbauer diffraction (Belyakov, 1975) or by

crystals with orbital ordering (Ishihara & Maekawa, 2002;

Wilkins et al., 2003).

For the sake of clarity, one has therefore to distinguish

between different types of the reflection conditions listed in

International Tables. The general conditions apply to atoms in

general positions in the unit cell and may be of two types: (i)

conditions related to pure translation symmetry, i.e. lattice

centring, which are obviously strict in any case regardless of

the type of radiation; and (ii) conditions related to the

presence of glide planes and screw axes. Additional (special)

conditions (iii) apply to atoms in special positions. These latter

conditions are easily violated, for example by non-spherical

atomic electron-density distributions. Indeed, the non-

spherical parts of the atomic electron density can be consid-

ered as small ‘pseudo-atoms’ in general positions. The 222-

type reflections in the diamond structure are just of this

type (iii).
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Therefore, a non-trivial situation arises for the reflections

violating conditions (ii) related to the presence of glide planes

and/or screw axes. These general conditions cannot be

violated by a distortion of the electron density compatible

with the crystal space group because the electron density is

invariant under the glide-plane and screw-axis symmetry

operations. In particular, they cannot be violated even if the

electron density is distorted by chemical bonding and/or by

thermal motion because all such distortions (on average)

retain the space group. The conditions (ii) can, however, be

violated if, in a more general approach, the interaction of

X-rays with an atom is described by the tensor of susceptibility

rather than by a scalar quantity or, in other words, by a

tensorial atomic scattering factor (ASF). The reason for a

violation is that, in general, the ASF tensor changes the

orientation of its principal axes under the glide-plane and

screw-axis symmetry operations of the space group so that the

ASF tensors of different, though symmetry-related, atoms in

the unit cell cannot compensate each other. The scalar

description is in principle only valid if one considers the

electrons as free, which is a good approximation for most

practical purposes as long as the X-ray energy is sufficiently

far from absorption edges. Near an absorption edge, this

approximation fails because the tensorial ASF can become

noticeably anisotropic and, as will be discussed below,

‘forbidden’ reflections can be excited as a direct consequence

of this anisotropy. Before this, however, the physics of the

polarization anisotropy will be addressed.

3. Physical reasons for the polarization anisotropy

Suppose as usual that the different atoms of a structure scatter

independently so that the X-ray diffraction is described by a

tensorial structure factor F̂F:

Fjkð!; k; k0Þ ¼
P

s

f s
jkð!; k; k0Þ expðiHrsÞ; ð1Þ

where rs is the position of the sth atom in the unit cell, the

atomic factor f s
jkð!; k; k0Þ is a second-rank tensor depending, in

general, on the radiation frequency ! and the wavevectors k

and k0 of the incident and diffracted waves, and H ¼ k0 � k is

the scattering vector. The amplitude of diffraction, from an

initial polarization e to a diffracted polarization e0, is

proportional to e0�j Fjkek, and the intensity of the diffracted

radiation is proportional to je0�j Fjkekj
2=�, where �ð!Þ is the

linear absorption coefficient (here, � is assumed isotropic and

the diffraction experiment is in Bragg geometry using a sample

plate of practically infinite thickness).

The atomic factors in equation (1) may be divided into two

parts: the main isotropic (scalar) part is due to the potential or

Thomson scattering from the electron density, whereas the

resonant contribution (the so-called anomalous correction)

includes the binding effects. This latter part fjk (we consider

only the resonant term and omit index s) can be written as

fjkð!; k; k0Þ ¼ �
m

h- !

X
a;b

pa!
3
ba

hajO�j jbihbjOkjai

!� !ba � i�=2h-
; ð2Þ

see, for instance, Blume (1994) for details. In this expression,

jai describes the initial and final electronic states with energy

Ea, pa is a probability of finding the atom in the initial jai state,

jbi describes an intermediate electronic state with energy

Eb, !ba ¼ ðEb � EaÞ=h- ; the vectors O and O0 include two

terms, dipole and quadrupole: Oj ¼ Dj þ iQjmkm=2, O0j ¼

Dj þ iQjmk0m=2, where Dj ¼
P

i ri and Qjm ¼
P

i ri
jr

i
m, and the

summation extends over all electrons in the atom (see also

Brouder, 1990). Correspondingly, there are three types of

terms in fjkð!; k; k0Þ: dipole–dipole (dd), dipole–quadrupole

(dq) and quadrupole–quadrupole (qq). The initial and final

states coincide because only elastic coherent scattering is

considered.

For X-ray energies, the initial states jai correspond to

electrons at inner levels that are practically undistorted by

crystalline fields. In contrast, the intermediate electronic

states, a few eV above the Fermi level, can be distorted by the

local environment because the virtual photoelectrons strongly

interact (scatter) with neighbouring atoms. As a consequence,

the ASF tensor becomes anisotropic with a symmetry corre-

sponding to the site symmetry of the resonant atom. This

anisotropy is most pronounced in the direct vicinity of an

absorption edge (i.e. in the XANES region) but it may also

occur in the EXAFS region, whereas it is negligible far from

the edges. Therefore, non-resonant atoms can be neglected in

calculations of ‘forbidden’ reflection structure factors.

Explicit calculations with equation (2) are rather compli-

cated because of multiple scattering of the virtual photo-

electrons by neighbouring atoms. Several codes have been

developed for this type of calculation in the XANES region

(Natoli et al., 1990; Vedrinskii et al., 1992; Ankudinov et al.,

1998; Benfatto & Felici, 2001; Joly, 2001; Taillefumier et al.,

2002), which, in principle, allow for a quantitative description

of the ASF tensor (see examples below). However, in practice,

this description must be improved with respect to the

experimental energy profiles. The other approach, namely the

symmetry-based phenomenological description (considered in

the next section) can be used universally for predicting and

evaluating ‘forbidden’ reflections, but it cannot provide

quantitative fits to the resonance curves.

4. Symmetry restrictions on atomic and structure
factors

In general, the structure-factor tensor of any reflection is a

second-rank tensor with nine independent complex elements.

This number reduces upon taking into account the internal

tensor symmetry: for instance, in the dd approximation, the

tensor is symmetric for non-magnetic crystals so that the

number of its independent components is six. Further reduc-

tion of the number of independent components follows when

the crystal space group and/or the local site symmetry of the

atomic positions (external symmetries) are also taken into

account. Since the spatially periodic susceptibility tensor is

intrinsically invariant against the symmetry operations of the

crystal space group, it has been shown (Dmitrienko, 1983) for

the dd approximation that the structure factors of the glide-
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plane and screw-axis ‘forbidden’ reflections can contain at

most two independent components, in many cases even

less as, for instance, in crystals with cubic space groups

where the structure factors become additionally constrained

(Dmitrienko, 1984).

The most convenient and traditional way is to start with the

tensorial ASF fjk and to expand it as a function of k and k0,

fjmð!; k; k0Þ ¼ f dd
jm þ if

dqs
jmnðk

0
n � knÞ þ if

dqa
jmn ðk

0
n þ knÞ þ . . . ;

ð3Þ

followed by the qq term. The tensorial coefficients f̂f (denoted

as f tensors) are of different rank and possess different

internal symmetries: for example, the dd tensor f dd
jm is always

symmetric (f dd
jm ¼ f dd

mj ) if time-reversal symmetry is assumed,

whereas the dq are general terms that may be represented

by sums of symmetric (f
dqs
jmn ¼ f

dqs
mjn) and antisymmetric

(f
dqa
jmn ¼ �f

dqa
mjn ) contributions.

Normally, the dd term dominates the other terms of the

expansion making them difficult to detect. The dq and qq

terms are usually much smaller because the sizes of the inner

shells are smaller than the wavelength. Sometimes, however,

the dd term does not contribute at all to the structure factor

of a ‘forbidden’ reflection and then the higher-order terms

become decisive (see x7).

Since the anisotropy of the f tensors in equation (3) is

caused by the atomic environments, the f tensors should

conform with the site symmetries of the actual atomic posi-

tions, which are not necessarily equilibrium positions. Their

forms for second, third and fourth ranks can be found in

textbooks (Sirotin & Shaskolskaya, 1975; Sirotine & Chas-

kolskaia, 1982, 1984; Nye, 1985; International Tables for

Crystallography, 2003, Vol. D) for all crystallographic point

groups.

Atoms in equivalent sites obviously have equivalent f

tensors but the orientations of the principal tensor axes can be

different owing to different orientations of the atoms’ envir-

onments. Therefore, one has to define the f tensor of one of

the ‘edge atoms’ considered, according to the site symmetry of

its position, denote it as f̂f 1, then find the f tensors of all other

equivalent atoms in the unit cell by application of the space-

group-symmetry operations and finally calculate the tensorial

structure factorbFF. For example, in the dd approximation, one

has

bFFð!;HÞ ¼
P

s

bRRðgsÞf̂f 1ð!ÞbRRðgsÞ
�1 expðiHrsÞ: ð4Þ

The summation is over all the equivalent resonant atoms in

the unit cell and bRRðgsÞ is the rotational or mirror part of the

symmetry operation gs that relates the position of atom s to

the position of atom 1. For non-equivalent positions, the f

tensors are not related at all.

Let us illustrate this procedure with a simple example: the

dd approximation for pyrite crystallizing in space group Pa�33.

In the pyrite unit cell, the four Fe atoms lie on the threefold

axes, i.e. in 4a positions with point symmetry �33. Thus, the Fe

scattering-factor tensors must be uniaxial. Let atom 1 be the

atom at the origin of the unit cell, r1 ¼ ð0; 0; 0Þ, on the 3 axis

parallel to ½111�. Its atomic factor is given by the uniaxial

tensor

f̂f 1
¼

fxx fxy fxy

fxy fxx fxy

fxy fxy fxx

0
@

1
A; ð5Þ

where fxx is the isotropic part of the atomic factor tensor

whereas fxy describes the anisotropy of f̂f 1. With fk and f?
denoting the eigenvalues of f̂f 1 in the directions parallel and

perpendicular to the threefold axis, respectively, fxy ¼

ðfk � f?Þ=3, fxx ¼ ðfk þ 2f?Þ=3. Obviously, f̂f 1 is invariant

against threefold rotation about ½111�, i.e. against cyclic

permutations of x, y, z.

The tensorial atomic factors of the other three Fe atoms, 2, 3

and 4, are related to f̂f 1 by twofold rotations about the x, y and

z axes correspondingly:

f̂f 2
¼

fxx �fxy �fxy

�fxy fxx fxy

�fxy fxy fxx

0
B@

1
CA; ð6Þ

f̂f 3 ¼

fxx �fxy fxy

�fxy fxx �fxy

fxy �fxy fxx

0
B@

1
CA; ð7Þ

f̂f 4 ¼

fxx fxy �fxy

fxy fxx �fxy

�fxy �fxy fxx

0
B@

1
CA: ð8Þ

Then, using equation (1) yields the structure-factor tensors of

the 00l ðl ¼ 2nþ 1Þ screw-axis ‘forbidden’ reflections as well

as of the 0kl ðk ¼ 2nþ 1Þ glide-plane ‘forbidden’ reflections:

bFFð00lÞ ¼ 4
3ðfk � f?Þ

0 0 0

0 0 1

0 1 0

0
B@

1
CA; ð9Þ

bFFð0klÞ ¼ 4
3ðfk � f?Þ

0 0 1

0 0 0

1 0 0

0
B@

1
CA: ð10Þ

As to be expected, the scalar parts (diagonal elements) cancel

and thus do not contribute to the ‘forbidden’ reflections.

Finally, let us consider the polarization and azimuthal

dependence of the diffraction (in the kinematical approxi-

mation, which is usually sufficient for the ‘forbidden’ reflec-

tions). Although in the dd approximation there is no

azimuthal dependence of Fjk, the intensity usually exhibits a

harmonic  dependence because both the initial and the

diffracted polarizations, e and e0, depend on the azimuthal

crystal setting  . For the cases dq and qq, there may be

additional azimuthal terms owing to inherent k dependencies

of the respective ASF tensors themselves. The polarization

properties of the reflections are also determined by the tensor

form of the structure factor Fjk. For the ‘forbidden’ reflections,

they are rather unusual: for instance, in the case of a 21 screw

axis, an incident r-polarized radiation produces a totally p
polarized diffracted wave (in the dd approximation). Notice
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that in some cases, as for all ‘forbidden’ reflections in pyrite,

the forms of the tensors do not change with the X-ray energy

[equations (9) and (10)] so that the azimuthal polarization

properties are also energy independent.

Detailed discussions of the polarization and azimuthal

properties have been given by Dmitrienko (1983), Kirfel et al.

(1991) and Kirfel & Morgenroth (1993). The polarization

dependence of � is usually neglected but if important it can be

included as discussed by Kirfel & Petcov (1992).

5. Glide-plane and screw-axis ‘forbidden’ reflections in
different crystals

The first ‘forbidden’ reflections of this type were observed in

an NaBrO3 crystal (Templeton & Templeton, 1985a, 1986).

Similar reflections were known for light diffraction in chiral

liquid crystals, where they were called ‘selective reflections’

(Belyakov et al., 1979), and from Mössbauer diffraction

(Belyakov, 1975) but in both cases the anisotropy is not as

small as for X-rays. The space group of NaBrO3 is P213, the

resonant Br atoms are in four equivalent positions on the

threefold axes, r1 ¼ x; x; x etc. Calculations similar to those in

the above pyrite example yield, for the 00l (l ¼ 2nþ 1Þ

reflections,

jp0bFFrj2jrbFFpj2 ¼ 8
9jfk � f?j

2 cos2 �ð1� cos 4�lx cos 2 Þ; ð11Þ

where � is the Bragg angle. In this case, the polarization

properties are the same for all reflections and all azimuthal

angles (r! p0 and p! r) and were not explicitly recorded.

The azimuthal dependencies of three screw-axis ‘forbidden’

reflections are shown in Fig. 1. The absolute scale in Fig. 1 is

based on the allowed 006 reflection. Notice that in a cubic

crystal in the absence of linear dichroism (at least in the dd

approximation) these observations allow for the experimental

determination of jfk � f?j. Another interesting feature is the

dependence of the intensity on the atom’s position (x coor-

dinate), a circumstance that can be used for partial structure

analysis as is discussed in x6.

Since the first observations of ‘forbidden’ reflections in

NaBrO3, numerous synchrotron-radiation studies have been

performed, mostly on crystal structures with cubic, tetragonal

or hexagonal symmetry and containing ‘edge atoms’ above

Z ¼ 22. They served mainly to detect anisotropic resonant

scattering, to show the possibility of exciting ‘forbidden’

reflections and to prove the validity of the optical model

yielding the azimuthal dependencies of the scattered radiation

in terms of both intensity and polarization. Except for cubic

crystals, the search for suitable candidates may be preceded by

checking for encouraging polarization-dependent absorption

or fluorescence as described by Templeton & Templeton for

VO �2(C5H7O2) (1980), RbUO2(NO3)3 (1982), C6H12N2O4Se

(1988), LiIO3 (1989a,b), and also by other authors for LiNbO3

(Kirfel & Petcov, 1988; Petcov et al., 1988; Petcov, 1989; Petcov

et al., 1990) or minerals (Lippmann et al., 1998) and synthetic

compounds (Lippmann et al., 1992, 1994, 1995).

Examples of more detailed studies of ‘forbidden’ reflections

are given below.

Cuprite, Cu2O, crystallizes in space group Pn�33m with Cu on

the threefold axes being linearly coordinated by two O atoms.

Thus, the Cu environment is highly anisotropic giving rise to

well observable resonant ‘forbidden’ reflections 0kl,

kþ l ¼ 2nþ1. The axial reflections 00l ðl ¼ 2nþ 1Þ in parti-

cular have been extensively studied (Kirfel et al., 1991; Eich-

horn et al. 1988; Kirfel, Petcov et al., 1988; Kirfel & Eichhorn,

1988, 1989; Hock, Kirfel & Lippmann, 1995; Hock, Lippmann

& Kirfel, 1995) including the refinement of the f 0, f 00 tensor

elements (Morgenroth et al., 1993) and proving the observa-

bility of anisotropic resonant scattering by powder diffraction

measurements (Kirfel, Eichhorn & Wroblewski, 1988;

Lippmann & Kirfel, 1991). Recent quantitative studies

(Ninomiya et al., 2001) revealed a very large anisotropy of

jfk � f?j � 5:7 e at most.
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Observed (points) and calculated (lines) squares of structure factors for
001, 003 and 005 plotted as a function of azimuthal angle, at a photon
energy 8 eV below the Br K white-line peak. A few high points, and
another too far off scale to plot, indicate coincidence with Renninger
reflections; this is Fig. 1 by Templeton & Templeton (1986).



Magnetite, Fe3O4, space group Fd�33m, crystallizes in the

inverse spinel structure with the Fe atoms occupying both

octahedral and tetrahedral sites. This offers the possibility of

observing ‘forbidden’ reflections excited by a dq transition

which is only allowed on the tetrahedral site whereas the

octahedral site allows, on the contrary, only for dd and qq

transitions (Kirfel et al., 1995a; Fischer, Krane & Kirfel, 1996).

By polarization analysis of the reflection 208 measured at the

energies of the two distinct Fe K-edge resonance lines, it could

be shown that one originates from the octahedral, the other

from the tetrahedral site. This point has also been confirmed

by Kanazawa et al. (2002) who studied both magnetite and

franklinite ZnFe2O4 and have shown that the pre-edge peak

disappears and zinc gives no ‘forbidden’ reflections in

ZnFe2O4 where the Fe atom occupies only the octahedral site.

Similar results have been found by Garcı́a & Subı́as (2004) for

MnFe2O4, whereas, for CoFe2O4 with Co atoms occupying the

octahedral sites, the pre-edge Fe-atom peak is very

pronounced. Low-temperature studies of magnetite (Hagi-

wara et al., 1999; Garcı́a et al., 2000; Garcı́a, Subı́as et al., 2001;

Renevier et al., 2001; Garcı́a & Subı́as, 2004; Subı́as, Garcı́a,

Blasco et al., 2004) have claimed absence of charge ordering

and enforced re-examination of the classical picture of the

Verwey transition although this problem is still rather

controversial (Nazarenko et al., 2005). In another crystal of the

same space group, HoFe2, where Ho and Fe atoms respec-

tively occupy the tetrahedral and octahedral sites, the

‘forbidden’ reflections were found only at the Fe K edge

(Collins et al., 2001).

Also, rutile types TiO2 and MnF2, space group P42=mnm,

exhibit well observable effects (Kirfel et al., 1989, 1991; Kirfel

& Petcov, 1989) owing to a quite small deviation of the cation

coordination polyhedron from full octahedral symmetry. A

reinvestigation of rutile and studies of the anisotropic reso-

nant scattering in the related TiO2 anatase and brookite

structures (Sawai et al., 2003) demonstrate how different

resonant ‘forbidden’ reflections can be in the same chemical

compound, at both pre-edge and edge energies (Fig. 2),

although the absorption spectra (XANES) of the crystals are

similar. While rutile and brookite show dd-type resonances at

the Ti K edge, anatase does not because the space-group

symmetry P41=amd precludes a dd term.

Pyrite crystals, FeS2, space group Pa�33, were studied in

several papers. Nagano et al. (1996) analysed the polarization

properties of reflections 001 and 011 from plates cut corre-

spondingly. Later, Kokubun, Nagano et al. (1998) carefully

studied the reflection spectra 001, 003, 011 and their azimuthal

dependence. The dd contribution was shown to be dominant

above the edge whereas the pre-edge resonance was revealed

as qq. Very similar ‘forbidden’ reflection spectra were found

recently for pyrite-like CoS2 and NiS2 (Kokubun & Ishida,

2005). Templeton & Templeton (1997) have studied the

azimuthal profiles of ‘forbidden’ and weak allowed reflections

from a small irregular sample (0:15� 0:19� 0:20 mm). The

incident polarization was supposed to be completely r. The

glide-plane ‘forbidden’ reflections 520 and 530 were measured

for 7120.4 eV, and the absolute value jfk � f?j was determined

from theoretical fits and comparison with the non-forbidden

reflection 332. Measurements for the weak non-forbidden

reflection 432, where the anisotropic contribution is of the

order of the isotropic one, were carried out at several energies,

and both the real and imaginary parts of the anisotropic ASF

(and hence its phase) could be determined this way. Another

method to measure the phase, namely via interference with

Renninger reflections (Kokubun et al., 2004), is discussed at

the end of this section.

Careful polarization analysis of diffracted beams was also

performed for the 005, 007 and 000010 reflections from a

hexagonal ferrite, (Ba1�xSrx)2Zn2Fe12O22 (Tsuji et al., 1996).

From this analysis and by comparison of the peak intensity

with that of the allowed 006 reflection, the tensorial structure

factor of the 000010 reflection was obtained. Magnetic satellites

were also studied in this paper.

A remarkably strong dd-type resonance occurs in Sr(NO3)2,

space group Pa�33 (Fischer & Kirfel, 1997). With Sr in (0,0,0),

site symmetry �33, this effect can be rationalized in terms of the

O atoms coordinating Sr atoms in the form of a cubo-octa-

hedron distorted along the [111] direction. Not yet fully

understood among the hexagonal symmetry examples is the

case of LiNbO3, for which the excitement of ‘forbidden’ h �hh0l

reflections (l ¼ 2nþ 1) has been observed using diffraction in

Laue geometry from a platelet cut parallel to [0001] (Petcov,

1989). The fact that these results could not be reproduced by

measurements in Bragg geometry on a (000l) face is still a

challenge for future work.

Studies of lower-symmetry crystals are rarer, but need to be

mentioned. An example is Ba(BrO3)2 �H2O, space group I2=c

(Templeton & Templeton, 1992). The azimuthal profiles for

several glide-plane ‘forbidden’ reflections were measured near

the Br K edge and the value of local anisotropy was deter-

mined from fitting theoretical curves and scaling to the

allowed 006 reflection. Further examples are orthorhombic

LiHSeO3 (Kirfel et al., 1990; Lippmann et al., 1992; Kirfel &

Lippmann, 1992; Kirfel & Petcov, 1991, 1992), KH3(SeO3)2

(Fischer & Kirfel, 1998), CuSeO3 �2H2O (Kirfel & Lippmann,

1994), Na2[Fe(CN)5(NO)] �2H2O (Kirfel et al., 1995b; Lipp-

mann et al., 1995), PbZrO3 (Toda et al., 1998) and monoclinic
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Figure 2
The energy dependence of ‘forbidden’ reflections from different TiO2

structures near the Ti absorption edge: rutile 100 (black circles); anatase
002 (open circles); brookite 300 (squares); the absorption edge for rutile
is shown by the dashed line (Kokubun & Ishida, 2005).



Tutton salts A2B(SO4)2 �6H2O with A = K, NH4 and B = Fe,

Co, Ni, Cu (Fischer et al., 1996a,b; Fischer & Kirfel, 1997).

Most of these studies were undertaken with the aim to find

candidates with ‘edge atoms’ in lower site-symmetry positions

and to explore the possibility to use ‘forbidden’ reflections and

their azimuthal intensity variations for partial structure

determination, which is addressed in the next section.

Here, it should be noted that, owing to experimental diffi-

culties and the underlying objective of most studies, both in

verifying the developed model and in finding new candidates

with reasonably large effects, the majority of the experiments

has been carried out at ambient conditions. Only in recent

years has it turned out that temperature is also an important

parameter.

Low-temperature measurements have been reported for

cuprite (Kirfel & Krane, 1999) and magnetite (Hagiwara et al.,

1999; Garcı́a, Subı́as et al., 2001; Kirfel et al., 2002a) but, as

shown in x8, studies at elevated temperatures may also make

an essential contribution.

As mentioned before, ATS is most pronounced in the

XANES region. It can, however, also be observed at higher

energies in the EXAFS region where its structural inter-

pretation is more obvious (Garcı́a et al., 2000; Collins et al.,

2003; Subı́as, Garcı́a, Proietti et al., 2004).

Recently, it was also shown that the resonant reflections can

be helpful in understanding the charge ordering in the mixed-

valence transition-metal compound NaV2O5, phase transition

from Pmmn symmetry to A112 (Joly et al., 2003). Even fine

details of the charge ordering could be revealed by a quanti-

tative evaluation of the ‘forbidden’ reflections using the

FDMNES code (Joly, 2001)

Extremely interesting is the observation of the ‘forbidden’

010 reflection near the C K edge in caesium hydrogen

phthalate, C6H4(COOH)COOCs, space group Pbca (Okotrub

et al., 1998). Owing to the long b axis, b ¼ 25:523 Å, it was

possible to measure this reflection even at an energy as low as

0.2838 keV.

The high sensitivity of the tensorial ASF to displacements of

both the resonant atom and neighbouring atoms can also give

rise to additional reflections in resonant X-ray diffraction by

incommensurately modulated crystals. It has been shown that

in that case there is the possibility of both ‘forbidden’ main

reflections and ‘forbidden’ satellites (Ovchinnikova &

Dmitrienko, 1999a,b). Preliminary observations of ‘forbidden’

reflections in Ca2CoSi2O7 (Co-Åkermanite) have been

reported by Soejima et al. (2003).

Another interesting example was found in chiral smectic

liquid crystals with an incommensurate spiral structure (Mach

et al., 1998; Levelut & Pansu, 1999; Gorkunov et al., 1999;

Matkin et al., 2000; Hirst et al., 2002); the issue was recently

surveyed by Clegg (2005). The observations of ‘forbidden’

reflections near the S and Se K edges provided the first direct

evidence of distinct periodicities in the structures of several

chiral smectic phases. ‘Forbidden’ reflections of this kind

predicted for icosahedral quasicrystals with 51, 52, 53 and 54

screw axes (Dmitrienko, 1989) have not yet been observed.

As for the allowed reflections, the information usually

retrievable from ‘forbidden’ reflections is limited by the so-

called phase problem: only the structure-dependent intensity

of a reflection is measured whereas the phase information gets

lost (including the phase of the tensorial ASF). A well known

method to nevertheless obtain phase information (see the

survey by Weckert & Hümmer, 1997) is the interference of a

‘forbidden’ reflection with multiple-wave contributions from

non-forbidden reflections (also called Renninger reflections).

Renninger reflections occur for certain  angles when the

crystal is rotated about the scattering vector. Usually they are

considered as unwanted effects hampering the determination

of the true  dependence of a ‘forbidden’ reflection (Fig. 1),

however careful analysis of the interference regions allows for

determining the unknown phases of ‘forbidden’ reflections

(Kokubun, Ishida & Dmitrienko, 1998) because the phase of

the multiple-wave contribution is usually known (more

precisely, it allows for obtaining the so-called structure

invariants). Until now, there have only been two studies of this

type: (i) the determination of the phase of the 006 reflection in

Ge at a fixed X-ray energy (Lee et al., 2001), and (ii) the

measurement of the real and imaginary parts of the anisotropy

as functions of the X-ray energy near the Fe absorption edge

in FeS2 (Kokubun et al., 1997, 2004), see Fig. 3. From Fig. 3,

one also gets an impression of the quality of modern ASF

calculations using the muffin-tin (MT, Vedrinskii et al., 1992)

and full-potential (FP, Taillefumier et al., 2002) methods.

A very interesting problem is the interference between

magnetic and anisotropic tensor susceptibility reflections

(Tsuji et al., 1996; Ovchinnikova & Dmitrienko, 1997, 2000;
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Figure 3
Experimental values of the local anisotropy of the atomic factor (on
absolute scale) for cubic pyrite, FeS2, as a function of the photon energy
in comparison to full-potential (FP) and muffin-tin (MT) calculations.
Reðfk � f?Þ (top) and Imðfk � f?Þ (bottom) (Kokubun et al., 2004).



Collins et al., 2001; Ji et al., 2003; Kokubun, Watanabe et al.,

2005) but this is beyond the scope of the present paper.

6. Partial structure determination and phase
information

Since the ‘forbidden’ reflection intensities are exclusively due

to scattering from the absorbing ‘edge atoms’, they are signals

from their partial structure and, since this selective scattering

is undisturbed by the non-resonant scattering ‘rest structure’,

independent of its size and complexity, it can be used as a

probe for partial structure analysis, i.e. to locate the ‘edge

atom’. Templeton & Templeton (1986) showed in agreement

with a suggestion by Dmitrienko (1983) that their first

measurements of ‘forbidden’ axial reflections 00l, l ¼ 2nþ 1

(up to order 11), in NaBrO3 allowed for the determination of

the Br-atom position on the threefold axis: a value of x(Br) =

0.408 (1) was derived by least squares from the data for

‘forbidden’ reflections [true x(Br) = 0.40640 (3)]. Later a

method was suggested to derive from these data the correct

phases for the allowed reflections 00l, l ¼ 4nþ 2 (Templeton

& Templeton, 1987). A more complicated example is provided

by Ba(BrO3)2 �H2O (Templeton & Templeton, 1992), for

which 11 ‘forbidden’ reflections served to derive x(Br) =

0.249 (1) and z(Br) = 0.557 (1) (true x = 0.2510 and z = 0.5574).

The way in which the azimuthal intensity variations Ið Þ of

‘forbidden’ reflections in monoclinic, orthorhombic and

tetragonal structures depend on the “edge atom’s” position,

i.e. reflect the partial structure projection on the respective

axes, has been worked out by Kirfel & Morgenroth (1993),

Kirfel (1994) and Morgenroth et al. (1994a,b). The information

given therein is derived under the assumptions that (i) the

incident radiation is purely r polarized, (ii) the scattering

plane is vertical, and (iii) there is only one ‘edge atom’ in the

asymmetric unit. Accordingly, the r- and p-polarized contri-

butions of the scattered radiation are compiled as functions of

the relevant scattering-factor-tensor off-diagonal elements fij

and the crystal azimuthal setting  . The use of this informa-

tion for partial structure determination was first discussed for

LiHSeO3 crystallizing in space group P212121 (Kirfel et al.,

1990; Kirfel & Lippmann, 1992; Kirfel & Petcov, 1991). For

this non-centrosymmetric case, it can be shown that the scat-

tered radiation of a ‘forbidden’ 00l reflection ðl ¼ 2nþ 1Þ is

completely p polarized and that

Ið00l; Þ ¼ K cos2 �½A sin2  þ B cos2  þD sin 2 � ð12Þ

with A ¼ jf23j
2c2

lz, B ¼ jf13j
2s2

lz, D ¼ ðf 013f 0023 � f 023f 0013Þclzslz and

clz ¼ cos 2�lz, slz ¼ sin 2�lz; K is the scale factor. Then, using

the intensity values at  = 0 and �=2 and calculating, for each

pair of reflections, one has that the experimental quantity

Qðz; l1; l2Þ ¼
Ið00l1; 0ÞIð00l2;�=2Þ

Ið00l1;�=2ÞIð00l2; 0Þ

tan2 2�l1z

tan2 2�l2z
ð13Þ

eliminates everything but the geometric factors. Thus, the

method of deriving an atom coordinate is based on the ratio of

any two reflections of the same kind, which cancels the scaling

as well as the unknown magnitude of the resonance effect so

that the mere excitation of ‘forbidden’ reflections allows for

deriving Qðz; li; ljÞ. Then, the combination of at least three

such ratios yields a common indication for the possible z

coordinate(s), in the given case, a value between 0 and 0.25

from which the symmetry-equivalent z coordinates can be

calculated. Since corresponding relations hold for the

‘forbidden’ h00 and 0k0 reflections, respectively, one obtains

altogether 16 possible ðx; y; zÞ sets, one of which approximates

the correct ‘edge-atom’ position. In a more general treatment

(Kirfel & Petcov, 1992), the intensity values must be corrected

by a factor accounting for anisotropic absorption. However, as

discussed by Kirfel & Petcov (1992), neglecting these correc-

tions is not likely to compromise the method. Results obtained

for the y and z coordinates of Se in LiHSeO3 were 0.150 (5)

and 0.235 (15), respectively, as compared with the true coor-

dinates y = 0.14709 (2) and z = 0.23316 (4). Other examples of

similar edge-atom locations are K2Co(SO4)2 �6H2O, P21=c,

y(Co) = 0.014 (true 0.0) (Fischer et al., 1996a), CuSeO3 �2H2O,

P212121, z(Cu) = 0.0461 (true 0.043) (Kirfel & Lippmann,

1994), Na2[Fe(CN)5NO] �2H2O, Pnnm, x(Fe) = �0.005 (true

0.014), y(Fe) = 0.215 (true 0.220), z(Fe) = 0.02 (true 0.0)

(Kirfel et al., 1995b) and finally KH3(SeO3)2, Pbcn, x(Se) =

0.150 (true 0.1514), y(Se) = 0.185 (true 0.188) and z(Se) = 0.22

(true 0.2125) (Fischer & Kirfel, 1998). In all these cases, the

absolute differences between the experimental and true atom

positions were less than 0.1 Å.

So far, the method has been successfully tested and verified

on samples with just one ‘edge atom’ in the asymmetric unit.

However, it should also be applicable to more atoms if

different ‘edge elements’ are involved. One interesting case

would be a large organic molecular structure with two or more

different ‘edge atoms’ per asymmetric unit. Knowing their

positions in the molecule, one should be able to confine the

molecule’s position and orientation to a small number of

possibilities that can be further explored in combination with

other methods of structure determination. As the method can

distinguish between neighbouring elements in the periodic

system (e.g. Fe, Co, Ni) as can neutron diffraction, it has the

advantage that one needs only access to a synchrotron-

radiation source. Hence, there is the option to collect reflec-

tion data and do partial structure determination on the same

sample in one experiment at a given source. However, to that

purpose, we do need more experience as to whether or not we

can obtain reasonable ‘resonant scattering’ information from a

sample suitable for conventional data acquisition, e.g. from a

small crystal sphere bathing in the beam. So far, practically all

resonant experiments have been done, with obvious experi-

mental advantages and because other goals were aimed at, on

extended sample faces being only partially illuminated by the

beam. A few successful experiments on small crystals like that

by Templeton & Templeton (1997) would make progress in the

field.

Except for a study on VOSO4 �5H2O by Templeton &

Templeton (1991), little use has been made so far of the

information contained in the intensity variations Iðhkl; Þ of

the allowed reflections, which are generally also affected by

anisotropic resonant scattering. However, knowing for
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example from the ‘forbidden’ reflections the partial structure

of the ‘edge atom’ in a centrosymmetric structure (or a

centrosymmetric projection), i.e. knowing ra, one should also

be able to use the intensity patterns of allowed central lattice

row reflections for determining their structure-factor signs

relative to each other, even if the contribution of the partial

structure does not dominate. This option has been discussed

by Kirfel & Fischer (1998), successfully applied in a model

calculation on YBa2Cu3O7 and experimentally tested on

KH3(SeO3)2 (Kirfel, 1999). Structure-factor relative sign

determination is a still rather unexplored method and needs

more experimental evidence and verification. At present, it is

therefore certainly too early to speculate about its potential

with respect to routine structure determination but, if (see

above) one could show that measuring on a ‘normal’ crystal is

able to yield on-line relative sign information, this would be a

step forward to direct structure imaging.

7. Beyond the dipole–dipole approximation

Some screw-axis/glide-plane reflections remain ‘forbidden’ in

the dd approximation, for instance, the reflections with the

scattering vector along the threefold rotation axes in cubic,

rhombohedral and hexagonal crystals (Dmitrienko, 1983).

However, they can be excited in cases where there are dq

and/or qq contributions to the ASF [equation (2)]. The first

‘forbidden’ reflection of this type was found by Finkelstein et

al. (1992, 1994) in the pre-K-edge peak of Fe in hematite,

�-Fe2O3 (reflection 0003 or 111 in hexagonal or rhombohedral

settings, respectively; the rhombohedral one is used here).

Since the Fe atoms are on the threefold axes, their f tensors

are uniaxial (in the dd approximation) and oriented along the

threefold axes so that they have the same form for all the

atoms and hence yield zero structure factors for the glide-

plane reflections hhh, h ¼ 2nþ 1. In contrast, the dq and qq

f tensors possess different signs of some tensor components of

the glide-plane-related atoms, and just the components f dqa
zxy

and f qq
xxxz give non-zero contributions to the structure factors

of the ‘forbidden’ reflections (Dmitrienko & Ovchinnikova,

2001):

rbFFðhhh; h ¼ oddÞp ¼ �8ijkjf dqa
zxy sinð6�hxÞ cos2 �

þ 4 cosð6�hxÞf qq
xxxzk2 cos3 � sin 3 ;

p0bFFðhhh; h ¼ oddÞr ¼ 8ijkjf dqa
zxy sinð6�hxÞ cos2 �

þ 4 cosð6�hxÞf qq
xxxzk2 cos3 � sin 3 :

ð14Þ

A pure qq transition results in a sixfold symmetry of the

azimuthal dependence (/ sin2 3 ) of the hhh intensity as was

initially claimed by Finkelstein et al. (1992, 1994), but inter-

ference with a (azimuthally independent) dq contribution

makes the azimuthal pattern threefold symmetric. This

threefold symmetry (Fig. 4) was recently observed by Wata-

nabe et al. (2001), Kokubun & Ishida (2003) and Kokubun,

Watanabe et al. (2005), and it is confirmed by computer

simulations (Di Matteo et al., 2003). Notice that the difference

between the r! p0 and p! r channels follows from the

antisymmetric dq contribution. It can be shown (Kokubun,

Sawai et al., 2005) that the pre-edge peak in anatase (Fig. 2) is

induced by symmetric and antisymmetric dq terms (no dd and

qq contributions).

There is interesting physics behind the antisymmetric dq

terms: they relate to a local chirality of the Fe atoms. Indeed,

two atoms per unit cell have right-hand environments whereas

the two others, related to the first two by inversion, possess

left-hand environments. If there was only one sort of atom, say

right-hand, then the dq terms would lead to circular dichroism

but, in the real structure, this dichroism is exactly compen-

sated by the other sort of atom. Only the ‘forbidden’ reflec-

tions allow for detecting the right–left difference between the

two kinds of atoms whereas the conventional X-ray optical

activity is rather difficult to observe (Siddons et al., 1990;

Alagna et al., 1998; Goulon et al., 1998, 2000).

Another situation with vanishing dd contribution arises

when atoms are in special positions of high site symmetry

(Templeton, 1998), as for instance in the crystal structure of

germanium with Ge site symmetry �443m. In this case,

‘forbidden’ reflections 0kl, kþ l ¼ 4nþ 2, can be excited

owing to the tetrahedral anisotropy described by the

symmetric third-rank tensor f
dqs
jmn with only one type of non-

zero component: f dqs
xyz ¼ f dqs

yxz ¼ f dqs
yzx f dqs

zyx ¼ f dqs
zxy ¼ f dqs

xzy (Temple-

ton & Templeton, 1994). The corresponding structure factor is

given by

bFFð0kl; kþ l ¼ 4nþ 2Þ ¼ 8f dqs
xyz

2�

a

0 l k

l 0 0

k 0 0

0
@

1
A: ð15Þ

Templeton & Templeton (1994) observed the azimuthal

dependence of the reflections 280 and 482 in accordance with

equation (15). However, later it was found that exactly the

same dependence could be induced by thermal motion of

atoms even in the dd approximation (see x8) and the latter

effect is predominant. Templeton & Templeton (1994)

observed similar reflections, 140 and 340, in K2CrO4 (space

group Pnma), however their temperature dependence has not

yet been studied. Fig. 2 shows the dq effect in the pre-edge

peak of a TiO2 anatase crystal (space group I41=amd, site
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Figure 4
The azimuthal angle dependence of the reflection 111 in hematite at the
pre-edge peak energy E = 7105 eV (Kokubun, Watanabe et al., 2005). The
threefold symmetry of the plot is evidence for the local chirality of the
Fe atoms.



symmetry �44m2). It is shown (Kokubun, Sawai et al., 2005) that

this peak is caused by both a symmetric and an antisymmetric

dq contribution, dd and qq transitions are not involved. Here,

it should be noted that the Ti site symmetry allows also for the

thermal-motion-induced dd effect but thermal motion cannot

simulate an antisymmetric dq contribution as considered

above for hematite.

In the case that symmetry simultaneously allows for dd, dq

and/or qq contributions for the same reflection, the different

contributions can be distinguished by polarization, azimuthal

and spectral behaviour. For the Fe-atom pre-edge peak,

evidence for the dq effect was found this way in Fe3O4 (Kirfel

et al., 1995a; Fischer, Krane & Kirfel, 1996; Garcı́a et al., 2000);

moreover, comparing the measurements of different reflec-

tions, Kanazawa et al. (2002) have found some dq resonance

contributing even into the main peak. Kokubun, Nagano et al.

(1998) studied the azimuthal dependence of the energy

spectra of the pre-edge peaks in pyrite and attributed the

peaks to the qq effect.

8. Thermal-motion-induced and defect-induced
reflections

A new dimension in the field was added in 1999 with a

publication by Dmitrienko, Ovchinnikova & Ishida, who

contended that the excitation of ‘forbidden’ reflections can

also be induced by thermal vibrations [these will be referred to

as thermal-motion-induced (TMI) reflections]. Later, a similar

effect was also predicted for randomly distributed point

defects (Dmitrienko & Ovchinnikova, 2000). Owing to

thermal motion, each atom continuously experiences dis-

placements from its average position into places with lower

symmetry (in general with point symmetry 1) so that,

according to the adiabatic approximation, the electron states

are temporarily distorted to a symmetry lower than that of the

atom’s average site. Since the atomic vibrations are of the

order of 104 times slower than the scattering process, the

radiation ‘snapshots’ an ‘edge-atom’ scattering-factor tensor

that is no longer constrained to the higher symmetry of the

time-averaged atom position. In order to assess the properties

of a ‘forbidden’ reflection, it is therefore necessary to calculate

the structure-factor tensor as an average over all temporary

configurations by adding to the scattering-factor tensor for the

atom at rest a term that accounts for the displacements,

relative to each other, of the ‘edge atom’ itself and its nearest

neighbours. This is achieved by introducing a correlation

function which contains the eigenfrequencies and eigenvectors

of optical phonons so that the structure factor becomes

sensitive to phonon properties (even in the harmonic

approximation).

The experimental validation of the TMI concept necessarily

requires the observation of a temperature-dependent

‘forbidden’ reflection intensity that cannot be explained by the

Debye–Waller factor of the crystal structure. A perfect

candidate was found in germanium for which Ið006Þ was

expected to decrease with increasing temperature if solely

caused by a dq transition. Two independent experiments

(Kokubun et al., 2001; Kirfel et al., 2002b) revealed exactly the

opposite: between 30 and 700 K, Ið006Þ increased by a factor

of 30 (at the resonant energy). This anomalous temperature

dependence was initially described in terms of a relatively

simple autocorrelation model but significant improvement was

later obtained upon introducing cooperative vibrations of the

atoms. The spectral and polarization properties of the 006

reflection at ambient conditions were studied in detail by

Detlefs (2004).

While in germanium in spite of the large intensity gain the

form of the resonance, i.e. the energy spectra, did not signifi-

cantly change with temperature, the observed variation of the

‘forbidden’ reflection 115 in hexagonal wurtzite-type ZnO

(space group P63mc) was found to be accompanied by changes

in the resonance profile curves (Collins et al., 2003). These

observations can be rationalized in terms of an interference of

the dd TMI effect with an electronic dq transition which has

very different energy profiles. Collins et al. (2003) were able to

model the complicated pattern of Ið115; E;TÞ by a function

IðE;TÞ ¼ AðEÞ exp i�ðEÞ þ BðEÞ coth
h- !0

2kT

� �����
����2expð�2MÞ;

which describes the effects of a complex solely energy

dependent transition structure factor and a term that is both

energy and temperature dependent for isotropic atomic

displacements corresponding to a low-lying phonon branch

with characteristic frequency !0. Inclusion of the possibility

that both terms suffer the same thermal ‘fall-off’ caused by the

Debye–Waller factor [expð�2MÞ] allowed the observations to

be remarkably well fitted from 59 to 800 K.

Thus, the phenomenological fitting gives a good explanation

of the temperature effects, both for Ge and for ZnO, but it

cannot describe the energy dependence. In recent contribu-

tions (Oreshko et al., 2004; Dmitrienko et al., 2004; Ovchin-

nikova, Dmitrienko et al., 2005; Ovchinnikova, Oreshko et

al.2005), numerical calculations were performed with the help

of the codes developed by Vedrinskii et al. (1992), Joly (2001)

and Taillefumier et al. (2002). These calculations, which allow

for quantitative fitting of the experimental data, show the high

sensitivity of ASF to atomic displacements. For Ge, such

numerical calculations gave a satisfactory modelling of the 006

forbidden-reflection spectrum, its thermal growth, the be-

haviour of the line width and peak position at different

temperatures. In ZnO, it was shown that a more detailed

analysis based on three different phonon branches may be

needed for a better description of the energy spectra at

different temperatures.

In view of the results obtained in the past three years, it

seems justified to infer that TMI anisotropy is a rather general

phenomenon because there is no reason why it should be

absent in other structures. TMI can, for example, be the reason

for the different temperature dependencies of the ‘forbidden’

reflections 100 and 300 on one hand and the allowed 200 on

the other as observed in a low-temperature study on cuprite

(Kirfel & Krane, 1999). An obvious growth of the 002

reflection intensity of magnetite has been observed by Subı́as,
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Garcı́a et al. (2004) in the temperature range from 300 to

900 K. Thus, a full characterization of the origin and nature of

a ‘forbidden’ reflection requires measurements of the intensity

dependence on not only energy and azimuthal setting but also

temperature. For the azimuthal behaviour, single-crystal

diffraction is an indispensable prerequisite, but studies of the

other dependencies may be alleviated by using powder

samples provided the reflections of interest are not contami-

nated by overlapping. This possibility has been tested in an

early experiment on cuprite (Kirfel, Eichhorn & Wroblewski,

1988).

9. Conclusions

Summing up, the field of resonant scattering with emphasis on

studying ‘forbidden’ reflections as sensitive probes of the

absorbing atom’s environment and partial structure has

gained new life with the postulation and proof of the TMI

anisotropy of resonant scattering. This is because the phonon

time scale is so large that X-ray diffraction ‘sees’ temporarily

distorted electronic states as stationary ones.

One of the key problems is the experimental determination

of ‘forbidden’ reflections and the local anisotropy on an

absolute scale because the multiple-wave solution of the phase

problem is extremely time consuming. In principle, this aspect

of information about local anisotropy of resonant scattering

can be obtained from a structure analysis including the energy

dependence of the non-forbidden reflections. This method has

been developed and widely used by Templeton & Templeton:

NaUO2(C2H3O2)3, space group P213 (1982); K2PtCl4,

P4=mmm (1985b); C6H12N2O4Se (P43212) (1988); LiIO3

(P6322) (1989a); C16H14BrNO (P�11) (1995); and it is even

feasible to distinguish the resonant scattering of the same

element in non-equivalent sites, as in Cs2[AuCl2][AuCl4]

(Wilkinson et al., 1995) and in NdNiO3 (Lorenzo et al., 2005).

This method was called DAFS (diffraction anomalous fine

structure), see, for example, a survey of Hodeau et al. (2001).

As a possible further development of the DAFS method, it

would be particularly interesting to use an appropriate

polarization analysis technique, e.g. to measure allowed

reflections with crossed polarizers (in �-to-� or �-to-� mode).

However, since some tensor contributions to ASF can be

determined only from ‘forbidden’ reflections, their investiga-

tion is still indispensable; an example is the third-rank-tensor

contribution in Ge. Especially interesting would be the

application of this technique to biological molecules; for

recent developments see the paper of Bricogne et al. (2005).

Another key problem is the access to synchrotron radiation

because the experiments are rather time consuming, particu-

larly in the initial steps of establishing the resonance(s),

proving the excitation(s) of ‘forbidden’ reflections and opti-

mizing the experimental set-up. Owing to limited beam times,

it is often impossible to use a successfully working set-up for a

time sufficient to obtain more and/or higher-quality data or to

tackle open questions. Instead, in each experimental session,

valuable time is spent in the set-up stage, which could be saved

were a longer-lasting beam-time allocation available. From a

practical point of view, this explains to a great extent the

relatively slow progress in the field.
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