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This article is a roadmap to a systematic calculation and tabulation of tensorial

covariants for the point groups of material physics. The following are the

essential steps in the described approach to tensor calculus. (i) An exact

specification of the considered point groups by their embellished Hermann–

Mauguin and Schoenflies symbols. (ii) Introduction of oriented Laue classes of

magnetic point groups. (iii) An exact specification of matrix ireps (irreducible

representations). (iv) Introduction of so-called typical (standard) bases and

variables – typical invariants, relative invariants or components of the typical

covariants. (v) Introduction of Clebsch–Gordan products of the typical

variables. (vi) Calculation of tensorial covariants of ascending ranks with

consecutive use of tables of Clebsch–Gordan products. (vii) Opechowski’s magic

relations between tensorial decompositions. These steps are illustrated for

groups of the tetragonal oriented Laue class D4z � 4z2x2xy of magnetic point

groups and for tensors up to fourth rank.

1. Symmetry and material properties

The physical properties of materials are in a certain manner

connected with their symmetry. This relationship between

symmetry and properties is expressed by principles that bear

the names of Neumann (1885), Curie (1884a,b) and, in the

russian literature, also of Minnigerode (1887). Neumann’s

principle is usually applied for consideration of tensor prop-

erties in a form that says that the property must be invariant

under symmetry operations of the material. Though the state-

ment is true, it can be easily misinterpreted. Its weakness

becomes clear if we realize that the symmetry of each par-

ticular property itself contributes to our knowledge of the

symmetry of the material. Usually we assume that our material

is an ideal crystal and we know the symmetry from measure-

ments of its structure, though at the time when the principle

was formulated the symmetry was deduced from the external

shape of monocrystals. As a classical example of misunder-

standing, we can name the concept of the cubic ferromagnet,

which appears in the older literature on magnetic garnets.

X-ray analysis of these crystals leads to the conclusion that

their symmetry is cubic, which is incompatible with the exis-

tence of magnetism. More precise measurements later showed

that the structure of these crystals in the magnetic state

slightly deviates from cubic due to magnetostriction.

To avoid misinterpretations of this type, it is worth realizing

that conclusions about symmetry can be made from

measurements of any of the properties and that the

measurement of any property may give incomplete informa-

tion about the symmetry. It is probably best to formulate the

relationship between properties and symmetry as follows.

If, by measuring any property of a crystal, we find that the

symmetry of this property is a certain point group G, then the

symmetry of the crystal cannot be higher than G.

In other words, if we measure different properties, including

the structure, we can conclude from such measurements only

that the symmetry of the crystal (or other material) is not

higher than the intersection of the symmetries of these

properties. On the other hand, the symmetry of a certain

property can be higher than the symmetry of the material.

Again we have the classical example of the optical indicatrix

(or dielectric constant) whose symmetry is the maximal cubic

group Oh ¼ m�33m in crystals of any lower cubic symmetry.

The origin of such discrepancies as the case of the cubic

ferromagnet lies in the fact that the precision of any physical

measurement is limited so that we are never able to say about

a measurement in physics that it is exact. External shape and

structural analysis are usually sufficient to draw conclusions

about symmetry but we cannot consider them as absolute

criteria as shown by the example of the cubic ferromagnet.

With this in mind, we may, however, use the usual routine to

connect tensorial properties with the symmetry. There is

nothing wrong in concluding that the allowed tensor proper-

ties of a crystal are those that are invariant under its point
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symmetry G. If, contrary to this, we find experimentally some

tensorial property that is not invariant under this group, we

conclude that the actual symmetry must be lower. As long as

we are not able to detect such deviation, we may safely assume

that the symmetry is G.

Another point of our consideration is connected with the

notion of the point group. According to terminology that is

accepted by International Tables for Crystallography, the term

point group G means the factor group of the space group G by

its translation subgroup TG and this group acts on the vector

space Vð3Þ associated with the Euclidean space Eð3Þ. Since

crystals (and other materials) are objects in Eð3Þ, the point

group in this meaning cannot technically be applied to them.

The main objectives of our considerations are the ferroic phase

transitions, i.e. transitions denoted by G + fFig in which the

point symmetry of a crystal decreases from G to one of the set

of conjugate subgroups Fi (or to a normal subgroup H) and, as

a result, some new tensor properties onset which were not

allowed by the parent symmetry G (cf. Kopský, 2006b, here-

after denoted paper 2). Point groups are practically used in all

papers concerning these transitions which is in contradiction

with their interpretation as factor groups of the space groups.

There are two possible models and interpretations.

1. We assume that the crystal is small so that we can

represent it as a point P in the space Eð3Þ. In this case, the

symmetry of the parent phase is to be considered as the site

point group GP and the symmetry of an individual domain in

the ferroic phase as that of one of the site point groups FPi.

This, however, contains an assumption that the whole crystal

in the ferroic phase has the same symmetry and hence this

approach can be applied only to a single domain state.

2. We adopt the model of an ideal crystal that fills the whole

space and consider it in the continuous approximation. In this

case, we should consider the parent symmetry as the point-like

space group VG (Kopský, 2006c) and the ferroic symmetries as

the point-like space groups VfFig. Instead of tensors, we

should consider homogeneous tensor fields on which these

groups act. As long as we are interested only in conclusions

about new tensor properties in ferroic states, we may abbre-

viate our results by considering point groups and tensors,

bearing the actual meaning in mind. However, once we start

studying the distinction of domain pairs and the properties of

domain walls, we have to switch our language to that of point-

like space groups and tensor fields. The symmetries of domain

walls should then be interpreted as the point-like layer groups

and the problem to be solved is to find the changes of domain

fields as we go from one domain to the other across the

domain wall.

As always in applications of group theory, symmetry can

predict only which effects are allowed but not their magnitude.

Voigt (1910) was the first to calculate allowed tensor proper-

ties and his work was followed by the publication of numerous

methodical papers. Nowadays information concerning allowed

tensor forms is available in several recognized textbooks of

which we name Nye (1957), Wooster (1973), Sirotin & Shas-

kolskaya (1975), Shuvalov (1988), magnetic properties are

considered by Birss (1964) and the last but not least source is

the very recent Vol. D: Physical Properties of Crystals of

International Tables for Crystallography (2003), where refer-

ences to the original literature are also given. The methods of

calculation such as ‘direct inspection’ are close to a ‘brute

force’ use of linear algebra. Consideration of group

isomorphisms, direct products with inversions together with

tensor parities facilitates a more systematic approach.

The material for this paper goes back to rather old inves-

tigations by the author which resulted in group-theoretical

techniques tailored for calculation of tensorial and polynomial

bases of ireps (irreducible representations) and of their use in

consideration of ferroic phase transitions. These investigations

were motivated by the theory of structural phase transitions in

which we need to know tensorial bases of ireps of the parent

groups. For tensors up to second rank such bases were given

by Callen (1968) and Callen et al. (1970). The first attempt to

calculate these bases for higher ranks by Janovec et al. (1975)

was based on the tedious method of projection operators

(Tinkham, 1964) and was motivated by the need to find bases

for all nonmagnetic ferroic phase transitions.

Our approach described below in detail is based on the

method of Clebsch–Gordan products in terms of standard

typical variables, which are representatives of all quantities

that transform in a well defined way under the action of

considered groups (Kopský, 1976a,b). By use of this method,

we derived tensorial covariants (bases of irreducible repre-

sentations) for tensors up to fourth rank (Kopský, 1979a) for

nonmagnetic cases and we have shown how to extend the

results to magnetic groups and properties (Kopský, 1979b).

Later we realized that the calculations are drastically simpli-

fied by using relations to which we gave the name

Opechowski’s magic relations (Kopský, 2006a) in honour of

the late Professor Opechowski who inspired this line of

reasoning by observing a certain relationship between the

form of tensors of the same intrinsic symmetry but of different

parities in different magnetic point groups (Opechowski, 1975;

see also Ascher, 1975). This relationship was explained by

Kopský (1976c) and used by Grimmer (1991) to relate forms

of different tensors in different groups. We shall close this

paper with an example of the decomposition of related tensors

in related groups.

Our latest results concern the distinction of domain states in

their tensor properties which is particularly applicable to the

newly developing subject of domain engineering. Experience

with these calculations has shown that it is desirable to

introduce and fix standard choices and symbols of point

groups and of their irreducible representations. Our main

philosophy is that even the symbols should bear as much

information as possible. None of the existing notations,

including those used originally by this author, meets the

requirements of consistency and transparency of existing

relations to the same extent as the standards proposed in this

work.

A complete and unified system of symbols for representa-

tive point groups and typical variables was used for the deri-

vation of the tables which describe symmetry descents in terms

of classical point groups. These tables are now available in
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printed form (Kopský, 2001) and the whole scheme, supple-

mented by exact tables of equitranslational subgroups of the

space groups, is the main subject of a software supplement

GI ?KoBo-1 (Group Informatics, release 1) to Vol. D of

International Tables for Crystallography (Kopský & Boček,

2003). These two sources also contain a comparison of our

symbols of symmetry operations and of ireps with those used

by other authors. From the comparative tables of notations,

one can really see the necessity to introduce our own,

internally compatible, standard notation.

The paper is divided into two parts. In the current part, we

shall describe the scheme that facilitates the decomposition of

tensors into tensorial covariants (bases of ireps). It will be

shown in the second part how to utilize the results for the

analysis of tensorial properties of multidomain systems.

2. Introduction to our standard notation for specific
point groups

Tensor properties are usually expressed with reference to a

certain orthonormal (Cartesian) basis ðex; ey; ezÞ of the vector

space Vð3Þ. It is therefore also necessary to specify the

orientation of the point group G to consider its action on any

given tensor. Once the orientation of a point group G is

specified, the space of its tensorial invariants (and hence the

allowed form of tensors) is unambiguously determined. To

define unambiguously the decomposition of tensors into

tensorial covariants, it is also necessary to specify matrix ireps

of the point group G. This will be done in x6. Here we begin

with the specification of symbols for symmetry operations with

reference to the Cartesian basis.

Group elements: It is sufficient for our purposes to consider

only the elements of specifically oriented groups of the

geometric classes Oh �m�33m and D6h. For the group Oh, we

choose the natural orientation where the fourfold axes are

oriented along the basis vectors ðex; ey; ezÞ of the Cartesian

system. For the group D6h � 6z=mzmxmy, we choose one of the

twofold axes along the vector ex and the hexagonal axis along

the vector ez. Since there is no possibility of misunderstanding,

we shall use the same symbols for the cubic groups and

Schoenflies symbol for the group D6h as for the corresponding

geometric classes. Let us observe that the two groups in the

above-mentioned orientations have in common exactly the

group D2h �mxmymz for which we again use the same

Schoenflies symbol as for the whole geometric class.

The elements of these two groups are denoted by symbols

that shall be further referred to as the Standard notation. The

principle of this notation is quite commonly used in the

literature and it also coincides with the principle on which the

recent proposal of a nomenclature in higher dimensions

(Janssen et al., 2002) is based. Rotations about axes of angles

�, 2�=3, �=2 and �=3 in a counterclockwise direction are

denoted by numbers 2, 3, 4 and 6 with subscripts indicating the

positive direction of the axis according to the following

correspondence.

Orientations in the cubic group:

Orientations in the hexagonal group:

Mirrors are denoted by a common symbol m with the

subscript of the twofold axis orthogonal to it. An overbar on

the numbers �33, �44 and �66 means a rotoinversion, i.e. the

combination of rotation with space inversion; the subscript

again denotes the positive direction of the axis. The symbols

we use throughout for proper rotations are also described

visually in Figs. 1(a) and 1(b) . We use the symbol e for the unit

element and i for the space inversion (symbols 1 and �11 are not

acceptable in view of the clash with their meaning in

Hermann–Mauguin symbols).

Magnetic point groups contain elements combined with the

‘magnetic inversion’ e0 (we avoid the term ‘time inversion’,

which may lead to misinterpretations). We follow the common

consensus to distinguish these elements by a prime, so that

g0 ¼ ge0 ¼ e0g. Combination of the space and magnetic inver-

sion is denoted by i 0 ¼ ie0 ¼ e0i. Again we avoid the use of

symbols 10 and �11
0
, which are reserved for Hermann–Mauguin

symbols.
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Symbols used for proper rotations



Standard orientations: It is necessary and sufficient to

choose just one specifically oriented group from each

geometric class as a representative of the parent point G in the

consideration of ferroic phase transitions. For cubic groups, we

use the same orientation as for the cubic group Oh �m�33m. For

groups of the tetragonal class and of the hexagonal family, we

use the orientation in which the main axis is directed along the

vector ez, one of the auxiliary axes along the vector ex. We

introduce, however, three standard orientations for the

monoclinic geometric classes C2h, C2, Cs, three for the

orthorhombic geometric class C2v, and two standard orienta-

tions for groups of geometric classes D2d, D3, C3v, D3d and D3h.

There are two reasons for the extension of the choice:

(i) standard orientations of space groups of these geometric

classes correspond to several standard orientations of their

point groups;

(ii) in systematic tensor calculus, it is suitable to consider

equally all groups of the same oriented Laue class (cf. x8).

Nonstandard orientations: In consideration of ferroic phase

transitions, which constitute the main application of our

information scheme, we are interested in the change of

tensorial properties when symmetry decreases from that of the

parent group G to a low phase symmetry which is one of the

conjugate subgroups Fi or a certain normal subgroup H. The

parent symmetry can always be chosen as a group in one of the

standard orientations and the symmetry of the low phase is

always its subgroup. All groups in standard and nonstandard

orientations are subgroups of the two specific groups

Oh �m�33m and D6h � 6z=mzmxmy.

Embellished Schoenflies and Hermann–Mauguin symbols:

The Schoenflies and Hermann–Mauguin symbols of all specific

groups which may appear as the parent or ferroic symmetries

in nonmagnetic cases are given in Table 1. The groups are

divided into three rows which correspond to subgroups of the

group Oh, D6h and to their common subgroups which are all

subgroups of the group D2h ¼ Oh \D6h. The orientation of

groups is indicated by directional subscripts which are omitted

in cases when misunderstanding is not expected.

The Schoenflies and Hermann–Mauguin symbols for those

specific magnetic point groups that appear in this scheme are

constructed according to the usual and commonly adopted

manner. Schoenflies symbols of groups isomorphic with the

proper rotation group G or of nonparamagnetic groups

isomorphic with the centrosymmetric group Gh are denoted

by GðHÞ or GhðHÞ, where H is the halving subgroup of the

group G or Gh whose elements are not combined with the

magnetic inversion while the elements of the coset to it are

combined with the magnetic inversion. Paramagnetic groups

are those that contain the magnetic inversion explicitly and

they are denoted by primed Schoenflies symbols. In

Hermann–Mauguin symbols, the generators that are

combined with the magnetic inversion are primed, para-

magnetic groups are denoted by the Hermann–Mauguin

symbol of the classical group followed by :10. The symbols are

embellished by directional subscripts as above.

Spectroscopic symbols: The symbols for elements of the

point groups used in the spectroscopic literature are the most

frequent among other systems. They are given e.g. in tables by

Altmann & Herzig (1994) and Bradley & Cracknell (1972).

However, the spectroscopic notation is not internally com-

patible, so that symbols of the same operations differ in

different specific groups and even the two books do not have

completely identical nomenclature. In addition, some of the

symbols clash with Schönflies symbols for the groups. The type

of notation described above as the standard one is also used in

the literature.

3. Oriented Laue classes of magnetic point groups

The magnetic point groups are subgroups of the group

O
0
ð3Þ ¼ Oð3Þ � E0, where E0 ¼ fe; e0g is the magnetic inver-

sion group, e0 is the magnetic inversion that changes the sign of

each of the magnetic vectors, i.e. the magnetic field H, the

magnetic induction B and the magnetization M. Since the

group Oð3Þ itself is a direct product SOð3Þ � I, where

I ¼ fe; ig is the space inversion, we can express the whole

group O0ð3Þ as

O
0
ð3Þ ¼ SOð3Þ � E0o ¼ SOð3Þ [ iSOð3Þ [ e0SOð3Þ [ i 0SOð3Þ;

where E0o ¼ E0 � I ¼ fe; i; e0; i 0g is the group of all inversions.

Thus the elements of a magnetic group are of the four types:

(i) proper rotations g 2 SOð3Þ, (ii) improper rotations

ig 2 iSOð3Þ, (iii) proper magnetic rotations e0g 2 e0SOð3Þ, and

(iv) improper magnetic rotations i 0g 2 i 0SOð3Þ. To each

magnetic group (including the classical groups), we can assign

a proper rotation group G, which will be obtained if elements

ig, e0g and i 0g are replaced by proper rotation g. Vice versa,

each magnetic group can be derived from such a proper

rotation group by the method of halving subgroups as has

been done in the past in the derivation of both magnetic point

and space groups.

Oriented Laue class of magnetic point groups: If a proper

rotation group G has a certain orientation, then all magnetic

groups derived from it constitute an oriented Laue class of

magnetic groups. We shall use only such orientations of parent

magnetic groups of ferroic transitions that belong to a Laue

class of one of the standard orientations of groups of proper

rotations and such orientations of ferroic magnetic groups that

belong to oriented Laue classes of groups from Table 1.

Let us briefly recall how the groups of an oriented Laue

class are generated by the group of proper rotations G. We

apply the method of halving subgroups starting the derivation

from groups of proper rotations to emphasize the combination

of the three inversions i, e0 and i 0 with cosets to halving or

quartering subgroups of these groups. Three cases should be

distinguished.

(i) If the group G of proper rotations has no halving

subgroup, then only the following magnetic groups can be

derived from it: the centrosymmetric group Gh ¼ G� I, the

group GhðGÞ ¼ G� I 0 and the paramagnetic group

G0 ¼ G� E0, isomorphic with it and the centrosymmetric

paramagnetic group G0h ¼ G� E0o.
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(ii) If the group G1 of proper rotations has exactly one

halving subgroup H, so that it can be expressed as H [ gH, we

obtain the following set of isomorphic magnetic groups:

(a) G1 ¼ H [ gH itself, G2 ¼ H [ igH, G1ðHÞ ¼ H [ e0gH

and G2ðHÞ ¼ G [ i 0gH;

(b) the centrosymmetric group Gh ¼ G� I ¼

H [ gH [ iH [ igH, three groups: GhðG1Þ ¼

H [ gH [ i 0H [ i 0gH, GhðG2Þ ¼ H [ igH [ e0H [ i 0gH,

GhðHhÞ ¼ H [ e0gH [ iH [ i 0gH and two paramagnetic

groups G01 ¼ G1 � E0, G02 ¼ G2 � E0;

(c) the centrosymmetric paramagnetic group

G0h ¼ Gh � E0o.

(iii) If the group G1 of proper rotations has three halving

subgroups H2, H3, H4, it can be expressed as

G1 ¼ H [ g2H [ g3H [ g4H;
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Table 1
Schoenflies and Hermann–Mauguin symbols of groups in standard orientations and of their subgroups.

Cubic system Hexagonal family

Oh �m�33m
Th �m�33 O� 432 Td �

�443m
T � 23

Tetragonal system Hexagonal system

D4hz � 4z=mzmxmxy D4hx � 4x=mxmymyz D4hy � 4y=mymzmzx D6h � 6z=mzmxmy

D4z � 4z2x2xy D4x � 4x2y2yz D4y � 4y2z2zx D6 � 6z2x2y

C4vz � 4zmxmxy C4vx � 4xmymyz C4vy � 4ymzmzx C6v � 6zmxmy

D2dz �
�44z2xmxy D2dx �

�44x2ymyz D2dy �
�44y2zmzx D3h �

�66z2xmybDD2dz �
�44zmx2xy

bDD2dx �
�44xmy2yz

bDD2dy �
�44ymz2zx

bDD3h �
�66zmx2y

C4hz � 4z=mz C4hx � 4x=mx C4hy � 4y=my C6h � 6z=mz

C4z � 4z C4x � 4x C4y � 4y C6 � 6z

S4z �
�44z S4x �

�44x S4y �
�44y C3h �

�66z

Trigonal system

Cubic branch Hexagonal branch

D3dp �
�33pmx�yy D3dq �

�33qmx�yy D3dr �
�33rmxy D3ds �

�33smxy D3dx �
�33zmx D3dy �

�33zmy

D3p � 3p2x�yy D3q � 3q2x�yy D3r � 3r2xy D3s � 3s2xy D3x � 3z2x D3y � 3z2y

C3vp � 3pmx�yy C3vq � 3qmx�yy C3vr � 3rmxy C3vs � 3smxy C3vx � 3zmx C3vy � 3zmy

C3ip �
�33p C3iq �

�33q C3ir �
�33r C3is �

�33s C3i �
�33z

C3p � 3p C3q � 3q C3r � 3r C3s � 3s C3 � 3z

Orthorhombic system

Cubic branch Common Hexagonal branchbDD2hz �mx�yymxymz
bDD2hx �my�zzmyzmx

bDD2hy �mz�xxmzxmy D2h �mxmymz D2h0 �mx0my0mz D2h00 �mx00my00mzbDD2z � 2x�yy2xy2z
bDD2x � 2y�zz2yz2x

bDD2y � 2z�xx2zx2y D2 � 2x2y2z D20 � 2x02y02z D200 � 2x002y002z

bCC2vz �mx�yymxy2z
bCC2vxy �mx�yy2xymz

bCC2vx�yy � 2x�yymxymz C2vz �mxmy2z C2vz0 �mx0my02z C2vz00 �mx00my002zbCC2vx �my�zzmyz2x
bCC2vyz �my�zz2yzmx

bCC2vy�zz � 2y�zzmyzmx C2vx � 2xmymz C2vx0 � 2x0my0mz C2vx00 � 2x00my00mzbCC2vy �mz�xxmzx2y
bCC2vzx �mz�xx2zxmy

bCC2vz�xx � 2z�xxmzxmy C2vy �mx2ymz C2vy0 �mx02y0mz C2vy00 �mx002y00mz

Monoclinic system

Cubic branch Common Hexagonal branch

C2hxy � 2xy=mxy C2hx�yy � 2x�yy=mx�yy C2hz � 2z=mz

C2hyz � 2yz=myz C2hy�zz � 2y�zz=my�zz C2hx � 2x=mx C2hx0 � 2x0=mx0 C2hx00 � 2x00=mx00

C2hzx � 2zx=mzx C2hz�xx � 2z�xx=mz�xx C2hy � 2y=my C2hy0 � 2y0=my0 C2hy00 � 2y00=my00

C2xy � 2xy C2x�yy � 2x�yy C2z � 2z

C2yz � 2yz C2y�zz � 2y�zz C2x � 2x C2x0 � 2x0 C2x00 � 2x00

C2zx � 2zx C2z�xx � 2z�xx C2y � 2y C2y0 � 2y0 C2y00 � 2y00

Csxy �mxy Csx�yy �mx�yy Csz �mz

Csyz �myz Csy�zz �my�zz Csx �mx Csx0 �mx0 Csx00 �mx00

Cszx �mzx Csz�xx �mz�xx Csy �my Csy0 �my0 Csy00 �my00

Inversion group Ci �
�11

Common to all centrosymmetric groups
Identity group C1 � 1
Common to all groups



where H ¼ H2 \H3 ¼ H3 \H4 ¼ H4 \H2 ¼ H2 \H3 \H4

is its quartering subgroup. We introduce groups

H2 ¼ H [ g2H, H3 ¼ H [ g3H, H4 ¼ H [ g4H and groups

K2 ¼ H [ ig2H, K3 ¼ H [ ig3H, K4 ¼ H [ ig4H.

(a) All magnetic groups of oriented Laue class G1

isomorphic with the group G1 can now be arranged into a

scheme:

G1 ¼ H [ g2H [ g3H [ g4H

G1ðH2Þ ¼ H [ g2H [ g03H [ g04H

G1ðH3Þ ¼ H [ g02H [ g3H [ g04H

G1ðH4Þ ¼ H [ g02H [ g03H [ g4H

G2 ¼ H [ g2H [ ig3H [ ig4H

G2ðH2Þ ¼ H [ g2H [ i 0g3H [ i 0g4H

G2ðK3Þ ¼ H [ g02H [ ig3H [ i 0g4H

G2ðK4Þ ¼ H [ g02H [ i 0g3H [ g4H

G3 ¼ H [ ig2H [ g3H [ ig4H

G3ðK2Þ ¼ H [ ig2H [ g03H [ ig04H

G3ðH3Þ ¼ H [ i 0g2H [ g3H [ i 0g4H

G3ðK4Þ ¼ H [ i 0g02H [ g03H [ g4H

G4 ¼ H [ ig2H [ ig3H [ g4H

G4ðK2Þ ¼ H [ g2H [ i 0g3H [ i 0g4H

G4ðK3Þ ¼ H [ i 0g2H [ ig3H [ i 0g4H

G4ðH4Þ ¼ H [ i 0g2H [ i 0g3H [ g4H:

(b) We split the groups that are isomorphic with the

centrosymmetric group G1h of this class into two categories:

(I) groups that do not contain explicitly the magnetic inversion

e0; these groups are derived from halving subgroups of the

group G1h; (II) groups that are direct products of nonmagnetic

groups with E0; these are the groups G01 ¼ G1 � E0,

G02 ¼ G2 � E0, G03 ¼ G3 � E0 and G04 ¼ G4 � E0.

Groups derived by combining cosets of halving subgroups

of the group G1h with magnetic inversion can be expressed as

G1h ¼ H [ g2H [ g3H [ g4H [ iH [ ig2H [ ig3H [ ig4H

G1hðH2hÞ ¼ H [ g2H [ g03H [ g04H [ iH [ ig2H [ i 0g3H [ i 0g4H

G1hðH3hÞ ¼ H [ g02H [ g3H [ g04H [ iH [ ig02H [ ig3H [ ig04H

G1hðH3hÞ ¼ H [ g02H [ g03H [ g4H [ iH [ i 0g2H [ i 0g3H [ ig4H

G1hðG1Þ ¼ H [ g2H [ g3H [ g4H [ i 0H [ i 0g2H [ i 0g3H [ i 0g4H

G1hðG2Þ ¼ H [ g2H [ g03H [ g04H [ i 0H [ i 0g2H [ ig3H [ ig4H

G1hðG3Þ ¼ H [ g02H [ g3H [ g04H [ i 0H [ ig2H [ i 0g3H [ ig4H

G1hðG4Þ ¼ H [ g02H [ g03H [ g4H [ i 0H [ ig2H [ ig3H [ i 0g4H

(c) Finally we obtain exactly one group G0h ¼ G� E0o.

In these derivations, we use an imitation of the rules for

Schoenflies symbols of magnetic point groups, so that

subscript h means that Gh ¼ G� I, prime means that

G0 ¼ G� E0 and G0h ¼ G� E0o, while the symbol

GðHÞ ¼ H [ g0H means that magnetic group which is

obtained from the classical group G by combining cosets of its

halving subgroup H with magnetic inversion.

In Hermann–Mauguin notation, the symbols of generators

are primed if the generator is combined with the magnetic

inversion and, if the group is paramagnetic, :10 is added after

the symbol. For the third case, we give, as an example, groups

of the oriented Laue class D4z � 4z2x2xy in Table 2. The

meanings of the symbols in the two columns are connected

with representation theory and will be explained later. The

groups are divided into the following four categories.

(i) Groups isomorphic with the group of proper rotations G.

These can be divided into subsets of magnetic point groups

which are derived from the same classical group. Each element

of a group of such a subset is then of one of the forms: g, ig, e0g,

ie0g. The choice of isomorphisms is again natural, so that each

of such elements is mapped on the element g of the proper

rotation group G which generates the oriented Laue class.

(ii) Groups isomorphic with the centrosymmetric group

Gh ¼ G� I. These are divided into two subsets. (a) Magnetic

groups derived from the centrosymmetric group. These groups

are non-paramagnetic, which means that they do not contain

explicitly the magnetic inversion e0. (b) Paramagnetic groups,

which are direct products of classical groups with the magnetic

inversion group E0 ¼ fe; e0g.

(iii) Centrosymmetric paramagnetic group

G0h ¼ G� I � E0.

Notice that there are only 11 Laue classes of magnetic

crystallographic point groups and hence also of oriented Laue

classes of these groups. Each oriented Laue class is generated

by a certain proper rotation group and contains only three

types of isomorphic groups. A suitable choice of isomorphisms

and of labelling the typical variables leads to a situation in

which it is sufficient to perform calculation of tensorial

covariants and of conversion equations, which is simple but

tedious, only for groups of proper rotations and for tensors of

even parity with respect to space inversion i and magnetic

inversion e0. Analogous tables for other oriented Laue classes

including noncrystallographic classes are available on the

web pages of the MaThCryst group: http://www.lcm3b.uhp-

nancy.fr/mathcryst/.1

4. Vector and tensor representations

Quite generally, the term representation is used for various

homomorphisms of the group G into some general groups of

specific mathematical objects. Point groups themselves are

groups of linear operators on the space Vð3Þ. Their action on

vectors of Vð3Þ induces also their action on various tensor

spaces VðuÞð3Þ. The action of the group on these spaces is

described by matrix representations that assign to each

element of the group a certain matrix with reference to a

certain basis of the space. The transformation properties of

tensors are therefore described by corresponding tensor

representations. Magnetic point groups act on tensor spaces

Vð3ÞðuÞ � f1; �g, where � is a scalar that changes its sign under
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the action of magnetic inversion e0. Below we show how

matrices of tensor representations are derived from matrices

of vector representation.

The vector representation: The point groups are defined as

groups of real orthogonal operators g 2 Oð3Þ acting on the

three-dimensional vector space Vð3Þ ¼ Vðex; ey; ezÞ. We can

say that each point group is its own faithful representation

which is called the vector representation. The corresponding

matrices of the vector representation in the Cartesian

(orthonormal) basis fex; ey; ezg will be denoted by DðVÞðgÞ. For

the purposes of tensor calculus and formulae with summa-

tions, we also use an alternative labelling of vectors and their

components by numbers as follows:

x ¼ xex þ yey þ zez ¼
P3

i¼1

xiei;

where

x ¼ x1; y ¼ x2; z ¼ x3; ex ¼ e1; ey ¼ e2; ez ¼ e3:

The action of the point group G � Oð3Þ on the space Vð3Þ is

defined by

gei ¼
P3

j¼1

D
ðVÞ
ji ðgÞej:

If x 2 Vð3Þ, then the operator g 2 Oð3Þ sends it to a vector

gx ¼
P3

i¼1 xigei ¼
P3

i¼1

P3
j¼1 D

ðVÞ
ji ðgÞxiej ¼

P3
i¼1 x0jej, so that

the coordinates of the new vector in the old basis are

x0i ¼ ðgxÞi ¼
P3

j¼1

D
ðVÞ
ij ðgÞxj:

This corresponds to the convention by which operators are

expressed by square matrices, vectors by column matrices and

the action of an operator g on vector x resulting in vector x0

with coordinates x0i ¼ ðgxÞi is expressed in matrix form by

D
ðVÞ
11 ðgÞ D

ðVÞ
12 ðgÞ D

ðVÞ
13 ðgÞ

D
ðVÞ
21 ðgÞ D

ðVÞ
22 ðgÞ D

ðVÞ
23 ðgÞ

D
ðVÞ
31 ðgÞ D

ðVÞ
32 ðgÞ D

ðVÞ
33 ðgÞ

0
@

1
A x

y

z

0
@

1
A ¼ x0

y0

z0

0
@

1
A:
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Table 2
Groups of oriented Laue class D4z � 4z2x2xy and transformation properties of non-trivial scalars.

Ireps associated with inversions Transformation properties of non-trivial scalars

Class Group i e0 i 0 " � "�

Magnetic point groups, isomorphic with proper rotation group D4 � 4z2x2xy

D4 4z2x2xy �1 �1 �1 x1 x1 x1

D4ðC4Þ 4z20x20xy �1 �2 �2 x1 x2 x2

D4ðD2Þ 40z2x20xy �1 �3 �3 x1 x3 x3

D4ð
bDD2Þ 40z20x2xy �1 �4 �4 x1 x4 x4

C4v 4zmxmxy �2 �1 �2 x2 x1 x2

C4vðC4Þ 4zm0xm0xy �2 �2 �1 x2 x2 x1

C4vðC2vÞ 40zmxm0xy �2 �3 �4 x2 x3 x4

C4vð
bCC2vÞ 40zm0xmxy �2 �4 �3 x2 x4 x3

D2d
�44z2xmxy �3 �1 �3 x3 x1 x3

D2dðS4Þ
�44z20xm0xy �3 �2 �4 x3 x2 x4

D2dðD2Þ
�44
0

z2xm0xy �3 �3 �1 x3 x3 x1

D2dð
bCC2vÞ

�44
0

z20xmxy �3 �4 �2 x3 x4 x2

bDD2d
�44zmx2xy �4 �1 �4 x4 x1 x4bDD2dðS4Þ
�44zm0x20xy �4 �2 �3 x4 x2 x3bDD2dðC2vÞ
�44
0

zmx20xy �4 �3 �2 x4 x3 x2bDD2dð
bDD2Þ

�44
0

zm0x2xy �4 �4 �1 x4 x4 x1

Nonparamagnetic point groups isomorphic with centrosymmetric group D4h � 4z=mzmxmxy

D4h 4z=mzmxmxy ��1 �þ1 ��1 x�1 xþ1 x�1
D4hðC4hÞ 4z=mzm0xm0xy ��1 �þ2 ��2 x�1 xþ2 x�2
D4hðD2hÞ 40z=mzmxm0xy ��1 �þ3 ��3 x�1 xþ3 x�3
D4hð

bDD2hÞ 40z=mzm0xmxy ��1 �þ4 ��4 x�1 xþ4 x�4
D4hðD4Þ 4z=m0zm0xm0xy ��1 ��1 �þ1 x�1 x�1 xþ1
D4hðC4vÞ 4z=m0zmxmxy ��1 ��2 �þ2 x�1 x�2 xþ2
D4hðD2dÞ 40z=m0zm0xmxy ��1 ��3 �þ3 x�1 x�3 xþ3
D4hð

bDD2dÞ 40z=m0zmxm0xy ��1 ��4 �þ4 x�1 x�4 xþ4

Noncentrosymmetric paramagnetic groups isomorphic with centrosymmetric group D4h � 4z=mzmxmxy

D04 4z2x2xy:1
0 �1e �1m �1m x1e x1m x1m

C04v 4zmxmxy:1
0 �2e �1m �2m x2e x1m x2m

D02d
�44z2xmxy:1

0 �3e �1m �3m x3e x1m x3mbDD02d
�44zmx2xy:1

0 �4e �1m �4m x4e x1m x4m

Centrosymmetric paramagnetic group D04h � 4z=mzmxmxy:1
0

D04h 4z=mzmxmxy:1
0 ��1e �þ1m ��1m x�1e xþ1m x�1m



The action of the point group G � Oð3Þ on the space Vð3Þ also

defines the action of this group on spaces of tensors and their

components, on polynomials or, more generally, functions of a

vector x 2 Vð3Þ or even on polynomials or functions of tensors

expressed in terms of their components.

Tensor representations: The vector representation defines

tensor representations as follows. We introduce a space

Vnð3Þ ¼ V ðuÞ, the basis vectors of which are formally written as

ei1i2...in
¼ ei1

; ei2
. . . ; ein

:

A general element of this space is therefore

u ¼
P

i1;i2;...;in

ui1i2...in
ei1i2...in

:

Such an element is called the tensor of rank n and the space

VðuÞ is called the tensor space. The action of the group G and

actually also of the whole orthogonal groupOð3Þ on this space

is defined by the action of its elements on the basis according

to

gei1i2...in
¼

P
j1;j2;...jn

D
ðuÞ
j1j2...jn;i1i2...in

ðgÞej1j2...jn

¼
P

j1;j2;...jn

D
ðVÞ
j1i1
ðgÞD

ðVÞ
j2i2
ðgÞ . . . D

ðVÞ
jnin
ðgÞej1j2...jn

;

so that the matrices of the tensor representation are expressed

through the matrices of the vector representation as follows:

D
ðuÞ
j1j2...jn;i1i2...in

ðgÞ ¼ D
ðVÞ
j1i1
ðgÞD

ðVÞ
j2 i2
ðgÞ . . . D

ðVÞ
jnin
ðgÞ:

Apart from this, we can define an operation of the

symmetric group Sn on this space as the group of permutations

of indices i1; i2; . . . ; in. In this way, we can construct tensors of

various symmetries with reference to the permutation of

indices – the so-called intrinsic symmetries. According to a

general theorem, tensors of a defined intrinsic symmetry

constitute a space that is invariant under the action of the

group Oð3Þ and hence under the point groups G � Oð3Þ. We

define below some tensor spaces of lower orders with

symmetrized indices that are used in physics.

The tensor space is just another linear (orthogonalized)

space on which the group Oð3Þ and its subgroups act. Let us

denote a tensor of a certain intrinsic symmetry by A, the space

of such tensors by VðAÞ and its basis by fe
ðAÞ
i gi2IðAÞ, where i runs

over a certain set of indices IðAÞ. Each index set IðAÞ is

therefore part of the definition of the basis of the tensor space

VðAÞ with reference to which we express the tensor compo-

nents. There exist standard choices of index sets for tensors of

material physics which relate the tensor to a Cartesian coor-

dinate system ðP; ex; ey; ezÞ of the Euclidean space Eð3Þ and

hence to an orthonormal (Cartesian) basis ðex; ey; ezÞ of vector

space Vð3Þ; corresponding bases fe
ðAÞ
i gi2IðAÞ will be referred to

as Cartesian bases of tensor spaces VðAÞ. The general tensor of

the space VðAÞ is expressed as

A ¼
P

i2IðAÞ

Aie
ðAÞ
i ;

where Ai are the Cartesian tensor components. The action of

the group Oð3Þ and of its subgroups G on the space VðAÞ is

given by

gA ¼
P

i2IðAÞ

Aige
ðAÞ
i ¼

P
i;j2IðAÞ

AiD
ðAÞ
ji ðgÞe

ðAÞ
j ;

so that the transformation properties of tensor components

are given by

ðgAÞi ¼
P

i2IðAÞ

D
ðAÞ
ij ðgÞAj;

where D
ðAÞ
ij ðgÞ are the matrices of the tensor representation in

the basis fe
ðAÞ
i gi2IðAÞ. The calculation of these matrices is

actually exactly the procedure we want to avoid.

Why? Well, they are n� n matrices where n is the dimen-

sion of VðAÞ and the dimensions are unpleasantly high; for

example, n ¼ 6 for a permittivity or deformation tensor,

n ¼ 18 for a piezoelectric tensor and n ¼ 21 for an elastic

stiffness tensor.

How? The answer is given by the theory of irreducible

representations which shows how to find the bases in which

the action of the group is expressed in the most simplified

manner.

5. Irreducible representations

Now we consider the action of a group G on a general linear

space VðnÞ which may be one of the tensor or polynomial

spaces. We say that the space VðnÞ is reducible under the

action of the group G if the space contains a proper

G-invariant subspace Vðm1Þ, otherwise we say that the space is

irreducible. We say that the space VðnÞ is decomposable under

the action of the group G if it splits into a direct sum

VðnÞ ¼ Vðm1Þ � Vðm2Þ of G-invariant subspaces Vðm1Þ and

Vðm2Þ, so that each vector x 2 VðnÞ is uniquely expressible as

a sum x ¼ x1 þ x2 of vectors x1 2 Vðm1Þ, x2 2 Vðm2Þ and each

element g 2 G sends a vector x1 2 Vðm1Þ to a vector

gx1 2 Vðm1Þ and a vector x2 2 Vðm2Þ to a vector gx2 2 Vðm2Þ.

If we choose now a basis of the space VðnÞ in such a manner

that m1 of its vectors fe
ð1Þ
1 ; . . . ; eð1Þm1

g constitute a basis of Vðm1Þ,

m2 of its vectors fe
ð2Þ
1 ; . . . ; eð2Þm2

g constitute a basis of Vðm2Þ,

then the matrix form of the action of all elements g 2 G will be

quasidiagonal:

DðVÞðgÞ ¼
DðV1ÞðgÞ 0

0 DðV2ÞðgÞ

� �
:

Decomposability is a stronger property than reducibility [cf.

the action of the point groups on lattices of space groups

(Kopský, 2006c)]. However, in most applications of group

theory to material physics, including our current approach to

tensor calculus, reducibility implies decomposability. This is

why in textbooks we find only, in general, the concept of

reducibility which is handled as if it is decomposability.

The spaces Vðm1Þ, Vðm2Þ may themselves be further redu-

cible and we can continue the procedure of their further

reduction. Eventually we shall arrive at a direct sum

�k
i¼1VðmiÞ of k G-invariant irreducible subspaces V1 ¼ Vðm1Þ,
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V2 ¼ Vðm2Þ; . . . ;Vk ¼ VðmkÞ of dimensions mi,

i ¼ 1; 2; . . . ; k, with bases feð1Þ1 ; . . . ; eð1Þm1
g, fe

ð2Þ
1 ; . . . ; eð2Þm2

g,

fe
ðkÞ
1 ; . . . ; eðkÞmk

g, in which the matrices of all elements g 2 G will

have the quasidiagonal form

DðVÞðgÞ ¼

DðV1ÞðgÞ 0 . . . 0

0 DðV2ÞðgÞ . . . 0

..

. ..
. ..

. ..
.

0 0 . . . DðVkÞðgÞ

0
BBB@

1
CCCA: ð1Þ

Classes of representations and characters: If a group G acts

on the space VðnÞ, then the matrices DðVÞðgÞ that represent the

action of individual elements g 2 G depend on the choice of

the basis fe1; . . . ; eng. A transformation e0i ¼
Pn

j Sjiej to

another basis fe01; . . . ; e0ng leads to new matrices

DðVÞ
0

ðgÞ ¼ S�1DðVÞðgÞS. Two matrix representations related by

this similarity transformation are called equivalent. Matrix

representations of a group G constitute therefore classes of

equivalent representations. To each class of equivalent repre-

sentations, we assign a function on the group G by

�ðgÞ ¼ Tr DðVÞðgÞ, where Tr means the trace of the matrix, i.e.

the sum of its diagonal elements (another symbol in use is Sp

from the German word Spur). This function is called the

character of the representation DðVÞðgÞ and has the following

properties.

1. It does not depend on the choice of the basis of VðnÞ and

hence on the particular matrix form of the representation

because Tr DðgÞ ¼ Tr S�1DðgÞS.

2. Characters are functions of conjugacy classes, i.e. the

elements of the same class Ki have the same character because

Tr Dðfgf�1Þ ¼ Tr Dðf ÞDðgÞDðf Þ�1
¼ Tr DðgÞ.

3. The character of the unit element e equals the dimension

of the representation: �ðeÞ ¼ dim VðnÞ ¼ n. Indeed, the

matrix DðeÞ contains n times number 1 on the diagonal, so that

Tr DðeÞ ¼ n.

4. If the representation is reducible, then the trace of each

matrix DðVÞðgÞ is the sum of traces of the matrices which

appear as blocks in the quasidiagonal form, so that

�ðgÞ ¼
Pk

i¼1 �iðgÞ, where �iðgÞ ¼ Tr DðViÞ.

Characters of irreducible representations: If the group G is

finite then the number of equivalence classes of irreducible

representations (ireps) is finite and equals the number of

conjugacy classes in G, i.e. the number we denoted by jKj. This

means that the number of different character functions for

irreducible representations is also finite. We give them certain

numerical labels � ¼ 1; 2; . . . ; jKj and denote them by ��ðgÞ.
The label 1 is always reserved for the character �1ðgÞ ¼ 1 of

the identity irep. Irreducible characters have certain marvel-

lous properties.

1. They are mutually orthogonal with respect to averaging

over the group G, which means that

1

jGj

X
g2G

��ðgÞ�
�
�ðgÞ ¼ ���; ð2Þ

where ��� is the Kronecker delta, which equals 1 if � ¼ �, 0 if

� 6¼ �, and the asterisk denotes complex conjugate.

2. Any representation of G with a character �ðgÞ is a direct

sum of irreducible representations. The character �ðgÞ is the

sum

�ðgÞ ¼
PjKj
�¼1

n���ðgÞ; ð3Þ

in which n� is the multiplicity (or frequency) with which an

irep of the class �� appears in the representation of the class

�ðgÞ. Using formula (2), we find that the multiplicity equals

n� ¼
1

jGj

X
g2G

�ðgÞ���ðgÞ: ð4Þ

3. Hence the irreducible subspaces VðmiÞ can be classified

by the ireps of the group G. We give them accordingly labels �,

which specify the class of the irep by which the subspace

transforms, and labels a ¼ 1; 2; . . . ; n�, which label individual

subspaces belonging to the same class of ireps. The whole

space is then a direct sum:

VðnÞ ¼
MjKj
�¼1

Mn�

a¼1

V�;aðd�Þ ¼
MjKj
�¼1

V�ðn�d�Þ; ð5Þ

where

V�ðn�d�Þ ¼
Mn�

a¼1

V�;aðd�Þ

is the linear envelope of all spaces which transform by the irep

of the class ��. The subspaces V�ðn�d�Þ are mutually orthog-

onal, while the subspaces V�aðd�Þ can be chosen as orthogonal

subspaces but also as non-orthogonal subspaces. Numbers

d� ¼ ��ðeÞ are the dimensions of the irreducible subspaces

V�aðd�Þ.

5.1. The fundamental theorem on representations

To each class ��ðGÞ of ireps of a specific group G, we can

choose one certain matrix irep Dð�Þ : g�!Dð�ÞðgÞ. Let us

consider any space VðnÞ on which the group G acts as a group

of linear operators. If this space splits into G-irreducible

subspaces according to relation (5), it is possible to choose the

bases fe�a;1; . . . ; e�a;d�
g of subspaces V�a in such a manner that

their vectors transform simultaneously by the same matrix irep

Dð�Þ, so that

ge�a;i ¼
Pd�
j¼1

D
ð�Þ
ji ðgÞe�a;j: ðAÞ

If there is only one space V�ðd�Þ that transforms by an irep of

the class �� then the space is uniquely defined and the choice

of the basis fe�;1; . . . ; e�;d�g which transforms by matrices of

Dð�Þ is unique up to a common factor. In other words, all bases

that transform by this irep have the form kfe�;1; . . . ; e�;d�g ¼

fbe�;1; . . . ; be�;d�g, where k is a constant factor; if bases are to

be unitary orthonormal, it must be that jkj ¼ 1, i.e. k ¼ ei’; to

keep the basis real orthogonal, we have only the choice

k ¼ 	1. If the number of independent subspaces V�aðd�Þ is

a ¼ 1; 2; . . . ; n� > 1 and their bases are fe�a;1; . . . ; e�a;d�
g, then
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there exist alternative choices of subspaces V�bðd�Þ,

b ¼ 1; 2; . . . ; n�, with bases fe�b;1; . . . ; e�b;d�
g, related to bases

of subspaces V�aðd�Þ by

e�b;j ¼
Pn�
a¼1

Babe�a;j: ðiÞ

The counterpart of equations (A) and (i) for components x�a;i

of a vector x 2 VðnÞ in the basis fe�a;1; . . . ; e�a;d�
g reads

ðgxÞ�a;i ¼
Pd�
j¼1

D
ð�Þ
ij ðgÞx�a;j; ðBÞ

x�b;j ¼
Xn�

a¼1

Cbax�a;j; ðiiÞ

where CB ¼ BC ¼ I or C�1 ¼ B, B�1 ¼ C. The matrices B

and C have to be unitary or orthogonal if we want to keep the

bases normalized.

Equations (A), (B) and transformations (i), (ii) constitute

the basic relations of the theory of irreducible representations.

The bases fe�a;1; . . . ; e�a;d�
g are further called the Dð�ÞðGÞ

bases and the sets of variables xð�Þa ¼ ðx�a;1; . . . ; x�a;d�
Þ are

called Dð�ÞðGÞ covariants. The name covariant is of classical

origin (Weyl, 1946) and we use it instead of terms like

symmetry-adapted basis or form-invariant basis which can

be found in the literature. If the irep is one-dimensional,

the matrices Dð�ÞðgÞ, g 2 G, are identical with characters

��ðgÞ. In this case, a ��ðGÞ covariant takes the form of one

variable x�a; such covariants are also called relative invari-

ants and, if �1ðGÞ is the identity irep, they are called

invariants. Covariants are compact mathematical entities; we

can define linear combinations of Dð�ÞðGÞ covariants and

hence also the linear independence of Dð�ÞðGÞ covariants. The

advantage of Dð�ÞðGÞ bases and of Dð�ÞðGÞ covariants is rather

obvious. Instead of handling n� n matrices which express the

action of G on the space VðnÞ, we have to work with minimal

possible dimensions of irreducible subspaces which are

transformed independently. Of course, if we want to use these

advantages, we must develop methods for the calculation of

Dð�ÞðGÞ bases and/or of Dð�ÞðGÞ covariants. This will be done

below with the use of Clebsch–Gordan products for tensor

spaces.

The contents of this section are a consequence of Schur’s

Lemma and it is valid only if we consider representations in

the field of complex numbers C; we shall use the abbreviation

C-irep or just irep. In the consideration of tensor properties,

we use representations on real spaces and accordingly we also

use the decomposition of these representations into repre-

sentations which are irreducible over the real field R; some-

times they are called the physically irreducible representations

or abbreviated as pireps; we shall use the abbreviation R-irep.

Some R-ireps do not reduce when the field is extended to C; to

those ireps we can apply all the results of the next section;

some two-dimensional R-ireps reduce into pairs of complex

conjugate C-ireps when the field is extended. The necessary

amendment of consequences is simple and we shall handle it in

one standard manner later under the heading The standard

transformations (x6.1).

Remark. In spectroscopy, the consequence of the distinction

between R-reducibility and C-reducibility is known as the

Kramers degeneracy. In its general form, the relationship

between R-ireps and C-ireps may be quite complicated. In our

cases, we are handling the simplest possible situation.

6. Typical bases and typical covariants

Yet again no unique and generally accepted symbolism of

classes of ireps of the point groups exists. The most commonly

used spectroscopic notation for classes of ireps uses letters A

and B for one-dimensional ireps, E for two-dimensional ireps

(left superscripts 1E and 2E are used for complex conjugate

one-dimensional ireps of groups Cn, n 
 3 and of the group

T), letter T is used for three-dimensional ireps of cubic groups

[letters F, H and I are used for the four-, five- and six-

dimensional ireps which appear either as ireps of the icosa-

hedral group or as double-valued ireps of the cubic and

icosahedral group; cf. Altmann & Herzig (1994) or Bradley &

Cracknell (1972)]. The letters, if used more than once, are

distinguished either by numerical subscripts or by primes and

double primes. Parities with reference to space inversion i are

denoted by subscripts g (German gerade = even) and u

(German ungerade = odd).

Symbols �� with numerical labels � carry even less infor-

mation. Number � ¼ 1 is reserved for the identity irep and

ireps of higher dimensions have, as a rule, a higher-valued

label. Symbols �� are used to denote characters of ireps and

superscripts þ and � denote the even and odd parities with

respect to space inversion. Neither of these symbolisms is

sufficient for our purposes. The use of characters is limited to

the calculation of selection rules or to the numbers of tensor

components that transform by various ireps.

To facilitate the work with tensorial bases, we developed the

method of typical variables and covariants which proved also

to be useful for recording other relations (see paper 2).

Explicit irreducible representations and typical variables: For

the purposes of tabulation, it is suitable to introduce rather

abstract carrier spaces, bases and variables. The idea is very

old and stems from the theory of invariants where an analo-

gous approach is known as the symbolic method (Weitzen-

böck, 1923). For a given group G, we introduce the typical

carrier space Vo ¼ �
jKj
�¼1V� which contains exactly once a

carrier space V� for each class ��ðGÞ of ireps. In each class

��ðGÞ, we choose a certain standard matrix irep Dð�ÞðGÞ of the

group G. To this irep there corresponds a basis fea;1; . . . ; e�;d�g

called the typical Dð�Þ basis and a set of variables

xð�Þ ¼ ðx�;1; . . . ; x�;d� Þ, called the typical variables. The whole

set xð�Þ is called the typical Dð�ÞðGÞ covariant or the typical

��ðGÞ covariant. The concept has been revived together with

the term covariant by this author (Kopský, 1976a,b) for the

purposes of suitable recording and handling of transformation

properties of tensors and of polynomials. Consequently, the

typical variables have been standardized compared to their
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original labelling; in tables they appear as standard typical

variables.

The standard typical variables: There remains a certain

freedom in the choice of matrix ireps and of their labelling. We

developed a special notation for our purposes which is called

here the standard notation. One of the advantages of this

notation is the transparency of subduction relations which

correlate the typical variables (and consequently all variables)

for a group with variables for its subgroups. The scheme

actually includes all finite groups and is extremely convenient

for consideration of transformation properties of tensors. First

we shall describe the choice of the standard typical variables

for groups of proper rotations.

Groups of proper rotations: The standard typical variables

for real one-dimensional ireps are denoted by sans-serif letters

x� with numerical subscripts � ¼ 1; 2; 3; 4. The index 1 is

reserved for that variable which transforms by the identity

irep �1ðGÞ so that x1 is the typical invariant for any group G of

proper rotations. Other variables x� are called the typical

relative invariants or the typical ��ðGÞ covariants because the

actual variables transforming in the same way are usually

called relative invariants.

The proper rotation groups D2 (2x2y2z), D4z (4z2x2xy) and

D6 (6z2x2y) have four one-dimensional ireps and the labels are

chosen so that the subscript 2 corresponds to an irep with

kernel C2z (2z), C4z (4z) and C6 (6z), respectively, while

subscript 3 corresponds to ireps with kernels C2x (2x),

D2 (2x2y2z) and D3x (3z2x), subscript 4 to ireps with kernels

C2y (2y), bDD2 (2xy2x�yy2z) and D3y (3z2y). In other words, index 2

indicates that the variable x2 does not change sign under

rotations about the principal axis, index 3 indicates that the

variable x3 does not change sign under the twofold rotations

about axes conjugate with 2x and index 4 indicates that the

variable x4 does not change sign under the action of the other

set of conjugate axes. This rule is extended to noncrystallo-

graphic proper rotation groups Dn (nz2x1
2x2

) with even n.

The proper rotation groups D3x (3z2x), D3y (3z2y) and O

(432) have two real one-dimensional ireps and the subscript 2

is used for the non-trivial irep. Hence x2 is that variable which

does not change sign under rotations about the principal axis

and changes sign under rotations about the auxiliary axes [in

the case of group O (432) it does not change under the

elements of the subgroup T (23) and changes sign under the

action of elements from the coset of 4zT]. Again, the same

holds for non-crystallographic proper rotation groups Dn

(nz2x) with odd n.

The subgroups C2z (2z), C4z (4z) and C6 (6z) have two one-

dimensional ireps and the non-trivial irep is assigned the

subscript 3. Accordingly, the subduction from the respective

dihedral groups sends the variables x1 and x2 into x1, the

variables x3 and x4 into x3.

The groups Dn and Cn with n 
 3 have two-dimensional

real ireps. These ireps are irreducible over the real field and

for groups Dn also in the complex field. For the groups Cn, they

are reducible in the complex field into a pair of conjugate

complex ireps. The variables ðx1; y1Þ which appear in all these

groups have the meaning of the components of an ordinary

vector in the (xy) plane. The variables ðx2; y2Þ which appear in

groups D6 and C6 (actually they appear already in the

noncrystallographic groups D5 and C5) transform under

rotation by an angle ’ about the z axis like components of an

ordinary vector under rotation by 2’ about the z axis.

Analogously, variables ðxn; ynÞ, n 
 3, which appear in

noncrystallographic groups with a higher order of the prin-

cipal axis, transform under the rotation by an angle ’ about

z-axis-like components of an ordinary vector under rotation

by n’ about the z axis. The index n of these variables has an

informative value; it is equal to the lowest-rank tensor, the

components of which transform like these variables.

Two-dimensional real ireps appear also for groups T (23)

and O (432), where variables are denoted by ðx3; y3Þ. This irep

is irreducible over the complex field for the group O (432) and

reducible into a pair of conjugate complex ireps in the group T

(23).

The reduction of two-dimensional ireps is considered below

on a unified basis for all cases in x6.1 Standard transformations,

where complex variables are introduced to complete the

scheme and the consequences of the violation of conditions

for Schur’s Lemma are explained.

Three-dimensional ireps appear for groups T (23) and

O (432), where variables are denoted by ðx1; y1; z1Þ. These

variables transform like the components of a vector in the

space Vð3Þ. To the second three-dimensional irep of the group

O (432), we assign variables ðx2; y2; z2Þ which transform like

the product x2ðx1; y1; z1Þ (see also the Clebsch–Gordan

product tables which are very illustrative for exploring various

relations between transformation properties of standard

typical variables) or like the components of an ordinary vector

under the action of the group Td (�443m).

Now we shall describe the rules for specification of ireps

and standard typical variables for groups of the same oriented

Laue class.

Groups which are isomorphic with a proper rotation group

G: The standard typical variables for a group isomorphic with

G are denoted in the same manner as for the group G. These

groups contain elements g 2 G in combination with inversions

i, e0 and i 0. We define the transformation properties of stan-

dard typical variables by the rule that each of the variables

transforms in the same manner under elements ig, e0g or i 0g as

under the action of g as defined for the group G.

Specification of ireps and standard typical variables for

groups of the tetragonal system are given in Table 3. Complete

tables for crystallographic Laue classes are presented in the

paper by Kopský (2001) and in the software GI ?KoBo-1

(Kopský & Boček, 2003) where the correspondence to spec-

troscopic symbols is also given.

Nonparamagnetic groups, isomorphic with a centrosym-

metric group: A centrosymmetric group Gh ¼ G� I ¼

G [ iG contains all elements g 2 G and of the coset

ig ¼ gi 2 iG ¼ Gi. The number of conjugacy classes is

doubled compared to the conjugacy classes of G and hence

also the number of ireps and variables is doubled. Even and

odd ireps are distinguished by superscripts þ and �, respec-

tively; these superscripts indicate the parity of the variable
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under the action of the space inversion i; variables with the

superscript þ do not change sign, variables with the super-

script � change sign under the action of i. Each variable xþ

then transforms in the same way under the action of both

elements g 2 G and ig 2 iG as the variable x transforms under

the element g 2 G, while the variable x� transforms under an

element g 2 G in the same way as x and under the action of

ig 2 iG it transforms in the same way as x under the action of

g 2 G with an additional change of the sign.

Nonparamagnetic groups, isomorphic with Gh, contain

some elements of Gh combined with the magnetic inversion e0.

These are the elements of the coset to halving subgroups of

Gh. If we denote now by g elements of Gh, then these cosets

contain elements h0 ¼ e0h ¼ he0. We define the transformation

properties of standard typical variables under the action of

these groups so that xþ as well as x� transform in the same

manner under the element h0 as it transforms under the

element h.

Paramagnetic noncentrosymmetric groups: These groups are

of the form of direct product G0 ¼ G� E0 ¼ G [ e0G, where

G ¼ H [ igH is a classical group (including G itself). The

number of conjugacy classes as well as ireps is doubled. We

distinguish variables by parity subscripts e and m where e

indicates positive, m negative parity. Hence a variable xe

transforms in the same way under the action of elements g and

e0g, as x transforms under the action of g, while the variable xm

transforms in the same way under the action of g but changes

in addition its sign under the action of e0g.

The centrosymmetric paramagnetic group: There is one such

group in each oriented Laue class and it has the form

G0h ¼ G� E0o ¼ G [ iG [ e0G [ i 0G. The number of conju-

gacy classes, of ireps and of typical standard variables is four

times that for the group G and we distinguish the variables by

both parity labels. Thus we have four variables: xþe , x�e , xþm, x�m,

which transform in the same way under elements g 2 G but in

addition change sign according to their parities, so that

superscript � indicates an additional change of sign under the

action of i 0, subscript m an additional change of sign under the

action of e0. Thus variables x�e and xþm change sign under the

action of i 0.

Remark. Not only is the described choice of matrix ireps and

of typical variables the most natural but it is also the choice

which enables us to use Opechowski’s magic relations. In the

second column of Table 2 are listed one-dimensional ireps of

groups associated with inversion i, e0, i 0. These are those ireps

of magnetic point groups in the table whose kernels are the

halving subgroups which do not contain the respective inver-

sions, while elements of their cosets are combined with these

inversions. The full implications are explained in x8.

6.1. The standard transformations

The action of a rotation by ’ around the z axis, denoted as

an operator gð’Þ, is expressed in the Cartesian basis (ex, ey, ez)

by the equations

gð’Þex ¼ ex cos ’þ ey sin ’;

gð’Þey ¼ �ex sin ’þ ey cos’;

gð’Þez ¼ ez;

to which there corresponds a matrix

D
ð1Þ
R ½gð’Þ� ¼

cos ’ � sin ’ 0

sin ’ cos ’ 0

0 0 1

0
@

1
A

of a real vector representation D
ð1Þ
R . These vectors transform

under the action of twofold rotation 2x as

2xex ¼ ex; 2xey ¼ �ey; 2xez ¼ �ez;

which is expressed by the matrix

D
ð1Þ
R ð2xÞ ¼

1 0 0

0 �1 0

0 0 �1

0
@

1
A:

We introduce standard typical vectors (enx, enyÞ in the xnyn

plane which transform by definition under the action of gð’Þ
and 2x according to equations

gð’Þenx ¼ enx cos n’þ eny sin n’;

gð’Þeny ¼ �enx sin n’þ eny cos n’;

2xenx ¼ enx; 2xeny ¼ �eny:

To these transformations there correspond the matrices

D
ðnÞ
R ½gð’Þ� ¼

cos n’ � sin n’
sin n’ cos n’

� �
and D

ðnÞ
R ð2xÞ ¼

1 0

0 �1

� �

of a real vector representation D
ðnÞ
R .

We introduce a standard transformation to complex vectors

and variables:
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Table 3
Specification of irreducible representations for tetragonal groups.

Groups of oriented Laue class C4hz � 4z=mz

C4z � 4z 4z

S4z �
�44z

�44z

�1ðx1Þ 1
�3ðx3Þ �1

Dð1Þðx1; y1Þ
0 �1

1 0

� �
Groups of oriented Laue class D4hz � 4z=mzmxmxy

D4z � 4z2x2xy 4z 2x

C4vz � 4zmxmxy 4z mx

D2dz �
�44z2xmxy

�44z 2xbDD2dz �
�44zmx2xy

�44z mx

�1ðx1Þ 1 1
�2ðx2Þ 1 �1
�3ðx3Þ �1 1
�4ðx4Þ �1 �1

Dð1Þðx1; y1Þ
0 �1

1 0

� �
1 0

0 �1

� �



en� ¼
1ffiffiffi
2
p ðenx � ienyÞ;

�n ¼
1ffiffiffi
2
p ðxn þ iynÞ;

en� ¼
1ffiffiffi
2
p ðenx þ ienyÞ;

�n ¼
1ffiffiffi
2
p ðxn � iynÞ:

The reciprocal transformation then reads

enx ¼
1

21=2
ðen� þ en�Þ;

xn ¼
1

21=2
ð�n þ �nÞ;

eny ¼
i

21=2
ðen� � ien�Þ;

yn ¼
i

21=2
ð�n � �nÞ:

Vectors are then expressed in the two bases as

xn ¼ xnenx þ yneny ¼ �nen� þ �nen�;

and the transformation properties of complex vectors and

bases are expressed by

gð’Þen� ¼ ein’en�;

2xen� ¼ en�;

gð’Þen� ¼ e�i’en�;

2xen� ¼ en�;

so that the rotations are expressed by matrices

D
ðnÞ
C ½gð’Þ� ¼

ein’ 0

0 e�in’

� �
and D

ðnÞ
C ð2xÞ ¼

0 1

1 0

� �
:

The real pair of variables ðxn; ynÞ is transformed to a complex

pair ð�n; �nÞ and the real matrix irep D
ðnÞ
R to an equivalent

complex matrix irep D
ðnÞ
C . Both ireps are irreducible for groups

Dn, n 
 3 because the twofold rotation 2x swaps the vectors

en�, en� as well as the variables �n, �n.

Matrices D
ðnÞ
C ½gð’Þ� are, however, quasidiagonal (in fact they

are diagonal) and correspond to a pair of one-dimensional

complex conjugate ireps. Two-dimensional representations of

uniaxial groups and of groups T (23) and Th (m�33) are there-

fore irreducible over the real field but they split into a pair of

one-dimensional complex conjugate ireps in the complex field.

As a consequence, the pair of variables ðxn; ynÞ transforms

under these groups in the same way as the pair ðyn;�xnÞ.

7. The Clebsch–Gordan products

If the basis vectors ðe�;1; e�;2; . . . ; e�;d� Þ of the carrier space V�

for an irep Dð�ÞðGÞ are combined with the basis vectors

ðe�;1; e�;2; . . . ; e�;d� Þ of the carrier space V� for an irep Dð�ÞðGÞ,

we obtain a set of d�d� basis vectors ðe�;ie�;jÞ of the carrier

space V� � V� which is called the direct or tensor product of

spaces V� and V�.

The latter space is generally reducible and spaces of the

type V	 appear in the reduction with certain multiplicities

mð�;�j	Þ ¼ ð1=jGjÞ
P

g2G ��ðgÞ��ðgÞ�
�
	ðgÞ. If the two spaces in

the product belong to the same irep Dð�ÞðGÞ, then the product

space V� � V� splits into the space of symmetric and anti-

symmetric combinations with bases

1

21=2
ðe�;i�e�;j� þ e�;j�e�;i� Þ and

1

21=2
ðe�;i�e�;j� � e�;j�e�;i� Þ:

The spaces are usually denoted as ½V��
2 for the symmetric case

and fV�g
2 for the antisymmetric case and both spaces are

invariant under the action of G and are generally reducible.

The multiplicities then split into the sum of multiplicities

for the symmetric and antisymmetric parts: mð�;�j	Þ ¼

m½�;�j	� þmf�;�j	g. Multiplicities are sometimes called the

Clebsch–Gordan or Wigner coefficients and the products of

matrices are called the Kronecker products (Bradley &

Cracknell, 1972).

The tables of Kronecker products facilitate the calculation

of selection rules and they are widely used in spectroscopy.

They can also be used to calculate the numbers of independent

tensor components and hence to find how many new inde-

pendent parameters appear in a tensor at a phase transition or

the numbers of components in which two domain states differ.

The tables of Clebsch–Gordan products, described in this

section, represent an explicit counterpart of the Kronecker

product tables and they facilitate the calculation of explicit

tensor components.

Clebsch–Gordan products: Our calculations of tensorial

covariants are based on the method of Clebsch–Gordan

products in typical variables. The method stems originally

from the theory of quantum momentum. Irreducible repre-

sentations of the orthogonal group Oð3Þ are labelled by the

quantum number j of the total momentum and the wave-

functions  jm form irreducible spaces of dimension 2jþ 1 with

m ¼ �j; . . . ; j� 1; j, where m defines the projection of the

momentum on a chosen axis, usually the z axis. In a system of

two particles in a spherical field, the total wavefunction �JM is

expressed as

�JM ¼
P

m1þm2¼M

ð j1m1 j2m2jJMÞ j1m1
 j2m2

; ðiiiÞ

where ð j1m1 j2m2jJMÞ are the so-called Clebsch–Gordan

coefficients, also called the coefficients of vector addition.

Quite analogously, we can introduce Clebsch–Gordan

coefficients for the multiplication of irreducible representa-

tions of any group G. The direct product V� � V� of two

typical irreducible spaces splits according to the fundamental

theorem into irreducible subspaces V	m, where m ¼

1; 2; . . . ;mð�;�j	Þ ¼
1
jGj

P
g2G ��ðgÞ��ðgÞ�

�
	ðgÞ. The generalized

Clebsch–Gordan formula reads

E
ðmÞ
	k ¼

Pd�
i¼1

Pd�
j¼1

ð�i�jj	kÞ
ðmÞe�;ie�;j: ðivÞ

The label m does not appear in the classical formula (iii)

because multiplicities are in this case always mð j1; j2jJÞ ¼ 1.

We can also rewrite the latter formula in terms of the standard

variables:

X
ðmÞ
	k ¼

Pd�
i¼1

Pd�
j¼1

ð�i�jj	kÞ
ðmÞ�

x�ix�j; ðvÞ

and in the case � ¼ � we also have to distinguish the

symmetrized and antisymmetrized cases. Clebsch–Gordan

coefficients ð�i�jj	kÞðmÞ for the crystal point groups were

calculated by Koster et al. (1963). They are important in

quantum-mechanical calculations when orthonormality of

wavefunctions is required.
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Our aim is to find transformation properties of tensors and

we can disregard the normalization conditions. For calcula-

tions of this type, tables of Clebsch–Gordan products are more

convenient. Without writing formulas, we define Clebsch–

Gordan products for the set of ireps of the group G as those

Dð	ÞðGÞ covariants whose components are bilinear combina-

tions of components of a typical Dð�ÞðGÞ covariant

ðx�1; . . . ; x�d�
Þ and Dð�ÞðGÞ covariant ðx�1; . . . ; x�d�

Þ. The

number of such independent covariants is given by Kronecker

products but their calculation for the crystal point groups is

relatively easy. They are collected in tables where the heading

of each table lists the typical Dð	ÞðGÞ covariants and in the

column headed by such a covariant are given bilinear

combinations of typical variables which transform in the same

way as the variables ðx	1; . . . ; x	d	
Þ. This is actually just

another way to record the full set of relations (v); to get the

Clebsch–Gordan coefficients from tables of Clebsch–Gordan

products it is sufficient to perform the normalization.

It is necessary to realize that the variables in the tables are

just the representatives of actual variables. In the calculation

of the tensor product of any two spaces V1 and V2, we first find

the linear combinations of vector components in the two

spaces which transform like the typical variables. In this

procedure, several actual covariants may appear corre-

sponding to some ireps. The tables give the prescription how

to form their bilinear combinations of the desired transfor-

mation properties. Such tables were published and their use

described a quarter of century ago (Kopský, 1976a,b, 1977).

Revised definition of standards of ireps and symbols of typical

variables is given in Appendix C for crystallographic groups of

proper rotations and the respective tables of Clebsch–Gordan

products are given in Appendix D of the monograph by

Kopský (2001). In Table 4, we illustrate the form of these

tables using the example of groups C4z (4z) and D4z (4z2x2xy).

Trivial Clebsch–Gordan products x1ðx�1; . . . ; x�d�
Þ and

ðx�1; . . . ; x�d�
Þx1 are not explicitly written down in the tables; it

is clear that they transform like ðx�1; . . . ; x�d�
Þ. The antisym-

metric expressions like x1y1 � y1x1 express formally all

possible bilinear combinations x
ðaÞ
1 y
ðbÞ
1 � y

ðaÞ
1 x
ðbÞ
1 , where a, b

label various spaces and such combinations vanish when

a ¼ b. To such a product as x3x4 there naturally corresponds

the product x4x3 which is not given in the tables. If replaced by

actual variables, we have to distinguish the symmetric

ðxðaÞ3 xðbÞ4 þ xðaÞ4 xðbÞ3 Þ and antisymmetric ðxðaÞ3 xðbÞ4 � xðaÞ4 xðbÞ3 Þ

combinations which both transform like the product x3x4.

Analogous considerations hold in the case of products of the

type x�ðx1; y1; z1Þ to which there correspond products

ðx1; y1; z1Þx�. Quite generally, for a certain Clebsch–Gordan

product which combines variables of two ireps of different

classes in a certain order there exists a Clebsch–Gordan

product in which the order is reversed. If the typical variables

are then replaced by actual ones, we should create the

symmetric and antisymmetric combinations.

The tables are given in terms of variables which correspond

to the relation (v). Analogous tables can be written for basis

vectors. The presentation in terms of variables (components of

vectors) is more convenient for our proceeding further. The

two tables apply to all magnetic point groups which are

isomorphic to the two groups. Clebsch–Gordan tables for a

centrosymmetric group and its isomorphs are easily deduced

from these tables. Instead of each variable x, we have two

variables: xþ and x� and their bilinear products obey the

parity rules. The same concerns Clebsch–Gordan tables for

paramagnetic groups with variables xe and xm and for the

centrosymmetric paramagnetic group with variables xþe , x�e ,

xþm, x�m.

8. Calculation of tensorial covariants

We shall consider now the space VðAÞ of a certain tensor A

under the action of a point group G. Using the fundamental

theorem on representations, we can write the tensor in the

form

A ¼
P

i2IðAÞ

Aie
ðAÞ
i ¼

PK
�¼1

Pn�
a¼1

Pd�
i¼1

A�a;ie�a;i;

where the first sum is the expression of the tensor in a

Cartesian reference basis feðAÞi gi2IðAÞ while in the second

expression we express the tensor in Dð�ÞðGÞ bases e�a;i, so

that the coefficients form the Dð�ÞðGÞ covariants

Að�Þa ¼ ðA�a;1;A�a;2; . . . ;A�a;d�
Þ. The number of ireps equals K

which is also the number of classes of conjugate elements in G,

n� ¼ ð1=jGjÞ
P

g2G �
ðAÞðgÞ���ðgÞ is the multiplicity with which

the irep of the class ��ðGÞ appears in the tensor representation

DðAÞðGÞ and d� ¼ ��ðeÞ is the dimension of this irep. The

dimension of the tensor space satisfies the relation

dim VðAÞ ¼
P

� n�d�.

The expression for the tensor A in Dð�ÞðGÞ bases is called

the decomposition of the tensor into tensorial covariants. This

decomposition is generally not unique. Covariants Að�Þa ,

a ¼ 1; 2; . . . ; n�, must be linearly independent and can be

replaced by a set of other linearly independent covariants

Að�Þb ¼
Pn�

b¼1 CbaAð�Þa [cf. relation (ii), x5]. The advantage of

tensorial decomposition into covariants for consideration of

transformation properties of a tensor under the action of the

group G is quite clear. Instead of matrices DðAÞðgÞ (cf. the end
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60 Vojtěch Kopský � Modern tensor calculus. 1 Acta Cryst. (2006). A62, 47–64

Table 4
Clebsch–Gordan products for tetragonal groups.

Group C4 – 4z

x1 x3 ðx1; y1Þ

x2
3

x2
1 þ y2

1 x2
1 � y2

1

x3ðx1;�y1Þ

x1y1 � y1x1 x1y1 þ y1x1

In view of the reducibility of the irep D
ð1Þ
R ðC4zÞ in complex field, there exist also

D
ð1Þ
R ðC4zÞ covariants ðy1;�x1Þ and x3ðy1; x1Þ.

Group D4 – 4z2x2xy

x1 x2 x3 x4 ðx1; y1Þ

x2
2 x2

3 x2
4 x3x4 x2x4 x2x3 x2ðy1;�x1Þ

x2
1 þ y2

1 x1y1 � y1x1 x2
1 � y2

1 x1y1 þ y1x1 x3ðx1;�y1Þ

x4ðy1; x1Þ



of x4) of high dimensions we can use matrices Dð�ÞðgÞ of

standard ireps whose dimensions do not exceed three. This is

particularly suitable for comparison of tensor properties of

domain states. In addition, covariant components constitute

the bases of ireps necessary in the consideration of ferroic

phase transitions.

Calculation of tensorial covariants up to fourth rank has

been performed by consecutive use of Clebsch–Gordan

products for the 32 point groups (Kopský, 1979a,b). In the

resulting tables, we found regularities whose recent analysis

uncovered Opechowski’s magic relations (Kopský, 2006a).

These relations hold in their simple form only for our standard

choices of ireps for groups of oriented Laue classes. As a result

of these relations, it is sufficient to find tensorial decomposi-

tions only for groups G of proper rotations and for tensors of

positive parities with respect to space and magnetic inversions

i and e0 (and hence also with respect to combined inversion i 0).

Tensorial decompositions of tensors of other parities under

action of any of the groups of the oriented Laue class G are

related to the mentioned decompositions by simple rules.

We shall first explain the principle of these relations and

then close this section and the paper by an example in which

the use of both Clebsch–Gordan products and magic relations

will be illustrated.

1. The splitting of transformation properties of tensors:

Transformation properties of each tensor under the action of

the full magnetic group SOð3Þ � Eo split into two independent

parts:

(i) its transformation properties with respect to the group of

proper rotations SOð3Þ;

(ii) its transformation properties with respect to the full

group of inversions Eo. This follows from the fact that the full

magnetic group is a direct product of the group of proper

rotations with the full inversion group.

2. Intrinsic symmetries: Transformation properties of a

tensor with respect to the group SOð3Þ are completely defined

by its intrinsic symmetry which is completely specified by the

well known Jahn symbols (Jahn, 1949). Thus V is the Jahn

symbol for a vector, ½V�2 for a symmetric second-rank tensor,

fVg2 for an antisymmetric second-rank tensor, V½V�2 for a

third-rank tensor symmetrized in two indices, ½½V�2�2 for a

fourth-rank tensor, symmetric with respect to an exchange of

the first and second indices, of the third and fourth indices and

with the exchange of the first and second pair of indices, and so

on.

3. The four types of tensors: The elements of the full

inversion group Eo ¼ fe; i; e0; i 0g classify tensors into four

types. Whatever the tensor A and whichever of the inversions

acts on it, the tensor either does not change at all or it changes

its sign. See Table 5.

According to the usual and historical terminology, ordinary

(polar) tensors are those whose components transform like

products of the components of an ordinary vector. Since the

ordinary vector itself changes its sign under the space inver-

sion i, a tensor is polar if it is of odd rank and changes its sign

under the space inversion i or if its rank is even and the tensor

does not change the sign under the inversion i. A tensor is

called axial (or a pseudotensor) if its rank is odd and the

tensor does not change its sign under the space inversion i or if

it is even and changes sign under the space inversion i. In our

symbols, the superscript þ or � simply denotes the parity of a

tensor under the action of the space inversion i:þ means even

parity, i.e. the tensor does not change its sign; � means odd

parity, i.e. the tensor changes its sign. Indices e and m denote

even and odd parities of a tensor under the action of magnetic

inversion e0. This was originally indicated by letters i and c

before the tensor.

4. The four scalars: Scalar quantities are one-component

quantities which do not change under the action of the group

of proper rotations SOð3Þ. There are four types of scalars that

differ by their transformation properties under the action of

the full inversion group Eo ¼ fe; i; e0; i 0g, i.e. by their parities.

It is shown in Table 6 how these scalars change under the

action of inversions. The symbols and names we shall use are

given in the first two columns and compared with names used

in the literature in the last column.

Lemma 1. Apart from their physical meaning, there exist

exactly four types of tensors to each intrinsic symmetry which

have the same transformation properties under the action of

the group SOð3Þ of proper rotations and one of the four

different parities.

Proof. Let A be a tensor of a certain intrinsic symmetry which

defines its transformation properties under the action of the

group of proper rotations SOð3Þ. Applying inversions, we

check its parity. Multiplying this tensor by the four scalars, we

obtain four tensors of the same intrinsic symmetry and of the

same transformation properties under the group SOð3Þ.

We may therefore assume that the tensor A is a 1þe tensor.

Then the tensors "A, �A and "�A are the 1�e tensor, the 1þm
tensor and the 1�m tensor, respectively.
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Table 5
The four types of tensor according to their parity.

Element of Eo

Type of tensor e i e0 i 0 Even rank Odd rank

1þe tensor 1 1 1 1 i tensor i pseudotensor
1�e tensor 1 �1 1 �1 i pseudotensor i tensor
1þm tensor 1 1 �1 �1 c tensor c pseudotensor
1�m tensor 1 �1 �1 1 c pseudotensor c tensor

Table 6
The four types of scalars according to their parities.

Action of inversions

Our symbol Our name e i e0 i 0 Former name

1 1þe scalar 1 1 1 1 i scalar
" 1�e scalar 1 �1 1 �1 i pseudoscalar
� 1þm scalar 1 1 �1 �1 c scalar
"� 1�m scalar 1 �1 �1 1 c pseudoscalar



Lemma 2. Let Go be the group of proper rotations and A a 1þe
tensor. The four tensors A, "A, �A and "�A transform in

exactly the same manner under the action of Go.

Lemma 3. Any 1þe tensor A transforms in the same manner

under the action of elements g, ig, e0g and i 0g.

Proof. Each element of the group SOð3Þ � Eo can be written

as jg ¼ gj, where g 2 SOð3Þ and j 2 Eo. The four tensors of the

same intrinsic symmetry can be written as sA, where A is a 1þe
tensor and s 2 ð1; "; �; "�Þ. It is also jgðsAÞ ¼ ðjsÞðgAÞ. In the

case of Lemma 2, it is j ¼ e and hence gðsAÞ ¼ sðgAÞ. In the

case of Lemma 3, it is s ¼ 1 and hence jgA ¼ gA.

We recommend the reader now to consult the tables of

tensorial decompositions (Kopský, 2001, pp. 50–65, Table D)

where tensorial covariants of the following tensors are listed

for the 32 point groups: enantiomorphism " (1�e scalar),

polarization P� V, strain tensor u� ½V�2, gyrotropic tensor

g� "½V�2, piezoelectricity d� V½V�2, electrogyration

A� "V½V�2, elastic stiffness s� ½½V�2�2 � Qs the elastooptical

tensor and its antisymmetric part q� f½V�2g2. Notice that

tensors P, g and d are 1�e tensors which change sign under

space inversion, while u, A and s are 1þe tensors. The decom-

position of the latter into tensorial covariants is therefore

common for all groups, isomorphic with the proper rotation

group and their decomposition under the action of the

centrosymmetric groups is the same in terms of typical

variables with positive parity. A pseudovector p � "P, not

given in these tables, is also a 1þe tensor and will transform in

the same way for all groups as for the group of proper rota-

tions.

The 1�e tensors P � "p, g � "u and d � "A, so that they

transform in the same way as corresponding 1�e tensors under

the action of the proper rotation group.

The pseudoscalar " and the two other scalars � and "�
transform like one of the variables x1, x2, x3, x4 for other

groups isomorphic with the proper rotation group, like vari-

ables xþ1 , xþ2 , xþ3 , xþ4 or x�1 , x�2 , x�3 , x�4 for nonparamagnetic

groups isomorphic with centrosymmetric groups, and like

variables x1e, x2e, x3e, x4e or x1m, x2m, x3m, x4m for paramagnetic

noncentrosymmetric groups. These transformation properties

of scalars are determined by the distribution of inversions over

the proper rotations and they are recorded in the last column

of Table 2 for all groups of the oriented Laue class

D4z � 4z2x2xy. Under the action of the paramagnetic centro-
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Table 7
Example of calculation with Clebsch–Gordan products and of the use of Opechowski’s magic relations.

x1 x2 x3 x4 ðx1; y1Þ

x2
2 x2

3 x2
4 x3x4 x2x4 x2x3 x2ðy1;�x1Þ

x2
1 þ y2

1 x1y1 � y1x1 x2
1 � y2

1 x1y1 þ y1x1 x3ðx1;�y1Þ

Group x4ðy1; x1Þ

D4z P2 ðP1;P2Þ

4z2x2xy u1 þ u2 u1 � u2 u6 ðu4; u5Þ

u1 ¼ u2

u3 d31 þ d32 d36 d31 � d32 (d11, d22) (d12, d21)
d33 (d13, d23) (d26, d16)

d14 � d25 d15 þ d24 d14 þ d25 d15 � d24 ðd35; d34Þ

d14 ¼ �d25

A31 þA32 A36 A31 �A32 (A11, A22) (A12, A21)
A33 (A13, A23) (A26, A16)

A14 �A25 A15 þA24 A14 þA25 A15 �A24 ðA35;A34Þ

A14 ¼ �A25

C4vz d31 þ d32 d31 � d32 d36 (d22, �d11) (d21, �d12)
4zmxmxy d15 þ d24 d14 � d25 d15 � d24 d14 þ d25 ðd34;�d35Þ

d33 (d23, �d13) (d16, �d26)
d31 ¼ d32

d15 ¼ d24

�31 þ �32 �31 � �32 �36 (�22, ��11) (�21, ��12)
�15 þ �24 �14 � �25 �15 � �24 �14 þ �25 ð�34;��35Þ

�33 (�23, ��13) (�16, ��26)
�31 ¼ �32

�15 ¼ �24

C4vzðC2vÞ d31 þ d32 d31 � d32 d36 (d22, �d11) (d21, �d12)
40zmxm0xy d15 þ d24 d14 � d25 d15 � d24 d14 þ d25 ðd34;�d35Þ

d33 (d23, �d13) (d16, �d26)
d31 ¼ d32

d15 ¼ d24

�31 � �32 �36 �31 þ �32 (�22, �11) (�21, �12)
�33 (�23, �13) (�16, �26)

�15 � �24 �14 þ �25 �15 þ �24 �14 � �25 ð�34; �35Þ

�31 ¼ ��32

�15 ¼ ��24



symmetric group, the scalars always transform like variables

x�1e, xþ1m and x�1m, respectively.

Using Lemma 1, we may express any tensor in one of the

forms: A, "A, �A, "�A, where A is a 1þe tensor. Each of the

scalars transforms under the action of any of the groups like

one of the one-dimensional typical variables. Hence it is

sufficient to calculate the decomposition of tensor A for the

proper rotation group, find the typical variable which repre-

sents the scalar under the action of the considered group and

use Clebsch–Gordan products with this variable to find the

decomposition of the considered tensor. This is the essence of

Opechowski’s magic relations.2

Tensorial decompositions also imply the allowed form of

the tensor under the action of the considered group. Indeed,

the first column of tables of covariants lists tensorial invari-

ants. These are generally linear combinations of Cartesian

components. To obtain the Cartesian form of the tensor, we

have to set all covariants to zero. This results in a set of

conditions which Cartesian components of an invariant tensor

must satisfy. Invariant tensors are also related for groups of

the same Laue class. Opechowski (1975) observed that certain

related properties are allowed in the same number of

symmetries and called them the magic numbers. Their exis-

tence also follows from the magic relations between tensor

decompositions.

Example: Calculate the decomposition of piezoelectric

tensor d, electrogyration tensor A and piezomagnetic tensor �
for the group D4z � 4z2x2xy. Using Opechowski’s magic rela-

tions, find the decomposition of these tensors for groups

C4z � 4zmxmxy and C4zðC2vÞ � 40zmxm0xy.

Solution: At the top of Table 7, we write the Clebsch–

Gordan table which is valid for all groups isomorphic with

D4z � 4z2x2xy. In the first row, we write the tensorial covariants

of polarization P. Comparing products PiPj, we obtain (�

means transforms like): u1 þ u2 � P2
1 þ P2

2 � x2
1 þ y2

1 � x1

and u3 � P2
3 � x2 � x1, u1 � u3 � P2

1 � P2
2 � x2

1 � y2
1 � x3,

u6 � P1P2 þ P2P1 � x1y1 þ y1x1 � x4 and ðu4;�u5Þ �

P3ðP2;�P1Þ � x2ðy1;�x1Þ. We write this into the table and

continue as follows:

P3ðu1 þ u2Þ � d31 þ d32 � x2; P3u3 � d33 � x2;

P3u6 � d36 � x3; P3ðu1 � u2Þ � d31 � d32 � x4;

P1u4 � P2u5 � d14 � d25 � x1; P1u5 þ P2u4 � d15 þ d24 � x2;

P1u4 þ P2u5 � d14 þ d25 � x3; P1u5 � P2u4 � d15 � d24 � x4;

and all Clebsch–Gordan products

ðP1;P2Þðu1 þ u2Þ � ðd11 þ d12; d21 þ d22Þ;

ðP1;P2Þðu1 � u2Þ � ðd11 � d12;�d21 þ d22Þ;

ðP1;P2Þu3 � ðd13; d23Þ; ðP1;P2Þu6 � ðd13; d23Þ;

ðP1;P2Þu3 � ðd13; d23Þ; P3ðu4;�u5Þ � ðd35; d34Þ

transform like ðx1; y1Þ.

We take the sum and difference of the first two covariants

using the law that the linear combination of covariants of the

same type is again the covariant of the same type and the

common factor does not play a role to get the results written in

the next block of the table assigned to the group D4z � 4z2x2xy.

Tensors A and � have the same intrinsic symmetry as the

tensor d. According to Lemma 1 or Lemma 2, all three tensors

have the same decomposition under the action of the group

D4z � 4z2x2xy. Tensor A is the 1þe tensor.

The components �ij, i ¼ 1; 2; 3, j ¼ 1; 2; 3; 4; 5; 6, of the

piezomagnetic tensor � transform like products Miuj of the

components of magnetization M and strain tensor u. Tensors d

and � transform like "A and "�A, respectively. The 1�e scalar "
transforms like x2 under both groups C4z � 4zmxmxy and

C4zðC2vÞ � 40zmxm0xy, while 1�m scalar "� transforms like x2 in

the first, like x4 in the second of these groups. We can read

their tensorial decompositions from that of A almost imme-

diately.

9. Conclusions

To attract the attention of potential readers, we used the proud

phrase modern tensor calculus in the title leaving it to the

reader to decide whether it is justified. In our opinion, the

method is now at a stage suitable for textbooks and classroom

exercises. In paper 2, we shall try to justify it by application to

a rather exacting problem of tensor parameters of domain

states and their distinction.
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