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Multiple twinning in cubic crystals is represented geometrically by a three-

dimensional fractal and algebraically by a groupoid. In this groupoid, the variant

crystals are the objects, the misorientations between the variants are the

operations, and the �3n operators are the different types of operations

(expressed by sets of equivalent operations). A general formula gives the

number of variants and the number of �3n operators for any twinning order.

Different substructures of this groupoid (free group, semigroup) can be

equivalently introduced to encode the operations with strings. For any coding

substructure, the operators are expressed by sets of equivalent strings. The

composition of two operators is determined without any matrix calculation by

string concatenations. It is multivalued due to the groupoid structure. The

composition table of the operators is used to identify the �3n grain boundaries

and to reconstruct the twin related domains in the electron back-scattered

diffraction maps.

1. Introduction

‘A twin is a complex crystalline edifice built up of two or more

homogeneous parts of the same crystal species that are in

contact and oriented with respect to each other according to

well defined laws’ (Friedel, 1904). The different origins of the

twins (growth, recrystallization, mechanical deformation) are

detailed by Hahn & Klapper (2003). In this paper, only the �3

twins in cubic materials will be studied. These twins, also called

in mineralogy sphalerite twins, spinel twins or diamond twins,

belong to the class of ‘twins by reticular merohedry’ (Friedel,

1904), i.e. there is a partial but exact coincidence between the

lattices of each individual crystal. �3 means that this coin-

cidence occurs only for one third of the lattices. More gener-

ally, two identical but misoriented cubic lattices have some

points in coincidence that constitute a coincidence site lattice

(CSL) if and only if they are linked by a transformation matrix

T of the form

T ¼
1P

a11 a12 a13

a21 a22 a23

a31 a32 a33

2
4

3
5; ð1Þ

where aij are integers and � is the ratio of the unit volume of

the CSL referred to the unit volume of the crystal lattice

(Grimmer et al., 1974; Grimmer, 1976). Very often in metal-

lurgy, metals with low stacking-fault energy form twins by

annealing and recrystallization (Kronberg & Wilson, 1949;

Kopezky et al., 1991). In this case, a crystal, which we will call

the primary crystal, can form twins (twins of first generation),

which can themselves form twins (twins of second generation),

and so on. Each crystal in this assembly is linked to another by

a transformation matrix T with an associated � = 3n with

n 2 N. These crystals are connected by a chain of �3 twins (i.e.

by �3n operators) and form a microstructural entity usually

referred to as a twin-related domain (TRD) (Reed & Kumar,

2006).

Grain design engineering is an idea introduced by

Watanabe (1985). It suggests that microstructures with a high

fraction of ‘special’ grain boundaries (which can be obtained

by optimizing the elaboration process or the thermo-

mechanical treatments) have better mechanical properties,

such as improved corrosion resistance, creep resistance or

weldability. Since the special �3 grain boundaries are

considered to be the ‘strongest’ ones, many engineers are

trying to create microstructures that have a high density of �3

grain boundaries and large TRDs (Kumar et al., 2000). These

multiply twinned materials can be characterized using electron

back-scatter diffraction (EBSD1) in a scanning electron

microscope (SEM) (for examples, see Randle & Brown, 1989;

Kumar et al., 2000; Gertsman & Henager, 2003). Although the

�3n grain boundaries are easy to identify for n � 4, there is no

1 The reader may refer to Schwartz et al. (2000) for an overview of the EBSD
technique.
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method that can automatically identify them for higher twin-

ning orders. Indeed, the distribution of the orientations of

multiply twinned crystals is very dense and nearly isotropic for

n � 5, and consequently it is very difficult to distinguish a

random misorientation from a special �3n [this has been

shown by Wilbrandt (1980) and will be discussed in detail

later]. A similar problem has been encountered for phase-

transformed materials during the identification of the opera-

tors and the reconstruction of parent grains from the EBSD

data obtained from the daughter grains. A solution has been

proposed by Cayron et al. (2006) based on groupoid compo-

sition tables introduced in Cayron (2006). However, a phase

transition corresponds to only half a cycle and we need to

generalize the theory to cycled-transformed materials. This

paper is a geometric/algebraic study on the particular type of

series of cycles of transformations known as multiple twin-

ning.2 The theoretical results allow the identification of the

�3n grain boundaries and the reconstruction of the TRDs

encountered in some metallurgical problems.

In x2, the approach of Reed et al. (2004) on multiple twin-

ning in metallurgy is discussed. A simple introduction to

groupoids is given in x3 so as to facilitate the understanding of

the further sections. In x4, multiple twinning is represented

geometrically by a three-dimensional fractal and algebraically

by a groupoid. It is shown that the �3! free group introduced

by Reed et al. (2004) is a possible substructure of this

groupoid. Another equivalent but not isomorphic substruc-

ture, the �3� semigroup, is introduced in x5. In x6, the �3n

operators are encoded by sets of equivalent strings, and a

general method to determine their composition is proposed.

We prove that the composition is multivalued. The composi-

tion table (called groupoid composition table) is given for

twinning orders up to n = 4. Finally, in x7, we study some

engineering cases (local crystallographic environment of voids

or hillocks in copper films, reconstruction of the TRDs in

narrow copper lines) in order to show how this table can be

used to identify the �3n grain boundaries in some EBSD

maps.

To begin, we must explain some notations. The point group

G of a crystal will be considered as the group of matrices

representing its orientational symmetries. |G| is the cardinality

of the group G (i.e. the number of matrices). If H is a subgroup

of G, the expression gH means a left coset of matrices based

on the subgroup H, it is the set {gh, h 2 H}. The expression

GTG, where T is a matrix, is the set {giTgj, (gi, gj) 2 G2}.

2. The different algebraic approaches of simple and
multiple twinning

Theoretically, the first crystallographic studies on textures

generated by multiple twinning date back to the 1940s

(Kronberg & Wilson, 1949; Wilbrandt, 1980; Gottstein, 1984).

Many authors briefly mention that the algebraic structure

associated with multiple twinning is a group. However, this

group is rarely defined completely and its properties are not

always demonstrated. Its definition appears to vary in

different publications. When no detail is given, it can be

assumed that that group is O(3) (the group of orthogonal

matrices), but it could be also the subgroup constituted by all

the matrices verifying equation (1), or a subgroup of this last

group defined by imposing the condition � = 3n. However,

these groups are too large and do not represent the true

nature of multiple twinning. In fact, in these groups two

equivalent transformation matrices, corresponding to the

same misorientation between two crystals but differing due to

a different choice of bases in those crystals, would be treated

as two distinct elements whereas it would be more appropriate

to consider them as the same element.

2.1. The approach of Reed et al. (2004) to multiple twinning

An impressive study has recently been published by Reed et

al. (2004) on how multiply twinned structures, and more

generally the �Xm�Yn structures with X and Y integers, can

be constructed from algebraic manipulations on quaternions,

simplified by a string representation and illustrated using

network graphs. This theoretical work has been recently

summarized and applied to simulate multiply twinned micro-

structures (Reed & Kumar, 2006). Since we will often refer to

this work, we will give a brief description of the part of their

approach that deals with multiple twinning. The misorienta-

tion from a crystal 1 to a homophase crystal 2 can be expressed

by a set of equivalent matrices GR12G, where R12 ¼ R�1
1 R2 is a

rotation from crystal 1 to crystal 2 and G is the point group of

the cubic crystals. This set is called a ‘subtype’ and the order of

the crystals in the pair (1, 2) is important. The misorientation

between two crystals 1 and 2 is expressed by a set of equivalent

matrices GR12G [ GR21G, with R21 ¼ R�1
12 . This set is called a

‘type’ and the order of the crystals in the pair (1, 2) is not

important. The ‘types’ define matrices that are ‘cubically’

equivalent.3 In their paper, Reed et al. (2004) have used the

‘types’ and the corresponding sets of equivalent quaternions.

For example, �3 is a ‘type’ and the set contains the quatern-

ions of shape [0111], [0112] and [3111]. From the set of

equivalent quaternions, the authors have separated four

‘cosets’ which contains the quaternions [0111], [0�11�111], [01�11�11]

and [0�111�11], and correspond to the 180� rotations with [111],

[1�11�11], [�11�111] and [�111�11] axes, respectively. Each ‘coset’ was then

called a, b, c and d (in Reed & Kumar, 2006), and each �3n

operation was expressed by a string constituted of these four
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2 Multiple twinning can be imagined as repeated transformations (see x4).

3 The notion of ‘cubical equivalence’ was introduced by Grimmer (1974) who
studied the matrix and quaternion expressions of the misorientation between
two cubic crystals. However, as already pointed out by Reed et al. (2004), it is
in general possible to distinguish the misorientation from crystal 1 to crystal 2
and the misorientation from crystal 2 to crystal 1. The two subtypes are then
complementary polar subtypes (see x2.2). Thus, the subtypes contain more
information than the types and, in this paper, we will use the notion of subtype.
We will say that two matrices Tx and Ty are ‘polarly cubically equivalent’ if and
only if they belong to the same subtype, i.e. they form the same set of matrices
GTxG = GTyG, with G the point group of the cubic crystals (sometimes
denoted �1).



letters. The strings can be composed using simple concatena-

tion and by taking into consideration a rule that eliminates the

pairs of equal consecutive letters (for example abbcd = acd).

All the operations can be represented by a graph. With this

representation, the set of the �3n operations form a free

group4 called �3!. The work of Reed et al. (2004) brings a new

understanding to multiple twinning and introduces a rule on

the � numbers that can help metallurgists to analyse struc-

tures with �3n grain boundaries. However, many questions

can be raised. The decomposition of the set of equivalent

quaternions into four cosets is not clearly explained. It is

intuitive (because the [111], [1�11�11], [�11�111] and [�111�11] axes are

equivalent), but what are the algebraic justifications for this

decomposition? Are the cosets left or right? What is the

subgroup on which they are based? The authors assume that a

representative can be ‘arbitrarily’ chosen in the cosets, and

they have built the group �3!, not with the entire cosets but

with the four quaternions a = [0111], b = [0�11�111], c = [01�11�11] and

d = [0�111�11]. What could be the structure if other representa-

tives were considered? Would we obtain the same group with

the same elimination rule? There are also other limitations

discussed by the authors, such as ‘without cubic symmetry, the

natural mapping between integer quaternions and CSL rota-

tions is lost’. Is it possible to introduce another approach

without quaternions (which could therefore be applied to non-

cubic materials)? Moreover, because the four elements a, b, c,

d generate an infinity of new operations, the group �3! is

infinite. Why is it not possible to build a finite algebraic

structure to describe finite cases such as the one of a crystal

and its four twinned variants? A last but not least question is

also raised: we know that the composition of two �3 operators

produces either a �1 operator or a �9 operator. However, in a

group the composition is a ‘classical’ mathematical application

(the composition of two elements gives only one element), so

a group structure cannot explain the multivalued aspect of the

composition of the �3n operators. What could be the algebraic

structure describing the multiple twinning and its multivalued

composition? We will try to answer these questions in this

paper.

2.2. A brief overview on simple twinning

The work of Reed et al. (2004) is mainly based on metal-

lurgical tools (such as the CSL rotations). The crystallographic

developments of twinning applied in other fields of material

science can be used advantageously to complete their

approach. The colour group introduced by Shubnikov &

Koptsik (1974) (see also Senechal, 1983) is now integrated in

the modern theories of twinning. Crystallographers working in

mineralogy (Wadhawan, 1997; Hahn & Klapper, 2003) and

those working in physics of ferroelectric domains (Janovec,

1976) have made a synthesis of their respective approaches.

This synthesis uses mathematical tools based on modern

group theory such as orbits, stabilisers, coset partitioning etc.

(Hahn et al., 1999; Janovec et al., 2003). Some crystal-

lographers interested in grain boundaries are following the

work of Pond & Vlachavas (1983) and are trying to integrate

the CSL rotations in that synthesis (Grimmer & Nespolo,

2006).

Let us briefly explain the principle of coset partitioning in

the case of twinning. We call G0 the point group of crystal 0

and T a twin operation. We call G1 the point group of crystal 1

which is the twin of crystal 0 by the operation T. If the matrices

that constitute G1 are expressed in the same base as those of

G0, the two groups are linked by G1 = TG0T�1. The two

crystals have some symmetries in common that constitute the

intersection group H = G0 \ G1. Moreover, owing to the

symmetries of the crystal 0, more than one twin crystal might

be created and each element g of G0 that does not belong to H

creates a new variant. Thus the group G0 can be partitioned

into left cosets that represent the distinct variants:

G0 ¼ g0H [ g2H [ . . . [ gN�1H ð2Þ

with g0 = e the neutral element (i.e. the identity matrix). The

number of variants is given by the Lagrange formula N =

|G0|/|H| and their orientations are given by the sets giHT. Now,

we can explain the idea of Reed et al. (2004), the ‘cosets’ of

their decomposition are in fact the sets of type giHT (which

are not strictly speaking cosets because only giH are cosets).

The set of cosets in the decomposition (2) represents the

assembly of twinned variants. This is sometimes called ‘the

reduced composite group’. However, this name may be

confusing. One must distinguish the group G0 of crystal 0 that

has generated the set of variants from the set of variants itself

(i.e. the set of cosets) given by

G0=H ¼ fg0H; g1H; . . . ; gN�1Hg: ð3Þ

In general, G0/H does not have a group structure. It is a group

if and only if H is a normal subgroup of G0. If this condition is

fulfilled, G0/H is a group and each coset of this group can be

represented by one matrix arbitrarily chosen in each coset. For

example, H is a normal subgroup when there are only two

cosets in the set (3). However, we stress here that the condition

of normality of H is not fulfilled in the case of �3 twinning as

discussed in Cayron (2006). Consequently, although one

matrix (or one quaternion) can be arbitrarily chosen in each

coset for numerical calculations (Reed et al., 2004), a method

based on arbitrary choices of representatives cannot be used

to justify the algebraic structure of multiple twinning.

The misorientations from a variant represented by the coset

giH to a variant represented by the coset gjH are isomorphic to

the double cosets HgijH, where gij = g�1
i gj (Janovec et al., 2003;

Cayron, 2006). Therefore, the distinct types of misorientations

between ordered pairs of variants are given by the partition of

G0 into double cosets,

G0 ¼ Hg00H [Hg02H [ . . . [Hg0N0�1H: ð4Þ

These types of misorientations are also the orbits of the action

of G on the sets of the ordered pairs of variants (Janovec,
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4 If S is a set, the expressions s
"1
1 . . . s

"n
n with si 2 S and "i 2 f�1; 1g are called

the strings (or words) of S. A string is said to be reduced if it does not contain
two adjacent terms of the form s1

i s�1
i or s�1

i s1
i . A free group F is a group

generated by a set S in which the distinct elements are represented by distinct
reduced strings in S.



1972). Double cosets are not limited to crystallography; they

are also widely used in physics and chemistry5 (Ruch & Klein,

1983). Since double cosets can be viewed as types of actions

that act on the variants, we call them operators. Their set is

written

H\G0=H ¼ fHg00H;Hg02H; . . . ;Hg0N0�1Hg: ð5Þ

The primes in g0i are introduced to distinguish the elements g0i
of (5) from the elements gi of (3). The number of operators,

N0, is given by the Burnside formula or it can be obtained by a

class equation (Cayron, 2006). In general, it is possible to

distinguish the operator transforming the variant i into the

variant j from the operator transforming the variant j into the

variant i because in general HgijH and Hg�1
ij H are two distinct

double cosets. The operators are then called polar. If it is not

the case, i.e. HgijH = Hg�1
ij H, the operators are called

ambivalent (Janovec & Přı́vratská, 2003). Now, it can be

realized that the ‘subtypes’ (see x2.1) correspond to the

operators, and that the ‘types’ correspond to an ‘artificially

forced’ union of complementary operators HgijH [ Hg�1
ij H

(always ambivalent).

In Cayron (2006), all these ideas have been used to show

that the set of variants associated with the set of operations

that link them form an algebraic structure called groupoid of

orientational variants. Is it possible to generalize the concept

of groupoid to multiply twinned variants? Before going

further, we would like to give some explanations on groupoids

and a possible way to use them in crystallography.

3. A brief introduction to groupoids and operators

Groupoids are very useful because they are ‘the ideal tool for

describing symmetries that apply only to parts of systems.

Groupoids are more flexible and often more appropriate than

the better-known groups . . . ’ (Stewart, 2004). Groupoids

were first introduced in mathematics by Brandt (1926) and

they now play a key role in the category and homotopy

theories. For an exact definition and mathematical details, the

reader may refer to Brown (1987) or Weinstein (1996).

Groupoids were used in material science to represent poly-

typic structures, also known as order–disorder structures

(Dornberger-Schiff & Grell-Niemann, 1961; Sadanaga, 1978;

Fichtner, 1986). Their practical applications however have

remained mainly limited to the problem of diffraction

enhancement of symmetry (Sadanaga & Ohsumi, 1979). Since

the definition of groupoids given by mathematicians may be

difficult to understand for non-mathematicians, we would like

to give here our personal geometrical and simple vision on this

algebraic structure.

The most important point to understand is the groupoid

composition law. It says that two pairs of objects (i, j) and ( j, k)

can be composed and the result is (i, k). This condition is

classical and everyone has used it to add geometrically two

vectors U and V. Each vector is written as a pair of points such

that U = (P1, P2), V = (P2, P3) and the result is W = U + V =

(P1, P3). Such geometrical construction has been forgotten in

Cartesian geometry because the addition of vectors is

commutative and can be simply resumed to additions of two

numbers. The decomposition into pairs of objects is also

possible for invertible matrices if they are expressed as

transformation matrices from a base i to a base j: X = [Bi .Bj].

Then, the composition XY can be written X = [Bi .Bj], Y =

[Bj .Bk], and the result is Z = XY = [Bi .Bk]. In addition, the

analytical result of the product of two matrices is also a

groupoid composition law as pointed out by Connes (1990):

ðXYÞði;kÞ ¼
P

j

Xði;jÞYðj;kÞ:

The decomposition of matrices into pairs of bases explains

why the order of the matrices is important when calculating

their product (i.e. XY is in general different from YX). The

groupoid composition law can be imagined spatially as a

‘head/tail’ condition and also temporally as a ‘before/after’

condition. It can be used in quantum physics,6 biology,

computer science and for any system that has connections

such as graphs and networks (Stewart, 2004).

In these examples, it may be noticed that the groupoid law is

based on the existence of two complementary entities: the

objects (the points, the bases, the energies6) and the opera-

tions between these objects (the vectors, the matrices, the

frequencies6). These operations can be represented by arrows

that link the objects.7 In addition to its composition law, a

groupoid must have the following properties: the composition

between the arrows is associative and each arrow has an

inverse. Groupoids are more general than groups because in

the latter the objects and the arrows are two isomorphic

entities that cannot be distinguished. Indeed, an element g of a

group G is also an arrow referenced to the neutral element e

because g.e (g is an object transformed by the arrow e) = g (g is

an arrow).

A new idea known as ‘operator’ was also introduced by

Cayron (2006). This term has a meaning different from the

term ‘operation’. An operator is a type of operation and can

be expressed by a set of equivalent operations.8 Moreover,

situations or figures that have partial iterative symmetries can

often be represented by graphs. Since the vertices and the

edges of a graph can be viewed respectively as the objects and

the operations of a groupoid, an operator can also be viewed

as a type of path in a graph and expressed by a set of

equivalent paths. In Appendix A, a non-crystallographic

example is described in order to familiarize the reader with the

idea of operator (as a type of path in a graph or as a type of

arrow in a groupoid).
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5 One can understand the simple cosets as types of dangling bonds and double
cosets as types of bonds between pairs of atoms.

6 Connes (1990) makes a clear parallel between the matrix mechanics of
Heisenberg in quantum physics and the groupoid composition law of the
spectral frequencies of hydrogen given by �ðEi;EjÞ

þ �ðEj;EkÞ
= �ðEi;Ek Þ

, where
�ðEi;EjÞ

is the frequency of the spectral line between the energy levels Ei and Ej.
7 In this paper, we will use equivalently the terms ‘operation’ and ‘arrow’.
8 For example, a pair of points (Pi, Pj) is an arrow. In the Euclidean space,
there is infinity of points (Pi, Pj) similarly placed in their pairs; these pairs form
an equivalence class called vector, V = {(Pi, Pj)}. A vector is an operator and
one can imagine its action on the points by PiV = Pj.



4. Geometric and algebraic considerations on multiple
twinning

4.1. The groupoid of orientational variants

It has been shown that the orientational variants formed by

a structural phase transition � ! � and the operations that

link them form a groupoid (Cayron, 2006). Geometrically, the

daughter variants were identified to the objects of the

groupoid and the misorientations were identified to the arrows

between these objects. Algebraically, the details of the struc-

ture were obtained by unifying the external symmetries of the

parent crystal G� to the internal symmetries of the daughter

crystals G� with the help of a transformation matrix T

representing the orientation relationship between one

daughter crystal and its parent crystal. More precisely, the

variants �i were identified to the simple cosets g
�
i H, where

g
�
i 2 G� and H is the intersection group between the parent

crystal and a daughter crystal (given by H = TG�T�1
\ G�).

The types of misorientations between the variants, i.e. the

operators, were identified to the double cosets T�1Hg
�
ijHT.

The arrow from the variant �i to �j and the arrow from the

variant �j to �k can be composed and the result is the arrow

from the variant �i to the variant �k, i.e. (�i . �j) (�j . �k) =

(�i . �k). Each operator is written as a set of equivalent arrows

= {(�i . �j), (�k . �l), . . . }, i.e. a set of pairs of variants similarly

misoriented. An operator is ambivalent if it transforms the

variant �i into the variant �j and the variant �j into the variant

�i. If this is not the case, it is described as polar. To compose

the operator O�
m with the operator O�

n, ðO�
m;O�

nÞ ! O�
mO�

n ,

the groupoid composition rule imposes that the arrival

variants of O�
m must be the starting variants of O�

n. This

composition can be explicitly determined by writing

O�
m 3 (�i . �j), O�

n 3 (�j . �k) and the resulting operators are

those containing the arrows (�i . �k). Since many operators

may be obtained, the composition is multivalued. The

groupoid composition table characterizes the crystallographic

aspect of the transition; some tables were given for the

Burgers transition by Cayron (2006) and for the martensitic

transitions by Cayron et al. (2006).

4.2. The groupoids of simple twinning

Simple �3 twinning in face-centred cubic (f.c.c.) materials

may be imagined as a phase transition with G� = G� = G and

T = T�1 the matrix representing the mirror symmetry through

the (111) plane (see Table 1). The intersection group

H ¼ G \ TGT ð6Þ

contains 12 symmetry operations and in consequence the

number of variants is N� = |G|/|H| = 4. Let us call �0 the

primary crystal (parent crystal), and �1
0, �1

1, �1
2 and �1

3 the four

twins of this crystal (daughter crystals). More generally, the ith

twin of the nth generation will be denoted �n
i .The five crystals

are represented in Fig. 1(b) (this figure is probably closer to

the actual algebraic developments of twinning and coset

partitioning than the classical representation of Fig. 1a). The

four variants �1
0, �

1
1, �1

2 and �1
3 are linked to the primary crystal

�0 by a �3 operator, between them by a �9 operator and to

themselves by a �1 operator: ð�0 . �
1
i Þ 2 �3, (�1

i . �
1
j ) 2 �9

for i 6¼ j and (�1
i . �

1
i ) 2 �1. Three groupoids may be defined:
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Table 1
Matrices representing the transformations from a primary cubic crystal
into its four �3 twinning variants.

They have been chosen in their respective set of type giHT to create a
‘harmonious’ enumeration of the two-dimensional fractal of Fig. 5(a). The
geometrical operations corresponding to these matrices are also reported (m
for a mirror symmetry and R for a rotation).

T0 ¼ T ¼ 1
3

1 �2 �2

�2 1 �2

�2 �2 1

0
@

1
A

¼ m=ð111Þ

T1 ¼ g1T ¼ 1
3

1 �2 �2

2 �1 2

2 2 �1

0
@

1
A

¼ Rð½0�111�; 70:53�Þ �m=yx

T2 ¼ g2T ¼ 1
3

�1 2 2

�2 1 �2

2 2 �1

0
@

1
A

¼ Rð½�1101�; 70:53�Þ �m=xz

T3 ¼ g3T ¼ 1
3

�1 2 2

2 �1 2

�2 �2 1

0
@

1
A

¼ Rð½1�110�; 70:53�Þ �m=xy

Figure 1
�3 twin representations: (a) a �3 twin is in general represented by an
association of two crystals of equivalent size, but (b) a �3 twin results in
general from a transformation during mechanical experiments or
annealing treatments, and four distinct orientations (four variants) may
appear after one twinning transformation (eight are represented but can
be associated two by two due to the centrosymmetry of the cubes).

Figure 2
Composition table of the groupoid C(0+1) representing an assembly of
crystals constituted by a crystal �0 and its four twinned variants �1

0, �
1
1, �1

2

and �1
3. The operators �1 and �3 are given with reference to the crystal

�0. The composition of the operators appears as a multivalued function,
for example �3�3 = {�1, �9}.



(i) C(0) is constituted by one object (�0) and one arrow

(�0 .�0) forming one operator (�1 = G).

(ii) C (1) is constituted by four objects (�1
0, �1

1, �1
2 and �1

3), 16

arrows (�1
i . �

1
j ) with (i, j) 2 [0, 3]2 partitioned into two

operators (�1 and �9). This is a groupoid of orientational

variants described in x4.1. The four variants are algebraically

identified with the four cosets giH that constitute the set G/H

and the two operators expressed in a basis of �0 are the double

cosets of the set G\H/G: �1 = H and �9 = Hg01H.

(iii) C(0+1) = C(0)
[ C(1), which is a union of groupoids is

constituted by 5 objects, 25 arrows partitioned into 3 operators

(�1, �3 and �9). Its composition table is reported in Fig. 2. It

may be checked in this table that the composition of two �3

can be either a �1 or a �9 operator. One may add that the

result is �1 with a probability of 1/4 and is �9 with a prob-

ability of 3/4. Only arguments based on calculations of ener-

gies can modify significantly these crystallographic

probabilities (but in this study, we will only consider crystal-

lographic arguments).

4.3. The groupoids of multiple twinning

By considering simple twinning as a phase transition with

� = �, multiple twinning �3n may now be imagined as a series

of phase transitions � ! � ! � ! � ! � etc. In Cayron

(2006), we raised the following questions: is there a general

formula to calculate the number of variants and the number of

operators of the nth generation? Do these numbers increase

to infinity with n? We do not know the general solution to

these questions but we will answer them in the special case of

multiple twinning.

The approach of the previous section can be generalized,

the variants of generation n and the operations that link them

form a groupoid C(n). This groupoid can be associated with the

groupoids of the previous generations C(i) with i < n to form a

groupoid denoted C(0+1+ . . . +n). This last groupoid and its

subgroupoids form a structure similar to a Russian doll. Its

algebraic details remain to be fully determined; such a study

implies the generalization of the use of cosets and double

cosets to multiple cosets linked by a transformation matrix.9

However, we will see in the following that some basic

geometrical considerations are actually sufficient to determine

the operators and their composition table.

4.4. Three-dimensional fractal representations

We may imagine all the twinning variants in three dimen-

sions: (i) by representing the primary crystal with a tetra-

hedron constituted by its four {111} planes, (ii) by creating its

four variants by applying the {111} mirror symmetries, and (iii)

by repeating this process. The topology makes this approach

impossible for orders higher than three (it is the well known

problem of tetrahedra packing). However, all the variants can

be created if one decreases the size of the tetrahedra by a

factor of two at each generation of the process. The result is

the three-dimensional fractal illustrated in Fig. 3. This fractal is

a more complex version than the three-dimensional Kepler

fractal in which the tetrahedra are only translated but not

rotated. The representation of Fig. 3 is a convenient way to

illustrate the orientations of all the multiply twinned crystals

on the same drawing. It is particularly illustrative for twinning

in �443m crystals (such as sphalerite). It may be noticed that,

owing to the absence of centrosymmetricity, the [111] and

[�11�11�11] directions are not equivalent (compare Figs. 3a and b).

For m3m crystals, such as f.c.c. metals, the tetrahedra can be

substituted by cubes; the generated fractal is then illustrated in

Fig. 4. This fractal is constituted by interpenetrated cubes, the

twinned cubes of the (n + 1)th generation are positioned at the

corners of the nth-generation cubes. By construction, the

whole fractal has the same symmetries as for the primary
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Figure 4
Three-dimensional cubic fractal representation of multiply twinned
crystals (m3m) viewed (a) in the [111] direction and (b) in the [100]
direction of �0. This fractal has been built with the same misorientations
and displacements as those of Fig. 3 (the tetrahedra have only been
substituted by cubes).

Figure 3
Three-dimensional tetrahedral fractal representation of multiply twinned
crystals (�443m) inherited from the same primary crystal �0 (in green),
viewed (a) in the [111] direction and (b) in the [�11�11�11] direction of �0 (the
two directions are not equivalent because a tetrahedron is not
centrosymmetric). This fractal is built from twinned tetrahedra reduced
in size by a factor of two at each generation and lying in the centres of the
faces of the tetrahedra of the preceding generation. Distinct colours are
associated with the orders n of the fractal.

9 The orientations of four crystals of first generation are given in reference to
the orientation of the primary crystal �0: the orientation of �1

0 is given by HT,
the orientation of �1

1 by g1HT, �1
2 by g2HT and �1

3 by g3HT. Each �1
i becomes

the parent crystal of the variants of second generation �2
j . The orientations of

these variants in reference to the primary crystal �0 are given by the set of
matrices giHTgjHT. More generally, the orientations of the twinned crystals at
any order n are given by the sets of type giHTgjHTgkHT . . . (n times) with (i, j,
k, . . . ) 2 [0, 3]n.



crystal. For example, it may be checked that the cubic fractal

viewed in h111i and h100i directions (Figs. 4a and b) exhibits

the two-dimensional 3m and 4mm symmetries, respectively.

From these figures, it appears that the number of distinct

variants at the nth generation is given by = 4.3n, for n � 1 (see

also Wilbrandt, 1980; Gottstein, 1984). We have seen that the

assembly of grains twinned to the nth generation constitutes

the groupoid C(0+1+ . . . +n) and can be represented by a fractal

(stopped at the nth generation). Such assembly has its own

CSL, which will be denoted CSLn. It is the intersection of the

lattices of all these crystals. Therefore, the CSLn has the same

symmetry elements as for the primary crystal and it can be

referenced in the primary crystal basis with a matrix of type

aE, where E is the 3 � 3 identity matrix and a 2 N. Moreover,

the CSLn can also be expressed with integer coordinates in the

reference bases of all the twinned crystals, which means that

the CSLn matrix multiplied by any transformation matrix

given in equation (1) with � = 3n should be equal to an integer

matrix. Since the aij coefficients in equation (1) are co-prime

(they have no common divisor except 1), such a condition

leads to

CSLn
¼

3n 0 0

0 3n 0

0 0 3n

2
4

3
5: ð7Þ

It follows that the volume of the CSLn lattice is �multi = 33n.

This result could also probably be derived from the general

formula suggested by Gertsman (2001b).

4.5. Macro/microscopic examples of three-dimensional
fractal shapes

We recall that the fractal representation is just a convenient

way that will help us to visualize the symmetries and to

simplify the calculations. However, we may wonder if such

shapes can exist in nature. Indeed, with perfect isotropic

growth conditions, the macroscopic shape of an assembly of

multiply twinned crystals could be close to Fig. 3 for �443m

structures or to Fig. 4 for m3m structures. Even if isotropic

conditions are rarely found in mineralogy, multiple twins of

diamond and sphalerite crystals can sometimes look like Fig.

3(b) – the reader is invited to look at the photographs

reported by Palache (1932). The star polyhedral gold nano-

particles recently discovered by Burt et al. (2005) also exhibit

shapes close to Fig. 3 (with n = 2). Another case is probably

the fractal structure of a dislocation-free bicrystal silicon

ribbon studied by Cheng (1994). He reported angles of re-

entrant corners (141 and 109.5�) that correspond respectively

to some rotation angles of the �9 operator (180 � 141 ’

38.94�) and of the �3 operator (180 � 109.5 = 70.5� = angle

between two {111} planes). An EBSD study of this ribbon

could be interesting to confirm that the orientations of the

crystals are of type �3n. Fractal structures are also obtained by

phase transformations very similar to the twinning transfor-

mation. The hyperbranched structures of CdTe or CdSe

nanocrystals are constituted of branched tetrapods (Milliron et

al., 2004) resulting from the alternating transitions between

the cubic sphalerite phase and the hexagonal wurtzite phase:

sphalerite transforms into four wurtzite branches in the h111i

directions (as in the twinning case), and each wurtzite branch

transforms into two sphalerite branches in the two +c and �c

directions.

5. The R3n semigroup of multiple twinning

The whole three-dimensional fractal represents the whole

twinning groupoid C1 = C(0+1+ . . . +n) with n =1. What is the

relation between the free group �3! introduced by Reed et al.

(2004) and C1? In the group �3!, the four strings that begin

with the letters a, b, c and d correspond to the four branches of

the fractal. Each string of the free group �3! encodes a path

on the fractal. It must be remembered that the four letters

represent 180� rotation matrices that were chosen in the sets

HT, g1HT, g2HT and g3HT. The relative simplicity of the �3!

structure results from this ‘not so arbitrary’ choice. Other

choices of representatives in those sets lead to different

algebraic structures that are all substructures of C1. In order

to convince the reader, we are creating a structure denoted

�3�, which will be proved to be not isomorphic to �3!, but

that can also be used to encode the �3n operators. The

representatives are chosen in the sets HT, g1HT, g2HT and

g3HT such that the faces of the tetrahedra in the developed

representation of the fractal of Fig. 3 (Fig. 5a) are ‘harmoni-

ously’ enumerated. These matrices T0, T1, T2, T3 and their

corresponding geometrical meaning are reported in Table 1.

5.1. Calculation of the operators

The whole fractal and the associated �3n operators can be

constructed from the four Ti matrices of Table 1 by calculating

the matrix products TiTjTk . . . Tl. In all the following, these

products will be written as strings

TiTjTk . . . Tl ¼ ijk . . . l: ð8Þ
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Figure 5
Enumeration of the faces of the tetrahedra. (a) Developed representation
of the fractal of Fig. 3 (in fact, to avoid overlapping of the faces, the
scaling factor is not 1/2 as for the three-dimensional fractal but 1/4). This
two-dimensional fractal is usually called a Sierpinsky fractal. The faces
have been enumerated in such a way that the arrangement of the
numbers in this figure respects a simple ‘harmonious’ rule. (b) The
corresponding numbers are reproduced in the three-dimensional fractal
limited to n = 2.
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Table 2
�3n operators (reproduced here up to n = 6).

For space reasons, the CSL rotation matrices are given only up to n = 4 with only the integer coefficients aij of expression (1). For n > 4, for more visibility, ny should
be read �3ny (for example 5a is �35a). The polar operators are marked by +/� signs, the others are ambivalent operators. The string coding i j . . . l corresponds to
the matrix product given by the formula (8) with the matrices of Table 1.

Order 1 Order 5 Order 6

�1 5a 6+a 6+k 6�t
[1 �2 �2] 1 1 1 1 1 1 1 1 2 2 1 1 1 2 2 1 3 1 1 2 3 1 1
[2 �1 2] 7.356 [0, �1, 1] 11.247 [�3, 1, 2] 38.376 [11, 5, �13] 49.701 [�11, �15, �13]
[2 2 �1]
1 5b 6�a 6�k 6+u
60.000 [1, 1, 1] 1 1 2 3 1 1 1 2 2 1 1 1 1 2 3 3 2 1 1 1 2 1 2

12.213 [1, �3, �1] 11.247 [�1, �3, �2] 38.376 [�11, �5, 13] 54.145 [�5, 9, 14]

Order 2

�9 5c 6+b 6+l 6�u
[�7 �4 �4] 1 1 2 2 3 1 1 2 1 2 3 1 1 1 2 1 3 1 1 2 1 2 2
[ 4 1 �8] 31.586 [1, 4, 1] 22.087 [5, 9, 1] 38.942 [�5, 4, �11] 54.145 [�5, �9, 14]
[ 4 �8 1]
1 1 5+d 6�b 6�l 6+v
38.942 [0, �1, 1] 1 1 1 2 3 1 1 2 3 2 3 1 1 2 3 2 2 1 1 1 1 1 2

35.431 [�2, 4, �5] 22.087 [9, �5, �1] 38.942 [�5, �11, 4] 54.145 [9, 11, 10]

Order 3

�27a 5�d 6c 6m 6�v
[�23 10 10] 1 1 2 3 3 1 1 2 1 3 1 1 1 2 1 2 1 1 1 2 2 2 2
[�10 �25 2] 35.431 [5, 2, �4] 22.087 [7, �7, �3] 38.942 [8, �7, �7] 54.145 [�9, 11, 10]
[�10 2 �25]
1 1 1 5+e 6d 6n 6w
31.586 [0, 1, �1] 1 1 1 2 1 1 1 2 2 2 3 1 1 1 2 1 1 1 1 2 3 1 2

43.076 [�1, �3, �11] 28.608 [0, 5, �8] 44.383 [�1, 0, �5] 54.532 [8, 8, 5]
�27b
[ 7 �26 �2] 5�e 6e 6+o 6+x
[�22 �7 14] 1 1 2 1 1 1 1 2 3 2 1 1 1 2 2 1 2 1 1 2 1 3 2
[ 14 2 23] 43.076 [3, �11, �1] 28.608 [9, 2, �2] 44.383 [�4, 3, 1] 58.997 [�11, �19, 15]
1 1 2
35.431 [0, 2, 1] 5+f 6+f 6�o 6�x

1 1 1 1 2 1 1 1 1 2 3 1 1 2 1 1 2 1 1 2 3 1 3

Order 4 43.076 [�9, 7, �1] 28.608 [7, �6, 2] 44.383 [3, 4, �1] 58.997 [�11, �19, �15]

�81+a
[ 23 �16 �76] 5�f 6�f 6p 6y
[ 64 �41 28] 1 1 2 2 2 1 1 2 3 3 3 1 1 1 2 3 3 1 1 1 1 1 1
[�44 �68 1] 43.076 [1, �7, �9] 28.608 [6, 2, 7] 47.126 [0, 13, 8] 60.408 [10, 10, 13]
1 1 1 2
38.376 [�1, �3, �5] 5g 6+g 6+q

1 1 2 1 2 1 1 1 2 3 2 1 1 2 2 3 1
�81�a 43.076 [5, 9, �5] 28.608 [�3, �4, �8] 47.126 [6, �14, �1]
[41 �16 68]
[64 �23 �44] 5+h 6�g 6�q
[28 76 1] 1 1 2 1 3 1 1 2 1 3 3 1 1 2 3 3 1
1 1 2 2 49.753 [6, 7, �1] 28.608 [8, 4, �3] 47.126 [�14, �1, �6]
38.376 [1, 5, �3]

5�h 6h 6+r
�81b 1 1 2 3 2 1 1 2 2 2 1 1 1 2 2 3 2
[�49 8 �64] 49.753 [�7, 6, 1] 31.285 [0, �2, �7] 47.126 [5, 12, �8]
[ �8 79 16]
[ 64 16 �47] 5i 6+i 6�r
1 1 2 1 1 1 2 2 1 1 1 1 1 2 2 1 1 2 1 1 3
38.942 [1, 4, 1] 49.753 [5, �6, �5] 31.285 [�4, �6, 1] 47.126 [8, 12, �5]

�81c 5j 6�i 6+s
[�55 44 �40] 1 1 1 2 2 1 1 1 2 2 2 1 1 1 2 2 3
[�20 �65 �44] 60.0 [�11, 1, �11] 31.285 [�6, 4, �1] 49.701 [15, �1, �17]
[�56 �20 55]
1 1 2 3 6+j 6�s
54.532 [2, �3, �2] 1 1 1 1 2 1 1 1 2 2 3 3

38.376 [17, 5, �1] 49.701 [15, 17, 1]
�81d
[ 17 56 56] 6�j 6+t
[�56 49 �32] 1 1 2 1 1 1 1 1 1 2 3 1
[�56 �32 49] 38.376 [1, �17, �5] 49.701 [�15, 11, 13]
1 1 1 1
60.408 [�4, 3, 4]



The operations are encoded by the strings and the operators

are encoded by sets of equivalent strings. The calculations can

be reduced to the minimum if the symmetries of the fractal

(i.e. the symmetries of the primary crystal) are taken into

consideration. Indeed, the fractal is constituted by four main

branches on the four threefold axes of �0, which are obtained

by taking as the first matrix in the product (8) T0 for branch 0,

T1 for branch 1, T2 for branch 2, and T3 for branch 3. Since

these branches are all geometrically equivalent, all the

operations can be done with only one branch. We choose

branch 1, i.e. the one starting with T1. These geometrical

considerations explain why there is only one �3 operator. The

first variant on this branch is �1
1. From this variant, three new

variants �2
1, �

2
2 and �2

3 can be created, and they are all

equivalent due to the threefold symmetry of this branch.

Therefore, to calculate the other operators, we can limit

ourselves to calculate the matrix products that start with T1T1,

i.e. the strings 11 . . . These geometrical considerations explain

why there is only one �9 operator. From �2
1, three new

variants can be created, but two are equivalent due to the

mirror symmetry on the plane (011). Therefore, there are only

two �27 operators: one containing the string 111 (= �27a) and

another one containing to the string 112 (= �27b). From this

step (n = 3), each variant of generation n will generate three

new variants of generation n + 1, with the exception of the one

that keeps the (011) plane of �0 as a mirror plane. Conse-

quently, for the orders n > 3, all the operators can be recur-

sively generated with the help of five distinct types of

operations (�n
i . �

nþ1
j ).

(a) If �n
i keeps having a mirror symmetry through the initial

mirror plane (011), the operation (�0 . �
n
i ) is of type Tn

1 =

111 . . . 1 (n terms). Three new variants and two new operators

can be created from �n
i : the first operator contains the string

111 . . . 11 (n + 1 terms) = Tn
1 T1, and the second one contains

the string 111 . . . 12 (n + 1 terms) = Tn
1 T2. Both are illustrated

in Fig. 6 (in the case of n = 4).

(b) If �n
i is not symmetric through the initial mirror plane

(011), the operation ð�0 . �
n
i Þ is of type M = 11 . . . 2 . . . i (n

terms). Three new variants and three new operators can be

created from �n
i : they contain the strings 11 . . . 2 . . . ij (n + 1

terms) = MTj, j 2 {1, 2, 3}. If j = i, the connection is a ‘forward’

connection; if j 6¼ i, the first index h before i with h 6¼ i must be

determined and if j = h the connection is a ‘circular’ one, and if

j 6¼ h the connection is a ‘zigzag’ one.

These symmetry considerations allow the creation of the

minimum number of variants required to compute the

construction of the fractal, all the other variants are deduced

by the symmetries of the primary crystal �0 (i.e. the point

group G). At the nth generation, the number of distinct

operators is easily deduced from this geometrical approach.

Indeed, it respects the arithmetic geometric sequence N
op
nþ1 =

3Nop
n � 1 with N

op
2 = 1. In consequence,

Nop
n ¼

1
2 ð3

n�2 þ 1Þ; for n � 2: ð9Þ

By construction, �3�, the set of strings based on the four

indices (0, 1, 2, 3) is a semigroup.10 �3� is not a group because

the indices 1, 2 and 3 have no inverse. Of course, �3� is not

isomorphic to �3!.

5.2. Names of the operators

Once the matrices M representing the operators �3n are

determined (with their string code), the operators can be

named according to the following method: (a) calculate for

each matrix M the set GMG of polarly cubically equivalent

matrices (see footnote 3), (b) choose in this set the rotation

with the minimum angle as representative and (c) order the

operators according to these minimum angles. For example,

the rotations with minimum angles of 31.58 and 35.43� are

associated with the operators �27a and �27b, respectively.

This way of ordering is equivalent to comparing the norms of

the quaternions. However, as already noticed by Reed et al.

(2004), many distinct operators can have the same repre-

sentative minimum angle. A solution was proposed by these

authors for quaternions, however, here, since only the matrix

expressions are used, we have decided to choose another

ordering rule. For each rotation matrix representative of the

operator (i.e. with the minimum angle), we also consider the

orientation of its rotation axis, a second ordering is then

realized (if necessary) by calculating the minimum scalar

product between this axis and the h111i axes. Since this

ordering sometimes is not enough because two distinct

operators can have the same minimum rotation angle and the

same angle between the rotation axis and the h111i axes, a

third ordering rule is sometimes required by calculating the

minimum scalar product between the rotation axis and the

h100i axes. Once the operators have been ordered, they are

identified with letters. Since the alphabet is not large enough

for twinning orders n > 6, it has been extended according to

the rule: a, . . . , z, aa, ab, . . . , az, ba, bb, . . . , bz, . . . etc. The

naming and ordering of the operators takes most of the

computing time (one minute for order n = 8) because it implies

matrix calculations. The ordered operators are reported in

Table 2 for twinning order n � 6 (the list for higher twinning

order is available on demand). It may be noted that the lists

given in some previous studies (Gottstein, 1984; Andreeva &

Firsova, 1996) are not quite complete. We also would like to

stress that it is possible to distinguish the complementary polar
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Figure 6
Three-dimensional graphical representation of two �81 operators: (a)
�81d containing the string 1111, (b) �81+a containing 1112.

10 A semigroup is an algebraic structure consisting of a set closed under the
associative binary operation. A group is a semigroup in which there is a
neutral element and all the elements have an inverse.



operators (see footnote 3). For example, the two �81a

operators with a minimum angle of 38.376� and rotation axes

of type h135i were distinguished; we called them �34+a and

�34
�a. Indeed, if we denote T4

þa = 1112 the matrix associated

with �34+a and T4
�a = 1122 the matrix associated with �34

�a

(given in Table 2), the reader may check (by computing) that

the associated set of polarly cubically equivalent matrices

forming the �34+a and �34
�a operators, i.e. GT4

a G and

GT4
�aG, with G the m3m point group, do not intersect:

T4
�a =2 fgiT

4
þagj; ðgi; gjÞ 2 G2

g but T4
�a 2 fgiT

4
þa
�1gj,

ðgi; gjÞ 2 G2
g. The operator �34+a and �34

�a are comple-

mentary polar operators.

5.3. Two-dimensional graph and pole-figure representations

The different operators corresponding to the �3� semi-

group can be represented on a graph similar to the one

introduced by Reed et al. (2004) (the only slight difference is

the distinction we have made in the labelling between the

polar and ambivalent operators). This graph can be redrawn to

obtain a two-dimensional fractal graph based on Templar-style

crosses, as shown in Fig. 7 (limited here to n � 5 for space

reasons). In this figure, the operators are the centres of the

crosses and the variants are the tips. This graph is called a

Cayley graph (used by mathematicians to encode the free

group based on two generators). One may observe that the

types of connections between the operations such as the

circular or zigzag connections also appear in this two-dimen-

sional fractal scheme.

The twinned variants can also be represented by drawing

their orientations on a pole figure in one of the reference bases

of the primary crystal, as illustrated for twinning orders n � 5

in Fig. 8 (for higher orders there are too many points and only

the densities could be represented). Such figures were already

presented by Gottstein (1984) but were incomplete because of

some missing operators. As already calculated by Wilbrandt

(1980), it is very difficult to distinguish a random misorienta-

tion from a �3n operator for twinning orders n higher than 5.

Some special patterns can also be noticed in these pole figures

(such as the circles). These come from operators that have

very close minimum rotation angles (such as the �81+a,

�81�a and �81b operators). As the order n increases, the

number of operators with close or even exact minimum

rotation angles increases and the number of singular patterns

increases (as confirmed by simulations of pole figures of

operators with equal rotation angles and random rotation

axes, not presented here).
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Figure 7
(a) Two-dimensional fractal graph of the multiply twinned variants and
�3n operators (up to order n = 5). The fractal is built from a Templar-style
cross represented in (b) reduced in size by a factor of two at each
generation step; the crosses are joined at the tips of those of the preceding
generation. The variants are the tips of the crosses (not labelled) and the
�3n operators are the centres of the crosses. This two-dimensional graph
is usually called a Cayley graph.

Figure 8
Pole figures of an assembly of multiply twinned crystals linked to the
primary crystal �0 by �3n operators with n � 5; the h111i directions are
represented (a) in the [001] direction and (b) in the [111] direction of �0.



5.4. Comparison of the R3n semigroup with the R3x group

The �3� semigroup (based on the indices 0, 1, 2, 3) and the

�3! free group (based on the letters a, b, c, d) are represented

by the same graph although these two structures are not

isomorphic.

In the �3! group, all of the letters play the same role in the

strings, and they can be interchanged. Moreover, the simpli-

fication rule aa = bb = cc = dd = ø with ø the empty string

(coding the identity matrix) is based on the choice of 180�

rotation matrices in the four sets giHT that define the orien-

tations of the variants with i 2 [0, 3]. This rule makes the string

representation unique and consequently makes �3! free.

In the �3� semigroup, only the indices 1, 2 and 3 are

equivalent. The index 0 appears only one time in the whole

�3� graph (it begins the strings that codes the branch 0). In

fact, the index 0 (and the associated matrix T0) is ‘special’ and

cannot be treated as the three other indices. Since 0 represents

a mirror symmetry, it obeys the simplification rule 00 = ø.

Consequently, 000 . . . (n times) is equal to 0 if n is odd, and to

ø if n is even, whereas the strings 111 . . . , 222 . . . or 333 . . . (n

times) cannot be reduced. The asymmetry between the index 0

and the three others has a temporal meaning if twinning is

considered as a temporal process. Let us imagine a progressive

twinning by annealing and recrystallization from a variant of

order n, the indices 1, 2 and 3 produce three new crystals of

order n + 1, whereas the index 0 corresponds to a crystal of

generation n � 1 that was already produced in the past. The

composition with the index 0 means that there is a unique way

to go back to the past, and the composition with the indices 1,

2, 3 means that there are three equivalent (locally symmetric)

ways to go to the future. There is no simplification rule

between the indices (1, 2, 3). The simplification is realized only

between the index 0 and the three indices (1, 2, 3). What is the

rule? For example, how could we simplify the string that

corresponds to 112.012 = 112012? More generally, how could

we simplify the string h . . . i.0j . . . k = h . . . i0j . . . k? The

specific matrices Ti for i 2 [1, 3] that we have chosen in the sets

giHT to harmoniously enumerate the faces of the tetrahedra

on the two-dimensional developed fractal (see x4.4) give the

following rule:

. . . ai0jb . . . ¼ . . . akb . . . ð10Þ

with
if i ¼ j; k ¼ 0

if i 6¼ j; k is the unique element 2 f1; 2; 3g\fi; jg

����

This property comes from the fact that 101 = 0, 102 = 3, 103 =

2, which can be checked by calculating the matrix products (8)

with the matrices given in Table 1 (the other combinations are

true due to the equivalence of the 1, 2, 3 indices).

6. Composition of the R3n operators

The idea of CSL was initially introduced to characterize the

grain boundaries between two crystals. When metallurgists

became interested in triple junctions, a method to compose the

CSL rotations and to determine the CSL of an assembly of

grains was developed. Most of the studies were restricted to

finding a rule for the composition of the � numbers that

appear in expression (1), and few studies treated the compo-

sition of the operators.

6.1. Composition of the R numbers11

It was believed for a long time that the � numbers in the

CSL matrix expressions (1) are numbers that can be multiplied

without precaution. It was believed for example that the three

� numbers which determine the respective misorientations

between three crystals (indexed by 1, 2, 3) follow the rule

�13 = �12�23, where �ij is the � value of the misorientation

matrix between the crystal i and the crystal j. This rule was

puzzling because it does not respect the symmetry of the

problem, i.e. the three crystals do not play similar roles.

Actually, it was proved to be wrong. The correct � composi-

tion rule was proposed by Miyazawa et al. (1996), with a

demonstration given by Gertsman (2001a). It is derived from

the following relationship:

�13 ¼ �12�23=�
2
123; ð11Þ

where �123 is the greatest common odd divisor of the

quaternion produced by the multiplication of the two

quaternions describing the two generating CSL misorienta-

tions.12 This property is general; therefore, we also have

�12 ¼ �13�32=�
2
132; ð12Þ

�23 ¼ �21�13=�
2
213: ð13Þ

By multiplying equations (11) and (12), and simplifying the

result by using the equality �23 = �32 (because the inverse of

the matrix in equation (1) is its transpose), it follows that �23 =

�32 = �123 �132. Similarly, by using equations (12) and (13), it

follows that �13 = �31 = �132 �213 and, by using equations (11)

and (13), it follows that �21 = �12 = �123�213. By writing �213 =

p1, �123 = p2 and �132 = p3, i.e. �ijk = pj, the three equalities can

be summarized by using a simple rule:

�ij ¼ �ji ¼ pipj for ði; jÞ 2 f1; 2; 3g: ð14Þ

This formula has been shown by Miyazawa et al. (1996) and

Gertsman (2001a), but we have preferred to show a complete

demonstration.12 This rule is illustrated for three crystals in

Fig. 9. This approach can also be generalized to four crystals.13

The rule (14) indicates that two � numbers �X and �Y can be

composed if and only if they have a common integer pj in their

decomposition, i.e. �X = pipj and �Y = pjpk and that the result

of this composition is �Z = pipk. By denoting �X = �(pi,pj)
,

�Y = �(pj,pk) and �Z = �(pi,pk), one can write the composition

rule in the form

Acta Cryst. (2007). A63, 11–29 Cyril Cayron � Multiple twinning in cubic crystals 21

research papers

11 This is a general theoretical approach; the application to the particular case
of �3n CSL numbers is given at the end of the section.
12 �123 was denoted simply � by Gertsman (2001a), but this notation is not
accurate because it is assumed that this number is the same for all the �
combinations, whereas in general �123 6¼ �132 6¼ �213.
13 For four crystals, one can write �ij = �ji = pip j for (i, j) 2 {1, 2, 3}2, �ij = �ji =
qi qj for (i, j) 2 {1, 2, 4}2, �ij = �ji = rirj for (i, j) 2 {1, 3, 4}2 and �ij = �ji = sisj for
(i, j) 2 {2, 3, 4}2, which could be illustrated on a tetrahedron with schemes
similar to that of Fig. 9 for its four faces.



�ðpi;pjÞ
�ðpj;pkÞ

¼ �ðpi;pkÞ
; ð15Þ

which is a groupoid composition law (it has the same form as

for the hydrogen frequencies, see footnote 6). Since in general

the decomposition of two � numbers into two products of two

integers pipj and pjpk is not uniquely reduced to the case pj = 1,

the composition of two � numbers is a multivalued function.

This rule can be applied to the �3n values. It shows that any

�3m number can be composed with another �3n number with

m � n, by writing �3m = 3m�i3i, �3n = 3i3n�i, and the result is

3m+n�2i for any i 2 [0, n]. This rule was already obtained in

Reed et al. (2004, equation 14) with a demonstration

based on string representations. It may be noted that this rule

concerns the � numbers, which are only one aspect of the �
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Table 3
Composition table of the �3n operators for n � 4.

The composition is given for the column m and the line n by �3m �3n = {�3q}. It is a multivalued composition. For space reasons, the resulting operators �3qz are
denoted by qz (for example 5a is �35a).

m \ n �3 �9 �27a �27b �81+a �81�a �81b �81c �81d

�3 0 2 1 3a 3b 2 4�a 4d 2 4+a 4b 4c 3b 5c 5+f 5i 3a 5�d 5�e 5j 3b 5+e 5g 5�h 3b 5b 5+d 5+h 3a 5a 5�f

�9 1 3a 0 2 4�a 1 3b 5a 1 3a 3b 5b 5c 2 4b 4c 6+a 6d 6h 2 4�a 4d 6�a 2 4+a 4c 6�b 6c 2 4+a 4b 6+b 6e 2 4�a 6�f
3b 4+a 4b 5�d 5�e 5+d 5+e 5+f 5g 6�k 6�o 6�q 6�r 6�g 6+i 6�l 6n 6+g 6+j 6m 6+o 6+f 6+k 6+l 6+q 6�i 6�j 6�v

4c 4d 5�f 5j 5+h 5�h 5i 6+s 6+v 6p 6�s 6�t 6�u 6+r 6+u 6�x 6+t 6w 6+x 6y

�27a 2 1 3b 5a 0 4c 6�i 2 4�a 4b 6+a 1 5b 5�h 7+ak 3b 5�e 5�f 7+af 3b 5c 5+h 7+ab 3a 5g 5i 7�al 1 5�d 7av
4+a 5+d 6+i 6n 6p 6+f 6+g 6+j 6+l 7+am 7�ag 7+bi 7bf 7+bg 7b 7+ae 7+ax 7+bn 7+at 7�ar 7+az 7ad 7�af
4d 5+e 5+f 6y 6+s 6+t 6+u 6+v 7+bd 7+j 7+r 7+v 7+bl 7�bg 7k 7+be 7+f 7+g 7+t 7+bj 7+bp 7+l 7�bl 7�w

5j 7+x 7u 7+w 7+z 7�p 7+y

�27b 2 1 3a 3b 2 4+a 4b 0 2 4�a 4+a 4c 3a 3b 5+d 5+e 5g 1 3b 5a 5�d 1 3a 5b 5+d 5+f 1 3b 5c 5+e 5+f 3b 5�e 5j
4�a 5b 5c 6�a 6�f 4d 6+b 6�b 6c 5+h 7a 7+aw 7�aj 5�f 5j 7�ak 5i 7an 7+ai 7�aw 5�h 7+as 7ac 7+al 7+ar
4b 5�d 5�e 6�g 6�j 6d 6e 6h 6�k 7�ap 7�ai 7aa 7�as 7�am 7�ab 7�at 7+ay 7+bh 7�bk 7�ay 7aq 7+aj 7�be 7�bi
4c 5�f 5g 6�l 6�s 6�t 6+k 6m 6�o 6+o 7�bh 7�bq 7br 7�az 7+ag 7�ax 7�bm 7+bb 7�ba 7+ah 7au 7�ah 7�t 7�v 7�x

5+h 5�h 6�u 6�v 6�q 6+q 6�r 6+r 7+bo 7�bb 7�bo 7�ae 7�bn 7�bj 7+bm 7�bc 7c 7+ap 7ao 7+ba 7�y 7�z
5i 6w 6+x 6�x 7�d 7e 7�h 7�m 7�s 7�bd 7�bp 7�f 7+d 7+h 7�i 7�n 7+bk 7+bq 7+bc

7�g 7�j 7�l 7+p 7o 7q 7+i 7+m 7+n 7+s
7�r

�81+a 3a 2 4+a 3b 5+e 1 3b 5a 5+d 5+f 4�a 4b 6+f 6+j 6+l 0 4c 6�i 6+i 2 4�a 6+a 6+f 2 4b 6+g 6+j 4c 6+i 6n
5+d 4d 6+a 5+f 7�af 5j 7+am 7+ak 6+u 8+ak 8+bw 6p 6y 8�ad 6+t 6+v 8+ay 6+s 6+v 8+ae 8�at 8�al
5+e 6+g 6�i 7�bl 7bf 7+ab 7+at 7+az 8+bv 8�cb 8+c 8+ad 8bt 8ch 8+ag 8+ai 8+as 8+bg 8+bj 8+by 8�bq 8�bk
5j 6+l 6n 7+bg 7b 7�ag 7+ae 7+ax 8+cx 8�da 8+du 8ci 8+cq 8�cq 8+bh 8+ca 8+dq 8+bb 8+cp 8+cy 8+ce 8�dc

6p 6+s 7�bg 7k 7+bn 7+bd 7+bp 8+ds 8+ex 8+ez 8+dl 8�dl 8+dz 8+ea 8+ey 8+ej 8+cu 8+dh 8+de 8�dj 8�fy
6+t 6+u 7u 7�w 7+bj 7+f 7+g 8+fg 8+fr 8+gg 8�dz 8�eo 8+eo 8+ei 8+fw 8+ff 8�dw 8+en 8+fx 8�gn

7+j 7+l 7�p 7+r 8+g 8+gh 8+gc 8fq 8�gj 8+gj 8+fn 8+fz 8+gd 8+fj 8+fd 8+gm
8+h 8r 8t 8+m 8+p 8+q 8+x

�81�a 3b 2 4b 4c 1 5b 5+h 3a 3b 5�d 5�e 0 2 6c 6w 6�x 4+a 4b 6�f 6�j 4+a 4c 6+b 6e 4�a 4d 6�b 6�k 2 6�g 6�t
5c 6�a 6d 7�am 7�ak 5g 5�h 7a 7�aw 6+x 8�ap 8+ap 8bo 6�l 6�u 8�ak 6�q 6�r 8+ac 6m 6�o 8+az 8+ao 8�ar
5�f 6h 6+k 7+ag 7�bi 7+aj 7+ap 7aa 8cj 8�co 8+co 8�dv 8�bv 8�bw 8+aw 8+au 8+am 8+ab 8+ah 8+bf 8�be 8�bm
5i 6+o 7�bd 7�j 7+as 7+ai 7br 8+dv 8�ec 8ek 8+cb 8�c 8�cx 8+bi 8+b 8+cg 8+bc 8+cs 8+cr 8�cw 8�dk

6+q 6+r 7�r 7�v 7+bh 7+bq 7+bo 8+ec 8es 8+ep 8+da 8�du 8�ds 8+cc 8+dr 8+et 8+cf 8+cv 8+dt 8�dg 8�eg
6�s 6�v 7�x 7�bo 7+bb 7+d 8�ep 8fu 8s 8+z 8�ex 8�ez 8�fg 8+ed 8+fm 8+fk 8+dm 8+em 8�eb 8�gb

7e 7+h 7+m 7+s 8�z 8�fr 8�gg 8�gc 8+fe 8+fs 8+gi 8�ft 8+fb 8+fi
8�gh 8�g 8�h 8�gl 8+k 8+gf 8+v

�81b 3b 2 4�a 3b 5c 5�h 1 3a 5b 5�d 5�f 4�a 4c 6�b 6e 6+q 2 4+a 6�a 6�f 0 4d 6d 6+k 6�k 2 4+a 6h 6+o 4b 6�l 6�s
5�e 4c 6+b 7�ab 7�ax 5i 7+aw 7an 6+r 8�ac 8�am 6�t 6�v 8�ay 6w 8an 8db 8dd 6�q 6�x 8+aq 8�bd 8�ba
5g 6c 6�g 7�ae 7�be 7�ai 7�ay 7�bh 8�aw 8�au 8�bi 8�b 8�ag 8�as 8�ai 8+ev 8�ev 8+fa 8+bx 8+bs 8�br 8�cl 8�ct
5+h 6�j 6m 7�bn 7�f 7+ba 7+bc 7�bb 8�cg 8�cc 8�dr 8�bh 8�ca 8�dq 8�fa 8�f 8+fo 8+f 8+bn 8+cd 8+df 8�cn 8�dx

6�o 6�r 7�g 7�t 7+bk 7�bm 8�ed 8�et 8�fm 8�fe 8�ea 8�ei 8�ej 8�fo 8�ge 8+ga 8+di 8+dn 8+eh 8�dy 8�fv
6�u 6+x 7�z 7+bm 7c 7�d 8�fs 8�fk 8�gi 8+gl 8�ey 8�fw 8�fn 8+ge 8�ga 8j 8n 8+ew 8+eu 8�el 8�fc

7�h 7+i 7+n 7o 8�k 8�ff 8�fz 8�gd 8y 8+eq 8+er 8+fp
7q 8�m 8�p 8+fh 8+w

�81c 3b 2 4�a 3a 5g 5i 1 3b 5c 5�e 5�f 4+a 4d 6+b 6+k 2 4b 6�g 6�j 2 4�a 6h 6�o 6+q 0 4c 6c 6d 6�r 4+a 6�a
5b 4b 6�b 7+ar 7+al 5+h 7�aj 7�ap 6m 6+o 8�ab 8�az 6�s 6�v 8�ae 6+x 8�aq 8�bs 6+r 8�ax 8+ax 6�u 8�aa
5�d 6e 6�f 7�at 7�az 7ac 7ao 7au 8�ah 8�bc 8�bf 8�cs 8�bg 8�by 8�bb 8�bn 8�bx 8+br 8�av 8+av 8aj 8bl 8�af 8+a
5�h 6�k 6�l 7�bp 7�bj 7�as 7aq 7+ah 8�cv 8�cf 8�cr 8�bj 8�cu 8�cp 8�cd 8�dn 8�di 8bu 8�dp 8+do 8�bz 8+ck

6�q 6�t 7�l 7+p 7�ah 7+ay 7�bq 8�dm 8�dt 8+eb 8�cy 8+dw 8�de 8�df 8�eh 8�ew 8+dp 8�do 8�ee 8�cm 8�cz
6w 6�x 7�y 7�ba 7�bc 7�bk 8�em 8�fi 8+ft 8�dh 8�en 8�fd 8�eq 8�eu 8+el 8e 8+ee 8gk 8�i 8�fl 8�l

7�i 7�m 7�n 7�s 8�fb 8�gf 8�v 8�fj 8�fx 8�gm 8�er 8�fp 8�fh 8+i 8o
8�q 8�x 8�w

�81d 3a 2 4+a 1 5+d 7av 3b 5+e 5j 7�ar 2 6+g 6+t 8+ar 4c 6�i 6n 8+at 4b 6+l 6+s 8+bd 4�a 6+a 6+u 8�a 0 6p 8�bp
5a 6+f 6+i 7ad 7+af 7�al 7+bi 7+be 8�ao 8+be 8+bm 8+al 8+bq 8+ba 8+cn 8+ct 8+af 8+aa 8+bz 8+bp 8d
5+f 6+j 6+v 7+bl 7+w 7+t 7+v 7+x 8+cw 8+dg 8+dk 8+bk 8�ce 8+dc 8+cl 8+dx 8+dy 8�ck 8+cz 8+cm 8ef 8u

6y 7+y 7+z 8+eg 8+gb 8+dj 8+fy 8+gn 8+fv 8+fc 8+fl 8+l



operators. Let us now consider the composition of the �3n

operators.

6.2. Composition of the R operators

As introduced in x3, the operators can be viewed as types of

paths in a graph or as types of arrows in a groupoid. Both

representations are suitable to calculate their composition

(see also Appendix A).

(i) The operators �3n can be represented by types of arrows

in the groupoid C1. They define a specific misorientation

between the primary crystal �0 and a set of variants of nth

generation, �n
j , equivalently oriented with reference to �0.

As introduced in x4.1, a �3mx operator can be composed with

a �3ny operator by writing �3mx = fð�0 . �m
i Þg and �3ny =

fð�m
i . �

mþn
j Þg and the result is the set of operators that

link the variant �0 to the variants �mþn
j : �3mx�3ny =

fð�0 . �m
i Þð�

m
i . �

mþn
j Þg = fð�0 . �mþn

j Þg = {�3qz}. This compo-

sition is multivalued. By determining the variants associated

with each operator, the composition can be easily determined

without any matrix calculation. This method has already been

applied to calculate the composition of the operators that link

the orientational variants generated by a structural phase

transition (Cayron, 2006).

(ii) The operators �3n can be represented by types of paths

in the graph of Fig. 7. The method used to calculate their

composition is the same whatever the substructure of C1

chosen for the coding (�3! or �3�). It is based on the fact that

each string in �3! (or �3�) is equivalent to other strings of

�3! (or �3�) due to the global symmetry. The operators are

elements of the quotient structure �3!=<! (or �3�=<�),

where <! (or <�) is the equivalence relation on the strings.

The composition of two operators �3mx and �3ny, both

written as sets of equivalent strings, is then easily obtained: (a)

by choosing one string in each of the two lists, and concat-

enating the two strings (respecting the simplification rule of

the structure), (b) by identifying the resulting string with an

operator (which supposes that all the operators have been

previously encoded up to the order m + n), and (c) by

repeating the process for all the strings of the two operators. In

other words, if �3mx = {s1, . . . , si, . . . } and �3my = {t1, . . . ,

tj, . . . }, we chose �3mx 3 si and �3ny 3 tj, then sitj 2 �3qz, and

by repeating the process �3mx�3ny = {�3qz}. The composition

is multivalued. This method is very effective due to the highly

symmetric character of the graph. We can give some examples

with the two encoding structures: the �3! group and the �3�

semigroup.

6.3. Calculation with the free group R3x

The equivalence of the four fractal branches imposes that

the letters a, b, c, d used in the free group �3! are equivalent.

These letters can be permuted in the strings. For example, the

string aca is equivalent to the string dbd by the permutation

(a, b, c, d) ! (d, c, b, a). Both strings belong to the same

operator. Each operator is encoded by a set of equivalent

strings. For example, the operator �3 = {a, b, c, d} and the

operator �27a = {aba, aca, ada, bab, bcb, bdb, cac, cbc, cdc,

dad, dbd, dcd}. The composition of the operators is obtained

by concatenation and by applying the simplification rule ii = ø

for i 2 {a, b, c, d}. It gives �27a�3 = {ab, ac, ad, abab, acab,

adab, abac, acac, adac, abad, acad, adad, . . . } = {�9, �81+a,

�81d}.

6.4. Calculation with the semigroup R3n

The threefold symmetry of each fractal branch imposes that

the indices 1, 2, 3 in the semigroup �3� are equivalent and can

therefore be permuted in the strings. Moreover, owing to the

equivalence of the four branches of the fractal, each string of

kind ijk . . . l is equivalent to a string of kind 0jk . . . l. Here

again, an operator is a set of equivalent strings. For example,

the operator �3 = {0, 1, 2, 3} and the operator �27a = {111,

222, 333, 211, 311, 122, 322, 133, 233, 011, 022, 033}. The

composition of the operators is obtained by concatenation and

by applying the simplification rule (10). It gives �27a �3 = {11,

1111, 1112, . . . } = {�9, �81+a, �81d}. One may observe that

the result is the same as that obtained with the �3! group.

The �3mx�3ny composition table for m � 4 and n � 4 can

be determined using the �3� coding in a few seconds using a

modern desktop computer, and is reported in Table 3 (the

tables for higher orders are available on demand). The

composition is multivalued due to the groupoid structure of

C1. The table is asymmetric because of the non-commu-

tativity of the operators. It can be forced to be symmetric by

ignoring the signs of the polar operators, but this would lead to

lost information. We will now explain the practical importance

of such a table in metallurgy.

7. Application for the identification of R3n grain
boundaries

Many defects in metals and alloys are formed in grain

boundaries. The study of their local crystallographic

environment can bring new understanding of their formation.

Are the defects in twinned materials situated in random grain

boundaries or in the special �3n grain boundaries? The

response is not always obvious because it is difficult to

distinguish a random misorientation from a �3n operator with

high order n. Indeed, the �3n operators are numerous and
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Figure 9
Schematic representation of the � composition rule for three crystals 1, 2
and 3 linked by misorientations for which the � numbers are �12, �13 and
�23. The rule imposes that �12 = p1p2, �23 = p2p3 and �13 = p1p3.



nearly homogeneously distributed in space for twinning order

n � 5 (see Fig. 8). The identification of the �3n grain

boundaries is also a key point used to reconstruct the twin-

related domains. As introduced in x1, the TRD size is an

important microstructural parameter and many engineers try

to improve the mechanical properties by optimizing the

elaboration processes in order to produce structures with large

TRDs. The determination of the TRDs by EBSD could be a

useful aid for these engineering developments. Very often, the

TRDs can be easily identified by following the connected

paths (i.e. chains) of �3 boundaries between the grains.

However, such a method is not always possible. Indeed, in

some architectured materials with low dimensionality, the �3

chains that link the grains of the TRDs are not at the sample

surface but situated under the surface and their locations

make their direct identification impossible with the EBSD

technique (which is a surface technique). We give some

engineering examples to show how the composition Table 3

helps to solve these metallurgical problems. The EBSD maps

have been acquired on a LEO-1530 SEM equipped with a

Nordlys II CCD camera and have been analysed using the

Channel5 software (HKL Technology).

7.1. Local environment of a void on a copper line

In microelectronic devices, the reduction of the width of the

copper interconnection lines and the use of new barrier and

capping layers have led to some new reliability problems. The

stress concentrations during the elaboration processes some-

times lead to the formation of voids that can grow and

completely damage the lines, this type of defect is called stress-

induced voiding (SIV) (Børgesen et al., 1992; Shao et al., 2006).

Some relations exist between the global texture and the SIV

(Nucci, 1997; Sekiguchi et al., 2003), but the coupling

mechanisms between the stresses, the atom migration and the

local crystallographic environment remain poorly understood.

Local EBSD analyses could help in the understanding of these

mechanisms.

In Fig. 10, a stress-induced void has been localized in a

copper line. It is situated inside a TRD (here clearly identifi-

able by the �3 chains between the grains) in a boundary

between four grains (denoted 1, 2, 3 and 4). This TRD has

been reconstructed by ignoring the �3 grain boundaries, i.e.

the same colour has been attributed to the grains separated by

a �3 grain boundary. The misorientations between these

grains are R21 = (28.4�, [2�11�44]), R23 = (59.8�, [�11�111]), R34 = (35.9�,

[2�110]), R41 = (38.4�, [�110�11]), R13 = (48.9�, [�11�444]) and R24 = (38.7�,

[�2241]). Three of them are easy to index: R23 = �3, R34 = �27b

and R41 = �9, but the three others correspond to higher

twinning orders and are more difficult to identify. We deter-

mine the maximum possible twinning order by counting the

number of �3 in the shorter �3 chain that links two grains.

Then, we identify some possible solutions by looking at Table

2 (rotation angles and axes). Three solutions are possible for

R24 = (�81+a, �81�a or �81b), two for R13 = (�35+h or

�35
�h), and four for R12 = (�36+f, �36

�f, �36+g or �36
�g).

Moreover, R21 = R24R41 = (�81+a�9, �81�a�9 or �81b�9),

and if one looks at the results of these compositions in Table 3

and compares them with the possible solutions already iden-

tified from the EBSD map (�36+f, �36
�f, �36+g or �36

�g),
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Figure 10
EBSD map around a void (the white disc) situated at the junction of four
grains. In the figure, the �3 boundaries are in red, the �9 in yellow, the
�27 in blue and the �81 in green. The higher-order �3n with n � 5 and
the ‘random’ boundaries are in black. The grains around the void are
linked by the following rotations: R21 = (28.4�, [2�11�44]), R23 = (59.8�, [�11�111]),
R34 = (35.9�, [2�110]), R41 = (38.4�, [�110�11]), R13 = (48.9�, [�11�444]) and R24 =
(38.7�, [�2241]). The rotation angles and axes are given by the Channel5
software (the reported axes are not the true ones but axes with indices
lower than 10 and close to the true ones with a tolerance angle of 5�). The
identification of these experimental rotations to some �3n operators
requires the use of the groupoid composition Table 3.

Figure 11
EBSD map around a hillock situated at the junction of three TRDs
(reconstructed by ignoring only the �3 and �9 boundaries). The
conventions for the colours of the boundaries are the same as that of Fig.
10. The hillock (at the centre of the figure, in blue) is connected to the left
TRD (in brown) by two misorientations that form a triple junction
constituted by the rotations R12 = (38.7�, [4�113]), R23 = (39.3�, [101]) and
R13 = (59.1�, [434]). These are close to the �81+a, �9 and �81d operators,
respectively. Their composition verifies the groupoid composition Table 3.
We conclude that the hillock is a twinned branch of the left TRD and not
a new nucleated TRD.



one may check that the only solution is R24 = �81+a and R21 =

�36+g. This result could also have been obtained by consid-

ering R21 = R23R31 = (�3�35+h or �3�35
�h) = ({�36+l,

�36+b, �36e, �34c} or {�36+g, �36c, �36
�x, �34b}) (not

presented in Table 3 for space reasons), which leads to the

same unique solution R21 = �36+g. This example is very

interesting because it proves that it is sometimes possible to

unambiguously identify the �3n grain boundaries for orders

n� 6 and that the distinction between direct and inverse polar

operators is important for the identification method.

7.2. Local environment of a hillock on a copper film

Hillocks are defects that may appear in the interconnection

lines of electronic devices during the elaboration process or by

electromigration damage. Wei et al. (2002) believe that these

are likely to be new nucleated grains, whereas Gladkikh et al.

(1995) believe that they result from the growth of a neigh-

bouring grain. Let us now consider the hillock on a copper film

shown in the EBSD map in Fig. 11. The TRDs were recon-

structed by neglecting only the �3 and �9 special boundaries.

At first glance, the hillock appears as a new nucleated TRD.

Indeed, there is no �3 chain between it and any grain of the

three TRDs. However, if we consider the �3n operators at

higher orders, the hillock seems to be linked to the left TRD

by two misorientations close to �81 forming a triple junction

R12 = �81+a, R23 = �9 and R13 = �81d. Are these mis-

orientations close to the �3n operators ‘by accident’ and in

fact ‘random’? A way to be more confident is to check the

coherency of the triple junction, i.e. to check that their

composition is in agreement with the theoretical composition

Table 3. The verification is done because R12R23 = �81+a�9 =

{�32, �34+a, �34d, �36+a, �36+g, �36
�i, �36+l, �36n, �36p,

�36+s, �36+t, �36+u} 3 �81d = R13. This verification rein-

forces the probability that the hillock is in fact a multiply

twinned branch of the left TRD, and its formation should

imply a growth mechanism (with twinning) without nuclea-

tion. A deeper statistical study is required to quantify these

probabilities as a function of the tolerance angles. The calcu-

lations could be based on the generation of triplets of

randomly oriented crystals following a method introduced in

Cayron et al. (2006).

7.3. Application to the reconstruction of TRDs in narrow
copper lines

The �3 twins have in general an electrical resistivity one

decade lower than that of the conventional high-angle grain

boundaries [and the least resistive �3 boundaries are those

with {111} boundary planes, see Sutton & Balluffi (1995)].

Therefore, some engineering teams increase the size of the

TRDs in the interconnection Cu lines to reduce their resis-

tivity.14 In parallel, some EBSD characterization studies try to

reconstruct the TRDs in order to correlate their mean size to

the electric measurements. However, this reconstruction is

usually performed by neglecting only the �3 boundaries

(Mirpuri & Szpunar, 2004), which gives undervalued results

for narrow lines. Indeed, when the lines are narrow (<1 mm),

they often have a ‘bamboo-like’ structure (the grains have the

same width as the lines), as shown in Fig. 12. Then, although

there is always a �3 chain between two grains of a TRD, this

chain is not always situated at the surface of the sample and

becomes invisible in the EBSD maps. When this situation

occurs, these grains seem to be separated by a �3n boundary

with n � 2 in EBSD, but one must remember that they are in

fact connected by a �3 chain of grains located under the

surface which acts as a low resistivity path between these two

grains. Therefore, all the ‘reasonable’ twinning orders n of the

�3n boundaries should be considered to reconstruct satisfac-

torily the TRDs. And considering the �9 in addition to the �3

boundaries is far from enough. On the copper lines repre-

sented in Fig. 12, some TRDs have been reconstructed by

neglecting only the �3 and �9 boundaries. We have identified

many grain boundaries separating these partial TRDs that are

of type �3n with n � 3 and that verify Table 3. One frontier is

presented in the square on the bottom left of the figure. It is

constituted of �3n boundaries: R23 = �3, R31 = �81b and R21 =

�35g. Such a junction is coherent with Table 3 because it

respects R23R31 = �3�81b = {�33b, �35+e, �35g, �35
�h} 3

�35g = R21. Therefore, the two TRDs in the square of Fig. 12

are in fact only one TRD. In a first analysis, for narrow copper

lines with a ‘bamboo-like’ structure, we estimate that the TRD

mean size calculated by neglecting only the �3 boundaries

(and not the �3n ones with n� 2) is at least 50% undervalued.

Once a TRD is reconstructed, it may be checked that its

corresponding pole figure is in agreement with the simulations

of Fig. 8. In some cases, some missing dots can bring useful
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Figure 12
EBSD map of copper lines with a ‘bamboo-like’ structure. The
conventions for the colours of the boundaries are the same as that of
Fig. 10. The TRDs are reconstructed by ignoring only the �3 and �9
boundaries. The two ‘assumed’ TRDs in purple and green in the square
on the bottom left part of the image (reported with higher magnification
in the upper right part of the figure) are separated by �81 and higher-
order �3n operators. For one part of the boundary, the rotations are R23 =
(59.3�, [�1110]), R31 = (38.1�, [�11�441]) and R21 = (43.2�, [4�11�11]). These are close
to the �3, �81b and �35g operators, respectively. Their composition
verifies the groupoid composition Table 3. The same verification was done
along the whole boundary. We conclude that these two TRDs are in fact
only one TRD.

14 For example, it is possible to elaborate nano-twinned copper foils with
ultrahigh strength and low electrical resistivity (Lu et al., 2004).



information about a variant selection mechanism during the

recrystallization. For instance, the experimental pole figure of

a TRD reconstructed in a copper film and oriented in the [111]

direction of the primary crystal is reported in Fig. 13(a); its

comparison to the theoretical pole Fig. 13(b) proves that the

twinning order of this TRD is n = 2 and that one main branch

of the fractal is missing [the fractal is constituted of only three

branches, such as the ones visible in Fig. 3(a)]. More thorough

analysis would be required to know if the fourth branch is

missing or if it is situated below the surface.

8. Conclusions

The idea of a groupoid has been introduced. Three types of

groupoid elements have been described: the objects, the

operations (also called arrows) between these objects and the

operators that are types of operations (they are written as sets

of equivalent operations).

An assembly constituted of one crystal with its four twinned

variants can be represented by a groupoid C(0+1). More

generally, an assembly of multiply twinned crystals linked by

�3n operators with n 2 N can be represented geometrically by

a three-dimensional fractal and algebraically by the groupoid

C1 = C(0+1+ . . . +n) with n ! 1. The algebraic details of C1

were not studied but symmetry considerations on the three-

dimensional fractal have allowed us to determine some of its

properties. For example, the general formulae giving the

number of variants and the number of operators as functions

of the twinning order n were established. The �3! free group

introduced by Reed et al. (2004) is a substructure of C1. Other

substructures can be used. For example, we have introduced

the �3� semigroup that leads to a different coding (with a

different simplification rule), but to a two-dimensional fractal

graph similar to the one that could be obtained with the �3!

free group. Whatever the substructure we use for the coding

(�3! or �3�), the �3n operators can be written as sets of

equivalent strings. The composition of two operators can then

be easily determined without any matrix calculation by

concatenating all the couples of strings chosen in their

respective set and by applying the simplification rule of the

substructure. The composition of operators is multivalued.

This property can be understood by taking into consideration

that the general structure of multiple twinning is a groupoid

and not simply a group. The composition table has been

reported for orders n � 4 (and was determined at higher

orders).

Some metallurgical examples were given showing how this

table could be used in EBSD for a better identification of the

local crystallographic environment of some defects in multiply

twinned materials or for improving the reconstruction of the

TRDs. We have stressed that the distinction between polar

and ambivalent �3n operators is important in the identifica-

tion method. The approach we have followed is general and

can be used to compute an automatic recognition of the �3n

grain boundaries and an automatic reconstruction of the

TRDs.

The present study can be applied to treat multiple twinning

in non-cubic materials because it is not based on quaternions.

However, the general theory treating any series of cycles of

phase transitions remains to be established. The answer is

probably to be found in algebraic structures more elaborated

than groupoids such as the cohomology of groupoids (Connes,

1990). This research will require the help of mathematicians.
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Figure 14
(a) Structure built from isosceles triangles. (b) The different types of
paths of a ball moving between the triangles are the operators of a
groupoid.

Figure 13
Comparison between (a) an experimental pole figure of a TRD observed
by EBSD in a copper film with a primary crystal oriented with [111]//z,
where z is the normal to the sample surface, and (b) a theoretical pole
figure of an assembly of multiply twinned crystals with n � 2. In this
simulation, only three of the four branches have been considered (branch
0 would give many spots that do not appear in the experimental pattern).
Some theoretical variants of order n = 2 are also absent (they correspond
to the differences between the theoretical and experimental patterns).



To conclude, we would like to encourage crystallographers

interested in phase transitions, quasicrystals or other problems

involving partial symmetries to consider groupoids as a very

useful algebraic tool that advantageously enlarges the idea of

groups.

APPENDIX A

In this Appendix, we present a simple non-crystallographic

geometrical case, with local and global symmetries, in order to

clarify the idea of ‘operator’ and its link with the groupoids.

Let us imagine a ball moving on a flat surface in a structure

constituted by isosceles triangles that have vertical mirror

symmetry (Fig. 14). How can we encode the different move-

ments of the ball on such a structure?

A1. Operators viewed as types of paths in a graph

One may notice that the ball has five possibilities at each

vertex: left or right while going to the bottom (L or R), left or

right while going to the top (L�1, R�1), or coming to rest

(denoted ;). This classification of possibilities is due to the

local symmetries of the structure. Of course, it can be created a

free group G1 constituted by the letters L, R, L�1 and R�1

and all the infinite combinations of these letters.15 The

corresponding infinite graph would be similar to Fig. 14(a),

imagined to be repeated an infinity of times. Any trajectory of

the ball is represented by a string of the free group G1. But

there are two problems with such a representation: (a) such a

group is infinite whereas Fig. 14(a) is finite, and (b) in such a

graph the local and global symmetries are not represented.

Indeed, one may assume that different trajectories are of the

same type due to the local symmetries of the structure. From

Fig. 14(a), we can effectively notice that two strings are

equivalent by

global permutation:

partial commutativity:

partial commutativity:

ðL;R;L�1;R�1Þ ! ðR;L;R�1;L�1Þ

LR ¼ RL

LR�1
¼ R�1L:

ð16Þ

ð17Þ

ð18Þ

The rule (16) is the algebraic expression of the global vertical

mirror symmetry. Conditions (17) and (18) are the algebraic

expressions of the local vertical mirror symmetries.16 These

rules allow the creation of an equivalence relation < on the

different trajectories of the ball. The distinct types of trajec-

tories are given by the elements of the quotient set G1/<.

There is no reason for G1/< to be a group, and in fact this

structure appears to be quite complex. We propose in the

following a method to define its elements and their composi-

tions.

Owing to the local vertical mirror symmetry, the actions L

and R are equivalent; there is no way to predict that the ball

will move to the left or to the right. One may then accept that

the action ‘moving down’ on the structure of Fig. 14 is not a

classical application, but a bivalued function that we will

denote O1
1ðxÞ = {L, R}, for any position x of the ball on the

structure. Similarly, the action ‘moving up’ is denoted O1
1
�1 =

{L�1, R�1}. The operator ‘coming to rest’ is O1
0 = ;. These

three operators will be called operators of first generation. For

the second generation, the operators are O2
0 = O1

0 = {LL�1,

RR�1, R�1R, L�1L} = ;, O2
1 = {LL, RR}, O2

2 = {LR, RL}, O2
3 =

O2
3
�1 = {L�1R, R�1L, LR�1, RL�1}, O2

1
�1 = {L�1L�1, R�1R�1}

and O2
2
�1 = { L�1R�1, R�1L�1}. For the third generation, the

new operators are O3
1 = {LLL, RRR}, O3

2 = {LRR, RLR, LRL,

RLL, RRL, LLR}, O3
3 = {LR�1L, RL�1R, R�1LL, LLR�1,

L�1RR, RRL�1} and their inverses (which are all distinct).

These operators are represented in Fig. 14(b). More generally,

one can form the operators of order n, On
j , by forming all the

strings with n letters in the set {L, R, L�1, R�1} and finding the

strings that are equivalent by the conditions (16), (17) and

(18). The operators are the elements of G1/<. Two operators

Om
i and On

j can also be composed: (i) by choosing on the left a

string of Om
i and on the right a string of On

j and concatenating

them; (ii) by identifying the resulting string to an operator of

order �m+n; and (iii) by repeating this process for all the

couples of strings in ðOm
i ;On

j Þ. For example, O1
1O1

1 = {LL, RR,

RL, LR} = fO2
1;O2

2g, O1
1
�1O1

1 = {;, L�1R, R�1L} = fO2
0;O2

3g,

O1
1
�1O2

1 = {L, L�1RR, R�1LL, R} = fO1
1;O3

3g. From these

examples, the composition of operators (i.e. types of trajec-

tories, i.e. elements of G1/<) appears to be multivalued. Some

readers may be shocked by the use of a multivalued compo-

sition; a way to accept it is to realize that such a composition

naturally results from an underlying groupoid structure.

A2. Operators viewed as types of arrows in a groupoid

In the previous paragraph, we have voluntarily ignored the

positions x on which the operations were applied (denoted as

0 to 9 in Fig. 14a). A pair of positions, denoted (x . y), can be

viewed as an arrow from x to y. The arrows form a pair

groupoid. The composition law is (x . y)(y . z) = (x . z) and

each arrow has an inverse given by (x . y)�1 = (y . x). The

operators appear as types of arrows. For example, O1
1 =

{(0 . 1), (0 . 2), (1 . 3), (1 . 4), (2 . 4), (2 . 5), (3 . 6), (3 . 7),

(4 . 7), (4 . 8), (5 . 8), (5 . 9)}. The operator O1
1
�1 is consti-

tuted by the inverse arrows, and O1
0 by the arrows of type (i . i)

for i 2 [0, 9]. It can also be noticed that O2
1 = {(0 . 3), (0 . 5),

(1 . 8), (2 . 7), (1 . 6), (2 . 9)} and O2
2 = {(0 . 4), (1 . 7), (2 . 8)}.

Here, the different arrows constituting the operators are

geometrically obvious. Generally, they can be found by

expressing the local symmetries. In the present example, one

could use the vertical mirror symmetry that is the permutation

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)! (0, 2, 1, 5, 4, 3, 9, 8, 7, 6) and the

translations that put in correspondence some points of the

structure, for example the translation (0 . 1) expressed by the
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15 If Fig. 14 is imagined as a ball falling on the structure, the gravity field
imposes a temporal arrow on the process, then the reverse actions are not
allowed (the ball is always moving down) and we should use a free semigroup
structure.
16 If L�1 and R�1 are imagined as the reverse actions of L and R obtained by a
time inversion, condition (18) becomes more subtle: the left and the right
directions are exchanged when the time is reversed.



application (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)! (1, 3, 4, 6, 7, 8, ø, ø, ø,

ø), where ø means ‘no image’. Two operators Om
i and On

j can

be composed: (i) by choosing on the left one arrow of type

(x . y) in Om
i and on the right one arrow of type (y . z) in On

j ;

(ii) by identifying the resulting arrow (x . z) with an operator;

and (iii) by repeating this process for all the couples of strings

in ðOm
i ;On

j Þ. For example, O1
1O1

1 = {(0 . 1)(1 . 3) = (0 . 3),

(0 . 1)(1 . 4) = (0 . 4) etc.} = fO2
1;O2

2g. One can also calculate

the composition Om�1
i On

j by choosing a reference position (for

example y = 0). Then we determine all the arrows of type

(x . z) by choosing one arrow of type (0 . x)�1 = (x . 0) in

Om�1
i on the left and one arrow of type (0 . z) in On

j on the

right. This method has the advantage of representing the

objects, the operators and their composition in the same table.

The geometrical structure of Fig. 14 can then be algebraically

written in a unique groupoid composition table (Fig. 15),

which can be viewed as a generalization of the composition

table of groups.

In this example, we have seen that, due to the local

symmetries, there exist some types of paths or arrows that we

have called operators. These operators can be written as sets

of equivalent strings in a graph or as sets of equivalent arrows

in a groupoid. They can be composed by string concatenation

(in a graph) or by respecting the composition law between the

arrows (in a groupoid). Whatever we choose as the method,

this composition is multivalued. Composition tables can be

calculated. Graphs and strings are very effective for high

symmetric problems; groupoids and arrows are less effective

but more general and can be applied to less symmetric

problems. For example, it would be the same formalism if

some isosceles triangles in Fig. 14 were suppressed or if they

were changed by equilateral triangles.
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