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lytic-like protease.  In contrast, the high-resolution crystal structures 
of another prokaryote serpin, tengpin, reveals that the serpin domain 
of this molecule folds spontaneously and rapidly to most stable (i.e. 
relaxed) conformation.  This is an exciting result, since tengpin 
represents the first serpin identified to date that obeys Anfinsen’s 
conjecture. Furthermore, the X-ray crystal structures of tengpin 
reveals the structural basis for a novel mechanism for loop-C-sheet 
serpin-polymerisation.   Analysis of the structural data provides 
striking insight into the mechanism of serpin metastability and the 
structural basis for serpin polymerisation. 

[1] a) Irving J.A., et al., Structure 2003; b) Fulton K.F., et al., J Biol Chem,
2005. 
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Halogen bonding is an efficient tool for self-assembling halo-
perfluorocarbons (PFC) and hydrocarbons (HC) [1]. Its particular 
ability to control spontaneous resolution in hybrid PFC-HC systems 
has been discovered only recently [2]. Up to now we observed 
spontaneous resolutions in four cases affording chiral cocrystals, 
space group P212121. Three of them involved long-chain iodo-PFC’s 
(C8-C10) with either QUATS or N,N,N’,N’-tetramethyl-p-
phenylendiamine as bases. Their different features with regard to the 
segregation behaviour and the conformation of the PFC chains will be 
outlined. The X-ray structure of a chiral alkali halide complex 1
(Figure) involving a tripodand will also be presented. 

[1] Metrangolo P., Neukirch H., Pilati T., Resnati G., Acc. Chem. Res., 2005, in 
press. [2] Neukirch H., Guido E., Liantonio R., Metrangolo P., Pilati T., 
Resnati G., Chemm. Commun., 2005, 1534. 
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A reliable determination of the Flack parameter [1] for structures 
of organic molecules, containing only the elements H, C, N, and O 
usually fails. The reason for this is the very weak anomalous signal 
obtained from the light atoms [2]. Recently we have introduced 
invarioms [3] and here we try to improve the absolute structure 
determination by replacing the independent atom model with the 
aspherical invariom scattering model. The determination of the Flack 
parameter was included in the program XDLSM [4]. Alternatively, its 
calculation has been attempted via a hole-in-one procedure. A precise 

data set on a steroid compound was collected using copper radiation 
and CCD detection, and first results are reported. 

[1] Flack H. D., Acta Cryst., 1983, A39, 876. [2] Flack H. D., Bernardinelli G., 
J. Appl. Cryst., 2000, 33, 1143. [3] Dittrich B., Koritsanszky T., Luger P., 
Angew. Chem. Int. Ed.,2004, 43, 2718. [4] Koritsanszky T., Richter T., Macci 
P., Gatti C., Howard S., Mallinson P.R., Farrugia L., Su Z.W., Hansen N.K., 
XD, Freie Universitat Berlin, Berlin, 2003.
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Can optical rotatory power, a phenomenon typically associated 
with chirality or handedness, be used as a contrast mechanism in 
microscopy? Chiroptical imaging techniques have not heretofore been 
implemented. This neglect has created a hole in the science of 
molecular chirality, particularly with respect to complex, 
heterogeneous, organized media. We built a circular extinction 
imaging microscope to examine chromophores in anisotropic hosts. 

With this instrument, images 
of crystals were made via 
two mechanisms, intrinsic 
circular dichroism (CD) and 
a new effect that was 
discovered and called 
anomalous circular ex-
tinction (ACE). Through 
these new chirality "spec-
tacles" we have observed left 
and right handed twinning in 
crystals of a dye that was 

masked by all previous methods of analysis, Figure 1 [1]. However, 
when turned onto unusual dyed crystals, we observed optical effects 
that mimic those due to chirality. 

[1] Claborn K., Puklin-Faucher E., Kurimoto M., Kaminsky W., Kahr B., J. 
Am. Chem. Soc., 2003, 125, 14825-14831. 
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We present the nonlinear optical properties of different thin film 
films of chiral (conjugated) polymers.  These systems exhibit large 
magnetic dipole nonlinearities, in some cases larger than the effects 
linked to electric dipole interactions.  The nonlinear optical effects 
observed indicate the links between magnetic hypersusceptibilities 
and chirality. We also investigated supramolecular assemblies of 
helicenes where the nonlinear optical effects are exclusively described 
by electric dipole interactions.  In the crystalline liquid state the 
chirality, as expressed by nonlinear CD effects, of these helicene 
assemblies could be switched by the application of an electric field. 
Keywords: polymers, chirality, nonlinear optics 
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In the “neanderthal” age of crystallography, a light atom non-
centrosymmetric crystal was usually relegated to the skeleton 
collection of unsolvable structures. The development of MULTAN 

1

Figure 1. Circular Dichroism in 1-8-
Dihydroxyanthraquinone.
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and its increasingly sophisticated successors has made consideration 
of centrosymmetricity essentially a non-issue in structure solution and 
refinement.

Nevertheless, the question of the relationship between molecular 
symmetry and crystallographic symmetry remains one of considerable 
importance, especially with regard to crystal engineering and the 
interest in engineering non-centrosymmetric crystals, for instance for 
the generation crystals exhibiting non-linear optical effects.  

Kitaigorodskii [1] claimed that centrosymmetric molecules 
essentially universally crystallize in centrosymmetric space groups. 
However, many molecules lacking a center of symmetry also tend to 
crystallize in centrosymmetric space groups, e.g. P21/c, P1-bar, C2/c, 
etc. While chiral molecules must crystallize in chiral space groups, it 
is not clear why some achiral molecules also do so. In the case of 
polymorphic systems some members may be centrosymmetric and 
others non-centrosymmetric, providing clues as to how one might 
achieve a desired either one of the situations. 

This presentation will include a number of examples from our 
own work, in addition to some possible strategies for the generation of 
centrosymmetric or non-centrosymmetric structures. 

[1] Kitaigorodskii A.I., Organic Chemical Crystallography, Consultants 
Bureau, New York, 1961. 
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This paper discusses thermodynamic and kinetic influences on 
nucleation processes of polymorphic crystalline systems in bulk and 
emulsion states in comparative ways.  Three main characteristics may 
be revealed in the crystallization processes in emulsion droplets: (1) 
reduction in nucleation rate caused by thermodynamic and kinetic 
effects, (2) interfacial crystallization caused by molecular interactions 
between interfacial membrane and the solute molecules, and (3) 
droplet-droplet interactions of two kinds; dilution of solute/solvent 
molecules which are slightly soluble in the continuous phase, and 
partial coalescence of the particles after crystallization.  Based on 
recent experimental work of melt crystallization of long-chain 
lipophilic materials in oil-in-water emulsion droplets, we discuss the 
polymorphic crystallization behavior related to the reduction in 
nucleation rate and the interfacial crystallization.   
Keywords: polymorphism, nucleation kinetics, emulsion 
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Investigations of crystal polymorphism are usually conducted 
early in drug development to optimize the physical properties of a 
pharmaceutical solid.  Although the thermodynamically most stable 
crystal form is generally selected for a drug product, controlling 
polymorph appearance must be accomplished through careful 
evaluation of both thermodynamic (tendency toward the formation of 
more stable polymorphs) and kinetic parameters (which lead to the 
formation of metastable polymorphs) in the crystallization process.  
The first step in designing a crystallization process should be to 
evaluate the thermodynamic stability relationship(s) (monotropy or 
enantiotropy), i.e., free energy differences ( G), between the 
polymorphs as a function of temperature.  A number of tools 
(including, but not limited to, DSC analysis of pure and eutectic 

melting, solubility, intrinsic dissolution, solution calorimetry and 
slurry bridging) can be used collectively to assess G over a wide 
range of temperatures.  While qualitative approaches, which yield the 
sign of G only, are useful for assessing the risk of unwanted phase 
transformations, quantitative studies allow for the thermodynamic 
transition temperature of enantiotropic polymorph pairs and 
differences in important physical properties (solubility, intrinsic 
dissolution rate) to be predicted.  A number of factors, including 
structural similarities between crystal polymorphs, comparable 
thermodynamic stability, ease of crystal nucleation, and overlap of 
occurrence domains (metastable zones), have been shown to 
contribute to poor polymorph selectivity during crystallization.  All of 
these factors must be considered in implementing strategies to control 
polymorph appearance. 
Keywords: polymorph, crystallization, stability 
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Although crystal structure prediction from first principles is now 
less controversial and more mainstream than when the first 
applications were reported in the early 1990’s, it is debatable whether 
it is possible to reliably predict the observable polymorphs of simple 
organic molecules. 

In this contribution, the theory of crystal structure prediction will 
be reviewed and illustrated with recent application examples (e.g., [1, 
2]), including the three so-called ‘blind tests’ organised by the 
Cambridge Crystallographic Data Centre [3].   

Despite significant progress since the early 1990’s, many 
challenges still remain, such as the treatment of flexible molecules and 
the accurate description of polymorphic stability [4].  Related areas of 
research that merit particular attention are the simulation of crystal 
nucleation and the consideration of kinetics in crystal growth 
simulations [5].  The latest research aims to address the fundamental 
question why certain polymorphs crystallise and grow, whereas other 
structures, which are predicted to be thermodynamically stable, cannot 
be obtained experimentally. 

[1] Leusen F.J.J., Crystal Growth & Design, 2003, 3, 189–192. [2] Price S.L., 
Advanced Drug Delivery Reviews, 2004, 56, 301–319. [3] Motherwell W.D.S., 
et al., Acta Crystallographica B, 2002, 58, 64 –661. [4] Brodersen S., Wilke S., 
Leusen F.J.J., Engel G.E., Physical Chemistry Chemical Physics, 2003, 5,
4923–4931. [5] Bennema P., et al., Crystal Growth & Design, 2004, 4, 905-
913. 
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Pharmaceuticals are perhaps the most valuable materials known to 
mankind and there are important intellectual property, regulatory and 
efficacy implications if one is able to discover new compositions of 
matter for active pharmaceutical ingredients (API’s).  Emphasis will 
be placed on pharmaceutical co-crystals,[1] a long known but little 
explored alternative to the three accepted forms of API (polymorphs, 
solvates, salts).   

The presentation will detail how one can exploit the principles of 
crystal engineering to design and generate novel pharmaceutical co-
crystal phases that contain one or more API’s.  Examples to be 
presented will include well-known API’s such as aspirin, ibuprofen, 
carbamazepine and piracetam.  CSD surveys and structural and 
physical studies on new co-crystals will be presented in order to 
address the relative stability of pharmaceutical co-crystal phases with 


