Magnetic Space Groups

Daniel B. Litvin

Department of Physics
Eberly College of Science
The Pennsylvania State University

Penn State Berks
P.O. Box 7009
Reading PA 19610-6009, USA.

E-mail: u3c@psu.edu

Table of Contents
Dedicated to

Tikva Sa’eeda
may her memory be blessed

to our kids, **Usa Shoshana** and **Steven Yitzchak**, who have always done us proud.

and to our granddaughter
Talia Sa’eeda
TABLE OF CONTENTS

Dedication

Preface

1. Magnetic Space Groups: Symbols and Elements
 1.1 Introduction
 1.2 Magnetic Superfamily
 1.3 Tables of Magnetic Space Group Symbols and Elements
 1.3.1 Serial Number
 1.3.2 Magnetic Space Group Symbol
 1.3.3 Symbol of the subgroup D
 1.3.4 Coset Representatives
 1.4 Change in Symbols
 1.5 Relationship to Black and White Space Group Symbols

2. Guide to the use of the Magnetic Space Groups Tables
 2.1 Introduction
 2.2 Contents of the Magnetic Space Group Tables
 2.2.1 Lattice diagram
 2.2.2 Headline
 2.2.3 Diagrams of symmetry elements and of the general positions
 2.2.4 Origin
 2.2.5 Asymmetric unit
 2.2.6 Symmetry operations
 2.2.7 Generators selected
 2.2.8 Positions, with multiplicities, site symmetries, coordinates,
 and magnetic moments
 2.2.9 Symmetry of special projections

References

Appendix 1.1: On Characterizing a change in coordinate systems and the non-magnetic
subgroup of index two of magnetic group space groups

Table 1.1: Tables of Magnetic Space Group Symbols and Elements
 Table 1.1-3D: Three-Dimensional Space Group Symbols and Elements
 Table 1.1-2D: Two-Dimensional Space Group Symbols and Elements
 Table 1.1-1D: One-Dimensional Space Group Symbols and Elements
Table 1.2: Relative Lengths and Mutual Orientations of Translation Vectors
Table 1.3.1: Symmetry directions and position in Hermann-Mauguin symbols
Table 1.3.2: Symmetry direction subindex symbols
Table 1.4: Comparison of Magnetic Space Group Symbols and Black and White Symbols

 Table 1.4 - 3D: Three-dimensional Groups
 Table 1.4 - 2D: Two-dimensional Groups
 Table 1.4 - 1D: One-dimensional Groups

Table 2.2.3-3D: Graphical Symbols for Three-Dimensional Magnetic Space Groups

 Table 2.2.3.1 Symmetry axes parallel to the plane of projection
 Table 2.2.3.2 Symmetry axes normal to the plane of projection
 Table 2.2.3.3 Symmetry planes normal to the plane of projection
 Table 2.2.3.4 Symmetry planes parallel to the plane of projection
 Table 2.2.3.5 Symmetry axes inclined to the plane of projection (in cubic magnetic space groups only)
 Table 2.2.3.6 Symmetry planes inclined to the plane of projection (in cubic magnetic space groups only)
 Table 2.2.3.7 Height of symmetry operations above plane of projection
 Table 2.2.3.7a Rotation axes, screw axes, inversion axes and reflection and glide planes parallel to the plane of projection
 Table 2.2.3.7b Inversion centers and inversion axes perpendicular to the plane of projection (i.e. height of inversion center of rotation-inversion)

Table 2.2.3-2D: Graphical Symbols for Two-Dimensional Magnetic Space Groups

Table 2.2.3-1D: Graphical Symbols for One-Dimensional Magnetic Space Groups

Table 3: Tables of Properties of Magnetic Space Groups

 Table 3 - 3D: Three-Dimensional Magnetic Space Group Tables
 Table 3 - 2D: Two-Dimensional Magnetic Space Group Tables
 Table 3 - 1D: One-Dimensional Magnetic Space Group Tables

Figures 1.1: Magnetic Space Group Lattices

 Figures 1.1-3D: Three-dimensional Magnetic Space Group Lattices
 Figures 1.1-2D: Two-dimensional Magnetic Space Group Lattices
 Figures 1.1-1D: One-dimensional Magnetic Space Group Lattices

Figure 2.2.1.1: Lattice diagram of Pmc2₁
Figure 2.2.1.2: Lattice diagram of P₂₃m'c'2₁
Figure 2.2.2.1: Headline of magnetic space group P4/m'mm
Figures 2.2.3.1: Projection Diagrams of Three-Dimensional Magnetic Space Groups

Figure 2.2.3.1a: Diagrams for triclinic magnetic space groups
Figure 2.2.3.1b: Diagrams for monoclinic magnetic space groups
Figure 2.2.3.1c: Diagrams for orthorhombic magnetic space groups.
Figure 2.2.3.1d: Diagrams for tetragonal and cubic magnetic space groups.
Figure 2.2.3.1e: Diagrams for trigonal P and hexagonal magnetic space groups.
Figure 2.2.3.1f: Diagrams for Rhombohedral R magnetic space groups.

Figure 2.2.3.2: Symmetry diagram of P4,2'2'
Figure 2.2.3.3: General position diagram of P4,2'2'
Figure 2.2.3.4: Diagrams of magnetic space group P4,221'
Preface

This work discusses the structure, symbols, and properties of magnetic space groups. While the focus is on three-dimensional magnetic space groups, we have included analogous information on the structure, symbols, and properties of one- and two-dimensional magnetic space groups.

Unlike Gaul, this work is divided into two parts. The first is a discussion of the structure of magnetic groups, the Opechowski and Guccione symbols for magnetic space groups and the explicit listing of elements of one representative group from each of the 7, 80, and 1651 types of groups in, respectively, the superfamilies of one- two- and three-dimensional magnetic space groups. The second part of this work is an extension of the classic work on space groups published in the \textit{International Tables for Crystallography, Volume A: Space-Group Symmetry}, my work on non-magnetic subperiodic groups published in the \textit{International Tables for Crystallography, Volume E: Subperiodic Groups}, and my work on international-like tables for magnetic subperiodic groups. A reader familiar with any of these tables should readily recognize most content and format of the magnetic space group tables presented here.

This book was not computer generated. It was hand-calculated, checked, and typed. Consequently, in a massive work as this, the probability of errors and/or typos is then not zero. The author would appreciate being informed of any errors and/or typos found.

The financial support of the national Science Foundation through grant DMR-00744550 and the Penn State Berks RDG - Research Development Grants is gratefully acknowledged.

Penn State Berks 2007
1. Magnetic Space Groups: Symbols and Elements

1.1 Introduction

Magnetic groups are symmetry groups of arrangements of non-zero magnetic moments (spins). These groups were introduced by Landau and Lifschitz (1951, 1957) by reinterpreting the operation of "change in color" in two-color (black and white) crystallographic groups as "time inversion." Crystallographic two-color groups of rotations had been given by Heesch (1930) and Shubnikov (1951). The 1651 types of two-color three-dimensional space groups were derived by Belov et al (1955, 1957) and by Zamorzaev (1953, 1957) and called Shubnikov groups. Koptsik (1966) applied these groups to determine crystallographic and physical properties of magnetic structures.

The three-dimensional magnetic space groups were rederived and a new list of symbols for 1191 types of magnetic space groups was given by Opechowski & Guccione (1965) (see also Opechowski, 1986; Litvin, 2001, and Section 1.3). This number plus 230 space group types gives 1421 types of magnetic groups. The 230 types of groups which are the direct product of a space group and the time inversion group are not magnetic groups as the time inversion element in each such group precludes non-zero magnetic moments. To include these groups, Opechowski (1986) used the concept of reduced magnetic superfamily of a space group (see Section 1.2) to give a total of 1651 types of groups commonly referred to as magnetic space groups.

The Opechowski & Guccione list consists of a listing of a symbol for one representative magnetic space group from each type. To uniquely specify the meaning of these symbols required a specification of one representative space group chosen...
It was suggested in these two papers that the original Opechowski-Guccione set of symbols should be modified so one could correctly interpret them using ITC-A instead of ITC52. Adopting this ill-advised suggestion would have required in the future a new modification of the Opechowski-Guccione set of symbols whenever changes were made to the coordinate triplets of the general positions in ITC-A. Consequently, the meaning of the original Opechowski-Guccione list of symbols was specified by Litvin (2001).

ITC52 has been replace by Volume A of the *International Tables for Crystallography* (1983) (abbreviated here as *ITC-A*). One finds that, for some space groups, the set of coordinate triplets of the general positions explicitly printed in *ITC-A* differs from that explicitly printed in *ITC52*. As a consequence, if one attempts to interpret the Opechowski-Guccione symbols using *ITC-A*, one will, in many cases misinterpret the meaning of the symbol (Litvin, 1997, 1998).

Using the Opechowski-Guccione symbols, a list of symbols of the 1651 superfamilies of magnetic space group types is given in Table 1.1. In distinction from previous listings, where only a set of symbols were given, we specify explicitly the meaning of each symbol (Litvin, 2001). That is, we specify a representative magnetic group of that type. This consists of specifying the coordinate system used, and then relative to that coordinate system, the translational subgroup of the group. We then explicitly give a set of coset representatives of the coset decomposition of the group

1 It was suggested in these two papers that the original Opechowski-Guccione set of symbols should be modified so one could correctly interpret them using ITC-A instead of ITC52. Adopting this ill-advised suggestion would have required in the future a new modification of the Opechowski-Guccione set of symbols whenever changes were made to the coordinate triplets of the general positions in ITC-A. Consequently, the meaning of the original Opechowski-Guccione list of symbols was specified by Litvin (2001).
with respect to its translational subgroup.

In Section 1.2, the concept of reduced magnetic superfamily of a space group is reviewed. This concept provides for a sub-classification of magnetic space groups. This is followed, in Section 1.3, by a detailed explanation of the contents of Table 1.1., of the magnetic space group type symbols and elements. In Section 1.4 we list the changes in the symbols listed in Opechowski & Guccione (1965) and Opechowski (1986), and those of Table 1.1. A comparison of the symbols introduced by Opechowski & Guccione (1965) and those of Belov et al (1957) is discussed in Section 1.5. A side by side comparison is given in Table 1.4.

For one- and two-dimensional black and white space groups, see respectively, Neronova & Belov (1961) and Weber (1929), Heesch (1929), Cochran (1952) and Belov & Tarkhova (1956). The symbols used here for the superfamilies of one- and two-dimensional magnetic space group types are given in Table 1.1 along with a specification of a representative group of each type. A comparison of the symbols for these groups with that of black and white group symbols given by Niggli (1964) and Belov & Tarkhova (1956) are given in Table 1.2.
1.2 Magnetic Superfamily

Let F denote a space group type. The reduced magnetic superfamily of the space group of type F (Opechowski, 1986) consists of:

1) A group of type F.

2) The group $F1'$, where $1'$ denotes time inversion group consisting of the identity 1 and time inversion 1'.

3) All non-equivalent groups $F(D) = D + (F - D)1'$ where D is a subgroup of index two of F. Groups of this type will also be denoted by M.

The third set of groups is divided into two subdivisions:

3a) Groups M_1, where D is an equi-translational subgroup of F.

3b) Groups M_n, where D is an equi-class subgroup of F.

A survey of the crystallographic groups of the magnetic superfamily of crystallographic groups of type F will consist of a listing of a set of coset representatives called the standard set of coset representatives, of the decomposition of the group with respect to its translational subgroup, of one group, called the representative group, from the groups of type F, one group $F1'$, and each non-equivalent group $F(D)$.

Reference to the group F, $F1'$, or $F(D)$ will refer to

2 A magnetic superfamily as defined by Zamorzaev (1957) does not include groups of type F.

3 Only the relative lengths and mutual orientations of the translation vectors and the standard set of coset representatives with respect to an implied coordinate system are given. The absolute lengths of translation vectors, the position in space of the origin of the coordinate system and the orientation in that space of the basis vectors of the coordinate system are not explicitly given.
the listed group and to the group type F, $F1'$, or $F(D)$ to that group's type.

1.3 Tables of Magnetic Space Group Symbols and Elements

The format of Table 1.1 is:

1) Serial number of the magnetic space group type.

2) Symbol of the magnetic space group type.

3) Symbol of the group type of the subgroup D of index two of F for magnetic space groups $F(D)$, and the position and orientation of the group D in the coordinate system of the group $F(D)$ [which is the same as the coordinate system of F].

4) The standard set of coset representatives of the decomposition of the magnetic space group with respect to its translational subgroup.

1.3.1 Serial Number

A three part number $N_1.N_2.N_3$ is used. N_1 is a sequential number for the group type to which F belongs. This is the same numbering as given in both ITC52 and ITC-A for the two and three-dimensional space group types. N_2 is a sequential numbering of the magnetic space group types of the superfamily of F. Group types F always have the assigned number $N_1.1.N_3$, and group types $F1'$ the assigned number $N_1.2.N_3$. N_3 is a global sequential numbering of the 7, 80, and 1651 types of groups in, respectively, the superfamilies of one- two- and three-dimensional magnetic space groups.

1.3.2 Magnetic Space Group Symbol

In Figures 1.1 we give a list of symbols and diagrams for the magnetic group lattices.
The relative lengths and mutual orientations of the translation vectors of the translational subgroups of magnetic space groups are the same as for space groups \(F \). These lattice parameters are given in Table 1.2 according to the crystal system of \(F \). In Table 1.3.1 we give the symmetry directions of symmetry operations represented by characters in the Hermann-Mauguin symbol of a magnetic space group implied by the characters position in the symbol. In Table 1.3.2 we give the symbols used as subindices on the symmetry operations which represent these symmetry directions.

The symbol for a group \(F \) is that symbol for the group type \(F \) given by Opechowski and Guccione (1965). This group \(F \) is uniquely defined by its translational subgroup and the coset representatives of the coset decomposition of the group with respect to its translational subgroup. These coset representatives, see Section 1.3.4 below, are given in Table 1.1. The symbol for a group \(F1' \) is that of the group type \(F \) followed by \(1' \).

The symbol for a group \(M_T = F(D) = D + (F - D)1' \) is based on the symbol for the group \(F \). As \(D \) is an equi-translational subgroup of \(F \), i.e. the translational subgroup \(T^M_T \) of the magnetic group \(M_T \) is \(T \), the translational subgroup of \(F \). The translational part of the group symbol of a \(M_T \) group is then the same as that of the corresponding group \(F \).

A number or letter in the rotational part of the symbol of \(F \) appears unchanged in the symbol for \(M_T \) if it is associated with a coset representative of the group \(F \), in the coset decomposition of \(F \) with respect to \(T \), which is also an element contained in the subgroup \(D \). If not in \(D \), i.e. in \(F - D \), the number or letter appears in the symbol for \(M_T \) with a prime to denote that the element in \(M_T \) is coupled with \(1' \). For example, the
orthorhombic space group \(F = \text{Pca2}_1 \) is listed as the three-dimensional magnetic space group number 29.1.198. This group is defined by an orthorhombic translational subgroup \(T = \text{P} \), see Figures 1.1-3D, and the standard set of coset representatives\(^4\)

\[
(1|000) \quad (m_x|\frac{1}{2},0,\frac{1}{2}) \quad (m_y|\frac{1}{2},0,0) \quad (2z|0,0,\frac{1}{2}),
\]

the coset decomposition of \(F \) with respect to \(T \) can then be written as:

\[
F = T + (m_x|\frac{1}{2},0,\frac{1}{2})T + (m_y|\frac{1}{2},0,0)T + (2z|0,0,\frac{1}{2})T.
\]

The magnetic space group 29.5.202 is a group \(M_1 \) whose symbol is \(\text{Pc'a'2}_1 \). In this case we have

\[
\text{Pc'a'2}_1 = \text{P2}_1 + (\text{Pca2}_1 - \text{P2}_1)'1'
\]

i.e. \(F = \text{Pca2}_1 \) and \(D = \text{P2}_1 \). The symbol " 2, " in the symbol for \(F = \text{Pca2}_1 \), refers to the coset representative \((2z|0,0,\frac{1}{2})\), and element in \(D = \text{P2}_1 \). Consequently the symbol appears unprimed in the symbol for \(M_1 (\text{Pc'a'2}_1) \) and the coset representative \((2z|0,0,\frac{1}{2})\) appears as an unprimed coset representative in the standard set of coset representatives of \(M_1 \). The symbols " c " and " a " in \(F = \text{Pca2}_1 \), refer to the coset representatives \((m_x|\frac{1}{2},0,\frac{1}{2})\) and \((m_y|\frac{1}{2},0,0)\), respectively, neither of which are contained in \(D \). Consequently both symbols appear primed in the symbol for \(M_1 (\text{Pc'a'2}_1) \) and the coset representatives \((m_x|\frac{1}{2},0,\frac{1}{2})\) and \((m_y|\frac{1}{2},0,0)\) appear as primed coset representatives in the standard set of coset representatives of \(M_1 \). The magnetic group \(\text{Pc'a'2}_1 \), then has the orthorhombic translational subgroup \(T = \text{P} \) and the standard set of coset representatives

\(^4\)We use the Seitz notation \((R|\tau(R) + t)\) for elements of a space group \(F \). "R" is a rotation or rotation-inversion, "t" is a translation of the translational subgroup \(T \) of \(F \), and "\(\tau(R) \)" is a non-primitive translation associated with "R". The coset representatives are taken to be of the form \((R|\tau(R))\) which then defines the \(\tau(R) \) associated with the \(R \).
(1 000) (m_x|½,0,½)’ (m_y|½,0,0)’ (2_z|0,0,½).

The symbol for a group \(M_R = F(D) = D + (F - D)1'\) is also based on the symbol for the group \(F\). (This is in contradistinction to the “BNS” symbols of \(M_R\) groups (Belov, Neronova, & Smirnova (1955, 1957)) where the symbol for a \(M_R\) group is based on the symbol for the group \(D\), see below Section 1.5) As this is an equi-class magnetic group, half the translations of \(F\) are now coupled with 1' in \(M_R\) and half the translations remain unprimed in \(M_R\). The unprimed translations constitute the translational subgroup \(T^D\) of \(D\). We can write the coset decomposition of the translational subgroup \(T\) of \(F\) with respect to the translational subgroup \(T^D\) of \(D\) as

\[
T = T^D + t_a T^D
\]

where \(t_a\) is a translation of \(F\) which appears primed (coupled with 1') in \(M_R\). The translational subgroup of \(M_R\) can then be written as

\[
T^M_R = T^D + t_a T^D
\]

Symbols for the translational groups \(T\), the translational subgroups \(T^D\) of \(T\) used in the symbol for \(M_R\) groups, and the choice of the translations \(t_a\) for magnetic space groups is given in Figures 1.1.

The symbol for a magnetic group \(M_R = F(D)\) is based on the symbol of the group \(F\), and is also a symbol for the subgroup \(D\) of unprimed elements. The translational part of the symbol of \(F\) is replaced by the symbol for the translational subgroup \(T^D\) of \(D\). If a coset representative \((R|\tau(R))\) of \(T\) in \(F\) appears as the coset representative \((R|\tau(R)+t_a)\) of \(T^D\) in \(D\), then the number or letter corresponding to \((R|\tau(R))\) in the symbol for \(F\) is primed. If \((R|\tau(R))\) appears unchanged as a coset representative of \(T^D\) in \(D\),
then the number or letter corresponding to \((R|\tau(R))\) in the symbol for \(F\) is unchanged. The resulting symbol is a symbol for \(D\) based on the symbol for \(F\) and is also a symbol for the magnetic space group \(M_R = F(D)\). The symbol specifies not only \(D\) but also \(F\): By deleting the subindex on the translational part of the symbol and the primes on the rotational part one obtains the symbol specifying \(F\). Having specified \(D\) and \(F\) one has specified the group \(M_R = F(D)\). For example: Consider again the three-dimensional space group 29.1.198, \(F = Pca2_1\) where

\[
F = T + \left(m_x \frac{1}{2}, 0, \frac{1}{2} \right) T + (m_y \frac{1}{2}, 0, 0) T + (2z \left| 0, 0, \frac{1}{2} \right) T.
\]

The symbol for the \(M_R = F(D)\) group 29.7.204 is \(P_{2b}c'a'2_1\) and is based on the symbol for \(F\). The translational subgroup \(T^0\) of \(D\) is given by the symbol \(P_{2b}\) where \(t_a = b = (0,1,0)\). The two primed symbols \(c'\) and \(a'\) in \(P_{2b}c'a'2_1\) denote that the two coset representatives \((m_x \frac{1}{2}, 0, \frac{1}{2})\) and \((m_y \frac{1}{2}, 0, 0)\) that appear in the set of standard coset representatives of \(T\) in \(F\) appear as the coset representatives \((m_x \frac{1}{2}, 1, \frac{1}{2})\) and \((m_y \frac{1}{2}, 1, 0)\) in the set of standard coset representatives of \(T^0\) in \(D\). As the symbol \(2_1\) in \(P_{2b}c'a'2_1\) is not primed, the coset representative \((2z \left| 0, 0, \frac{1}{2} \right)\) of \(T\) in \(F\) remains unchanged as a coset representative of \(T^0\) in \(D\). We have then the subgroup:

\[
D = T^0 + \left(m_x \frac{1}{2}, 1, \frac{1}{2} \right) T^0 + (m_y \frac{1}{2}, 1, 0) T^0 + (2z \left| 0, 0, \frac{1}{2} \right) T^0.
\]

We note that these same coset representatives of \(T^0\) in \(D\) are also the coset representatives of the standard set of coset representatives of \(T^M_R\) in \(M_R\):

\[
M_R = T^M_R + \left(m_x \frac{1}{2}, 1, \frac{1}{2} \right) T^M_R + (m_y \frac{1}{2}, 1, 0) T^M_R + (2z \left| 0, 0, \frac{1}{2} \right) T^M_R
\]

and consequently the standard set of coset representatives of \(P_{2b}c'a'2_1\) listed in the tables is:
(1|0,0,0) (m_x|½,1,½) (m_y|½,1,0) (2_z|0,0,½)

Also, since $T^M_R = T^0 + t_a \cdot T^0$ it follows that:

$$M_R = D + (F-D)1'$$

$$M_R = (1|0,0,0) \cdot T^0 + (m_x|½,1,½) \cdot T^0 + (m_y|½,1,0) \cdot T^0 + (2_z|0,0,½) \cdot T^0 +$$
$$+ (1|0,1,0) \cdot T^0 + (m_x|½,0,½) \cdot T^0 + (m_y|½,0,0) \cdot T^0 + (2_z|0,1,½) \cdot T^0$$

Consequently, a primed number or letter in the symbol for M_R (which is a symbol for D) denotes that the corresponding coset representative appears in D coupled with t_a and primed in $(F-D)1'$, e.g. a' in $P_{2b} c'a'2_i$ denotes that the coset $(m_x|½,0,½)$ appears as $(m_x|½,1,½)$ in D and as $(m_x|½,0,½)'$ in $(F-D)1'$. An unprimed number or letter in the symbol for M_R (which is a symbol for D) denotes that the corresponding element appears unchanged in D and coupled with t_a and primed in $(F-D)1'$, e.g. the symbol 2_i in $P_{2b} c'a'2_i$ denotes that $(2_z|0,0,½)$ is in D and $(2_z|1,0,½)'$ in $(F-D)1'$.

1.3.3 Symbol of the subgroup D

The third column contains the group type symbol of the subgroup D of index two of the magnetic group $M = F(D)$.

a) For M_T groups, the subgroup D is defined by the translational subgroup T of F and the unprimed coset representatives listed in the fourth column.

b) For M_R groups, D is defined by the translational subgroup T^0 and the set of all coset representatives listed in the fourth column.

While the group type symbol of D is given, the coset representatives of the subgroup D of M_T or M_R defined in a) or b), respectively, may not be identical with the
standard set of coset representatives of the group D found in the listing of the magnetic space groups. Consequently, to show the relationship between this group D and the group of type D listed in the tables, additional information is provided to define a new coordinate system in which the coset representatives of this subgroup of type D are identical with the standard set of coset representatives listed for the group D.

Let $(O; a, b, c)$ be the coordinate system in which the three-dimensional space group F is defined. “O” is the origin of the coordinate system, and a, b, and c are the basis vectors of the coordinate system. a, b, and c represent a set of basis vectors for a primitive cell for primitive lattices and for a conventional cell for centered lattices. A second coordinate system is defined by $(O+t; a', b', c')$. The origin is first translated from O to $O+t$, and then the basis vectors a, b, and c are changed to a', b' and c' (for details, see Appendix 1.1).

Immediately following the group type symbol for the subgroup D of F we give a coordinate system $(O+t; a', b', c')$ [In the tables, for typographical simplicity, the symbols “$O+$” are omitted.] in which the coset representatives of the subgroup D of F are identical with the standard set of coset representatives of the group D found in the listing of the magnetic space groups. t, a', b', and c' are given in terms of the basis vectors of the coordinate system $(O; a, b, c)$ of the group F.

Example 1: For the M_r magnetic group 10.4.52 = P2/m' one finds in the tables:

\[
P2 \quad (0,0,0; a, b, c) \quad (1|0,0,0) \quad (2\gamma|0,0,0) \quad (1|0,0,0)' \quad (m\gamma|0,0,0)'
\]
The translational subgroup of \mathbf{D} is generated by the translations $(1|1,0,0)$, $(1|0,1,0)$, and $(1|0,0,1)$ of \mathbf{T} since this is a \mathbf{M}_r magnetic group, and the coset representatives of this group are $(1|0,0,0)$ and $(2_y|0,0,0)$, the unprimed coset representatives on the right. This subgroup \mathbf{D} is of type P2. In the tables, listed for the group 3.1.8 $\mathbf{P}2$, one finds the identical two coset representatives. Consequently, there is no change the coordinate system, i.e. $t=(0,0,0)$ and $a'=a$, $b'=b$, and $c'=c$. In the coordinate system of the magnetic group P2/m', the coset representatives of its subgroup \mathbf{D}, of the type P2, are identical with the coset representatives of the group P2 found in the tables.

Example 2: For the \mathbf{M}_r three-dimensional magnetic space group 16.7.105 $P_{2c}22'2'$ one finds in the tables:

$\mathbf{P22}_{11}$ $(0,0,0; a, b, 2c) \quad (1|0,0,0) \quad (2_x|0,0,0) \quad (2_y|0,0,1) \quad (2_z|0,0,1)$

The translational subgroup of \mathbf{D} is generated by the translations $(1|1,0,0)$, $(1|0,1,0)$, and $(1|0,0,2)$, the generators of the unprimed subgroup of $\mathbf{T^M}_r$, and the coset representatives of this group are all those coset representatives on the right. This subgroup \mathbf{D} is of type P221. In the tables, listed for the group 17.1.106 $\mathbf{P22}_{1}$ one finds a different set of coset representatives:

$(1|0,0,0) \quad (2_x|0,0,0) \quad (2_y|0,0,\frac{1}{2}) \quad (2_z|0,0,\frac{1}{2})$

Consequently, to show the relationship between the subgroup \mathbf{D} of type P221 and the
listed group \(\text{P222}_1 \), we change the coordinate system in which \(D \) is defined to
\((0,0,0; a, b, 2c)\). In this new coordinate system the coset representatives of \(D \) are identical with the coset representatives of the representative group \(\text{P222}_1 \).

Example 3: For the \(\text{M}_1 \) magnetic group \(18.4.116 \ \text{P2}_2,2'\,2' \) one finds in the tables:

\[
\text{P2}_1 \ (0, \frac{1}{4}, 0 ; c, a, b) \quad (1 | 000) \quad (2_x | \frac{1}{2}, \frac{1}{2}, 0) \quad (2_y | \frac{1}{2}, \frac{1}{2}, 0)' \quad (2_z | 000)'
\]

The translational subgroup of \(D \) is generated by the translations \((1 | 0, 0, 1), (1 | 1, 0, 0), \) and \((1 | 0, 1, 0)\), and the coset representatives of this group are \((1 | 000)\) and \((2_x | \frac{1}{2}, \frac{1}{2}, 0)\), the unprimed coset representatives on the right. The group \(D \) is of type \(\text{P2}_1 \). In the tables, for the group \(4.1.15 \ \text{P2}_1 \) one finds a different set of coset representatives, \((1 | 0, 0, 0)\) and \((2_y | 0, \frac{1}{2}, 0)\). Consequently, to show the relationship between the subgroup \(D \) of type \(\text{P2}_1 \) and the listed group \(\text{P2}_1 \), we change the coordinate system in which the subgroup \(D \) is defined to \((0, \frac{1}{4}, 0 ; c, a, b)\). The origin is first translated from \(O \) to \(O + t \), where \(t = (0, \frac{1}{4}, 0) \) and the a new set of basis vectors, \(a' = c, b' = a, \) and \(c' = b \) is defined. In this new coordinate system the coset representatives of the subgroup \(D \) are identical with the standard set of coset representatives of the representative group \(\text{P2}_1 \).

1.3.4 Coset Representatives

The groups listed are defined by their translational subgroups and a set of coset representatives, the standard set, of the coset decomposition of each group with
respect to its respective translational subgroup. The defining coset representatives are listed on the right hand side of Tables 1.1.

A two- or three-dimensional space group F is defined by its translational subgroup and the set of coset representatives implied by the coordinates of the set of equivalent positions explicitly listed $ITC52$. For example, The three-dimensional space group $F = P222_1$ (17.1.106) has a primitive translational subgroup generated by $(1|0,0,0)$, $(1|0,1,0)$, and $(1|0,0,1)$. The coordinates of the set of equivalent positions listed in $ITC52$ under the group type $P222_1$ are:

$$x, y, z; \quad x, y, z; \quad x, y, z; \quad x, y, z; \quad x, y, z$$

The coset representative $(R | \tau(R))$ corresponding to a specific equivalent position $r' = x', y', z'$ is given by the equation $r' = (R | \tau(R))r = Rr + \tau(R)$. Corresponding to the preceding equivalent positions are the coset representatives

$$(1|0,0,0); \quad (2|x|0,0,0); \quad (2|y|0,0,1); \quad (2|z|0,0,1),$$

which are listed in Table 1.1.

The coset representatives of groups $F1'$ are not explicitly given. These are taken as the coset representatives of F plus each of these coset representatives multiplied by 1'. For example, the coset representatives of $F = P222_1$ are given above. The coset representatives of $F1' = P222_1 1'$ are
(1|0,0,0); (2x|0,0,0); (2y|0,0,½); (2z|0,0,½),
(1|0,0,0)'; (2x|0,0,0)'; (2y|0,0,½)'; (2z|0,0,½).

The coset representatives of groups \(M_T = F(D) \) are derived from the coset representatives of \(F \). Each coset representative of \(F \) appears unchanged or primed, see Section 1.3.2 above, as a coset representative of \(M_T \). For example, The coset representatives of \(F = P222 \) are

(1|0,0,0); (2x|0,0,0); (2y|0,0,½); (2z|0,0,½).

The coset representatives of \(M_T = P2'2'2 \) are:

(1|0,0,0); (2x|0,0,0)'; (2y|0,0,½)'; (2z|0,0,½).

The coset representatives of groups \(M_R = F(D) \) are also derived from the coset representatives of \(F \). They are also chosen such that they are also coset representatives of \(D \) with respect to its subgroup \(T^0 \). Each coset representative of \(F \) appears either unchanged or multiplied by \(t_0 \), see Section 1.3.2 above. For example:
The coset representatives of \(F = P222 \) are

(1|0,0,0); (2x|0,0,0); (2y|0,0,½); (2z|0,0,½).

SECTION 1 - 15
The coset representatives of $M_R = P_{2a}2'2'2_1$, where $t_a = (1,0,0)$, are:

$$(1|0,0,0); \quad (2_x|1,0,0); \quad (2_y|1,0, \frac{1}{2}); \quad (2_z|0,0,\frac{1}{2}).$$

1.4 Changes in Symbols

Typographical errors in Opechowski & Guccione (1965) corrected in Opechowski (1986) of three-dimensional magnetic space group types are as follows:

<table>
<thead>
<tr>
<th>Numbering in Table 1.1</th>
<th>Opechowski & Guccione (1965)</th>
<th>Opechowski (1986)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.4.102</td>
<td>$P_{2a}222$</td>
<td>$P_{2a}222$</td>
</tr>
<tr>
<td>43.4.323</td>
<td>$F_{dd}d'2$</td>
<td>$F_{d'd}2$</td>
</tr>
<tr>
<td>47.6.352</td>
<td>$P_{2a}mmm$</td>
<td>$P_{2a}mmm$</td>
</tr>
<tr>
<td>67.17.593</td>
<td>$C_{1}m'm'a'$</td>
<td>$C_{1}m'm'a'$</td>
</tr>
<tr>
<td>108.8.899</td>
<td>$I_4'c'm'$</td>
<td>$I_p\ 4'c'm'$</td>
</tr>
<tr>
<td>108.9.900</td>
<td>$I_4c'm'$</td>
<td>$I_p\ 4c'm'$</td>
</tr>
<tr>
<td>124.1.1018</td>
<td>$P4/mcr$</td>
<td>$P4/mcc$</td>
</tr>
<tr>
<td>132.4.1113</td>
<td>P_{4_2}/mcm'</td>
<td>$P_{4_2}/'mcm'$</td>
</tr>
</tbody>
</table>

In both Opechowski & Guccione (1965) and Opechowski (1986) the symbol $P_{2b} c'ca$ is listed twice, in the numbering of Table 1.1, at entries 54.11.438 and 54.13.440. The second has been changed to $P_{2b} c'ca'$, a magnetic group which has a non-magnetic subgroup of the type $Pnna$.

Three more changes have been made:
Numbering in Table 1.1 Opechowski & Guccione (1965) Table 1.1 Opechowski (1986)

131.13.1109 \(P_4 \frac{4}{m'mc} \) \(P_p 4_2'/m'mc' \)

177.7.1385 \(P_{2c} 6'22 \) \(P_{2c} 6'22' \)

180.7.1402 \(P_{2c} 6_2'22 \) \(P_{2c} 6_2'22' \)

The reason for these changes are similar: For the middle case, the group \(P622 \) is listed in Table 1.1 as

\[
\begin{align*}
177.1.1379 & \quad P622 \\
\{ & 1 \mid 0,0,0 \} \quad \{ & 3 \mid 0,0,0 \} \quad \{ & 3^{-1} \mid 0,0,0 \} \\
\{ & 2 \mid 0,0,0 \} \quad \{ & 6 \mid 0,0,0 \} \quad \{ & 6^{-1} \mid 0,0,0 \} \\
\{ & 2 \mid 0,0,0 \} \quad \{ & 2_y \mid 0,0,0 \} \quad \{ & 2_y \mid 0,0,0 \} \\
\{ & 2 \mid 0,0,0 \} \quad \{ & 2 \mid 0,0,0 \} \quad \{ & 2 \mid 0,0,0 \}
\end{align*}
\]

177.7.1385 is a group with a \(P_{2c} \) lattice. The symbol 6' means that the coset representative \((6_z \mid 0,0,0) \) in the standard set of coset representatives of the coset decomposition of \(P622 \) with respect to \(P \) (listed in 177.1.1379) appears as \((6_z \mid 0,0,1) \) in the standard set of coset representatives of the coset decomposition of the magnetic group with respect to \(P_{2c} \). This implies the following coset representatives of 177.7.1385:

\[
\begin{align*}
\{ & 1 \mid 0,0,0 \} \quad \{ & 3 \mid 0,0,0 \} \quad \{ & 3^{-1} \mid 0,0,0 \} \\
\{ & 2_z \mid 0,0,1 \} \quad \{ & 6_z \mid 0,0,1 \} \quad \{ & 6_z^{-1} \mid 0,0,1 \}
\end{align*}
\]

The unprimed symbol 2 following the 6' implies that the coset representative \((2_z \mid 0,0,0) \) remains the same as a coset representative in 177.7.1385. Combining this with the
listed coset representatives implies the complete set of coset representatives found in Table 1.1:

\[
\begin{align*}
(1 | 0,0,0) & \quad (3_{z} | 0,0,0) & \quad (3_{z}^{-1} | 0,0,0) \\
(2_{z} | 0,0,1) & \quad (6_{z} | 0,0,1) & \quad (6_{z}^{-1} | 0,0,1) \\
(2_{x} | 0,0,0) & \quad (2_{xy} | 0,0,0) & \quad (2_{y} | 0,0,0) \\
(2_{1} | 0,0,1) & \quad (2_{2} | 0,0,1) & \quad (2_{3} | 0,0,1)
\end{align*}
\]

Note that the coset representative \((2_{1} | 0,0,0)\) of the coset decomposition of \(P622\) with respect to \(P\) now appears as the coset representative \((2_{1} | 0,0,1)\) in the coset decomposition of the magnetic group 177.7.1385 with respect to \(P_{2c}\). Consequently, the second symbol 2 in \(P622\), appears as 2’ in the symbol of 177.7.1385, i.e. the symbol of this magnetic group is \(P_{2c}6_{2}’22’\).

1.5 Relationship to Black and White Space Group Symbols

Opechowski & Guccione symbols (1965) for all group types in a three-dimensional magnetic superfamily of type \(F\) are based on the symbol of the three-dimensional space group \(F\). For groups \(F\), \(F1’\), and \(M_{F}\), the Belov et al (1955, 1957) symbols do the same. However, for groups of the type \(M_{R} = F(D) = D + (F - D)1’\) Belov et al (1955, 1957) base their symbol on the symbol for the group \(D\), the unprimed subgroup of index 2. For example, the Opechowski & Guccione symbol for group 47.11.357 is \(P_{c}mmm’\). From this we have that \(F = Pmmm\) and from Table 1.1 that \(D = Cmma\). The Belov et al symbol for this group 47.11.357 is based on the symbol of the subgroup \(D\), i.e. the symbol Cmma: A group \(M_{R}\) can be written as \(M_{R} = F(D) = D + t_{a}’ D\), where \(t_{a}\) is a translation of \(F\) not in \(D\). For the group 47.11.357, this translation is chosen as \(a = (1,0,0)\) and is found in the figure for the \(P_{c}\) lattice in Figures 1.1. The
translational subgroup of this group is symbolically represented by Belov et al as C_a where C represents the translational subgroup of $D = C_{mma}$ and the subscript "a" denotes the translation $t_a = a$. This leads to the Belov et al symbol of $C_a m'm'a$ for the group 47.11.3 57.

A side by side comparison of Opechowski & Guccione symbols for three-dimensional magnetic space groups and Belov et al symbols for three-dimensional black and white space groups is given in Table 1.4-3D. As the Belov et al symbols for groups of type F, F' and M_r are the same as Opechowski & Guccione symbols, we list Belov et al symbols explicitly only for groups of type M_r. Comparisons of one- and two-dimensional magnetic space groups and black and white space groups are given, respectively, in Tables 1.4-1D and 1.4-2D.
2. Guide to the use of the magnetic space groups tables

2.1 Introduction

In this section we present a guide to the tabulation of properties of the superfamilies of one-, two-, and three-dimensional magnetic space groups given, respectively, in Table 3 - 1D, Table 3 - 2D, and Table 3 - 3D. The format and content of these magnetic group tables are similar to the format and content of the space group tables in *ITC-A: International Tables for Crystallography, Volume A* (1983), the subperiodic group tables in *ITC-E: International Tables for Crystallography, Volume E* (2002), and the same as that in the magnetic subperiodic group tables (Litvin, 2005).

2.2 Contents of the Magnetic Space Group Tables

The content of the magnetic group tables consists of the following:

(1) Lattice Diagram

(2) Headline

(3) Diagrams of symmetry elements and of the general positions

(4) Origin

(5) Asymmetric unit

(6) Symmetry operations

(7) Generators selected

(8) Positions, with multiplicities, site symmetries, coordinates, and magnetic moments

(9) Symmetry of special projections
2.2.1 Lattice Diagram

In the upper left hand corner of the first page of tables for each magnetic space group is the lattice diagram of the magnetic space group. This lattice diagram depicts the coordinate system used, the conventional unit cell of the space group F, the magnetic space group's magnetic superfamily type, and the generators of the translational subgroup of the magnetic space group. For example, in Figures 2.2.1.1 and 2.2.1.2 we show the lattice diagrams for the orthorhombic magnetic space groups $Pmc2_1$ and $P_{2b}m'c'2_1$, respectively. The generating lattice vectors depicted are color coded. Those colored black are not coupled with time inversion while those colored red are coupled with time inversion. In the former group $Pmc2_1$, a magnetic group of the type F, the lattice is an orthorhombic "P" lattice, see Figures 1.1, and no generating
translation is coupled with time in version. In the latter group $P_{2b} m'c'2_1$, a magnetic
group of type M_R, the lattice is an orthorhombic "P_{2b}" lattice, with the generating lattice
vector in the y-direction coupled with time inversion.

2.2.2 Headline

To the right of the lattice diagram is a two line heading, an example is given in
Figure 2.2.2.1. On the upper line, starting on the left, are three entries:

<table>
<thead>
<tr>
<th>P4/m'nm</th>
<th>4/m'nm</th>
<th>Tetragonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>123.3.1001</td>
<td>P4/m'2'/m2'/m</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.2.2.1: Headline of magnetic space group P4/m'nm.

(1) The short international (Hermann-Mauguin) symbol of the magnetic space
group. Each symbol has two meanings: The first is that of the Hermann-Mauguin
symbol of a magnetic space group type. The second is that of a specific magnetic
space group which belongs to this magnetic space group type. Given a coordinate
system, this group is defined both by the list of symmetry operations (see Section 2.2.6)
given on the page with this Hermann-Mauguin symbol in the heading, or by the given
list of general positions and magnetic moments (see Section 2.2.8).

(2) The short international (Hermann-Mauguin) point group symbol for the
geometric class to which the magnetic space group belongs.

(3) The crystal system to which the magnetic space group belongs.

The second line has two additional entries:

(1) The three part numerical serial index of the magnetic space group (see
(2) The long international (Hermann-Mauguin) symbol of the magnetic space group.

2.2.3 Diagrams of symmetry elements and of the general positions

There are two types of diagrams, symmetry diagrams and general position diagrams. The symmetry diagrams show (1) the relative locations and orientations of the symmetry elements and (2) the locations and orientations of the symmetry elements relative to a given coordinate system. The general position diagrams show, in that coordinate system, the arrangement of a set of symmetrically equivalent points and relative orientations of magnetic moments on this set of equivalent points relative to the symmetry elements.

For the three-dimensional magnetic space groups, all diagrams are orthogonal projections and the projection direction is along the \(c \) basis vector, see Table 1.2. If the other two basis vectors are not parallel to the plane of the diagram, they are indicated by a subscript "p", e.g. \(a_p \) and \(b_p \). Schematic representations of the diagrams, showing their conventional coordinate system, i.e. the origin "O" and basis vectors, are given in Figures 2.2.3.1. The general position diagram is shown on the left and indicated by the letter "G". The symmetry diagram is on the right.

The graphical symbols used in the symmetry diagrams are listed in Table 2.2.3 and are an extension of those used in ITC-A (1983), ITC-E (2002) and Litvin (2005). For three-dimensional magnetic space groups, the symmetry planes and symmetry axes parallel to the plane of diagram, for rotoinversions, and for centers of symmetry, the "heights" \(h \) along the projection direction above the plane of the diagram are given.
The heights are given as fractions of the shortest translation along the projection direction and if different from zero, are printed next to the graphical symbol, see e.g. Figure 2.2.3.2.

Figure 2.2.3.2: Symmetry diagram of the three-dimensional magnetic space group $P4_{1}2'2'$

In the general position diagrams, the general positions and corresponding magnetic moments are color coded. Positions with a z-component of "+z" are circles color coded red and with a z-component of "-z" are circles color coded blue. If the z-component is either "h+z" or "h-z" with $h \neq 0$, then the height "h" is printed next to the general position, e.g. $\frac{1}{4}$. If two general positions have the same x-component and y-component, with z-components +z and -z, respectively, the positions are denoted as . The magnetic moments are color coded to the general position to which they are associated, their direction in the plane of projection is given by an
arrow in the direction of the magnetic moment. A "+" or "-" sign near the tip of the arrow indicates the magnetic moment is inclined, respectively, above or below the plane of projection, as in Figure 2.2.3.3.

![Figure 2.2.3.3: General position diagram of the three-dimensional magnetic space group P4,2'2'](image)

For magnetic space groups of the type F1', the symmetry diagram is that of the group F. That each symmetry element also appears coupled with time inversion is represented by a red 1' printed between and above the general position and symmetry diagrams. Because groups of this kind contain the time inversion symmetry, the magnetic moments are all identically zero, and no arrows appear in the general position diagram. An example, the diagrams of three-dimensional magnetic space group P4,221' are shown in Figure 2.2.3.4:
2.2.4 Origin

If the magnetic space group is centrosymmetric then the inversion center or a position of high site symmetry, as on the four-fold axis of tetragonal groups, is chosen as the origin. For noncentrosymmetric groups, the origin is at a point of highest site symmetry. If no symmetry is higher than 1, the origin is placed on a screw axis, a glide plane or at the intersection of several such symmetries.

In the Origin line below the diagrams, the site symmetry of the origin is given. An additional symbol indicates all symmetry elements that pass through the origin. For example, for the three-dimensional magnetic space group I4/mcm, one finds "Origin at center (4/m) at 4/mc2/c." The cite symmetry is 4/m and in addition, two glide planes perpendicular to the y- and z-axis, and a screw axis parallel to the z-axis pass through the origin.
2.2.5 Asymmetric Unit

An asymmetric unit of a magnetic space group is a simply connected smallest part of space from which, by application of all symmetry operations of the magnetic space group, exactly fills the whole space. Since the magnetic space groups contain a translational subgroup, the asymmetric unit is a finite part of space. We define the asymmetric unit by setting the limits on the coordinates of points contained in the asymmetric unit. For example, for the three-dimensional magnetic space group I4/m'cm (140.3.1198) one finds:

Asymmetric unit \(0 < x < 1/2; \ 0 < y < 1/2; \ 0 < z < 1/4; \ y < 1/2 - x\)

Drawings showing the boundary planes occurring in the tetragonal, trigonal, and hexagonal systems, together with their algebraic equations are given in Figure 2.8.1 of ITC-A (1983). Drawings of asymmetric units for cubic groups have been published by Koch & Fisher (1974). The asymmetric units have complicated shapes in the trigonal, hexagonal, and cubic crystal systems and consequently are also specified by given the vertices of the asymmetric unit. For example, for the three-dimensional magnetic space group P6\(_3\)/m (176.1.1374) one finds:

Asymmetric unit	\(0 \leq x \leq 2/3; \ 0 \leq y \leq 2/3; \ 0 \leq z \leq 1/4; \ x \leq (1+y)/2; \ y \leq \min(1-x,(1+x)/2)\)				
Vertices	0,0,0	1/2,0,0	2/3,1/3,0	1/3,2/3,0	0,1/2,0
	0,0,1/4	1/2,0,1/4	2/3,1/3,1/4	1/3,2/3,1/4	0,1/2,1/4
Because the asymmetric unit is invariant under time inversion, all magnetic space groups \mathbf{F}, \mathbf{F}^*, and $\mathbf{F}(\mathbf{D})$ of the magnetic superfamily of type \mathbf{F} have identical asymmetric units.

2.2.6 Symmetry operations

Listed under the heading of Symmetry operations is the geometric description of the symmetry operations of the magnetic space group. In addition, each symmetry operation is also given in Seitz notation (Burns & Glazer, 1990). The corresponding coordinate triplets of the General positions may be interpreted as a second description of the symmetry operations, a description in matrix form. The numbering (1), (2), ..., (p), ... of the entries in the blocks Symmetry operations is the same as the numbering of the corresponding coordinate triplets of the General positions, the first block below Positions. For all magnetic space groups with primitive "P" lattices, the two lists, Symmetry operations and General positions, have the same number of entries.

For magnetic space groups with centered cells, only one block of several (2,3, or 4) blocks of the General positions is explicitly given. A set of (2,3, or 4) centering translations is given below the subheading Coordinates. Each of these translations is added to the given block of general positions to obtain the complete set of blocks of general positions. While one of the several blocks of general positions is explicitly given, the corresponding symmetry operations are all explicitly given. Each corresponding block of symmetry operations is listed under a subheading of "centering translation + set" for each centering translation listed below the subheading Coordinates.

A symbol denoting the geometric description of each symmetry operation is
given. Details of this symbolism, except for the use of prime to denote time inversion, are given in Section 11.2 of *ITC-A* (1983). For glide planes and screw axes the glide and screw part are always explicitly given in parentheses by fractional coordinates, i.e. by fractions of the basis vectors of the coordinate system of F of the superfamily of the magnetic group. A coordinate triplet indicating the location and orientation of the symmetry element is given, and for rotoinversions, the location of the inversion point is also given. These symbols, with the addition of a prime to denote time inversion, follow those used in *ITC-A* (1983), *ITC-E* (2002), and Litvin (2005).

2.2.7 Generators selected

The line *Generators selected* lists the symmetry operations selected to generate the symmetrically equivalent points of the General position from a point with coordinates x, y, z. The first generator is always the identity operation given by (1) followed by generating translations. Additional generators are given as numbers (p) which refer to the coordinate triplets of the General position and to corresponding symmetry operations in the first block, if more than one, of Symmetry operations.

2.2.8 Positions, with multiplicities, site symmetries, coordinates, and magnetic moments

The entries under Positions, referred to as Wyckoff positions, consists of the General positions, the upper block, followed by blocks of Special positions. The upper block of positions, the general positions, is a set of symmetrically equivalent points where each point is left invariant only by the identity operation or, for magnetic groups F1', by the identity operation and time inversion, but by no other
Symmetry operations of the magnetic space group. The lower blocks, the special positions, are a set of symmetrically equivalent points where each point is left invariant by at least one additional operation in addition to the identity operation, or , for magnetic space groups F1, in addition to the identity operation and time inversion.

For each block of positions information is provided:

Multiplicity: The multiplicity is the number of equivalent positions in the conventional unit cell of the non-magnetic group F associated with the magnetic space group.

Wyckoff Letter: This letter is a coding scheme for the blocks of positions, starting with "a" at the bottom block and continuing upwards in alphabetical order.

Site symmetry: The site symmetry group is the largest subgroup of the magnetic space group that leaves invariant the first position in each block of positions. This group is isomorphic to a subgroup of the point group of the magnetic space group. An "oriented" symbol is used to show how the symmetry elements at a site are related to the conventional crystallographic basis and the sequence of characters in the symbol correspond to the sequence of symmetry directions as in the magnetic space group symbol, see Table 1.3. Sets of equivalent symmetry directions that do not contribute any element to the site symmetry are represented by dots. Sets of symmetry directions having more than one equivalent direction may require more than one character if the site-symmetry group belongs to a lower crystal system. For example, for the 2c position of the three-dimensional magnetic space group P4'm'm (99.3.825) the site symmetry group is 2m'm'. where the two characters m'm' represent the secondary set of tetragonal symmetry directions, whereas the dot represents the tertiary tetragonal symmetry directions.
Coordinates of Positions and Components of Magnetic Moments: In each block of positions, the coordinates of each position are given. Immediately following each set of position coordinates are the components of the symmetry allowed magnetic moment at that position. The components of the magnetic moment of the first position is determined from the given site symmetry group. The components of the magnetic moments at the remaining positions are determined by applying the symmetry operations to the components of that magnetic moment at the first position.

2.2.9 Symmetry of special projections

Under the heading Symmetry of special projections the following information is given for the projections of each magnetic space group:

Projection direction: All projections are orthogonal, i.e. the projection, for three-dimensional magnetic space groups, is onto a plane normal to the projection direction. The projection directions are:

- Triclinic, Monoclinic, Orthorhombic: [001] [100] [010]
- Tetragonal: [001] [100] [110]
- Hexagonal: [001] [100] [210]
- Rhombohedral: [111] [110] [211]
- Cubic: [001] [111] [110]

For two-dimensional magnetic space groups, the projection is onto a line normal to the projection direction. The projection directions are:
<table>
<thead>
<tr>
<th>Shape</th>
<th>Basis Vectors</th>
<th>Index 1</th>
<th>Index 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oblique</td>
<td>$\mathbf{a}^\mathbf{, b}^$</td>
<td>[10]</td>
<td>[01]</td>
</tr>
<tr>
<td>Rectangular</td>
<td>$\mathbf{a}^\mathbf{, b}^$</td>
<td>[10]</td>
<td>[01]</td>
</tr>
<tr>
<td>Square</td>
<td>$\mathbf{a}^\mathbf{, b}^$</td>
<td>[10]</td>
<td>[11]</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>$\mathbf{a}^\mathbf{, b}^$</td>
<td>[10]</td>
<td>[21]</td>
</tr>
</tbody>
</table>

Basis vectors: For three-dimensional magnetic space groups, the relationship between the basis vectors $\mathbf{a}^*, \mathbf{b}^*$ of the two-dimensional magnetic space group symmetry of the projection is given in terms of the basis vectors $\mathbf{a, b, c}$ of the three-dimensional magnetic space group. For triclinic and monoclinic three-dimensional magnetic space groups where basis vectors $\mathbf{a, b, c}$ are inclined to the plane of projection, these basis vectors are replaced by $\mathbf{a}_p, \mathbf{b}_p, \mathbf{c}_p$, respectively.

For two-dimensional magnetic space groups, the relationship between the basis vector \mathbf{a}^* of the one-dimensional magnetic space group symmetry of the projection is given in terms of the basis vectors \mathbf{a} and \mathbf{b} of the two-dimensional magnetic space group. For oblique two-dimensional magnetic space groups where basis vectors \mathbf{a} or \mathbf{b} are inclined to the plane of projection, these basis vectors are replaced by \mathbf{a}_p or \mathbf{b}_p, respectively.

Location of origin: For three-dimensional magnetic space groups, the location of the origin of the two-dimensional magnetic space group symmetry of the projection is given with respect to the unit cell of the three-dimensional magnetic space group. For two-dimensional magnetic space groups, the location of the origin of the one-dimensional magnetic space group symmetry of the projection is given with respect to the unit cell of the two-dimensional magnetic space group.
References

Heesch, H. (1930). Z. fur Kristallogr. 73, 325-345.

Lattices with a first symbol consisting of a single letter with no subscript are lattices of groups F_1, F_1' and M_1. To the right of an equality sign, a second symbol gives the generators of the lattice in the subscript of the corresponding lattice symbol. These generating translations are also shown as black arrows in the corresponding figure.

Lattices with a first symbol consisting of a letter with a second letter as a subscript are lattices of magnetic groups M_R. The translational subgroup of these groups are of the form $T^M_R = T^D + t_d \cdot T^D$. To the right of equality signs, additional symbols are given which give the generating translations of T^D as a subscript. The translation chosen for t_d is also explicitly given. In the corresponding figures, generating translations which are in T^D are shown in black and generating translations which are in $t_d \cdot T^D$ are shown in red.

Three-Dimensional Magnetic Lattices:

Triclinic System

$$P = P_{a,b,c}$$

Monoclinic System (2-fold axis along y)

$$P = P_{a,b,c}$$

$P_{2a} = P_{a,b,2c}$

$t_a = a = (1,0,0)$

$t_b = b = (0,1,0)$

$t_c = c = (0,0,1)$

$P_{2c} = P_{a,b,2c}$

FIGURES 1.1 MAGNETIC SPACE GROUP LATTICES - 1
Orthorhombic System

$P_C = P_{2a,a+b,c} = P_{a-b,a+b,c}$
$\mathbf{t}_u = a = (1,0,0)$

$C = C_{\frac{1}{2}(a+b),b,c}$
$\mathbf{t}_u = c = (0,0,1)$

$C_{2c} = C_{\frac{1}{2}(a+b),b,2c}$
$\mathbf{t}_u = \frac{1}{2}(a+b) = (\frac{1}{2},\frac{1}{2},0)$

$C_P = C_{a+b,b,c} = C_{a,b,c}$

$\mathbf{t}_u = \frac{1}{2}(a+b) = (\frac{1}{2},\frac{1}{2},0)$

$P = P_{a,b,c}$

$P_{2a} = P_{2a,b,c}$
$\mathbf{t}_u = a = (1,0,0)$

$P_{2b} = P_{a,2b,c}$
$\mathbf{t}_u = b = (0,1,0)$

$P_{2c} = P_{a,b,2c}$
$\mathbf{t}_u = c = (0,0,1)$

$P_C = P_{2a,a+b,b,c}$
$\mathbf{t}_u = a = (1,0,0)$

$P_F = P_{2a,a+b,a+c}$
$\mathbf{t}_u = a + b + c = a + b + c$
\[A = A_{a,b,\frac{1}{2}(b+c)} \]

\[A_{2a} = A_{2a,b,b+c} \]

\[t_u = a = (1,0,0) \]

\[A_p = A_{a,b,c} \]

\[t_u = \frac{1}{2}(b+c) = (0,\frac{1}{2},\frac{1}{2}) \]

\[A_i = A_{2a,b,\frac{1}{2}(2a+b+c)} \]

\[t_u = a = (1,0,0) \]

\[C = C_{\frac{1}{2}(a+b),b,c} \]

\[C_{2c} = C_{\frac{1}{2}(a+b),b,2c} \]

\[t_u = c = (0,0,1) \]

\[C_p = C_{a+b,b,c} = C_{a,b,c} \]

\[t_u = \frac{1}{2}(a+b) = (\frac{1}{2},\frac{1}{2},0) \]

\[C_i = C_{a,b,\frac{1}{2}(a+b+2c)} \]

\[t_u = c = (0,0,1) \]

\[F = F_{\frac{1}{2}(a+b),\frac{1}{2}(b+c),\frac{1}{2}(a+c)} \]

\[F_c = F_{\frac{1}{2}(a+b),b,c} \]

\[t_u = \frac{1}{2}(a+c) = (\frac{1}{2},0,\frac{1}{2}) \]

\[F_A = F_{\frac{1}{2}(b+c),c,a} \]

\[t_u = \frac{1}{2}(a+b) = (\frac{1}{2},\frac{1}{2},0) \]
Tetragonal System

\[l = l_{a,b,\frac{1}{2}(a+b+c)} \]
\[l_p = l_{a,b,c} \]
\[t_u = \frac{1}{2}(a+b+c) = \left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right) \]
Trigonal System (Rhombohedral Axes)

\[
\mathbf{R} = \mathbf{R}_{a,b,c} \\
\mathbf{R}_{2a,a+b,a+c} = \mathbf{R}_{a+b,b+c,a+c} \\
t_0 = \mathbf{a} = (1,0,0)
\]

Trigonal System (Hexagonal Axes)
Hexagonal System

\[
\mathbf{P} = \mathbf{P}_{a,b,c} \\
\mathbf{P}_{2c} = \mathbf{P}_{a,b,2c} \\
t_0 = \mathbf{c} = (0,0,1)
\]

Cubic System

\[
\mathbf{P} = \mathbf{P}_{a,b,c} \\
\mathbf{P}_F = \mathbf{P}_{2a,a+b,a+c} = \mathbf{P}_{a+b,b+c,a+c} \\
t_0 = \mathbf{a} = (1,0,0)
\]

\[
\mathbf{F} = \mathbf{F}_{\frac{1}{2}(a+b),\frac{1}{2}(b+c),\frac{1}{2}(a+c)}
\]
Two-Dimensional Magnetic Lattices:

Oblique System

\[
\begin{align*}
I &= I_{a,b,\frac{1}{2}(a+b+c)} \\
I_p &= I_{a,b,c} \\
t_a &= \frac{1}{2}(a+b+c) = (\frac{1}{2},\frac{1}{2},\frac{1}{2})
\end{align*}
\]
Rectangular System

- \(p = p_{a,b} \)
- \(p_{2a} = p_{2a,b} \)
- \(t_u = a = (1,0) \)
- \(p_{2b} = p_{a,2b} \)
- \(t_c = b = (0,1) \)
- \(p_c = p_{2a,a+b} = p_{a-b,a+b} \)
- \(t_d = a = (1,0) \)
- \(c = c_{\frac{1}{2}(a+b),b} \)
- \(c_p = c_{a,b} \)
- \(t_d = \frac{1}{2}(a+b) \)
Square System

\[p = p_{a,b} \]

Hexagonal System

\[p = p_{a,b} \]

One-Dimensional Magnetic Lattices:

\[p = p_a \]

\[p_{2a} = p_{2a} \]

\[t_u = a = (1) \]
Figures 2.2.3.1: Projection Diagrams of the Three-Dimensional Magnetic Space Groups

Figure 2.2.3.1a: Diagrams for triclinic 3D-magnetic space groups

Figure 2.2.3.1b: Diagrams for monoclinic 3D-magnetic space groups
Figure 2.2.3.1c: Diagrams for orthorhombic 3D-magnetic space groups.

Figure 2.2.3.1d: Diagrams for tetragonal and cubic 3D-magnetic space groups.
Figure 2.2.3.1e: Diagrams for trigonal P and hexagonal 3D-magnetic space groups.

Figure 2.2.3.1f: Diagrams for Rhombohedral R 3D-magnetic space groups.
Appendix 1.1: On characterizing a change in coordinate systems and the non-magnetic subgroup of index two of magnetic groups.

When given a subgroup D of index 2 of a group F we want to give enough information to show
1) how to change the origin and
2) how to change the basis vectors of the coordinate system $(O;a,b,c)$ in which F is defined, such in a second coordinate system $(O+t;a',b',c')$ the translational subgroup of D and the set of coset representatives of D with respect to its translational subgroup will be identical with the translational subgroup and standard set of coset representatives of the group of type D listed in the tables. Therefore:

1) We give, in the coordinate system of F, the translation t such that the new origin $O+t$ is the origin of the coordinate system in which the subgroup D will be of the form of the representative group D listed in the tables.

2) We give the basis vectors a',b',c' of a coordinate system $(0+t;a',b',c')$ in terms of the basis vectors of the coordinate system in which F is defined, such that the subgroup D in $(0+t;a',b',c')$ is identical with the representative group D.

APPENDIX 1.1 - 1
The lattices of both F and D can be either centered or primitive, consequently:

<table>
<thead>
<tr>
<th></th>
<th>Primitive F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primitive</td>
<td>a', b', c' of primitive cell of D given in terms of a, b, c of primitive cell of F.</td>
</tr>
<tr>
<td>Centered</td>
<td>a', b', c' of conventional unit cell of D given in terms of a, b, c of primitive cell of F.</td>
</tr>
<tr>
<td>Primitive D</td>
<td>a', b', c' of conventional unit cell of D given in terms of a, b, c of primitive cell of F.</td>
</tr>
<tr>
<td>Centered</td>
<td>a', b', c' of conventional unit cell of D given in terms of a, b, c of primitive cell of F.</td>
</tr>
</tbody>
</table>

To summarize: For the subgroup D we will give the following symbol:

$$D\left(t; a', b', c'\right)$$

where D is the group type symbol for the group D, and $\left(t; a', b', c'\right)$ defines the new coordinate system $(O+t; a', b', c')$ in which the elements of D are identical with those of the representative group of the type D. Note that in the tables the symbol t is given by a trio of numbers n_a, n_b, n_c and the translation is defined by

$$t = n_a a + n_b b + n_c c,$$

i.e. the translation t is defined in the coordinate system $(O; a, b, c)$ of the group F. The symbol $(O+t; a', b', c')$ is be interpreted to define the new coordinate system by first moving the origin and then inserting the new set of basis vectors at the new origin $O+t$.

The coset representatives of the group D change when changing the origin of
the coordinate system. How they change is as follows:

Given a coordinate system \((\mathbf{O};\mathbf{a},\mathbf{b},\mathbf{c})\) and two points \(\mathbf{x}\) and \(\mathbf{x}'\) in this coordinate system. Given a second coordinate system \((\mathbf{O}+\mathbf{t};\mathbf{a},\mathbf{b},\mathbf{c})\) where the two points corresponding to \(\mathbf{x}\) and \(\mathbf{x}'\) are in the second coordinate system denoted respectively by \(\mathbf{y}\) and \(\mathbf{y}'\).

\[
\begin{align*}
\mathbf{x} &= \mathbf{y} + t \\
\mathbf{x}' &= \mathbf{y}' + t
\end{align*}
\]

If \(\mathbf{x}\) and \(\mathbf{x}'\) are related by \((R|\tau)\), in the first coordinate system, how is this relationship represented in the second coordinate system between \(\mathbf{y}\) and \(\mathbf{y}'\)?

\[
\begin{align*}
\mathbf{x}' &= (R|\tau)\mathbf{x} \\
\mathbf{x}' &= R\mathbf{x} + \tau \\
\mathbf{y}' + t &= R(\mathbf{y} + t) + \tau \\
\mathbf{y}' &= R\mathbf{y} + \tau + R\mathbf{t} - t \\
\mathbf{y}' &= (R|\tau + R\mathbf{t} - t)\mathbf{y} \\
\mathbf{y}' &= (E|-t)(R|\tau)(E|\mathbf{t})\mathbf{y}
\end{align*}
\]

Consequently, when the origin is moved from \(\mathbf{O}\) to \(\mathbf{O}+\mathbf{t}\), the coset \((R|\tau)\) in the first coordinate system \((\mathbf{O};\mathbf{a},\mathbf{b},\mathbf{c})\) becomes, in the second coordinate system \((\mathbf{O}+\mathbf{t};\mathbf{a},\mathbf{b},\mathbf{c})\) the coset \((E|-t)(R|\tau)(E|\mathbf{t}) = (R|\tau + R\mathbf{t} - t)\), i.e. the rotational part remains the same, and \(R\mathbf{t} - \mathbf{t}\) is added to the translational part.
Table 1.1

MAGNETIC SPACE GROUP SYMBOLS AND ELEMENTS

SUPERFAMILIES OF THREE DIMENSIONAL MAGNETIC SPACE GROUPS

HIERARCHAL MAGNETIC SPACE GROUP SUPERFAMILY INDEX

MAGNETIC SPACE GROUP INDEX

SUPERFAMILIES OF TWO-DIMENSIONAL MAGNETIC SPACE GROUPS

SUPERFAMILIES OF ONE-DIMENSIONAL MAGNETIC SPACE GROUPS
<table>
<thead>
<tr>
<th>System</th>
<th>Symbol</th>
<th>Symbol</th>
<th>Symbol</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triclinic</td>
<td>P1</td>
<td>P2&</td>
<td>P2</td>
<td>C2</td>
</tr>
<tr>
<td></td>
<td>P2/m</td>
<td>P21/m</td>
<td>C2/m</td>
<td>P2/c</td>
</tr>
<tr>
<td></td>
<td>P2/c</td>
<td>P21/c</td>
<td>C2/c</td>
<td></td>
</tr>
<tr>
<td>Orthorhombic</td>
<td>P222</td>
<td>P222_1</td>
<td>P222_2</td>
<td>P222_3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P222_1</td>
<td>P222_2</td>
<td>P222_3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P222_1</td>
<td>P222_2</td>
<td>P222_3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetragonal</td>
<td>P4</td>
<td>P4_1</td>
<td>P4_2</td>
<td>P4_3</td>
</tr>
<tr>
<td></td>
<td>P4_4</td>
<td>P4_m</td>
<td>P4_n</td>
<td>P4_2/m</td>
</tr>
<tr>
<td></td>
<td>P4_2/n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>P4mm</td>
<td>125</td>
<td>P4/nbm</td>
<td>150</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>100</td>
<td>P4bm</td>
<td>126</td>
<td>P4/nnc</td>
<td>151</td>
</tr>
<tr>
<td>101</td>
<td>P42.cm</td>
<td>127</td>
<td>P4/mbm</td>
<td>152</td>
</tr>
<tr>
<td>102</td>
<td>P42.nm</td>
<td>128</td>
<td>P4/mnc</td>
<td>153</td>
</tr>
<tr>
<td>103</td>
<td>P4cc</td>
<td>129</td>
<td>P4/nmm</td>
<td>154</td>
</tr>
<tr>
<td>104</td>
<td>P4nc</td>
<td>130</td>
<td>P4/ncc</td>
<td>155</td>
</tr>
<tr>
<td>105</td>
<td>P42.mc</td>
<td>131</td>
<td>P42/mmc</td>
<td>156</td>
</tr>
<tr>
<td>106</td>
<td>P42.bc</td>
<td>132</td>
<td>P42/mcm</td>
<td>157</td>
</tr>
<tr>
<td>107</td>
<td>I4mm</td>
<td>133</td>
<td>P42/nbc</td>
<td>158</td>
</tr>
<tr>
<td>108</td>
<td>I4cm</td>
<td>134</td>
<td>P42/nnm</td>
<td>159</td>
</tr>
<tr>
<td>109</td>
<td>I4,md</td>
<td>135</td>
<td>P42/mbc</td>
<td>160</td>
</tr>
<tr>
<td>110</td>
<td>I4,cd</td>
<td>136</td>
<td>P42/nmm</td>
<td>161</td>
</tr>
<tr>
<td>111</td>
<td>P&2m</td>
<td>137</td>
<td>P42/nmc</td>
<td>162</td>
</tr>
<tr>
<td>112</td>
<td>P&2c</td>
<td>138</td>
<td>P42/ncm</td>
<td>163</td>
</tr>
<tr>
<td>113</td>
<td>P&2,m</td>
<td>139</td>
<td>I4/mmm</td>
<td>164</td>
</tr>
<tr>
<td>114</td>
<td>P&2,c</td>
<td>140</td>
<td>I4/mcm</td>
<td>165</td>
</tr>
<tr>
<td>115</td>
<td>P&m2</td>
<td>141</td>
<td>I4,amd</td>
<td>166</td>
</tr>
<tr>
<td>116</td>
<td>P&c2</td>
<td>142</td>
<td>I4,acd</td>
<td>167</td>
</tr>
<tr>
<td>117</td>
<td>P&b2</td>
<td></td>
<td>TRIGONAL SYSTEM</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>P&n2</td>
<td></td>
<td>HEXAGONAL SYSTEM</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>I&m2</td>
<td>143</td>
<td>P3</td>
<td>168</td>
</tr>
<tr>
<td>120</td>
<td>I&c2</td>
<td>144</td>
<td>P3,1</td>
<td>169</td>
</tr>
<tr>
<td>121</td>
<td>I&2m</td>
<td>145</td>
<td>P3,2</td>
<td>170</td>
</tr>
<tr>
<td>122</td>
<td>I&2d</td>
<td>146</td>
<td>R3</td>
<td>171</td>
</tr>
<tr>
<td>123</td>
<td>P4/mmm</td>
<td>147</td>
<td>P&</td>
<td>172</td>
</tr>
<tr>
<td>124</td>
<td>P4/mcc</td>
<td>148</td>
<td>R&</td>
<td>173</td>
</tr>
<tr>
<td>200</td>
<td>Pm &</td>
<td>226</td>
<td>Fm & c</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>Pn &</td>
<td>227</td>
<td>Fd & m</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>Fm &</td>
<td>228</td>
<td>Fd & c</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Fd &</td>
<td>229</td>
<td>Im & m</td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>Im &</td>
<td>230</td>
<td>Ia & d</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Pa &</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>Ia &</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>P432</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>P4_32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>F432</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>F4,32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>I432</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>P4_32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>P4,32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>I4,32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>P & 3m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>F & 3m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>I & 3m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>P & 3n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>F & 3c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>I & 3d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>Pm & m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>Pn & n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>Pm & n</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>Pn & m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>Fm & m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRICLINIC SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>----</td>
<td>-----</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>1.1.1 P1</td>
<td>5.5.23</td>
<td>Cₚ 2</td>
<td>9.3.47</td>
<td>Cc'</td>
</tr>
<tr>
<td>1.2.2 P11'</td>
<td>5.6.24</td>
<td>Cₚ 2'</td>
<td>9.4.48</td>
<td>Cₚ c</td>
</tr>
<tr>
<td>1.3.3 P₂₁</td>
<td>6.1.25</td>
<td>Pm</td>
<td>10.1.49</td>
<td>P₂/m</td>
</tr>
<tr>
<td>2.1.4 P₂ &</td>
<td>6.3.27</td>
<td>Pm'</td>
<td>10.3.51</td>
<td>P₂'/m</td>
</tr>
<tr>
<td>2.2.5 P₂₁'</td>
<td>6.4.28</td>
<td>P₂ᵃ m</td>
<td>10.4.52</td>
<td>P₂/m'</td>
</tr>
<tr>
<td>2.3.6 P₂'</td>
<td>6.5.29</td>
<td>P₂ᵇ m</td>
<td>10.5.53</td>
<td>P₂'/m'</td>
</tr>
<tr>
<td>2.4.7 P₂₀₂ &</td>
<td>6.6.30</td>
<td>Pₖ m</td>
<td>10.6.54</td>
<td>P₂ᵃ 2/m</td>
</tr>
<tr>
<td></td>
<td>6.7.31</td>
<td>P₂ᶜ m'</td>
<td>10.7.55</td>
<td>P₂ᵇ 2/m</td>
</tr>
<tr>
<td>MONOCLINIC SYSTEM</td>
<td>7.1.32</td>
<td>Pₖ</td>
<td>10.8.56</td>
<td>Pₖ 2/m</td>
</tr>
<tr>
<td>3.1.8 P₂</td>
<td>7.2.33</td>
<td>Pₖ₁'</td>
<td>10.9.57</td>
<td>P₂ᵇ 2'/m</td>
</tr>
<tr>
<td>3.2.9 P₂₁'</td>
<td>7.3.34</td>
<td>Pₖ'</td>
<td>10.10.58</td>
<td>P₂ᶜ 2'/m</td>
</tr>
<tr>
<td>3.3.10 P₂'</td>
<td>7.4.35</td>
<td>P₂ᵃ c</td>
<td>11.1.59</td>
<td>P₂₁/m</td>
</tr>
<tr>
<td>3.4.11 P₂ᵃ 2</td>
<td>7.5.36</td>
<td>P₂ᵇ c</td>
<td>11.2.60</td>
<td>P₂₁/m1'</td>
</tr>
<tr>
<td>3.5.12 P₂ᵇ 2</td>
<td>7.6.37</td>
<td>Pₖ c</td>
<td>11.3.61</td>
<td>P₂₁'/m</td>
</tr>
<tr>
<td>3.6.13 Pₖ 2</td>
<td>8.1.38</td>
<td>Cₘ</td>
<td>11.4.62</td>
<td>P₂₁'/m'</td>
</tr>
<tr>
<td>3.7.14 P₂ᵇ 2'</td>
<td>8.2.39</td>
<td>Cₘ₁'</td>
<td>11.5.63</td>
<td>P₂₁'/m'</td>
</tr>
<tr>
<td>4.1.15 P₂₁</td>
<td>8.3.40</td>
<td>Cₘ</td>
<td>11.6.64</td>
<td>P₂ᵃ 2₁/m</td>
</tr>
<tr>
<td>4.2.16 P₂₁₁'</td>
<td>8.4.41</td>
<td>C₂ₙ m</td>
<td>11.7.65</td>
<td>P₂ᶜ 2₁'/m'</td>
</tr>
<tr>
<td>4.3.17 P₂₁'</td>
<td>8.5.42</td>
<td>Cₚ m</td>
<td>12.1.66</td>
<td>C₂/m</td>
</tr>
<tr>
<td>4.4.18 P₂₀₂₁</td>
<td>8.6.43</td>
<td>C₂ᶜ m'</td>
<td>12.2.67</td>
<td>C₂/m1'</td>
</tr>
<tr>
<td>5.1.19 C₂</td>
<td>8.7.44</td>
<td>Cₚ m'</td>
<td>12.3.68</td>
<td>C₂'/m</td>
</tr>
<tr>
<td>5.2.20 C₂₁'</td>
<td>9.1.45</td>
<td>Cc</td>
<td>12.4.69</td>
<td>C₂'/m'</td>
</tr>
<tr>
<td>5.3.21 C₂'</td>
<td>9.2.46</td>
<td>Cc₁'</td>
<td>12.5.70</td>
<td>C₂'/m'</td>
</tr>
<tr>
<td>5.4.22 C₂₀₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ORTHORHOMBIC SYSTEM

16.1.99 P222

20.2.123 C222,1'
22.4.143	Fc 222	25.13.167	Pa mm'2	28.7.191	P2c ma2
22.5.144	Fc 22'2'				
23.1.145	I222	26.1.168	Pmc2	28.1.193	P2b ma2
23.2.146	I2221'	26.2.169	Pmc2,1'	28.9.194	P2c m'a2
23.3.147	I2'2'2	26.3.170	Pm'c2',1	28.11.195	P2c ma2
23.4.148	Ip 222	26.4.171	Pm'c2',1	28.12.196	P2c m'a2
23.5.149	Ip 2'2'2	26.5.172	Pm'c2',1	28.13.197	P'A ma2
24.1.150	I2,2,2,1	26.6.174	P2b mc2,1	29.1.198	Pca2
24.2.151	I2,2,2,1,1'	26.7.175	Pc mc2,1	29.2.199	Pca2,1'
24.3.152	I2',2',2,1	26.8.176	P2a mc2',1	29.3.200	P'a2,1'
24.4.153	Ip 2',2',2,1	26.9.177	P2b m'c2',1	29.4.201	Pca2,1'
24.5.154	Ip 2',2',2,1	27.1.178	Pcc2	29.5.202	P'a2,1'
25.1.155	Pmm2	27.2.179	Pcc2,1	29.6.203	P2b c'a2,1
25.2.156	Pmm21'	27.3.180	Pc'c2'	29.7.204	P2b c'a2,1
25.3.157	Pm'm2'	27.4.181	Pc'c'2'	30.1.205	Pnc2
25.4.158	Pm'm2	27.5.182	P2a cc2	30.2.206	Pnc2,1
25.5.159	P2c mm2	27.6.183	Pc cc2	30.3.207	Pnc2'
26.6.160	P2a mm2	27.7.184	P2b c'c2'	30.4.208	Pnc2'
26.7.161	Pc mm2	28.1.185	Pma2	30.5.209	Pn'c2'
25.8.162	Pa mm2	28.2.186	Pma2,1'	30.6.210	P2a nc2
25.9.163	Pf mm2	28.3.187	Pm'a2'	30.7.211	P2a nc2,1'
25.10.164	P2c mm2	28.4.188	Pma'2'	31.1.212	Pmn2,1'
25.11.165	P2c m'm2'	28.5.189	Pma'2	31.2.213	Pmn2,1'
25.12.166	P2a m'm2	28.6.190	P2b ma2	31.3.214	Pmn2,1'
31.4.215 Pmn'2, 35.4.239 Cm'm'2 37.7.264 C_p c'c'2
31.5.216 Pm'n'2 35.5.240 C_{2c} mm2
31.6.217 P_2{\alpha} mn2, 35.6.241 C_p mm2 38.1.265 Amm2
31.7.218 P_2{\alpha} m'n2, 35.7.242 C_{1} mm2 38.2.266 Amm21'
32.1.219 Pba2 35.8.243 C_{2c} m'm'2 38.4.268 Amm'2'
32.2.220 Pba21' 35.9.244 C_{2c} m'm'2 38.5.269 Am'm'2
32.3.221 Pb'a2' 35.10.245 C_p m'm'2 38.6.270 A_{2a} mm2
32.4.222 Pb'a2 35.11.246 C_{1} m'm'2 38.7.271 A_{p} mm2
32.5.223 P_2{\alpha} ba2 35.12.247 C_{1} m'm'2 38.8.272 A_{1} mm2
32.6.224 P_2{\alpha} b'a2' 35.13.248 C_{1} m'm'2 38.9.273 A_{2a} mm'2'
32.7.225 P_2{\alpha} b'a2 36.1.249 Cm'c2 39.10.274 A_{p} m'm'2
33.1.226 Pna2 36.2.250 Cm'c2,1' 38.11.275 A_{p} mm'2'
33.2.227 Pna2,1' 36.3.251 Cm'c2,1' 38.12.276 A_{p} m'm'2
33.3.228 Pn'a2,1' 36.4.252 Cm'c2,1' 38.13.277 A_{1} m'm'2
33.4.229 Pn'a2,1' 36.5.253 Cm'c2,1' 39.1.278 Abm2
33.5.230 Pn'a2 36.6.254 C_p mc2,1 39.2.279 Abm21'
34.1.231 Pnn2 36.7.255 C_p m'c2,1' 39.3.280 Ab'm'2
34.2.232 Pnn21' 36.8.256 C_p m'c2,1' 39.4.281 Ab'm'2
34.3.233 Pn'n2' 37.1.258 Ccc2 39.5.282 Ab'm'2
34.4.234 Pn'n2 37.2.259 Ccc2,1' 39.6.283 A_{2a} bm2
34.5.235 P_{F} nn2 37.3.260 Cc'c2' 39.7.284 A_{p} bm2
35.1.236 Cmm2 37.4.261 Cc'c2' 39.8.285 A_{1} bm2
35.2.237 Cmm21' 37.5.262 C_{p} cc2 39.9.286 A_{2a} b'm'2
35.3.238 Cm'm2' 37.6.263 C_{p} c'c2' 39.10.287 A_{p} b'm'2
<table>
<thead>
<tr>
<th>p.q.r</th>
<th>h.k.m</th>
<th>i.j.k</th>
<th>j.k.l</th>
<th>k.l.m</th>
</tr>
</thead>
<tbody>
<tr>
<td>39.12.289</td>
<td>A_p b'm'2</td>
<td>42.5.313</td>
<td>F_c mm2</td>
<td>45.7.337</td>
</tr>
<tr>
<td>39.13.290</td>
<td>A_l b'm'2</td>
<td>42.6.314</td>
<td>F_A mm2</td>
<td>46.1.338</td>
</tr>
<tr>
<td>40.1.291</td>
<td>Ama2</td>
<td>42.7.315</td>
<td>F_c mm'2'</td>
<td>46.2.339</td>
</tr>
<tr>
<td>40.2.292</td>
<td>Ama21'</td>
<td>42.8.316</td>
<td>F_c m'm2</td>
<td>46.3.340</td>
</tr>
<tr>
<td>40.3.293</td>
<td>Am'a2'</td>
<td>42.9.317</td>
<td>F_A m'm2'</td>
<td>46.4.341</td>
</tr>
<tr>
<td>40.4.294</td>
<td>Ama2'</td>
<td>42.10.318</td>
<td>F_A mm'2'</td>
<td>46.5.342</td>
</tr>
<tr>
<td>40.5.295</td>
<td>Am'a2</td>
<td>42.11.319</td>
<td>F_A m'm2'</td>
<td>46.6.343</td>
</tr>
<tr>
<td>40.6.296</td>
<td>A_p ma2</td>
<td>43.1.320</td>
<td>Fdd2</td>
<td>46.7.344</td>
</tr>
<tr>
<td>40.7.297</td>
<td>A_p m'a2'</td>
<td>43.2.321</td>
<td>Fdd2'</td>
<td>46.8.345</td>
</tr>
<tr>
<td>40.8.298</td>
<td>A_p ma'2'</td>
<td>43.3.322</td>
<td>F'd'd2'</td>
<td>46.9.346</td>
</tr>
<tr>
<td>40.9.299</td>
<td>A_p m'a2'</td>
<td>43.4.323</td>
<td>F'd'd2</td>
<td>47.1.347</td>
</tr>
<tr>
<td>41.1.300</td>
<td>Aba2</td>
<td>44.1.324</td>
<td>Imm2</td>
<td>47.2.348</td>
</tr>
<tr>
<td>41.2.301</td>
<td>Aba21'</td>
<td>44.2.325</td>
<td>Imm21'</td>
<td>47.3.349</td>
</tr>
<tr>
<td>41.3.302</td>
<td>Ab'a2'</td>
<td>44.3.326</td>
<td>Im'm2'</td>
<td>47.4.350</td>
</tr>
<tr>
<td>41.4.303</td>
<td>Aba2'</td>
<td>44.4.327</td>
<td>Im'm2</td>
<td>47.5.351</td>
</tr>
<tr>
<td>41.5.304</td>
<td>Ab'a2</td>
<td>44.5.328</td>
<td>I_l mm2</td>
<td>47.6.352</td>
</tr>
<tr>
<td>41.6.305</td>
<td>A_p ba2</td>
<td>44.6.329</td>
<td>I_l mm'2</td>
<td>47.7.353</td>
</tr>
<tr>
<td>41.7.306</td>
<td>A_p b'a2'</td>
<td>44.7.330</td>
<td>I_l m'm2</td>
<td>47.8.354</td>
</tr>
<tr>
<td>41.8.307</td>
<td>A_p ba'2'</td>
<td>45.1.331</td>
<td>lba2</td>
<td>47.9.355</td>
</tr>
<tr>
<td>41.9.308</td>
<td>A_p b'a2'</td>
<td>45.2.332</td>
<td>lba21'</td>
<td>47.10.356</td>
</tr>
<tr>
<td>42.1.309</td>
<td>Fmm2</td>
<td>45.3.333</td>
<td>lba'2'</td>
<td>47.11.357</td>
</tr>
<tr>
<td>42.2.310</td>
<td>Fmm21'</td>
<td>45.4.334</td>
<td>lba'2</td>
<td>48.1.358</td>
</tr>
<tr>
<td>42.3.311</td>
<td>Fm'm2'</td>
<td>45.5.335</td>
<td>I_l ba2</td>
<td>48.2.359</td>
</tr>
<tr>
<td>42.4.312</td>
<td>Fm'm2</td>
<td>45.6.336</td>
<td>I_l ba'2</td>
<td>48.3.360</td>
</tr>
<tr>
<td>Pn'n'n</td>
<td>48.4.361</td>
<td>50.10.386</td>
<td>P_{2c}b'a'n</td>
<td>52.6.411</td>
</tr>
<tr>
<td>Pnn'n'</td>
<td>48.5.362</td>
<td>51.1.387</td>
<td>Pmma</td>
<td>52.7.412</td>
</tr>
<tr>
<td>P_{\bar{F}}nnn</td>
<td>48.6.363</td>
<td>51.2.388</td>
<td>Pmma'</td>
<td>52.8.413</td>
</tr>
<tr>
<td>Pccm</td>
<td>49.1.364</td>
<td>51.3.389</td>
<td>Pm'ma</td>
<td>52.9.414</td>
</tr>
<tr>
<td>Pccm1'</td>
<td>49.2.365</td>
<td>51.4.390</td>
<td>Pmm'a</td>
<td>53.1.415</td>
</tr>
<tr>
<td>Pc'cm</td>
<td>49.3.366</td>
<td>51.5.391</td>
<td>Pmma</td>
<td>53.2.416</td>
</tr>
<tr>
<td>Pccm'</td>
<td>49.4.367</td>
<td>51.6.392</td>
<td>Pm'm'a</td>
<td>53.3.417</td>
</tr>
<tr>
<td>Pc'c'm</td>
<td>49.5.368</td>
<td>51.7.393</td>
<td>Pmm'a'</td>
<td>53.4.418</td>
</tr>
<tr>
<td>Pc'cm'</td>
<td>49.6.369</td>
<td>51.8.394</td>
<td>Pm'ma</td>
<td>53.5.419</td>
</tr>
<tr>
<td>Pc'c'm'</td>
<td>49.7.370</td>
<td>51.9.395</td>
<td>Pm'm'a'</td>
<td>53.6.420</td>
</tr>
<tr>
<td>P_{2a}ccm</td>
<td>49.8.371</td>
<td>51.10.396</td>
<td>P_{2b}mma</td>
<td>53.7.421</td>
</tr>
<tr>
<td>P_{C}ccm</td>
<td>49.9.372</td>
<td>51.11.397</td>
<td>P_{2c}mma</td>
<td>53.8.422</td>
</tr>
<tr>
<td>P_{2a}ccm'</td>
<td>49.10.373</td>
<td>51.12.398</td>
<td>P_{A}mma</td>
<td>53.9.423</td>
</tr>
<tr>
<td>P_{2a}c'c'm</td>
<td>49.11.374</td>
<td>51.13.399</td>
<td>P_{2b}m'ma</td>
<td>53.10.424</td>
</tr>
<tr>
<td>P_{2a}c'c'm'</td>
<td>49.12.375</td>
<td>51.14.400</td>
<td>P_{2b}mma'</td>
<td>53.11.425</td>
</tr>
<tr>
<td>P_{C}ccm'</td>
<td>49.13.376</td>
<td>51.15.401</td>
<td>P_{2b}m'ma'</td>
<td>53.12.426</td>
</tr>
<tr>
<td>Pban</td>
<td>50.1.377</td>
<td>51.16.402</td>
<td>P_{2c}m'ma</td>
<td>53.13.427</td>
</tr>
<tr>
<td>Pban1'</td>
<td>50.2.378</td>
<td>51.17.403</td>
<td>P_{2c}mm'a</td>
<td>54.1.428</td>
</tr>
<tr>
<td>Pb'an</td>
<td>50.3.379</td>
<td>51.18.404</td>
<td>P_{2c}m'm'a</td>
<td>54.2.429</td>
</tr>
<tr>
<td>Pban'</td>
<td>50.4.380</td>
<td>51.19.405</td>
<td>P_{A}m'ma</td>
<td>54.3.430</td>
</tr>
<tr>
<td>Pb'a'n</td>
<td>50.5.381</td>
<td>52.1.406</td>
<td>Pnna</td>
<td>54.4.431</td>
</tr>
<tr>
<td>Pb'an'</td>
<td>50.6.382</td>
<td>52.2.407</td>
<td>Pnna1'</td>
<td>54.5.432</td>
</tr>
<tr>
<td>Pb'a'n'</td>
<td>50.7.383</td>
<td>52.3.408</td>
<td>Pn'na</td>
<td>54.6.433</td>
</tr>
<tr>
<td>P_{2c}ban</td>
<td>50.8.384</td>
<td>52.4.409</td>
<td>Pnn'a</td>
<td>54.7.434</td>
</tr>
<tr>
<td>P_{2c}b'an</td>
<td>50.9.385</td>
<td>52.5.410</td>
<td>Pnna'</td>
<td>54.8.435</td>
</tr>
<tr>
<td>Number</td>
<td>Symbol</td>
<td>Number</td>
<td>Symbol</td>
<td>Number</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>54.9.436</td>
<td>Pc'c'a'</td>
<td>57.3.460</td>
<td>Pb'cm</td>
<td>59.8.485</td>
</tr>
<tr>
<td>54.10.437</td>
<td>P_{2c}cca</td>
<td>57.4.461</td>
<td>Pbc'm</td>
<td>59.9.486</td>
</tr>
<tr>
<td>54.11.438</td>
<td>P_{2c}c'ca</td>
<td>57.5.462</td>
<td>Pbcm'</td>
<td>59.10.487</td>
</tr>
<tr>
<td>54.12.439</td>
<td>P_{2c}cca'</td>
<td>57.6.463</td>
<td>Pb'c'm</td>
<td>60.1.488</td>
</tr>
<tr>
<td>54.13.440</td>
<td>P_{2c}c'ca'</td>
<td>57.7.464</td>
<td>Pbc'm'</td>
<td>60.2.489</td>
</tr>
<tr>
<td>55.1.441</td>
<td>Pb'am</td>
<td>57.9.466</td>
<td>Pb'c'm'</td>
<td>60.3.490</td>
</tr>
<tr>
<td>55.2.442</td>
<td>Pb'am1'</td>
<td>57.10.467</td>
<td>P_{2a}bcm</td>
<td>60.4.491</td>
</tr>
<tr>
<td>55.3.443</td>
<td>Pb'am</td>
<td>57.11.468</td>
<td>P_{2a}bc'm</td>
<td>60.5.492</td>
</tr>
<tr>
<td>55.4.444</td>
<td>Pb'am'</td>
<td>57.12.469</td>
<td>P_{2a}bcm'</td>
<td>60.6.493</td>
</tr>
<tr>
<td>55.5.445</td>
<td>Pb'a'm</td>
<td>57.13.470</td>
<td>P_{2a}bc'm'</td>
<td>60.7.494</td>
</tr>
<tr>
<td>55.6.446</td>
<td>Pb'am'</td>
<td>58.1.471</td>
<td>Pnnm</td>
<td>60.8.495</td>
</tr>
<tr>
<td>55.7.447</td>
<td>Pb'a'm'</td>
<td>58.2.472</td>
<td>Pnnm1'</td>
<td>60.9.496</td>
</tr>
<tr>
<td>55.8.448</td>
<td>P_{2c}bam</td>
<td>58.3.473</td>
<td>Pn'n'm</td>
<td>61.1.497</td>
</tr>
<tr>
<td>55.9.449</td>
<td>P_{2c}b'am</td>
<td>58.4.474</td>
<td>Pnnm'</td>
<td>61.2.498</td>
</tr>
<tr>
<td>55.10.450</td>
<td>P_{2c}b'a'm</td>
<td>58.5.475</td>
<td>Pn'n'm'</td>
<td>61.3.499</td>
</tr>
<tr>
<td>56.1.451</td>
<td>Pccn</td>
<td>58.6.476</td>
<td>Pnn'm'</td>
<td>61.4.500</td>
</tr>
<tr>
<td>56.2.452</td>
<td>Pccn1'</td>
<td>58.7.477</td>
<td>Pn'n'm'</td>
<td>61.5.501</td>
</tr>
<tr>
<td>56.3.453</td>
<td>Pc'cn</td>
<td>59.1.478</td>
<td>Pmmmn</td>
<td>62.1.502</td>
</tr>
<tr>
<td>56.4.454</td>
<td>Pccn'</td>
<td>59.2.479</td>
<td>Pmmnn1'</td>
<td>62.2.503</td>
</tr>
<tr>
<td>56.5.455</td>
<td>Pc'c'n</td>
<td>59.3.480</td>
<td>Pm'mn</td>
<td>62.3.504</td>
</tr>
<tr>
<td>56.6.456</td>
<td>Pc'cn'</td>
<td>59.4.481</td>
<td>Pmmn'</td>
<td>62.4.505</td>
</tr>
<tr>
<td>56.7.457</td>
<td>Pc'c'n'</td>
<td>59.5.482</td>
<td>Pm'm'n</td>
<td>62.5.506</td>
</tr>
<tr>
<td>57.1.458</td>
<td>Pbcm</td>
<td>59.6.483</td>
<td>Pmm'n'</td>
<td>62.6.507</td>
</tr>
<tr>
<td>57.2.459</td>
<td>Pbcm1'</td>
<td>59.7.484</td>
<td>Pm'm'n'</td>
<td>62.7.508</td>
</tr>
<tr>
<td>67.8.584</td>
<td>C2c mma</td>
<td>69.5.609</td>
<td>Fm'm'm'</td>
<td>72.4.633</td>
</tr>
<tr>
<td>67.9.585</td>
<td>C_p mma</td>
<td>69.6.610</td>
<td>Fc mmm</td>
<td>72.5.634</td>
</tr>
<tr>
<td>67.10.586</td>
<td>C_i mma</td>
<td>69.7.611</td>
<td>Fc m'm'm</td>
<td>72.6.635</td>
</tr>
<tr>
<td>67.11.587</td>
<td>C2c m'm'a</td>
<td>69.8.612</td>
<td>Fc mmm'</td>
<td>72.7.636</td>
</tr>
<tr>
<td>67.12.588</td>
<td>C2c m'm'a</td>
<td>69.9.613</td>
<td>Fc m'm'm</td>
<td>72.8.637</td>
</tr>
<tr>
<td>67.13.589</td>
<td>C_p m'm'a</td>
<td>69.10.614</td>
<td>Fc mm'm'</td>
<td>72.9.638</td>
</tr>
<tr>
<td>67.14.590</td>
<td>C_p m'm'a</td>
<td>69.11.615</td>
<td>Fc m'm'm'</td>
<td>72.10.639</td>
</tr>
<tr>
<td>67.15.591</td>
<td>C_p m'm'a</td>
<td>70.1.616</td>
<td>Fddd</td>
<td>72.11.640</td>
</tr>
<tr>
<td>67.16.592</td>
<td>C_i m'm'a</td>
<td>70.2.617</td>
<td>Fddd1'</td>
<td>72.12.641</td>
</tr>
<tr>
<td>67.17.593</td>
<td>C_i m'm'a</td>
<td>70.3.618</td>
<td>Fd'dd</td>
<td>72.13.642</td>
</tr>
<tr>
<td>68.1.594</td>
<td>Ccca</td>
<td>70.4.619</td>
<td>Fd'd'd</td>
<td>73.1.643</td>
</tr>
<tr>
<td>68.2.595</td>
<td>Ccca1'</td>
<td>70.5.620</td>
<td>Fd'd'd'</td>
<td>73.2.644</td>
</tr>
<tr>
<td>68.3.596</td>
<td>Cc'ca</td>
<td>71.1.621</td>
<td>Immm</td>
<td>73.3.645</td>
</tr>
<tr>
<td>68.4.597</td>
<td>Ccca'</td>
<td>71.2.622</td>
<td>Immm1'</td>
<td>73.4.646</td>
</tr>
<tr>
<td>68.5.598</td>
<td>Cc'c'a</td>
<td>71.3.623</td>
<td>Im'mm</td>
<td>73.5.647</td>
</tr>
<tr>
<td>68.6.599</td>
<td>Ccc'ca</td>
<td>71.4.624</td>
<td>Im'm'm</td>
<td>73.6.648</td>
</tr>
<tr>
<td>68.7.600</td>
<td>Cc'c'a</td>
<td>71.5.625</td>
<td>Im'm'm'</td>
<td>73.7.649</td>
</tr>
<tr>
<td>68.8.601</td>
<td>C_p cca</td>
<td>71.6.626</td>
<td>lp mmm</td>
<td>74.1.650</td>
</tr>
<tr>
<td>68.9.602</td>
<td>C_p c'ca</td>
<td>71.7.627</td>
<td>lp m'm'm</td>
<td>74.2.651</td>
</tr>
<tr>
<td>68.10.603</td>
<td>C_p cca'</td>
<td>71.8.628</td>
<td>lp m'm'm</td>
<td>74.3.652</td>
</tr>
<tr>
<td>68.11.604</td>
<td>C_p cc'a</td>
<td>71.9.629</td>
<td>lp m'm'm'</td>
<td>74.4.653</td>
</tr>
<tr>
<td>69.1.605</td>
<td>Fmmm</td>
<td>72.1.630</td>
<td>Ibam</td>
<td>74.5.654</td>
</tr>
<tr>
<td>69.2.606</td>
<td>Fmmm1'</td>
<td>72.2.631</td>
<td>Ibam1'</td>
<td>74.6.655</td>
</tr>
<tr>
<td>69.3.607</td>
<td>Fm'mm</td>
<td>72.3.632</td>
<td>Ibam</td>
<td>74.7.656</td>
</tr>
<tr>
<td>69.4.608</td>
<td>Fm'm'm</td>
<td>72.3.632</td>
<td>Ibam</td>
<td>74.8.657</td>
</tr>
<tr>
<td>Code</td>
<td>Image</td>
<td>Description</td>
<td></td>
<td>Code</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------------</td>
<td></td>
<td>Code</td>
</tr>
<tr>
<td>74.9.658</td>
<td>I_p m'm'a</td>
<td>78.2.680</td>
<td>P4_1'</td>
<td></td>
</tr>
<tr>
<td>74.10.659</td>
<td>I_p mm'a'</td>
<td>78.3.681</td>
<td>P4_3'</td>
<td></td>
</tr>
<tr>
<td>74.11.660</td>
<td>I_p m'ma'</td>
<td>78.4.682</td>
<td>P_p 4_3</td>
<td></td>
</tr>
<tr>
<td>TETRAGONAL SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.1.661</td>
<td>P4</td>
<td>79.2.684</td>
<td>I41'</td>
<td></td>
</tr>
<tr>
<td>75.2.662</td>
<td>P41'</td>
<td>79.3.685</td>
<td>I4'</td>
<td></td>
</tr>
<tr>
<td>75.3.663</td>
<td>P4'</td>
<td>79.4.686</td>
<td>I_p 4</td>
<td></td>
</tr>
<tr>
<td>75.4.664</td>
<td>P_2c 4</td>
<td>79.5.687</td>
<td>I_p 4'</td>
<td></td>
</tr>
<tr>
<td>75.5.665</td>
<td>P_p 4</td>
<td>80.1.688</td>
<td>I4_1</td>
<td></td>
</tr>
<tr>
<td>75.6.666</td>
<td>P_1 4</td>
<td>80.2.689</td>
<td>I4_1'</td>
<td></td>
</tr>
<tr>
<td>75.7.667</td>
<td>P_2c 4'</td>
<td>80.3.690</td>
<td>I4_1'</td>
<td></td>
</tr>
<tr>
<td>76.1.668</td>
<td>P4_1</td>
<td>80.4.691</td>
<td>I_p 4_1</td>
<td></td>
</tr>
<tr>
<td>76.2.669</td>
<td>P4_1'</td>
<td>80.5.692</td>
<td>I_p 4_1'</td>
<td></td>
</tr>
<tr>
<td>76.3.670</td>
<td>P4_1'</td>
<td>81.1.693</td>
<td>P_4 &</td>
<td></td>
</tr>
<tr>
<td>76.4.671</td>
<td>P_p 4_1</td>
<td>81.2.694</td>
<td>P_4 &1'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>81.3.695</td>
<td>P_4 &</td>
<td></td>
</tr>
<tr>
<td>77.1.672</td>
<td>P4_2</td>
<td>81.4.696</td>
<td>P_2c &</td>
<td></td>
</tr>
<tr>
<td>77.2.673</td>
<td>P4_2'</td>
<td>81.5.697</td>
<td>P_p &</td>
<td></td>
</tr>
<tr>
<td>77.3.674</td>
<td>P4_2</td>
<td>81.6.698</td>
<td>P_1 &</td>
<td></td>
</tr>
<tr>
<td>77.4.675</td>
<td>P_2c 4_2</td>
<td>82.1.699</td>
<td>I &</td>
<td></td>
</tr>
<tr>
<td>77.5.676</td>
<td>P_p 4_2</td>
<td>82.2.700</td>
<td>I &1'</td>
<td></td>
</tr>
<tr>
<td>77.6.677</td>
<td>P_1 4_2</td>
<td>82.3.701</td>
<td>I &</td>
<td></td>
</tr>
<tr>
<td>77.7.678</td>
<td>P_2c 4_2'</td>
<td>82.4.702</td>
<td>I_p &</td>
<td></td>
</tr>
<tr>
<td>78.1.679</td>
<td>P4_3</td>
<td>83.1.703</td>
<td>P4/m</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Structure</td>
<td>Cell Parameters</td>
<td>Formula</td>
<td>Volume</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>----------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>86.2.728</td>
<td>P4$_2$/n1'</td>
<td>89.6.752</td>
<td>P$_{2c}$422</td>
<td>93.1.776</td>
</tr>
<tr>
<td>86.3.729</td>
<td>P4$_2'$/n</td>
<td>89.7.753</td>
<td>P$_p$422</td>
<td>93.2.777</td>
</tr>
<tr>
<td>86.4.730</td>
<td>P4$_2$/n'</td>
<td>89.8.754</td>
<td>P$_1$422</td>
<td>93.3.778</td>
</tr>
<tr>
<td>86.5.731</td>
<td>P4$_2$/n'</td>
<td>89.9.755</td>
<td>P$_{2c}$4'22'</td>
<td>93.4.779</td>
</tr>
<tr>
<td>86.6.732</td>
<td>P$_1$4$_2$/n</td>
<td>89.10.756</td>
<td>P$_p$4'22'</td>
<td>93.5.780</td>
</tr>
<tr>
<td>87.1.733</td>
<td>I4/m</td>
<td>90.1.757</td>
<td>P42,2</td>
<td>93.7.782</td>
</tr>
<tr>
<td>87.2.734</td>
<td>I4/m1'</td>
<td>90.2.758</td>
<td>P42,21'</td>
<td>93.8.783</td>
</tr>
<tr>
<td>87.3.735</td>
<td>I4'/m</td>
<td>90.3.759</td>
<td>P4'2,2'</td>
<td>93.9.784</td>
</tr>
<tr>
<td>87.4.736</td>
<td>I4/m'</td>
<td>90.4.760</td>
<td>P42,2'</td>
<td>93.10.785</td>
</tr>
<tr>
<td>87.5.737</td>
<td>I4'/m'</td>
<td>90.5.761</td>
<td>P4'2,1'2</td>
<td>94.1.786</td>
</tr>
<tr>
<td>87.6.738</td>
<td>I$_p$4/m</td>
<td>90.6.762</td>
<td>P$_{2c}$42,2</td>
<td>94.2.787</td>
</tr>
<tr>
<td>87.7.739</td>
<td>I$_p$4'/m</td>
<td>90.7.763</td>
<td>P$_{2c}$4'2,1'2</td>
<td>94.3.788</td>
</tr>
<tr>
<td>87.8.740</td>
<td>I$_p$4/m'</td>
<td>90.8.764</td>
<td>P42,22</td>
<td>94.4.789</td>
</tr>
<tr>
<td>87.9.741</td>
<td>I$_p$4'/m'</td>
<td>91.2.765</td>
<td>P4,221'</td>
<td>94.5.790</td>
</tr>
<tr>
<td>88.1.742</td>
<td>I4$_1$/a</td>
<td>91.3.766</td>
<td>P$_i$4,'22'</td>
<td>94.6.791</td>
</tr>
<tr>
<td>88.2.743</td>
<td>I4$_1$/a1'</td>
<td>91.4.767</td>
<td>P4,2'2'</td>
<td>94.7.792</td>
</tr>
<tr>
<td>88.3.744</td>
<td>I4$_1$,'a</td>
<td>91.5.768</td>
<td>P4,$4'_1$2'2</td>
<td>95.1.793</td>
</tr>
<tr>
<td>88.4.745</td>
<td>I4$_1$,'a</td>
<td>91.6.769</td>
<td>P$_p$4,$4'_1$22'</td>
<td>95.2.794</td>
</tr>
<tr>
<td>88.5.746</td>
<td>I4$_1$,'a</td>
<td>91.7.770</td>
<td>P$_p$4,$4'_1$22'</td>
<td>95.3.795</td>
</tr>
<tr>
<td>89.1.747</td>
<td>P422</td>
<td>92.1.771</td>
<td>P4$_2$2,2</td>
<td>95.4.796</td>
</tr>
<tr>
<td>89.2.748</td>
<td>P4221'</td>
<td>92.2.772</td>
<td>P4,2,21'</td>
<td>95.5.797</td>
</tr>
<tr>
<td>89.3.749</td>
<td>P4'22'</td>
<td>92.3.773</td>
<td>P4,$4'_1$2,2'</td>
<td>95.6.798</td>
</tr>
<tr>
<td>89.4.750</td>
<td>P42'2'</td>
<td>92.4.774</td>
<td>P4,2,'2'</td>
<td>95.7.799</td>
</tr>
<tr>
<td>89.5.751</td>
<td>P4'2'2</td>
<td>92.5.775</td>
<td>P$_p$4,$4'_1$2,'2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>96.1.800</td>
<td>(P_{4}322)</td>
<td>99.2.824</td>
<td>(P_{4}mm1')</td>
<td>101.5.849</td>
</tr>
<tr>
<td>96.2.801</td>
<td>(P_{4}321'2)</td>
<td>99.3.825</td>
<td>(P4'm'm)</td>
<td>101.6.850</td>
</tr>
<tr>
<td>96.3.802</td>
<td>(P_{4}3'2'2)</td>
<td>99.4.826</td>
<td>(P_{4}mm')</td>
<td>101.7.851</td>
</tr>
<tr>
<td>96.4.803</td>
<td>(P_{4}3'2_1'2)</td>
<td>99.5.827</td>
<td>(P_{4}m'm')</td>
<td>102.1.852</td>
</tr>
<tr>
<td>96.5.804</td>
<td>(P_{4}3'2'1'2)</td>
<td>99.6.828</td>
<td>(P_{2c}4mm)</td>
<td>102.2.853</td>
</tr>
<tr>
<td>97.1.805</td>
<td>(I422)</td>
<td>99.7.829</td>
<td>(P_{p4}2mm)</td>
<td>102.3.854</td>
</tr>
<tr>
<td>97.2.806</td>
<td>(I422)</td>
<td>99.8.830</td>
<td>(P_{4}4mm)</td>
<td>102.4.855</td>
</tr>
<tr>
<td>97.3.807</td>
<td>(I4'22)</td>
<td>99.9.831</td>
<td>(P_{2c}4'm'm)</td>
<td>102.5.856</td>
</tr>
<tr>
<td>97.4.808</td>
<td>(I42'2)</td>
<td>99.10.832</td>
<td>(P_{2c}4'm'm')</td>
<td>102.6.857</td>
</tr>
<tr>
<td>97.5.809</td>
<td>(I4'2'2)</td>
<td>99.11.833</td>
<td>(P_{2c}4'm'm')</td>
<td>102.7.858</td>
</tr>
<tr>
<td>97.6.810</td>
<td>(I_{p}422)</td>
<td>99.12.834</td>
<td>(P_{p4}2mm')</td>
<td>103.1.859</td>
</tr>
<tr>
<td>97.7.811</td>
<td>(I_{p}4'2'2)</td>
<td>99.13.835</td>
<td>(P_{4}4'm'm')</td>
<td>103.2.860</td>
</tr>
<tr>
<td>97.8.812</td>
<td>(I_{p}42'2)</td>
<td>100.1.836</td>
<td>(P_{4}bm)</td>
<td>103.3.861</td>
</tr>
<tr>
<td>97.9.813</td>
<td>(I_{p}4'2'2)</td>
<td>100.2.837</td>
<td>(P_{4}bm1')</td>
<td>103.4.862</td>
</tr>
<tr>
<td>98.1.814</td>
<td>(I_{4},22)</td>
<td>100.3.838</td>
<td>(P_{4}4'b'm)</td>
<td>103.5.863</td>
</tr>
<tr>
<td>98.2.815</td>
<td>(I_{4},221')</td>
<td>100.4.839</td>
<td>(P_{4}4'bm')</td>
<td>103.6.864</td>
</tr>
<tr>
<td>98.3.816</td>
<td>(I_{4},'22')</td>
<td>100.5.840</td>
<td>(P_{4}b'm')</td>
<td>103.7.865</td>
</tr>
<tr>
<td>98.4.817</td>
<td>(I_{4},'2'2)</td>
<td>100.6.841</td>
<td>(P_{2c}4bm)</td>
<td>104.1.866</td>
</tr>
<tr>
<td>98.5.818</td>
<td>(I_{4},'2'2)</td>
<td>100.7.842</td>
<td>(P_{2c}4'b'm)</td>
<td>104.2.867</td>
</tr>
<tr>
<td>98.6.819</td>
<td>(I_{p}4,22)</td>
<td>100.8.843</td>
<td>(P_{2c}4'bm')</td>
<td>104.3.868</td>
</tr>
<tr>
<td>98.7.820</td>
<td>(I_{p}4,'2'2)</td>
<td>100.9.844</td>
<td>(P_{2c}4b'm')</td>
<td>104.4.869</td>
</tr>
<tr>
<td>98.8.821</td>
<td>(I_{p}4,'2'2')</td>
<td>101.1.845</td>
<td>(P_{4}2cm)</td>
<td>104.5.870</td>
</tr>
<tr>
<td>98.9.822</td>
<td>(I_{p}4,'1'2'2)</td>
<td>101.2.846</td>
<td>(P_{4}2cm1')</td>
<td>105.1.871</td>
</tr>
<tr>
<td>99.1.823</td>
<td>(P_{4}mm)</td>
<td>101.3.847</td>
<td>(P_{4}2c'm')</td>
<td>105.2.872</td>
</tr>
<tr>
<td>Page</td>
<td>Symbol</td>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>105.3.873</td>
<td>P42m'c</td>
<td>108.6.897</td>
<td>l_p, 4cm</td>
<td>111.11.921</td>
</tr>
<tr>
<td>105.4.874</td>
<td>P4'mc'</td>
<td>108.7.898</td>
<td>l_p, 4c'm</td>
<td>112.1.922</td>
</tr>
<tr>
<td>105.5.875</td>
<td>P42m'c'</td>
<td>108.8.899</td>
<td>l_p, 4'cm'</td>
<td>112.2.923</td>
</tr>
<tr>
<td>105.6.876</td>
<td>P2 P4 mc</td>
<td>108.9.900</td>
<td>l_p, 4c'm'</td>
<td>112.3.924</td>
</tr>
<tr>
<td>105.7.877</td>
<td>P P 42 mc'</td>
<td></td>
<td></td>
<td>109.1.901</td>
</tr>
<tr>
<td>106.1.878</td>
<td>P42 bc</td>
<td>109.2.902</td>
<td>l4, md1'</td>
<td>112.4.925</td>
</tr>
<tr>
<td>106.2.879</td>
<td>P42 bc1'</td>
<td>109.3.903</td>
<td>l4', m'd</td>
<td>112.5.926</td>
</tr>
<tr>
<td>106.3.880</td>
<td>P42 b'c</td>
<td>109.4.904</td>
<td>l4', md'</td>
<td>112.6.927</td>
</tr>
<tr>
<td>106.4.881</td>
<td>P42 b'c'</td>
<td>109.5.905</td>
<td>l4', m'd'</td>
<td>113.1.929</td>
</tr>
<tr>
<td>106.5.882</td>
<td>P42 b'c'</td>
<td></td>
<td></td>
<td>110.1.906</td>
</tr>
<tr>
<td>107.1.883</td>
<td>l4mm</td>
<td>110.2.907</td>
<td>l4, cd1'</td>
<td>113.2.930</td>
</tr>
<tr>
<td>107.2.884</td>
<td>l4mm1'</td>
<td>110.3.908</td>
<td>l4', c'd</td>
<td>113.3.931</td>
</tr>
<tr>
<td>107.3.885</td>
<td>l4'm'm</td>
<td>110.4.909</td>
<td>l4', cd'</td>
<td>113.4.932</td>
</tr>
<tr>
<td>107.4.886</td>
<td>l4'm'm'</td>
<td>110.5.910</td>
<td>l4', c'd'</td>
<td>113.5.933</td>
</tr>
<tr>
<td>107.5.887</td>
<td>l4m'm'</td>
<td></td>
<td></td>
<td>111.1.911</td>
</tr>
<tr>
<td>107.6.888</td>
<td>l_p 4mm</td>
<td>111.2.912</td>
<td>P & 2m1'</td>
<td>114.1.936</td>
</tr>
<tr>
<td>107.7.889</td>
<td>l_p 4'm'm</td>
<td>111.3.913</td>
<td>P & 2'm</td>
<td>114.2.937</td>
</tr>
<tr>
<td>107.8.890</td>
<td>l_p 4'm'm'</td>
<td>111.4.914</td>
<td>P & 2'm'</td>
<td>114.3.938</td>
</tr>
<tr>
<td>107.9.891</td>
<td>l_p 4'm'm'</td>
<td>111.5.915</td>
<td>P & 2'm'</td>
<td>114.4.939</td>
</tr>
<tr>
<td>108.1.892</td>
<td>l4cm</td>
<td>111.6.916</td>
<td>P2c & 2m</td>
<td>115.1.941</td>
</tr>
<tr>
<td>108.2.893</td>
<td>l4cm1'</td>
<td>111.7.917</td>
<td>P P & 2m</td>
<td>115.2.942</td>
</tr>
<tr>
<td>108.3.894</td>
<td>l4'c'm</td>
<td>111.8.918</td>
<td>P & 2m</td>
<td>115.3.943</td>
</tr>
<tr>
<td>108.4.895</td>
<td>l4'c'm'</td>
<td>111.9.919</td>
<td>P2c & 2'm'</td>
<td>115.4.944</td>
</tr>
<tr>
<td>108.5.896</td>
<td>l4c'm</td>
<td>111.10.920</td>
<td>P & 2'm'</td>
<td>115.5.945</td>
</tr>
<tr>
<td>Page</td>
<td>Name</td>
<td>Number</td>
<td>Name</td>
<td>Number</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>115.5.945</td>
<td>P6m2'</td>
<td>118.5.969</td>
<td>P6m2'</td>
<td>121.9.993</td>
</tr>
<tr>
<td>115.6.946</td>
<td>P2c</td>
<td>118.6.970</td>
<td>P2n2</td>
<td>122.1.994</td>
</tr>
<tr>
<td>115.7.947</td>
<td>P2</td>
<td>119.1.971</td>
<td>P6m2</td>
<td>122.2.995</td>
</tr>
<tr>
<td>115.8.948</td>
<td>P1</td>
<td>119.2.972</td>
<td>P6m2'</td>
<td>122.3.996</td>
</tr>
<tr>
<td>115.9.949</td>
<td>P2c</td>
<td>119.3.973</td>
<td>P6m2'</td>
<td>122.4.997</td>
</tr>
<tr>
<td>115.10.950</td>
<td>P2</td>
<td>119.4.974</td>
<td>P6m2'</td>
<td>122.5.998</td>
</tr>
<tr>
<td>116.1.951</td>
<td>P4c2</td>
<td>119.5.975</td>
<td>P6m2'</td>
<td>123.1.999</td>
</tr>
<tr>
<td>116.2.952</td>
<td>P4c1</td>
<td>119.6.976</td>
<td>P6m2</td>
<td>123.2.1000</td>
</tr>
<tr>
<td>116.3.953</td>
<td>P4c2</td>
<td>119.7.977</td>
<td>P6m2</td>
<td>123.3.1001</td>
</tr>
<tr>
<td>116.4.954</td>
<td>P4c2'</td>
<td>120.1.978</td>
<td>P6c2</td>
<td>123.4.1002</td>
</tr>
<tr>
<td>116.5.955</td>
<td>P4c2'</td>
<td>120.2.979</td>
<td>P6c2'</td>
<td>123.5.1003</td>
</tr>
<tr>
<td>116.6.956</td>
<td>P2c</td>
<td>120.3.980</td>
<td>P6c2'</td>
<td>123.6.1004</td>
</tr>
<tr>
<td>116.7.957</td>
<td>P2c</td>
<td>120.4.981</td>
<td>P6c2'</td>
<td>123.7.1005</td>
</tr>
<tr>
<td>117.1.958</td>
<td>P4b2</td>
<td>120.5.982</td>
<td>P6c2'</td>
<td>123.8.1006</td>
</tr>
<tr>
<td>117.2.959</td>
<td>P4b1</td>
<td>120.6.983</td>
<td>P6c2</td>
<td>123.9.1007</td>
</tr>
<tr>
<td>117.3.960</td>
<td>P4b2</td>
<td>120.7.984</td>
<td>P6c2</td>
<td>123.10.1008</td>
</tr>
<tr>
<td>117.4.961</td>
<td>P4b2</td>
<td>121.1.985</td>
<td>P62m</td>
<td>123.11.1009</td>
</tr>
<tr>
<td>117.5.962</td>
<td>P4b2</td>
<td>121.2.986</td>
<td>P62m1'</td>
<td>123.12.1010</td>
</tr>
<tr>
<td>117.6.963</td>
<td>P2c</td>
<td>121.3.987</td>
<td>P62m</td>
<td>123.13.1011</td>
</tr>
<tr>
<td>117.7.964</td>
<td>P2c</td>
<td>121.4.988</td>
<td>P62m</td>
<td>123.14.1012</td>
</tr>
<tr>
<td>118.1.965</td>
<td>P2n2</td>
<td>121.5.989</td>
<td>P62m'</td>
<td>123.15.1013</td>
</tr>
<tr>
<td>118.2.966</td>
<td>P2n1</td>
<td>121.6.990</td>
<td>P62m</td>
<td>123.16.1014</td>
</tr>
<tr>
<td>118.3.967</td>
<td>P2n2</td>
<td>121.7.991</td>
<td>P62m</td>
<td>123.17.1015</td>
</tr>
<tr>
<td>118.4.968</td>
<td>P2n2</td>
<td>121.8.992</td>
<td>P62m</td>
<td>123.18.1016</td>
</tr>
<tr>
<td>118.5.969</td>
<td>P2n2</td>
<td>121.9.993</td>
<td>P62m</td>
<td>123.19.1017</td>
</tr>
<tr>
<td>124.1.1018</td>
<td>P4/mcc</td>
<td>125.12.1042</td>
<td>P_{2c} 4'/nbm'</td>
<td>128.1.1066</td>
</tr>
<tr>
<td>124.2.1019</td>
<td>P4/mcc1'</td>
<td>125.13.1043</td>
<td>P_{2c} 4/nb'm'</td>
<td>128.2.1067</td>
</tr>
<tr>
<td>124.3.1020</td>
<td>P4/m'cc</td>
<td>126.1.1044</td>
<td>P4/mnc</td>
<td>128.3.1068</td>
</tr>
<tr>
<td>124.4.1021</td>
<td>P4'/mc'c</td>
<td>126.2.1045</td>
<td>P4/nnc1'</td>
<td>128.4.1069</td>
</tr>
<tr>
<td>124.5.1022</td>
<td>P4'/mcc'</td>
<td>126.3.1046</td>
<td>P4/n'nc</td>
<td>128.5.1070</td>
</tr>
<tr>
<td>124.6.1023</td>
<td>P4'/m'c'c</td>
<td>126.4.1047</td>
<td>P4'/nn'c</td>
<td>128.6.1071</td>
</tr>
<tr>
<td>124.7.1024</td>
<td>P4/mc'c'</td>
<td>126.5.1048</td>
<td>P4'/nnc'</td>
<td>128.7.1072</td>
</tr>
<tr>
<td>124.8.1025</td>
<td>P4'/m'cc'</td>
<td>126.6.1049</td>
<td>P4'/n'n'c</td>
<td>128.8.1073</td>
</tr>
<tr>
<td>124.9.1026</td>
<td>P4/m'c'c'</td>
<td>126.7.1050</td>
<td>P4/nn'c</td>
<td>128.9.1074</td>
</tr>
<tr>
<td>124.10.1027</td>
<td>P_p 4/mcc</td>
<td>126.8.1051</td>
<td>P4'n'nc'</td>
<td>129.1.1075</td>
</tr>
<tr>
<td>124.11.1028</td>
<td>P_p 4/m'cc</td>
<td>126.9.1052</td>
<td>P4/n'n'c</td>
<td>129.2.1076</td>
</tr>
<tr>
<td>124.12.1029</td>
<td>P_p 4'/mcc'</td>
<td>127.1.1053</td>
<td>P4/mbm</td>
<td>129.3.1077</td>
</tr>
<tr>
<td>124.13.1030</td>
<td>P_p 4'/m'cc'</td>
<td>127.2.1054</td>
<td>P4/mbm1'</td>
<td>129.4.1078</td>
</tr>
<tr>
<td>125.1.1031</td>
<td>P4/nbm</td>
<td>127.3.1055</td>
<td>P4/m'bm</td>
<td>129.5.1079</td>
</tr>
<tr>
<td>125.2.1032</td>
<td>P4/nbm1'</td>
<td>127.4.1056</td>
<td>P4'/mb'm</td>
<td>129.6.1080</td>
</tr>
<tr>
<td>125.3.1033</td>
<td>P4/n'bm</td>
<td>127.5.1057</td>
<td>P4'/mb'm'</td>
<td>129.7.1081</td>
</tr>
<tr>
<td>125.4.1034</td>
<td>P4'/nb'm</td>
<td>127.6.1058</td>
<td>P4'/m'bm</td>
<td>129.8.1082</td>
</tr>
<tr>
<td>125.5.1035</td>
<td>P4'/nb'm'</td>
<td>127.7.1059</td>
<td>P4/m'bm'</td>
<td>129.9.1083</td>
</tr>
<tr>
<td>125.6.1036</td>
<td>P4'/n'b'm</td>
<td>127.8.1060</td>
<td>P4'/mb'm'</td>
<td>129.10.1084</td>
</tr>
<tr>
<td>125.7.1037</td>
<td>P4/nb'm'</td>
<td>127.9.1061</td>
<td>P4/m'bm'</td>
<td>129.11.1085</td>
</tr>
<tr>
<td>125.8.1038</td>
<td>P4'/n'bm'</td>
<td>127.10.1062</td>
<td>P_{2c} 4/mbm</td>
<td>129.12.1086</td>
</tr>
<tr>
<td>125.9.1039</td>
<td>P4/n'b'm'</td>
<td>127.11.1063</td>
<td>P_{2c} 4'/mb'm</td>
<td>129.13.1087</td>
</tr>
<tr>
<td>125.10.1040</td>
<td>P_{2c} 4/nbm</td>
<td>127.12.1064</td>
<td>P_{2c} 4'/mb'm'</td>
<td>130.1.1088</td>
</tr>
<tr>
<td>125.11.1041</td>
<td>P_{2c} 4'/nb'm</td>
<td>127.13.1065</td>
<td>P_{2c} 4/mb'm'</td>
<td>130.2.1089</td>
</tr>
<tr>
<td>130.3.1090</td>
<td>P4/n'cc</td>
<td>130.2.1089</td>
<td>P4/ncc1'</td>
<td>130.3.1090</td>
</tr>
<tr>
<td>130.4.1091</td>
<td>P$_4'/nc'c$</td>
<td>132.7.1116</td>
<td>P$_4'/mc'm'$</td>
<td>134.10.1141</td>
</tr>
<tr>
<td>130.5.1092</td>
<td>P$_4'/ncc'$</td>
<td>132.8.1117</td>
<td>P$_4'/m'cm'$</td>
<td>134.11.1142</td>
</tr>
<tr>
<td>130.6.1093</td>
<td>P$_4'/n'c'c'$</td>
<td>132.9.1118</td>
<td>P$_4'/m'c'm'$</td>
<td>135.1.1143</td>
</tr>
<tr>
<td>130.7.1094</td>
<td>P$_4'/nc'c'$</td>
<td>132.10.1119</td>
<td>P$_p4_2'/mcm$</td>
<td>135.2.1144</td>
</tr>
<tr>
<td>130.8.1095</td>
<td>P$_4'/n'cc'$</td>
<td>132.11.1120</td>
<td>P$_p4_2'/m'cm'$</td>
<td>135.3.1145</td>
</tr>
<tr>
<td>130.9.1096</td>
<td>P$_4'/n'c'c'$</td>
<td>132.12.1121</td>
<td>P$_p4_2'/m/mcm'$</td>
<td>135.4.1146</td>
</tr>
<tr>
<td>131.1.1097</td>
<td>P$_4'/mmc$</td>
<td>132.13.1122</td>
<td>P$_p4_2'/m'cm'$</td>
<td>135.5.1147</td>
</tr>
<tr>
<td>131.2.1098</td>
<td>P$_4'/mmc1'$</td>
<td>133.1.1123</td>
<td>P$_4'/nbc$</td>
<td>135.6.1148</td>
</tr>
<tr>
<td>131.3.1099</td>
<td>P$_4'/m'mc$</td>
<td>133.2.1124</td>
<td>P$_4'/nbc1'$</td>
<td>135.7.1149</td>
</tr>
<tr>
<td>131.4.1100</td>
<td>P$_4_2'/mm'c$</td>
<td>133.3.1125</td>
<td>P$_4_2'/n'bc$</td>
<td>135.8.1150</td>
</tr>
<tr>
<td>131.5.1101</td>
<td>P$_4_2'/mmc'$</td>
<td>133.4.1126</td>
<td>P$_4_2'/nb'c$</td>
<td>135.9.1151</td>
</tr>
<tr>
<td>131.6.1102</td>
<td>P$_4_2'/m'm'c$</td>
<td>133.5.1127</td>
<td>P$_4_2'/nbc'$</td>
<td>136.1.1152</td>
</tr>
<tr>
<td>131.7.1103</td>
<td>P$_4_2'/mm'c'$</td>
<td>133.6.1128</td>
<td>P$_4_2'/n'b'c$</td>
<td>136.2.1153</td>
</tr>
<tr>
<td>131.8.1104</td>
<td>P$_4_2'/m'mc'$</td>
<td>133.7.1129</td>
<td>P$_4_2'/nb'c'$</td>
<td>136.3.1154</td>
</tr>
<tr>
<td>131.9.1105</td>
<td>P$_4_2'/m'm'c'$</td>
<td>133.8.1130</td>
<td>P$_4_2'/n'bc'$</td>
<td>136.4.1155</td>
</tr>
<tr>
<td>131.10.1106</td>
<td>P$_p4_2'/mmc$</td>
<td>133.9.1131</td>
<td>P$_4_2'/n'b'c'$</td>
<td>136.5.1156</td>
</tr>
<tr>
<td>131.11.1107</td>
<td>P$_p4_2'/m'mc$</td>
<td>134.1.1132</td>
<td>P$_4_2'/nnm$</td>
<td>136.6.1157</td>
</tr>
<tr>
<td>131.12.1108</td>
<td>P$_p4_2'/mmc'$</td>
<td>134.2.1133</td>
<td>P$_4_2'/nnm1'$</td>
<td>136.7.1158</td>
</tr>
<tr>
<td>131.13.1109</td>
<td>P$_p4_2'/m'm'c'$</td>
<td>134.3.1134</td>
<td>P$_4_2'/n'nm$</td>
<td>136.8.1159</td>
</tr>
<tr>
<td>132.1.1110</td>
<td>P$_4_2'/mcm$</td>
<td>134.4.1135</td>
<td>P$_4_2'/nn'm$</td>
<td>136.9.1160</td>
</tr>
<tr>
<td>132.2.1111</td>
<td>P$_4_2'/mcm1'$</td>
<td>134.5.1136</td>
<td>P$_4_2'/nnm'$</td>
<td>137.1.1161</td>
</tr>
<tr>
<td>132.3.1112</td>
<td>P$_4_2'/m'cm$</td>
<td>134.6.1137</td>
<td>P$_4_2'/n'n'm$</td>
<td>137.2.1162</td>
</tr>
<tr>
<td>132.4.1113</td>
<td>P$_4_2'/mc'm$</td>
<td>134.7.1138</td>
<td>P$_4_2'/nn'm'$</td>
<td>137.3.1163</td>
</tr>
<tr>
<td>132.5.1114</td>
<td>P$_4_2'/mcm'$</td>
<td>134.8.1139</td>
<td>P$_4_2'/n'nm'$</td>
<td>137.4.1164</td>
</tr>
<tr>
<td>132.6.1115</td>
<td>P$_4_2'/m'c'm$</td>
<td>134.9.1140</td>
<td>P$_4_2'/n'n'm'$</td>
<td></td>
</tr>
</tbody>
</table>
137.5.1165 P42'/nmc' 139.12.1190 I_p,4'/mmm'm 141.3.1215 I4, /a'md
137.6.1166 P42'/n'mc' 139.13.1191 I_p,4'/mmm'm 141.4.1216 I4, /am'd
137.7.1167 P42'/nm'c' 139.14.1192 I_p,4'/m'm'm 141.5.1217 I4, /'am'd
137.8.1168 P42'/n'mc' 139.15.1193 I_p,4'/mmm'm 141.6.1218 I4, /a'm'd
137.9.1169 P42'/n'm'c' 139.16.1194 I_p,4'/m'm'm 141.7.1219 I4, /am'd
138.1.1170 P42'/ncm 139.17.1195 I_p,4'/m'm'm 141.8.1220 I4, /'a'm'd
138.2.1171 P42'/ncm1' 140.1.1196 I4/mcm 141.9.1221 I4, /a'm'd'
138.3.1172 P42'/nc'm 140.2.1197 I4/mcm1' 142.1.1222 I4, /acd
138.4.1173 P42'/nc'c'm 140.3.1198 I4/m'cm 142.2.1223 I4, /acd1'
138.5.1174 P42'/ncm' 140.4.1199 I4'/mc'm 142.3.1224 I4, /a'cd
138.6.1175 P42'/n'c'm 140.5.1200 I4'/mcm' 142.4.1225 I4, /'ac'd
138.7.1176 P42'/nc'c'm' 140.6.1201 I4'/m'c'm 142.5.1226 I4, /'acd'
138.8.1177 P42'/n'c'm' 140.7.1202 I4/mc'm' 142.6.1227 I4, /'a'c'd
138.9.1178 P42'/n'c'c'm' 140.8.1203 I4'/m'c'm' 142.7.1228 I4, /ac'd'
139.1.1179 I4/mmm 140.9.1204 I4/m'c'm' 142.8.1229 I4, /'a'cd'
139.2.1180 I4/mmm1' 140.10.1205 I_p,4/mcm 142.9.1230 I4, /a'c'd'
139.3.1181 I4/m'cm 140.11.1206 I_p,4/m'c'm 142.10.1231 P3
139.4.1182 I4'/m'm'm 140.12.1207 I_p,4'/mc'm 143.1.1232 P31'
139.5.1183 I4'/mmm'm 140.13.1208 I_p,4'/mcm' 143.2.1233 P_3c 3
139.6.1184 I4'/m'm'm 140.14.1209 I_p,4'/m'c'm 143.3.1233 P_3c 3
139.7.1185 I4/m'm'm 140.15.1210 I_p,4/mc'm 143.4.1234 P_3 3_1
139.8.1186 I4'/m'm'm 140.16.1211 I_p,4'/m'c'm 144.1.1235 P_3 3_1'
139.9.1187 I4/m'm'm 140.17.1212 I_p,4/m'c'm' 144.2.1236 P_3 3_2
139.10.1188 I_p,4/mmm 141.1.1213 I4/, /amd 144.3.1237 P_3 3_2
139.11.1189 I_p,4/m'mm
HEXAGONAL SYSTEM
188.1.1446 P\&c2
188.2.1447 P\&c21'
188.3.1448 P\&'c'2
188.4.1449 P\&'c'2'
188.5.1450 P\&c'2'

189.1.1451 P\&2m
189.2.1452 P\&2m1'
189.3.1453 P\&'2'm
189.4.1454 P\&'2'm'
189.5.1455 P\&2'm'
189.6.1456 P\&2'm 192.1.1476 P6/mcc
189.7.1457 P\&2'm'

190.1.1458 P\&2c
190.2.1459 P\&2c1'
190.3.1460 P\&'2'c
190.4.1461 P\&'2'c'
190.5.1462 P\&2'c'

191.1.1463 P6/mmm
191.2.1464 P6/mmm1'
191.3.1465 P6/m'mm
191.4.1466 P6'/m'mm
191.5.1467 P6'/mmm'
191.6.1468 P6'/m'm'm
191.7.1469 P6'/m'm'm'

194.1.1494 P6_3/mmc
194.2.1495 P6_3/mmc1'
194.3.1496 P6_3/m'mc
194.4.1497 P6_3/m'mc'
194.5.1498 P6_3/mmc'
194.6.1499 P6_3/m'mc
194.7.1500 P6_3/m'mc'
194.8.1501 P6_3/m'mc'
194.9.1502 P6_3/m'mc'

CUBIC SYSTEM

195.1.1503 P23
195.2.1504 P231'
195.3.1505 P F23
195.4.1506 F23
195.5.1507 F231'
196.2.1508 I23
196.3.1509 I231'
197.3.1510 I_{p}23
197.4.1511 P2_3
198.2.1512 P2_31'
199.2.1513 I_{2,3}
199.3.1514 I_{2,3}1'
199.4.1515 I_{p}2_3
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>206.1.1538</td>
<td>la&</td>
<td>212.1.1561</td>
<td>P₄ₓ₃₂</td>
</tr>
<tr>
<td>200.1.1516</td>
<td>Pm&</td>
<td>206.2.1539</td>
<td>la&₁'</td>
</tr>
<tr>
<td>200.2.1517</td>
<td>Pm&₁'</td>
<td>206.3.1540</td>
<td>la&₂'</td>
</tr>
<tr>
<td>200.3.1518</td>
<td>Pm&₂'</td>
<td>206.4.1541</td>
<td>lₚ, a&</td>
</tr>
<tr>
<td>200.4.1519</td>
<td>Pₚ m&</td>
<td>207.1.1542</td>
<td>P₄₃₂</td>
</tr>
<tr>
<td>201.1.1520</td>
<td>Pn&</td>
<td>207.2.1543</td>
<td>P₄₃₂₁'</td>
</tr>
<tr>
<td>201.2.1521</td>
<td>Pn&₁'</td>
<td>207.3.1544</td>
<td>P₄ₓ₁₃₂'</td>
</tr>
<tr>
<td>201.3.1522</td>
<td>Pn&₂'</td>
<td>207.4.1545</td>
<td>Pₕ₄₃₂</td>
</tr>
<tr>
<td>201.4.1523</td>
<td>Pₕ n&</td>
<td>208.1.1546</td>
<td>P₄ₓ₃₂</td>
</tr>
<tr>
<td>202.1.1524</td>
<td>Fₘ&</td>
<td>208.2.1547</td>
<td>P₄ₓ₃₂₁'</td>
</tr>
<tr>
<td>202.2.1525</td>
<td>Fₘ&₁'</td>
<td>208.3.1548</td>
<td>P₄ₓ₁₃₂'</td>
</tr>
<tr>
<td>202.3.1526</td>
<td>Fₘ&₂'</td>
<td>208.4.1549</td>
<td>Pₕ₄ₓ₃₂</td>
</tr>
<tr>
<td>203.1.1527</td>
<td>Fₜ&</td>
<td>209.1.1550</td>
<td>F₄₃₂</td>
</tr>
<tr>
<td>203.2.1528</td>
<td>Fₜ&₁'</td>
<td>209.2.1551</td>
<td>F₄₃₂₁'</td>
</tr>
<tr>
<td>203.3.1529</td>
<td>Fₜ&₂'</td>
<td>209.3.1552</td>
<td>F₄ₓ₁₃₂'</td>
</tr>
<tr>
<td>204.1.1530</td>
<td>lₘ&</td>
<td>210.1.1553</td>
<td>F₄ₓ₃₂</td>
</tr>
<tr>
<td>204.2.1531</td>
<td>lₘ&₁'</td>
<td>210.2.1554</td>
<td>F₄ₓ₁₃₂�</td>
</tr>
<tr>
<td>204.3.1532</td>
<td>lₘ&₂'</td>
<td>210.3.1555</td>
<td>F₄ₓ₁₃₂'</td>
</tr>
<tr>
<td>204.4.1533</td>
<td>lₚ m&</td>
<td>211.1.1556</td>
<td>l₄₃₂</td>
</tr>
<tr>
<td>204.5.1534</td>
<td>lₚ m&₂'</td>
<td>211.2.1557</td>
<td>l₄₃₂₁'</td>
</tr>
<tr>
<td>205.1.1535</td>
<td>P₄ₘ</td>
<td>211.3.1558</td>
<td>l₄ₓ₁₃₂'</td>
</tr>
<tr>
<td>205.2.1536</td>
<td>P₄ₘ</td>
<td>211.4.1559</td>
<td>lₚ 4₃₂</td>
</tr>
<tr>
<td>205.3.1537</td>
<td>P₄ₘ</td>
<td>211.5.1560</td>
<td>lₚ 4ₓ₁₃₂'</td>
</tr>
</tbody>
</table>
217.1584 I_p 4'3'm' 223.2.1607 Pm3n1' 227.3.1630 Fd3'3'm

218.1.1585 P43n 223.3.1608 Pm3'n 227.4.1631 Fd3m'
218.2.1586 P43n1' 223.4.1609 Pm3'n 227.5.1632 Fd3'3'm'
218.3.1587 P4'3'n 223.5.1610 Pm3'n 228.1633 Fd3c

219.1.1588 F43c 224.1.1611 Pn3m 228.2.1634 Fd3c1'
219.2.1589 F43c1' 224.2.1612 Pn3m1' 228.3.1635 Fd3c'
219.3.1590 F4'3c' 224.3.1613 Pn3'm 228.4.1636 Fd3c'
220.1.1591 I43d 224.4.1614 Pn3'm 228.5.1637 Fd3c'
220.2.1592 I43d1' 224.5.1615 Pn3'm' 229.1.1638 Im3m
220.3.1593 I4'3d' 224.6.1616 Pf3m 229.2.1639 Im3m1'
221.1.1594 Pm3m 224.7.1617 Pf3m' 229.3.1640 Im3'm
221.2.1595 Pm3m1' 225.1.1618 Fm3m 229.4.1641 Im3'm
221.3.1596 Pm3'm 225.2.1619 Fm3m1' 229.5.1642 Im3'm'
221.4.1597 Pm3m' 225.3.1620 Fm3'm 229.6.1643 Ip3m3m
221.5.1598 Pm3'm' 225.4.1621 Fm3'm 229.7.1644 Ip3m3'm
221.6.1599 Pf3m3m 225.5.1622 Fm3'm' 229.8.1645 Ip3m3'm'
221.7.1600 Pf3m3m' 226.1.1623 Fm3c

222.1.1601 Pn3n 226.2.1624 Fm3c1' 230.1.1647 Ia3d
222.2.1602 Pn3n1' 226.3.1625 Fm3c' 230.2.1648 Ia3d1'
222.3.1603 Pn3'n 226.4.1626 Fm3c' 230.3.1649 Ia3'd
222.4.1604 Pn3'n 226.5.1627 Fm3c' 230.4.1650 Ia3'd'
222.5.1605 Pn3'n 227.1.1628 Fd3m
223.1.1606 Pm3n 227.2.1629 Fd3m1'
TRICLINIC SYSTEM

<table>
<thead>
<tr>
<th>Code</th>
<th>Symmetry</th>
<th>Formula</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>P1</td>
<td>(1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>1.2.2</td>
<td>P1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.3</td>
<td>P_{2s}1</td>
<td>P1</td>
<td>(0,0,0;a,b,2c)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Symmetry</th>
<th>Formula</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.4</td>
<td>P1&</td>
<td>(1*0,0,0)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>2.2.5</td>
<td>P1&1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.6</td>
<td>P1 & 1'</td>
<td>P1</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>2.4.7</td>
<td>P_{2s} &</td>
<td>P&</td>
<td>(0,0,0;a,b,2c)</td>
</tr>
</tbody>
</table>

MONOCLINIC SYSTEM

<table>
<thead>
<tr>
<th>Code</th>
<th>Symmetry</th>
<th>Formula</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.8</td>
<td>P2</td>
<td>(1*0,0,0)</td>
<td>(2y0,0,0)</td>
</tr>
<tr>
<td>3.2.9</td>
<td>P21'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.10</td>
<td>P2'</td>
<td>P1</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>3.4.11</td>
<td>P_{2a}2</td>
<td>P2</td>
<td>(0,0,0;2a,b,c)</td>
</tr>
<tr>
<td>3.5.12</td>
<td>P_{2b}2</td>
<td>P2</td>
<td>(0,0,0;a,2b,c)</td>
</tr>
<tr>
<td>3.6.13</td>
<td>P_{c}2</td>
<td>C2</td>
<td>(0,0,0;2a,2b,c)</td>
</tr>
<tr>
<td>3.7.14</td>
<td>P_{2b}2'</td>
<td>P2_1</td>
<td>(0,0,0;a,2b,c)</td>
</tr>
<tr>
<td>Magnetic Space Group Elements 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1.15</td>
<td>P2₁</td>
<td>$(1*0,0,0)$</td>
<td>$(2₀*0,1/2,0)$</td>
</tr>
<tr>
<td>4.2.16</td>
<td>P2₁₁₁'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3.17</td>
<td>P₂₁ P₁</td>
<td>$(0,0,0;a,b,c)$</td>
<td>$(1*0,0,0)$</td>
</tr>
<tr>
<td>4.4.18</td>
<td>P₂₁₁₁ P₂₁</td>
<td>$(0,0,0;2a,b,c)$</td>
<td>$(1*0,0,0)$</td>
</tr>
<tr>
<td>5.1.19</td>
<td>C₂</td>
<td>$(1*0,0,0)$</td>
<td>$(2₀*0,0,0)$</td>
</tr>
<tr>
<td>5.2.20</td>
<td>C₂₁₁'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3.21</td>
<td>C₂₁ P₁</td>
<td>$(0,0,0;b,{a+b}/2,c)$</td>
<td>$(1*0,0,0)$</td>
</tr>
<tr>
<td>5.4.22</td>
<td>C₂₁₁₁ C₂</td>
<td>$(0,0,0;a,b,2c)$</td>
<td>$(1*0,0,0)$</td>
</tr>
<tr>
<td>5.5.23</td>
<td>C₂₁₁₁ P₂</td>
<td>$(0,0,0;a,b,c)$</td>
<td>$(1*0,0,0)$</td>
</tr>
<tr>
<td>5.6.24</td>
<td>C₂₁₁₁₁ P₂₁</td>
<td>$(1/4,0,0;a,b,c)$</td>
<td>$(1*0,0,0)$</td>
</tr>
<tr>
<td>6.1.25</td>
<td>Pm</td>
<td>$(1*0,0,0)$</td>
<td>$(m₀*0,0,0)$</td>
</tr>
<tr>
<td>6.2.26</td>
<td>Pm₁₁₁'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3.27</td>
<td>Pm₁₁₁ P₁</td>
<td>$(0,0,0;a,b,c)$</td>
<td>$(1*0,0,0)$</td>
</tr>
<tr>
<td>6.4.28</td>
<td>P₂₁₁₁ Pm</td>
<td>$(0,0,0;2a,b,c)$</td>
<td>$(1*0,0,0)$</td>
</tr>
<tr>
<td>6.5.29</td>
<td>P₂₁₁₁₁ Pm</td>
<td>$(0,0,0;a,2b,c)$</td>
<td>$(1*0,0,0)$</td>
</tr>
<tr>
<td>6.6.30</td>
<td>P<sub>c</sub> & m</td>
<td>Cm</td>
<td>(0,0,0;2a,2b,c)</td>
</tr>
<tr>
<td>6.7.31</td>
<td>P<sub>2c</sub> & m'</td>
<td>Pc</td>
<td>(0,0,0;a,b,2c)</td>
</tr>
<tr>
<td>7.1.32</td>
<td>Pc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.33</td>
<td>Pc<sup>1'</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3.34</td>
<td>Pc<sup>′</sup></td>
<td>P1</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>7.4.35</td>
<td>P<sub>2a</sub> & c</td>
<td>Pc</td>
<td>(0,0,0;2a,b,c)</td>
</tr>
<tr>
<td>7.5.36</td>
<td>P<sub>2b</sub> & c</td>
<td>Pc</td>
<td>(0,0,0;a,2b,c)</td>
</tr>
<tr>
<td>7.6.37</td>
<td>P<sub>c</sub> & c</td>
<td>Cc</td>
<td>(0,0,0;2a,2b,c)</td>
</tr>
<tr>
<td>8.1.38</td>
<td>Cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2.39</td>
<td>Cm<sup>1′</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.3.40</td>
<td>Cm<sup>′</sup></td>
<td>P1</td>
<td>(0,0,0;b,(a+b)/2,c)</td>
</tr>
<tr>
<td>8.4.41</td>
<td>C<sub>2c</sub> & m</td>
<td>Cm</td>
<td>(0,0,0;a,b,2c)</td>
</tr>
<tr>
<td>8.5.42</td>
<td>C<sub>c</sub> & m</td>
<td>Pm</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>8.6.43</td>
<td>C<sub>2c</sub> & m<sup>′</sup></td>
<td>Cc</td>
<td>(0,0,0;a,b,2c)</td>
</tr>
<tr>
<td>8.7.44</td>
<td>C<sub>c</sub> & m<sup>′</sup></td>
<td>Pc</td>
<td>(0,1/4,0;c,δ,a)</td>
</tr>
<tr>
<td>Section</td>
<td>Symbol</td>
<td>Description</td>
<td>Magnetic Components</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>9.1.45</td>
<td>Cc</td>
<td>(1*0,0,0)</td>
<td>(m_y*0,0,1/2)</td>
</tr>
<tr>
<td>9.2.46</td>
<td>Cc1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.3.47</td>
<td>Cc'</td>
<td>P1</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>9.4.48</td>
<td>C_p c</td>
<td>Pc</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>10.1.49</td>
<td>P2/m</td>
<td>(1*0,0,0)</td>
<td>(2_y*0,0,0)</td>
</tr>
<tr>
<td>10.2.50</td>
<td>P2/m1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.3.51</td>
<td>P2'/m</td>
<td>Pm</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>10.4.52</td>
<td>P2/m'</td>
<td>P2</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>10.5.53</td>
<td>P2'/m'</td>
<td>P&</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>10.6.54</td>
<td>P_2a 2/m</td>
<td>P2/m</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>10.7.55</td>
<td>P_2b 2/m</td>
<td>P2/m</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>10.8.56</td>
<td>P_c 2/m</td>
<td>C2/m</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>10.9.57</td>
<td>P_2b 2'/m</td>
<td>P2_/m</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>10.10.58</td>
<td>P_2c 2'/m</td>
<td>P2/c</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>11.1.59</td>
<td>P2_/m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Description</td>
<td>Symbol</td>
<td>Parameters</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>11.2.60</td>
<td>P2$_1$/m$'$</td>
<td>P2$_2$/m</td>
<td>(0,1/4,0;a,b,c)</td>
</tr>
<tr>
<td>11.3.61</td>
<td>P2$_1$/m</td>
<td>Pm</td>
<td>(0,0,0;0,a,b,c)</td>
</tr>
<tr>
<td>11.4.62</td>
<td>P2$_1$/m$'$</td>
<td>P2$_2$</td>
<td>(0,0,0;0,a,b,c)</td>
</tr>
<tr>
<td>11.5.63</td>
<td>P2$_1$/m$'$</td>
<td>P&</td>
<td>(0,0,0;0,a,b,c)</td>
</tr>
<tr>
<td>11.6.64</td>
<td>P$_{2a}$2$_1$/m</td>
<td>P2$_1$/m</td>
<td>(0,0,0;2a,b,c)</td>
</tr>
<tr>
<td>11.7.65</td>
<td>P$_{2c}$2$_1$/m$'$</td>
<td>P2$_1$</td>
<td>(0,0,1/2;a,b,2c)</td>
</tr>
<tr>
<td>12.1.66</td>
<td>C2/m</td>
<td>(1*0,0,0)</td>
<td>(2$_y$*0,0,0) (m$_y$*0,0,0)</td>
</tr>
<tr>
<td>12.2.67</td>
<td>C2/m$'$</td>
<td></td>
<td>(1*0,0,0) (2$_y$*0,0,0) (m$_y$*0,0,0)</td>
</tr>
<tr>
<td>12.3.68</td>
<td>C2'/m</td>
<td>Cm</td>
<td>(0,0,0;0,a,b,c)</td>
</tr>
<tr>
<td>12.4.69</td>
<td>C2/m$'$</td>
<td>C2</td>
<td>(0,0,0;0,a,b,c)</td>
</tr>
<tr>
<td>12.5.70</td>
<td>C2'/m$'$</td>
<td>P&</td>
<td>(0,0,0;b,(a+b)/2,c)</td>
</tr>
<tr>
<td>12.6.71</td>
<td>C$_{2c}$2/m</td>
<td>C2/m</td>
<td>(0,0,0;0,a,b,2c)</td>
</tr>
<tr>
<td>12.7.72</td>
<td>C$_p$2/m</td>
<td>P2/m</td>
<td>(0,0,0;0,a,b,c)</td>
</tr>
<tr>
<td>12.8.73</td>
<td>C$_{2c}$2/m$'$</td>
<td>C2/c</td>
<td>(0,0,1/2;a,b,2c)</td>
</tr>
<tr>
<td>12.9.74</td>
<td>C$_p$2'/m</td>
<td>P2$_1$/m</td>
<td>(1/4,1/4,0;a,b,c)</td>
</tr>
<tr>
<td>12.10.75</td>
<td>C$_p$2/m$'$</td>
<td>P2/c</td>
<td>(1/4,1/4,0;c,6,a)</td>
</tr>
<tr>
<td>12.11.76</td>
<td>C$_p$2'/m$'$</td>
<td>P2$_1$</td>
<td>(0,0,0;c,6,a)</td>
</tr>
<tr>
<td>No.</td>
<td>Symbol</td>
<td>Description</td>
<td>Elements 1</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>13.1.77</td>
<td>P2/c</td>
<td>(1*0,0,0)</td>
<td>(2y*0,0,1/2)</td>
</tr>
<tr>
<td>13.2.78</td>
<td>P2/c'</td>
<td>P2/c1'</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>13.3.79</td>
<td>P2'/c</td>
<td>Pc</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td>13.4.80</td>
<td>P2/c'</td>
<td>P2</td>
<td>(0,0,1/4; a,b,c)</td>
</tr>
<tr>
<td>13.5.81</td>
<td>P2'/c'</td>
<td>P&</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td>13.6.82</td>
<td>P_2a 2/c</td>
<td>P2/c</td>
<td>(0,0,0; 2a,b,c)</td>
</tr>
<tr>
<td>13.7.83</td>
<td>P_2b 2/c</td>
<td>P2/c</td>
<td>(0,0,0; a,2b,c)</td>
</tr>
<tr>
<td>13.8.84</td>
<td>P_c 2/c</td>
<td>C2/c</td>
<td>(0,0,0; 2a,2b,c)</td>
</tr>
<tr>
<td>13.9.85</td>
<td>P_2b 2'/c</td>
<td>P2_1/c</td>
<td>(0,1/2,0; a,2b,c)</td>
</tr>
<tr>
<td>14.1.86</td>
<td>P2_1/c</td>
<td>(1*0,0,0)</td>
<td>(2y*0,1/2,1/2)</td>
</tr>
<tr>
<td>14.2.87</td>
<td>P2_1/c1'</td>
<td>P2_1/c1'</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>14.3.88</td>
<td>P2_1'/c</td>
<td>Pc</td>
<td>(0,1/4,0; a,b,c)</td>
</tr>
<tr>
<td>14.4.89</td>
<td>P2_1'/c'</td>
<td>P2_1</td>
<td>(0,0,1/4; a,b,c)</td>
</tr>
<tr>
<td>14.5.90</td>
<td>P2_1'/c'</td>
<td>P&</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td>14.6.91</td>
<td>P_2a 2_-1/c</td>
<td>P2_1/c</td>
<td>(0,0,0; 2a,b,c)</td>
</tr>
<tr>
<td>15.1.92</td>
<td>C2/c</td>
<td>(1*0,0,0)</td>
<td>(2_y*0,0,1/2)</td>
</tr>
<tr>
<td>15.2.93</td>
<td>C2/c1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.3.94</td>
<td>C2'/c</td>
<td>Cc</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>15.4.95</td>
<td>C2/c'</td>
<td>C2</td>
<td>(0,0,1/4;a,b,c)</td>
</tr>
<tr>
<td>15.5.96</td>
<td>C2'/c'</td>
<td>P&</td>
<td>(0,0,0;b,(a+b)/2,c)</td>
</tr>
<tr>
<td>15.6.97</td>
<td>C_p 2/c</td>
<td>P2/c</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>15.7.98</td>
<td>C_p 2'/c</td>
<td>P2_1/c</td>
<td>(1/4,1/4,0;a,b,c)</td>
</tr>
</tbody>
</table>

ORTHORHOMBIC SYSTEM

<p>| 16.1.99 | P222 | (10,0,0) | (2_x0,0,0) | (2_y0,0,0) | (2_z0,0,0) |
| 16.2.100 | P2221' | | | | | | |
| 16.3.101 | P2'2'2 | P2 | (0,0,0;b,c,a) | (10,0,0) | (2_x0,0,0)' | (2,0,0,0)' | (2_z0,0,0) |
| 16.4.102 | P_2a 222 | P222 | (0,0,0;2a,b,c) | (10,0,0) | (2_x0,0,0) | (2_y0,0,0) | (2_x0,0,0) |
| 16.5.103 | P_c 222 | C222 | (0,0,0;2a,2b,c) | (10,0,0) | (2_x0,0,0) | (2_y0,0,0) | (2_x0,0,0) |
| 16.6.104 | P_f 222 | F222 | (0,0,0;2a,2b,2c) | (10,0,0) | (2_x0,0,0) | (2_y0,0,0) | (2_x0,0,0) |
| 16.7.105 | P_2c 22'2' | P222_1 | (0,0,0;a,b,2c) | (10,0,0) | (2_x0,0,0) | (2_y0,0,1) | (2_x0,0,1) |</p>
<table>
<thead>
<tr>
<th>17.1.106</th>
<th>P222₁</th>
<th>(1*0,0,0)</th>
<th>(2ₓ*0,0,0)</th>
<th>(2ᵧ*0,0,1/2)</th>
<th>(2ᶻ*0,0,1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2.107</td>
<td>P222₁₁'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.3.108</td>
<td>P₂'₂'₂₁ P₂₁</td>
<td>(0,0,0;b,c,a)</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*0,0,0)'</td>
<td>(2ᵧ*0,0,1/2)'</td>
</tr>
<tr>
<td>17.4.109</td>
<td>P₂₂'₂₁' P₂</td>
<td>(0,0,0;c,a,b)</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*0,0,0)</td>
<td>(2ᵧ*0,0,1/2)'</td>
</tr>
<tr>
<td>17.5.110</td>
<td>P₂₂₂₁ P₂₂₂₁</td>
<td>(0,0,0;2a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*0,0,0)</td>
<td>(2ᵧ*0,0,1/2)</td>
</tr>
<tr>
<td>17.6.111</td>
<td>P₉₂₂₂₁ C₂₂₂₁</td>
<td>(0,0,0,2a,2b,c)</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*0,0,0)</td>
<td>(2ᵧ*0,0,1/2)</td>
</tr>
<tr>
<td>17.7.112</td>
<td>P₂₂₂'²₂₁ P₂₁₂₂</td>
<td>(1/2,0,1/4;c,2a,b)</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*1,0,0)</td>
<td>(2ᵧ*1,0,1/2)</td>
</tr>
<tr>
<td>18.1.113</td>
<td>P₂₁₂₂</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*1/2,1/2,0)</td>
<td>(2ᵧ*1/2,1/2,0)</td>
<td>(2ᶻ*0,0,0)</td>
</tr>
<tr>
<td>18.2.114</td>
<td>P₂₁₂₁₁'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.3.115</td>
<td>P₂₁₂₁₁' P₂</td>
<td>(0,0,0;b,c,a)</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*1/2,1/2,0)'</td>
<td>(2ᵧ*1/2,1/2,0)'</td>
</tr>
<tr>
<td>18.4.116</td>
<td>P₂₁₂₁₁' P₂₁</td>
<td>(0,1/4,0;c,a,b)</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*1/2,1/2,0)</td>
<td>(2ᵧ*1/2,1/2,0)'</td>
</tr>
<tr>
<td>18.5.117</td>
<td>P₂₁₂₁₂₂ P₂₁₂₁</td>
<td>(0,0,0;2a,b,2c)</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*1/2,1/2,0)</td>
<td>(2ᵧ*1/2,1/2,0)</td>
</tr>
<tr>
<td>18.6.118</td>
<td>P₂₁₂₁₂₂ P₂₁₂₁</td>
<td>(1/4,0,0;a,b,2c)</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*1/2,1/2,0)</td>
<td>(2ᵧ*1/2,1/2,1)</td>
</tr>
<tr>
<td>19.1.119</td>
<td>P₂₁₂₁</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*1/2,1/2,0)</td>
<td>(2ᵧ*0,1/2,1/2)</td>
<td>(2ᶻ*1/2,0,1/2)</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 8
<table>
<thead>
<tr>
<th>19.2.120</th>
<th>P_{212121}'</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3.121</td>
<td>P_{212121} P_{21} $(1/4,0,0;b,c,a)$ $(10,0,0)$ $(2_x1/2,1/2,0)'$ $(2_y0,1/2,1/2)'$ $(2_z1/2,0,1/2)$</td>
</tr>
<tr>
<td>20.1.122</td>
<td>C_{222_1} $(10,0,0)$ $(2_x0,0,0)$ $(2_y0,0,1/2)$ $(2_z0,0,1/2)$</td>
</tr>
<tr>
<td>20.2.123</td>
<td>C_{222_1}'</td>
</tr>
<tr>
<td>20.3.124</td>
<td>$C_{2'2'2_1}$ P_{21} $(0,0,0;b,c,(a+b)/2)$ $(10,0,0)$ $(2_x0,0,0)'$ $(2_y0,0,1/2)'$ $(2_z0,0,1/2)'$</td>
</tr>
<tr>
<td>20.4.125</td>
<td>$C_{2'2_1'}$ P_{2} $(0,0,0;c,a,(a+b)/2)$ $(10,0,0)$ $(2_x0,0,0)$ $(2_y0,0,1/2)'$ $(2_z0,0,1/2)'$</td>
</tr>
<tr>
<td>20.5.126</td>
<td>$C_{p_{222_1}}$ P_{222_1} $(0,0,0;a,b,c)$ $(10,0,0)$ $(2_x0,0,0)$ $(2_y0,0,1/2)$ $(2_z0,0,1/2)$</td>
</tr>
<tr>
<td>20.6.127</td>
<td>$C_{p_{2'2'2_1}}$ $P_{2,2,2_1}$ $(1/4,0,0;a,b,c)$ $(10,0,0)$ $(2_x1/2,1/2,0)$ $(2_y1/2,1/2,1/2)$ $(2_z0,0,1/2)$</td>
</tr>
<tr>
<td>20.7.128</td>
<td>$C_{p_{2'2_1'}}$ $P_{2,2,2}$ $(1/4,0,0;b,c,a)$ $(10,0,0)$ $(2_x0,0,0)$ $(2_y1/2,1/2,1/2)$ $(2_z1/2,1/2,1/2)$</td>
</tr>
<tr>
<td>21.1.129</td>
<td>C_{222} $(10,0,0)$ $(2_x0,0,0)$ $(2_y0,0,0)$ $(2_z0,0,0)$</td>
</tr>
<tr>
<td>21.2.130</td>
<td>$C_{2221'}$</td>
</tr>
<tr>
<td>21.3.131</td>
<td>$C_{2'2'2}$ P_{2} $(0,0,0;b,c,(a+b)/2)$ $(10,0,0)$ $(2_x0,0,0)'$ $(2_y0,0,0)'$ $(2_z0,0,0)$</td>
</tr>
<tr>
<td>21.4.132</td>
<td>$C_{2'2'}$ C_{2} $(0,0,0;\delta,a,c)$ $(10,0,0)$ $(2_x0,0,0)$ $(2_y0,0,0)'$ $(2_z0,0,0)'$</td>
</tr>
<tr>
<td>21.5.133</td>
<td>$C_{2c_{222}}$ C_{222} $(0,0,0;a,b,2c)$ $(10,0,0)$ $(2_x0,0,0)$ $(2_y0,0,0)$ $(2_z0,0,0)$</td>
</tr>
<tr>
<td>21.6.134</td>
<td>$C_{p_{222}}$ P_{222} $(0,0,0;a,b,c)$ $(10,0,0)$ $(2_x0,0,0)$ $(2_y0,0,0)$ $(2_z0,0,0)$</td>
</tr>
<tr>
<td>21.7.135</td>
<td>$C_{i_{222}}$ I_{222} $(0,0,0;a,b,2c)$ $(10,0,0)$ $(2_x0,0,0)$ $(2_y0,0,0)$ $(2_z0,0,0)$</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 9
<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Space Group</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.8.136</td>
<td>C\textsubscript{2\textgamma} 2\textgamma'2'</td>
<td>C\textsubscript{222\textsubscript{1}}</td>
<td>(0,0,0; a,b,2c) (1\textbullet0,0,0) (2\textbullet0,0,0) (2\textbullet0,0,1) (2\textbullet0,0,1)</td>
</tr>
<tr>
<td>21.9.137</td>
<td>C\textsubscript{\textgamma} 2\textgamma'2'</td>
<td>P\textsubscript{2\textgamma,2\textgamma}</td>
<td>(0,0,0; a,b,c) (1\textbullet0,0,0) (2\textbullet0/1,1/2,0) (2\textbullet0/1,1/2,0) (2\textbullet0,0,0)</td>
</tr>
<tr>
<td>21.10.138</td>
<td>C\textsubscript{\textgamma} 2\textgamma'2'</td>
<td>P\textsubscript{2\textgamma2\textsubscript{1}}</td>
<td>(1/4,0,0; a,& b) (1\textbullet0,0,0) (2\textbullet0,0,0) (2\textbullet0,1/2,1/2) (2\textbullet0,1/2,1/2)</td>
</tr>
<tr>
<td>21.11.139</td>
<td>C\textsubscript{2\textgamma}2\textgamma'2'</td>
<td>I\textsubscript{2,2,2\textsubscript{1}}</td>
<td>(1/4,0,0; a,b,2c) (1\textbullet0,0,0) (2\textbullet0,0,1) (2\textbullet0,0,0) (2\textbullet0,0,1)</td>
</tr>
<tr>
<td>22.1.140</td>
<td>F2\textgamma2\textgamma</td>
<td>(1\textbullet0,0,0) (2\textbullet0,0,0) (2\textbullet0,0,0) (2\textbullet0,0,0)</td>
<td></td>
</tr>
<tr>
<td>22.2.141</td>
<td>F2\textgamma2\textgamma1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.3.142</td>
<td>F2'2'2'</td>
<td>C\textsubscript{2}</td>
<td>(0,0,0; b,c,{a+b}/2) (1\textbullet0,0,0) (2\textbullet0,0,0)' (2\textbullet0,0,0)' (2\textbullet0,0,0)</td>
</tr>
<tr>
<td>22.4.143</td>
<td>F\textsubscript{c} 2\textgamma2\textgamma</td>
<td>C\textsubscript{222}</td>
<td>(0,0,0; a,b,c) (1\textbullet0,0,0) (2\textbullet0,0,0) (2\textbullet0,0,0) (2\textbullet0,0,0)</td>
</tr>
<tr>
<td>22.5.144</td>
<td>F\textsubscript{c} 2\textgamma'2'2'</td>
<td>C\textsubscript{222\textsubscript{1}}</td>
<td>(1/4,0,0; a,b,c) (1\textbullet0,0,0) (2\textbullet0,0,0) (2\textbullet1/2,0,1/2) (2\textbullet1/2,0,1/2)</td>
</tr>
<tr>
<td>23.1.145</td>
<td>I2\textgamma2\textgamma</td>
<td>(1\textbullet0,0,0) (2\textbullet0,0,0) (2\textbullet0,0,0) (2\textbullet0,0,0)</td>
<td></td>
</tr>
<tr>
<td>23.2.146</td>
<td>I2\textgamma2\textgamma1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.3.147</td>
<td>I2'2'2'</td>
<td>C\textsubscript{2}</td>
<td>(0,0,0; a+b,c,a) (1\textbullet0,0,0) (2\textbullet0,0,0)' (2\textbullet0,0,0)' (2\textbullet0,0,0)</td>
</tr>
<tr>
<td>23.4.148</td>
<td>I\textsubscript{p} 2\textgamma2\textgamma</td>
<td>P\textsubscript{222}</td>
<td>(0,0,0; a,b,c) (1\textbullet0,0,0) (2\textbullet0,0,0) (2\textbullet0,0,0) (2\textbullet0,0,0)</td>
</tr>
<tr>
<td>23.5.149</td>
<td>I\textsubscript{p} 2\textgamma'2'2'</td>
<td>P\textsubscript{2,2,2\textsubscript{1}}</td>
<td>(0,0,1/4; a,b,c) (1\textbullet0,0,0) (2\textbullet0,1/2,1/2) (2\textbullet0,1/2,1/2) (2\textbullet0,0,0)</td>
</tr>
<tr>
<td>Magnetic Space Group</td>
<td>Elements</td>
<td>Pm'</td>
<td>Pm'a</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>24.1.150 I2,2,2,1</td>
<td></td>
<td>(1*0,0,0)</td>
<td>(2z*1/2,1/2,0)</td>
</tr>
<tr>
<td>24.2.151 I2,2,2,1'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.3.152 I2,2',2,1</td>
<td>C2</td>
<td>(1*0,0,0)</td>
<td>(2z*1/2,1/2,0)'</td>
</tr>
<tr>
<td>24.4.153 I2,2,2,1</td>
<td>P2,2,2</td>
<td>(1*0,0,0)</td>
<td>(2z*1/2,1/2,0)</td>
</tr>
<tr>
<td>24.5.154 I2,2',2,1</td>
<td>P222_1</td>
<td>(1*0,0,0)</td>
<td>(2z*0,0,1/2)</td>
</tr>
<tr>
<td>25.1.155 Pmm2</td>
<td></td>
<td>(1*0,0,0)</td>
<td>(mx*0,0,0)</td>
</tr>
<tr>
<td>25.2.156 Pmm2'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.3.157 Pm'm2'</td>
<td>Pm</td>
<td>(1*0,0,0)</td>
<td>(mx*0,0,0)'</td>
</tr>
<tr>
<td>25.4.158 Pm'm2</td>
<td>P2</td>
<td>(1*0,0,0)</td>
<td>(mx*0,0,0)'</td>
</tr>
<tr>
<td>25.5.159 P_2/mm2</td>
<td>Pmm2</td>
<td>(1*0,0,0)</td>
<td>(mx*0,0,0)</td>
</tr>
<tr>
<td>25.6.160 P_2/a mm2</td>
<td>Pmm2</td>
<td>(1*0,0,0)</td>
<td>(mx*0,0,0)</td>
</tr>
<tr>
<td>25.7.161 P_c mm2</td>
<td>Cmm2</td>
<td>(1*0,0,0)</td>
<td>(mx*0,0,0)</td>
</tr>
<tr>
<td>25.8.162 P_A mm2</td>
<td>Amm2</td>
<td>(1*0,0,0)</td>
<td>(mx*0,0,0)</td>
</tr>
<tr>
<td>25.9.163 P_f mm2</td>
<td>Fmm2</td>
<td>(1*0,0,0)</td>
<td>(mx*0,0,0)</td>
</tr>
<tr>
<td>25.10.164 P_2/cm'2'</td>
<td>Pmc2_1</td>
<td>(1*0,0,0)</td>
<td>(mx*0,0,0)</td>
</tr>
<tr>
<td>25.11.165 P_2/m'm2</td>
<td>Pcc2</td>
<td>(1*0,0,0)</td>
<td>(mx*0,0,1)</td>
</tr>
<tr>
<td>25.12.166 P_2/a m'm2</td>
<td>Pma2</td>
<td>(1*0,0,0)</td>
<td>(mx*1,0,0)</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td>Symbol</td>
<td>Parameters</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>25.13.167</td>
<td>$P_{a}m'm'2$</td>
<td>Abm2</td>
<td>$(0,0,0;a,2b,2c)$</td>
</tr>
<tr>
<td>26.1.168</td>
<td>Pmc_{21}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.2.169</td>
<td>Pmc_{21}'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.3.170</td>
<td>$Pm'c_{21}'$</td>
<td>Pc</td>
<td>$(0,0,0;a,b,c)$</td>
</tr>
<tr>
<td>26.4.171</td>
<td>Pmc'_{21}'</td>
<td>Pm</td>
<td>$(0,0,0;c,a,b)$</td>
</tr>
<tr>
<td>26.5.172</td>
<td>$Pm'c'_{21}$</td>
<td>P2$_1$</td>
<td>$(0,0,0;b,c,a)$</td>
</tr>
<tr>
<td>26.6.173</td>
<td>$P_{2a}mc_{21}$</td>
<td>Pmc$_2$</td>
<td>$(0,0,0;2a,b,c)$</td>
</tr>
<tr>
<td>26.7.174</td>
<td>$P_{2b}mc_{21}$</td>
<td>Pmc$_2$</td>
<td>$(0,0,0;a,2b,c)$</td>
</tr>
<tr>
<td>26.8.175</td>
<td>$P_{c}mc_{21}$</td>
<td>Cmc$_2$</td>
<td>$(0,0,0;2a,2b,c)$</td>
</tr>
<tr>
<td>26.9.176</td>
<td>$P_{2a}mc'_{21}'$</td>
<td>Pmn$_2$</td>
<td>$(0,0,0;2a,b,c)$</td>
</tr>
<tr>
<td>26.10.177</td>
<td>$P_{2b}m'c'_{21}$</td>
<td>Pca$_2$</td>
<td>$(0,0,0;2b,&c,c)$</td>
</tr>
<tr>
<td>27.1.178</td>
<td>Pcc_{2}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.2.179</td>
<td>Pcc_{21}'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.3.180</td>
<td>$Pc'c_{2}'$</td>
<td>Pc</td>
<td>$(0,0,0;a,b,c)$</td>
</tr>
<tr>
<td>27.4.181</td>
<td>$Pc'c_{2}'$</td>
<td>P2</td>
<td>$(0,0,0;b,c,a)$</td>
</tr>
<tr>
<td>27.5.182</td>
<td>$P_{2a}cc_{2}$</td>
<td>Pcc$_2$</td>
<td>$(0,0,0;2a,b,c)$</td>
</tr>
<tr>
<td>27.6.183</td>
<td>P\textsubscript{c} cc2</td>
<td>Ccc2</td>
<td>(0,0,0;2a,2b,c)</td>
</tr>
<tr>
<td>27.7.184</td>
<td>P\textsubscript{2}b c'c2'</td>
<td>Pnc2</td>
<td>(0,1/2,0;a,2b,c)</td>
</tr>
</tbody>
</table>

<p>| 28.1.185 | Pma2 | | (1*0,0,0) | (m\textsubscript{x}*1/2,0,0) | (m\textsubscript{y}*1/2,0,0) | (2\textsubscript{z}0,0,0) |
| 28.2.186 | Pma2' | | | | | | |
| 28.3.187 | Pm'a2' | P\textsubscript{c} | (0,0,0;c,6;a) | (10,0,0) | (m\textsubscript{x}*1/2,0,0)' | (m\textsubscript{y}*1/2,0,0) | (2\textsubscript{z}0,0,0)' |
| 28.4.188 | Pma'2' | P\textsubscript{m} | (1/4,0,0;c,a,b) | (10,0,0) | (m\textsubscript{x}*1/2,0,0) | (m\textsubscript{y}*1/2,0,0)' | (2\textsubscript{z}0,0,0)' |
| 28.5.189 | Pm'a2' | P\textsubscript{2} | (0,0,0;b,c,a) | (10,0,0) | (m\textsubscript{x}*1/2,0,0)' | (m\textsubscript{y}*1/2,0,0)' | (2\textsubscript{z}0,0,0) |
| 28.6.190 | P\textsubscript{2}b ma2 | Pma2 | (0,0,0;a,2b,c) | (10,0,0) | (m\textsubscript{x}*1/2,0,0) | (m\textsubscript{y}*1/2,0,0) | (2\textsubscript{z}0,0,0) |
| 28.7.191 | P\textsubscript{2}c ma2 | Pma2 | (0,0,0;a,b,2c) | (10,0,0) | (m\textsubscript{x}*1/2,0,0) | (m\textsubscript{y}*1/2,0,0) | (2\textsubscript{z}0,0,0) |
| 28.8.192 | P\textsubscript{A} ma2 | Ama2 | (0,0,0;a,2b,2c) | (10,0,0) | (m\textsubscript{x}*1/2,0,0) | (m\textsubscript{y}*1/2,0,0) | (2\textsubscript{z}0,0,0) |
| 28.9.193 | P\textsubscript{2}b m'a2' | P\textsubscript{ba2} | (0,1/2,0;a,2b,c) | (10,0,0) | (m\textsubscript{x}*1/2,1,0) | (m\textsubscript{y}*1/2,0,0) | (2\textsubscript{z}0,1,0) |
| 28.10.194 | P\textsubscript{2}c m'a2' | P\textsubscript{ca2} | (0,0,0;a,b,2c) | (10,0,0) | (m\textsubscript{x}*1/2,0,1) | (m\textsubscript{y}*1/2,0,0) | (2\textsubscript{z}0,0,1) |
| 28.11.195 | P\textsubscript{2}c ma'2' | Pmn2\textsubscript{1} | (1/4,0,0;a,b,2c) | (10,0,0) | (m\textsubscript{x}*1/2,0,0) | (m\textsubscript{y}*1/2,0,1) | (2\textsubscript{z}0,0,1) |
| 28.12.196 | P\textsubscript{2}c m'a'2 | Pnc2 | (0,0,0;b,6;2c) | (10,0,0) | (m\textsubscript{x}*1/2,0,1) | (m\textsubscript{y}*1/2,0,1) | (2\textsubscript{z}0,0,0) |
| 28.13.197 | P\textsubscript{A} m'a'2 | A\textsubscript{ba2} | (0,0,0;a,2b,2c) | (10,0,0) | (m\textsubscript{x}*1/2,1,0) | (m\textsubscript{y}*1/2,1,0) | (2\textsubscript{z}*0,0,0) |
| 29.1.198 | Pca2 (1) | (1(\ast)0,0,0) | ((m_x)(\ast)1/2,0,1/2) | ((m_y)(\ast)1/2,0,0) | (2(\ast)0,0,1/2) |
| 29.2.199 | Pca2({1'}) |
| 29.3.200 | Pc'a2 (_1)' (Pc) | (0,0,0;c,(\varepsilon),a) | (1(\ast)0,0,0) | ((m_x)(\ast)1/2,0,1/2)' | ((m_y)(\ast)1/2,0,0) | (2(\ast)0,0,1/2)' |
| 29.4.201 | Pca'2 (_1)' (Pc) | (1/4,0,0;b,(\varepsilon),c) | (1(\ast)0,0,0) | ((m_x)(\ast)1/2,0,1/2) | ((m_y)(\ast)1/2,0,0)' | (2(\ast)0,0,1/2)' |
| 29.5.202 | Pc'a2 (1) (P2_1) | (0,0,0;b,c,a) | (1(\ast)0,0,0) | ((m_x)(\ast)1/2,0,1/2)' | ((m_y)(\ast)1/2,0,0)' | (2(\ast)0,0,1/2) |
| 29.6.203 | P({2b}) ca2 (_1) (Pca2(1)) | (0,0,0;a,2b,c) | (1(\ast)0,0,0) | ((m_x)(\ast)1/2,0,1/2) | ((m_y)(\ast)1/2,0,0) | (2(\ast)0,0,1/2) |
| 29.7.204 | P({2b}) c'a2 (_1) (Pna2(1)) | (0,0,0;a,2b,c) | (1(\ast)0,0,0) | ((m_x)(\ast)1/2,1,1/2) | ((m_y)(\ast)1/2,1,0) | (2(\ast)0,0,1/2) |
| 30.1.205 | Pnc2 | (1(\ast)0,0,0) | ((m_x)(\ast)0,1/2,1/2) | ((m_y)(\ast)0,1/2,1/2) | (2(\ast)0,0,0) |
| 30.2.206 | Pnc2(1)' |
| 30.3.207 | Pn'c2' (Pc) | (0,1/4,0;a,b,c) | (1(\ast)0,0,0) | ((m_x)(\ast)0,1/2,1/2)' | ((m_y)(\ast)0,1/2,1/2) | (2(\ast)0,0,0)' |
| 30.4.208 | Pnc2' (Pc) | (0,0,0;c,a,b+c) | (1(\ast)0,0,0) | ((m_x)(\ast)0,1/2,1/2) | ((m_y)(\ast)0,1/2,1/2)' | (2(\ast)0,0,0)' |
| 30.5.209 | Pn'c2' (P2) | (0,0,0;b,c,a) | (1(\ast)0,0,0) | ((m_x)(\ast)0,1/2,1/2)' | ((m_y)(\ast)0,1/2,1/2)' | (2(\ast)0,0,0) |
| 30.6.210 | P({2a}) hc2 (Pnc2) | (0,0,0;2a,b,c) | (1(\ast)0,0,0) | ((m_x)(\ast)0,1/2,1/2) | ((m_y)(\ast)0,1/2,1/2) | (2(\ast)0,0,0) |
| 30.7.211 | P({2a}) nc2' (Pnn2) | (1/2,0,0;2a,b,c) | (1(\ast)0,0,0) | ((m_x)(\ast)0,1/2,1/2) | ((m_y)(\ast)1/2,1/2) | (2(\ast)1,0,0) |
| 31.1.212 | Pmn2 (_1) | (1(\ast)0,0,0) | ((m_x)(\ast)0,0,0) | ((m_y)(\ast)1/2,0,1/2) | (2(\ast)1/2,0,1/2) |</p>
<table>
<thead>
<tr>
<th>Group</th>
<th>Symbol</th>
<th>Settings</th>
<th>Magnetic</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pmn2₃</td>
<td>(0,0,0;(a,b, a+c))</td>
<td>(1*0,0,0)</td>
<td>((m_x*0,0,0)')</td>
<td>((m_y*1/2,0,1/2))</td>
<td>((2_z*1/2,0,1/2))'</td>
</tr>
<tr>
<td>Pm'n2₃</td>
<td>((0,0,0;b,\delta, c))</td>
<td>(1*0,0,0)</td>
<td>((m_x*0,0,0))</td>
<td>((m_y*1/2,0,1/2))'</td>
<td>((2_z*1/2,0,1/2))'</td>
</tr>
<tr>
<td>Pmn'2₃</td>
<td>((1/4,0,0;b,c, a))</td>
<td>(1*0,0,0)</td>
<td>((m_x*0,0,0)')</td>
<td>((m_y*1/2,0,1/2))'</td>
<td>((2_z*1/2,0,1/2))'</td>
</tr>
<tr>
<td>Pmn₂₁</td>
<td>((0,0,0;b,2b, c))</td>
<td>(1*0,0,0)</td>
<td>((m_x*0,0,0))</td>
<td>((m_y*1/2,0,1/2))</td>
<td>((2_z*1/2,0,1/2))</td>
</tr>
<tr>
<td>Pmn'₁₂</td>
<td>((1/4,1/2,0;2b,\delta, c))</td>
<td>(1*0,0,0)</td>
<td>((m_x*0,1,0))</td>
<td>((m_y*1/2,0,1/2))</td>
<td>((2_z*1/2,1,1/2))</td>
</tr>
<tr>
<td>Pba₂</td>
<td>(1*0,0,0)</td>
<td>((m_x*1/2,1/2,0))</td>
<td>((m_y*1/2,1/2,0))</td>
<td>((2_z*0,0,0))</td>
<td></td>
</tr>
<tr>
<td>Pb'a₂</td>
<td>(0,1/4,0;(c, \delta, a))</td>
<td>(1*0,0,0)</td>
<td>((m_x*1/2,1/2,0)')</td>
<td>((m_y*1/2,1/2,0))</td>
<td>((2_z*0,0,0)')</td>
</tr>
<tr>
<td>Pb'a₂</td>
<td>((0,0,0;b,c, a))</td>
<td>(1*0,0,0)</td>
<td>((m_x*1/2,1/2,0)')</td>
<td>((m_y*1/2,1/2,0))'</td>
<td>((2_z*0,0,0))'</td>
</tr>
<tr>
<td>P₂c b'a₂</td>
<td>((0,0,0;a,b,2c))</td>
<td>(1*0,0,0)</td>
<td>((m_x*1/2,1/2,0))</td>
<td>((m_y*1/2,1/2,0))</td>
<td>((2_z*0,0,0))</td>
</tr>
<tr>
<td>P₂c b'a₂</td>
<td>((0,0,0;a,b,2c))</td>
<td>(1*0,0,0)</td>
<td>((m_x*1/2,1/2,1))</td>
<td>((m_y*1/2,1/2,0))</td>
<td>((2_z*0,0,1))</td>
</tr>
<tr>
<td>P₂c b'a₂</td>
<td>((0,0,0;a,b,2c))</td>
<td>(1*0,0,0)</td>
<td>((m_x*1/2,1/2,1))</td>
<td>((m_y*1/2,1/2,1))</td>
<td>((2_z*0,0,0))</td>
</tr>
<tr>
<td>Pna₂</td>
<td>((0,1/4,0;(c, \delta, a)))</td>
<td>(1*0,0,0)</td>
<td>((m_x*1/2,1/2,2/1))</td>
<td>((m_y*1/2,1/2,2/1))</td>
<td>((2_z*0,0,1/2))'</td>
</tr>
<tr>
<td>Pna₂</td>
<td>((0,1/4,0;(c, \delta, a)))</td>
<td>(1*0,0,0)</td>
<td>((m_x*1/2,1/2,2/1))</td>
<td>((m_y*1/2,1/2,2/1))</td>
<td>((2_z*0,0,1/2))'</td>
</tr>
<tr>
<td>Magnetic Space Group Elements</td>
<td>Description</td>
<td>Symbol</td>
<td>Origin</td>
<td>Magnetic Translations</td>
<td>Wyckoff Positions</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>33.4.229 Pn'a_2' Pc</td>
<td>(1/4,0,0;c,a,b+c)</td>
<td>(1*0,0,0)</td>
<td>(m_x^{1/2},1/2,1/2)</td>
<td>(m_y^{1/2},1/2,0)'</td>
<td>(2*z,0,1/2)'</td>
</tr>
<tr>
<td>33.5.230 Pn'a_2' P2_1</td>
<td>(0,0,0;b,c,a)</td>
<td>(1*0,0,0)</td>
<td>(m_x^{1/2},1/2,1/2)'</td>
<td>(m_y^{1/2},1/2,0)'</td>
<td>(2*z,0,1/2)</td>
</tr>
<tr>
<td>34.1.231 Pnn2</td>
<td></td>
<td>(1*0,0,0)</td>
<td>(m_x^{1/2},1/2,1/2)</td>
<td>(m_y^{1/2},1/2,1/2)</td>
<td>(2*z,0,0)</td>
</tr>
<tr>
<td>34.2.232 Pnn21'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.3.233 Pn'n2' Pc</td>
<td>(0,1/4,0;a,b,a+c)</td>
<td>(1*0,0,0)</td>
<td>(m_x^{1/2},1/2,1/2)'</td>
<td>(m_y^{1/2},1/2,1/2)'</td>
<td>(2*z,0,0)'</td>
</tr>
<tr>
<td>34.4.234 Pn'n2' P2</td>
<td>(0,0,0;b,c,a)</td>
<td>(1*0,0,0)</td>
<td>(m_x^{1/2},1/2,1/2)'</td>
<td>(m_y^{1/2},1/2,1/2)'</td>
<td>(2*z,0,0)</td>
</tr>
<tr>
<td>34.5.235 P_\text{nn2} Fdd2</td>
<td>(0,0,0;2a,2b,2c)</td>
<td>(1*0,0,0)</td>
<td>(m_x^{1/2},1/2,1/2)</td>
<td>(m_y^{1/2},1/2,1/2)</td>
<td>(2*z,0,0)</td>
</tr>
<tr>
<td>35.1.236 Cmm2</td>
<td></td>
<td>(1*0,0,0)</td>
<td>(m_x^{0,0,0})</td>
<td>(m_y^{0,0,0})</td>
<td>(2*z,0,0)</td>
</tr>
<tr>
<td>35.2.237 Cmm21'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.3.238 Cm'm2' Cm</td>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(m_x^{0,0,0})'</td>
<td>(m_y^{0,0,0})</td>
<td>(2*z,0,0)'</td>
</tr>
<tr>
<td>35.4.239 Cm'm2' P2</td>
<td>(0,0,0;b,c,(a+b)/2)</td>
<td>(1*0,0,0)</td>
<td>(m_x^{0,0,0})'</td>
<td>(m_y^{0,0,0})'</td>
<td>(2*z,0,0)</td>
</tr>
<tr>
<td>35.5.240 C_{2c} mm2 Cmm2</td>
<td>(0,0,0;a,b,2c)</td>
<td>(1*0,0,0)</td>
<td>(m_x^{0,0,0})</td>
<td>(m_y^{0,0,0})</td>
<td>(2*z,0,0)</td>
</tr>
<tr>
<td>35.6.241 C_{p} mm2 Pmm2</td>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(m_x^{0,0,0})</td>
<td>(m_y^{0,0,0})</td>
<td>(2*z,0,0)</td>
</tr>
<tr>
<td>35.7.242 C_{i} mm2 Imm2</td>
<td>(0,0,0;a,b,2c)</td>
<td>(1*0,0,0)</td>
<td>(m_x^{0,0,0})</td>
<td>(m_y^{0,0,0})</td>
<td>(2*z,0,0)</td>
</tr>
<tr>
<td>35.8.243 C_{2c} m'm2' Cmc2_1</td>
<td>(0,0,0;b,\delta,2c)</td>
<td>(1*0,0,0)</td>
<td>(m_x^{0,0,1})</td>
<td>(m_y^{0,0,0})</td>
<td>(2*z,0,1)</td>
</tr>
<tr>
<td>35.9.244 C_{2c} m'm2' Ccc2</td>
<td>(0,0,0;a,b,2c)</td>
<td>(1*0,0,0)</td>
<td>(m_x^{0,0,1})</td>
<td>(m_y^{0,0,1})</td>
<td>(2*z,0,0)</td>
</tr>
<tr>
<td>Page Number</td>
<td>Space Group</td>
<td>Lattice</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>35.10.245</td>
<td>Cₚ m'm₂'</td>
<td>Pma₂</td>
<td>(1/4,1/4,0;b,Δₜ,c)</td>
<td>(1*0,0,0)</td>
<td>(mₓ*1/2,1/2,0)</td>
</tr>
<tr>
<td>35.11.246</td>
<td>Cₚ m'm₂</td>
<td>Pba₂</td>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(mₓ*1/2,1/2,0)</td>
</tr>
<tr>
<td>35.12.247</td>
<td>C₁ m'm₂'</td>
<td>Ima₂</td>
<td>(1/4,1/4,0;b,Δₜ,c)</td>
<td>(1*0,0,0)</td>
<td>(mₓ*0,0,1)</td>
</tr>
<tr>
<td>35.13.248</td>
<td>C₁ m'm₂</td>
<td>Iba₂</td>
<td>(0,0,0;a,b,2c)</td>
<td>(1*0,0,0)</td>
<td>(mₓ*0,0,1)</td>
</tr>
<tr>
<td>36.1.249</td>
<td>Cmc₂₁</td>
<td></td>
<td>(1*0,0,0)</td>
<td>(mₓ*0,0,0)</td>
<td>(mᵧ*0,0,1/2)</td>
</tr>
<tr>
<td>36.2.250</td>
<td>Cmc₂₁'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.3.251</td>
<td>Cm'c₂₁'</td>
<td>Cc</td>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(mₓ*0,0,0)'</td>
</tr>
<tr>
<td>36.4.252</td>
<td>Cmc₂₁'</td>
<td>Cm</td>
<td>(0,0,0;b,Δₜ,c)</td>
<td>(1*0,0,0)</td>
<td>(mₓ*0,0,0)</td>
</tr>
<tr>
<td>36.5.253</td>
<td>Cm'c₂₁</td>
<td>P2₁</td>
<td>(0,0,0;b,c,(a+b)/2)</td>
<td>(1*0,0,0)</td>
<td>(mₓ*0,0,0)'</td>
</tr>
<tr>
<td>36.6.254</td>
<td>Cₚ mc₂₁</td>
<td>Pmc₂₁</td>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(mₓ*0,0,0)</td>
</tr>
<tr>
<td>36.7.255</td>
<td>Cₚ m'c₂₁</td>
<td>Pca₂₁</td>
<td>(1/4,1/4,0;b,Δₜ,c)</td>
<td>(1*0,0,0)</td>
<td>(mₓ*1/2,1/2,0)</td>
</tr>
<tr>
<td>36.8.256</td>
<td>Cₚ mc₂₁'</td>
<td>Pmn₂₁</td>
<td>(0,1/4,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(mₓ*0,0,0)</td>
</tr>
<tr>
<td>36.9.257</td>
<td>Cₚ m'c₂₁'</td>
<td>Pna₂₁</td>
<td>(0,0,0;b,Δₜ,c)</td>
<td>(1*0,0,0)</td>
<td>(mₓ*1/2,1/2,0)</td>
</tr>
<tr>
<td>37.1.258</td>
<td>Ccc₂</td>
<td></td>
<td>(1*0,0,0)</td>
<td>(mₓ*0,0,1/2)</td>
<td>(mᵧ*0,0,1/2)</td>
</tr>
<tr>
<td>37.2.259</td>
<td>Ccc₂₁'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 37.3.260 | Cc'c₂' | Cc | (0,0,0;a,b,c) | (1*0,0,0) | (mₓ*0,0,1/2)' | (mᵧ*0,0,1/2) | (2*₀,0,0)'}
<table>
<thead>
<tr>
<th>Number</th>
<th>Symbol</th>
<th>Space Group</th>
<th>Symbol Interpretation</th>
<th>Transformation</th>
<th>Transformation</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.4.261</td>
<td>Cc'c'2</td>
<td>P2</td>
<td>(0,0,0; b, c, {a+b}/2)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,0,1/2)'</td>
<td>(m_y*0,0,1/2)'</td>
</tr>
<tr>
<td>37.5.262</td>
<td>C_p</td>
<td>Pcc2</td>
<td>(0,0,0; a, b, c)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,0,1/2)</td>
<td>(m_y*0,0,1/2)</td>
</tr>
<tr>
<td>37.6.263</td>
<td>C_p</td>
<td>Pnc2</td>
<td>(1/4,1/4,0; a, b, c)</td>
<td>(1*0,0,0)</td>
<td>(m_x*1/2,1/2,1/2)</td>
<td>(m_y*0,0,1/2)</td>
</tr>
<tr>
<td>37.7.264</td>
<td>C_p</td>
<td>Pnn2</td>
<td>(0,0,0; a, b, c)</td>
<td>(1*0,0,0)</td>
<td>(m_x*1/2,1/2,1/2)</td>
<td>(m_y*1/2,1/2,1/2)</td>
</tr>
<tr>
<td>38.1.265</td>
<td>Amm2</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td>(2 *0,0,0)</td>
<td></td>
</tr>
<tr>
<td>38.2.266</td>
<td>Amm21'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.3.267</td>
<td>Am'm2'</td>
<td>Cm</td>
<td>(0,0,0; c, δ, a)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,0,0)'</td>
<td>(m_y*0,0,0)</td>
</tr>
<tr>
<td>38.4.268</td>
<td>Am'm2'</td>
<td>Pm</td>
<td>(0,0,0; b, δ, (b+c)/2)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)'</td>
</tr>
<tr>
<td>38.5.269</td>
<td>Am'm2'</td>
<td>C2</td>
<td>(0,0,0; b, c, a)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,0,0)'</td>
<td>(m_y*0,0,0)'</td>
</tr>
<tr>
<td>38.6.270</td>
<td>A_2a</td>
<td>mm2</td>
<td>(0,0,0; 2a, b, c)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
</tr>
<tr>
<td>38.7.271</td>
<td>A_p</td>
<td>mm2</td>
<td>(0,0,0; a, b, c)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
</tr>
<tr>
<td>38.8.272</td>
<td>A_2a</td>
<td>mm2</td>
<td>(0,0,0; 2a, b, c)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
</tr>
<tr>
<td>38.9.273</td>
<td>A_2a</td>
<td>mm2'</td>
<td>(1/2,0,0; 2a, b, c)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td>(m_y*1,0,0)</td>
</tr>
<tr>
<td>38.10.274</td>
<td>A_p</td>
<td>m'm2'</td>
<td>(0,0,0; b, δ, c)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,1/2,1/2)</td>
<td>(m_y*0,0,0)</td>
</tr>
<tr>
<td>38.11.275</td>
<td>A_p</td>
<td>mm2'</td>
<td>(0,1/4,0; a, b, c)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,1/2,1/2)</td>
</tr>
<tr>
<td>38.12.276</td>
<td>A_p</td>
<td>m'm2'</td>
<td>(0,0,0; a, b, c)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,1/2,1/2)</td>
<td>(m_y*0,1/2,1/2)</td>
</tr>
<tr>
<td>38.13.277</td>
<td>A_p</td>
<td>m'm2'</td>
<td>(0,0,0; 2a, b, c)</td>
<td>(1*0,0,0)</td>
<td>(m_x*1,0,0)</td>
<td>(m_y*1,0,0)</td>
</tr>
<tr>
<td>No.</td>
<td>Element</td>
<td>Description</td>
<td>Point Group</td>
<td>Magnetic Elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.1.278</td>
<td>Abm2</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,1/2,0)</td>
<td>(m_y*0,1/2,0)</td>
<td>(2_z*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>39.2.279</td>
<td>Abm2'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.3.280</td>
<td>Ab'm2'</td>
<td>Cm</td>
<td>(0,1/4,0;c,b,a)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,1/2,0)'</td>
<td>(m_y*0,1/2,0)</td>
</tr>
<tr>
<td>39.4.281</td>
<td>Abm2'</td>
<td>Pc</td>
<td>(0,0,0;(b+c)/2,a,b)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,1/2,0)</td>
<td>(m_y*0,1/2,0)'</td>
</tr>
<tr>
<td>39.5.282</td>
<td>Ab'm2'</td>
<td>C2</td>
<td>(0,0,0;b,c,a)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,1/2,0)'</td>
<td>(m_y*0,1/2,0)'</td>
</tr>
<tr>
<td>39.6.283</td>
<td>A2a bm2</td>
<td>Abm2</td>
<td>(0,0,0;2a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,1/2,0)</td>
<td>(m_y*0,1/2,0)</td>
</tr>
<tr>
<td>39.7.284</td>
<td>A2bm2</td>
<td>Pma2</td>
<td>(0,0,0;b,c,a)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,1/2,0)</td>
<td>(m_y*0,1/2,0)</td>
</tr>
<tr>
<td>39.8.285</td>
<td>A2bm2</td>
<td>Lma2</td>
<td>(0,0,0;b,2c,a)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,1/2,0)</td>
<td>(m_y*0,1/2,0)</td>
</tr>
<tr>
<td>39.9.286</td>
<td>A2a b'm2'</td>
<td>Aba2</td>
<td>(0,0,0;2a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(m_x*1,1/2,0)</td>
<td>(m_y*1,1/2,0)</td>
</tr>
<tr>
<td>39.10.287</td>
<td>A2b'm2'</td>
<td>Pmc2_1</td>
<td>(0,1/4,0;b,c,a)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,0,1/2)</td>
<td>(m_y*0,1/2,0)</td>
</tr>
<tr>
<td>39.11.288</td>
<td>A2b'm2'</td>
<td>Pca2_1</td>
<td>(0,1/4,0;b,c,a)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,0,1/2)</td>
<td>(m_y*0,0,1/2)</td>
</tr>
<tr>
<td>39.12.289</td>
<td>A2b'm2'</td>
<td>Pcc2</td>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(m_x*0,0,1/2)</td>
<td>(m_y*0,0,1/2)</td>
</tr>
<tr>
<td>39.13.290</td>
<td>A2b'm2'</td>
<td>Iba2</td>
<td>(0,0,0;2a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(m_x*1,1/2,0)</td>
<td>(m_y*1,1/2,0)</td>
</tr>
<tr>
<td>40.1.291</td>
<td>Ama2</td>
<td>(1*0,0,0)</td>
<td>(m_x*1/2,0,0)</td>
<td>(m_y*1/2,0,0)</td>
<td>(2_z*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>40.2.292</td>
<td>Ama21'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.3.293</td>
<td>Am'a2'</td>
<td>Cc</td>
<td>(0,0,0;c,b,a)</td>
<td>(1*0,0,0)</td>
<td>(m_x*1/2,0,0)'</td>
<td>(m_y*1/2,0,0)</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 19
40.4.294 Ama'2' Pm (1/4,0,0;b,\&c,(b+c)/2) (1*0,0,0) (m_x*1/2,0,0) (m_y*1/2,0,0)' (2_z*0,0,0)'
40.5.295 Am'a2 C2 (0,0,0;b,c,a) (1*0,0,0) (m_x*1/2,0,0)' (m_y*1/2,0,0)' (2_z*0,0,0)
40.6.296 A_p ma2 Pma2 (0,0,0;a,b,c) (1*0,0,0) (m_x*1/2,0,0) (m_y*1/2,0,0) (2*z*0,0,0)
40.7.297 A_p ma2' Pnma2 (0,0,0;\{b+c\},a,b) (1*0,0,0) (m_x*1/2,0,0) (m_y*1/2,0,0) (2*z*0,0,0)
40.8.298 A_p ma2' Pmn2 (1/4,1/4,0;a,b,c) (1*0,0,0) (m_x*1/2,0,0) (m_y*1/2,0,0) (2*z*0,0,0)
40.9.299 A_p ma2' Pnn2 (0,0,0;a,b,c) (1*0,0,0) (m_x*1/2,0,0) (m_y*1/2,0,0) (2*z*0,0,0)

41.1.300 Aba2 (1*0,0,0) (m_x*1/2,1/2,0) (m_y*1/2,1/2,0) (2*z*0,0,0)
41.2.301 Aba21'
41.3.302 Ab'a2 Cc (0,1/4,0;c,\&d,a) (1*0,0,0) (m_x*1/2,1/2,0)' (m_y*1/2,1/2,0) (2*z*0,0,0)'
41.4.303 Aba'2' Pd (1/4,0,0;\{b+c\}/2,a,b) (1*0,0,0) (m_x*1/2,1/2,0) (m_y*1/2,1/2,0)' (2*z*0,0,0)'
41.5.304 Ab'a2 C2 (0,0,0;b,c,a) (1*0,0,0) (m_x*1/2,1/2,0)' (m_y*1/2,1/2,0)' (2*z*0,0,0)
41.6.305 A_p ba2 Pba2 (0,0,0;a,b,c) (1*0,0,0) (m_x*1/2,1/2,0) (m_y*1/2,1/2,0) (2*z*0,0,0)
41.7.306 A_p b'a2' Pca2 (0,1/4,0;\{b+a\},\&c) (1*0,0,0) (m_x*1/2,0,1/2) (m_y*1/2,0,1/2) (2*z*0,1/2,1/2)
41.8.307 A_p ba'2' Pna2 (0,1/4,0;\&b,c) (1*0,0,0) (m_x*1/2,0,1/2) (m_y*1/2,0,1/2) (2*z*0,1/2,1/2)
41.9.308 A_p b'a2' Pnc2 (0,0,0;b,\&c) (1*0,0,0) (m_x*1/2,0,1/2) (m_y*1/2,0,1/2) (2*z*0,0,0)

42.1.309 Fmm2 (1*0,0,0) (m_x*0,0,0) (m_y*0,0,0) (2*z*0,0,0)
<table>
<thead>
<tr>
<th>Magnetic Space Group Elements</th>
<th>Description</th>
<th>Matrix Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>42.2.310 Fmm2'</td>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>42.3.311 F'm2' Cm</td>
<td>(0,0,0; a, b, (a+c)/2)</td>
<td>(m_x*0,0,0)</td>
</tr>
<tr>
<td>42.4.312 F'm2' C2</td>
<td>(0,0,0; b, c, (a+b)/2)</td>
<td>(m_x*0,0,0)</td>
</tr>
<tr>
<td>42.5.313 F_c mm2 Cmm2</td>
<td>(0,0,0; a, b, c)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>42.6.314 F_A mm2 Amm2</td>
<td>(0,0,0; a, b, c)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>42.7.315 F_c mm'2 Cmc2'</td>
<td>(0,1/4,0; a, b, c)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>42.8.316 F_c m'm2' Ccc2'</td>
<td>(1/4,1/4,0; a, b, c)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>42.9.317 F_A m'm2' Abm2</td>
<td>(1/4,1/4,0; a, b, c)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>42.10.318 F_A mm'2' Ama2</td>
<td>(1/4,1/4,0; a, b, c)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>42.11.319 F_A m'm'2 Aba2</td>
<td>(0,0,0; a, b, c)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>43.1.320 Fdd2</td>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>43.2.321 Fdd2'</td>
<td></td>
<td>(m_x*1/4,1/4,1/4)</td>
</tr>
<tr>
<td>43.3.322 F'd'2' Cc</td>
<td>(0,1/8,0; a, b, (a+c)/2)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>43.4.323 F'd'2' C2</td>
<td>(0,0,0; b, c, (a+b)/2)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>44.1.324 Imm2</td>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>44.2.325 Imm2'</td>
<td></td>
<td>(m_x*0,0,0)</td>
</tr>
<tr>
<td>Magnet Number</td>
<td>Space Group</td>
<td>Symbol</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>44.3.326</td>
<td>Im'm2'</td>
<td>Cm</td>
</tr>
<tr>
<td>44.4.327</td>
<td>Im'm2'</td>
<td>C2</td>
</tr>
<tr>
<td>44.5.328</td>
<td>Pmm2</td>
<td>(0,0,0;(a,b,c))</td>
</tr>
<tr>
<td>44.6.329</td>
<td>Pmn2'</td>
<td>(0,1/4,0;(a,b,c))</td>
</tr>
<tr>
<td>44.7.330</td>
<td>Pnn2</td>
<td>(0,0,0;(a,b,c))</td>
</tr>
<tr>
<td>45.1.331</td>
<td>Iba2</td>
<td></td>
</tr>
<tr>
<td>45.2.332</td>
<td>Iba2'</td>
<td></td>
</tr>
<tr>
<td>45.3.333</td>
<td>Ib'a2'</td>
<td>Cc</td>
</tr>
<tr>
<td>45.4.334</td>
<td>Ib'a2'</td>
<td>C2</td>
</tr>
<tr>
<td>45.5.335</td>
<td>Pcc2</td>
<td>(0,0,0;(a,b,c))</td>
</tr>
<tr>
<td>45.6.336</td>
<td>Pca2'</td>
<td>(1/4,1/4,0;(a,b,c))</td>
</tr>
<tr>
<td>45.7.337</td>
<td>Pba2</td>
<td>(0,0,0;(a,b,c))</td>
</tr>
<tr>
<td>46.1.338</td>
<td>Ima2</td>
<td></td>
</tr>
<tr>
<td>46.2.339</td>
<td>Ima2'</td>
<td></td>
</tr>
<tr>
<td>46.3.340</td>
<td>Im'a2'</td>
<td>Cc</td>
</tr>
<tr>
<td>46.4.341</td>
<td>Ima'2'</td>
<td>Cm</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 22
<p>| 46.5.342 | Im'a'2 | C2 | (0,0,0;a+b,c,a) | (10,0,0) | (m_x1/2,0,0)' | (m_y1/2,0,0)' | (2_z0,0,0) |
| 46.6.343 | I_p ma2 | Pma2 | (0,0,0;a,b,c) | (10,0,0) | (m_x1/2,0,0) | (m_y1/2,0,0) | (2_z0,0,0) |
| 46.7.344 | I_p ma2' | Pna2 | (1/4,1/4,0;a,b,c) | (10,0,0) | (m_x0,1/2,1/2) | (m_y1/2,0,0) | (2_z1/2,1/2) |
| 46.8.345 | I_p ma2'' | Pmc2 | (1/4,1/4,0;a,b,c) | (10,0,0) | (m_x1/2,0,0) | (m_y0,1/2,1/2) | (2_z1/2,1/2) |
| 46.9.346 | I_p ma2' | Pnc2 | (0,0,0;a,b,c) | (10,0,0) | (m_x1/2,1/2) | (m_y0,1/2,1/2) | (2_z0,0,0) |
| 47.1.347 | Pmmm | | | (10,0,0) | (2_x0,0,0) | (2_y0,0,0) | (2_z0,0,0) |
| 47.2.348 | Pmmm1' | | | | | | |
| 47.3.349 | Pm'mm | Pmm2 | (0,0,0;b,c,a) | (10,0,0) | (2_x0,0,0) | (2_y0,0,0)' | (2_z0,0,0)' |
| 47.4.350 | Pm'm'm | P2/m | (0,0,0;b,c,a) | (10,0,0) | (2_x0,0,0)' | (2_y0,0,0)' | (2_z0,0,0)' |
| 47.5.351 | Pm'm'm' | P222 | (0,0,0;a,b,c) | (10,0,0) | (2_x0,0,0)' | (2_y0,0,0)' | (2_z0,0,0)' |
| 47.6.352 | P_{2a}mmm | Pmmm | (0,0,0;2a,b,c) | (10,0,0) | (2_x0,0,0) | (2_y0,0,0) | (2_z0,0,0) |
| 47.7.353 | P_cmmm | Cmmm | (0,0,0;2a,2b,c) | (10,0,0) | (2_x0,0,0) | (2_y0,0,0) | (2_z0,0,0) |
| 47.8.354 | P_fmmm | Fmmm | (0,0,0;2a,2b,2c) | (10,0,0) | (2_x0,0,0) | (2_y0,0,0) | (2_z0,0,0) |
| 47.9.355 | P\textsubscript{2}a mmm' | Pmma | ((1/2,0,0;2a,b,c)) | (1*0,0,0) | (2\textsubscript{x} *1,0,0) | (2\textsubscript{y} *1,0,0) | (2\textsubscript{z} 0,0,0) |
| 47.10.356 | P\textsubscript{2c} m'm'm | Pccm | ((0,0,0;a,b,2c)) | (10,0,0) | (2\textsubscript{x} *0,0,1) | (2\textsubscript{y} *0,0,1) | (2\textsubscript{z} 0,0,0) |
| 47.11.357 | P\textsubscript{c} mmm' | Cmma | ((1/2,0,0;2b,2&i,c)) | (10,0,0) | (2\textsubscript{x} *1,0,0) | (2\textsubscript{y} *1,0,0) | (2\textsubscript{z} 0,0,0) |
| 48.1.358 | Pnnn | () | () | (10,0,0) | (2\textsubscript{x} *0,0,0) | (2\textsubscript{y} *0,0,0) | (2\textsubscript{z} 0,0,0) |
| 48.2.359 | Pnnn1' | () | () | () | () | () | () |
| 48.3.360 | Pn'n'n | Pnn2 | ((0,0,0;b,c,a)) | (10,0,0) | (2\textsubscript{x} *0,0,0) | (2\textsubscript{y} *0,0,0)' | (2\textsubscript{z} 0,0,0)' |
| 48.4.361 | Pn'n'n | P2/c | ((1/4,1/4,1/4;b,c,a+b)) | (10,0,0) | (2\textsubscript{x} *0,0,0)' | (2\textsubscript{y} *0,0,0)' | (2\textsubscript{z} 0,0,0) |
| 48.5.362 | Pn'n'n | P222 | ((0,0,0;a,b,c)) | (10,0,0) | (2\textsubscript{x} *0,0,0)' | (2\textsubscript{y} *0,0,0)' | (2\textsubscript{z} 0,0,0) |
| 48.6.363 | P\textsubscript{F} nnn | Fddd | ((0,0,0;2a,2b,2c)) | (10,0,0) | (2\textsubscript{x} *0,0,0) | (2\textsubscript{y} *0,0,0) | (2\textsubscript{z} 0,0,0) |
| 49.1.364 | Pccm | () | () | (10,0,0) | (2\textsubscript{x} *0,0,1/2) | (2\textsubscript{y} *0,0,1/2) | (2\textsubscript{z} *0,0,0) |</p>
<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>Magnetic Space Group</th>
<th>Primitive Cell Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.2.365</td>
<td>Pccm1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.3.366</td>
<td>Pc'cm</td>
<td>Pma2 (0,0,1/4;c,a,&a)</td>
<td>(10,0,0) (2x0,0,1/2) (2y0,0,1/2) (2z*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(&0,0,0)' (mx0,0,1/2)' (my0,0,1/2)' (mz*0,0,0)'</td>
<td></td>
</tr>
<tr>
<td>49.3.366</td>
<td>Pccm'</td>
<td>Pcc2 (0,0,0;a,b,c)</td>
<td>(10,0,0) (2x0,0,1/2) (2y0,0,1/2) (2z*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(&0,0,0)' (mx0,0,1/2)' (my0,0,1/2)' (mz*0,0,0)'</td>
<td></td>
</tr>
<tr>
<td>49.4.367</td>
<td>Pc'c'm</td>
<td>P2/m (0,0,0;b,c,a)</td>
<td>(10,0,0) (2x0,0,1/2) (2y0,0,1/2) (2z*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(&0,0,0)' (mx0,0,1/2)' (my0,0,1/2)' (mz*0,0,0)'</td>
<td></td>
</tr>
<tr>
<td>49.5.368</td>
<td>Pc'cm'</td>
<td>P2/c (0,0,0;a,b,c)</td>
<td>(10,0,0) (2x0,0,1/2) (2y0,0,1/2) (2z*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(&0,0,0)' (mx0,0,1/2)' (my0,0,1/2)' (mz*0,0,0)'</td>
<td></td>
</tr>
<tr>
<td>49.6.369</td>
<td>Pc'c'm'</td>
<td>P222 (0,0,0;2a,b,c)</td>
<td>(10,0,0) (2x0,0,1/2) (2y0,0,1/2) (2z*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(&0,0,0)' (mx0,0,1/2)' (my0,0,1/2)' (mz*0,0,0)'</td>
<td></td>
</tr>
<tr>
<td>49.8.371</td>
<td>P2a ccm</td>
<td>Pccm (0,0,0;2a,b,c)</td>
<td>(10,0,0) (2x0,0,1/2) (2y0,0,1/2) (2z*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(&0,0,0)' (mx0,0,1/2)' (my0,0,1/2)' (mz*0,0,0)'</td>
<td></td>
</tr>
<tr>
<td>49.9.372</td>
<td>P2a ccm'</td>
<td>Cccm (0,0,0;2a,2b,c)</td>
<td>(10,0,0) (2x0,0,1/2) (2y0,0,1/2) (2z*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(&0,0,0)' (mx0,0,1/2)' (my0,0,1/2)' (mz*0,0,0)'</td>
<td></td>
</tr>
<tr>
<td>50.10.373</td>
<td>P2a ccm'</td>
<td>Pcca (1/2,0,0;2a,b,c)</td>
<td>(10,0,0) (2x1,0,1/2) (2y1,0,1/2) (2z*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(&1,0,0)' (mx0,0,1/2)' (my0,0,1/2)' (mz*1,0,0)'</td>
<td></td>
</tr>
<tr>
<td>50.11.374</td>
<td>P2a c'c'm</td>
<td>Pmna (0,0,0;c,b,2a)</td>
<td>(10,0,0) (2x1,0,1/2) (2y1,0,1/2) (2z*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(&0,0,0)' (mx1,0,1/2)' (my1,0,1/2)' (mz*0,0,0)'</td>
<td></td>
</tr>
<tr>
<td>50.11.374</td>
<td>P2a c'c'm'</td>
<td>Pban (0,0,0;1/4;c,b,2a)</td>
<td>(10,0,0) (2x0,0,1/2) (2y0,0,1/2) (2z*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(&1,0,0)' (mx1,0,1/2)' (my1,0,1/2)' (mz*1,0,0)'</td>
<td></td>
</tr>
<tr>
<td>50.13.376</td>
<td>P2a ccm'</td>
<td>Ccca (1/2,1/2,1/4;2a,2b,c)</td>
<td>(10,0,0) (2x1,0,1/2) (2y1,0,1/2) (2z*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(&1,0,0)' (mx0,0,1/2)' (my0,0,1/2)' (mz*1,0,0)</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Type</td>
<td>Space Group</td>
<td>Basis Vectors</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>50.1.377</td>
<td>Pban</td>
<td>(1*0,0,0)</td>
<td>(&*1/2,1/2,0)</td>
</tr>
<tr>
<td>50.2.378</td>
<td>Pban1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.3.379</td>
<td>Pb'an</td>
<td>(0,0,0;c,&x,a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pnc2</td>
<td>(1*0,0,0)</td>
<td>(&*1/2,1/2,0)'</td>
</tr>
<tr>
<td>50.4.380</td>
<td>Pban'</td>
<td>(0,0,0;a,b,c)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pba2</td>
<td>(1*0,0,0)</td>
<td>(&*1/2,1/2,0)'</td>
</tr>
<tr>
<td>50.5.381</td>
<td>Pb'a'n</td>
<td>(1/4,1/4,0;b,c,a+b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2/c</td>
<td>(1*0,0,0)</td>
<td>(&*1/2,1/2,0)'</td>
</tr>
<tr>
<td>50.6.382</td>
<td>Pb'an'</td>
<td>(1/4,1/4,0;c,&x,a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2/c</td>
<td>(1*0,0,0)</td>
<td>(&*1/2,1/2,0)'</td>
</tr>
<tr>
<td>50.7.383</td>
<td>Pb'a'n'</td>
<td>(0,0,0;a,b,c)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P222</td>
<td>(1*0,0,0)</td>
<td>(&*1/2,1/2,0)'</td>
</tr>
<tr>
<td>50.8.384</td>
<td>P2c ban</td>
<td>(0,0,0;a,b,2c)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pban</td>
<td>(1*0,0,0)</td>
<td>(&*1/2,1/2,0)</td>
</tr>
<tr>
<td>50.9.385</td>
<td>P2c b'an</td>
<td>(1/4,1/4,1/2;a,2&x,b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pnna</td>
<td>(1*0,0,0)</td>
<td>(&*1/2,1/2,1)</td>
</tr>
<tr>
<td>50.10.386</td>
<td>P2c b'a'n</td>
<td>(0,0,1/2;a,b,2c)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pnna</td>
<td>(1*0,0,0)</td>
<td>(&*1/2,1/2,0)</td>
</tr>
<tr>
<td>Ref.</td>
<td>Space Group</td>
<td>Description</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>51.1.387</td>
<td>Pmma</td>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>51.2.388</td>
<td>Pmma'</td>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>51.3.389</td>
<td>Pm'ma</td>
<td>Pmc2₁</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>51.4.390</td>
<td>Pmm'a</td>
<td>Pma2</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>51.5.391</td>
<td>Pmma'</td>
<td>Pmm2</td>
<td>(1/4,0,0;a,b,c)</td>
</tr>
<tr>
<td>51.6.392</td>
<td>Pm'ma</td>
<td>P2/c</td>
<td>(0,0,0;b,c,a)</td>
</tr>
<tr>
<td>51.7.393</td>
<td>Pmm'a</td>
<td>P2₁/m</td>
<td>(0,0,0;c,a,b)</td>
</tr>
<tr>
<td>51.8.394</td>
<td>Pm'ma</td>
<td>P2/m</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>51.9.395</td>
<td>Pmm'a</td>
<td>P222₁</td>
<td>(0,0,0;b,c,a)</td>
</tr>
<tr>
<td>51.10.396</td>
<td>P₂b mma</td>
<td>Pmma</td>
<td>(0,0,0;a,2b,c)</td>
</tr>
<tr>
<td>51.11.397</td>
<td>P₂c mma</td>
<td>Pmma</td>
<td>(0,0,0;a,b,2c)</td>
</tr>
<tr>
<td>51.12.398</td>
<td>Pₐ mma</td>
<td>Cmcm</td>
<td>(0,0,0;2b,2c,a)</td>
</tr>
<tr>
<td>51.13.399</td>
<td>P<sub>2</sub>b m'ma</td>
<td>Pbcm</td>
<td>(0,1/2,0; c,a,2b)</td>
</tr>
<tr>
<td>51.14.400</td>
<td>P<sub>2</sub>b mma'</td>
<td>Pmnm</td>
<td>(1/4,0,0; a,2b,c)</td>
</tr>
<tr>
<td>51.15.401</td>
<td>P<sub>2</sub>b m'ma'</td>
<td>Pnna</td>
<td>(0,0,0; 2b,c,a)</td>
</tr>
<tr>
<td>51.16.402</td>
<td>P<sub>2</sub>c m'ma</td>
<td>Pbam</td>
<td>(0,0,1/2; 2c,a,b)</td>
</tr>
<tr>
<td>51.17.403</td>
<td>P<sub>2</sub>c mm'a</td>
<td>Pbcm</td>
<td>(0,0,1/2; b,2c,a)</td>
</tr>
<tr>
<td>51.18.404</td>
<td>P<sub>2</sub>c m'm'a</td>
<td>Pcca</td>
<td>(0,0,0; a,b,2c)</td>
</tr>
<tr>
<td>51.19.405</td>
<td>P<sub>A</sub> m'm'a</td>
<td>Cmca</td>
<td>(0,0,1/2; 2b,2c,a)</td>
</tr>
</tbody>
</table>

52.1.406 Pnna

| 52.1.406 | Pnna | (1*0,0,0) | (2_x*0,1/2,1/2) | (2_y*1/2,1/2,1/2) | (2_z*1/2,0,0) |
| 52.2.407 | Pnna1' |

52.3.408 Pn'na

| 52.3.408 | Pnc2 | (0,1/4,1/4; b,c,a) | (1*0,0,0) | (2_x*0,1/2,1/2) | (2_y*0,1/2,1/2) | (2_z*1/2,0,0) |

52.4.409 Pnn'a

| 52.4.409 | Pnc2₁ | (1/4,0,1/4; a, b, b) | (1*0,0,0) | (2_x*0,1/2,1/2) | (2_y*0,1/2,1/2) | (2_z*1/2,0,0) |
52.5.410 Pnna' Pnn2 (1/4,0,0; a,b,c) (1*0,0,0) (2*0,1/2,1/2) (2*1/2,1/2,1/2) (2*1/2,0,0)
 (&*0,0,0)' (m*0,1/2,1/2) (m*1/2,1/2,1/2) (m*1/2,0,0)'

52.6.411 Pnn'a P2/c (0,0,0; b,c,a) (1*0,0,0) (2*0,1/2,1/2) (2*1/2,1/2,1/2) (2*1/2,0,0)
 (&*0,0,0)' (m*0,1/2,1/2) (m*1/2,1/2,1/2) (m*1/2,0,0)'

52.7.412 Pnn'a' P2/c (0,0,0; a,c,a) (1*0,0,0) (2*0,1/2,1/2) (2*1/2,1/2,1/2) (2*1/2,0,0)
 (&*0,0,0)' (m*0,1/2,1/2) (m*1/2,1/2,1/2) (m*1/2,0,0)'

52.8.413 Pn'na' P2/c (1/4,0,1/4; a,b,c) (1*0,0,0) (2*0,1/2,1/2) (2*1/2,1/2,1/2) (2*1/2,0,0)
 (&*0,0,0)' (m*0,1/2,1/2) (m*1/2,1/2,1/2) (m*1/2,0,0)'

53.1.415 Pmna (1*0,0,0) (2*0,0,0) (2*1/2,0,1/2) (2*1/2,0,1/2)
 (&*0,0,0)' (m*0,0,0) (m*1/2,0,1/2) (m*1/2,0,1/2)'

53.2.416 Pmna1'

53.3.417 Pmn'a Pnc2 (0,0,0; b,c,a) (1*0,0,0) (2*0,0,0) (2*1/2,0,1/2) (2*1/2,0,1/2)
 (&*0,0,0)' (m*0,0,0)' (m*1/2,0,1/2) (m*1/2,0,1/2)'

53.4.418 Pmna' Pma2 (1/4,0,1/4; a,c,b) (1*0,0,0) (2*0,0,0) (2*1/2,0,1/2) (2*1/2,0,1/2)
 (&*0,0,0)' (m*0,0,0)' (m*1/2,0,1/2) (m*1/2,0,1/2)'

53.5.419 Pmna Pmn21 (0,0,0; a,b,c) (1*0,0,0) (2*0,0,0) (2*1/2,0,1/2) (2*1/2,0,1/2)
 (&*0,0,0)' (m*0,0,0)' (m*1/2,0,1/2) (m*1/2,0,1/2)'

53.6.420 Pmn'a P21/c (0,0,0; b,c,a) (1*0,0,0) (2*0,0,0) (2*1/2,0,1/2) (2*1/2,0,1/2)
 (&*0,0,0)' (m*0,0,0)' (m*1/2,0,1/2) (m*1/2,0,1/2)'

53.7.421 Pmn'a' P2/m (0,0,0; a,b,c) (1*0,0,0) (2*0,0,0) (2*1/2,0,1/2) (2*1/2,0,1/2)
 (m*0,0,0)' (m*1/2,0,1/2) (m*1/2,0,1/2)
<p>| 53.8.422 | Pm'na' | P2/c | (0.0,0;0,0,0) | (10,0,0) | (m_x0,0,0) | (m_y1/2,0,1/2) | (m_z1/2,0,1/2) |
| 53.9.423 | Pm'n'a' | P222 | (1/4,0,0;0,0,0) | (10,0,0) | (m_x0,0,0) | (m_y1/2,0,1/2) | (m_z1/2,0,1/2) |
| 53.10.424 | Pm'na | Pmna | (0,0,0;0,0,0) | (10,0,0) | (m_x0,0,0) | (m_y1/2,0,1/2) | (m_z1/2,0,1/2) |
| 53.11.425 | Pm'na | Pmna | (0,0,0;0,0,0) | (10,0,0) | (m_x0,0,0) | (m_y1/2,0,1/2) | (m_z1/2,0,1/2) |
| 53.12.426 | Pm'na | Pmna | (0,0,0;0,0,0) | (10,0,0) | (m_x0,0,0) | (m_y1/2,0,1/2) | (m_z1/2,0,1/2) |
| 54.1.428 | Pcca | Pcca | (10,0,0) | (2_x1/2,0,1/2) | (m_x0,0,0) | (m_y1/2,0,1/2) | (m_z1/2,0,1/2) |
| 54.2.429 | Pcca | Pcca | (10,0,0) | (2_x1/2,0,1/2) | (m_x0,0,0) | (m_y1/2,0,1/2) | (m_z1/2,0,1/2) |
| 54.3.430 | Pcc'a | Pca2 | (0,0,0;0,0,0) | (10,0,0) | (m_x0,0,0) | (m_y1/2,0,1/2) | (m_z1/2,0,1/2) |
| 54.4.431 | Pcc'a | Pba2 | (0,0,0;0,0,0) | (10,0,0) | (m_x0,0,0) | (m_y1/2,0,1/2) | (m_z1/2,0,1/2) |
| 54.5.432 | Pcc'a | Pcc2 | (1/4,0,0;0,0,0) | (10,0,0) | (2_x1/2,0,1/2) | (m_x0,0,0) | (m_y1/2,0,1/2) | (m_z*1/2,0,1/2) |</p>
<table>
<thead>
<tr>
<th>Group No.</th>
<th>Group</th>
<th>Space Group</th>
<th>Basis Vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>54.6.433</td>
<td>Pc'c'a</td>
<td>P2/c</td>
<td>(1*0,0,0) (m_0,0,0,1/2) (m_0,1/2,0,0)</td>
</tr>
<tr>
<td>54.7.434</td>
<td>Pcc'a'</td>
<td>P2_1/c</td>
<td>(1*0,0,0) (m_0,1/2,0,1/2) (m_0,0,1/2)</td>
</tr>
<tr>
<td>54.8.435</td>
<td>Pcc'a'</td>
<td>P2/c</td>
<td>(1*0,0,0) (m_0,1/2,0,1/2) (m_0,1/2,0,0)</td>
</tr>
<tr>
<td>54.9.436</td>
<td>Pcc'a'</td>
<td>P222_1</td>
<td>(1*0,0,0) (m_0,0,1/2) (m_0,1,1/2)</td>
</tr>
<tr>
<td>54.10.437</td>
<td>P_2b cc'a</td>
<td>Pcca</td>
<td>(1*0,0,0) (m_0,1/2,0,1/2) (m_0,1/2,1,0)</td>
</tr>
<tr>
<td>54.11.438</td>
<td>P_2b cc'a</td>
<td>Pbcn</td>
<td>(1*0,0,0) (m_0,1/2,0,1/2) (m_0,1/2,1,0)</td>
</tr>
<tr>
<td>54.12.439</td>
<td>P_2b cc'a</td>
<td>Pccn</td>
<td>(1*0,0,0) (m_0,1/2,0,1/2) (m_0,1/2,1,0)</td>
</tr>
<tr>
<td>54.13.440</td>
<td>P_2b cc'a</td>
<td>Pnna</td>
<td>(1*0,0,0) (m_0,1/2,0,1/2) (m_0,1/2,1,0)</td>
</tr>
<tr>
<td>55.1.441</td>
<td>Pbam</td>
<td></td>
<td>(1*0,0,0) (m_0,0,1/2) (m_0,1/2,0)</td>
</tr>
<tr>
<td>55.2.442</td>
<td>Pbam1'</td>
<td></td>
<td>(1*0,0,0) (m_0,0,1/2) (m_0,1/2,0)</td>
</tr>
<tr>
<td>No.</td>
<td>Magnetic Group</td>
<td>Crystallographic Group</td>
<td>Parameters</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>55.3.443</td>
<td>Pb'am</td>
<td>Pmc2₁</td>
<td>(0,1/4,0;c,δ,a)</td>
</tr>
<tr>
<td>55.4.444</td>
<td>Pb'am'</td>
<td>Pba2</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>55.5.445</td>
<td>Pb'a'm</td>
<td>P2/m</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>55.6.446</td>
<td>Pb'am'</td>
<td>P2₁/c</td>
<td>(0,0,0;c,δ,a)</td>
</tr>
<tr>
<td>55.7.447</td>
<td>Pb'a'm'</td>
<td>P2₂,2₂</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>55.8.448</td>
<td>P₂c bam</td>
<td>Pbam</td>
<td>(0,0,0;a,b,2c)</td>
</tr>
<tr>
<td>55.9.449</td>
<td>P₂c b'am</td>
<td>Pnma</td>
<td>(0,0,1/2;a,2δ,b)</td>
</tr>
<tr>
<td>55.10.450</td>
<td>P₂c b'a'm</td>
<td>Pnnm</td>
<td>(0,0,0;a,b,2c)</td>
</tr>
<tr>
<td>56.1.451</td>
<td>Pccn</td>
<td>(1^*0,0,0) ((2_x^*1/2,0,1/2)) ((2_y^*0,1/2,1/2)) ((2_z^*1/2,1/2,0))</td>
<td></td>
</tr>
<tr>
<td>56.2.452</td>
<td>Pccn₁'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56.3.453</td>
<td>Pc'cn</td>
<td>Pna₂₁</td>
<td>(0,0,1/4;c,δ,a)</td>
</tr>
<tr>
<td>56.4.454</td>
<td>Pccn'</td>
<td>Pcc2</td>
<td>((1/4,1/4,0; a,b,c))</td>
</tr>
<tr>
<td>56.5.455</td>
<td>Pc'c'n</td>
<td>P2/c</td>
<td>((0,0,0;b,c,a+b))</td>
</tr>
<tr>
<td>56.6.456</td>
<td>Pc'cn'</td>
<td>P2_1/c</td>
<td>((0,0,0;a,b,c))</td>
</tr>
<tr>
<td>56.7.457</td>
<td>Pc'c'n'</td>
<td>P2_2_2</td>
<td>((1/4,1/4,1/4; a,b,c))</td>
</tr>
<tr>
<td>57.1.458</td>
<td>Pbcm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.2.459</td>
<td>Pbcm1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.3.460</td>
<td>Pb'cm</td>
<td>Pma2</td>
<td>((0,1/4,0;c,\delta,a))</td>
</tr>
<tr>
<td>57.4.461</td>
<td>Pbc'm</td>
<td>Pmc2_1</td>
<td>((0,0,1/4;c,a,b))</td>
</tr>
<tr>
<td>57.5.462</td>
<td>Pbcm'</td>
<td>Pca2_1</td>
<td>((0,0,0;b,\delta,c))</td>
</tr>
<tr>
<td>57.6.463</td>
<td>Pb'c'm</td>
<td>P2_1/m</td>
<td>((0,0,0;b,c,a))</td>
</tr>
<tr>
<td>57.7.464</td>
<td>Pbc'm'</td>
<td>P2/c</td>
<td>((0,0,0;c,a,b))</td>
</tr>
<tr>
<td>Magnetic Space Group</td>
<td>Lattice Type</td>
<td>Translation Vectors</td>
<td>Rotational Elements</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>57.8.465 Pb'cm'</td>
<td>P_{21}/c</td>
<td>$(0,0,0; a, b, c)$</td>
<td>$(1*0,0,0)$</td>
</tr>
<tr>
<td>57.9.466 Pb'c'm'</td>
<td>$P_{21}2_1$</td>
<td>$(0,1/4,0; c, a)$</td>
<td>$(1*0,0,0)$</td>
</tr>
<tr>
<td>57.10.467 P_{2a} bcm</td>
<td>P_{bcm}</td>
<td>$(0,0,0; 2a, b, c)$</td>
<td>$(1*0,0,0)$</td>
</tr>
<tr>
<td>57.11.468 P_{2a} bc'm</td>
<td>P_{nma}</td>
<td>$(1/2,0,0; b, c, 2a)$</td>
<td>$(1*0,0,0)$</td>
</tr>
<tr>
<td>57.12.469 P_{2a} bcm'</td>
<td>P_{bca}</td>
<td>$(1/2,0,0; 2a, b, c)$</td>
<td>$(1*0,0,0)$</td>
</tr>
<tr>
<td>57.13.470 P_{2a} bc'm'</td>
<td>P_{bcn}</td>
<td>$(0,0,0; c, 2a, b)$</td>
<td>$(1*0,0,0)$</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 34
<table>
<thead>
<tr>
<th>Volume</th>
<th>Symbol</th>
<th>Space Group</th>
<th>Translation</th>
<th>Rotation 1</th>
<th>Rotation 2</th>
<th>Rotation 3</th>
<th>Rotation 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.6.476</td>
<td>Pnn'm'</td>
<td>P2₁/c</td>
<td>(0,0,0;(\delta_x, a, \delta_x+c))</td>
<td>(1*0,0,0)</td>
<td>(2*₁/₂,1/₂,1/₂)</td>
<td>(2*₁/₂,1/₂,1/₂)'</td>
<td>(2*₀,0,0)'</td>
</tr>
<tr>
<td>58.7.477</td>
<td>Pnn'm'</td>
<td>P₂(₂,₂,₂)</td>
<td>(0,0,1/₄;(a, b, c))</td>
<td>(1*0,0,0)</td>
<td>(2*₁/₂,1/₂,1/₂)</td>
<td>(2*₁/₂,1/₂,1/₂)'</td>
<td>(2*₀,0,0)</td>
</tr>
<tr>
<td>59.1.478</td>
<td>Pmmn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59.2.479</td>
<td>Pmmn1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59.3.480</td>
<td>Pm'mn</td>
<td>Pmn₂₁</td>
<td>(0,0,0;(b, c, a))</td>
<td>(1*0,0,0)</td>
<td>(2*₁/₂,1/₂,0)</td>
<td>(2*₁/₂,1/₂,0)'</td>
<td>(2*₀,0,0)'</td>
</tr>
<tr>
<td>59.4.481</td>
<td>Pm'mn'</td>
<td>Pmm₂</td>
<td>(0,0,0;(a, b, c))</td>
<td>(1*0,0,0)</td>
<td>(2*₁/₂,1/₂,0)</td>
<td>(2*₁/₂,1/₂,0)'</td>
<td>(2*₀,0,0)</td>
</tr>
<tr>
<td>59.5.482</td>
<td>Pm'm'n</td>
<td>P₂(₁/₂,₁/₂,₀)</td>
<td>(1/₄,1/₄,0;(b, c, a+b))</td>
<td>(1*0,0,0)</td>
<td>(2*₁/₂,1/₂,0)</td>
<td>(2*₁/₂,1/₂,0)'</td>
<td>(2*₀,0,0)</td>
</tr>
<tr>
<td>59.6.483</td>
<td>Pm'm'n'</td>
<td>P₂(₁/₂,₁/₂,₀)</td>
<td>(1/₄,1/₄,0;(c, a, b))</td>
<td>(1*0,0,0)</td>
<td>(2*₁/₂,1/₂,0)</td>
<td>(2*₁/₂,1/₂,0)'</td>
<td>(2*₀,0,0)</td>
</tr>
<tr>
<td>59.7.484</td>
<td>Pm'm'n'</td>
<td>P₂(₁/₂,₁/₂,₀)</td>
<td>(0,0,0;(a, b, c))</td>
<td>(1*0,0,0)</td>
<td>(2*₁/₂,1/₂,0)</td>
<td>(2*₁/₂,1/₂,0)'</td>
<td>(2*₀,0,0)</td>
</tr>
<tr>
<td>59.8.485</td>
<td>P₂(₁/₂,₁/₂,₀)</td>
<td>Pmmn</td>
<td>(0,0,0;(a, b, 2c))</td>
<td>(1*0,0,0)</td>
<td>(2*₁/₂,1/₂,0)</td>
<td>(2*₁/₂,1/₂,0)'</td>
<td>(2*₀,0,0)</td>
</tr>
<tr>
<td>59.9.486</td>
<td>P₂(₁/₂,₁/₂,₀)</td>
<td>Pnma</td>
<td>(1/₄,1/₄,1/₂;(2c, \delta_x, a))</td>
<td>(1*0,0,0)</td>
<td>(2*₁/₂,1/₂,0)</td>
<td>(2*₁/₂,1/₂,0)'</td>
<td>(2*₀,0,0,1)</td>
</tr>
<tr>
<td>59.10.487</td>
<td>P₂(₁/₂,₁/₂,₀)</td>
<td>Pccn</td>
<td>(1/₄,1/₄,0;(a, b, 2c))</td>
<td>(1*0,0,0)</td>
<td>(2*₁/₂,1/₂,1)</td>
<td>(2*₁/₂,1/₂,1)'</td>
<td>(2*₀,0,0)</td>
</tr>
<tr>
<td>Magnetic Space Group</td>
<td>Elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.1.488</td>
<td>Pbcn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.2.489</td>
<td>Pbcn'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.3.490</td>
<td>Pb'cn Pna2, (0,1/4,0;c,\xi,a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.4.491</td>
<td>Pbc'n Pnc2, (0,0,1/4;c,a,b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.5.492</td>
<td>Pbc'n' Pca2, (1/4,1/4,0;b,\xi,c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.6.493</td>
<td>Pb'c'n P2,/(c,0,0;0,b,c,a+b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.7.494</td>
<td>Pbc'n' P2,/(c,0,0;c,a,b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.8.495</td>
<td>Pb'cn' P2/c, (0,0,0;0,a,b,c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.9.496</td>
<td>Pb'c'n' P2,2,2, (0,1/4,1/4;c,a,b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61.1.497</td>
<td>Pbca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Num.</td>
<td>Group</td>
<td>Symbol</td>
<td>Basis</td>
<td>Operands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61.2.498</td>
<td>Pbca1'</td>
<td>Pb'ca</td>
<td>Pca2₁</td>
<td>(0,1/4,0; c, a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61.3.499</td>
<td></td>
<td></td>
<td>(1*)0,0,0)</td>
<td>(2*₁/2,1/2,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61.4.500</td>
<td></td>
<td>P2₁/c</td>
<td>(0,0,0; b, c, a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61.5.501</td>
<td></td>
<td>P2₂₁</td>
<td>(0,0,0; a, b, c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.1.502</td>
<td>Pnma</td>
<td>Pn'a</td>
<td>Pmc2₁</td>
<td>(0,1/4,1/4; b, c, a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.2.503</td>
<td></td>
<td></td>
<td>(1*0,0,0)</td>
<td>(2*₁/2,1/2,1/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.3.504</td>
<td></td>
<td>Pn'ma</td>
<td>Pmc2₁</td>
<td>(0,1/4,1/4; b, c, a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.4.505</td>
<td></td>
<td>Pnm'a</td>
<td>Pna2₁</td>
<td>(0,0,0; a, c, b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.5.506</td>
<td></td>
<td>Pnma'</td>
<td>Pmn₂₁</td>
<td>(1/4,1/4,0; b, c, a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.6.507</td>
<td></td>
<td>Pn'ma</td>
<td>P2₁/c</td>
<td>(0,0,0; b, c, a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.7.508</td>
<td></td>
<td>Pnm'a</td>
<td>P2₂₁</td>
<td>(0,0,0; a, c, b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.8.509</td>
<td></td>
<td>Pn'ma</td>
<td>P2₁/m</td>
<td>(0,0,0; a, b, c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic Space Group</td>
<td>Parameters</td>
<td>62.9.510 Pn'ma' P2₁,2,2₁</td>
<td>63.1.511 Cmcm</td>
<td>63.2.512 Cmcm₁'</td>
<td>63.3.513 Cm'cm Ama2</td>
<td>63.4.514 Cmc'm Amm2</td>
<td>63.5.515 Cmcm' Cmc₂₁</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>(1⁺₀,₀,₀)</td>
<td>(1⁺₀,₀,₀)</td>
<td>(1⁺₀,₀,₀)</td>
<td>(1⁺₀,₀,₀)</td>
<td>(1⁺₀,₀,₀)</td>
<td>(1⁺₀,₀,₀)</td>
<td>(1⁺₀,₀,₀)</td>
<td>(1⁺₀,₀,₀)</td>
</tr>
<tr>
<td>(m⁺₀,1/₂,2,1/₂)</td>
<td>(m⁺₀,0,1/₂)</td>
<td>(m⁺₀,1/₂,2,1/₂)</td>
<td>(m⁺₀,0,1/₂)</td>
<td>(m⁺₀,1/₂,2,1/₂)</td>
<td>(m⁺₀,0,1/₂)</td>
<td>(m⁺₀,0,1/₂)</td>
<td>(m⁺₀,1/₂,2,1/₂)</td>
</tr>
<tr>
<td>(m⁺₀,0,1/₂)</td>
<td>(m⁺₀,0,1/₂)</td>
<td>(m⁺₀,0,1/₂)</td>
<td>(m⁺₀,1/₂,2,1/₂)</td>
<td>(m⁺₀,0,1/₂)</td>
<td>(m⁺₀,0,1/₂)</td>
<td>(m⁺₀,0,1/₂)</td>
<td>(m⁺₀,0,1/₂)</td>
</tr>
<tr>
<td>(m⁺₀,0,1/₂)</td>
<td>(m⁺₀,0,1/₂)</td>
<td>(m⁺₀,0,1/₂)</td>
<td>(m⁺₀,0,1/₂)</td>
<td>(m⁺₀,0,1/₂)</td>
<td>(m⁺₀,0,1/₂)</td>
<td>(m⁺₀,0,1/₂)</td>
<td>(m⁺₀,0,1/₂)</td>
</tr>
<tr>
<td>Code</td>
<td>Symbol</td>
<td>Space Group</td>
<td>Crystallographic Parameters</td>
<td>Magnetic Moments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.11.521</td>
<td>C<sub>p</sub> m'cm</td>
<td>Pbcm</td>
<td>(1/4,1/4,0; a,b,c)</td>
<td>((1^*0,0,0)</td>
<td>((m_x^*0,0,0))</td>
<td>((m_y^*0,0,1/2))</td>
<td>((m_z^*0,0,1/2))</td>
</tr>
<tr>
<td>63.12.522</td>
<td>C<sub>p</sub> mc'm</td>
<td>Pmmn</td>
<td>(0,1/4,1/4; a, & b)</td>
<td>((1^*0,0,0)</td>
<td>((2_x^*1/2,1/2,2))</td>
<td>((2_y^*0,0,1/2))</td>
<td>((2_z^*1/2,1/2,1/2))</td>
</tr>
<tr>
<td>63.13.523</td>
<td>C<sub>p</sub> mcm'</td>
<td>Pnma</td>
<td>(1/4,1/4,0; c,a,b)</td>
<td>((1^*0,0,0)</td>
<td>((2_x^*1/2,1/2,0))</td>
<td>((2_y^*0,0,1/2))</td>
<td>((2_z^*0,0,1/2))</td>
</tr>
<tr>
<td>63.14.524</td>
<td>C<sub>p</sub> m'c'm</td>
<td>Pnma</td>
<td>(0,0,0; b,c,a)</td>
<td>((1^*0,0,0)</td>
<td>((2_x^*1/2,1/2,0))</td>
<td>((2_y^*0,0,1/2))</td>
<td>((2_z^*0,0,1/2))</td>
</tr>
<tr>
<td>63.15.525</td>
<td>C<sub>p</sub> mc'm'</td>
<td>Pnnm</td>
<td>(0,0,0; b,c,a)</td>
<td>((1^*0,0,0)</td>
<td>((2_x^*0,0,0))</td>
<td>((2_y^*1/2,1/2,1/2))</td>
<td>((2_z^*0,0,1/2))</td>
</tr>
<tr>
<td>63.16.526</td>
<td>C<sub>p</sub> m'cm'</td>
<td>Pbcn</td>
<td>(0,0,0; a,b,c)</td>
<td>((1^*0,0,0)</td>
<td>((2_x^*1/2,1/2,0))</td>
<td>((2_y^*0,0,1/2))</td>
<td>((2_z^*1/2,1/2,1/2))</td>
</tr>
<tr>
<td>63.17.527</td>
<td>C<sub>p</sub> m'c'm'</td>
<td>Pnna</td>
<td>(1/4,1/4,0; b,c,a)</td>
<td>((1^*0,0,0)</td>
<td>((2_x^*0,0,0))</td>
<td>((2_y^*0,0,1/2))</td>
<td>((2_z^*0,0,1/2))</td>
</tr>
<tr>
<td>64.1.528</td>
<td>Cmca</td>
<td></td>
<td></td>
<td>((1^*0,0,0)</td>
<td>((2_x^*0,0,0))</td>
<td>((2_y^*0,1/2,1/2))</td>
<td>((2_z^*0,1/2,1/2))</td>
</tr>
<tr>
<td>64.2.529</td>
<td>Cmca1'</td>
<td></td>
<td></td>
<td>((1^*0,0,0)</td>
<td>((2_x^*0,0,0))</td>
<td>((2_y^*0,1/2,1/2))</td>
<td>((2_z^*0,1/2,1/2))</td>
</tr>
<tr>
<td>64.3.530</td>
<td>Cm'ca</td>
<td>Aba2</td>
<td>(0,0,0; c, & a)</td>
<td>((1^*0,0,0)</td>
<td>((2_x^*0,0,0))</td>
<td>((2_y^*0,1/2,1/2))</td>
<td>((2_z^*0,1/2,1/2))</td>
</tr>
<tr>
<td>64.4.531</td>
<td>Cmc'a</td>
<td>Abm2</td>
<td>(1/4,0,1/4;c,a,b)</td>
<td>(1*0,0,0)</td>
<td>(2_x*0,0,0)'</td>
<td>(2_y*0,1/2,1/2)</td>
<td>(2_z*0,1/2,1/2)'</td>
</tr>
<tr>
<td>64.5.532</td>
<td>Cmca'</td>
<td>Cmc2 1</td>
<td>(0,1/4,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(2_x*0,0,0)'</td>
<td>(2_y*0,1/2,1/2)'</td>
<td>(2_z*0,1/2,1/2)</td>
</tr>
<tr>
<td>64.6.533</td>
<td>Cm'c'a</td>
<td>P2 1/c</td>
<td>(0,0,0;{a+b}/2,c,b)</td>
<td>(1*0,0,0)</td>
<td>(2_x*0,0,0)'</td>
<td>(2_y*0,1/2,1/2)'</td>
<td>(2_z*0,1/2,1/2)</td>
</tr>
<tr>
<td>64.7.534</td>
<td>Cmc'a'</td>
<td>C2/m</td>
<td>(0,0,0;b,a,c)</td>
<td>(1*0,0,0)</td>
<td>(2_x*0,0,0)'</td>
<td>(2_y*0,1/2,1/2)'</td>
<td>(2_z*0,1/2,1/2)</td>
</tr>
<tr>
<td>64.8.535</td>
<td>Cm'ca'</td>
<td>C2/c</td>
<td>(1/4,1/4,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(2_x*0,0,0)'</td>
<td>(2_y*0,1/2,1/2)'</td>
<td>(2_z*0,1/2,1/2)</td>
</tr>
<tr>
<td>64.9.536</td>
<td>Cm'c'a'</td>
<td>C222 1</td>
<td>(1/4,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(2_x*0,0,0)'</td>
<td>(2_y*0,1/2,1/2)'</td>
<td>(2_z*0,1/2,1/2)</td>
</tr>
<tr>
<td>64.10.537</td>
<td>Cp mca</td>
<td>Pbam</td>
<td>(0,0,0;c,\delta,a)</td>
<td>(1*0,0,0)</td>
<td>(2_x*0,0,0)</td>
<td>(2_y*0,1/2,1/2)</td>
<td>(2_z*0,1/2,1/2)</td>
</tr>
<tr>
<td>64.11.538</td>
<td>Cp m'ca</td>
<td>Pccca</td>
<td>(1/4,1/4,0;c,a,b)</td>
<td>(1*0,0,0)</td>
<td>(2_x*0,0,0)</td>
<td>(2_y*0,1/2,1/2)</td>
<td>(2_z*0,1/2,1/2)</td>
</tr>
<tr>
<td>64.12.539</td>
<td>Cp mca'</td>
<td>Pnma</td>
<td>(1/4,1/4,0;b,\delta,c)</td>
<td>(1*0,0,0)</td>
<td>(2_x*1/2,1/2,0)</td>
<td>(2_y*0,1/2,1/2)</td>
<td>(2_z*0,1/2,1/2)</td>
</tr>
<tr>
<td>64.13.540</td>
<td>Cp mca'</td>
<td>Pbcm</td>
<td>(1/4,1/4,0;b,c,a)</td>
<td>(1*0,0,0)</td>
<td>(2_x*1/2,1/2 ,0)</td>
<td>(2_y*0,1/2,1/2)</td>
<td>(2_z*0,1/2,1/2)</td>
</tr>
<tr>
<td>64.14.541</td>
<td>Cp m'c'a</td>
<td>Pccn</td>
<td>(0,0,0;c,a,b)</td>
<td>(1*0,0,0)</td>
<td>(2_x*1/2,1/2,0)</td>
<td>(2_y*0,1/2,1/2)</td>
<td>(2_z*0,1/2,1/2)</td>
</tr>
<tr>
<td>64.15.542</td>
<td>Cp m'c'a'</td>
<td>Pmna</td>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(2_x*0,0,0)</td>
<td>(2_y*1/2,0,1/2)</td>
<td>(2_z*1/2,0,1/2)</td>
</tr>
<tr>
<td>Number</td>
<td>Symbol</td>
<td>Type</td>
<td>Dimension</td>
<td>Magnetic Elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.16.543</td>
<td>C_p m'ca'</td>
<td>Pbca</td>
<td>(0,0,0;a,b,c)</td>
<td>$(\xi^0,0,0)$, $(m_x^0,0,0)$, $(m_y^{1/2},0,1/2)$, $(m_z^{1/2},0,1/2)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.17.544</td>
<td>C_p m'c'a'</td>
<td>Pbcn</td>
<td>(1/4,1/4,0;c,a,b)</td>
<td>$(\xi^0,0,0)$, $(2_x^0,0,0)$, $(2_y^{1/2},0,1/2)$, $(2_z^{1/2},0,1/2)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.1.545</td>
<td>Cmmm</td>
<td></td>
<td></td>
<td>$(1^*0,0,0)$, $(2_x^0,0,0)$, $(2_y^0,0,0)$, $(2_z^0,0,0)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.2.546</td>
<td>Cmmm1'</td>
<td></td>
<td></td>
<td>$(\xi^0,0,0)$, $(m_x^0,0,0)$, $(m_y^0,0,0)$, $(m_z^0,0,0)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.3.547</td>
<td>Cm'mm</td>
<td>Amm2</td>
<td>(0,0,0;c,ξ,a)</td>
<td>$(1^*0,0,0)$, $(2_x^0,0,0)$, $(2_y^0,0,0)$, $(2_z^0,0,0)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.4.548</td>
<td>Cmmm'</td>
<td>Cmm2</td>
<td>(0,0,0;a,b,c)</td>
<td>$(1^*0,0,0)$, $(2_x^0,0,0)$, $(2_y^0,0,0)$, $(2_z^0,0,0)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.5.549</td>
<td>Cm'm'm</td>
<td>P2/m</td>
<td>(0,0,0;b,c,(a+b)/2)</td>
<td>$(1^*0,0,0)$, $(2_x^0,0,0)$, $(2_y^0,0,0)$, $(2_z^0,0,0)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.6.550</td>
<td>Cmm'm'</td>
<td>C2/m</td>
<td>(0,0,0;b,ξ,c)</td>
<td>$(1^*0,0,0)$, $(2_x^0,0,0)$, $(2_y^0,0,0)$, $(2_z^0,0,0)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.7.551</td>
<td>Cmm'm'</td>
<td>C222</td>
<td>(0,0,0;a,b,c)</td>
<td>$(1^*0,0,0)$, $(2_x^0,0,0)$, $(2_y^0,0,0)$, $(2_z^0,0,0)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.8.552</td>
<td>C_2c mmm</td>
<td>Cmmm</td>
<td>(0,0,0;a,b,2c)</td>
<td>$(1^*0,0,0)$, $(2_x^0,0,0)$, $(2_y^0,0,0)$, $(2_z^0,0,0)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.9.553</td>
<td>C_p mmm</td>
<td>Pmmm</td>
<td>(0,0,0;a,b,c)</td>
<td>$(1^*0,0,0)$, $(2_x^0,0,0)$, $(2_y^0,0,0)$, $(2_z^0,0,0)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.10.554</td>
<td>C_{1},mmm</td>
<td>Immm</td>
<td>$(0,0,0;a,b,2c)$</td>
<td>$(1*0,0,0)$</td>
<td>$(2_x*0,0,0)$</td>
<td>$(2_y*0,0,0)$</td>
<td>$(2_z*0,0,0)$</td>
</tr>
<tr>
<td>65.11.555</td>
<td>C_{2c} m'm'm</td>
<td>Cccm</td>
<td>$(0,0,0;a,b,2c)$</td>
<td>$(1*0,0,0)$</td>
<td>$(2_x*0,0,1/2)$</td>
<td>$(2_y*0,0,1/2)$</td>
<td>$(2_z*0,0,0)$</td>
</tr>
<tr>
<td>65.12.556</td>
<td>C_{2c} mm'm'</td>
<td>Cmcm</td>
<td>$(0,0,0;a,b,2c)$</td>
<td>$(1*0,0,0)$</td>
<td>$(2_x*0,0,0)$</td>
<td>$(2_y*0,0,1/2)$</td>
<td>$(2_z*0,0,0)$</td>
</tr>
<tr>
<td>65.13.557</td>
<td>C_{p} m'm'm</td>
<td>Pmma</td>
<td>$(1/4,1/4,0;b,c,a)$</td>
<td>$(1*0,0,0)$</td>
<td>$(2_x*0,0,0)$</td>
<td>$(2_y*1/2,1/2,0)$</td>
<td>$(2_z*0,0,0)$</td>
</tr>
<tr>
<td>65.14.558</td>
<td>C_{p} mm'm'</td>
<td>Pmmn</td>
<td>$(0,0,0;a,b,c)$</td>
<td>$(1*0,0,0)$</td>
<td>$(2_x*1/2,1/2,0)$</td>
<td>$(2_y*1/2,1/2,0)$</td>
<td>$(2_z*0,0,0)$</td>
</tr>
<tr>
<td>65.15.559</td>
<td>C_{p} m'm'm</td>
<td>Pbam</td>
<td>$(0,0,0;a,b,c)$</td>
<td>$(1*0,0,0)$</td>
<td>$(2_x*1/2,1/2,0)$</td>
<td>$(2_y*1/2,1/2,0)$</td>
<td>$(2_z*0,0,0)$</td>
</tr>
<tr>
<td>65.16.560</td>
<td>C_{p} mm'm'</td>
<td>Pmna</td>
<td>$(0,0,0;a,b,c)$</td>
<td>$(1*0,0,0)$</td>
<td>$(2_x*0,0,0)$</td>
<td>$(2_y*1/2,1/2,0)$</td>
<td>$(2_z*0,0,0)$</td>
</tr>
<tr>
<td>65.17.561</td>
<td>C_{p} m'm'm'</td>
<td>Pbam</td>
<td>$(0,0,0;a,b,c)$</td>
<td>$(1*0,0,0)$</td>
<td>$(2_x*0,0,0)$</td>
<td>$(2_y*0,0,1/2)$</td>
<td>$(2_z*0,0,0)$</td>
</tr>
<tr>
<td>65.18.562</td>
<td>C_{1} m'm'm</td>
<td>Imma</td>
<td>$(0,0,1/2;b,2c,a)$</td>
<td>$(1*0,0,0)$</td>
<td>$(2_x*0,0,0)$</td>
<td>$(2_y*0,0,1/2)$</td>
<td>$(2_z*0,0,0)$</td>
</tr>
<tr>
<td>65.19.563</td>
<td>C_{1} m'm'm'</td>
<td>Ibam</td>
<td>$(0,0,0;a,b,2c)$</td>
<td>$(1*0,0,0)$</td>
<td>$(2_x*0,0,1/2)$</td>
<td>$(2_y*0,0,1/2)$</td>
<td>$(2_z*0,0,0)$</td>
</tr>
</tbody>
</table>

66.1.564 | Cccm | $(1*0,0,0)$ | $(2_x*0,0,1/2)$ | $(2_y*0,0,1/2)$ | $(2_z*0,0,0)$ | $(m_x*0,0,1/2)$ | $(m_y*0,0,1/2)$ | $(m_z*0,0,0)$ |

66.2.565 | Cccm1’ |
66.3.566 Cc'cm Ama2 (0,0,1/4;c,6,a)
(1*0,0,0) (2x*0,0,1/2) (2y*0,0,1/2) (2z*0,0,0)
(6*0,0,0)' (m*0,0,1/2)' (m*y*0,0,1/2)' (m*z*0,0,0)

66.4.567 Cccm' Ccc2 (0,0,0;a,b,c)
(1*0,0,0) (2x*0,0,1/2)' (2y*0,0,1/2)' (2z*0,0,0)
(6*0,0,0)' (m*0,0,1/2)' (m*y*0,0,1/2)' (m*z*0,0,0)

66.5.568 Cc'c'm P2/m (0,0,0;b,c, {a+b}/2)
(1*0,0,0) (2x*0,0,1/2)' (2y*0,0,1/2)' (2z*0,0,0)
(6*0,0,0)' (m*0,0,1/2)' (m*y*0,0,1/2)' (m*z*0,0,0)

66.6.569 Ccc'm' C2/c (0,0,0;b,a&c)
(1*0,0,0) (2x*0,0,1/2)' (2y*0,0,1/2)' (2z*0,0,0)
(6*0,0,0)' (m*0,0,1/2)' (m*y*0,0,1/2)' (m*z*0,0,0)

66.7.570 Cc'c'm' C222 (0,0,1/4;a,b,c)
(1*0,0,0) (2x*0,0,1/2)' (2y*0,0,1/2)' (2z*0,0,0)
(6*0,0,0)' (m*0,0,1/2)' (m*y*0,0,1/2)' (m*z*0,0,0)

66.8.571 C_p ccm Pccm (0,0,0;a,b,c)
(1*0,0,0) (2x*0,0,1/2) (2y*0,0,1/2) (2z*0,0,0)
(6*0,0,0)' (m*0,0,1/2)' (m*y*0,0,1/2)' (m*z*0,0,0)

66.9.572 C_p c'cm Pmna (1/4,1/4,0;c,a,b)
(1*0,0,0) (2x*0,0,1/2) (2y*1/2,1/2,1/2) (2z*1/2,1/2,0)
(6*0,0,0)' (m*0,0,1/2)' (m*y*0,0,1/2)' (m*z*0,0,0)

66.10.573 C_p ccm' Pccn (1/4,1/4,0;a,b,c)
(1*0,0,0) (2x*1/2,1/2,1/2) (2y*1/2,1/2,1/2) (2z*0,0,0)
(6*0,0,0)' (m*0,0,1/2)' (m*y*0,0,1/2)' (m*z*0,0,0)

66.11.574 C_p c'c'm Pnnm (0,0,0;a,b,c)
(1*0,0,0) (2x*1/2,1/2,1/2) (2y*1/2,1/2,1/2) (2z*0,0,0)
(6*0,0,0)' (m*0,0,1/2)' (m*y*0,0,1/2)' (m*z*0,0,0)

66.12.575 C_p cc'm' Pnna (0,0,0;c,6,a)
(1*0,0,0) (2x*0,0,1/2) (2y*1/2,1/2,1/2) (2z*1/2,1/2,0)
(6*0,0,0)' (m*0,0,1/2)' (m*y*1/2,1/2,1/2)' (m*z*1/2,1/2,0)

66.13.576 C_p c'c'm' Pnnn (0,0,1/4;a,b,c)
(1*0,0,0) (2x*0,0,1/2) (2y*0,0,1/2) (2z*0,0,0)
(6*0,0,0)' (m*0,0,1/2)' (m*y*1/2,1/2,1/2)' (m*z*1/2,1/2,0)
<table>
<thead>
<tr>
<th>577</th>
<th>67.1.577</th>
<th>Cmma</th>
<th>((1*0,0,0))</th>
<th>((2_x*0,0,0))</th>
<th>((2_y*1/2,0,0))</th>
<th>((2_z*1/2,0,0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>578</td>
<td>67.2.578</td>
<td>Cmma'</td>
<td>((0,0,0))</td>
<td>((m_x*0,0,0))</td>
<td>((m_y*1/2,0,0))</td>
<td>((m_z*1/2,0,0))</td>
</tr>
<tr>
<td>579</td>
<td>67.3.579</td>
<td>Cm'ma</td>
<td>((0,0,c,\mathbf{a}))</td>
<td>((m_x*0,0,0))</td>
<td>((m_y*1/2,0,0))</td>
<td>((m_z*1/2,0,0))</td>
</tr>
<tr>
<td>580</td>
<td>67.4.580</td>
<td>Cmma2</td>
<td>((0,1/4,a,b,c))</td>
<td>((m_x*0,0,0))</td>
<td>((m_y*1/2,0,0))</td>
<td>((m_z*1/2,0,0))</td>
</tr>
<tr>
<td>581</td>
<td>67.5.581</td>
<td>P2/m</td>
<td>((0,0,0))</td>
<td>((m_x*0,0,0))</td>
<td>((m_y*1/2,0,0))</td>
<td>((m_z*1/2,0,0))</td>
</tr>
<tr>
<td>582</td>
<td>67.6.582</td>
<td>C2/m</td>
<td>((0,0,b,\mathbf{a},c))</td>
<td>((m_x*0,0,0))</td>
<td>((m_y*1/2,0,0))</td>
<td>((m_z*1/2,0,0))</td>
</tr>
<tr>
<td>583</td>
<td>67.7.583</td>
<td>C222</td>
<td>((1/4,1/4,1/2;\mathbf{a},b,c))</td>
<td>((m_x*0,0,0))</td>
<td>((m_y*1/2,0,0))</td>
<td>((m_z*1/2,0,0))</td>
</tr>
<tr>
<td>584</td>
<td>67.8.584</td>
<td>Cmma</td>
<td>((0,0,0;a,b,2c))</td>
<td>((m_x*0,0,0))</td>
<td>((m_y*1/2,0,0))</td>
<td>((m_z*1/2,0,0))</td>
</tr>
<tr>
<td>585</td>
<td>67.9.585</td>
<td>Pccm</td>
<td>((0,0,0;b,c,a))</td>
<td>((m_x*0,0,0))</td>
<td>((m_y*1/2,0,0))</td>
<td>((m_z*1/2,0,0))</td>
</tr>
<tr>
<td>586</td>
<td>67.10.586</td>
<td>Ibam</td>
<td>((0,0,0;b,2c,a))</td>
<td>((m_x*0,0,0))</td>
<td>((m_y*1/2,0,0))</td>
<td>((m_z*1/2,0,0))</td>
</tr>
<tr>
<td>587</td>
<td>67.11.587</td>
<td>Cmma</td>
<td>((1/4,1/4,1/2;b,2c,a))</td>
<td>((m_x*0,0,0))</td>
<td>((m_y*1/2,0,0))</td>
<td>((m_z*1/2,0,0))</td>
</tr>
<tr>
<td>588</td>
<td>67.12.588</td>
<td>Ccca</td>
<td>((1/4,0,1/2;b,\mathbf{a},2c))</td>
<td>((m_x*0,0,0))</td>
<td>((m_y*1/2,0,0))</td>
<td>((m_z*1/2,0,0))</td>
</tr>
<tr>
<td>Index</td>
<td>Group</td>
<td>Structure</td>
<td>Magnetic Elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.13.589</td>
<td>Cₚ m'ma</td>
<td>Pcca</td>
<td>(1/4,1/4,0; b, c, a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1* 0, 0, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 1, 2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1, 2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1/2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.14.590</td>
<td>Cₚ mm'a</td>
<td>Pmma</td>
<td>(1/4, 1/4, 0; a, b, c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1* 0, 0, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 1, 2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1, 2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1/2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.15.591</td>
<td>Cₚ mma'</td>
<td>Pbcm</td>
<td>(1/4, 1/4, 0; c, δ; a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1* 0, 0, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 1, 2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1, 2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1/2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.16.592</td>
<td>Cₐ mm'a</td>
<td>Imma</td>
<td>(0, 0, 1/2; a, b, 2c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1* 0, 0, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 1, 2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1, 2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1/2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.17.593</td>
<td>Cₐ m'ma'</td>
<td>Ibca</td>
<td>(0, 0, 0; a, b, 2c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1* 0, 0, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 1, 2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1, 2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1/2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.1.594</td>
<td>Ccca</td>
<td></td>
<td>(1* 0, 0, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1/2, 1/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1, 2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1/2, 1/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.2.595</td>
<td>Ccca1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.3.596</td>
<td>Cc'ca</td>
<td>Aba2</td>
<td>(0, 0, 0; c, δ; a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1* 0, 0, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1, 2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1/2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1/2, 1/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.4.597</td>
<td>Ccca'</td>
<td>Ccc2</td>
<td>(1/4, 1/4, 0; a, b, c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1* 0, 0, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1, 2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1/2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1/2, 1/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.5.598</td>
<td>Cc'c'a</td>
<td>P2/c</td>
<td>(0, 1/4, 1/4; {a+b}/2; c, δ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1* 0, 0, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1, 2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1/2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1/2, 1/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.6.599</td>
<td>Cc'c'a'</td>
<td>C2/c</td>
<td>(1/4, 0, 1/4; b, δ; c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1* 0, 0, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1, 2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1/2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1/2, 1/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.7.600</td>
<td>Cc'c'a'</td>
<td>C222</td>
<td>(0, 0, 0; a, b, c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1* 0, 0, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1, 2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1/2, 0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2* 0, 1/2, 1/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Symbol 1</td>
<td>Symbol 2</td>
<td>Symbol 3</td>
<td>Symbol 4</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>68.8.601</td>
<td>Cₚ cca</td>
<td>Pban</td>
<td>(0,0,0;c,ε,a)</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*0,0,0)</td>
<td>(2ᵧ*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(ε*0,1/2,1/2')</td>
<td>(mₓ*0,1/2,1/2')</td>
<td>(mᵧ*0,1/2,1/2')</td>
</tr>
<tr>
<td>68.9.602</td>
<td>Cₚ c'ca</td>
<td>Pcca</td>
<td>(1/4,0,1/4;b,ε,c)</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*0,0,0)</td>
<td>(2ᵧ*1/2,1/2,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(ε*1/2,0,1/2)</td>
<td>(mₓ*1/2,0,1/2)</td>
<td>(mᵧ*0,1/2,1/2)</td>
</tr>
<tr>
<td>68.10.603</td>
<td>Cₚ cca'</td>
<td>Pbcn</td>
<td>(1/4,0,1/4;b,c,a)</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*1/2,1/2,0)</td>
<td>(2ᵧ*1/2,1/2,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(ε*1/2,0,1/2)</td>
<td>(mₓ*0,1/2,1/2)</td>
<td>(mᵧ*0,1/2,1/2)</td>
</tr>
<tr>
<td>68.11.604</td>
<td>Cₚ cc'a'</td>
<td>Pnna</td>
<td>(0,1/4,1/4;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*0,0,0)</td>
<td>(2ᵧ*1/2,1/2,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(ε*0,1/2,1/2)</td>
<td>(mₓ*0,1/2,1/2)</td>
<td>(mᵧ*1/2,0,1/2)</td>
</tr>
<tr>
<td>69.1.605</td>
<td>Fmmm</td>
<td></td>
<td>(1*0,0,0)</td>
<td>(2ₓ*0,0,0)</td>
<td>(2ᵧ*0,0,0)</td>
<td>(2z*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(ε*0,0,0)</td>
<td>(mₓ*0,0,0)</td>
<td>(mᵧ*0,0,0)</td>
</tr>
<tr>
<td>69.2.606</td>
<td>Fmmm1'</td>
<td></td>
<td>(1*0,0,0)</td>
<td>(2ₓ*0,0,0)</td>
<td>(2ᵧ*0,0,0)</td>
<td>(2z*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(ε*0,0,0)</td>
<td>(mₓ*0,0,0)</td>
<td>(mᵧ*0,0,0)</td>
</tr>
<tr>
<td>69.3.607</td>
<td>Fm'mm</td>
<td>Fmm2</td>
<td>(0,0,0;b,c,a)</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*0,0,0)</td>
<td>(2ᵧ*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(ε*0,0,0)</td>
<td>(mₓ*0,0,0)</td>
<td>(mᵧ*0,0,0)</td>
</tr>
<tr>
<td>69.4.608</td>
<td>Fm'm'm</td>
<td>C2/m</td>
<td>(0,0,0;b,c,{a+b}/2)</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*0,0,0)</td>
<td>(2ᵧ*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(ε*0,0,0)</td>
<td>(mₓ*0,0,0)</td>
<td>(mᵧ*0,0,0)</td>
</tr>
<tr>
<td>69.5.609</td>
<td>Fm'm'm'</td>
<td>F222</td>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*0,0,0)</td>
<td>(2ᵧ*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(ε*0,0,0)</td>
<td>(mₓ*0,0,0)</td>
<td>(mᵧ*0,0,0)</td>
</tr>
<tr>
<td>69.6.610</td>
<td>Fᵥ mmm</td>
<td>Cmmm</td>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*0,0,0)</td>
<td>(2ᵧ*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(ε*0,0,0)</td>
<td>(mₓ*0,0,0)</td>
<td>(mᵧ*0,0,0)</td>
</tr>
<tr>
<td>69.7.611</td>
<td>Fᵥ m'm'm</td>
<td>Cmcm</td>
<td>(1/4,0,1/4;b,c,a)</td>
<td>(1*0,0,0)</td>
<td>(2ₓ*0,0,0)</td>
<td>(2ᵧ*1/2,0,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(ε*1/2,0,1/2)</td>
<td>(mₓ*1/2,0,1/2)</td>
<td>(mᵧ*0,0,0)</td>
</tr>
<tr>
<td>Magnitude</td>
<td>Space Group</td>
<td>Symmetry</td>
<td>Elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.8.612</td>
<td>F₄ mmm’ Cmma</td>
<td>(1/4,0,1/4; b, &c, c)</td>
<td>(10,0,0) (2₁/₂,0,1/2) (2₁/₂,0,1/2) (2₁/₂,0,1/2) (m₁/₂,0,1/2) (m₁/₂,0,1/2) (2₁/₂,0,1/2) (m₁/₂,0,1/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.9.613</td>
<td>F₄ m’m’ Cccm</td>
<td>(1/4,1/4,0; a,b,c)</td>
<td>(10,0,0) (2₁/₂,0,1/2) (2₁/₂,0,1/2) (2₁/₂,0,1/2) (m₁/₂,0,1/2) (m₁/₂,0,1/2) (2₁/₂,0,1/2) (m₁/₂,0,1/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.10.614</td>
<td>F₄ m’m’ Cmca</td>
<td>(0,0,0; a,b,c)</td>
<td>(10,0,0) (2₀,0,0) (2₀,0,0) (2₀,0,0) (m₀,0,0) (m₀,0,0) (2₀,0,0) (m₀,0,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.11.615</td>
<td>F₄ m’m’ Ccca</td>
<td>(0,0,0; a,b,c)</td>
<td>(10,0,0) (2₀,0,0) (2₀,0,0) (2₀,0,0) (m₀,0,0) (m₀,0,0) (2₀,0,0) (m₀,0,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.1.616</td>
<td>Fddd</td>
<td>(10,0,0) (2₀,0,0) (2₀,0,0) (2₀,0,0)</td>
<td>(1₁/₄,1/₄,1/₄) (m₁/₄,1/₄,1/₄) (m₁/₄,1/₄,1/₄) (m₁/₄,1/₄,1/₄)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.2.617</td>
<td>Fddd1’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.3.618</td>
<td>Fd’d’d Fdd2</td>
<td>(0,0,0; b,c,a)</td>
<td>(1*0,0,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.4.619</td>
<td>Fd’dd C2/c</td>
<td>(1/₈,1/₈,₁/₈; b,c,{a+b}/2)</td>
<td>(1*0,0,0)</td>
<td>(2*₀,0,0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.5.620</td>
<td>Fd’d’ F222</td>
<td>(0,0,0; a,b,c)</td>
<td>(1*0,0,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71.1.621</td>
<td>Immm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71.2.622</td>
<td>Immm1’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71.3.623</td>
<td>Im'mm</td>
<td>Imm2</td>
<td>(0,0,0;b,c,a)</td>
<td>(1*0,0,0)</td>
<td>(2x*0,0,0)</td>
<td>(2*0,0,0)'</td>
</tr>
<tr>
<td>71.4.624</td>
<td>Im'm'm</td>
<td>C2/m</td>
<td>(0,0,0;a+b,c,a)</td>
<td>(1*0,0,0)</td>
<td>(2x*0,0,0)'</td>
<td>(2*0,0,0)'</td>
</tr>
<tr>
<td>71.5.625</td>
<td>Im'm'm'</td>
<td>Imm2</td>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(2x*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>71.6.626</td>
<td>I_p mmm</td>
<td>Pmmm</td>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(2x*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>71.7.627</td>
<td>I_p m'mm</td>
<td>Pmmn</td>
<td>(1/4,0,0;b,c,a)</td>
<td>(1*0,0,0)</td>
<td>(2x*0,0,0)</td>
<td>(2*1/2,1/2,1/2)</td>
</tr>
<tr>
<td>71.8.628</td>
<td>I_p m'm'm</td>
<td>Pnnm</td>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(2x*1/2,1/2,1/2)</td>
<td>(2*1/2,1/2,1/2)</td>
</tr>
<tr>
<td>71.9.629</td>
<td>I_p m'm'm'</td>
<td>Pnnn</td>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(2x*1/2,1/2,1/2)</td>
<td>(2*1/2,1/2,1/2)</td>
</tr>
</tbody>
</table>

<p>| 72.1.630 | Ibam | (10,0,0) | (2x0,0,1/2) | (20,0,1/2) | (2z0,0,0) |
| 72.2.631 | Ibam1' | (m0,0,1/2) | (m0,0,1/2) | (m0,0,0) | | | | | | |
| 72.3.632 | Ib'am | Ima2 | (0,0,1/4;c,Δx,a) | (10,0,0) | (2x0,0,1/2) | (20,0,0) | (2z0,0,0) | (m0,0,1/2) | (m0,0,1/2) | (m0,0,0) |
| 72.4.633 | Ib'am' | Iba2 | (0,0,0;a,b,c) | (10,0,0) | (2x0,0,1/2) | (20,0,0) | (2z0,0,0) | (m0,0,1/2) | (m0,0,1/2) | (m0,0,0) |
| 72.5.634 | Ib'a'm | C2/m | (0,0,0;a+b,c,a) | (10,0,0) | (2x0,0,1/2) | (20,0,0) | (2z0,0,0) | (m0,0,1/2) | (m0,0,1/2) | (m0,0,0) |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Space Group</th>
<th>Lattice Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>72.6.635</td>
<td>Iba’m’</td>
<td>C2/c</td>
<td>(0,0,0;b+c,(\alpha),c)</td>
</tr>
<tr>
<td>72.7.636</td>
<td>Ib’a’m’</td>
<td>I222</td>
<td>(0,0,1/4;a,b,c)</td>
</tr>
<tr>
<td>72.8.637</td>
<td>Ip bam</td>
<td>Pccm</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>72.9.638</td>
<td>Ip b’am</td>
<td>Pbcn</td>
<td>(1/4,1/4,1/4;a,b,c)</td>
</tr>
<tr>
<td>72.10.639</td>
<td>Ip bam’</td>
<td>Pccn</td>
<td>(1/4,1/4,1/4;a,b,c)</td>
</tr>
<tr>
<td>72.11.640</td>
<td>Ip b’a’m</td>
<td>Pbam</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>72.12.641</td>
<td>Ip b’am’</td>
<td>Pbcn</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>72.13.642</td>
<td>Ip b’a’m’</td>
<td>Pban</td>
<td>(0,0,1/4;a,b,c)</td>
</tr>
<tr>
<td>73.1.643</td>
<td>Ibca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.2.644</td>
<td>Ibca1’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.3.645</td>
<td>Ib’ca</td>
<td>Iba2</td>
<td>(0,0,1/4;b,c,a)</td>
</tr>
<tr>
<td>Magnetic Space Group</td>
<td>Symbol</td>
<td>Crystal System</td>
<td>Basis Vectors</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>73.4.646</td>
<td>Ib'c'a</td>
<td>C2/c</td>
<td>(0,0,0; a+b,c, δ)</td>
</tr>
<tr>
<td>73.5.647</td>
<td>Ib'c'a'</td>
<td>I2_1_2_1</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td>73.6.648</td>
<td>l_p bca</td>
<td>Pbca</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td>73.7.649</td>
<td>l_p b'ca</td>
<td>Pcca</td>
<td>(1/4,1/4,1/4; a,b,c)</td>
</tr>
<tr>
<td>74.1.650</td>
<td>Imma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74.2.651</td>
<td>Imma1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74.3.652</td>
<td>Im'ma</td>
<td>Ima2</td>
<td>(0,0,0; b,c,a)</td>
</tr>
<tr>
<td>74.4.653</td>
<td>Imma'</td>
<td>Imm2</td>
<td>(0,1/4,0; a,b,c)</td>
</tr>
<tr>
<td>74.5.654</td>
<td>Im'ma'</td>
<td>C2/c</td>
<td>(0,0,0; a+b,c, δ)</td>
</tr>
<tr>
<td>74.6.655</td>
<td>Im'ma'</td>
<td>C2/m</td>
<td>(0,0,0; a+b,c, δ)</td>
</tr>
<tr>
<td>74.7.656</td>
<td>Im'ma'</td>
<td>I2_1_2_1</td>
<td>(0,0,1/4; a,b,c)</td>
</tr>
<tr>
<td>74.8.657</td>
<td>l_p mma</td>
<td>Pmma</td>
<td>(0,0,0; b,δ,c)</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Symbols</td>
<td>Elements</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>74.9.658</td>
<td>Iₚ m'm'a Pnna</td>
<td>(0,0,0;b,&c)</td>
<td>(10,0,0) (2ₓ1/2,1/2,1/2) (2ᵧ1/2,0,1/2) (2z0,1/2,0)</td>
</tr>
<tr>
<td>74.10.659</td>
<td>Iₚ mm'a' Pmna</td>
<td>(0,0,0;a,b,c)</td>
<td>(10,0,0) (2ₓ0,0,0) (2ᵧ1/2,0,1/2) (2z1/2,0,1/2)</td>
</tr>
<tr>
<td>74.11.660</td>
<td>Iₚ m'ma' Pnma</td>
<td>(0,0,0;a,b,c)</td>
<td>(10,0,0) (2ₓ1/2,1/2,1/2) (2ᵧ0,1/2,0) (2z1/2,0,1/2)</td>
</tr>
<tr>
<td>75.1.661</td>
<td>P₄</td>
<td></td>
<td>(10,0,0) (4ₓ0,0,0) (2z0,0,0) (4z⁻¹0,0,0)</td>
</tr>
<tr>
<td>75.2.662</td>
<td>P₄₁'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.3.663</td>
<td>P₄' P2</td>
<td>(0,0,0;b,c,a)</td>
<td>(10,0,0) (4ₓ0,0,0) (2z0,0,0) (4z⁻¹0,0,0)</td>
</tr>
<tr>
<td>75.4.664</td>
<td>P₂c₄</td>
<td>(0,0,0;a,b,2c)</td>
<td>(10,0,0) (4ₓ0,0,0) (2z0,0,0) (4z⁻¹0,0,0)</td>
</tr>
<tr>
<td>75.5.665</td>
<td>P₄₃</td>
<td>(0,0,0;a-b,a+b,c)</td>
<td>(10,0,0) (4ₓ0,0,0) (2z0,0,0) (4z⁻¹0,0,0)</td>
</tr>
<tr>
<td>75.6.666</td>
<td>P₁₄</td>
<td>(0,0,0;a-b,a+b,2c)</td>
<td>(10,0,0) (4ₓ0,0,0) (2z0,0,0) (4z⁻¹0,0,0)</td>
</tr>
<tr>
<td>75.7.667</td>
<td>P₂c₄'</td>
<td>(0,0,0;a,b,2c)</td>
<td>(10,0,0) (4ₓ0,0,1) (2z0,0,0) (4z⁻¹0,0,1)</td>
</tr>
<tr>
<td>76.1.668</td>
<td>P₄₁</td>
<td>(10,0,0) (4ₓ0,0,1/4) (2z0,0,1/2) (4z⁻¹0,0,3/4)</td>
<td></td>
</tr>
<tr>
<td>76.2.669</td>
<td>P₄₁₁'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76.3.670</td>
<td>P₄₁' P₂₁</td>
<td>(0,0,0;b,c,a)</td>
<td>(10,0,0) (4ₓ0,0,1/4) (2z0,0,1/2) (4z⁻¹0,0,3/4)</td>
</tr>
<tr>
<td>76.4.671</td>
<td>P₄₁₄</td>
<td>(0,0,0;a-b,a+b,c)</td>
<td>(10,0,0) (4ₓ0,0,1/4) (2z0,0,1/2) (4z⁻¹0,0,3/4)</td>
</tr>
<tr>
<td>Number</td>
<td>Code</td>
<td>Symmetry</td>
<td>Operation 1</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>77.1.672</td>
<td>P4₂</td>
<td>(1*0,0,0)</td>
<td>(4_z*0,0,1/2)</td>
</tr>
<tr>
<td>77.2.673</td>
<td>P4₂ 1'</td>
<td>P4₂ 1'</td>
<td></td>
</tr>
<tr>
<td>77.3.674</td>
<td>P4₂ 1'</td>
<td>P₂</td>
<td>(0,0,0;b,c,a)</td>
</tr>
<tr>
<td>77.4.675</td>
<td>P₂c 4₂</td>
<td>P₄₁</td>
<td>(0,0,0;a,b,2c)</td>
</tr>
<tr>
<td>77.5.676</td>
<td>P₄ 4₂</td>
<td>P₄₂</td>
<td>(0,0,0;a-b,a+b,c)</td>
</tr>
<tr>
<td>77.6.677</td>
<td>P₁ 4₂</td>
<td>I₄₁</td>
<td>(0,0,0;a-b,a+b,2c)</td>
</tr>
<tr>
<td>77.7.678</td>
<td>P₂c 4₂ 1'</td>
<td>P₄₃</td>
<td>(0,0,0;a,b,2c)</td>
</tr>
<tr>
<td>78.1.679</td>
<td>P₄₃</td>
<td>(1*0,0,0)</td>
<td>(4_z*0,0,3/4)</td>
</tr>
<tr>
<td>78.2.680</td>
<td>P₄₃ 1'</td>
<td>P₄₃ 1'</td>
<td></td>
</tr>
<tr>
<td>78.3.681</td>
<td>P₄₃ 1'</td>
<td>P₂₁</td>
<td>(0,0,0;b,c,a)</td>
</tr>
<tr>
<td>78.4.682</td>
<td>P₄ 4₃</td>
<td>P₄₃</td>
<td>(0,0,0;a-b,a+b,c)</td>
</tr>
<tr>
<td>79.1.683</td>
<td>I₄</td>
<td>(1*0,0,0)</td>
<td>(4_z*0,0,0)</td>
</tr>
<tr>
<td>79.2.684</td>
<td>I₄ 1'</td>
<td>I₄ 1'</td>
<td></td>
</tr>
<tr>
<td>79.3.685</td>
<td>I₄ 1'</td>
<td>C₂</td>
<td>(0,0,0;a+b,c,a)</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 52
<table>
<thead>
<tr>
<th>Code</th>
<th>Symbol</th>
<th>Structure</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>79.4.686</td>
<td>I_p 4</td>
<td>P_4</td>
<td>(0,0,0;(a, b, c)) (1*0,0,0) (4_z*0,0,0) (2_z*0,0,0) (4_z^-1*0,0,0)</td>
</tr>
<tr>
<td>79.5.687</td>
<td>I_p 4'</td>
<td>P_4_2</td>
<td>(0,1/2,0;(a, b, c)) (1*0,0,0) (4_z*1/2,1/2,1/2) (2_z*0,0,0) (4_z^-1*1/2,1/2,1/2)</td>
</tr>
<tr>
<td>80.1.688</td>
<td>I_4_1</td>
<td>(1*0,0,0) (4_z*0,1/2,1/4) (2_z*0,0,0) (4_z^-1*0,1/2,1/4)</td>
<td></td>
</tr>
<tr>
<td>80.2.689</td>
<td>I_4_1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80.3.690</td>
<td>I_4_1''</td>
<td>C_2</td>
<td>(0,0,0;(a+b, c, a)) (1*0,0,0) (4_z*0,1/2,1/4) (2_z*0,0,0) (4_z^-1*0,1/2,1/4)</td>
</tr>
<tr>
<td>80.4.691</td>
<td>I_p 4_1</td>
<td>P_4_1</td>
<td>(1/4,-1/4,0;(a, b, c)) (1*0,0,0) (4_z*0,1/2,1/4) (2_z*1/2,1/2,1/2) (4_z^-1*1/2,0,3/4)</td>
</tr>
<tr>
<td>80.5.692</td>
<td>I_p 4_1'</td>
<td>P_4_3</td>
<td>(1/4,1/4,0;(a, b, c)) (1*0,0,0) (4_z*1/2,0,3/4) (2_z*1/2,1/2,1/2) (4_z^-1*0,1/2,1/4)</td>
</tr>
<tr>
<td>81.1.693</td>
<td>P&&</td>
<td>(1*0,0,0) (&_z*0,0,0) (2_z*0,0,0) (&_z^-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>81.2.694</td>
<td>P&&1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81.3.695</td>
<td>P&&'</td>
<td>P_2</td>
<td>(0,0,0;(b, c, a)) (1*0,0,0) (&_z*0,0,0) (2_z*0,0,0) (&_z^-1*0,0,0)</td>
</tr>
<tr>
<td>81.4.696</td>
<td>P_2c &&</td>
<td>P&&</td>
<td>(0,0,0;(a, b, 2c)) (1*0,0,0) (&_z*0,0,0) (2_z*0,0,0) (&_z^-1*0,0,0)</td>
</tr>
<tr>
<td>81.5.697</td>
<td>P_p &&</td>
<td>P&&</td>
<td>(0,0,0;(-a, b, a+b, c)) (1*0,0,0) (&_z*0,0,0) (2_z*0,0,0) (&_z^-1*0,0,0)</td>
</tr>
<tr>
<td>81.6.698</td>
<td>P_l &&</td>
<td>I&&</td>
<td>(0,0,0;(-a+b, a+b, 2c)) (1*0,0,0) (&_z*0,0,0) (2_z*0,0,0) (&_z^-1*0,0,0)</td>
</tr>
<tr>
<td>82.1.699</td>
<td>I&&</td>
<td>(1*0,0,0) (&_z*0,0,0) (2_z*0,0,0) (&_z^-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>82.2.700</td>
<td>I&&1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Structure</td>
<td>Symmetry</td>
<td>Cartesian Coordinates</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>82.3.701</td>
<td>I&' C2</td>
<td>(0,0,0; a+b,c,a)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>82.4.702</td>
<td>I& P&</td>
<td>(0,0,0; a,b,c)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>83.1.703</td>
<td>P4/m</td>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>83.2.704</td>
<td>P4/m1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83.3.705</td>
<td>P4'/m P2/m</td>
<td>(0,0,0; b,c,a)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>83.4.706</td>
<td>P4/m' P4</td>
<td>(0,0,0; a,b,c)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>83.5.707</td>
<td>P4'/m' P&</td>
<td>(0,0,0; a,b,c)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>83.6.708</td>
<td>P_2c 4/m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83.7.709</td>
<td>P_2 4/m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83.8.710</td>
<td>P_1 4/m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83.9.711</td>
<td>P_2c 4'/m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83.10.712</td>
<td>P_2 4/m'</td>
<td>(1/2,1/2,0; a-b,a+b,c)</td>
<td>(1*0,0,0)</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 54
<table>
<thead>
<tr>
<th>84.1.713</th>
<th>P<sub>4</sub>/m</th>
<th>(1<sup>*</sup>0,0,0)</th>
<th>(4<sup>*</sup>0,0,1/2)</th>
<th>(2<sup>*</sup>0,0,0)</th>
<th>(4<sup>-1</sup>*0,0,1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(0<sup>*</sup>0,0,0)</td>
<td>(4<sup>-1</sup>*0,0,1/2)</td>
<td>(m<sup>*</sup>0,0,0)</td>
<td>(4<sup>-1</sup>*0,0,1/2)</td>
</tr>
<tr>
<td>84.2.714</td>
<td>P<sub>4</sub>/m<sup>1</sup>'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84.3.715</td>
<td>P<sub>4</sub>/m</td>
<td>P2/m</td>
<td>(0,0,0;b,c,a)</td>
<td>(1<sup>*</sup>0,0,0)</td>
<td>(4<sup>*</sup>0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0<sup>*</sup>0,0,0)</td>
<td>(4<sup>-1</sup>*0,0,1/2)</td>
</tr>
<tr>
<td>84.4.716</td>
<td>P<sub>4</sub>/m'<sub>1</sub></td>
<td>P4</td>
<td>(0,0,0;a,b,c)</td>
<td>(1<sup>*</sup>0,0,0)</td>
<td>(4<sup>*</sup>0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0<sup>*</sup>0,0,0)</td>
<td>(4<sup>-1</sup>*0,0,1/2)</td>
</tr>
<tr>
<td>84.5.717</td>
<td>P<sub>4</sub>/m'</td>
<td>P&<sub>4</sub></td>
<td>(0,0,1/4;a,b,c)</td>
<td>(1<sup>*</sup>0,0,0)</td>
<td>(4<sup>*</sup>0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0<sup>*</sup>0,0,0)</td>
<td>(4<sup>-1</sup>*0,0,1/2)</td>
</tr>
<tr>
<td>84.6.718</td>
<td>P<sub>p</sub>4<sub>2</sub>/m</td>
<td>P4<sub>2</sub>/m</td>
<td>(0,0,0;a-b,a+b,c)</td>
<td>(1<sup>*</sup>0,0,0)</td>
<td>(4<sup>*</sup>0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0<sup>*</sup>0,0,0)</td>
<td>(4<sup>-1</sup>*0,0,1/2)</td>
</tr>
<tr>
<td>84.7.719</td>
<td>P<sub>p</sub>4<sub>2</sub>/m'</td>
<td>P4<sub>2</sub>/n</td>
<td>(1/2,1/2,1/4;a-b,a+b,c)</td>
<td>(1<sup>*</sup>0,0,0)</td>
<td>(4<sup>*</sup>0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1<sup>*</sup>0,0,0)</td>
<td>(4<sup>-1</sup>*0,0,1/2)</td>
</tr>
<tr>
<td>85.1.720</td>
<td>P4/n</td>
<td>(1<sup>*</sup>0,0,0)</td>
<td>(4<sup>*</sup>0,0,1/2)</td>
<td>(2<sup>*</sup>0,0,0)</td>
<td>(4<sup>-1</sup>*0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0<sup>*</sup>1/2,1/2,0)</td>
<td>(4<sup>-1</sup>*0,0,1/2)</td>
<td>(m<sup>*</sup>1/2,1/2,0)</td>
<td>(4<sup>-1</sup>*0,0,1/2)</td>
</tr>
<tr>
<td>85.2.721</td>
<td>P4/n<sup>1</sup>'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85.3.722</td>
<td>P4'/n</td>
<td>P2/c</td>
<td>(1/4,1/4,0;a,c,a+b)</td>
<td>(1<sup>*</sup>0,0,0)</td>
<td>(4<sup>*</sup>0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0<sup>*</sup>1/2,1/2,0)</td>
<td>(4<sup>-1</sup>*0,0,1/2)</td>
</tr>
<tr>
<td>85.4.723</td>
<td>P4/n'</td>
<td>P4</td>
<td>(1/2,0,0;a,b,c)</td>
<td>(1<sup>*</sup>0,0,0)</td>
<td>(4<sup>*</sup>0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0<sup>*</sup>1/2,1/2,0)</td>
<td>(4<sup>-1</sup>*0,0,1/2)</td>
</tr>
<tr>
<td>85.5.724</td>
<td>P4'/n'</td>
<td>P&<sub>4</sub></td>
<td>(0,0,0;a,b,c)</td>
<td>(1<sup>*</sup>0,0,0)</td>
<td>(4<sup>*</sup>0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0<sup>*</sup>1/2,1/2,0)</td>
<td>(4<sup>-1</sup>*0,0,1/2)</td>
</tr>
<tr>
<td>Magnetic Space Group</td>
<td>Elements</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85.6.725 P2c 4/n P4/n</td>
<td>(0,0,0; a,b,2c)</td>
<td>(10,0,0) (41/2,1/2,2/0) (2z0,0,0) (4*1/2,1/2,2/0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85.7.726 P2c 4'/n P4_2/n</td>
<td>(1/2,0,0; a,b,2c)</td>
<td>(10,0,0) (41/2,1/2,1/2) (2z0,0,0) (4*1/2,1/2,1/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86.1.727 P4_2/n</td>
<td></td>
<td>(10,0,0) (41/2,1/2,1/2) (2z0,0,0) (4*1/2,1/2,1/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86.2.728 P4_2/n1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86.3.729 P4'_2/n P2/c</td>
<td>(1/4,1/4,1/4; a,c,a+b)</td>
<td>(10,0,0) (41/2,1/2,1/2) (2z0,0,0) (4*1/2,1/2,1/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86.4.730 P4_2/n' P4_2</td>
<td>(1/2,0,0; a,b,c)</td>
<td>(10,0,0) (41/2,1/2,1/2) (2z0,0,0) (4*1/2,1/2,1/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86.5.731 P4'_2/n' P4_2</td>
<td>(0,0,0; a,b,c)</td>
<td>(10,0,0) (41/2,1/2,1/2) (2z0,0,0) (4*1/2,1/2,1/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86.6.732 P4_2/n' I4_1/a</td>
<td>(0,0,0; a-b,a+b,2c)</td>
<td>(10,0,0) (41/2,1/2,1/2) (2z0,0,0) (4*1/2,1/2,1/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87.1.733 I4/m</td>
<td></td>
<td>(10,0,0) (4z0,0,0) (2z0,0,0) (4z^-1*0,0,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87.2.734 I4/m1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87.3.735 I4'_m C2/m</td>
<td>(0,0,0; a+b,c,a)</td>
<td>(10,0,0) (4z0,0,0) (2z0,0,0) (4z^-1*0,0,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 56
<table>
<thead>
<tr>
<th>Beginning</th>
<th>Group</th>
<th>Symbol</th>
<th>Coordinates</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>87.4.736</td>
<td>l4/m'</td>
<td>l4</td>
<td>(0,0,0;a,b,c)</td>
<td>(10,0,0) (4_z0,0) (2*0,0,0) (4_{-1}*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4*0,0,0)' (4_{-1}0,0,0)' (m_z0,0,0)'</td>
</tr>
<tr>
<td>87.5.737</td>
<td>l4'/m'</td>
<td>l&</td>
<td>(0,0,0;a,b,c)</td>
<td>(10,0,0) (4_z0,0,0)' (2*0,0,0) (4_{-1}*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4*0,0,0) (4_{-1}0,0,0) (m_z0,0,0)'</td>
</tr>
<tr>
<td>87.6.738</td>
<td>l_p 4/m</td>
<td>P4/m</td>
<td>(0,0,0;a,b,c)</td>
<td>(10,0,0) (4_z0,0,0,0) (2*0,0,0,0) (4_{-1}*0,0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4*0,0,0)' (4_{-1}0,0,0)' (m_z0,0,0)'</td>
</tr>
<tr>
<td>87.7.739</td>
<td>l_p 4'/m</td>
<td>P4_{2}/m</td>
<td>(1/2,0,0;a,b,c)</td>
<td>(10,0,0) (4_z1/2,1/2,1/2) (2*0,0,0,0) (4_{-1}*1/2,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4*0,0,0) (4_{-1}1/2,1/2,1/2) (m_z1/2,1/2,1/2)</td>
</tr>
<tr>
<td>87.8.740</td>
<td>l_p 4/m</td>
<td>P4/n</td>
<td>(1/2,0,1/4;a,b,c)</td>
<td>(10,0,0) (4_z1/2,1/2,1/2) (2*0,0,0) (4_{-1}*1/2,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4*0,0,0) (4_{-1}1/2,1/2,1/2) (m_z1/2,1/2,1/2)</td>
</tr>
<tr>
<td>87.9.741</td>
<td>l_p 4'/m</td>
<td>P4_{2}/n</td>
<td>(0,0,0;a,b,c)</td>
<td>(10,0,0) (4_z1/2,1/2,1/2) (2*0,0,0) (4_{-1}*1/2,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4*0,0,0) (4_{-1}1/2,1/2,1/2) (m_z1/2,1/2,1/2)</td>
</tr>
<tr>
<td>88.1.742</td>
<td>l4/1/a</td>
<td></td>
<td></td>
<td>(10,0,0) (4_z0,1/2,1/4) (2*0,0,0) (4_{-1}*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4*0,0,0)' (4_{-1}0,1/2,1/4)' (m_z0,1/2,1/4)</td>
</tr>
<tr>
<td>88.2.743</td>
<td>l4/1/a1'</td>
<td></td>
<td></td>
<td>(10,0,0) (4_z0,1/2,1/4) (2*0,0,0) (4_{-1}*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4*0,0,0)' (4_{-1}0,1/2,1/4)' (m_z0,1/2,1/4)</td>
</tr>
<tr>
<td>88.3.744</td>
<td>l4/1/a</td>
<td>C2/c</td>
<td>(0,1/4,3/8;a,&b)</td>
<td>(10,0,0) (4_z0,1/2,1/4) (2*0,0,0) (4_{-1}*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4*0,0,0)' (4_{-1}0,1/2,1/4)' (m_z0,1/2,1/4)</td>
</tr>
<tr>
<td>88.4.745</td>
<td>l4/1/a'</td>
<td>l4/1</td>
<td>(0,0,0;a,b,c)</td>
<td>(10,0,0) (4_z0,1/2,1/4) (2*0,0,0) (4_{-1}*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4*0,0,0)' (4_{-1}0,1/2,1/4)' (m_z0,1/2,1/4)</td>
</tr>
<tr>
<td>88.5.746</td>
<td>l4/1/a'</td>
<td>l&</td>
<td>(0,0,0;a,b,c)</td>
<td>(10,0,0) (4_z0,1/2,1/4) (2*0,0,0) (4_{-1}*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4*0,0,0)' (4_{-1}0,1/2,1/4)' (m_z0,1/2,1/4)</td>
</tr>
<tr>
<td>No.</td>
<td>Symbol</td>
<td>Symbol 2</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>89.1.747</td>
<td>P422</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89.2.748</td>
<td>P4221'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89.3.749</td>
<td>P4'22</td>
<td>P222</td>
<td>(0,0; a,b,c)</td>
<td></td>
</tr>
<tr>
<td>89.4.750</td>
<td>P4'22'</td>
<td>P4</td>
<td>(0,0; a,b,c)</td>
<td></td>
</tr>
<tr>
<td>89.5.751</td>
<td>P4'22'</td>
<td>C222</td>
<td>(0,0; a-b, a+b, c)</td>
<td></td>
</tr>
<tr>
<td>89.6.752</td>
<td>P2c 422</td>
<td>P422</td>
<td>(0,0; a,b, 2c)</td>
<td></td>
</tr>
<tr>
<td>89.7.753</td>
<td>Pp 422</td>
<td>P422</td>
<td>(0,0; a-b, a+b, c)</td>
<td></td>
</tr>
<tr>
<td>89.8.754</td>
<td>Pp 422</td>
<td>I422</td>
<td>(0,0; a-b, a+b, 2c)</td>
<td></td>
</tr>
<tr>
<td>89.9.755</td>
<td>P2c 4'22'</td>
<td>P42 22</td>
<td>(0,0; a,b, 2c)</td>
<td></td>
</tr>
<tr>
<td>89.10.756</td>
<td>Pp 4'22'</td>
<td>P42, 2</td>
<td>(0,0; a-b, a+b, c)</td>
<td></td>
</tr>
<tr>
<td>90.1.757</td>
<td>P42, 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 58
<table>
<thead>
<tr>
<th>N</th>
<th>Space Group</th>
<th>Number of Elements</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.2.758</td>
<td>P42_1'</td>
<td>5</td>
<td>(2x, 1/2, 1/2, 0) (2y, 1/2, 1/2, 0) (2xy, 0, 0, 0)</td>
</tr>
<tr>
<td>90.3.759</td>
<td>P4',2',2'</td>
<td>7</td>
<td>(1*0, 0, 0) (2x, 1/2, 1/2, 0) (2y, 1/2, 1/2, 0)</td>
</tr>
<tr>
<td>90.4.760</td>
<td>P4_1'2'</td>
<td>7</td>
<td>(1*0, 0, 0) (2x, 1/2, 1/2, 0) (2y, 1/2, 1/2, 0)</td>
</tr>
<tr>
<td>90.5.761</td>
<td>P4',2',2'</td>
<td>7</td>
<td>(1*0, 0, 0) (2x, 1/2, 1/2, 0) (2y, 1/2, 1/2, 0)</td>
</tr>
<tr>
<td>90.6.762</td>
<td>P_2c 42,2</td>
<td>7</td>
<td>(1*0, 0, 0) (2x, 1/2, 1/2, 0) (2y, 1/2, 1/2, 0)</td>
</tr>
<tr>
<td>90.7.763</td>
<td>P_2c, 4',2',2'</td>
<td>7</td>
<td>(1*0, 0, 0) (2x, 1/2, 1/2, 0) (2y, 1/2, 1/2, 0)</td>
</tr>
<tr>
<td>91.1.764</td>
<td>P4,22</td>
<td>6</td>
<td>(1*0, 0, 0) (2x, 0, 1/2) (2y, 0, 0)</td>
</tr>
<tr>
<td>91.2.765</td>
<td>P4,221'</td>
<td>6</td>
<td>(1*0, 0, 0) (2x, 0, 1/2) (2y, 0, 0)</td>
</tr>
<tr>
<td>91.3.766</td>
<td>P4_1',2'</td>
<td>6</td>
<td>(1*0, 0, 0) (2x, 0, 1/2) (2y, 0, 0)</td>
</tr>
<tr>
<td>91.4.767</td>
<td>P4_1',2'</td>
<td>6</td>
<td>(1*0, 0, 0) (2x, 0, 1/2) (2y, 0, 0)</td>
</tr>
<tr>
<td>91.5.768</td>
<td>P4_1',2'</td>
<td>6</td>
<td>(1*0, 0, 0) (2x, 0, 1/2) (2y, 0, 0)</td>
</tr>
<tr>
<td>91.6.769</td>
<td>P_2c, 4,22</td>
<td>6</td>
<td>(1*0, 0, 0) (2x, 0, 1/2) (2y, 0, 0)</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 59
MAGNETIC SPACE GROUP ELEMENTS 60

91.7.770 P 4 \('22'\) P 4,2,2 (0,0,0;\(a-b, a+b, c\))

\[
\begin{array}{cccc}
(2x,0,0,1/2) & (2y,0,0,0) & (2xy,0,0,3/4) & (2\delta y,0,0,1/4) \\
1*0,0,0 & (4z,1/2,1/2,1/4) & (2,0,0,1/2) & (4z,1*1/2,1/2,3/4) \\
2x,0,0,1/2 & (2y,0,0,0) & (2xy,1/2,3/4) & (2\delta y,0,0,1/2) \\
\end{array}
\]

92.1.771 P 4,2,2

\[
\begin{array}{cccc}
(1*0,0,0) & (4z,1/2,1/2,1/4) & (2,0,0,1/2) & (4z,1*1/2,1/2,3/4) \\
2x,1/2,1/2,3/4 & (2y,1/2,1/2,1/4) & (2xy,0,0,0) & (2\delta y,0,0,1/2) \\
\end{array}
\]

92.2.772 P 4,2,21'

92.3.773 P 4,1,2,2' P 2,2,2 (1/4, 0, 1/8; a, b, c)

\[
\begin{array}{cccc}
(1*0,0,0) & (4z,1/2,1/2,1/4)' & (2,0,0,1/2) & (4z,1*1/2,1/2,3/4)' \\
2x,1/2,1/2,3/4 & (2y,1/2,1/2,1/4)' & (2xy,0,0,0)' & (2\delta y,0,0,1/2)' \\
\end{array}
\]

92.4.774 P 4,1,2,2' P 4,1 (1/2, 0, 0; a, b, c)

\[
\begin{array}{cccc}
(1*0,0,0) & (4z,1/2,1/2,1/4)' & (2,0,0,1/2) & (4z,1*1/2,1/2,3/4)' \\
2x,1/2,1/2,3/4' & (2y,1/2,1/2,1/4)' & (2xy,0,0,0)' & (2\delta y,0,0,1/2)' \\
\end{array}
\]

92.5.775 P 4,1,2,2' C 222,1 (0, 0, 0; a+b, -a-b, c)

\[
\begin{array}{cccc}
(1*0,0,0) & (4z,1/2,1/2,1/4)' & (2,0,0,1/2) & (4z,1*1/2,1/2,3/4)' \\
2x,1/2,1/2,3/4' & (2y,1/2,1/2,1/4)' & (2xy,0,0,0)' & (2\delta y,0,0,1/2)' \\
\end{array}
\]

93.1.776 P 4,2,2

\[
\begin{array}{cccc}
(1*0,0,0) & (4z,0,0,1/2) & (2,0,0,0) & (4z,1*0,0,1/2) \\
2x,0,0,0 & (2y,0,0,0) & (2xy,0,0,1/2) & (2\delta y,0,0,1/2) \\
\end{array}
\]

93.2.777 P 4,2,21'

93.3.778 P 4,2,2' P 222 (0, 0, 0; a, b, c)

\[
\begin{array}{cccc}
(1*0,0,0) & (4z,0,0,1/2)' & (2,0,0,0) & (4z,1*0,0,1/2)' \\
2x,0,0,0 & (2y,0,0,0) & (2xy,0,0,1/2)' & (2\delta y,0,0,1/2)' \\
\end{array}
\]

93.4.779 P 4,2,2' P 4,2 (0, 0, 0; a, b, c)

\[
\begin{array}{cccc}
(1*0,0,0) & (4z,0,0,1/2)' & (2,0,0,0) & (4z,1*0,0,1/2)' \\
2x,0,0,0' & (2y,0,0,0)' & (2xy,0,0,1/2)' & (2\delta y,0,0,1/2)' \\
\end{array}
\]
<table>
<thead>
<tr>
<th>Code</th>
<th>Space Group</th>
<th>Elements</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>93.5.780</td>
<td>P4₂2'2</td>
<td>C222</td>
<td>(0,0,1/4; a-b, a+b, c)</td>
</tr>
<tr>
<td>93.6.781</td>
<td>P₃c 4₂ 22</td>
<td>P4₂2</td>
<td>(0,0,0; b, a, c)</td>
</tr>
<tr>
<td>93.7.782</td>
<td>P₃ 4₂ 22</td>
<td>P4₂2</td>
<td>(0,0,1/4; a-b, a+b, c)</td>
</tr>
<tr>
<td>93.8.783</td>
<td>P₈ 4₂ 22</td>
<td>I4₂2</td>
<td>(-1/2,0,0; a-b, a+b, c)</td>
</tr>
<tr>
<td>93.9.784</td>
<td>P₃c 4₂'22'</td>
<td>P₄₃ 22</td>
<td>(0,0,0; b, a, c)</td>
</tr>
<tr>
<td>94.1.786</td>
<td>P4₂ 2,2</td>
<td>(1*0,0,0)</td>
<td>(4_z*0,1/2)</td>
</tr>
<tr>
<td>94.2.787</td>
<td>P4₂ 2,2'1'</td>
<td>(2*0,1/2,1/2,1/2)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>94.3.788</td>
<td>P₄₂ 2,2'</td>
<td>P₂₁₂₂</td>
<td>(0,0,1/4; a, b, c)</td>
</tr>
<tr>
<td>94.4.789</td>
<td>P₄₂ 2,2'</td>
<td>P₄₂</td>
<td>(1/2,0,0; a, b, c)</td>
</tr>
<tr>
<td>94.5.790</td>
<td>P₄₂ 2,2'</td>
<td>C222</td>
<td>(0,0,0; a-b, a+b, c)</td>
</tr>
<tr>
<td>94.6.791</td>
<td>P₂₃ 4₂ 2,2</td>
<td>P₄₂ 2,2</td>
<td>(0,0,0; b, a, c)</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 61
<table>
<thead>
<tr>
<th>Magnetic Space Group Elements</th>
<th>Pnma 2</th>
<th>P43 2</th>
<th>(0,0,0;b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.792</td>
<td>P2c 4</td>
<td>P43 2</td>
<td>(0,0,0;b,c)</td>
</tr>
<tr>
<td>95.1793</td>
<td>P43 22</td>
<td>(1*0,0,0)</td>
<td>(2*0,1/2,1/2)</td>
</tr>
<tr>
<td>95.2.794</td>
<td>P43 221</td>
<td>(0,0,0;b,c)</td>
<td></td>
</tr>
<tr>
<td>95.3.795</td>
<td>P43'22'</td>
<td>(0,0,0;b,c)</td>
<td></td>
</tr>
<tr>
<td>95.4.796</td>
<td>P43 2'2'</td>
<td>(0,0,0;a,b,c)</td>
<td></td>
</tr>
<tr>
<td>95.5.797</td>
<td>P43 2'2</td>
<td>(0,0,0;a-b,a+b,c)</td>
<td></td>
</tr>
<tr>
<td>95.6.798</td>
<td>P43 22</td>
<td>(0,0,0;a+b,-a+b,c)</td>
<td></td>
</tr>
<tr>
<td>95.7.799</td>
<td>P43'22'</td>
<td>(0,0,0;a+b,-a+b,c)</td>
<td></td>
</tr>
<tr>
<td>96.1.800</td>
<td>P43 2</td>
<td>(1*0,0,0)</td>
<td>(2*1/2,1/2,1/2)</td>
</tr>
<tr>
<td>96.2.801</td>
<td>P43 21</td>
<td>(0,0,0;1/2,1/2,1/2)</td>
<td></td>
</tr>
<tr>
<td>96.3.802</td>
<td>P4₃'2,2'</td>
<td>P2,2,2₁</td>
<td>(1/4,0,-1/8;a,b,c)</td>
</tr>
<tr>
<td>96.4.803</td>
<td>P4₃ 2₁'2'</td>
<td>P4₃</td>
<td>(1/2,0,0;a,b,c)</td>
</tr>
<tr>
<td>96.5.804</td>
<td>P4₃ 2₁'2'</td>
<td>C222₁</td>
<td>(0,0,0;a+b,-a+b,c)</td>
</tr>
<tr>
<td>97.1.805</td>
<td>I422</td>
<td>(1⁺₀,₀,₀)</td>
<td>(4₂⁻¹⁺₁/₂,1/₂,3/₄)</td>
</tr>
<tr>
<td>97.2.806</td>
<td>I422₁'</td>
<td>(1⁺₀,₀,₀)</td>
<td>(4₂⁻¹⁺₁/₂,1/₂,3/₄)</td>
</tr>
<tr>
<td>97.3.807</td>
<td>I4'22'</td>
<td>I222</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>97.4.808</td>
<td>I42'2'</td>
<td>I4</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>97.5.809</td>
<td>I4'2'2'</td>
<td>F222</td>
<td>(0,0,0;a-b,a+b,c)</td>
</tr>
<tr>
<td>97.6.810</td>
<td>Iₚ 422</td>
<td>P422</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>97.7.811</td>
<td>Iₚ 4'22'</td>
<td>P4₂22</td>
<td>(1/2,0,0;a,b,c)</td>
</tr>
<tr>
<td>97.8.812</td>
<td>Iₚ 42'2'</td>
<td>P4₂,2</td>
<td>(1/2,0,1/₄;a,b,c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>97.9.813</td>
<td>I_p 4'2'2</td>
<td>P4_212</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>98.1.814</td>
<td>I4,22</td>
<td>(1*0,0,0)</td>
<td>(4_z*0,1/2,1/4)</td>
</tr>
<tr>
<td>98.2.815</td>
<td>I4,221'</td>
<td>(1*0,0,0)</td>
<td>(4_z*0,1/2,1/4)</td>
</tr>
<tr>
<td>98.3.816</td>
<td>I4,'22'</td>
<td>I2,2,2_1</td>
<td>(0,1/4,1/4;a,b,c)</td>
</tr>
<tr>
<td>98.4.817</td>
<td>I4,2'2'</td>
<td>I4,1</td>
<td>(1/4,-1/4,0;a,b,c)</td>
</tr>
<tr>
<td>98.5.818</td>
<td>I4,'2'2'</td>
<td>F222</td>
<td>(0,0,0;a-b,a+b,c)</td>
</tr>
<tr>
<td>98.6.819</td>
<td>I_p 4,22</td>
<td>P4,22</td>
<td>(1/4,-1/4,1/8;a,b,c)</td>
</tr>
<tr>
<td>98.7.820</td>
<td>I_p 4,'22'</td>
<td>P4_3 22</td>
<td>(1/4,1/4,1/8;a,b,c)</td>
</tr>
<tr>
<td>98.8.821</td>
<td>I_p 4,2'2'</td>
<td>P4,2,2</td>
<td>(1/4,1/4,0;a,b,c)</td>
</tr>
<tr>
<td>98.9.822</td>
<td>I_p 4,'2'2'</td>
<td>P4_3 2,2</td>
<td>(1/4,-1/4,1/4;a,b,c)</td>
</tr>
<tr>
<td>99.1.823</td>
<td>P4mm</td>
<td>(1*0,0,0)</td>
<td>(4_z*0,0,0)</td>
</tr>
<tr>
<td>Number</td>
<td>Symbol</td>
<td>Point Group</td>
<td>Basis Vectors</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
</tbody>
</table>
| 99.2.824 | P4mm1' | Cmm2 | (0,0,0; a-b, a+b, c) | (1*0,0,0) (4_z*0,0,0)' (2*0,0,0) (4_z\^1*0,0,0)'
| | | | | (m_x*0,0,0)' (m_y*0,0,0)' (m_z*0,0,0) (m_x\^1*0,0,0)'
| 99.3.825 | P4'm'm Cmm2 | (0,0,0; a, b, c) | (1*0,0,0) (4_z*0,0,0)' (2*0,0,0) (4_z\^1*0,0,0)'
| | | | | (m_x*0,0,0)' (m_y*0,0,0)' (m_z*0,0,0) (m_x\^1*0,0,0)'
| 99.4.826 | P4'm'm' Pmm2 | (0,0,0; a-b, a+b, c) | (1*0,0,0) (4_z*0,0,0)' (2*0,0,0) (4_z\^1*0,0,0)'
| | | | | (m_x*0,0,0)' (m_y*0,0,0)' (m_z*0,0,0) (m_x\^1*0,0,0)'
| 99.5.827 | P4m'm' P4 | (0,0,0; a-b, a+b, c) | (1*0,0,0) (4_z*0,0,0)' (2*0,0,0) (4_z\^1*0,0,0)'
| | | | | (m_x*0,0,0)' (m_y*0,0,0)' (m_z*0,0,0) (m_x\^1*0,0,0)'
| 99.6.828 | P2c 4mm P4mm | (0,0,0; a, b, 2c) | (1*0,0,0) (4_z*0,0,0)' (2*0,0,0) (4_z\^1*0,0,0)'
| | | | | (m_x*0,0,0)' (m_y*0,0,0)' (m_z*0,0,0) (m_x\^1*0,0,0)'
| 99.7.829 | P_p4mm P4mm | (0,0,0; a-b, a+b, c) | (1*0,0,0) (4_z*0,0,0)' (2*0,0,0) (4_z\^1*0,0,0)'
| | | | | (m_x*0,0,0)' (m_y*0,0,0)' (m_z*0,0,0) (m_x\^1*0,0,0)'
| 99.8.830 | P_14mm I4mm | (0,0,0; a-b, a+b, 2c) | (1*0,0,0) (4_z*0,0,0)' (2*0,0,0) (4_z\^1*0,0,0)'
| | | | | (m_x*0,0,0)' (m_y*0,0,0)' (m_z*0,0,0) (m_x\^1*0,0,0)'
| 99.9.831 | P2c 4'm'm P4_2cm | (0,0,0; a, b, 2c) | (1*0,0,0) (4_z*0,0,0,01) (2*0,0,0) (4_z\^1*0,0,01)
| | | | | (m_x*0,0,0,1)' (m_y*0,0,0,1)' (m_z*0,0,0) (m_x\^1*0,0,0,1)'
| 99.10.832 | P2c 4'm'm' P4_2mc | (0,0,0; a, b, 2c) | (1*0,0,0) (4_z*0,0,0,01) (2*0,0,0) (4_z\^1*0,0,01)
| | | | | (m_x*0,0,0,1)' (m_y*0,0,0,1)' (m_z*0,0,0) (m_x\^1*0,0,0,1)'
| 99.11.833 | P2c 4'm'm' P4cc | (0,0,0; a, b, 2c) | (1*0,0,0) (4_z*0,0,0,0) (2*0,0,0) (4_z\^1*0,0,0,0)
| | | | | (m_x*0,0,0,1)' (m_y*0,0,0,1)' (m_z*0,0,0) (m_x\^1*0,0,0,1)'
| 99.12.834 | P_p4'm'm' P4bm | (1/2, 1/2, 0; a-b, a+b, c) | (1*0,0,0) (4_z*1,0,0) (2*0,0,0) (4_z\^1*1,0,0)
| | | | | (m_x*0,0,0) (m_y*0,0,0) (m_z*1,0,0) (m_x\^1*1,0,0)'
| 99.13.835 | P_14'm'm' I4cm | (0,0,0; a-b, a+b, 2c) | (1*0,0,0) (4_z*0,0,0) (2*0,0,0) (4_z\^1*0,0,0)
| | | | | (m_x*1,0,0) (m_y*1,0,0) (m_z*1,0,0) (m_x\^1,0,0)'

MAGNETIC SPACE GROUP ELEMENTS 65
<table>
<thead>
<tr>
<th>100.1.836</th>
<th>P4bm</th>
<th>((1*0,0,0))</th>
<th>((4_z*0,0,0))</th>
<th>((2_z*0,0,0))</th>
<th>((4_z^{-1}*0,0,0))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>((m_x*1/2,1/2,0))</td>
<td>((m_y*1/2,1/2,0))</td>
<td>((m_{xy}*1/2,1/2,0))</td>
<td>((m_{sy}*1/2,1/2,0))</td>
</tr>
<tr>
<td>100.2.837</td>
<td>P4bm'</td>
<td>((1*0,0,0))</td>
<td>((4_z*0,0,0))</td>
<td>((2_z*0,0,0))</td>
<td>((4_z^{-1}*0,0,0))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((m_x*1/2,1/2,0)')</td>
<td>((m_y*1/2,1/2,0)')</td>
<td>((m_{xy}*1/2,1/2,0)')</td>
<td>((m_{sy}*1/2,1/2,0)')</td>
</tr>
<tr>
<td>100.3.838</td>
<td>P4'b'm</td>
<td>Cmm2</td>
<td>((1/2,0,0;a-b,a+b,c))</td>
<td>((1*0,0,0))</td>
<td>((4_z*0,0,0))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((m_x*1/2,1/2,0)')</td>
<td>((m_y*1/2,1/2,0)')</td>
<td>((m_{xy}*1/2,1/2,0)')</td>
<td>((m_{sy}*1/2,1/2,0)')</td>
</tr>
<tr>
<td>100.4.839</td>
<td>P4'bm'</td>
<td>Pba2</td>
<td>((0,0,0;a,b,c))</td>
<td>((1*0,0,0))</td>
<td>((4_z*0,0,0))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((m_x*1/2,1/2,0)')</td>
<td>((m_y*1/2,1/2,0)')</td>
<td>((m_{xy}*1/2,1/2,0)')</td>
<td>((m_{sy}*1/2,1/2,0)')</td>
</tr>
<tr>
<td>100.5.840</td>
<td>P4b'm'</td>
<td>P4</td>
<td>((0,0,0;a,b,c))</td>
<td>((1*0,0,0))</td>
<td>((4_z*0,0,0))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((m_x*1/2,1/2,0)')</td>
<td>((m_y*1/2,1/2,0)')</td>
<td>((m_{xy}*1/2,1/2,0)')</td>
<td>((m_{sy}*1/2,1/2,0)')</td>
</tr>
<tr>
<td>100.6.841</td>
<td>P2c 4bm</td>
<td>P4bm</td>
<td>((0,0,0;a,b,2c))</td>
<td>((1*0,0,0))</td>
<td>((4_z*0,0,0))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((m_x*1/2,1/2,0)')</td>
<td>((m_y*1/2,1/2,0)')</td>
<td>((m_{xy}*1/2,1/2,0)')</td>
<td>((m_{sy}*1/2,1/2,0)')</td>
</tr>
<tr>
<td>100.7.842</td>
<td>P2c 4'b'm</td>
<td>P4₂nm</td>
<td>((0,1/2,0;a,b,c))</td>
<td>((1*0,0,0))</td>
<td>((4_z*0,0,0))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((m_x*1/2,1/2,1))</td>
<td>((m_y*1/2,1/2,1))</td>
<td>((m_{xy}*1/2,1/2,0))</td>
<td>((m_{sy}*1/2,1/2,0))</td>
</tr>
<tr>
<td>100.8.843</td>
<td>P2c 4'bm'</td>
<td>P4₂bc</td>
<td>((0,0,0;a,b,2c))</td>
<td>((1*0,0,0))</td>
<td>((4_z*0,0,0))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((m_x*1/2,1/2,0)')</td>
<td>((m_y*1/2,1/2,0)')</td>
<td>((m_{xy}*1/2,1/2,1))</td>
<td>((m_{sy}*1/2,1/2,1))</td>
</tr>
<tr>
<td>100.9.844</td>
<td>P2c 4'b'm'</td>
<td>P4nc</td>
<td>((0,0,0;a,b,2c))</td>
<td>((1*0,0,0))</td>
<td>((4_z*0,0,0))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((m_x*1/2,1/2,1))</td>
<td>((m_y*1/2,1/2,1))</td>
<td>((m_{xy}*1/2,1/2,1))</td>
<td>((m_{sy}*1/2,1/2,1))</td>
</tr>
<tr>
<td>101.1.845</td>
<td>P4₂ cm</td>
<td>((1*0,0,0))</td>
<td>((4_z*0,0,0))</td>
<td>((2_z*0,0,0))</td>
<td>((4_z^{-1}*0,0,0))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((m_x*0,0,1/2))</td>
<td>((m_y*0,0,1/2))</td>
<td>((m_{xy}*0,0,0))</td>
<td>((m_{sy}*0,0,0))</td>
</tr>
<tr>
<td>101.2.846</td>
<td>P4₂ cm1'</td>
<td>((1*0,0,0))</td>
<td>((4_z*0,0,0))</td>
<td>((2_z*0,0,0))</td>
<td>((4_z^{-1}*0,0,0))</td>
</tr>
<tr>
<td>Magnetic Space Group</td>
<td>Elements</td>
<td>Symbol</td>
<td>(0,0,0;(a-b, a+b, c))</td>
<td>(1*0,0,0)</td>
<td>(4z*0,0,1/2)'</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
<td>--------</td>
<td>--------------------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>101.3.847 P4_2'c'm</td>
<td>Cm2</td>
<td></td>
<td>(0,0,0;(a-b, a+b, c))</td>
<td>(1*0,0,0)</td>
<td>(4z*0,0,1/2)'</td>
</tr>
<tr>
<td>101.4.848 P4_2'cm'</td>
<td>Pcc2</td>
<td></td>
<td>(0,0,0;(a,b,c))</td>
<td>(1*0,0,0)</td>
<td>(4z*0,0,1/2)'</td>
</tr>
<tr>
<td>101.5.849 P4_2 c'm'</td>
<td>P4_2</td>
<td></td>
<td>(0,0,0;(a,b,c))</td>
<td>(1*0,0,0)</td>
<td>(4z*0,0,1/2)'</td>
</tr>
<tr>
<td>101.6.850 Pₚ4_2 cm</td>
<td>Pₚ4_2 mc</td>
<td></td>
<td>(0,0,0;(a-b,a+b,c))</td>
<td>(1*0,0,0)</td>
<td>(4z*0,0,1/2)'</td>
</tr>
<tr>
<td>101.7.851 Pₚ4_2' cm'</td>
<td>Pₚ4_2 bc</td>
<td></td>
<td>(1/2,1/2,0;(a-b,a+b,c))</td>
<td>(1*0,0,0)</td>
<td>(4z*1,0,1/2)</td>
</tr>
<tr>
<td>102.1.852 P4_2 nm</td>
<td></td>
<td></td>
<td></td>
<td>(1*0,0,0)</td>
<td>(4z*1,1/2,1/2)</td>
</tr>
<tr>
<td>102.2.853 P4_2 nm1'</td>
<td></td>
<td></td>
<td></td>
<td>(1*0,0,0)</td>
<td>(4z*1,1/2,1/2)</td>
</tr>
<tr>
<td>102.3.854 P4_2'n'm</td>
<td>Cm2</td>
<td></td>
<td>(0,0,0;(a-b,a+b,c))</td>
<td>(1*0,0,0)</td>
<td>(4z*1,1/2,1/2)'</td>
</tr>
<tr>
<td>102.4.855 P4_2'n'm'</td>
<td>Pnn2</td>
<td></td>
<td>(0,0,0;(a,b,c))</td>
<td>(1*0,0,0)</td>
<td>(4z*1,1/2,1/2)'</td>
</tr>
<tr>
<td>102.5.856 P4_2 n'm'</td>
<td>P4_2</td>
<td></td>
<td>(1/2,0,0;(a,b,c))</td>
<td>(1*0,0,0)</td>
<td>(4z*1,1/2,1/2)'</td>
</tr>
<tr>
<td>102.6.857 Pₚ4_2 nm</td>
<td>Iₚ₄,md</td>
<td></td>
<td>(0,0,0;(a-b,a+b,2c))</td>
<td>(1*0,0,0)</td>
<td>(4z*1,1/2,1/2)</td>
</tr>
<tr>
<td>102.7.858</td>
<td>P₄₂ n'm'</td>
<td>I₄₋₁₋₂</td>
<td>(0,0,0; a-b,a+b,2c)</td>
<td>(1*0,0,0)</td>
<td>(4₂⁻¹*1/2,1/2,1/2)</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>103.1.859</td>
<td>P₄cc</td>
<td></td>
<td></td>
<td>(1*0,0,0)</td>
<td>(4₂*0,0,0)</td>
</tr>
<tr>
<td>103.2.860</td>
<td>P₄cc₁'</td>
<td></td>
<td></td>
<td>(mₓ*0,0,1/2)</td>
<td>(mᵧ*0,0,1/2)</td>
</tr>
<tr>
<td>103.3.861</td>
<td>P₄'c c</td>
<td>Ccc²</td>
<td>(0,0,0; a-b,a+b,c)</td>
<td>(1*0,0,0)</td>
<td>(4⁻¹*0,0,0)</td>
</tr>
<tr>
<td>103.4.862</td>
<td>P₄'c c'</td>
<td>Pcc²</td>
<td>(0,0,0; a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(4⁻¹*0,0,0)</td>
</tr>
<tr>
<td>103.5.863</td>
<td>P₄ c c'</td>
<td>P4</td>
<td>(0,0,0; a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(4⁻¹*0,0,0)</td>
</tr>
<tr>
<td>103.6.864</td>
<td>Pp 4cc</td>
<td>P4cc</td>
<td>(0,0,0; a-b,a+b,c)</td>
<td>(1*0,0,0)</td>
<td>(4⁻¹*0,0,0)</td>
</tr>
<tr>
<td>103.7.865</td>
<td>Pp 4'cc'</td>
<td>P4nc</td>
<td>(1/2,1/2,0; a-b,a+b,c)</td>
<td>(1*0,0,0)</td>
<td>(4⁻¹*1,0,0)</td>
</tr>
<tr>
<td>104.1.866</td>
<td>P4nc</td>
<td></td>
<td></td>
<td>(1*0,0,0)</td>
<td>(4⁻¹*0,0,0)</td>
</tr>
<tr>
<td>104.2.867</td>
<td>P4nc₁'</td>
<td></td>
<td></td>
<td>(mₓ*0,0,1/2)</td>
<td>(mᵧ*0,0,1/2)</td>
</tr>
<tr>
<td>104.3.868</td>
<td>P4' n'c</td>
<td>Ccc²</td>
<td>(1/2,0,0; a-b,a+b,c)</td>
<td>(1*0,0,0)</td>
<td>(4⁻¹*0,0,0)</td>
</tr>
<tr>
<td>104.4.869</td>
<td>P4' n'c'</td>
<td>Pnn²</td>
<td>(0,0,0; a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(4⁻¹*0,0,0)</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 68
<table>
<thead>
<tr>
<th>Magnetic Space Group</th>
<th>Symbol</th>
<th>Formula</th>
<th>Vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>104.5.870</td>
<td>P4n'c'</td>
<td>P4</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.1.871</td>
<td>P4_2mc</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.2.872</td>
<td>P4_2mc'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.3.873</td>
<td>P4_2'mc</td>
<td>Ccc2</td>
<td>(0,0,0; a-b, a+b, c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.4.874</td>
<td>P4_2'mc'</td>
<td>Pmm2</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.5.875</td>
<td>P4_2'mc'</td>
<td>P4_2</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.6.876</td>
<td>P_p4_2mc</td>
<td>P4_2 cm</td>
<td>(0,0,0; a-b, a+b, c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.7.877</td>
<td>P_p4_2'mc'</td>
<td>P4_2 nm</td>
<td>(0,0,0; a-b, a+b, c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106.1.878</td>
<td>P4_2bc</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106.2.879</td>
<td>P4_2bc'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106.3.880</td>
<td>P4_2'b'c</td>
<td>Ccc2</td>
<td>(1/2,0,0; a-b, a+b, c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106.4.881</td>
<td>P4_2'bc'</td>
<td>Pba2</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic Space Group</td>
<td>Symbol</td>
<td>Description</td>
<td>Elements</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>106.5.882 P4₂b'c' P4₂</td>
<td>(mₓ*1/2,1/2,0)</td>
<td>(mᵧ*1/2,1/2,0)</td>
<td>(mₓ*1/2,1/2,1/2)'</td>
</tr>
<tr>
<td>107.1.883 I4mm</td>
<td>(1*0,0,0)</td>
<td>(4z*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>107.2.884 I4mm1'</td>
<td>(mₓ*0,0,0)</td>
<td>(mᵧ*0,0,0)</td>
<td>(mₓ*0,0,0)</td>
</tr>
<tr>
<td>107.3.885 I4'm'm Fmm2</td>
<td>(1*0,0,0)</td>
<td>(4z*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>107.4.886 I4'm'm' Imm2</td>
<td>(mₓ*0,0,0)</td>
<td>(mᵧ*0,0,0)</td>
<td>(mₓ*0,0,0)</td>
</tr>
<tr>
<td>107.5.887 I4m'm' I4</td>
<td>(1*0,0,0)</td>
<td>(4z*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>107.6.888 Iₜ 4mm P4mm</td>
<td>(1*0,0,0)</td>
<td>(4z*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>107.7.889 Iₜ 4'm'm P4₂nm</td>
<td>(mₓ*1/2,1/2,1/2)</td>
<td>(mᵧ*1/2,1/2,1/2)</td>
<td>(mₓ*0,0,0)</td>
</tr>
<tr>
<td>107.8.890 Iₜ 4'm'm' P4₂mc</td>
<td>(1*0,0,0)</td>
<td>(4z*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>107.9.891 Iₜ 4'm'm' P4nc</td>
<td>(mₓ*1/2,1/2,1/2)</td>
<td>(mᵧ*1/2,1/2,1/2)</td>
<td>(mₓ*1/2,1/2,1/2)</td>
</tr>
<tr>
<td>108.1.892</td>
<td>I4cm</td>
<td>(1*0,0,0) (m_x 1/2,1/2,0) (4z0,0,0) (m_y 1/2,1/2,0) (20,0,0) (m_xy 1/2,1/2,0) (4z-10,0,0) (m_xy *1/2,1/2,0)</td>
<td></td>
</tr>
<tr>
<td>108.2.893</td>
<td>I4cm1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108.3.894</td>
<td>I4'c'm</td>
<td>Fmm2</td>
<td>(1/2,0,0;a-b,a+b,c) (10,0,0) (4z0,0,0) (m_x *1/2,1/2,0) (m_y 1/2,1/2,0) (20,0,0) (m_xy 1/2,1/2,0) (4z-10,0,0) (m_xy *1/2,1/2,0)</td>
</tr>
<tr>
<td>108.4.895</td>
<td>I4'cm'</td>
<td>Iba2</td>
<td>(0,0,1/4;a,b,c) (10,0,0) (4z0,0,0) (m_x *1/2,1/2,0) (m_y 1/2,1/2,0) (20,0,0) (m_xy 1/2,1/2,0) (4z-10,0,0) (m_xy *1/2,1/2,0)</td>
</tr>
<tr>
<td>108.5.896</td>
<td>I4c'm'</td>
<td>I4</td>
<td>(0,0,0;a,b,c) (10,0,0) (4z0,0,0) (m_x *1/2,1/2,0) (m_y 1/2,1/2,0) (20,0,0) (m_xy 1/2,1/2,0) (4z-10,0,0) (m_xy *1/2,1/2,0)</td>
</tr>
<tr>
<td>108.6.897</td>
<td>I_p 4cm</td>
<td>P4bm</td>
<td>(0,0,0;a,b,c) (10,0,0) (4z0,0,0) (m_x *1/2,1/2,0) (m_y 1/2,1/2,0) (20,0,0) (m_xy 1/2,1/2,0) (4z-10,0,0) (m_xy *1/2,1/2,0)</td>
</tr>
<tr>
<td>108.7.898</td>
<td>I_p 4'c'm</td>
<td>P4_2cm</td>
<td>(1/2,0,0;a,b,c) (10,0,0) (4z0,0,0) (m_x *0,0,1/2) (m_y 0,0,1/2) (20,0,0) (m_xy 0,0,1/2) (4z-10,0,0) (m_xy *0,0,1/2)</td>
</tr>
<tr>
<td>108.8.899</td>
<td>I_p 4'cm'</td>
<td>P4_2bc</td>
<td>(1/2,0,0;a,b,c) (10,0,0) (4z0,0,0) (m_x *0,0,1/2) (m_y 0,0,1/2) (20,0,0) (m_xy 0,0,1/2) (4z-10,0,0) (m_xy *0,0,1/2)</td>
</tr>
<tr>
<td>108.9.900</td>
<td>I_p 4c'm'</td>
<td>P4cc</td>
<td>(0,0,0;a,b,c) (10,0,0) (4z0,0,0) (m_x *0,0,1/2) (m_y 0,0,1/2) (20,0,0) (m_xy 0,0,1/2) (4z-10,0,0) (m_xy *0,0,1/2)</td>
</tr>
<tr>
<td>109.1.901</td>
<td>I4,md</td>
<td>(1*0,0,0) (m_x 0,0,0) (4z0,0,0) (m_y 0,0,0) (20,0,0) (m_xy 0,1/2,1/4) (4z-10,0,0) (m_xy *0,1/2,1/4)</td>
<td></td>
</tr>
<tr>
<td>109.2.902</td>
<td>I4,md1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109.3.903</td>
<td>I4,'m'd</td>
<td>Fdd2</td>
<td>(0,0,0;a-b,a+b,c) (10,0,0) (4z0,0,0) (m_x *0,0,0) (m_y 0,0,0) (20,0,0) (m_xy 0,0,0) (4z-10,0,0) (m_xy *0,0,0)</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 71
<p>| 109.4.904 | I4,'md' | Imm2 | (0,0,0; a,b,c) | (10,0,0) | (4_z0,1/2,1/4)' | (2_z0,0,0) | (4_z-10,1/2,1/4)' | (m_x0,0,0) | (m_y0,0,0) | (m_x0,1/2,1/4)' | (m_y0,1/2,1/4)' |
| 109.5.905 | I4,m'd' | I4 | (1/4,-1/4,0; a,b,c) | (10,0,0) | (4_z0,1/2,1/4)' | (2_z0,0,0) | (4_z-10,1/2,1/4)' | (m_x0,0,0) | (m_y0,0,0) | (m_x0,1/2,1/4)' | (m_y0,1/2,1/4) |
| 110.1.906 | I4,cd | | | (10,0,0) | (4_z0,1/2,1/4)' | (2_z0,0,0) | (4_z-10,1/2,1/4)' | (m_x0,0,1/2) | (m_y0,0,1/2) | (m_x0,1/2,3/4) | (m_y0,1/2,3/4) |
| 110.2.907 | I4,cd1' | | | | | | | | | | |
| 110.3.908 | I4,'c'd | Fdd2 | (0,0,0; a-b,a+b,c) | (10,0,0) | (4_z0,1/2,1/4)' | (2_z0,0,0) | (4_z-10,1/2,1/4)' | (2x0,0,0) | (2y0,0,0) | (m_xy0,0,0) | (m_x0,0,0) |
| 110.4.909 | I4,'cd' | Iba2 | (0,0,0; a,b,c) | (10,0,0) | (4_z0,1/2,1/4)' | (2_z0,0,0) | (4_z-10,1/2,1/4)' | (m_x0,0,1/2) | (m_y0,0,1/2) | (m_x0,1/2,3/4) | (m_y0,1/2,3/4) |
| 110.5.910 | I4,'c'd' | I4 | (1/4,-1/4,0; a,b,c) | (10,0,0) | (4_z0,1/2,1/4)' | (2_z0,0,0) | (4_z-10,1/2,1/4)' | (m_x0,0,1/2) | (m_y0,0,1/2) | (m_x0,1/2,3/4) | (m_y0,1/2,3/4) |
| 111.1.911 | P&2m | | | (10,0,0) | (4_z0,0,0) | (2_z0,0,0) | (4_z-10,0,0) | (2x0,0,0) | (2y0,0,0) | (m_xy0,0,0) | (m_y0,0,0) |
| 111.2.912 | P&2m1' | | | | | | | | | | |
| 111.3.913 | P&2'm | Cmm2 | (0,0,0; a-b,a+b,c) | (10,0,0) | (4_z0,0,0)' | (2_z0,0,0) | (4_z-10,0,0)' | (2x0,0,0)' | (2y0,0,0)' | (m_xy0,0,0) | (m_y0,0,0) |
| 111.4.914 | P&2'm' | P222 | (0,0,0; a,b,c) | (10,0,0) | (4_z0,0,0)' | (2_z0,0,0) | (4_z-10,0,0)' | (2x0,0,0)' | (2y0,0,0)' | (m_xy0,0,0) | (m_y0,0,0)' |</p>
<table>
<thead>
<tr>
<th>Space Group</th>
<th>Description</th>
<th>Basis Vectors</th>
<th>Magnetism</th>
<th>Representative Translations</th>
</tr>
</thead>
<tbody>
<tr>
<td>P & 2'm'</td>
<td>&</td>
<td>(0,0,0; a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(2_x*0,0,0)' (2_y^0,0,0)' (2_z0,0,0)</td>
</tr>
<tr>
<td>P & 2'm'</td>
<td>&</td>
<td>(0,0,0; a,b,2c)</td>
<td>(1*0,0,0)</td>
<td>(2_x*0,0,0)' (2_y^0,0,0)' (2_z0,0,0)</td>
</tr>
<tr>
<td>P & 2'm'</td>
<td>&</td>
<td>(0,0,0; a-b, a+b, c)</td>
<td>(1*0,0,0)</td>
<td>(2_x*0,0,0)' (2_y^0,0,0)' (2_z0,0,0)</td>
</tr>
<tr>
<td>P & 2'm'</td>
<td>&</td>
<td>(1/2,1/2,0; a-b, a+b, c)</td>
<td>(1*0,0,0)</td>
<td>(2_x*0,0,0)' (2_y^0,0,0)' (2_z0,0,0)</td>
</tr>
<tr>
<td>P & 2'm'</td>
<td>&</td>
<td>(1/2,-1/2,0; a-b, a+b, c)</td>
<td>(1*0,0,0)</td>
<td>(2_x*0,0,0)' (2_y^0,0,0)' (2_z0,0,0)</td>
</tr>
<tr>
<td>P & 2c</td>
<td>&</td>
<td>(0,0,0; a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(2_x*0,0,1) (2_y^0,0,1) (2_z0,0,0)</td>
</tr>
<tr>
<td>P & 2c</td>
<td>&</td>
<td>(1/2,1/2,0; a-b, a+b, c)</td>
<td>(1*0,0,0)</td>
<td>(2_x*0,0,0)' (2_y^0,0,0)' (2_z0,0,0)</td>
</tr>
<tr>
<td>P & 2c</td>
<td>&</td>
<td>(1/2,-1/2,0; a-b, a+b, c)</td>
<td>(1*0,0,0)</td>
<td>(2_x*0,0,0)' (2_y^0,0,0)' (2_z0,0,0)</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 73
112.6.927 \(\text{P\&2c} \) \(\text{P\&c2} \) \((0,0,0; a-b, a+b, c)\)
\((1^*0,0,0)\)
\((\mathbf{g}_z^*0,0,0)\)
\((2^*0,0,0)\)
\((\mathbf{g}_z^{-1}*0,0,0)\)
\((m_x*0,0,1/2)\)
\((m_y*0,0,1/2)\)
\((m_z*0,0,1/2)\)
\((2^*0,0,1/2)\)
\((2^*0,0,1/2)\)
\((m_y*0,0,1/2)\)
\((m_z*0,0,1/2)\)

112.7.928 \(\text{P\&'2c'} \) \(\text{P\&n2} \) \((1/2,-1/2,0; a-b, a+b, c)\)
\((1^*0,0,0)\)
\((\mathbf{g}_x^*1,0,0)\)
\((2^*0,0,0)\)
\((\mathbf{g}_z^{-1}*1,0,0)\)
\((m_x^1,0,1/2)\)
\((m_y^1,0,1/2)\)
\((m_z^1,0,1/2)\)
\((2^*0,0,1/2)\)
\((2^*0,0,1/2)\)
\((m_y^1,0,1/2)\)
\((m_z^1,0,1/2)\)

113.1.929 \(\text{P\&2,m} \)
\((1^*0,0,0)\)
\((\mathbf{g}_x^*0,0,0)\)
\((2^*0,0,0)\)
\((\mathbf{g}_z^{-1}*0,0,0)\)
\((m_y^*1/2,1/2,0)\)
\((m_z^*1/2,1/2,0)\)
\((m_y^*1/2,1/2,0)\)
\((m_z^*1/2,1/2,0)\)

113.2.930 \(\text{P\&2,m1'} \)

113.3.931 \(\text{P\&'2,m} \) \(\text{Cmm2} \) \((1/2,0,0; a-b, a+b, c)\)
\((1^*0,0,0)\)
\((\mathbf{g}_x^*0,0,0)\)
\((2^*0,0,0)\)
\((\mathbf{g}_z^{-1}*0,0,0)\)
\((m_y^*1/2,1/2,0)\)
\((m_z^*1/2,1/2,0)\)
\((m_y^*1/2,1/2,0)\)
\((m_z^*1/2,1/2,0)\)

113.4.932 \(\text{P\&'2,m'} \) \(\text{P2122} \) \((0,0,0; a, b, c)\)
\((1^*0,0,0)\)
\((\mathbf{g}_x^*0,0,0)\)
\((2^*0,0,0)\)
\((\mathbf{g}_z^{-1}*0,0,0)\)
\((m_y^*1/2,1/2,0)\)
\((m_z^*1/2,1/2,0)\)
\((m_y^*1/2,1/2,0)\)
\((m_z^*1/2,1/2,0)\)

113.5.933 \(\text{P\&2,m'} \) \(\text{P}\) \((0,0,0; a, b, c)\)
\((1^*0,0,0)\)
\((\mathbf{g}_x^*0,0,0)\)
\((2^*0,0,0)\)
\((\mathbf{g}_z^{-1}*0,0,0)\)
\((m_y^*1/2,1/2,0)\)
\((m_z^*1/2,1/2,0)\)
\((m_y^*1/2,1/2,0)\)
\((m_z^*1/2,1/2,0)\)

113.6.934 \(\text{P}_{2c} \&2,m \) \(\text{P}\&2,m \) \((0,0,0; a, b, 2c)\)
\((1^*0,0,0)\)
\((\mathbf{g}_x^*0,0,0)\)
\((2^*0,0,0)\)
\((\mathbf{g}_z^{-1}*0,0,0)\)
\((m_y^*1/2,1/2,0)\)
\((m_z^*1/2,1/2,0)\)
\((m_y^*1/2,1/2,0)\)
\((m_z^*1/2,1/2,0)\)

113.7.935 \(\text{P}_{2c} \&'2,m' \) \(\text{P}\&2,c \) \((0,0,1/2; a, b, 2c)\)
\((1^*0,0,0)\)
\((\mathbf{g}_x^*0,0,0)\)
\((2^*0,0,0)\)
\((\mathbf{g}_z^{-1}*0,0,0)\)
\((m_y^*1/2,1/2,0)\)
\((m_z^*1/2,1/2,0)\)
\((m_y^*1/2,1/2,1)\)
\((m_z^*1/2,1/2,1)\)

114.1.936 \(\text{P}\&2,c \)
\((1^*0,0,0)\)
\((\mathbf{g}_x^*0,0,0)\)
\((2^*0,0,0)\)
\((\mathbf{g}_z^{-1}*0,0,0)\)
\((2^*1/2,1/2,1/2)\)
\((2^*1/2,1/2,1/2)\)
\((m_y^*1/2,1/2,1/2)\)
\((m_z^*1/2,1/2,1/2)\)
<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>P&21c'</td>
<td>(1/2,0,0;a-b,a+b,c)</td>
</tr>
<tr>
<td>Ccc2</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>((2_x*1/2,1/2,1/2))'</td>
</tr>
<tr>
<td></td>
<td>((2_y*1/2,1/2,1/2))'</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>((\hat{z}^{-1}*0,0,0))'</td>
</tr>
<tr>
<td>P&21c'</td>
<td>(0,0,1/4;a,b,c)</td>
</tr>
<tr>
<td>P222,2</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>((\hat{z}^{-1}*0,0,0))'</td>
</tr>
<tr>
<td>P&2'c'</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>P&</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>((\hat{z}^{-1}*0,0,0))'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>P&m2</td>
<td>(0,0,0;a-b,a+b,c)</td>
</tr>
<tr>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>((\hat{z}^{-1}*0,0,0))'</td>
</tr>
<tr>
<td>P&m2'</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>((\hat{z}^{-1}*0,0,0))'</td>
</tr>
<tr>
<td>P&m2'</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>((\hat{z}^{-1}*0,0,0))'</td>
</tr>
<tr>
<td>P&m2</td>
<td>(0,0,0;a,b,2c)</td>
</tr>
<tr>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>((\hat{z}^{-1}*0,0,0))'</td>
</tr>
<tr>
<td>P&m2</td>
<td>(0,0,0;a-b,a+b,c)</td>
</tr>
<tr>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>((\hat{z}^{-1}*0,0,0))'</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>115.8.948</td>
<td>P(_m)2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>115.9.949</td>
<td>P(_{2c}) !(\delta)'m'2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>115.10.950</td>
<td>P(\delta)'m'2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>116.1.951</td>
<td>P(\delta)c2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>116.2.952</td>
<td>P(\delta)c21'</td>
</tr>
<tr>
<td>116.3.953</td>
<td>P(\delta)'c'2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>116.4.954</td>
<td>P(\delta)'c'2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>116.5.955</td>
<td>P(\delta)'c'2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>116.6.956</td>
<td>P(\delta)_c2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>116.7.957</td>
<td>P(\delta)'c'2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Group</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>117.1.958</td>
<td>P&b2</td>
</tr>
<tr>
<td>117.2.959</td>
<td>P&b21'</td>
</tr>
<tr>
<td>117.3.960</td>
<td>P&b'2</td>
</tr>
<tr>
<td>117.4.961</td>
<td>P&b'2'</td>
</tr>
<tr>
<td>117.5.962</td>
<td>P&b'2'</td>
</tr>
<tr>
<td>117.6.963</td>
<td>P&b2</td>
</tr>
<tr>
<td>117.7.964</td>
<td>P&b'2</td>
</tr>
<tr>
<td>118.1.965</td>
<td>P&n2</td>
</tr>
<tr>
<td>118.2.966</td>
<td>P&n21'</td>
</tr>
<tr>
<td>118.3.967</td>
<td>P&n'2</td>
</tr>
<tr>
<td>118.4.968</td>
<td>P&n'2'</td>
</tr>
<tr>
<td>118.5.969</td>
<td>P&n'2'</td>
</tr>
<tr>
<td>Magnetic Space Group</td>
<td>Symbol</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>(mx, my, mż, mż')</td>
<td>(m_x, m_y, m_ż, m_ż')'</td>
</tr>
</tbody>
</table>

118.6.970 Pm2d 0,0,0;a-b,a+b,2c

119.1.971 I\(\bar{m}\)2 (1,0,0,0) (m_ż,0,0,0) (2,0,0,0) (m_ż',0,0,0)

119.2.972 \(\bar{m}\)21' (1,0,0,0) (m_ż,0,0,0) (2,0,0,0) (m_ż',0,0,0)

119.3.973 Im2 (0,0,0; a,b,c) (1,0,0,0) (m_ż,0,0,0) (2,0,0,0) (m_ż',0,0,0)

119.4.974 \(\bar{m}\)2 (0,0,0; a,b,c) (1,0,0,0) (m_ż,0,0,0) (2,0,0,0) (m_ż',0,0,0)

119.5.975 \(\bar{m}\)2 (0,0,0; a,b,c) (1,0,0,0) (m_ż,0,0,0) (2,0,0,0) (m_ż',0,0,0)

119.6.976 \(\bar{m}\)2 (0,0,0; a,b,c) (1,0,0,0) (m_ż,0,0,0) (2,0,0,0) (m_ż',0,0,0)

119.7.977 \(\bar{m}\)2 (1/2,0,1/4; a,b,c) (1,0,0,0) (m_ż,0,0,0) (2,0,0,0) (m_ż',0,0,0)

120.1.978 \(\bar{m}\)2 (1,0,0,0) (m_ż,0,0,0) (2,0,0,0) (m_ż',0,0,0)

120.2.979 \(\bar{m}\)21' (1,0,0,0) (m_ż,0,0,0) (2,0,0,0) (m_ż',0,0,0)

120.3.980 \(\bar{m}\)2 (0,0,1/4; a-b,a+b,c) (1,0,0,0) (m_ż,0,0,0) (2,0,0,0) (m_ż',0,0,0)
<table>
<thead>
<tr>
<th>Code</th>
<th>Symbol</th>
<th>Space Group</th>
<th>(0,0,0;a,b,c)</th>
<th>(1*0,0,0)</th>
<th>(2*0,0,0)</th>
<th>(2*0,0,0)</th>
<th>(2*0,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120.4.981</td>
<td>l &'c2'</td>
<td>Iba2</td>
<td>(0,0,0;0,0,0)</td>
<td>(1*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
</tr>
<tr>
<td>120.5.982</td>
<td>l &c'2'</td>
<td>I &c</td>
<td>(0,0,0;0,0,0)</td>
<td>(1*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
</tr>
<tr>
<td>120.6.983</td>
<td>l &c2</td>
<td>P &c2</td>
<td>(0,0,0;0,0,0)</td>
<td>(1*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
</tr>
<tr>
<td>120.7.984</td>
<td>l &c'2'</td>
<td>P &b2</td>
<td>(0,0,0;0,0,0)</td>
<td>(1*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
</tr>
<tr>
<td>121.1.985</td>
<td>l &2m</td>
<td></td>
<td>(0,0,0;0,0,0)</td>
<td>(1*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
</tr>
<tr>
<td>121.2.986</td>
<td>l &2m1'</td>
<td></td>
<td>(0,0,0;0,0,0)</td>
<td>(1*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
</tr>
<tr>
<td>121.3.987</td>
<td>l &'2'm</td>
<td>Fmm2</td>
<td>(0,0,0;0,0,0)</td>
<td>(1*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
</tr>
<tr>
<td>121.4.988</td>
<td>l &'2'm'</td>
<td>I222</td>
<td>(0,0,0;0,0,0)</td>
<td>(1*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
</tr>
<tr>
<td>121.5.989</td>
<td>l &'2'm'</td>
<td>I &c</td>
<td>(0,0,0;0,0,0)</td>
<td>(1*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
</tr>
<tr>
<td>121.6.990</td>
<td>l &2m</td>
<td>P &2m</td>
<td>(0,0,0;0,0,0)</td>
<td>(1*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
</tr>
<tr>
<td>Space Group</td>
<td>Elements</td>
<td>Basis Points</td>
<td>Magnetic Elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>--------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121.7.991</td>
<td>Iₚ & 2'm P & 2₁m</td>
<td>(1/2,0,1/4; a,b,c)</td>
<td>(1*,0,0) (2₂₀,₁/₂,₁/₂) (2z₀,₀,₀) (mₓ*₀,₀,₀)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(mᵧ*₀,₀,₀)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121.8.992</td>
<td>Iₚ & 2'm P & 2c</td>
<td>(1/2,0,1/4; a,b,c)</td>
<td>(1*,0,0) (2₂₀,₁/₂,₁/₂) (2z₀,₀,₀) (mₓ*₀,₀,₀)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(mᵧ*₀,₀,₀)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121.9.993</td>
<td>Iₚ & 2'm P & 2₁c</td>
<td>(0,0,0; a,b,c)</td>
<td>(1*,0,0) (2₂₀,₁/₂,₁/₂) (2z₀,₀,₀) (mₓ*₀,₀,₀)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(mᵧ*₀,₀,₀)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122.1.994</td>
<td>I & 2d</td>
<td></td>
<td>(1*,0,0) (2₂₀,₁/₂,₁/₄) (2z₀,₀,₀) (mₓ*₀,₁/₂,₁/₄)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(mᵧ*₀,₁/₂,₁/₄)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122.2.995</td>
<td>I & 2d₁'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122.3.996</td>
<td>I & 2'd Fdd2</td>
<td>(0,0; a-b,a+b,c)</td>
<td>(1*,0,0) (2₂₀,₁/₂,₁/₄) (2z₀,₀,₀) (mₓ*₀,₁/₂,₁/₄)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(mᵧ*₀,₁/₂,₁/₄)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122.4.997</td>
<td>I & 2'd'I₂2₃</td>
<td>(0,1/₄,1/₈; a,b,c)</td>
<td>(1*,0,0) (2₂₀,₁/₂,¹/₄) (2z₀,₀,₀) (mₓ*₀,₁/₂,₁/₄)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(mᵧ*₀,₁/₂,₁/₄)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122.5.998</td>
<td>I & 2'd'I &</td>
<td>(0,0,0; a,b,c)</td>
<td>(1*,0,0) (2₂₀,₁/₂,¹/₄) (2z₀,₀,₀) (mₓ*₀,₁/₂,₁/₄)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(mᵧ*₀,₁/₂,₁/₄)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123.1.999</td>
<td>P4/mmm</td>
<td></td>
<td>(1*,0,0) (2₂₀,₀,₀) (2z₀,₀,₀) (mₓ*₀,₀,₀)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(mᵧ*₀,₀,₀)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123.2.1000</td>
<td>P4/mmm₁'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 80
<table>
<thead>
<tr>
<th>Code</th>
<th>Space Group</th>
<th>Symbol</th>
<th>Cell Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>123.3.1001</td>
<td>P4/m'mm</td>
<td>P4mm</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2x0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x*0,0,0)</td>
</tr>
<tr>
<td>123.4.1002</td>
<td>P4'/mm'm</td>
<td>Cmmm</td>
<td>(0,0,0; a-b, a+b, c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2x0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x*0,0,0)</td>
</tr>
<tr>
<td>123.5.1003</td>
<td>P4'/mmm'</td>
<td>Pmmm</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2x0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x*0,0,0)</td>
</tr>
<tr>
<td>123.6.1004</td>
<td>P4'/m'm'm</td>
<td>P4 & 2m</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2x0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x*0,0,0)</td>
</tr>
<tr>
<td>123.7.1005</td>
<td>P4/mm'm'</td>
<td>P4/m</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2x0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x*0,0,0)</td>
</tr>
<tr>
<td>123.8.1006</td>
<td>P4'/m'm'</td>
<td>P4 & m2</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2x0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x*0,0,0)</td>
</tr>
<tr>
<td>123.9.1007</td>
<td>P4/m'm'</td>
<td>P422</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2x0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x*0,0,0)</td>
</tr>
<tr>
<td>Number</td>
<td>Description</td>
<td>Space Group</td>
<td>Axes</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>123.10.1008</td>
<td>P\textsubscript{2c} 4/mmm</td>
<td>P\textsubscript{4}/mmm</td>
<td>(0,0,0;(a),b,2c)</td>
</tr>
<tr>
<td>123.11.1009</td>
<td>P\textsubscript{p} 4/mmm</td>
<td>P\textsubscript{4}/mmm</td>
<td>(0,0,0;(a-b),a+b,c)</td>
</tr>
<tr>
<td>123.12.1010</td>
<td>P\textsubscript{1} 4/mmm</td>
<td>I\textsubscript{4}/mmm</td>
<td>(0,0,0;(a-b),a+b,2c)</td>
</tr>
<tr>
<td>123.13.1011</td>
<td>P\textsubscript{2c} 4'/mm'm</td>
<td>P\textsubscript{4}/mcm</td>
<td>(0,0,0;(a),b,2c)</td>
</tr>
<tr>
<td>123.14.1012</td>
<td>P\textsubscript{2c} 4'/mmm'</td>
<td>P\textsubscript{4}/mmc</td>
<td>(0,0,0;(a),b,2c)</td>
</tr>
<tr>
<td>123.15.1013</td>
<td>P\textsubscript{2c} 4'/mm'm'</td>
<td>P\textsubscript{4}/mcc</td>
<td>(0,0,0;(a),b,2c)</td>
</tr>
<tr>
<td>123.16.1014</td>
<td>P\textsubscript{p} 4/m'mm</td>
<td>P\textsubscript{4}/nmm</td>
<td>(1/2,1/2,0;(a-b),a+b,c)</td>
</tr>
<tr>
<td>Space Group</td>
<td>Symbols</td>
<td>#: (a/b/c)</td>
<td>Elements</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>P4/mbm</td>
<td>123.17</td>
<td>(1/2,1/2,0; a-b,a+b,c)</td>
<td>(10,0,0) (4_z0,0,0) (2_x0,0,0) (2_y0,0,0) (m_x0,0,0) (m_y0,0,0)</td>
</tr>
<tr>
<td>P4/nbm</td>
<td>123.18</td>
<td>(1/2,1/2,0; a-b,a+b,c)</td>
<td>(10,0,0) (4_z0,0,0) (2_x0,0,0) (2_y0,0,0) (m_x0,0,0) (m_y0,0,0)</td>
</tr>
<tr>
<td>I4/mcm</td>
<td>123.19</td>
<td>(1/2,1/2,0; a-b,a+b,2c)</td>
<td>(10,0,0) (4_z0,0,0) (2_x0,0,0) (2_y0,0,0) (m_x0,0,0) (m_y0,0,0)</td>
</tr>
<tr>
<td>P4/mcc</td>
<td>124.1</td>
<td>(0,0,0; a,b,c)</td>
<td>(10,0,0) (4_z0,0,0) (2_x0,0,0) (2_y0,0,0) (m_x0,0,0) (m_y0,0,0)</td>
</tr>
<tr>
<td>P4/mcc1'</td>
<td>124.2</td>
<td>(0,0,0; a,b,c)</td>
<td>(10,0,0) (4_z0,0,0) (2_x0,0,0) (2_y0,0,0) (m_x0,0,0) (m_y0,0,0)</td>
</tr>
<tr>
<td>P4/mcc</td>
<td>124.3</td>
<td>(0,0; a-b,a+b,c)</td>
<td>(10,0,0) (4_z0,0,0) (2_x0,0,0) (2_y0,0,0) (m_x0,0,0) (m_y0,0,0)</td>
</tr>
<tr>
<td>Ccmm</td>
<td>124.4</td>
<td>(0,0; a-b,a+b,c)</td>
<td>(10,0,0) (4_z0,0,0) (2_x0,0,0) (2_y0,0,0) (m_x0,0,0) (m_y0,0,0)</td>
</tr>
<tr>
<td>Space Group</td>
<td>Symmetry</td>
<td>Lattice Parameters</td>
<td>Magnetic Elements</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>124.5.1022</td>
<td>Pccm</td>
<td>(0,0,0; a, b, c)</td>
<td>(1, 0, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4_z, 0, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2_x, 0, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(&^*_x, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x, 0, 0, 1/2)</td>
</tr>
<tr>
<td>124.6.1023</td>
<td>P&2c</td>
<td>(0,0,0; a, b, c)</td>
<td>(1, 0, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4_z, 0, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2_x, 0, 0, 1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(&^*_x, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x, 0, 0, 1/2)</td>
</tr>
<tr>
<td>124.7.1024</td>
<td>P4/m</td>
<td>(0,0,0; a, b, c)</td>
<td>(1, 0, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4_z, 0, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2_x, 0, 0, 1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(&^*_x, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x, 0, 0, 1/2)</td>
</tr>
<tr>
<td>124.8.1025</td>
<td>P&c2</td>
<td>(0,0,0; a, b, c)</td>
<td>(1, 0, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4_z, 0, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2_x, 0, 0, 1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(&^*_x, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x, 0, 0, 1/2)</td>
</tr>
<tr>
<td>124.9.1026</td>
<td>P422</td>
<td>(0,0,1/4; a, b, c)</td>
<td>(1, 0, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4_z, 0, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2_x, 0, 0, 1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(&^*_x, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x, 0, 0, 1/2)</td>
</tr>
<tr>
<td>124.10.1027</td>
<td>P&4/mcc</td>
<td>(0,0,0; a-b,a+b,c)</td>
<td>(1, 0, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4_z, 0, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2_x, 0, 0, 1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(&^*_x, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x, 0, 0, 1/2)</td>
</tr>
<tr>
<td>124.11.1028</td>
<td>P&4/mcc</td>
<td>(1/2,1/2,0; a-b,a+b,c)</td>
<td>(1, 0, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4_z, 0, 0, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2_x, 1, 0, 1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(&^*_x, 1, 0, 0)</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 84
<table>
<thead>
<tr>
<th>Magnetic Space Group Elements 85</th>
</tr>
</thead>
<tbody>
<tr>
<td>124.12.1029 P\text{P} 4'/mcc'</td>
</tr>
<tr>
<td>((1/2,1/2,0;a-b,a+b,c))</td>
</tr>
<tr>
<td>((1*0,0,0))</td>
</tr>
<tr>
<td>((2_{x}^*0,0,1/2))</td>
</tr>
<tr>
<td>((&_{xy}^*0,0,0))</td>
</tr>
<tr>
<td>((m_{x}^*0,0,1/2))</td>
</tr>
<tr>
<td>124.13.1030 P\text{P} 4'/mcc'</td>
</tr>
<tr>
<td>((1/2,1/2,1/4;a-b,a+b,c))</td>
</tr>
<tr>
<td>((2_{x}^*1,0,1/2))</td>
</tr>
<tr>
<td>((&_{xy}^*1,0,0))</td>
</tr>
<tr>
<td>((m_{x}^*0,0,1/2))</td>
</tr>
<tr>
<td>125.1.1031 P4/nbm</td>
</tr>
<tr>
<td>((2_{x}^*0,0,0))</td>
</tr>
<tr>
<td>((&_{xy}^{1/2,1/2,0}))</td>
</tr>
<tr>
<td>((m_{x}^*1/2,1/2,0))</td>
</tr>
<tr>
<td>125.2.1032 P4/nbm1'</td>
</tr>
<tr>
<td>125.3.1033 P4/n'bm</td>
</tr>
<tr>
<td>((0,0,0;a,b,c))</td>
</tr>
<tr>
<td>((2_{x}^*0,0,0))</td>
</tr>
<tr>
<td>((&_{xy}^{1/2,1/2,0}))</td>
</tr>
<tr>
<td>((m_{x}^*1/2,1/2,0))</td>
</tr>
<tr>
<td>125.4.1034 P4'/nb' m</td>
</tr>
<tr>
<td>((1/4,1/4,0;a+b,-a+b,c))</td>
</tr>
<tr>
<td>((2_{x}^*0,0,0))</td>
</tr>
<tr>
<td>((&_{xy}^{1/2,1/2,0}))</td>
</tr>
<tr>
<td>((m_{x}^*1/2,1/2,0))</td>
</tr>
<tr>
<td>125.5.1035 P4'/nbm'</td>
</tr>
<tr>
<td>((0,0,0;a,b,c))</td>
</tr>
<tr>
<td>((2_{x}^*0,0,0))</td>
</tr>
<tr>
<td>((&_{xy}^{1/2,1/2,0}))</td>
</tr>
<tr>
<td>((m_{x}^*1/2,1/2,0))</td>
</tr>
<tr>
<td>Number</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>125.6.1036</td>
</tr>
<tr>
<td>125.7.1037</td>
</tr>
<tr>
<td>125.8.1038</td>
</tr>
<tr>
<td>125.9.1039</td>
</tr>
<tr>
<td>125.10.1040</td>
</tr>
<tr>
<td>125.11.1041</td>
</tr>
<tr>
<td>125.12.1042</td>
</tr>
<tr>
<td>Code</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>125.13.1043</td>
</tr>
<tr>
<td>126.1.1044</td>
</tr>
<tr>
<td>126.2.1045</td>
</tr>
<tr>
<td>126.3.1046</td>
</tr>
<tr>
<td>126.4.1047</td>
</tr>
<tr>
<td>126.5.1048</td>
</tr>
<tr>
<td>126.6.1049</td>
</tr>
<tr>
<td>Magnetic Space Group</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>126.7.1050 P4/nn'c' P4/n</td>
</tr>
<tr>
<td>126.8.1051 P4'/n'nc' P4/n</td>
</tr>
<tr>
<td>126.9.1052 P4/n'n'c' P422</td>
</tr>
<tr>
<td>127.1.1053 P4/mbm</td>
</tr>
<tr>
<td>127.2.1054 P4/mbm1'</td>
</tr>
<tr>
<td>127.3.1055 P4'm'bm P4bm</td>
</tr>
<tr>
<td>127.4.1056 P4'/mb'm Cmmm</td>
</tr>
<tr>
<td>127.5.1057</td>
</tr>
<tr>
<td>127.6.1058</td>
</tr>
<tr>
<td>127.7.1059</td>
</tr>
<tr>
<td>127.8.1060</td>
</tr>
<tr>
<td>127.9.1061</td>
</tr>
<tr>
<td>127.10.1062</td>
</tr>
<tr>
<td>127.11.1063</td>
</tr>
<tr>
<td>Magnetic Space Group Elements 90</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>127.12.1064 P(_2_1c) 4'/mbm' P(_4_2)mbc (0,0,0;(a,b,2c))</td>
</tr>
<tr>
<td>127.13.1065 P(_2_1c) 4/mb'm' P(_4_1/mnc) (0,0,0;(a,b,2c))</td>
</tr>
<tr>
<td>128.1.1066 P(_4_1/mnc)</td>
</tr>
<tr>
<td>128.2.1067 P(_4_1/mnc)'</td>
</tr>
<tr>
<td>128.3.1068 P(_4_1/m'nc) P(_4nc) (0,0,0;(a,b,c))</td>
</tr>
<tr>
<td>128.4.1069 P(_4_1/mn'c) C(_cccm) (1/2,0,0;(a-b,a+b,c))</td>
</tr>
<tr>
<td>128.5.1070 P(_4_1/mnc') P(_nnnm) (0,0,0;(a,b,c))</td>
</tr>
<tr>
<td>Code</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>128.6.1071</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>128.7.1072</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>128.8.1073</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>128.9.1074</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>129.1.1075</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>129.2.1076</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Magnetic Space Group Elements</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>129.3.1077 P4/n'mm P4mm</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>129.4.1078 P4'/nm'm Cmma</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>129.5.1079 P4'/nnm' Pmmn</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>129.6.1080 P4'/n'm'm P&21m</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>129.7.1081 P4/n'mm' P4/n</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>129.8.1082 P4'/n'm'm' P&m2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>129.9.1083 P4/n'mm' P42,2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>129.10.1084</td>
</tr>
<tr>
<td>129.11.1085</td>
</tr>
<tr>
<td>129.12.1086</td>
</tr>
<tr>
<td>129.13.1087</td>
</tr>
<tr>
<td>130.1.1088</td>
</tr>
<tr>
<td>130.2.1089</td>
</tr>
<tr>
<td>130.3.1090</td>
</tr>
</tbody>
</table>
| 130.4.1091 | P4'/nc'c | Ccca | (0,0,1/4;a-b,a+b,c) | \(
\begin{align*}
(\mathbf{A}_x^{1/2,1/2,0})' \quad (\mathbf{A}_y^{0,0,0})' \\
(m_x^{0,0,1/2}) \quad (m_y^{0,0,1/2}) \quad (m_z^{1/2,1/2,0}) \quad (\mathbf{A}_z^{1/2,1/2,0})'
\end{align*}
|}

| 130.5.1092 | P4'/ncc' | Pccn | (1/4,1/4,0;a,b,c) | \(
\begin{align*}
(1^*0,0,0) \quad (4_z^{1/2,1/2,0})' \\
(2_x^{1/2,1/2,1/2})' \quad (2_y^{1/2,1/2,1/2})' \\
(\mathbf{A}_x^{1/2,1/2,0})' \quad (\mathbf{A}_y^{0,0,0})' \\
(m_x^{0,0,1/2})' \quad (m_y^{0,0,1/2}) \quad (m_z^{1/2,1/2,0}) \quad (\mathbf{A}_z^{1/2,1/2,0})'
\end{align*}
|}

| 130.6.1093 | P4'/n'c'c | P\&2,c | (0,0,0;a,b,c) | \(
\begin{align*}
(1^*0,0,0) \quad (4_z^{1/2,1/2,0})' \\
(2_x^{1/2,1/2,1/2})' \quad (2_y^{1/2,1/2,1/2})' \\
(\mathbf{A}_x^{1/2,1/2,0})' \quad (\mathbf{A}_y^{0,0,0})' \\
(m_x^{0,0,1/2})' \quad (m_y^{0,0,1/2}) \quad (m_z^{1/2,1/2,0}) \quad (\mathbf{A}_z^{1/2,1/2,0})'
\end{align*}
|}

| 130.7.1094 | P4/nc'c' | P4/n | (0,0,0;a,b,c) | \(
\begin{align*}
(1^*0,0,0) \quad (4_z^{1/2,1/2,0})' \\
(2_x^{1/2,1/2,1/2})' \quad (2_y^{1/2,1/2,1/2})' \\
(\mathbf{A}_x^{1/2,1/2,0})' \quad (\mathbf{A}_y^{0,0,0})' \\
(m_x^{0,0,1/2})' \quad (m_y^{0,0,1/2}) \quad (m_z^{1/2,1/2,0}) \quad (\mathbf{A}_z^{1/2,1/2,0})'
\end{align*}
|}

| 130.8.1095 | P4'/n'cc' | P\&c2 | (0,0,0;a,b,c) | \(
\begin{align*}
(1^*0,0,0) \quad (4_z^{1/2,1/2,0})' \\
(2_x^{1/2,1/2,1/2})' \quad (2_y^{1/2,1/2,1/2})' \\
(\mathbf{A}_x^{1/2,1/2,0})' \quad (\mathbf{A}_y^{0,0,0})' \\
(m_x^{0,0,1/2})' \quad (m_y^{0,0,1/2}) \quad (m_z^{1/2,1/2,0}) \quad (\mathbf{A}_z^{1/2,1/2,0})'
\end{align*}
|}

| 130.9.1096 | P4/n'c'c' | P42,2 | (0,0,1/4;a,b,c) | \(
\begin{align*}
(1^*0,0,0) \quad (4_z^{1/2,1/2,0})' \\
(2_x^{1/2,1/2,1/2}) \quad (2_y^{1/2,1/2,1/2}) \quad (2_z^{0,0,0}) \quad (\mathbf{A}_z^{1/2,1/2,0})'
\end{align*}
|}
<table>
<thead>
<tr>
<th>Magnetic Space Group Elements</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>131.1.1097 P42/mmc</td>
<td></td>
</tr>
<tr>
<td>(1*0,0,0)</td>
<td>(4z*0,0,0)</td>
</tr>
<tr>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*0,0,0)</td>
</tr>
<tr>
<td>131.2.1098 P42/mmc1'</td>
<td></td>
</tr>
<tr>
<td>(1*0,0,0)</td>
<td>(4z*0,0,1/2)</td>
</tr>
<tr>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*0,0,0)</td>
</tr>
<tr>
<td>131.3.1099 P42/mmc P42mc (0,0,0;a,b,c)</td>
<td></td>
</tr>
<tr>
<td>(1*0,0,0)</td>
<td>(4z*0,0,1/2)</td>
</tr>
<tr>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*0,0,0)</td>
</tr>
<tr>
<td>131.4.1100 P42'/mm'c Cccm (0,0,0;a-b,a+b,c)</td>
<td></td>
</tr>
<tr>
<td>(1*0,0,0)</td>
<td>(4z*0,0,1/2)</td>
</tr>
<tr>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*0,0,0)</td>
</tr>
<tr>
<td>131.5.1101 P42'/mmc' Pmmm (0,0,0;a,b,c)</td>
<td></td>
</tr>
<tr>
<td>(1*0,0,0)</td>
<td>(4z*0,0,1/2)</td>
</tr>
<tr>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*0,0,0)</td>
</tr>
<tr>
<td>131.6.1102 P42'/m'm'c P42c (0,0,1/4;a,b,c)</td>
<td></td>
</tr>
<tr>
<td>(1*0,0,0)</td>
<td>(4z*0,0,1/2)</td>
</tr>
<tr>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*0,0,0)</td>
</tr>
<tr>
<td>131.7.1103 P42/mm'c' P42/m (0,0,0;a,b,c)</td>
<td></td>
</tr>
<tr>
<td>(1*0,0,0)</td>
<td>(4z*0,0,1/2)</td>
</tr>
<tr>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*0,0,0)</td>
</tr>
<tr>
<td>Code</td>
<td>Magnetic Space Group</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>131.8.1104 P4_2/mmc</td>
<td>P_4m2</td>
</tr>
<tr>
<td>131.9.1105 P4_2/mmc</td>
<td>P4_22</td>
</tr>
<tr>
<td>131.10.1106 P,4_2/mmc</td>
<td>P4_2/mcm</td>
</tr>
<tr>
<td>131.11.1107 P,4_2/mmc</td>
<td>P4_2/ncm</td>
</tr>
<tr>
<td>131.12.1108 P,4_2/mmc</td>
<td>P4_2/mnm</td>
</tr>
<tr>
<td>131.13.1109 P,4_2/mmc</td>
<td>P4_2/nmm</td>
</tr>
</tbody>
</table>
132.1.1110 P4₂/mcm

<table>
<thead>
<tr>
<th>Element</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1*0,0,0)</td>
<td>(4_{x}0,0,1/2)</td>
</tr>
<tr>
<td>(2_{x}0,0,1/2)</td>
<td>(2_{y}0,0,0)</td>
</tr>
<tr>
<td>(m_{x}0,0,0)</td>
<td>(m_{y}0,0,0)</td>
</tr>
<tr>
<td>(m_{z}0,0,0)</td>
<td>(m_{x}0,0,0)</td>
</tr>
</tbody>
</table>

132.2.1111 P4₂/mcm1'

132.3.1112 P4₂/m'cm P4₂ cm

<table>
<thead>
<tr>
<th>Element</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>(2_{x}0,0,1/2)</td>
<td>(2_{y}0,0,0)</td>
</tr>
<tr>
<td>(m_{x}0,0,1/2)</td>
<td>(m_{y}0,0,0)</td>
</tr>
<tr>
<td>(m_{z}0,0,0)</td>
<td>(m_{x}0,0,0)</td>
</tr>
</tbody>
</table>

132.4.1113 P4₂ '/mc'm Cmmm

<table>
<thead>
<tr>
<th>Element</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0;a-b,a+b,c)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>(2_{x}0,0,1/2)</td>
<td>(2_{y}0,0,0)</td>
</tr>
<tr>
<td>(m_{x}0,0,1/2)</td>
<td>(m_{y}0,0,0)</td>
</tr>
<tr>
<td>(m_{z}0,0,0)</td>
<td>(m_{x}0,0,0)</td>
</tr>
</tbody>
</table>

132.5.1114 P4₂ '/mc'm Pcmm

<table>
<thead>
<tr>
<th>Element</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>(2_{x}0,0,1/2)</td>
<td>(2_{y}0,0,0)</td>
</tr>
<tr>
<td>(m_{x}0,0,1/2)</td>
<td>(m_{y}0,0,0)</td>
</tr>
<tr>
<td>(m_{z}0,0,0)</td>
<td>(m_{x}0,0,0)</td>
</tr>
</tbody>
</table>

132.6.1115 P4₂ '/mc'm P42m

<table>
<thead>
<tr>
<th>Element</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,1/4;a,b,c)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>(2_{x}0,0,1/2)</td>
<td>(2_{y}0,0,0)</td>
</tr>
<tr>
<td>(m_{x}0,0,1/2)</td>
<td>(m_{y}0,0,0)</td>
</tr>
<tr>
<td>(m_{z}0,0,0)</td>
<td>(m_{x}0,0,0)</td>
</tr>
</tbody>
</table>

132.7.1116 P4₂/mc'm P4₂/m

<table>
<thead>
<tr>
<th>Element</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>(2_{x}0,0,1/2)</td>
<td>(2_{y}0,0,0)</td>
</tr>
<tr>
<td>(m_{x}0,0,1/2)</td>
<td>(m_{y}0,0,0)</td>
</tr>
<tr>
<td>(m_{z}0,0,0)</td>
<td>(m_{x}0,0,0)</td>
</tr>
</tbody>
</table>

132.8.1117 P4₂ '/m'c'm P4₂/c2

<table>
<thead>
<tr>
<th>Element</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,1/4;a,b,c)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td>(2_{x}0,0,1/2)</td>
<td>(2_{y}0,0,0)</td>
</tr>
<tr>
<td>(m_{x}0,0,1/2)</td>
<td>(m_{y}0,0,0)</td>
</tr>
<tr>
<td>(m_{z}0,0,0)</td>
<td>(m_{x}0,0,0)</td>
</tr>
<tr>
<td>Number</td>
<td>Symbol</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>132.9.1118</td>
<td>P4₂/m'c'm'</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>132.10.1119</td>
<td>P₄₁₂</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>132.11.1120</td>
<td>P₄₁₂</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>132.12.1121</td>
<td>P₄₁₂</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>132.13.1122</td>
<td>P₄₁₂</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>133.1.1123</td>
<td>P₄</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>133.2.1124</td>
<td>P4₂/nbc1'</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>P4₂/n'bc</td>
<td>P₄bc</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>133.3.1125</td>
<td>P4₂/n'b'c</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>133.4.1126</td>
<td>P4₂/n'b'c</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>133.5.1127</td>
<td>P4₂/n'b'c</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>133.6.1128</td>
<td>P4₂/n'b'c</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>133.7.1129</td>
<td>P₄b2/n'b'c</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>133.8.1130</td>
<td>P₄b2/n'b'c</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic Space Group</td>
<td>Elements</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>P4 2/n'b'c'</td>
<td>133.9.1131</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/4; a,b,c</td>
</tr>
<tr>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2_x*0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td>(∂*1/2,1/2,1/2)'</td>
</tr>
<tr>
<td></td>
<td>(m_x*1/2,1/2,0)'</td>
</tr>
<tr>
<td></td>
<td>(2_y*0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td>(∂*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td>(m_x*1/2,1/2,0)'</td>
</tr>
</tbody>
</table>

P4 2/nmm	134.1.1132	P4 2/nmm
	0,0,0; a,b,c	
	(1*0,0,0)	(4_z*1/2,1/2,1/2)
	(2_x*0,0,0)	(2_y*0,0,0)
	(∂*1/2,1/2,1/2)	(∂*0,0,0)
	(m_x*1/2,1/2,1/2)	(m_y*1/2,1/2,1/2)
	(2_y*0,0,0)	(2_x*0,0,0)
	(∂*0,0,0)	(∂*1/2,1/2,1/2)
	(m_x*1/2,1/2,1/2)	(m_y*1/2,1/2,1/2)

P4 2/n'm	134.2.1133	P4 2/n'm 1
	0,0,0; a,b,c	
	(1*0,0,0)	(4_z*1/2,1/2,1/2)
	(2_x*0,0,0)	(2_y*0,0,0)
	(∂*1/2,1/2,1/2)	(∂*0,0,0)
	(m_x*1/2,1/2,1/2)	(m_y*1/2,1/2,1/2)
	(2_y*0,0,0)	(2_x*0,0,0)
	(∂*0,0,0)	(∂*1/2,1/2,1/2)
	(m_x*1/2,1/2,1/2)	(m_y*1/2,1/2,1/2)

P4 2'/nn'm	134.4.1135	Cmma (1/4,1/4,1/4; a-b,a+b,c)
	1/4,1/4,1/4; a-b,a+b,c	
	(1*0,0,0)	(4_z*1/2,1/2,1/2)
	(2_x*0,0,0)	(2_y*0,0,0)
	(∂*1/2,1/2,1/2)	(∂*0,0,0)
	(m_x*1/2,1/2,1/2)	(m_y*1/2,1/2,1/2)
	(2_y*0,0,0)	(2_x*0,0,0)
	(∂*0,0,0)	(∂*1/2,1/2,1/2)
	(m_x*1/2,1/2,1/2)	(m_y*1/2,1/2,1/2)

P4 2'/nn'm	134.5.1136	Pnnn (0,0,0; a,b,c)
	0,0,0; a,b,c	
	(1*0,0,0)	(4_z*1/2,1/2,1/2)
	(2_x*0,0,0)	(2_y*0,0,0)
	(∂*1/2,1/2,1/2)	(∂*0,0,0)
	(m_x*1/2,1/2,1/2)	(m_y*1/2,1/2,1/2)
	(2_y*0,0,0)	(2_x*0,0,0)
	(∂*0,0,0)	(∂*1/2,1/2,1/2)
	(m_x*1/2,1/2,1/2)	(m_y*1/2,1/2,1/2)

P4 2'/n'n'm	134.6.1137	P&2m (0,0,0; a,b,c)														
	0,0,0; a,b,c															
	(1*0,0,0)	(4_z*1/2,1/2,1/2)														
	(2_x*0,0,0)	(2_y*0,0,0)														
	(∂*1/2,1/2,1/2)	(∂*0,0,0)														
	(m_x*1/2,1/2,1/2)	(m_y*1/2,1/2,1/2)														
	(2_y*0,0,0)	(2_x*0,0,0)														
	(∂*0,0,0)	(∂*1/2,1/2,1/2)														
	(m_x*1/2,1/2,1/2)	(m_y*1/2,1/2,1/2)														
P4₂/nn'm'	P4₂/n	(0,0,0;a,b,c)	(1*0,0,0)	(4_z*</sub>^{1/2,1/2,1/2})	(2_z*</sub>^{1/2,1/2,1/2})	(4_v*)^{1/2,1/2,1/2})	(2_v*)^{1/2,1/2,1/2})'	(4_v*)^{1/2,1/2,1/2})'	(2_v*)<sup>1/2,1/2,1/2</sub>)'	(4_v*)<sup>1/2,1/2,1/2</sub>)'	(m_x*)^{1/2,1/2,1/2})	(m_y*)<sup>1/2,1/2,1/2</sub>)	(m_x*)<sup>1/2,1/2,1/2</sub>)	(m_y*)<sup>1/2,1/2,1/2</sub>)'	(m_x*)<sup>1/2,1/2,1/2</sub>)'	(m_y*)<sup>1/2,1/2,1/2</sub>)'
P4₂'/n'm'	P4₂/nn2	(0,0,0;a,b,c)	(1*0,0,0)	(4_z*</sub>^{1/2,1/2,1/2})	(2_z*</sub>^{1/2,1/2,1/2})	(4_v*)^{1/2,1/2,1/2})	(2_v*)^{1/2,1/2,1/2})'	(4_v*)^{1/2,1/2,1/2})'	(2_v*)<sup>1/2,1/2,1/2</sub>)'	(4_v*)<sup>1/2,1/2,1/2</sub>)'	(m_x*)^{1/2,1/2,1/2})	(m_y*)<sup>1/2,1/2,1/2</sub>)	(m_x*)<sup>1/2,1/2,1/2</sub>)	(m_y*)<sup>1/2,1/2,1/2</sub>)'	(m_x*)<sup>1/2,1/2,1/2</sub>)'	(m_y*)<sup>1/2,1/2,1/2</sub>)'
P4₂/n'm'	P4₂/22	(1/2,0,0;a,b,c)	(1*0,0,0)	(4_z*</sub>^{1/2,1/2,1/2})	(2_z*</sub>^{1/2,1/2,1/2})	(4_v*)^{1/2,1/2,1/2})	(2_v*)^{1/2,1/2,1/2})'	(4_v*)^{1/2,1/2,1/2})'	(2_v*)<sup>1/2,1/2,1/2</sub>)'	(4_v*)<sup>1/2,1/2,1/2</sub>)'	(m_x*)^{1/2,1/2,1/2})	(m_y*)<sup>1/2,1/2,1/2</sub>)	(m_x*)<sup>1/2,1/2,1/2</sub>)	(m_y*)<sup>1/2,1/2,1/2</sub>)'	(m_x*)<sup>1/2,1/2,1/2</sub>)'	(m_y*)<sup>1/2,1/2,1/2</sub>)'
P4₁4₂/nnm	I4₁/amd	(0,0,0;a-b,a+b,2c)	(1*0,0,0)	(4_z*</sub>^{1/2,1/2,1/2})	(2_z*</sub>^{1/2,1/2,1/2})	(4_v*)^{1/2,1/2,1/2})	(2_v*)^{1/2,1/2,1/2})'	(4_v*)^{1/2,1/2,1/2})'	(2_v*)<sup>1/2,1/2,1/2</sub>)'	(4_v*)<sup>1/2,1/2,1/2</sub>)'	(m_x*)^{1/2,1/2,1/2})	(m_y*)<sup>1/2,1/2,1/2</sub>)	(m_x*)<sup>1/2,1/2,1/2</sub>)	(m_y*)<sup>1/2,1/2,1/2</sub>)'	(m_x*)<sup>1/2,1/2,1/2</sub>)'	(m_y*)<sup>1/2,1/2,1/2</sub>)'
P4₁4₂/nn'm'	I4₁/acd	(0,0,0;a-b,a+b,2c)	(1*0,0,0)	(4_z*</sub>^{1/2,1/2,1/2})	(2_z*</sub>^{1/2,1/2,1/2})	(4_v*)^{1/2,1/2,1/2})	(2_v*)^{1/2,1/2,1/2})'	(4_v*)^{1/2,1/2,1/2})'	(2_v*)<sup>1/2,1/2,1/2</sub>)'	(4_v*)<sup>1/2,1/2,1/2</sub>)'	(m_x*)^{1/2,1/2,1/2})	(m_y*)<sup>1/2,1/2,1/2</sub>)	(m_x*)<sup>1/2,1/2,1/2</sub>)	(m_y*)<sup>1/2,1/2,1/2</sub>)'	(m_x*)<sup>1/2,1/2,1/2</sub>)'	(m_y*)<sup>1/2,1/2,1/2</sub>)'

\[135.1.1143\] P4₂/mbc

\[135.2.1144\] P4₂/mbc1'
<table>
<thead>
<tr>
<th>Index</th>
<th>Space Group</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>135.3.1145</td>
<td>P4<sub>2</sub>/m'bc</td>
<td>P4<sub>2</sub>bc (0,0,0; a,b,c) (10,0,0) (21/2,1/2,0) (21/2,0,0) (40,0,0) (2z0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2x1/2,1/2,0)* (2y1/2,1/2,0)* (2z1/2,1/2,1/2)* (m0,0,0) (mz1/2,1/2,0)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(mx1/2,1/2,0) (my1/2,1/2,0) (mz1/2,1/2,1/2) (my1/2,1/2,2)*</td>
</tr>
<tr>
<td>135.4.1146</td>
<td>P4<sub>2</sub>/mb'c</td>
<td>Cccm (1/2,0,0; a-b,a+b,c) (10,0,0) (40,0,1/2) (2z0,0,0) (2z1/2,1/2,1/2) (m*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(41,0,0,1/2) (2y1/2,1/2,0) (2y1/2,1/2,0)* (2y1/2,1/2,1/2)* (mz0,0,0)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(mz1/2,1/2,1/2) (my1/2,1/2,1/2)</td>
</tr>
<tr>
<td>135.5.1147</td>
<td>P4<sub>2</sub>/m'bc</td>
<td>Pbam (0,0,0; a,b,c) (10,0,0) (2z0,0,1/2) (2z1/2,1/2,0) (2y0,0,0) (2x*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2x1/2,1/2,2)* (2y1/2,1/2,0)* (2y1/2,1/2,0)* (2y1/2,1/2,1/2)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(mx1/2,1/2,0) (my1/2,1/2,0) (my1/2,1/2,1/2)</td>
</tr>
<tr>
<td>135.6.1148</td>
<td>P4<sub>2</sub>/m'b'c</td>
<td>P&2,c (0,0,1/4; a,b,c) (10,0,0) (2z0,0,1/2) (2z1/2,1/2,0) (2y0,0,0) (2x*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2x1/2,1/2,2)* (2y1/2,1/2,0)* (2y1/2,1/2,0)* (2y1/2,1/2,1/2)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(mx1/2,1/2,0) (my1/2,1/2,0) (my1/2,1/2,1/2)</td>
</tr>
<tr>
<td>135.7.1149</td>
<td>P4<sub>2</sub>/mb'c'</td>
<td>P4<sub>2</sub>/m (0,0,0; a,b,c) (10,0,0) (2z0,0,1/2) (2z1/2,1/2,0) (2y0,0,0) (2x*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2x1/2,1/2,2)* (2y1/2,1/2,0)* (2y1/2,1/2,0)* (2y1/2,1/2,1/2)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(mx1/2,1/2,0) (my1/2,1/2,0) (my1/2,1/2,1/2)</td>
</tr>
<tr>
<td>135.8.1150</td>
<td>P4<sub>2</sub>/mb'c'</td>
<td>P&b2 (0,0,1/4; a,b,c) (10,0,0) (2z0,0,1/2) (2z1/2,1/2,0) (2y0,0,0) (2x*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2x1/2,1/2,2)* (2y1/2,1/2,0)* (2y1/2,1/2,0)* (2y1/2,1/2,1/2)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(mx1/2,1/2,0) (my1/2,1/2,0) (my1/2,1/2,1/2)</td>
</tr>
<tr>
<td>135.9.1151</td>
<td>P4<sub>2</sub>/mb'c'</td>
<td>P4<sub>2</sub> 2<sub>1</sub>2 (1/2,0,1/4; a,b,c) (10,0,0) (2z0,0,1/2) (2z1/2,1/2,0) (2y0,0,0) (2x*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2x1/2,1/2,2)* (2y1/2,1/2,0)* (2y1/2,1/2,0)* (2y1/2,1/2,1/2)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(mx1/2,1/2,0) (my1/2,1/2,0) (my1/2,1/2,1/2)</td>
</tr>
<tr>
<td>136.1.1152</td>
<td>P4$_2$/mm</td>
<td>(m$x^$$1/2$,1/2,0)' (m$_y^$$1/2$,1/2,0)' (m${xy}^$$1/2$,1/2,1/2)' (m$_{sy}^$$1/2$,1/2,1/2)'</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>136.2.1153</td>
<td>P4$_2$/mm1'</td>
<td>(10,0,0) (4$_z^$$1/2$,1/2,1/2) (2$y^*$$0$,0,0) (4${sy}^*$$0$,0,0)</td>
</tr>
<tr>
<td>136.3.1154</td>
<td>P4$_2$/m'nm</td>
<td>P4$_2$nm (0,0,0;a,b,c) (4$z^$$1/2$,1/2,1/2) (2$_y^$$0$,0,0) (4${sy}^*$$0$,0,0)</td>
</tr>
<tr>
<td>136.4.1155</td>
<td>P4$_2$/m'n'm</td>
<td>Cmmm (0,0,0;a-b,a+b,c) (4$z^$$1/2$,1/2,1/2) (2$_y^$$0$,0,0) (4${sy}^*$$0$,0,0)</td>
</tr>
<tr>
<td>136.5.1156</td>
<td>P4$_2$/m'n'm</td>
<td>Pnnm (0,0,0;a,b,c) (4$z^$$1/2$,1/2,1/2) (2$_y^$$0$,0,0) (4${sy}^*$$0$,0,0)</td>
</tr>
<tr>
<td>136.6.1157</td>
<td>P4$_2$/m'n'm</td>
<td>P&21m (1/2,0,1/4;a,b,c) (4$z^$$1/2$,1/2,1/2) (2$_y^$$0$,0,0) (4${sy}^*$$0$,0,0)</td>
</tr>
<tr>
<td>136.7.1158</td>
<td>P4$_2$/mn'm</td>
<td>P4$_2$/m (1/2,0,0;a,b,c) (4$z^$$1/2$,1/2,1/2) (2$_y^$$0$,0,0) (4${sy}^*$$0$,0,0)</td>
</tr>
<tr>
<td>Magnetic Space Group Elements</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>136.8.1159 P4₂'/m'n'm' P4₅n2</td>
<td>(1/2,0,1/4;a,b,c)</td>
<td></td>
</tr>
<tr>
<td>136.9.1160 P4₂/m'n'm' P4₂,2₁₂</td>
<td>(0,0,0;a,b,c)</td>
<td></td>
</tr>
<tr>
<td>137.1.1161 P4₂/nmc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137.2.1162 P4₂/nmc1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137.3.1163 P4₂/n'mc P4₂,mc</td>
<td>(1/2,0,0;a,b,c)</td>
<td></td>
</tr>
<tr>
<td>137.4.1164 P4₂'/nm'c Ccca</td>
<td>(0,0,0;a-b,a+b,c)</td>
<td></td>
</tr>
<tr>
<td>137.5.1165 P4₂'/nmc' Pmmn</td>
<td>(0,0,1/4;a,b,c)</td>
<td></td>
</tr>
</tbody>
</table>
MAGNETIC SPACE GROUP ELEMENTS 105

137.6.1166 P4_2'/n'm'c P&2_c (0,0,0;a,b,c)
(2x *1/2,1/2,1/2) (2y *1/2,1/2,1/2) (2z *0,0,0)'
(m_x *0,0,0) (m_y *0,0,0) (m_z *1/2,1/2,1/2)'

137.7.1167 P4_2/n'm'c' P4_2/n (0,0,0;a,b,c)
(2x *1/2,1/2,1/2) (2y *1/2,1/2,1/2) (2z *0,0,0)'
(m_x *0,0,0) (m_y *0,0,0) (m_z *1/2,1/2,1/2)'

137.8.1168 P4_2'/n'mc' P&m2 (0,0,0;a,b,c)
(2x *1/2,1/2,1/2) (2y *1/2,1/2,1/2) (2z *0,0,0)'
(m_x *0,0,0) (m_y *0,0,0) (m_z *1/2,1/2,1/2)'

137.9.1169 P4_2'/n'mc' P4_2 2,2 (0,0,0;a,b,c)
(2x *1/2,1/2,1/2) (2y *1/2,1/2,1/2) (2z *0,0,0)'
(m_x *0,0,0) (m_y *0,0,0) (m_z *1/2,1/2,1/2)'

138.1.1170 P4_2/ncm
(2x *1/2,1/2,0) (2y *1/2,1/2,0) (2z *0,0,0)'
(m_x *0,0,1/2) (m_y *0,0,1/2) (m_z *1/2,1/2,0)'

138.2.1171 P4_2/ncm1'

138.3.1172 P4_2/n'cm P4_2 cm (1/2,0,0;a,b,c)
(2x *1/2,1/2,0) (2y *1/2,1/2,0) (2z *0,0,1/2)'
(m_x *0,0,0) (m_y *0,0,0) (m_z *1/2,1/2,0)'

MAGNETIC SPACE GROUP ELEMENTS 105
<table>
<thead>
<tr>
<th>No.</th>
<th>Magnetic Space Group</th>
<th>Elements</th>
<th>((m_x,0,1/2))</th>
<th>((m_y,0,1/2))</th>
<th>((m_{xy},1/2,1/2,0))</th>
<th>((m_{xy},1/2,1/2,0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>138.4.1173</td>
<td>(P_{4_{2}}'/n_{c'm})</td>
<td>(Cmma)</td>
<td>((1,0,0,0))</td>
<td>((2,1/2,1/2,0))</td>
<td>((m_x,0,1/2))</td>
<td>((m_y,0,1/2))</td>
</tr>
<tr>
<td>138.5.1174</td>
<td>(P_{4_{2}}'/n_{cm})</td>
<td>(Pccn)</td>
<td>((1,0,0,0))</td>
<td>((2,1/2,1/2,0))</td>
<td>((m_x,0,1/2))</td>
<td>((m_y,0,1/2))</td>
</tr>
<tr>
<td>138.6.1175</td>
<td>(P_{4_{2}}'/n'c'm)</td>
<td>(P_{4_{2}}'/n'c'm)</td>
<td>((1,0,0,0))</td>
<td>((2,1/2,1/2,0))</td>
<td>((m_x,0,1/2))</td>
<td>((m_y,0,1/2))</td>
</tr>
<tr>
<td>138.7.1176</td>
<td>(P_{4_{2}}'/n'c'm)</td>
<td>(P_{4_{2}}'/n'c'm)</td>
<td>((1,0,0,0))</td>
<td>((2,1/2,1/2,0))</td>
<td>((m_x,0,1/2))</td>
<td>((m_y,0,1/2))</td>
</tr>
<tr>
<td>138.8.1177</td>
<td>(P_{4_{2}}'/n'c'm)</td>
<td>(P_{4_{2}}'/n'c'm)</td>
<td>((1,0,0,0))</td>
<td>((2,1/2,1/2,0))</td>
<td>((m_x,0,1/2))</td>
<td>((m_y,0,1/2))</td>
</tr>
<tr>
<td>139.1.1179</td>
<td>(I_{4}/mmm)</td>
<td></td>
<td>((1,0,0,0))</td>
<td>((4,0,0,0))</td>
<td>((2,0,0,0))</td>
<td>((4,0,0,0))</td>
</tr>
</tbody>
</table>
MAGNETIC SPACE GROUP ELEMENTS

139.2.1180 I4/mmm1' (0,0,0; a,b,c) (1*0,0,0) (2*0,0,0) (2*0,0,0) (4*0,0,0)
(2x*0,0,0) (2y*0,0,0) (2z*0,0,0) (mz*0,0,0)
(mx*0,0,0) (my*0,0,0) (mz*0,0,0) (mz*0,0,0)

(139.3.1181 I4/m'nm I4mm (0,0,0; a-b,a+b,c) (1*0,0,0) (2*0,0,0) (2*0,0,0) (4*0,0,0)
(2x*0,0,0)' (2y*0,0,0)' (2z*0,0,0)' (mz*0,0,0)' (mz*0,0,0)
(mx*0,0,0) (my*0,0,0) (mz*0,0,0) (mz*0,0,0)

(139.4.1182 I4'/mm' Fmmm (0,0,0; a-b,a+b,c) (1*0,0,0) (2*0,0,0) (2*0,0,0) (4*0,0,0)
(2x*0,0,0)' (2y*0,0,0)' (2z*0,0,0)' (mz*0,0,0)' (mz*0,0,0)
(mx*0,0,0) (my*0,0,0) (mz*0,0,0) (mz*0,0,0)

(139.5.1183 I4'/mmm Immm (0,0,0; a,b,c) (1*0,0,0) (2*0,0,0) (2*0,0,0) (4*0,0,0)
(2x*0,0,0)' (2y*0,0,0)' (2z*0,0,0)' (mz*0,0,0)' (mz*0,0,0)
(mx*0,0,0) (my*0,0,0) (mz*0,0,0) (mz*0,0,0)

(139.6.1184 I4'/m'm'm I&2m (0,0,0; a,b,c) (1*0,0,0) (2*0,0,0) (2*0,0,0) (4*0,0,0)
(2x*0,0,0)' (2y*0,0,0)' (2z*0,0,0)' (mz*0,0,0)' (mz*0,0,0)
(mx*0,0,0) (my*0,0,0) (mz*0,0,0) (mz*0,0,0)

(139.7.1185 I4/m'm'm I4/m (0,0,0; a,b,c) (1*0,0,0) (2*0,0,0) (2*0,0,0) (4*0,0,0)
(2x*0,0,0)' (2y*0,0,0)' (2z*0,0,0)' (mz*0,0,0)' (mz*0,0,0)
(mx*0,0,0) (my*0,0,0) (mz*0,0,0) (mz*0,0,0)

(139.8.1186 I4'/m'm'm I&m2 (0,0,0; a,b,c) (1*0,0,0) (2*0,0,0) (2*0,0,0) (4*0,0,0)
(2x*0,0,0)' (2y*0,0,0)' (2z*0,0,0)' (mz*0,0,0)' (mz*0,0,0)
(mx*0,0,0) (my*0,0,0) (mz*0,0,0) (mz*0,0,0)
<table>
<thead>
<tr>
<th>139.9.1187</th>
<th>I4/m/m'</th>
<th>I422</th>
<th>(0,0,0; a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(2_y*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(m_z*0,0,0)</td>
<td>(m_xy*0,0,0)'</td>
<td></td>
</tr>
<tr>
<td>(m_z*0,0,0)'</td>
<td>(m_x*0,0,0)'</td>
<td>(m_y*0,0,0)'</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>139.10.1188</th>
<th>I_p 4/mmm</th>
<th>P4/mmm</th>
<th>(0,0,0; a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(2_y*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(m_x*0,0,0)</td>
<td>(4*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(m_z*0,0,0)</td>
<td>(m_xy*0,0,0)'</td>
<td></td>
</tr>
<tr>
<td>(m_z*0,0,0)'</td>
<td>(m_x*0,0,0)'</td>
<td>(m_y*0,0,0)'</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>139.11.1189</th>
<th>I_p 4/m'</th>
<th>P4/nmm</th>
<th>(1/2,0,1/4; a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1*0,0,0)</td>
<td>(2*1/2,1/2,1/2)</td>
<td>(m_x*1/2,1/2,1/2)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(2*1/2,1/2,1/2)</td>
<td>(m_y*1/2,1/2,1/2)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(m_z*0,0,0)</td>
<td>(m_xy*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(m_z*0,0,0)</td>
<td>(m_xy*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(m_z*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(m_z*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>139.1191</th>
<th>I_p 4'/mm'</th>
<th>P4_2/mmc</th>
<th>(1/2,0,0; a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(2_y*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(m_z*0,0,0)</td>
<td>(m_xy*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(m_z*0,0,0)</td>
<td>(m_xy*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(m_z*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(m_z*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>139.12.1190</th>
<th>I_p 4'/m'm'</th>
<th>P4_2/nmm</th>
<th>(0,0,0; a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(2_y*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(m_z*0,0,0)</td>
<td>(m_xy*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(m_z*0,0,0)</td>
<td>(m_xy*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(m_z*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(m_z*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>139.13.1191</th>
<th>I_p 4'/m'm'</th>
<th>P4_2/mmc</th>
<th>(1/2,0,0; a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(2_y*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(m_z*0,0,0)</td>
<td>(m_xy*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(m_z*0,0,0)</td>
<td>(m_xy*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(m_z*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(m_z*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>139.14.1192</th>
<th>I_p 4'/m'm'</th>
<th>P4_2/nmm</th>
<th>(0,0,0; a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(2_y*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(m_z*0,0,0)</td>
<td>(m_xy*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(m_z*0,0,0)</td>
<td>(m_xy*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(m_z*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(m_z*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>139.15.1193</th>
<th>I_p 4'/mm'</th>
<th>P4/mmc</th>
<th>(0,0,0; a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1*0,0,0)</td>
<td>(4*0,0,0)</td>
<td>(2*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(2*0,0,0)</td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(2_y*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(m_x*0,0,0)</td>
<td>(4*0,0,0)</td>
<td>(2*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>Magnetic Space Group</td>
<td>Crystallographic Space Group</td>
<td>Convention</td>
<td>Lattice Parameters</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>139.16.1194</td>
<td>P4/mmm'</td>
<td>(0,0,0; a, b, c)</td>
<td>(2x *1/2,1/2,1/2) (&z *0,0,0) (mx *1/2,1/2,1/2)</td>
</tr>
<tr>
<td>139.17.1195</td>
<td>P4/mmm'</td>
<td>(0,0,0; a, b, c)</td>
<td>(2x *1/2,1/2,1/2) (&z *0,0,0) (mx *1/2,1/2,1/2)</td>
</tr>
<tr>
<td>140.1.1196</td>
<td>I4/mcm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140.2.1197</td>
<td>I4/mcm'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140.3.1198</td>
<td>I4/mcm</td>
<td>(0,0,0; a, b, c)</td>
<td>(2x *0,1/2)' (&z *0,0,0)' (mx *0,0,1/2)'</td>
</tr>
<tr>
<td>140.4.1199</td>
<td>I4/mcm'</td>
<td>(1/2,0,0; a-b, a+b, c)</td>
<td>(2x *0,1/2)' (&z *0,0,0)' (mx *0,0,1/2)'</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 109
140.5.1200	I4'/mcm'	1bam	(1/2,0,0; a,b,c)	(1*0,0,0)	(4_z*0,0,0)'	(2_x*0,0,0)	(4_z*1*0,0,0)'
140.6.1201	I4'/m'c'm	I&2m	(1/2,0,1/4; a,b,c)	(1*0,0,0)	(4_z*0,0,0)'	(2_x*0,0,0)	(4_z*1*0,0,0)'
140.7.1202	I4/mc'm'	I4/m	(0,0,0; a,b,c)	(1*0,0,0)	(4_z*0,0,0)'	(2_x*0,0,0)	(4_z*1*0,0,0)'
140.8.1203	I4'/m'cm'	I&c2	(0,0,0; a,b,c)	(1*0,0,0)	(4_z*0,0,0)'	(2_x*0,0,0)	(4_z*1*0,0,0)'
140.9.1204	I4/m'c'm'	I422	(0,0,1/4; a,b,c)	(1*0,0,0)	(4_z*0,0,0)'	(2_x*0,0,0)	(4_z*1*0,0,0)'
140.10.1205	I_p 4/mcm	P4/mcc	(0,0,0; a,b,c)	(1*0,0,0)	(4_z*0,0,0)'	(2_x*0,0,0)	(4_z*1*0,0,0)'
140.11.1206	I_p 4/m'cm	P4/ncc	(1/2,0,1/4; a,b,c)	(1*0,0,0)	(4_z*0,0,0)'	(2_x*0,0,0)	(4_z*1*0,0,0)'

MAGNETIC SPACE GROUP ELEMENTS 110
<p>| 140.12.1207 | I, 4/mcm | P4₂/mbc | (1/2,0,0; a,b,c) | (mₓ0,0,1/2) | (mᵧ0,0,1/2) | (mᵦ0,0,1/2) | (mᵧ0,0,1/2) |
| 140.13.1208 | I, 4/mcm | P4₂/mcm | (1/2,0,0; a,b,c) | (10,0,0) | (4₁0,1/2,1/2) | (20,0,0) | (2ₛ0,0,1/2) |
| 140.14.1209 | I, 4/mcm | P4₂/nbc | (0,0,0; a,b,c) | (20,0,1/2) | (20,0,1/2) | (20,0,1/2) | (2ₛ0,0,1/2) |
| 140.15.1210 | I, 4/mcm | P4/mbm | (0,0,0; a,b,c) | (10,0,0) | (4₁0,1/2,1/2) | (20,0,0) | (2ₛ0,0,1/2) |
| 140.16.1211 | I, 4/mcm | P4₂/nbm | (0,0,0; a,b,c) | (20,0,1/2) | (20,0,1/2) | (20,0,1/2) | (2ₛ0,0,1/2) |
| 140.17.1212 | I, 4/mcm | P4/nbm | (0,0,1/4; a,b,c) | (10,0,0) | (4₁0,1/2,1/2) | (20,0,0) | (2ₛ0,0,1/2) |
| 141.1213 | I4, amd | | | (10,0,0) | (4₂0,1/2,1/4) | (20,0,0) | (2ₛ0,0,0) |</p>
<table>
<thead>
<tr>
<th>Group</th>
<th>Symbol</th>
<th>Basis</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>I4:/amd1'</td>
<td></td>
<td>(0,0,0;a,b,c)</td>
<td>(*0,0,0) (4z^*0,1/2,1/4) (m_x^*0,0,0) (m_y^*0,0,0) (m_xy^*0,1/2,1/4) (m_z^*0,0,0)</td>
</tr>
<tr>
<td>I4:/a'</td>
<td></td>
<td>(0,0,0; a+b, -a+b, c)</td>
<td>(10,0,0) (2x0,1/2,1/4)' (m_x0,0,0)' (m_y0,0,0)' (m_z0,1/2,1/4)' (m_z0,1/2,1/4)'</td>
</tr>
<tr>
<td>I4'/am'd</td>
<td>Fddd</td>
<td>(0,0,0; c, b, a)</td>
<td>(10,0,0) (2x0,1/2,1/4)' (m_x0,0,0)' (m_y0,0,0)' (m_z*0,1/2,1/4)'</td>
</tr>
<tr>
<td>I4'/a'md'</td>
<td>Imma</td>
<td>(0,1/4,1/8; c, b, a)</td>
<td>(10,0,0) (2x0,1/2,1/4)' (m_x0,0,0)' (m_y0,0,0)' (m_z*0,1/2,1/4)'</td>
</tr>
<tr>
<td>I4'/a'md'</td>
<td>I4/a</td>
<td>(0,0,0; a, b, c)</td>
<td>(10,0,0) (2x0,1/2,1/4)' (m_x0,0,0)' (m_y0,0,0)' (m_z*0,1/2,1/4)'</td>
</tr>
<tr>
<td>I4'/a'md'</td>
<td>I4/am'd</td>
<td>(0,0,0; a, b, c)</td>
<td>(10,0,0) (2x0,1/2,1/4)' (m_x0,0,0)' (m_y0,0,0)' (m_z*0,1/2,1/4)'</td>
</tr>
<tr>
<td>I4'/a'md'</td>
<td>I4/a</td>
<td>(0,0,0; a, b, c)</td>
<td>(10,0,0) (2x0,1/2,1/4)' (m_x0,0,0)' (m_y0,0,0)' (m_z*0,1/2,1/4)'</td>
</tr>
<tr>
<td>Space Group</td>
<td>Magnetic Elements</td>
<td>Lattice Parameters</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>I4_awayd'</td>
<td>113</td>
<td>(0,0,0; a, b, c)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1*0,0,0)</td>
<td>(4_z*0,1/2,1/4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2_x*0,1/2,1/4)</td>
<td>(2_y*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(m_z*0,0,0)</td>
<td>(m_xyz*0,1/2,1/4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(m_xyz*0,1/2,1/4)</td>
<td>(m_y*0,1/2,1/4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(m_xyz*0,1/2,1/4)</td>
<td>(m_y*0,1/2,1/4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(m_xyz*0,1/2,1/4)</td>
<td>(m_y*0,1/2,1/4)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
<th>Lattice Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>I4_awayd</td>
<td>142.1.1222</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2_x*0,1/2,3/4)</td>
<td>(2_y*0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td>(m_x*0,0,1/2)</td>
<td>(m_y*0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td>(m_z*0,0,0)</td>
<td>(m_xyz*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td>(m_xyz*0,1/2,1/4)</td>
<td>(m_y*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td>(m_xyz*0,1/2,1/4)</td>
<td>(m_y*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td>(m_xyz*0,1/2,1/4)</td>
<td>(m_y*0,1/2,1/4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
<th>Lattice Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>I4_awayd</td>
<td>142.3.1224</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2_x*0,1/2,3/4)</td>
<td>(2_y*0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td>(m_x*0,0,1/2)</td>
<td>(m_y*0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td>(m_z*0,0,0)</td>
<td>(m_xyz*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td>(m_xyz*0,1/2,1/4)</td>
<td>(m_y*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td>(m_xyz*0,1/2,1/4)</td>
<td>(m_y*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td>(m_xyz*0,1/2,1/4)</td>
<td>(m_y*0,1/2,1/4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
<th>Lattice Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>I4_awayd</td>
<td>142.4.1225</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2_x*0,1/2,3/4)</td>
<td>(2_y*0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td>(m_x*0,0,1/2)</td>
<td>(m_y*0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td>(m_z*0,0,0)</td>
<td>(m_xyz*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td>(m_xyz*0,1/2,1/4)</td>
<td>(m_y*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td>(m_xyz*0,1/2,1/4)</td>
<td>(m_y*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td>(m_xyz*0,1/2,1/4)</td>
<td>(m_y*0,1/2,1/4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
<th>Lattice Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>I4_awayd</td>
<td>142.5.1226</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2_x*0,1/2,3/4)</td>
<td>(2_y*0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td>(m_x*0,0,1/2)</td>
<td>(m_y*0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td>(m_z*0,0,0)</td>
<td>(m_xyz*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td>(m_xyz*0,1/2,1/4)</td>
<td>(m_y*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td>(m_xyz*0,1/2,1/4)</td>
<td>(m_y*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td>(m_xyz*0,1/2,1/4)</td>
<td>(m_y*0,1/2,1/4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
<th>Lattice Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>I4_awayd</td>
<td>142.6.1227</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2_x*0,1/2,3/4)</td>
<td>(2_y*0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td>(m_x*0,0,1/2)</td>
<td>(m_y*0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td>(m_z*0,0,0)</td>
<td>(m_xyz*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td>(m_xyz*0,1/2,1/4)</td>
<td>(m_y*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td>(m_xyz*0,1/2,1/4)</td>
<td>(m_y*0,1/2,1/4)</td>
</tr>
<tr>
<td></td>
<td>(m_xyz*0,1/2,1/4)</td>
<td>(m_y*0,1/2,1/4)</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 113
142.7.1228	I4₁/ac'd'	I4₁/a	(0,0,0; a,b,c)	(1*0,0,0)	(2ₓ*0,1/2,3/4)'	(2ᵧ*0,1/2,3/4)'	(2z*0,0,0)	(4ₓ*0,1/2,1/4)	(4ᵧ*0,1/2,1/4)	(4z*0,1/2,1/4)	(2sₓ*0,0,1/2)'	(2sᵧ*0,0,1/2)'	(2z*1*0,0,0)	(mₓ*0,0,1/2)'	(mᵧ*0,0,1/2)'	(mz*0,1/2,1/4)	(mz*0,1/2,3/4)	(mz*0,1/2,3/4)	(mz*0,0,0)	(mz*0,1/2,3/4)	(mz*0,1/2,3/4)	(mz*0,0,1/2)	(mz*0,0,1/2)	(mz*0,1/2,3/4)	(mz*0,1/2,3/4)
142.8.1229	I4₁'/a'cd'	I₆c2	(0,0,0; a,b,c)	(1*0,0,0)	(2ₓ*0,1/2,3/4)'	(2ᵧ*0,1/2,3/4)'	(2z*0,0,0)	(4ₓ*0,1/2,1/4)	(4ᵧ*0,1/2,1/4)	(4z*0,1/2,1/4)	(2sₓ*0,0,1/2)	(2sᵧ*0,0,1/2)	(2z*1*0,0,0)	(mₓ*0,0,1/2)'	(mᵧ*0,0,1/2)'	(mz*0,1/2,1/4)	(mz*0,1/2,3/4)	(mz*0,1/2,3/4)	(mz*0,0,0)	(mz*0,1/2,3/4)	(mz*0,1/2,3/4)				
142.9.1230	I4₁/a'c'd'	I4₂2	(0,0,1/4; a,b,c)	(1*0,0,0)	(2ₓ*0,1/2,3/4)	(2ᵧ*0,1/2,3/4)	(2z*0,0,0)	(4ₓ*0,1/2,1/4)	(4ᵧ*0,1/2,1/4)	(4z*0,1/2,1/4)	(2sₓ*0,0,1/2)	(2sᵧ*0,0,1/2)	(2z*1*0,0,0)	(mₓ*0,0,1/2)'	(mᵧ*0,0,1/2)'	(mz*0,1/2,1/4)	(mz*0,1/2,3/4)	(mz*0,1/2,3/4)	(mz*0,0,0)	(mz*0,1/2,3/4)	(mz*0,1/2,3/4)				

TRIGONAL SYSTEM

143.1.1231	P³	(1*0,0,0)	(3ₓ*0,0,0)	(3z*1*0,0,0)		
143.2.1232	P3₁'					
143.3.1233	P₂c 3	P³	(0,0,0; a,b,2c)	(1*0,0,0)	(3ₓ*0,0,0)	(3z*1*0,0,0)

<p>| 144.1.1234 | P₃₁ | (10,0,0) | (3ₓ0,0,1/3) | (3z10,0,2/3) |
| 144.2.1235 | P₃₁' | | | | | |
| 144.3.1236 | P₂c 3₂ | P₃₂ | (0,0,0; a,b,2c) | (10,0,0) | (3ₓ0,0,4/3) | (3z10,0,2/3) |
| 145.1.1237 | P3₂ | (10,0,0) | (3₂0,0,2/3) | (3₂⁻¹0,0,1/3) |
| 145.2.1238 | P3₁ | (10,0,0) | (3₂0,0,2/3) | (3₂⁻¹0,0,4/3) |
| 145.3.1239 | P₂c 3₁ | (0,0,0; a,b,2c) | (10,0,0) | (3₂0,0,0) | (3₂⁻¹0,0,0) |
| 146.1.1240 | R3 | (10,0,0) | (3₂0,0,0) | (3₂⁻¹0,0,0) |
| 146.2.1241 | R₃₁' | (10,0,0) | (3₂0,0,0) | (3₂⁻¹0,0,0) |
| 146.3.1242 | R₆ 3 | (0,0,0; a+b,b+c,a+c) | (10,0,0) | (3₂0,0,0) | (3₂⁻¹0,0,0) |
| 147.1.1243 | P₆ | (10,0,0) | (3₂0,0,0) | (3₂⁻¹0,0,0) |
| 147.2.1244 | P₆₁' | (10,0,0) | (3₂0,0,0) | (3₂⁻¹0,0,0) |
| 147.3.1245 | P₆ | (0,0,0; a,b,c) | (10,0,0) | (3₂0,0,0) | (3₂⁻¹0,0,0) |
| 147.4.1246 | P₂c₆ | (0,0,0; a,b,2c) | (10,0,0) | (3₂0,0,0) | (3₂⁻¹0,0,0) |
| 148.1.1247 | R₆ | (10,0,0) | (3₂0,0,0) | (3₂⁻¹0,0,0) |
| 148.2.1248 | R₆₁' | (10,0,0) | (3₂0,0,0) | (3₂⁻¹0,0,0) |
| 148.3.1249 | R₆ | (0,0,0; a,b,c) | (10,0,0) | (3₂0,0,0) | (3₂⁻¹*0,0,0) |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Space Group</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>148.4.1250</td>
<td>R₃ & R₀ &</td>
<td>(0,0,a+b,2c,a+c) (10,0,0) (30,0,0) (3*⁻¹0,0,0)</td>
</tr>
<tr>
<td>149.1.1251</td>
<td>P312</td>
<td>(10,0,0) (30,0,0) (3*⁻¹0,0,0)</td>
</tr>
<tr>
<td>149.2.1252</td>
<td>P3121'</td>
<td></td>
</tr>
<tr>
<td>149.3.1253</td>
<td>P312' P3</td>
<td>(0,0,a,b,c) (10,0,0) (30,0,0) (3*⁻¹0,0,0)</td>
</tr>
<tr>
<td>149.4.1254</td>
<td>P₂c 312 P312</td>
<td>(0,0,a,b,2c) (10,0,0) (30,0,0) (3*⁻¹0,0,0)</td>
</tr>
<tr>
<td>150.1.1255</td>
<td>P321</td>
<td>(10,0,0) (30,0,0) (3*⁻¹0,0,0)</td>
</tr>
<tr>
<td>150.2.1256</td>
<td>P3211'</td>
<td></td>
</tr>
<tr>
<td>150.3.1257</td>
<td>P32'1 P3</td>
<td>(0,0,a,b,c) (10,0,0) (30,0,0) (3*⁻¹0,0,0)</td>
</tr>
<tr>
<td>150.4.1258</td>
<td>P₂c 321 P321</td>
<td>(0,0,a,b,2c) (10,0,0) (30,0,0) (3*⁻¹0,0,0)</td>
</tr>
<tr>
<td>151.1.1259</td>
<td>P₃,12</td>
<td>(10,0,0) (30,0,1/3) (3*⁻¹0,0,2/3)</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 116
151.2.1260 P3\textsubscript{1}121'

151.3.1261 P3\textsubscript{1}12' P3\textsubscript{1} (0,0,0;a,b,c) (1*0,0,0) (2\textsubscript{1}x0,0,0)* (3\textsubscript{1}x0,0,0,1/3) (2\textsubscript{2}x0,0,0,1/3)* (3\textsubscript{1}x0,0,0,2/3)

151.4.1262 P\textsubscript{2c} \textsubscript{3} 12 P3\textsubscript{1}12 (0,0,0;a,b,2c) (1*0,0,0) (2\textsubscript{1}x0,0,0)* (2\textsubscript{2}x0,0,0)* (3\textsubscript{2}x0,0,0)* (3\textsubscript{1}x0,0,0,2/3) (3\textsubscript{1}x0,0,0,4/3) (3\textsubscript{1}x0,0,0,2/3)

152.1.1263 P3\textsubscript{1}21 (1*0,0,0) (3\textsubscript{1}x0,0,0,1/3) (3\textsubscript{1}x0,0,0,2/3)

152.2.1264 P3\textsubscript{1}211' (2*0,0,0,2/3) (2\textsubscript{1}x0,0,0,0)* (2\textsubscript{2}x0,0,0,0)* (3\textsubscript{1}x0,0,0,0)* (2\textsubscript{2}x0,0,0,1/3)* (3\textsubscript{1}x0,0,0,2/3)

152.3.1265 P3\textsubscript{1}2'1 P3\textsubscript{1} (0,0,0;a,b,c) (1*0,0,0) (2\textsubscript{1}x0,0,0,2/3)* (2\textsubscript{1}x0,0,0,0)* (2\textsubscript{2}x0,0,0,0)* (2\textsubscript{2}x0,0,0,0)* (3\textsubscript{1}x0,0,0,1/3)* (3\textsubscript{1}x0,0,0,2/3)

152.4.1266 P\textsubscript{2c} \textsubscript{2} 121 P3\textsubscript{1}21 (0,0,0;a,b,2c) (1*0,0,0) (2\textsubscript{1}x0,0,0,2/3)* (2\textsubscript{2}x0,0,0,0)* (2\textsubscript{2}x0,0,0,0)* (2\textsubscript{2}x0,0,0,0)* (3\textsubscript{1}x0,0,0,2/3)

153.1.1267 P3\textsubscript{2}12 (1*0,0,0) (3\textsubscript{1}x0,0,0,2/3) (3\textsubscript{2}x0,0,0,1/3)* (3\textsubscript{1}x0,0,0,2/3)* (3\textsubscript{1}x0,0,0,1/3)

153.2.1268 P3\textsubscript{2}121' (2*0,0,0,2/3) (2\textsubscript{1}x0,0,0,0)* (2\textsubscript{2}x0,0,0,0)* (3\textsubscript{1}x0,0,0,0)* (2\textsubscript{2}x0,0,0,1/3)* (3\textsubscript{1}x0,0,0,2/3)

153.3.1269 P3\textsubscript{2}12' P3\textsubscript{2} (0,0,0;a,b,c) (1*0,0,0) (2\textsubscript{1}x0,0,0,0)* (2\textsubscript{2}x0,0,0,0)* (2\textsubscript{2}x0,0,0,0)* (2\textsubscript{2}x0,0,0,0)* (3\textsubscript{1}x0,0,0,1/3)* (3\textsubscript{1}x0,0,0,2/3)* (3\textsubscript{1}x0,0,0,1/3)

153.4.1270 P\textsubscript{2c} \textsubscript{3} 12 P3\textsubscript{1}12 (0,0,0;a,b,2c) (1*0,0,0) (2\textsubscript{1}x0,0,0,0)* (2\textsubscript{2}x0,0,0,0)* (2\textsubscript{2}x0,0,0,0)* (2\textsubscript{2}x0,0,0,0)* (3\textsubscript{1}x0,0,0,4/3) (3\textsubscript{1}x0,0,0,2/3) (3\textsubscript{1}x0,0,0,2/3)
<p>| Magnetic Space Group Elements |elm| |elm| |elm| |
|-----------------------------|----|---|---|---|---|
| 154.1.1271 P32 21 | (10,0,0) | (3z0,0,2/3) | (3z-10,0,1/3) |
| 154.2.1272 P32 211' | (2x0,0,1/3) | (2xy0,0,0) | (2y0,0,2/3) |
| 154.3.1273 P32 2'1 P3 | (10,0,0) | (3z0,0,2/3) | (3z-10,0,1/3) |
| 154.4.1274 P2c 3,21 P3121 | (2x0,0,1/3) | (2xy0,0,0) | (2y0,0,2/3) |
| 155.1.1275 R32 | (10,0,0) | (3z0,0,0) | (3z-10,0,0) |
| 155.2.1276 R321' | (2x0,0,0) | (2xy0,0,0) | (2y0,0,0) |
| 155.3.1277 R32' R3 | (10,0,0) | (3z0,0,0) | (3z-10,0,0) |
| 155.4.1278 R3 32 | (2x0,0,0) | (2xy0,0,0) | (2y0,0,0) |
| 156.1.1279 P3m1 | (10,0,0) | (3z0,0,0) | (3z-10,0,0) |
| 156.2.1280 P3m11' | (mx0,0,0) | (mxy0,0,0) | (my0,0,0) |
| 156.3.1281 P3m1' P3 | (10,0,0) | (3z0,0,0) | (3z-10,0,0) |
| | (mx0,0,0)' | (mxy0,0,0)' | (my0,0,0)' |</p>
<table>
<thead>
<tr>
<th>Magnetic Space Group</th>
<th>Element</th>
<th>Description</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>156.4.1282</td>
<td>P_{2c} $3m1$</td>
<td>P3m1</td>
<td>$(0,0,0; a,b,2c)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156.5.1283</td>
<td>P_{2c} $3m'$</td>
<td>P3c1</td>
<td>$(0,0,0; a,b,2c)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157.1.1284</td>
<td>P31m</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157.2.1285</td>
<td>P31m'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>157.3.1286</td>
<td>P31m'</td>
<td>P3</td>
<td>$(0,0,0; a,b,c)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157.4.1287</td>
<td>P_{2c} $31m$</td>
<td>P31m</td>
<td>$(0,0,0; a,b,2c)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157.5.1288</td>
<td>P_{2c} $31m'$</td>
<td>P31c</td>
<td>$(0,0,0; a,b,2c)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158.1.1289</td>
<td>P3c1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158.2.1290</td>
<td>P3c1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>158.3.1291</td>
<td>P3c1'</td>
<td>P3</td>
<td>$(0,0,0; a,b,c)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159.1.1292</td>
<td>P31c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic Space Group</td>
<td>Element Description</td>
<td>Group</td>
<td>Symbol</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>159.2.1293</td>
<td>P31c1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>159.3.1294</td>
<td>P31c' P3</td>
<td></td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160.1.1295</td>
<td>R3m</td>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>((m_x,0,0,0))</td>
</tr>
<tr>
<td>160.2.1296</td>
<td>R3m1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160.4.1298</td>
<td>R3m R3m</td>
<td></td>
<td>(0,0,0; a+b, b+c, a+c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>((m_x,0,0,0))</td>
</tr>
<tr>
<td>160.5.1299</td>
<td>R3c R3c' R3c</td>
<td></td>
<td>(0,0,0; a+b, b+c, 2a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>((m_x,1,0,0))</td>
</tr>
<tr>
<td>161.1.1300</td>
<td>R3c</td>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>((m_x,0,0,1/2))</td>
</tr>
<tr>
<td>161.2.1301</td>
<td>R3c1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>161.3.1302</td>
<td>R3c' R3c</td>
<td></td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>((m_x,0,0,1/2)')</td>
</tr>
<tr>
<td>Group</td>
<td>Symbol</td>
<td>Basis Vectors</td>
<td>Magnetic Elements</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>162.1.1303</td>
<td>P&1m</td>
<td>(10,0,0), (3z0,0,0), (3z^-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>& (10,0,0), (3z0,0,0), (3z^-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m0,0,0), (m0,0,0), (m*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2z0,0,0), (2z0,0,0), (2z*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>162.2.1304</td>
<td>P&1m'</td>
<td>(10,0,0), (3z0,0,0), (3z^-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>& (10,0,0), (3z0,0,0), (3z^-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m0,0,0), (m0,0,0), (m*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2z0,0,0), (2z0,0,0), (2z*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>162.3.1305</td>
<td>P&'1m</td>
<td>P31m</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10,0,0), (3z0,0,0), (3z^-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>& (10,0,0), (3z0,0,0), (3z^-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m0,0,0), (m0,0,0), (m*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2z0,0,0), (2z0,0,0), (2z*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>162.4.1306</td>
<td>P&'1m'</td>
<td>P312</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10,0,0), (3z0,0,0), (3z^-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>& (10,0,0), (3z0,0,0), (3z^-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m0,0,0), (m0,0,0), (m*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2z0,0,0), (2z0,0,0), (2z*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>162.5.1307</td>
<td>P&1m'</td>
<td>P&</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10,0,0), (3z0,0,0), (3z^-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>& (10,0,0), (3z0,0,0), (3z^-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m0,0,0), (m0,0,0), (m*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2z0,0,0), (2z0,0,0), (2z*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>162.6.1308</td>
<td>P2c&1m</td>
<td>P&1m</td>
<td>(0,0,0; a,b,2c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10,0,0), (3z0,0,0), (3z^-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>& (10,0,0), (3z0,0,0), (3z^-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m0,0,0), (m0,0,0), (m*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2z0,0,0), (2z0,0,0), (2z*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>162.7.1309</td>
<td>P2c&1m'</td>
<td>P&1c</td>
<td>(0,0,0; a,b,2c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10,0,0), (3z0,0,0), (3z^-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>& (10,0,0), (3z0,0,0), (3z^-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m0,0,1), (m0,0,1), (m*0,0,1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2z0,0,1), (2z0,0,1), (2z*0,0,1)</td>
<td></td>
</tr>
<tr>
<td>163.1.1310</td>
<td>P&1c</td>
<td>(10,0,0), (3z0,0,0), (3z^-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>Magnetic Space Group Elements</td>
<td>Elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1, 0, 0, 0)</td>
<td>(2, 0, 0, 1/2)</td>
<td>(3, -1, 0, 0, 0)</td>
<td></td>
</tr>
<tr>
<td>(m, 0, 0, 1/2)</td>
<td>(m, 0, 0, 1/2)</td>
<td>(m, 0, 0, 1/2)</td>
<td></td>
</tr>
<tr>
<td>(2, 0, 0, 1/2)</td>
<td>(2, 0, 0, 1/2)</td>
<td>(2, 0, 0, 1/2)</td>
<td></td>
</tr>
</tbody>
</table>

163.2.1311 P&1c1'

163.3.1312 P&'1c P31c (0, 0, 0; a, b, c) | (1, 0, 0, 0) | (3, 0, 0, 0) | (3, -1, 0, 0, 0) |
| | (m, 0, 0, 1/2) | (m, 0, 0, 1/2) | (m, 0, 0, 1/2) |
| | (2, 0, 0, 1/2) | (2, 0, 0, 1/2) | (2, 0, 0, 1/2) |

163.4.1313 P&'1c' P312 (0, 0, 1/4; a, b, c) | (1, 0, 0, 0) | (3, 0, 0, 0) | (3, -1, 0, 0, 0) |
| | (m, 0, 0, 1/2) | (m, 0, 0, 1/2) | (m, 0, 0, 1/2) |
| | (2, 0, 0, 1/2) | (2, 0, 0, 1/2) | (2, 0, 0, 1/2) |

163.5.1314 P&1c' P& (0, 0, 0; a, b, c) | (1, 0, 0, 0) | (3, 0, 0, 0) | (3, -1, 0, 0, 0) |
| | (m, 0, 0, 1/2) | (m, 0, 0, 1/2) | (m, 0, 0, 1/2) |
| | (2, 0, 0, 1/2) | (2, 0, 0, 1/2) | (2, 0, 0, 1/2) |

164.1.1315 P&m1 | (1, 0, 0, 0) | (3, 0, 0, 0) | (3, -1, 0, 0, 0) |
| | (m, 0, 0, 0) | (m, 0, 0, 0) | (m, 0, 0, 0) |
| | (2, 0, 0, 0) | (2, 0, 0, 0) | (2, 0, 0, 0) |

164.2.1316 P&m11' |

164.3.1317 P&m1 P3m1 (0, 0, 0; a, b, c) | (1, 0, 0, 0) | (3, 0, 0, 0) | (3, -1, 0, 0, 0) |
<p>| | (m, 0, 0, 0) | (m, 0, 0, 0) | (m, 0, 0, 0) |
| | (2, 0, 0, 0) | (2, 0, 0, 0) | (2, 0, 0, 0) |</p>
<table>
<thead>
<tr>
<th>P&'m'1</th>
<th>P321</th>
<th>(0,0,0;a,b,c)</th>
<th>(1*0,0,0)</th>
<th>(3*0,0,0)</th>
<th>(3_10,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td>(m_z*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x*0,0,0)'</td>
<td>(m_y*0,0,0)'</td>
<td>(m_z*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P&'m'1</th>
<th>P&</th>
<th>(0,0,0;a,b,c)</th>
<th>(1*0,0,0)</th>
<th>(3*0,0,0)</th>
<th>(3_10,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td>(m_z*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x*0,0,0)'</td>
<td>(m_y*0,0,0)'</td>
<td>(m_z*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
<td>(2*0,0,0)'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P_2c&'m'1</th>
<th>P&1</th>
<th>(0,0,0;a,b,2c)</th>
<th>(1*0,0,0)</th>
<th>(3*0,0,0)</th>
<th>(3_10,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x*0,0,0)</td>
<td>(m_y*0,0,0)</td>
<td>(m_z*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x*0,0,0,1/2)</td>
<td>(m_y*0,0,0,1/2)</td>
<td>(m_z*0,0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,0,1/2)</td>
<td>(2*0,0,0,1/2)</td>
<td>(2*0,0,0,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P_2c&'m'1</th>
<th>P&c1</th>
<th>(0,0,0;a,b,2c)</th>
<th>(1*0,0,0)</th>
<th>(3*0,0,0)</th>
<th>(3_10,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x*0,0,0,1/2)</td>
<td>(m_y*0,0,0,1/2)</td>
<td>(m_z*0,0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,0,1/2)</td>
<td>(2*0,0,0,1/2)</td>
<td>(2*0,0,0,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P&c1</th>
<th>P&c1</th>
<th></th>
<th>(1*0,0,0)</th>
<th>(3*0,0,0)</th>
<th>(3_10,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x*0,0,0,1/2)</td>
<td>(m_y*0,0,0,1/2)</td>
<td>(m_z*0,0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,0,1/2)</td>
<td>(2*0,0,0,1/2)</td>
<td>(2*0,0,0,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P&c1</th>
<th>P3c1</th>
<th>(0,0,0;a,b,c)</th>
<th>(1*0,0,0)</th>
<th>(3*0,0,0)</th>
<th>(3_10,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m_x*0,0,0,1/2)</td>
<td>(m_y*0,0,0,1/2)</td>
<td>(m_z*0,0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,0,1/2)</td>
<td>(2*0,0,0,1/2)</td>
<td>(2*0,0,0,1/2)</td>
</tr>
</tbody>
</table>
165.4.1325 P&'c'1 P321 (0,0,1/4;a,b,c)
(2x*0,0,1/2)' (2xy*0,0,1/2)' (2y*0,0,1/2)'
(1*0,0,0) (3,0,0,0) (3,-1*0,0,0)
(&*0,0,0)' (&z*0,0,0)' (&z,-1*0,0,0)'
(mx*0,0,1/2)' (mxy*0,0,1/2)' (my*0,0,1/2)'
(2x*0,0,1/2) (2xy*0,0,1/2) (2y*0,0,1/2)

165.5.1326 P&c'1 P& (0,0,0;a,b,c)
(1*0,0,0) (3,0,0,0) (3,-1*0,0,0)
(&*0,0,0) (&z*0,0,0) (&z,-1*0,0,0)
(mx*0,0,1/2)' (mxy*0,0,1/2)' (my*0,0,1/2)'
(2x*0,0,1/2)' (2xy*0,0,1/2)' (2y*0,0,1/2)'

166.1.1327 R&'m
(1*0,0,0) (3,0,0,0) (3,-1*0,0,0)
(&*0,0,0) (&z*0,0,0) (&z,-1*0,0,0)
(mx*0,0,0) (mxy*0,0,0) (my*0,0,0)
(2x*0,0,0) (2xy*0,0,0) (2y*0,0,0)

166.2.1328 R&'m1'

166.3.1329 R&'m R3m (0,0,0;a,b,c)
(1*0,0,0) (3,0,0,0) (3,-1*0,0,0)
(&*0,0,0)' (&z*0,0,0)' (&z,-1*0,0,0)'
(mx*0,0,0) (mxy*0,0,0) (my*0,0,0)
(2x*0,0,0)' (2xy*0,0,0)' (2y*0,0,0)'

166.4.1330 R&'m' R32 (0,0,0;a,b,c)
(1*0,0,0) (3,0,0,0) (3,-1*0,0,0)
(&*0,0,0)' (&z*0,0,0)' (&z,-1*0,0,0)'
(mx*0,0,0)' (mxy*0,0,0)' (my*0,0,0)'
(2x*0,0,0) (2xy*0,0,0) (2y*0,0,0)

166.5.1331 R&'m' R& (0,0,0;a,b,c)
(1*0,0,0) (3,0,0,0) (3,-1*0,0,0)
(&*0,0,0) (&z*0,0,0) (&z,-1*0,0,0)
<table>
<thead>
<tr>
<th>Magnetic Space Group Elements</th>
<th>R & m</th>
<th>(0,0,0;a+b,b+c,a+c)</th>
<th>(m_x*0,0,0)'</th>
<th>(m_y*0,0,0)'</th>
<th>(m_z*0,0,0)'</th>
</tr>
</thead>
<tbody>
<tr>
<td>166.6.1332</td>
<td>R & m</td>
<td>(0,0,0;a+b,b+c,a+c)</td>
<td>(1*0,0,0)</td>
<td>(3_z*0,0,0)</td>
<td>(3_z10,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2_x*0,0,0)'</td>
<td>(2_xy*0,0,0)'</td>
<td>(2_y*0,0,0)'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnetic Space Group Elements</th>
<th>R & m'</th>
<th>(0,0,0;a+b,b+c,a+c)</th>
<th>(m_x*0,0,1)</th>
<th>(m_y*0,0,1)</th>
<th>(m_z*0,0,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>166.7.1333</td>
<td>R & c</td>
<td>(0,0,0;a+b,b+c,a+c)</td>
<td>(1*0,0,0)</td>
<td>(3_z*0,0,0)</td>
<td>(3_z10,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2_x*0,0,1/2)</td>
<td>(2_xy*0,0,1/2)</td>
<td>(2_y*0,0,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnetic Space Group Elements</th>
<th>R & c</th>
<th>(0,0,0;a+b,b+c,a+c)</th>
<th>(1*0,0,0)</th>
<th>(3_z*0,0,0)</th>
<th>(3_z10,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>167.1.1334</td>
<td>R & c</td>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(3_z*0,0,0)</td>
<td>(3_z10,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2_x*0,0,1/2)</td>
<td>(2_xy*0,0,1/2)</td>
<td>(2_y*0,0,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnetic Space Group Elements</th>
<th>R & c'</th>
<th>(0,0,1/4;a,b,c)</th>
<th>(1*0,0,0)</th>
<th>(3_z*0,0,0)</th>
<th>(3_z10,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>167.4.1337</td>
<td>R & c'</td>
<td>(0,0,0; a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(3_z*0,0,0)</td>
<td>(3_z10,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2_x*0,0,1/2)</td>
<td>(2_xy*0,0,1/2)</td>
<td>(2_y*0,0,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnetic Space Group Elements</th>
<th>R & c'</th>
<th>(0,0,0; a,b,c)</th>
<th>(1*0,0,0)</th>
<th>(3_z*0,0,0)</th>
<th>(3_z10,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>167.5.1338</td>
<td>R & c'</td>
<td>(0,0,0; a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(3_z*0,0,0)</td>
<td>(3_z10,0,0)</td>
</tr>
</tbody>
</table>
HEXAGONAL SYSTEM

<p>| 168.1.1339 | P6 | (10,0,0) | (30,0,0) | (3,-10,0,0) |
| | | (20,0,0) | (60,0,0) | (6,-10,0,0) | |
| 168.2.1340 | P61' | | | |
| 168.3.1341 | P6' P3 | (0,0,0; a,b,c) | (10,0,0) | (30,0,0) | (3,-10,0,0) |
| | | | (20,0,0) | (60,0,0) | (6,-10,0,0) |
| 168.4.1342 | P₂c 6 | (0,0,0; a,b,2c) | (10,0,0) | (30,0,0) | (3,-10,0,0) |
| | | | (20,0,0) | (60,0,0) | (6,-10,0,0) |
| 168.5.1343 | P₂c 6' P6₃ | (0,0,0; a,b,2c) | (10,0,0) | (30,0,0) | (3,-10,0,0) |
| | | | (20,0,1) | (60,0,1) | (6,-10,0,1) |
| 169.1.1344 | P₆₁ | (10,0,0) | (30,0,1/3) | (3,-10,0,2/3) |
| | | (20,0,1/2) | (60,0,1/6) | (6,-10,0,5/6) |
| 169.2.1345 | P₆₁,1' | | | |
| 169.3.1346 | P₆₁ P3₁ | (0,0,0; a,b,c) | (10,0,0) | (30,0,1/3) | (3,-1*0,0,2/3) |</p>
<table>
<thead>
<tr>
<th>Magnetic Space Group Elements 127</th>
</tr>
</thead>
<tbody>
<tr>
<td>170.1.1347 P6_5</td>
</tr>
<tr>
<td>170.2.1348 P6_5'</td>
</tr>
<tr>
<td>170.3.1349 P6_5' P3_2</td>
</tr>
<tr>
<td>171.1.1350 P6_2</td>
</tr>
<tr>
<td>171.2.1351 P6_2'</td>
</tr>
<tr>
<td>171.3.1352 P6_2' P3_2</td>
</tr>
<tr>
<td>171.4.1353 P_2c 6_2 P6_1</td>
</tr>
<tr>
<td>171.5.1354 P_2c 6_2' P6_4</td>
</tr>
<tr>
<td>172.1.1355 P6_4</td>
</tr>
<tr>
<td>172.2.1356 P6_4'</td>
</tr>
<tr>
<td>172.3.1357 P6_4' P3_1</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 127
<table>
<thead>
<tr>
<th>Code</th>
<th>128</th>
<th>1358</th>
<th>P2c 6_4</th>
<th>P6_2</th>
<th>(0,0,0;a,b,2c)</th>
<th>(10,0,0) (20,0,0) (6*0,0,2/3) (6^{-1}*0,0,1/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>1359</td>
<td>P2c 6'_4</td>
<td>P6_5</td>
<td>(0,0,0;a,b,2c)</td>
<td>(10,0,0) (20,0,1) (6*0,0,5/3) (6^{-1}*0,0,1/3)</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>1360</td>
<td>P6_3</td>
<td>(0,0,0;0,a,b,c)</td>
<td>(10,0,0) (20,0,1/2) (6*0,0,1/2) (6^{-1}*0,0,1/2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>1361</td>
<td>P6_3</td>
<td>(0,0,0;0,a,b,c)</td>
<td>(10,0,0) (20,0,1/2) (6*0,0,1/2) (6^{-1}*0,0,1/2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>1362</td>
<td>P6_3</td>
<td>(0,0,0;0,a,b,c)</td>
<td>(10,0,0) (20,0,1/2) (6*0,0,1/2) (6^{-1}*0,0,1/2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>1363</td>
<td>P6_3</td>
<td>(0,0,0;0,a,b,c)</td>
<td>(10,0,0) (20,0,1/2) (6*0,0,1/2) (6^{-1}*0,0,1/2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>1364</td>
<td>P6_3</td>
<td>(0,0,0;0,a,b,c)</td>
<td>(10,0,0) (20,0,1/2) (6*0,0,1/2) (6^{-1}*0,0,1/2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>1365</td>
<td>P6_3</td>
<td>(0,0,0;0,a,b,c)</td>
<td>(10,0,0) (20,0,1/2) (6*0,0,1/2) (6^{-1}*0,0,1/2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>1366</td>
<td>P6_3</td>
<td>(0,0,0;0,a,b,c)</td>
<td>(10,0,0) (20,0,1/2) (6*0,0,1/2) (6^{-1}*0,0,1/2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>1367</td>
<td>P6/m</td>
<td>(10,0,0) (30,0,0) (3^{-1}0,0,0) (30,0,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(60,0,0) (60,0,0) (60,0,0) (60,0,0)</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 128
<table>
<thead>
<tr>
<th>Magnetic Space Group</th>
<th>Elements</th>
</tr>
</thead>
</table>
| 175.2.1368 P6/m1' | $\begin{array}{ccc}
(2z,0,0,0) & (6z,0,0,0) & (6z^{-1},0,0,0) \\
(mz,0,0,0) & (6z,0,0,0) & (6z^{-1},0,0,0)
\end{array}$ |
| 175.3.1369 P6'/m | $\begin{array}{ccc}
(1z,0,0,0) & (3z,0,0,0) & (3z^{-1},0,0,0) \\
(&z,0,0,0)' & (6z,0,0,0) & (6z^{-1},0,0,0)
\end{array}$ |
| 175.4.1370 P6/m' | $\begin{array}{ccc}
(1z,0,0,0) & (3z,0,0,0) & (3z^{-1},0,0,0) \\
(&z,0,0,0)' & (6z,0,0,0) & (6z^{-1},0,0,0)
\end{array}$ |
| 175.5.1371 P6'/m' | $\begin{array}{ccc}
(1z,0,0,0) & (3z,0,0,0) & (3z^{-1},0,0,0) \\
(&z,0,0,0)' & (6z,0,0,0) & (6z^{-1},0,0,0)
\end{array}$ |
| 175.6.1372 P2c 6/m | $\begin{array}{ccc}
(1z,0,0,0) & (3z,0,0,0) & (3z^{-1},0,0,0) \\
(&z,0,0,0)' & (6z,0,0,0) & (6z^{-1},0,0,0)
\end{array}$ |
| 175.7.1373 P2c 6'/m | $\begin{array}{ccc}
(1z,0,0,0) & (3z,0,0,0) & (3z^{-1},0,0,0) \\
(&z,0,0,1) & (6z,0,0,1) & (6z^{-1},0,0,1)
\end{array}$ |
| 176.1.1374 P63/m | $\begin{array}{ccc}
(1z,0,0,0) & (3z,0,0,0) & (3z^{-1},0,0,0)
\end{array}$ |
(0,0,0) (3,-1*0,0,0) (6,-1*0,0,0)
(2,-1*0,0,1/2) (6,-1*0,0,1/2) (6,-1*0,0,1/2)
(m,-1*0,0,1/2) (6,-1*0,0,1/2) (6,-1*0,0,1/2)

176.2.1375 P6$_3$/m1'

176.3.1376 P6$_3$'/m P& (0,0,1/4;a,b,c) (1*0,0,0) (3,-1*0,0,0) (3,-1*0,0,0)
(6,-1*0,0,0) (6,-1*0,0,0) (6,-1*0,0,0)
(2,-1*0,0,1/2) (6,-1*0,0,1/2) (6,-1*0,0,1/2)
(m,-1*0,0,1/2) (6,-1*0,0,1/2) (6,-1*0,0,1/2)

176.4.1377 P6$_3$/m' P6$_3$ (0,0,0;a,b,c) (1*0,0,0) (3,-1*0,0,0) (3,-1*0,0,0)
(6,-1*0,0,0) (6,-1*0,0,0) (6,-1*0,0,0)
(2,-1*0,0,1/2) (6,-1*0,0,1/2) (6,-1*0,0,1/2)
(m,-1*0,0,1/2) (6,-1*0,0,1/2) (6,-1*0,0,1/2)

176.5.1378 P6$_3$'/m' P& (0,0,0;a,b,c) (1*0,0,0) (3,-1*0,0,0) (3,-1*0,0,0)
(6,-1*0,0,0) (6,-1*0,0,0) (6,-1*0,0,0)
(2,-1*0,0,1/2) (6,-1*0,0,1/2) (6,-1*0,0,1/2)
(m,-1*0,0,1/2) (6,-1*0,0,1/2) (6,-1*0,0,1/2)

177.1.1379 P622 (1*0,0,0) (3,-1*0,0,0) (3,-1*0,0,0)
(2,-1*0,0,0) (6,-1*0,0,0) (6,-1*0,0,0)
(2,-1*0,0,0) (2,-1*0,0,0) (2,-1*0,0,0)

177.2.1380 P6221'

177.3.1381 P6'2'2 P312 (0,0,0;a,b,c) (1*0,0,0) (3,-1*0,0,0) (3,-1*0,0,0)
(2,-1*0,0,0) (6,-1*0,0,0) (6,-1*0,0,0)
(2,-1*0,0,0) (2,-1*0,0,0) (2,-1*0,0,0)
<table>
<thead>
<tr>
<th>Code</th>
<th>Symbol</th>
<th>Symmetry</th>
<th>Basis Vectors</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>177.4.1382</td>
<td>P6'22'</td>
<td>P321</td>
<td>(0,0,0; a,b,c)</td>
<td>(10,0,0) (3_z0,0,0) (3_z^{-1}*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3_z*0,0,0) (3_z^{-1}*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td>177.5.1383</td>
<td>P62'2'</td>
<td>P6</td>
<td>(0,0,0; a,b,c)</td>
<td>(10,0,0) (3_z0,0,0) (3_z^{-1}*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0) (6_z0,0,0) (6_z^{-1}*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3_z*0,0,0) (3_z^{-1}*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td>177.6.1384</td>
<td>P_2c 622</td>
<td>P622</td>
<td>(0,0,0; a,b,2c)</td>
<td>(10,0,0) (3_z0,0,0) (3_z^{-1}*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0) (6_z0,0,0) (6_z^{-1}*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3_z*0,0,0) (3_z^{-1}*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td>177.7.1385</td>
<td>P_2c 6'22'</td>
<td>P6_322</td>
<td>(0,0,0; a,b,2c)</td>
<td>(10,0,0) (3_z0,0,0) (3_z^{-1}*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,1) (6_z0,0,1) (6_z^{-1}*0,0,1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3_z*0,0,0) (3_z^{-1}*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td>178.1.1386</td>
<td>P6_22</td>
<td></td>
<td></td>
<td>(10,0,0) (3_z0,0,1/3) (3_z^{-1}*0,0,2/3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,1/2) (6_z0,0,1/6) (6_z^{-1}*0,0,5/6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3_z*0,0,0) (3_z^{-1}*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td>178.2.1387</td>
<td>P6_221'</td>
<td></td>
<td></td>
<td>(10,0,0) (3_z0,0,1/3) (3_z^{-1}*0,0,2/3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,1/2) (6_z0,0,1/6) (6_z^{-1}*0,0,5/6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3_z*0,0,0) (3_z^{-1}*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td>178.3.1388</td>
<td>P6_2'2'</td>
<td>P3_12</td>
<td>(0,0,1/2; a,b,c)</td>
<td>(10,0,0) (3_z0,0,1/3) (3_z^{-1}*0,0,2/3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,1/2)' (6_z0,0,1/6)' (6_z^{-1}*0,0,5/6)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3_z*0,0,0) (3_z^{-1}*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(2_z0,0,0)' (6_z0,0,0)' (6_z^{-1}*0,0,0)'</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 131
<table>
<thead>
<tr>
<th>P6(_1)'22'</th>
<th>P3(_2)12</th>
<th>(0,0,1/6;a,b,c)</th>
<th>(1*0,0,0)</th>
<th>(3*0,0,1/3)</th>
<th>(3(-1)*0,0,2/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2(_z)*0,0,0,1/2)'</td>
<td>(6(_z)*0,0,1/6)'</td>
<td>(6(_z)*0,0,5/6)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2(_x)*0,0,0,0)</td>
<td>(2(_xy)*0,0,1/3)</td>
<td>(2(_x)*0,0,2/3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2(_i)*0,0,1/6)'</td>
<td>(2(_z)*0,0,1/2)'</td>
<td>(2(_z)*0,0,5/6)'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P6(_1)'22'</th>
<th>P6(_1)</th>
<th>(0,0,0;a,b,c)</th>
<th>(1*0,0,0)</th>
<th>(3*0,0,0,1/3)</th>
<th>(3(-1)*0,0,2/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2(_z)*0,0,0,1/2)</td>
<td>(6(_z)*0,0,0,1/6)</td>
<td>(6(_z)*0,0,0,5/6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2(_x)*0,0,0,0)'</td>
<td>(2(_xy)*0,0,0,1/3)'</td>
<td>(2(_x)*0,0,0,2/3)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2(_i)*0,0,0,1/6)'</td>
<td>(2(_z)*0,0,0,1/2)'</td>
<td>(2(_z)*0,0,0,5/6)'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P6(_1)22</th>
<th>P6(_1)</th>
<th>(0,0,0,0;a,b,c)</th>
<th>(1*0,0,0,0)</th>
<th>(3*0,0,0,0,1/3)</th>
<th>(3(-1)*0,0,0,2/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2(_z)*0,0,0,1/2)</td>
<td>(6(_z)*0,0,0,1/6)</td>
<td>(6(_z)*0,0,0,5/6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2(_x)*0,0,0,0)'</td>
<td>(2(_xy)*0,0,0,1/3)'</td>
<td>(2(_x)*0,0,0,2/3)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2(_i)*0,0,0,1/6)'</td>
<td>(2(_z)*0,0,0,1/2)'</td>
<td>(2(_z)*0,0,0,5/6)'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P6(_1)'22'</th>
<th>P3(_2)12</th>
<th>(0,0,-1/12;a,b,c)</th>
<th>(1*0,0,0)</th>
<th>(3*0,0,0,2/3)</th>
<th>(3(-1)*0,0,0,1/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2(_z)*0,0,0,1/2)'</td>
<td>(6(_z)*0,0,0,0,5/6)'</td>
<td>(6(_z)*0,0,0,0,1/6)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2(_x)*0,0,0,0)'</td>
<td>(2(_xy)*0,0,0,0,2/3)'</td>
<td>(2(_x)*0,0,0,0,1/3)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2(_i)*0,0,0,0,1/6)'</td>
<td>(2(_z)*0,0,0,0,1/2)'</td>
<td>(2(_z)*0,0,0,0,1/6)'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P6(_1)22</th>
<th>P3(_2)21</th>
<th>(0,0,-1/6;a,b,c)</th>
<th>(1*0,0,0)</th>
<th>(3*0,0,0,2/3)</th>
<th>(3(-1)*0,0,0,1/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2(_z)*0,0,0,1/2)'</td>
<td>(6(_z)*0,0,0,0,5/6)'</td>
<td>(6(_z)*0,0,0,0,1/6)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2(_x)*0,0,0,0)'</td>
<td>(2(_xy)*0,0,0,0,2/3)'</td>
<td>(2(_x)*0,0,0,0,1/3)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2(_i)*0,0,0,0,1/6)'</td>
<td>(2(_z)*0,0,0,0,1/2)'</td>
<td>(2(_z)*0,0,0,0,1/6)'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P6(_1)'22'</th>
<th>P6(_1)</th>
<th>(0,0,0;a,b,c)</th>
<th>(1*0,0,0)</th>
<th>(3*0,0,0,2/3)</th>
<th>(3(-1)*0,0,0,1/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2(_z)*0,0,0,1/2)'</td>
<td>(6(_z)*0,0,0,0,5/6)'</td>
<td>(6(_z)*0,0,0,0,1/6)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2(_x)*0,0,0,0)'</td>
<td>(2(_xy)*0,0,0,0,2/3)'</td>
<td>(2(_x)*0,0,0,0,1/3)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2(_i)*0,0,0,0,1/6)'</td>
<td>(2(_z)*0,0,0,0,1/2)'</td>
<td>(2(_z)*0,0,0,0,1/6)'</td>
</tr>
<tr>
<td>No.</td>
<td>Space Group</td>
<td>Magnetic Elements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180.1.1396</td>
<td>P6(_2)22</td>
<td>((1^*0,0,0)) ((3^*0,0,2/3)) ((3^*1^*0,0,1/3)) ((2^*0,0,0)) ((6^*0,0,1/3)) ((6^*1^*0,0,2/3)) ((2^*0,0,1/3)) ((2^*0,0,0)) ((2^*0,0,2/3))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180.2.1397</td>
<td>P6(_2)221'</td>
<td>((1^*0,0,0)) ((3^*0,0,2/3)) ((3^*1^*0,0,1/3)) ((2^*0,0,0)) ((6^*0,0,1/3)) ((6^*1^*0,0,2/3)) ((2^*0,0,1/3)) ((2^*0,0,0)) ((2^*0,0,2/3))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180.3.1398</td>
<td>P6(_2)'2'2</td>
<td>((0,0,1/6;a,b,c)) ((1^*0,0,0)) ((3^*0,0,2/3)) ((3^*1^*0,0,1/3)) ((2^*0,0,0)) ((6^*0,0,1/3)) ((6^*1^*0,0,2/3)) ((2^*0,0,1/3)) ((2^*0,0,0)) ((2^*0,0,2/3))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180.4.1399</td>
<td>P6(_2)'2'2</td>
<td>((0,0,-1/6;a,b,c)) ((1^*0,0,0)) ((3^*0,0,2/3)) ((3^*1^*0,0,1/3)) ((2^*0,0,0)) ((6^*0,0,1/3)) ((6^*1^*0,0,2/3)) ((2^*0,0,1/3)) ((2^*0,0,0)) ((2^*0,0,2/3))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180.5.1400</td>
<td>P6(_2)'2'2</td>
<td>((0,0,0;a,b,c)) ((1^*0,0,0)) ((3^*0,0,2/3)) ((3^*1^*0,0,1/3)) ((2^*0,0,0)) ((6^*0,0,1/3)) ((6^*1^*0,0,2/3)) ((2^*0,0,1/3)) ((2^*0,0,0)) ((2^*0,0,2/3))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180.6.1401</td>
<td>P(_2c)6(_2)22</td>
<td>((0,0,0;a,b,2c)) ((1^*0,0,0)) ((3^*0,0,2/3)) ((3^*1^*0,0,1/3)) ((2^*0,0,0)) ((6^*0,0,1/3)) ((6^*1^*0,0,2/3)) ((2^*0,0,1/3)) ((2^*0,0,0)) ((2^*0,0,2/3))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180.7.1402</td>
<td>P(_2c)6(_2)'22'</td>
<td>((0,0,0;a,b,2c)) ((1^*0,0,0)) ((3^*0,0,2/3)) ((3^*1^*0,0,1/3)) ((2^*0,0,0)) ((6^*0,0,1/3)) ((6^*1^*0,0,2/3)) ((2^*0,0,1/3)) ((2^*0,0,0)) ((2^*0,0,2/3))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181.1.1403</td>
<td>$P_6_{4}22$</td>
<td>$(1*0,0,0)$</td>
<td>$(3_z*0,0,1/3)$</td>
<td>$(3_z^{-1}*0,0,2/3)$</td>
<td></td>
</tr>
<tr>
<td>181.2.1404</td>
<td>$P_6_{4}221'$</td>
<td>$(2_z*0,0,0)$</td>
<td>$(6_z*0,0,2/3)$</td>
<td>$(6_z^{-1}*0,0,1/3)$</td>
<td></td>
</tr>
<tr>
<td>181.3.1405</td>
<td>$P_6_{4}'2'2$</td>
<td>$(2_x*0,0,0)$</td>
<td>$(2_{xy}*0,0,1/3)$</td>
<td>$(2_{x}^{-1}*0,0,2/3)$</td>
<td></td>
</tr>
<tr>
<td>181.4.1406</td>
<td>$P_6_{4}'2'2'$</td>
<td>$(2_y*0,0,0)$</td>
<td>$(2_{y}^{-1}*0,0,1/3)$</td>
<td>$(2_{y}^{-1}*0,0,2/3)$</td>
<td></td>
</tr>
<tr>
<td>181.5.1407</td>
<td>$P_6_{4}2'2'$</td>
<td>$(2_1*0,0,0)$</td>
<td>$(2_{2}^{-1}*0,0,0)$</td>
<td>$(2_{2}^{-1}*0,0,1/3)$</td>
<td></td>
</tr>
<tr>
<td>181.6.1408</td>
<td>$P_{2c}6_{4}22$</td>
<td>$(2_1*0,0,0)$</td>
<td>$(2_1^{-1}*0,0,2/3)$</td>
<td>$(2_1^{-1}*0,0,4/3)$</td>
<td></td>
</tr>
<tr>
<td>181.7.1409</td>
<td>$P_{2c}6_{4}'2'2'$</td>
<td>$(2_1*0,0,0)$</td>
<td>$(2_1^{-1}*0,0,2/3)$</td>
<td>$(2_1^{-1}*0,0,4/3)$</td>
<td></td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 134
182.1.1410 p6\textsubscript{3} 22
(1*0,0,0) (3*0,0,0) (3*-1*0,0,0) \\
(2*0,0,1/2) (6*0,0,1/2) (6*-1*0,0,1/2) \\
(2*0,0,0) (2*0,0,0) (2*0,0,0) \\
(2*0,0,1/2) (2*0,0,1/2) (2*0,0,1/2) \\

182.2.1411 p6\textsubscript{3} 221'

182.3.1412 p6\textsubscript{3}'2'2 P312 (0,0,1/4;a,b,c) (1*0,0,0) (3*0,0,0) (3*-1*0,0,0) \\
(2*0,0,1/2)' (6*0,0,1/2)' (6*-1*0,0,1/2)' \\
(2*0,0,0)' (2*0,0,0)' (2*0,0,0)' \\
(2*0,0,1/2)' (2*0,0,1/2) (2*0,0,1/2) \\

182.4.1413 p6\textsubscript{3}'2'2' P321 (0,0,0;a,b,c) (1*0,0,0) (3*0,0,0) (3*-1*0,0,0) \\
(2*0,0,1/2)' (6*0,0,1/2)' (6*-1*0,0,1/2)' \\
(2*0,0,0) (2*0,0,0) (2*0,0,0) \\
(2*0,0,1/2)' (2*0,0,1/2)' (2*0,0,1/2) \\

182.5.1414 p6\textsubscript{3}'2'2' P6\textsubscript{3} (0,0,0;a,b,c) (1*0,0,0) (3*0,0,0) (3*-1*0,0,0) \\
(2*0,0,1/2) (6*0,0,1/2) (6*-1*0,0,1/2) \\
(2*0,0,0) (2*0,0,0) (2*0,0,0) \\
(2*0,0,1/2)' (2*0,0,1/2)' (2*0,0,1/2) \\

183.1.1415 p6mm (1*0,0,0) (3*0,0,0) (3*-1*0,0,0) \\
(2*0,0,0) (6*0,0,0) (6*-1*0,0,0) \\
(m*0,0,0) (m*0,0,0) (m*0,0,0) \\
(m*0,0,0) (m*0,0,0) (m*0,0,0) \\

183.2.1416 P6mm1'

183.3.1417 P6'm'm P31m (0,0,0;a,b,c) (1*0,0,0) (3*0,0,0) (3*-1*0,0,0) \\
(2*0,0,0)' (6*0,0,0)' (6*-1*0,0,0)' \\

MAGNETIC SPACE GROUP ELEMENTS 135
<table>
<thead>
<tr>
<th>Group</th>
<th>Symbol</th>
<th>Cell Parameters</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>183.4.1418</td>
<td>P6'mm'</td>
<td>(0,0,0; a,b,c)</td>
<td>((m_x^0,0,0)') ((m_y^0,0,0)') ((m_z^0,0,0)')</td>
</tr>
<tr>
<td>183.5.1419</td>
<td>P6m'm'</td>
<td>(0,0,0; a,b,c)</td>
<td>((1^*0,0,0)) ((2z^*0,0,0)) ((3z^*0,0,0)')</td>
</tr>
<tr>
<td>183.6.1420</td>
<td>P(_2_c_6)mm</td>
<td>(0,0,0; a,b,c)</td>
<td>((1^*0,0,0)) ((2z^*0,0,0)) ((3z^*0,0,0)')</td>
</tr>
<tr>
<td>183.7.1421</td>
<td>P(_2_c_6)mm'</td>
<td>(0,0,0; a,b,2c)</td>
<td>((1^*0,0,0)) ((2z^*0,0,0)) ((3z^*0,0,0)')</td>
</tr>
<tr>
<td>183.8.1422</td>
<td>P(_2_c_6)mm'</td>
<td>(0,0,0; a,b,2c)</td>
<td>((1^*0,0,0)) ((2z^*0,0,0)) ((3z^*0,0,0)')</td>
</tr>
<tr>
<td>183.9.1423</td>
<td>P(_2_c_6)m'm'</td>
<td>(0,0,0; a,b,2c)</td>
<td>((1^*0,0,0)) ((2z^*0,0,0)) ((3z^*0,0,0)')</td>
</tr>
<tr>
<td>184.1.1424</td>
<td>P6cc</td>
<td>((1*0,0,0))</td>
<td>((3_z*0,0,0))</td>
</tr>
<tr>
<td>184.1.1424</td>
<td>P6cc</td>
<td>((2_z*0,0,0))</td>
<td>((6_z*0,0,0))</td>
</tr>
<tr>
<td>184.1.1424</td>
<td>P6cc</td>
<td>((m_x*0,0,1/2))</td>
<td>((m_{xy}*0,0,1/2))</td>
</tr>
<tr>
<td>184.1.1424</td>
<td>P6cc</td>
<td>((m_1*0,0,1/2))</td>
<td>((m_2*0,0,1/2))</td>
</tr>
</tbody>
</table>

184.2.1425	P6cc'	\((0,0,0;a,b,c)\)		
184.2.1425	P6cc'	\((1*0,0,0)\)	\((3_z*0,0,0)\)	\((3_z^{-1}*0,0,0)\)
184.2.1425	P6cc'	\((2_z*0,0,0)'\)	\((6_z*0,0,0)'\)	\((6_z^{-1}*0,0,0)'\)
184.2.1425	P6cc'	\((m_x*0,0,1/2)'\)	\((m_{xy}*0,0,1/2)'\)	\((m_y*0,0,1/2)'\)
184.2.1425	P6cc'	\((m_1*0,0,1/2)'\)	\((m_2*0,0,1/2)'\)	\((m_3*0,0,1/2)'\)

184.3.1426	P6'c\('c\)	P31c	\((0,0,0;a,b,c)\)		
184.3.1426	P6'c\('c\)	P31c	\((1*0,0,0)\)	\((3_z*0,0,0)\)	\((3_z^{-1}*0,0,0)\)
184.3.1426	P6'c\('c\)	P31c	\((2_z*0,0,0)'\)	\((6_z*0,0,0)'\)	\((6_z^{-1}*0,0,0)'\)
184.3.1426	P6'c\('c\)	P31c	\((m_x*0,0,1/2)'\)	\((m_{xy}*0,0,1/2)'\)	\((m_y*0,0,1/2)'\)
184.3.1426	P6'c\('c\)	P31c	\((m_1*0,0,1/2)'\)	\((m_2*0,0,1/2)'\)	\((m_3*0,0,1/2)'\)

184.4.1427	P6'cc\('c'\)	P3c1	\((0,0,0;a,b,c)\)		
184.4.1427	P6'cc\('c'\)	P3c1	\((1*0,0,0)\)	\((3_z*0,0,0)\)	\((3_z^{-1}*0,0,0)\)
184.4.1427	P6'cc\('c'\)	P3c1	\((2_z*0,0,0)'\)	\((6_z*0,0,0)'\)	\((6_z^{-1}*0,0,0)'\)
184.4.1427	P6'cc\('c'\)	P3c1	\((m_x*0,0,1/2)'\)	\((m_{xy}*0,0,1/2)'\)	\((m_y*0,0,1/2)'\)
184.4.1427	P6'cc\('c'\)	P3c1	\((m_1*0,0,1/2)'\)	\((m_2*0,0,1/2)'\)	\((m_3*0,0,1/2)'\)

184.5.1428	P6c'c\('c'\)	P6	\((0,0,0;a,b,c)\)		
184.5.1428	P6c'c\('c'\)	P6	\((1*0,0,0)\)	\((3_z*0,0,0)\)	\((3_z^{-1}*0,0,0)\)
184.5.1428	P6c'c\('c'\)	P6	\((2_z*0,0,0)'\)	\((6_z*0,0,0)'\)	\((6_z^{-1}*0,0,0)'\)
184.5.1428	P6c'c\('c'\)	P6	\((m_x*0,0,1/2)'\)	\((m_{xy}*0,0,1/2)'\)	\((m_y*0,0,1/2)'\)
184.5.1428	P6c'c\('c'\)	P6	\((m_1*0,0,1/2)'\)	\((m_2*0,0,1/2)'\)	\((m_3*0,0,1/2)'\)

185.1.1429	P6\(_3\) cm	\((0,0,0;a,b,c)\)		
185.1.1429	P6\(_3\) cm	\((1*0,0,0)\)	\((3_z*0,0,0)\)	\((3_z^{-1}*0,0,0)\)
185.1.1429	P6\(_3\) cm	\((2_z*0,0,0)'\)	\((6_z*0,0,0)'\)	\((6_z^{-1}*0,0,0)'\)
185.1.1429	P6\(_3\) cm	\((m_x*0,0,1/2)'\)	\((m_{xy}*0,0,1/2)'\)	\((m_y*0,0,1/2)'\)
185.1.1429	P6\(_3\) cm	\((m_1*0,0,0)'\)	\((m_2*0,0,0)'\)	\((m_3*0,0,0)'\)

| 185.2.1430 | P6\(_3\) cm'1' | \((0,0,0;a,b,c)\) |
| 185.3.1431 | P6\(_3\) c'm | P312 | \((1*0,0,0)\) | \((3_z*0,0,0)\) | \((3_z^{-1}*0,0,0)\) |
| Magnetic Space Group | Elements | Point Group | |
|----------------------|----------|-------------|
| (2z*0,0,1/2)' | (3z*0,0,0) | P3c1 |
| (m_x*0,0,1/2)' | (m_y*0,0,0) | (1*0,0,0) |
| (m_z*0,0,0) | (m_z*0,0,0) | (1*0,0,0) |
| | | (6z*0,0,1/2)' | (3z*0,0,0) |
| | | (m_z*0,0,0) | (m_z*0,0,0) |
| | | (6z*0,0,1/2)' | (3z*0,0,0) |
| | | (m_z*0,0,0) | (m_z*0,0,0) |

185.4.1432 P6_3'cm' P3c1 (0,0,0;a,b,c)

185.5.1433 P6_3 c'm' P6_3 (0,0,0;a,b,c)

186.1.1434 P6_3 mc

186.2.1435 P6_3 mc1'

186.3.1436 P6_3'mc' P31c (0,0,0;a,b,c)

186.4.1437 P6_3'mc' P3m1 (0,0,0;a,b,c)

186.5.1438 P6_3 m'c' P6_3 (0,0,0;a,b,c)
<table>
<thead>
<tr>
<th>Magnetic Space Group Elements</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2,0,0,1/2)</td>
<td>(6,0,0,1/2)</td>
</tr>
<tr>
<td>(m*,0,0,0)'</td>
<td>(m*,0,0,0)'</td>
</tr>
<tr>
<td>(m*,0,1/2)'</td>
<td>(m*,0,1/2)'</td>
</tr>
<tr>
<td>(187.1.1439 P6m2)</td>
<td>(1*,0,0,0)</td>
</tr>
<tr>
<td>(3,0,0,0)</td>
<td>(3,-1*,0,0,0)</td>
</tr>
<tr>
<td>(m*,0,0,0)</td>
<td>(6*,0,0,0)</td>
</tr>
<tr>
<td>(m*,0,0,0)'</td>
<td>(6*,0,0,0)'</td>
</tr>
<tr>
<td>(m*,0,1/2)'</td>
<td>(6*,0,1/2)'</td>
</tr>
<tr>
<td>(187.2.1440 P6m2')</td>
<td>(2,0,0,0)</td>
</tr>
<tr>
<td>(2,0,0,0)</td>
<td>(2,0,0,0)</td>
</tr>
<tr>
<td>(2,0,0,0)</td>
<td>(2,0,0,0)</td>
</tr>
<tr>
<td>(187.3.1441 P6m') P312</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>(0,0,0;a,b,c)</td>
<td>(1*,0,0,0)</td>
</tr>
<tr>
<td>(3,0,0,0)</td>
<td>(3,-1*,0,0,0)</td>
</tr>
<tr>
<td>(m*,0,0,0)</td>
<td>(6*,0,0,0)</td>
</tr>
<tr>
<td>(m*,0,0,0)'</td>
<td>(6*,0,0,0)'</td>
</tr>
<tr>
<td>(m*,0,1/2)'</td>
<td>(6*,0,1/2)'</td>
</tr>
<tr>
<td>(2,0,0,0)</td>
<td>(2,0,0,0)</td>
</tr>
<tr>
<td>(2,0,0,0)</td>
<td>(2,0,0,0)</td>
</tr>
<tr>
<td>(2,0,0,0)</td>
<td>(2,0,0,0)</td>
</tr>
<tr>
<td>(187.4.1442 P6m') P3m1</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>(0,0,0;a,b,c)</td>
<td>(1*,0,0,0)</td>
</tr>
<tr>
<td>(3,0,0,0)</td>
<td>(3,-1*,0,0,0)</td>
</tr>
<tr>
<td>(m*,0,0,0)</td>
<td>(6*,0,0,0)</td>
</tr>
<tr>
<td>(m*,0,0,0)'</td>
<td>(6*,0,0,0)'</td>
</tr>
<tr>
<td>(m*,0,1/2)'</td>
<td>(6*,0,1/2)'</td>
</tr>
<tr>
<td>(2,0,0,0)</td>
<td>(2,0,0,0)</td>
</tr>
<tr>
<td>(2,0,0,0)</td>
<td>(2,0,0,0)</td>
</tr>
<tr>
<td>(2,0,0,0)</td>
<td>(2,0,0,0)</td>
</tr>
<tr>
<td>(187.5.1443 P6m') P6</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>(0,0,0;a,b,c)</td>
<td>(1*,0,0,0)</td>
</tr>
<tr>
<td>(3,0,0,0)</td>
<td>(3,-1*,0,0,0)</td>
</tr>
<tr>
<td>(m*,0,0,0)</td>
<td>(6*,0,0,0)</td>
</tr>
<tr>
<td>(m*,0,0,0)'</td>
<td>(6*,0,0,0)'</td>
</tr>
<tr>
<td>(m*,0,1/2)'</td>
<td>(6*,0,1/2)'</td>
</tr>
<tr>
<td>(2,0,0,0)</td>
<td>(2,0,0,0)</td>
</tr>
<tr>
<td>(2,0,0,0)</td>
<td>(2,0,0,0)</td>
</tr>
<tr>
<td>(2,0,0,0)</td>
<td>(2,0,0,0)</td>
</tr>
<tr>
<td>(187.6.1444 P2c6m2) P6m2</td>
<td>(0,0,0;a,b,2c)</td>
</tr>
<tr>
<td>(0,0,0;a,b,2c)</td>
<td>(1*,0,0,0)</td>
</tr>
<tr>
<td>(3,0,0,0)</td>
<td>(3,-1*,0,0,0)</td>
</tr>
<tr>
<td>(m*,0,0,0)</td>
<td>(6*,0,0,0)</td>
</tr>
<tr>
<td>(m*,0,0,0)'</td>
<td>(6*,0,0,0)'</td>
</tr>
<tr>
<td>(m*,0,1/2)'</td>
<td>(6*,0,1/2)'</td>
</tr>
<tr>
<td>(2,0,0,0)</td>
<td>(2,0,0,0)</td>
</tr>
<tr>
<td>(2,0,0,0)</td>
<td>(2,0,0,0)</td>
</tr>
<tr>
<td>(2,0,0,0)</td>
<td>(2,0,0,0)</td>
</tr>
<tr>
<td>Magnetic Space Group</td>
<td>Element</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>(187.7.1445) P(2c) & m'2 P(\delta c2)</td>
<td></td>
</tr>
<tr>
<td>(188.1.1446) P(\delta c2)</td>
<td></td>
</tr>
<tr>
<td>(188.2.1447) P(\delta c21')</td>
<td></td>
</tr>
<tr>
<td>(188.3.1448) P(\delta c2)</td>
<td></td>
</tr>
<tr>
<td>(188.4.1449) P(\delta c2)</td>
<td></td>
</tr>
<tr>
<td>(188.5.1450) P(\delta c2)</td>
<td></td>
</tr>
<tr>
<td>(189.1.1451) P(\delta 2m)</td>
<td></td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 140
<table>
<thead>
<tr>
<th>Magnetic Space Group</th>
<th>Elements</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>189.2.1452 P62m1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>189.3.1453 P62m P31m</td>
<td>(0,0,0; a,b,c)</td>
<td>(10,0,0) (30,0,0) (3-1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m\textsubscript{z}0,0,0) (\delta\textsubscript{z}0,0,0) (\delta\textsubscript{z}^{-1}*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2*0,0,0) (2\textsubscript{xy}0,0,0) (20,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m\textsubscript{1}0,0,0) (m\textsubscript{2}0,0,0) (m\textsubscript{3}0,0,0)</td>
</tr>
<tr>
<td>189.4.1454 P62m P321</td>
<td>(0,0,0; a,b,c)</td>
<td>(10,0,0) (30,0,0) (3-1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m\textsubscript{z}0,0,0) (\delta\textsubscript{z}0,0,0) (\delta\textsubscript{z}^{-1}*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2*0,0,0) (2\textsubscript{xy}0,0,0) (20,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m\textsubscript{1}0,0,0) (m\textsubscript{2}0,0,0) (m\textsubscript{3}0,0,0)</td>
</tr>
<tr>
<td>189.5.1455 P62m P62c</td>
<td>(0,0,0; a,b,c)</td>
<td>(10,0,0) (30,0,0) (3-1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m\textsubscript{z}0,0,0) (\delta\textsubscript{z}0,0,0) (\delta\textsubscript{z}^{-1}*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2*0,0,0) (2\textsubscript{xy}0,0,0) (20,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m\textsubscript{1}0,0,0) (m\textsubscript{2}0,0,0) (m\textsubscript{3}0,0,0)</td>
</tr>
<tr>
<td>189.6.1456 P\textsubscript{2}c62m P62c</td>
<td>(0,0,0; a,b,2c)</td>
<td>(10,0,0) (30,0,0) (3-1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m\textsubscript{z}0,0,0) (\delta\textsubscript{z}0,0,0) (\delta\textsubscript{z}^{-1}*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2*0,0,0) (2\textsubscript{xy}0,0,0) (20,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m\textsubscript{1}0,0,0) (m\textsubscript{2}0,0,0) (m\textsubscript{3}0,0,0)</td>
</tr>
<tr>
<td>189.7.1457 P\textsubscript{2}c63m P62c</td>
<td>(0,0,0; a,b,2c)</td>
<td>(10,0,0) (30,0,0) (3-1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m\textsubscript{z}0,0,0.1) (\delta\textsubscript{z}0,0,0.1) (\delta\textsubscript{z}^{-1}*0,0,0.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2*0,0,0) (2\textsubscript{xy}0,0,0) (20,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m\textsubscript{1}0,0,0.1) (m\textsubscript{2}0,0,0.1) (m\textsubscript{3}0,0,0.1)</td>
</tr>
<tr>
<td>190.1.1458 P62c</td>
<td></td>
<td>(10,0,0) (30,0,0) (3-1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m\textsubscript{z}0,0,0.1/2) (\delta\textsubscript{z}0,0,0.1/2) (\delta\textsubscript{z}^{-1}*0,0,0.1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2*0,0,0) (2\textsubscript{xy}0,0,0) (20,0,0)</td>
</tr>
<tr>
<td>Space Group</td>
<td>Description</td>
<td>Element 1</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>P6&2c1'</td>
<td>P6&2c1'</td>
<td>(m1 *0,0,1/2)</td>
</tr>
<tr>
<td>P6&2c'</td>
<td>P6&2c'</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(mz *0,0,1/2)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2x *0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m1 *0,0,1/2)'</td>
</tr>
<tr>
<td>P6&2c'</td>
<td>P6&2c'</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(mz *0,0,1/2)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2x *0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m1 *0,0,1/2)'</td>
</tr>
<tr>
<td>P6&2c'</td>
<td>P6&2c'</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(mz *0,0,1/2)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2x *0,0,0)'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m1 *0,0,1/2)'</td>
</tr>
<tr>
<td>P6/mmm</td>
<td>P6/mmm</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2x *0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2x *0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2x' *0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(mz *0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(mz *0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m1 *0,0,0)</td>
</tr>
<tr>
<td>Magnetic Space Group</td>
<td>Elements</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>191.2.1464 P6/mmm1'</td>
<td>P6mm (0,0,0;a,b,c)</td>
<td></td>
</tr>
<tr>
<td>191.3.1465 P6/m'mm</td>
<td>(10,0,0) (30,0,0) (3*-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(20,0,0) (60,0,0) (6*-1*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(20,0,0)' (20,0,0)' (2*0,0,0)'</td>
<td></td>
</tr>
<tr>
<td>191.4.1466 P6'/mm'm</td>
<td>P&2m (0,0,0;a,b,c)</td>
<td></td>
</tr>
<tr>
<td>191.5.1467 P6'/mmm</td>
<td>P&m2 (0,0,0;a,b,c)</td>
<td></td>
</tr>
<tr>
<td>191.6.1468 P6'/m'm'm</td>
<td>P&m1m (0,0,0;a,b,c)</td>
<td></td>
</tr>
<tr>
<td>Magnetic Space Group Elements</td>
<td>P6'/mm'm'</td>
<td>P6/m</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>191.7.1469</td>
<td>(0,0,0;1;0)</td>
<td>(0,0,0;1;0)</td>
</tr>
<tr>
<td>191.8.1470</td>
<td>(0,0,0;1;0)</td>
<td>(0,0,0;1;0)</td>
</tr>
<tr>
<td>191.9.1471</td>
<td>(0,0,0;1;0)</td>
<td>(0,0,0;1;0)</td>
</tr>
<tr>
<td>191.10.1472</td>
<td>(0,0,0;1;0)</td>
<td>(0,0,0;1;0)</td>
</tr>
<tr>
<td>Magnetic Space Group Elements</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>191.11.1473 P₂c 6'/mm'm</td>
<td>P₆₃/mcm</td>
<td>(0,0,0; a,b,2c)</td>
</tr>
<tr>
<td>191.12.1474 P₂c 6'/mmm'</td>
<td>P₆₃/mmc</td>
<td>(0,0,0; a,b,2c)</td>
</tr>
<tr>
<td>191.13.1475 P₂c 6'/mm'm</td>
<td>P₆/mcc</td>
<td>(0,0,0; a,b,2c)</td>
</tr>
<tr>
<td>192.1.1476</td>
<td>P6/mcc</td>
<td>$(1*0,0,0)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(2_z*0,0,0)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(2_z*0,0,1/2)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(2_z*0,0,1/2)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(6_z*0,0,0)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(6_z*0,0,0)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(m_z*0,0,0)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$(m_z*0,0,1/2)$</td>
</tr>
<tr>
<td>192.2.1477</td>
<td>P6/mcc1'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.3.1478</td>
<td>P6/m'cc</td>
<td>P6cc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.4.1479</td>
<td>P6'/mc'c</td>
<td>P6'2c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192.5.1480</td>
<td>P6'/mcc'</td>
<td>P6'2c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
193.1.1485 P6\textsubscript{3}/mcm

\begin{align*}
&(1 \ast 0,0,0)' \\
&(m_z \ast 0,0,0)' \\
&(m_x \ast 0,1/2)' \\
&(m_1 \ast 0,0,0)'
\end{align*}

193.2.1486 P6\textsubscript{3}/mcm1'

\begin{align*}
&(1 \ast 0,0,0) \\
&(2_z \ast 0,0,1/2) \\
&(2_x \ast 0,0,1/2) \\
&(2_1 \ast 0,0,0) \\
&(m_z \ast 0,0,1/2) \\
&(m_x \ast 0,0,1/2) \\
&(m_1 \ast 0,0,0)
\end{align*}

193.3.1487 P6\textsubscript{3}/m'cm P6\textsubscript{3}cm

\begin{align*}
&(0,0,0; a,b,c) \\
&(1 \ast 0,0,0) \\
&(2_z \ast 0,0,1/2) \\
&(2_x \ast 0,0,1/2)' \\
&(2_1 \ast 0,0,0)' \\
&(m_z \ast 0,0,1/2)' \\
&(m_x \ast 0,0,1/2) \\
&(m_1 \ast 0,0,0) \\
&(3_z \ast 0,0,0) \\
&(6_z \ast 0,0,1/2) \\
&(2_{xy} \ast 0,0,1/2)' \\
&(2_2 \ast 0,0,0)' \\
&(m_{xy} \ast 0,0,1/2)' \\
&(m_2 \ast 0,0,0)' \\
&(3_{-1} \ast 0,0,0) \\
&(6_{-1} \ast 0,0,1/2) \\
&(2_{-1} \ast 0,0,1/2)' \\
&(2 \ast 0,0,0)' \\
&(m_{-1} \ast 0,0,1/2)' \\
&(m_{xy} \ast 0,0,1/2) \\
&(m_3 \ast 0,0,0)
\end{align*}

193.4.1488 P6\textsubscript{3}/mc'm P6\textsubscript{3}2m

\begin{align*}
&(0,0,1/4; a,b,c) \\
&(1 \ast 0,0,0) \\
&(2_z \ast 0,0,1/2) \\
&(2_x \ast 0,0,1/2) \\
&(2_1 \ast 0,0,0) \\
&(m_z \ast 0,0,1/2) \\
&(m_x \ast 0,0,1/2) \\
&(3_z \ast 0,0,0) \\
&(6_z \ast 0,0,1/2) \\
&(2_{xy} \ast 0,0,1/2) \\
&(2_2 \ast 0,0,0) \\
&(m_{xy} \ast 0,0,1/2) \\
&(3_{-1} \ast 0,0,0) \\
&(6_{-1} \ast 0,0,1/2) \\
&(2_{-1} \ast 0,0,1/2) \\
&(2 \ast 0,0,0) \\
&(m_{-1} \ast 0,0,1/2) \\
&(m_{xy} \ast 0,0,1/2) \\
&(m_3 \ast 0,0,0)
\end{align*}
<table>
<thead>
<tr>
<th>193.5.1489</th>
<th>P6₃/mcm'</th>
<th>P6c2</th>
<th>(0,0,0;a,b,c)</th>
<th>(m₁*,0,0,0)</th>
<th>(m₂*,0,0,0)</th>
<th>(m₃*,0,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3⁻¹*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,1/2)²</td>
<td>(6*0,0,1/2)²</td>
<td>(6⁻¹*0,0,1/2)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2x*0,0,1/2)²</td>
<td>(2y*0,0,1/2)²</td>
<td>(2*0,0,1/2)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2₁*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(δ*0,0,0)²</td>
<td>(δ*0,0,0)²</td>
<td>(δ⁻¹*0,0,0)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m₂*0,0,1/2)²</td>
<td>(δ*0,0,1/2)²</td>
<td>(δ⁻¹*0,0,1/2)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m₁*,0,0,0)²</td>
<td>(m₂*,0,0,0)²</td>
<td>(m₃*,0,0,0)²</td>
<td></td>
</tr>
<tr>
<td>193.6.1490</td>
<td>P6₃/m'c'm</td>
<td>P6m1</td>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3⁻¹*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,1/2)²</td>
<td>(6*0,0,1/2)²</td>
<td>(6⁻¹*0,0,1/2)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2x*0,0,1/2)²</td>
<td>(2y*0,0,1/2)²</td>
<td>(2*0,0,1/2)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2₁*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(δ*0,0,0)²</td>
<td>(δ*0,0,0)²</td>
<td>(δ⁻¹*0,0,0)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m₂*0,0,1/2)²</td>
<td>(δ*0,0,1/2)²</td>
<td>(δ⁻¹*0,0,1/2)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m₁*,0,0,0)²</td>
<td>(m₂*,0,0,0)²</td>
<td>(m₃*,0,0,0)²</td>
<td></td>
</tr>
<tr>
<td>193.7.1491</td>
<td>P6₃/m'c'm'</td>
<td>P6c1</td>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3⁻¹*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,1/2)²</td>
<td>(6*0,0,1/2)²</td>
<td>(6⁻¹*0,0,1/2)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2x*0,0,1/2)²</td>
<td>(2y*0,0,1/2)²</td>
<td>(2*0,0,1/2)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2₁*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(δ*0,0,0)²</td>
<td>(δ*0,0,0)²</td>
<td>(δ⁻¹*0,0,0)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m₂*0,0,1/2)²</td>
<td>(δ*0,0,1/2)²</td>
<td>(δ⁻¹*0,0,1/2)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m₁*,0,0,0)²</td>
<td>(m₂*,0,0,0)²</td>
<td>(m₃*,0,0,0)²</td>
<td></td>
</tr>
<tr>
<td>193.8.1492</td>
<td>P6₃/m'c'm'</td>
<td>P6₃/m</td>
<td>(0,0,0;a,b,c)</td>
<td>(1*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3⁻¹*0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2*0,0,1/2)²</td>
<td>(6*0,0,1/2)²</td>
<td>(6⁻¹*0,0,1/2)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2x*0,0,1/2)²</td>
<td>(2y*0,0,1/2)²</td>
<td>(2*0,0,1/2)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2₁*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(δ*0,0,0)²</td>
<td>(δ*0,0,0)²</td>
<td>(δ⁻¹*0,0,0)²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(m₂*0,0,1/2)²</td>
<td>(δ*0,0,1/2)²</td>
<td>(δ⁻¹*0,0,1/2)²</td>
<td></td>
</tr>
<tr>
<td>Magnetic Space Group</td>
<td>Elements</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>193.9.1493 P6₃/m'c'm' P6₃.22</td>
<td>(0,0,1/4; a,b,c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194.1.1494 P6₃/mmc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194.2.1495 P6₃/mmc1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194.3.1496 P6₃/m'mc P6₃.mmc</td>
<td>(0,0,0; a,b,c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194.4.1497 P6₃/m'mc P6₃.&2c</td>
<td>(0,0,0; a,b,c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194.5.1498</td>
<td>P6$_3$/mmc'</td>
<td>P&m2</td>
<td>(0,0,1/4;a,b,c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2*0,0,1/2)'</td>
<td>(6*0,0,1/2)'</td>
<td>(6*0,0,1/2)'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2*0,0,1/2)'</td>
<td>(2*0,0,1/2)'</td>
<td>(2*0,0,1/2)'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>194.6.1499</th>
<th>P6$_3$/m'mc'</th>
<th>P&1c</th>
<th>(0,0,0;a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(2*0,0,1/2)'</td>
<td>(6*0,0,1/2)'</td>
<td>(6*0,0,1/2)'</td>
<td></td>
</tr>
<tr>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(2*0,0,1/2)'</td>
<td>(2*0,0,1/2)'</td>
<td>(2*0,0,1/2)'</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>194.7.1500</th>
<th>P6$_3$/m'mc'</th>
<th>P&m1</th>
<th>(0,0,0;a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(2*0,0,1/2)'</td>
<td>(6*0,0,1/2)'</td>
<td>(6*0,0,1/2)'</td>
<td></td>
</tr>
<tr>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(2*0,0,1/2)'</td>
<td>(2*0,0,1/2)'</td>
<td>(2*0,0,1/2)'</td>
<td></td>
</tr>
</tbody>
</table>
CUBIC SYSTEM

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>P23</td>
<td>(1*,0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*,0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*,0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*,0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*,0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*,0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*,0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*,0,0,0)</td>
</tr>
<tr>
<td>P231'</td>
<td>(1*,0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*,0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*,0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*,0,0,0)</td>
</tr>
<tr>
<td>F23</td>
<td>(1*,0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*,0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*,0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*,0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*,0,0,0)</td>
</tr>
</tbody>
</table>

Notes:
- The superscript * indicates a magnetic field direction.
- The primes (') denote a magnetic field direction perpendicular to the crystallographic axes.
- The elements include translations, rotations, and screw axes.

Magnetic Space Group Elements 152
196.1.1506 F23
(1*0,0,0) (2*0,0,0) (2*0,0,0) (2*0,0,0)
(3*0,0,0) (3*0,0,0) (3*0,0,0) (3*0,0,0)
(3*0,0,0) (3*0,0,0) (3*0,0,0) (3*0,0,0)
(3*0,0,0) (3*0,0,0) (3*0,0,0) (3*0,0,0)
196.2.1507 F231'
197.1.1508 I23
(1*0,0,0) (2*0,0,0) (2*0,0,0) (2*0,0,0)
(3*0,0,0) (3*0,0,0) (3*0,0,0) (3*0,0,0)
(3*0,0,0) (3*0,0,0) (3*0,0,0) (3*0,0,0)
(3*0,0,0) (3*0,0,0) (3*0,0,0) (3*0,0,0)
197.2.1509 I231'
197.3.1510 I_p23 P23 (0,0,0;a,b,c)
(1*0,0,0) (2*0,0,0) (2*0,0,0) (2*0,0,0)
(3*0,0,0) (3*0,0,0) (3*0,0,0) (3*0,0,0)
(3*0,0,0) (3*0,0,0) (3*0,0,0) (3*0,0,0)
(3*0,0,0) (3*0,0,0) (3*0,0,0) (3*0,0,0)
198.1.1511 P2_3
(1*0,0,0) (2*1/2,1/2,0) (2*0,1/2,1/2) (2*1/2,0,1/2)
(3*0,0,0) (3*0,0,0) (3*0,0,0) (3*0,0,0)
(3*0,0,0) (3*0,0,0) (3*0,0,0) (3*0,0,0)
(3*0,0,0) (3*0,0,0) (3*0,0,0) (3*0,0,0)
198.2.1512 P2_31'
199.1.1513 I2_3
(1*0,0,0) (2*1/2,1/2,0) (2*0,1/2,1/2) (2*1/2,0,1/2)
(3*0,0,0) (3*0,0,0) (3*0,0,0) (3*0,0,0)
(3*0,0,0) (3*0,0,0) (3*0,0,0) (3*0,0,0)
(3*0,0,0) (3*0,0,0) (3*0,0,0) (3*0,0,0)
199.2.1514 I2_31'

MAGNETIC SPACE GROUP ELEMENTS 153
<table>
<thead>
<tr>
<th>Space Group</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>I\textsubscript{p}2\textsubscript{1}3</td>
<td>P2\textsubscript{1}3</td>
</tr>
<tr>
<td>& (3\textsubscript{xyz}*0,0,0)</td>
<td>(3\textsubscript{xyz}*1*0,0,0)</td>
</tr>
<tr>
<td>& (3\textsubscript{xyz}*1/2,0,1/2)</td>
<td>(3\textsubscript{xyz}*1/2,1/2,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pm&</td>
<td>Pm&1'</td>
</tr>
<tr>
<td>& (3\textsubscript{xyz}*0,0,0)</td>
<td>(3\textsubscript{xyz}*1*0,0,0)</td>
</tr>
<tr>
<td>& (3\textsubscript{xyz}*0,0,0)</td>
<td>(3\textsubscript{xyz}*1*0,0,0)</td>
</tr>
<tr>
<td>& (3\textsubscript{xyz}*0,0,0)</td>
<td>(3\textsubscript{xyz}*1*0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pm&'</td>
<td>Fm&</td>
</tr>
<tr>
<td>& (3\textsubscript{xyz}*0,0,0)</td>
<td>(3\textsubscript{xyz}*1*0,0,0)</td>
</tr>
<tr>
<td>& (3\textsubscript{xyz}*0,0,0)</td>
<td>(3\textsubscript{xyz}*1*0,0,0)</td>
</tr>
<tr>
<td>& (3\textsubscript{xyz}*0,0,0)</td>
<td>(3\textsubscript{xyz}*1*0,0,0)</td>
</tr>
<tr>
<td>201.1.1520</td>
<td>Pn&k</td>
</tr>
<tr>
<td>3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td>3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td>(&*1/2,1/2,1/2)</td>
<td>(m*1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(&*1/2,1/2,1/2)</td>
<td>(&*1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(&*1/2,1/2,1/2)</td>
<td>(&*1/2,1/2,1/2)</td>
</tr>
</tbody>
</table>

| 201.2.1521 | Pn\&l' |

201.3.1522	Pn'\&'	P23	(0,0,0;a,b,c)
(1*0,0,0)	(2*0,0,0)	(2*0,0,0)	(2*0,0,0)
(3*0,0,0)	(3*0,0,0)	(3*0,0,0)	(3*0,0,0)
(3*0,0,0)	(3*0,0,0)	(3*0,0,0)	(3*0,0,0)
(\&*1/2,1/2,1/2)'	(m*1/2,1/2,1/2)'	(m*1/2,1/2,1/2)'	(m*1/2,1/2,1/2)'
(\&*1/2,1/2,1/2)'	(\&*1/2,1/2,1/2)'	(\&*1/2,1/2,1/2)'	(\&*1/2,1/2,1/2)'
(\&*1/2,1/2,1/2)'	(\&*1/2,1/2,1/2)'	(\&*1/2,1/2,1/2)'	(\&*1/2,1/2,1/2)'

201.4.1523	P\&n\&	Fd\&	(0,0,0;2a,2b,2c)
(1*0,0,0)	(2*0,0,0)	(2*0,0,0)	(2*0,0,0)
(3*0,0,0)	(3*0,0,0)	(3*0,0,0)	(3*0,0,0)
(3*0,0,0)	(3*0,0,0)	(3*0,0,0)	(3*0,0,0)
(\&*1/2,1/2,1/2)	(m*1/2,1/2,1/2)	(m*1/2,1/2,1/2)	(m*1/2,1/2,1/2)
(\&*1/2,1/2,1/2)	(\&*1/2,1/2,1/2)	(\&*1/2,1/2,1/2)	(\&*1/2,1/2,1/2)
(\&*1/2,1/2,1/2)	(\&*1/2,1/2,1/2)	(\&*1/2,1/2,1/2)	(\&*1/2,1/2,1/2)

| 202.1.1524 | Fm\&k |

(1*0,0,0)	(2*0,0,0)	(2*0,0,0)	(2*0,0,0)
(3*0,0,0)	(3*0,0,0)	(3*0,0,0)	(3*0,0,0)
(3*0,0,0)	(3*0,0,0)	(3*0,0,0)	(3*0,0,0)
(\&*0,0,0)	(m*0,0,0)	(m*0,0,0)	(m*0,0,0)
(\&*0,0,0)	(\&*0,0,0)	(\&*0,0,0)	(\&*0,0,0)
(\&*0,0,0)	(\&*0,0,0)	(\&*0,0,0)	(\&*0,0,0)

MAGNETIC SPACE GROUP ELEMENTS 155
MAGNETIC SPACE GROUP ELEMENTS

202.2.1525 Fm\&1'

202.3.1526 Fm'\&' F23 (0,0,0;a,b,c)

203.1.1527 Fd&

203.2.1528 Fd&1'

203.3.1529 Fd'&' F23 (0,0,0;a,b,c)

204.1.1530 Im&
<table>
<thead>
<tr>
<th>No.</th>
<th>Group</th>
<th>Space Group</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>204.2.1531</td>
<td>Im&1'</td>
<td>Im'3</td>
<td></td>
</tr>
<tr>
<td>204.3.1532</td>
<td>Im'&'</td>
<td>I23</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td>204.4.1533</td>
<td>I_p m&</td>
<td>Pm&</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td>204.5.1534</td>
<td>I_p m'&'</td>
<td>Pn&</td>
<td>(0,0,0; a,b,c)</td>
</tr>
<tr>
<td>205.1.1535</td>
<td>Pa&</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Magnetic Space Group Elements 157
205.2.1536 Pa\&1'

205.3.1537 Pa'\&' P2_13 (0,0,0; a,b,c)
(1*0,0,0) (2_x*1/2,1/2,0) (2_y*0,1/2,1/2) (2_z*1/2,0,1/2)
(3_{xyz}*0,0,0) (3_{xyz}^{-1}*0,0,0) (3_{xyz}*0,1/2,1/2) (3_{xyz}^{-1}*1/2,0,1/2)
(3_{xyz}*1/2,0,1/2) (3_{xyz}^{-1}*1/2,1/2,0) (3_{xyz}*1/2,1/2,0) (3_{xyz}^{-1}*0,1/2,1/2)
(\&*0,0,0)' (m_x*1/2,1/2,0)' (m_y*0,1/2,1/2)' (m_z*1/2,0,1/2)'
(\&_{xyz}*0,0,0)' (\&_{xyz}^{-1}*0,0,0)' (\&_{xyz}*0,1/2,1/2)' (\&_{xyz}^{-1}*1/2,0,1/2)'
(\&_{xyz}^{-1}*1/2,1/2,0)' (\&_{xyz}^{-1}*1/2,1/2,0)'

206.1.1538 Ia\&
(1*0,0,0) (2_x*1/2,1/2,0) (2_y*0,1/2,1/2) (2_z*1/2,0,1/2)
(3_{xyz}*0,0,0) (3_{xyz}^{-1}*0,0,0) (3_{xyz}*0,1/2,1/2) (3_{xyz}^{-1}*1/2,0,1/2)
(3_{xyz}^{-1}*1/2,1/2,0) (3_{xyz}^{-1}*1/2,1/2,0) (3_{xyz}*1/2,1/2,0) (3_{xyz}*1/2,1/2,0)
(\&*0,0,0) (m_x*1/2,1/2,0) (m_y*0,1/2,1/2) (m_z*1/2,0,1/2)
(\&_{xyz}*0,0,0) (\&_{xyz}^{-1}*0,0,0) (\&_{xyz}*0,1/2,1/2) (\&_{xyz}^{-1}*1/2,0,1/2)
(\&_{xyz}^{-1}*1/2,1/2,0) (\&_{xyz}^{-1}*1/2,1/2,0)

206.2.1539 Ia\&1'

206.3.1540 Ia'\&' I2_3 (0,0,0; a,b,c)
(1*0,0,0) (2_x*1/2,1/2,0) (2_y*0,1/2,1/2) (2_z*1/2,0,1/2)
(3_{xyz}*0,0,0) (3_{xyz}^{-1}*0,0,0) (3_{xyz}*0,1/2,1/2) (3_{xyz}^{-1}*1/2,0,1/2)
(3_{xyz}^{-1}*1/2,1/2,0) (3_{xyz}^{-1}*1/2,1/2,0) (3_{xyz}*1/2,1/2,0) (3_{xyz}*1/2,1/2,0)
(\&*0,0,0)' (m_x*1/2,1/2,0)' (m_y*0,1/2,1/2)' (m_z*1/2,0,1/2)'
(\&_{xyz}*0,0,0)' (\&_{xyz}^{-1}*0,0,0)' (\&_{xyz}*0,1/2,1/2)' (\&_{xyz}^{-1}*1/2,0,1/2)'
(\&_{xyz}^{-1}*1/2,1/2,0)' (\&_{xyz}^{-1}*1/2,1/2,0)'

206.4.1541 I_p a\& Pa\& (0,0,0; a,b,c)
(1*0,0,0) (2_x*1/2,1/2,0) (2_y*0,1/2,1/2) (2_z*1/2,0,1/2)
(3_{xyz}*0,0,0) (3_{xyz}^{-1}*0,0,0) (3_{xyz}*0,1/2,1/2) (3_{xyz}^{-1}*1/2,0,1/2)
(3_{xyz}^{-1}*1/2,1/2,0) (3_{xyz}^{-1}*1/2,1/2,0) (3_{xyz}*1/2,1/2,0) (3_{xyz}*1/2,1/2,0)
(\&*0,0,0) (m_x*1/2,1/2,0) (m_y*0,1/2,1/2) (m_z*1/2,0,1/2)
(\&_{xyz}*0,0,0) (\&_{xyz}^{-1}*0,0,0) (\&_{xyz}*0,1/2,1/2) (\&_{xyz}^{-1}*1/2,0,1/2)
(\&_{xyz}^{-1}*1/2,1/2,0) (\&_{xyz}^{-1}*1/2,1/2,0)
207.1.1542	P432		
(1*0,0,0)	(2*0,0,0)	(2*0,0,0)	(2*0,0,0)
(3*0,0,0)	(3*0,0,0)	(3*0,0,0)	(3*0,0,0)
(3*0,0,0)	(3*0,0,0)	(3*0,0,0)	(3*0,0,0)
(4*0,0,0)	(4*0,0,0)	(4*0,0,0)	(4*0,0,0)
207.2.1543	P4321'		

207.3.1544	P4'32' P23		
(1*0,0,0)	(2*0,0,0)	(2*0,0,0)	(2*0,0,0)
(3*0,0,0)	(3*0,0,0)	(3*0,0,0)	(3*0,0,0)
(3*0,0,0)	(3*0,0,0)	(3*0,0,0)	(3*0,0,0)
(4*0,0,0)	(4*0,0,0)	(4*0,0,0)	(4*0,0,0)
207.4.1545	P4132 F432		
(1*0,0,0)	(2*0,0,0)	(2*0,0,0)	(2*0,0,0)
(3*0,0,0)	(3*0,0,0)	(3*0,0,0)	(3*0,0,0)
(3*0,0,0)	(3*0,0,0)	(3*0,0,0)	(3*0,0,0)
(4*0,0,0)	(4*0,0,0)	(4*0,0,0)	(4*0,0,0)

MAGNETIC SPACE GROUP ELEMENTS 159
<table>
<thead>
<tr>
<th>Space Group</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>208.1.1546</td>
<td>P4$_2$32</td>
</tr>
<tr>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3$_{xyz}$*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3$_{xyz}$*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4$_x$*1/2,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(4$_y$*1/2,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(4$_z$*1/2,1/2,1/2)</td>
</tr>
<tr>
<td>208.2.1547</td>
<td>P4$_2$321'</td>
</tr>
<tr>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2$_x$*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2$_y$*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2$_z$*0,0,0)</td>
</tr>
<tr>
<td>208.3.1548</td>
<td>P4$_2$32'</td>
</tr>
<tr>
<td></td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3$_{xyz}$*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3$_{xyz}$*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4$_x$*1/2,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(4$_y$*1/2,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(4$_z$*1/2,1/2,1/2)</td>
</tr>
<tr>
<td>208.4.1549</td>
<td>P$_F$4$_2$32</td>
</tr>
<tr>
<td></td>
<td>(0,0,0;2a,2b,2c)</td>
</tr>
<tr>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2$_x$*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2$_y$*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2$_z$*0,0,0)</td>
</tr>
<tr>
<td>209.1.1550</td>
<td>F432</td>
</tr>
<tr>
<td></td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3$_{xyz}$*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3$_{xyz}$*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4$_x$*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4$_y$*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4$_z$*0,0,0)</td>
</tr>
<tr>
<td>209.2.1551</td>
<td>F4321'</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 160
<table>
<thead>
<tr>
<th>Space Group</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>F432' F23</td>
<td>(1*0,0,0) (2*0,0,0) (2*0,0,0) (2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*xyz,0,0) (3*xyz^{-1},0,0) (3*xyz,0,0) (3*xyz^{-1},0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*xyz*z,0,0) (3*xyz*z^{-1},0,0) (3*xyz*z,0,0) (3*xyz*z^{-1},0,0)</td>
</tr>
<tr>
<td></td>
<td>(4*0,0,0) (4*0,0,0) (2*0,0,0) (2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4*0,0,0) (4*0,0,0) (2*0,0,0) (2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4*0,0,0) (4*0,0,0) (2*0,0,0) (2*0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>F4,32</td>
<td>(1*0,0,0) (2*0,1/2,0,1/2) (2*0,1/2,1/2,0) (2*0,0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(3*xyz,0,0) (3*xyz^{-1},0,0) (3*xyz,0,0) (3*xyz^{-1},0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*xyz*z,0,0) (3*xyz*z^{-1},0,0) (3*xyz*z,0,0) (3*xyz*z^{-1},0,0)</td>
</tr>
<tr>
<td></td>
<td>(4*0,0,0) (4*0,0,0) (2*0,0,0) (2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4*0,0,0) (4*0,0,0) (2*0,0,0) (2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4*0,0,0) (4*0,0,0) (2*0,0,0) (2*0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>F4,321'</td>
<td>(1*0,0,0) (2*0,1/2,0,1/2) (2*0,1/2,1/2,0) (2*0,0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(3*xyz,0,0) (3*xyz^{-1},0,0) (3*xyz,0,0) (3*xyz^{-1},0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*xyz*z,0,0) (3*xyz*z^{-1},0,0) (3*xyz*z,0,0) (3*xyz*z^{-1},0,0)</td>
</tr>
<tr>
<td></td>
<td>(4*0,0,0) (4*0,0,0) (2*0,0,0) (2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4*0,0,0) (4*0,0,0) (2*0,0,0) (2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4*0,0,0) (4*0,0,0) (2*0,0,0) (2*0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>I432</td>
<td>(1*0,0,0) (2*0,0,0) (2*0,0,0) (2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*xyz,0,0) (3*xyz^{-1},0,0) (3*xyz,0,0) (3*xyz^{-1},0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*xyz*z,0,0) (3*xyz*z^{-1},0,0) (3*xyz*z,0,0) (3*xyz*z^{-1},0,0)</td>
</tr>
<tr>
<td></td>
<td>(4*0,0,0) (4*0,0,0) (2*0,0,0) (2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4*0,0,0) (4*0,0,0) (2*0,0,0) (2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4*0,0,0) (4*0,0,0) (2*0,0,0) (2*0,0,0)</td>
</tr>
</tbody>
</table>
211.2.1557 I4321'
(4z*0,0,0) (4z*-1*0,0,0) (2yz*0,0,0) (2xz*0,0,0)

211.3.1558 I4'32' I23 (0,0,0;a,b,c) (1*0,0,0) (2x*0,0,0) (2y*0,0,0) (2z*0,0,0)
(3xyz*0,0,0) (3xyz*-1*0,0,0) (3yz*0,0,0) (3yz*-1*0,0,0)
(3xxy*0,0,0) (3xxy*-1*0,0,0) (3yzz*0,0,0) (3yzz*-1*0,0,0)
(4x*0,0,0)' (4x*-1*0,0,0)' (2xyz*0,0,0)' (2xyz*-1*0,0,0)'
(4y*0,0,0)' (4y*-1*0,0,0)' (2yzz*0,0,0)' (2yzz*-1*0,0,0)'

211.4.1559 I 432 P432 (0,0,0;a,b,c) (1*0,0,0) (2x*0,0,0) (2y*0,0,0) (2z*0,0,0)
(3xyz*0,0,0) (3xyz*-1*0,0,0) (3yz*0,0,0) (3yz*-1*0,0,0)
(3xxy*0,0,0) (3xxy*-1*0,0,0) (3yzz*0,0,0) (3yzz*-1*0,0,0)
(4x*0,0,0)' (4x*-1*0,0,0)' (2xyz*0,0,0)' (2xyz*-1*0,0,0)'
(4y*0,0,0)' (4y*-1*0,0,0)' (2yzz*0,0,0)' (2yzz*-1*0,0,0)'

211.5.1560 Ip 432 P42 32 (0,0,0;a,b,c) (1*0,0,0) (2x*0,0,0) (2y*0,0,0) (2z*0,0,0)
(3xyz*0,0,0) (3xyz*-1*0,0,0) (3yz*0,0,0) (3yz*-1*0,0,0)
(3xxy*0,0,0) (3xxy*-1*0,0,0) (3yzz*0,0,0) (3yzz*-1*0,0,0)
(4x*1/2,1/2,1/2) (4x*-1*1/2,1/2,1/2) (2xyz*1/2,1/2,1/2) (2xyz*-1*1/2,1/2,1/2)
(4y*1/2,1/2,1/2) (4y*-1*1/2,1/2,1/2) (2yz*1/2,1/2,1/2) (2yz*-1*1/2,1/2,1/2)
(4z*1/2,1/2,1/2) (4z*-1*1/2,1/2,1/2) (2yzz*1/2,1/2,1/2) (2yzz*-1*1/2,1/2,1/2)

212.1.1561 P4 3 32
(1*0,0,0) (2x*1/2,1/2,0) (2y*0,1/2,1/2) (2z*1/2,0,1/2)
(3xyz*0,0,0) (3xyz*-1*0,0,0) (3yz*0,1/2,1/2) (3yz*-1*0,1/2,1/2)
(3xxy*1/2,0,1/2) (3xxy*-1*1/2,0,1/2) (3yzz*0,1/2,1/2) (3yzz*-1*0,1/2,1/2)
212.2.1562 \(P4_3 32'\)

\[
\begin{align*}
\text{(1)*0,0,0} & \quad \text{(2)*1/2,1/2,0} & \quad \text{(2)*1/2,1/2,0} \\
(3xy)*0,0,0 & \quad (3xy)*1/2,0,0 & \quad (3xy)*0,1/2,1/2 \\
(3yz)*1/2,0,1/2 & \quad (3yz)*1/2,1/2,0 & \quad (3yz)*1/2,0,1/2 \\
(4x)*3/4,3/4,3/4 & \quad (4x)*1/4,3/4,3/4 & \quad (4x)*1/4,3/4,3/4 \\
(4y)*3/4,1/4,1/4 & \quad (4y)*1/4,1/4,3/4 & \quad (4y)*1/4,1/4,3/4 \\
(4z)*3/4,1/4,1/4 & \quad (4z)*1/4,3/4,1/4 & \quad (4z)*1/4,3/4,1/4 \\
\end{align*}
\]

212.3.1563 \(P4_3 32'\) \(P2_1 3\) \((0,0,0;a,b,c)\)

\[
\begin{align*}
\text{(1)*0,0,0} & \quad \text{(2)*1/2,1/2,0} & \quad \text{(2)*0,1/2,1/2} \\
(3xy)*0,0,0 & \quad (3xy)*1/2,0,0 & \quad (3xy)*0,1/2,1/2 \\
(3yz)*1/2,0,1/2 & \quad (3yz)*1/2,1/2,0 & \quad (3yz)*1/2,0,1/2 \\
(4x)*3/4,3/4,3/4 & \quad (4x)*1/4,3/4,3/4 & \quad (4x)*1/4,3/4,3/4 \\
(4y)*3/4,1/4,1/4 & \quad (4y)*1/4,1/4,3/4 & \quad (4y)*1/4,1/4,3/4 \\
(4z)*3/4,1/4,1/4 & \quad (4z)*1/4,3/4,1/4 & \quad (4z)*1/4,3/4,1/4 \\
\end{align*}
\]

213.1.1564 \(P4_1 32\)

\[
\begin{align*}
\text{(1)*0,0,0} & \quad \text{(2x)*1/2,1/2,0} & \quad \text{(2y)*1/2,1/2,0} \\
(3xy)*0,0,0 & \quad (3xy)*1/2,0,0 & \quad (3xy)*0,1/2,1/2 \\
(3yz)*1/2,0,1/2 & \quad (3yz)*1/2,1/2,0 & \quad (3yz)*1/2,0,1/2 \\
(4x)*3/4,3/4,3/4 & \quad (4x)*1/4,3/4,3/4 & \quad (4x)*1/4,3/4,3/4 \\
(4y)*3/4,1/4,1/4 & \quad (4y)*1/4,1/4,3/4 & \quad (4y)*1/4,1/4,3/4 \\
(4z)*3/4,1/4,1/4 & \quad (4z)*1/4,3/4,1/4 & \quad (4z)*1/4,3/4,1/4 \\
\end{align*}
\]

213.2.1565 \(P4_1 32'\)

\[
\begin{align*}
\text{(1)*0,0,0} & \quad \text{(2x)*1/2,1/2,0} & \quad \text{(2y)*1/2,1/2,0} \\
(3xy)*0,0,0 & \quad (3xy)*1/2,0,0 & \quad (3xy)*0,1/2,1/2 \\
(3yz)*1/2,0,1/2 & \quad (3yz)*1/2,1/2,0 & \quad (3yz)*1/2,0,1/2 \\
(4x)*3/4,3/4,3/4 & \quad (4x)*1/4,3/4,3/4 & \quad (4x)*1/4,3/4,3/4 \\
(4y)*3/4,1/4,1/4 & \quad (4y)*1/4,1/4,3/4 & \quad (4y)*1/4,1/4,3/4 \\
(4z)*3/4,1/4,1/4 & \quad (4z)*1/4,3/4,1/4 & \quad (4z)*1/4,3/4,1/4 \\
\end{align*}
\]

213.3.1566 \(P4_1 32'\) \(P2_1 3\) \((0,0,0;a,b,c)\)

\[
\begin{align*}
\text{(1)*0,0,0} & \quad \text{(2x)*1/2,1/2,0} & \quad \text{(2y)*1/2,1/2,0} \\
(3xy)*0,0,0 & \quad (3xy)*1/2,0,0 & \quad (3xy)*0,1/2,1/2 \\
(3yz)*1/2,0,1/2 & \quad (3yz)*1/2,1/2,0 & \quad (3yz)*1/2,0,1/2 \\
(4x)*3/4,3/4,3/4 & \quad (4x)*1/4,3/4,3/4 & \quad (4x)*1/4,3/4,3/4 \\
(4y)*3/4,1/4,1/4 & \quad (4y)*1/4,1/4,3/4 & \quad (4y)*1/4,1/4,3/4 \\
(4z)*3/4,1/4,1/4 & \quad (4z)*1/4,3/4,1/4 & \quad (4z)*1/4,3/4,1/4 \\
\end{align*}
\]

214.1.1567 \(I4_3 2\)

\[
\begin{align*}
\text{(1)*0,0,0} & \quad \text{(2x)*1/2,1/2,0} & \quad \text{(2y)*1/2,1/2,0} \\
(3xy)*0,0,0 & \quad (3xy)*1/2,0,0 & \quad (3xy)*0,1/2,1/2 \\
(3yz)*1/2,0,1/2 & \quad (3yz)*1/2,1/2,0 & \quad (3yz)*1/2,0,1/2 \\
(4x)*3/4,1/4,3/4 & \quad (4x)*1/4,3/4,1/4 & \quad (4x)*1/4,3/4,1/4 \\
(4y)*3/4,1/4,1/4 & \quad (4y)*1/4,1/4,3/4 & \quad (4y)*1/4,1/4,3/4 \\
(4z)*3/4,1/4,1/4 & \quad (4z)*1/4,3/4,1/4 & \quad (4z)*1/4,3/4,1/4 \\
\end{align*}
\]
214.2.1568 I4,321'

(4y 3/4,1/4,1/4)
(4z 1/4,3/4,1/4)
(2xz 1/4,1/4,3/4)
(2g 3/4,3/4,3/4)

(4y -1/4,1/4,3/4)
(4z -1/4,1/4,1/4)
(2yz 1/4,3/4,1/4)
(2g -1/4,3/4,3/4)

214.3.1569 I4 132'

(0,0,0;a,b,c)
(1*0,0,0)
(2*0,1/2,1/2)
(2*1/2,0,1/2)

(3*1/2,1/2,0)
(3*0,1/2,1/2)
(3*0,1/2,1/2)
(3*1/2,1/2,0)

(4x 1/4,1/4,3/4)
(4x -1/2,1/2,2,0)
(2x 3/4,1/4,1/4)
(2x -1/4,1/4,3/4)

(4y 1/4,3/4,1/4)
(4y 1/4,3/4,1/4)
(2y 1/4,3/4,1/4)
(2y 1/4,3/4,1/4)

(4z 1/4,3/4,1/4)
(4z 1/4,3/4,1/4)
(2z 1/4,3/4,1/4)
(2z 1/4,3/4,1/4)

214.4.1570 I 4132

(0,0,0;a,b,c)
(1*0,0,0)
(2*0,1/2,1/2)
(2*1/2,0,1/2)

(3*1/2,1/2,0)
(3*0,1/2,1/2)
(3*0,1/2,1/2)
(3*1/2,1/2,0)

(4x 1/4,1/4,3/4)
(4x 1/4,1/4,1/4)
(2x 3/4,1/4,1/4)
(2x 1/4,3/4,3/4)

(4y 1/4,1/4,3/4)
(4y 1/4,1/4,1/4)
(2y 1/4,1/4,3/4)
(2y 1/4,1/4,3/4)

(4z 1/4,3/4,1/4)
(4z 1/4,1/4,3/4)
(2z 1/4,3/4,1/4)
(2z 1/4,3/4,1/4)

214.5.1571 I 4132'

(0,0,0;a,b,c)
(1*0,0,0)
(2*0,1/2,1/2)
(2*1/2,0,1/2)

(3*1/2,1/2,0)
(3*0,1/2,1/2)
(3*0,1/2,1/2)
(3*1/2,1/2,0)

(4x 1/4,3/4,3/4)
(4x 1/4,3/4,1/4)
(2x 3/4,1/4,3/4)
(2x 1/4,3/4,3/4)

(4y 1/4,3/4,3/4)
(4y 1/4,3/4,1/4)
(2y 3/4,1/4,3/4)
(2y 1/4,3/4,3/4)

(4z 1/4,3/4,3/4)
(4z 1/4,3/4,1/4)
(2z 3/4,1/4,3/4)
(2z 1/4,3/4,3/4)

215.1.1572 P 43m

(1*0,0,0)
(2*0,0,0)
(2*0,0,0)
(2*0,0,0)

(3*0,0,0)
(3*0,0,0)
(3*0,0,0)
(3*0,0,0)

(3*0,0,0)
(3*0,0,0)
(3*0,0,0)
(3*0,0,0)

(3*0,0,0)
(3*0,0,0)
(3*0,0,0)
(3*0,0,0)

(3*0,0,0)
(3*0,0,0)
(3*0,0,0)
(3*0,0,0)

215.2.1573 P 43m1'
<table>
<thead>
<tr>
<th>P & 3m'</th>
<th>P23</th>
<th>(0,0,0;a,b,c)</th>
<th>(1*0,0,0)</th>
<th>(2x*0,0,0)</th>
<th>(2y*0,0,0)</th>
<th>(2z*0,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P & 3m</th>
<th>F & 3m</th>
<th>(0,0,0;2a,2b,2c)</th>
<th>(1*0,0,0)</th>
<th>(2x*0,0,0)</th>
<th>(2y*0,0,0)</th>
<th>(2z*0,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P & 3m'</th>
<th>F & 3c</th>
<th>(0,0,0;2a,2b,2c)</th>
<th>(1*0,0,0)</th>
<th>(2x*0,0,0)</th>
<th>(2y*0,0,0)</th>
<th>(2z*0,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F & 3m</th>
<th>(1*0,0,0)</th>
<th>(2x*0,0,0)</th>
<th>(2y*0,0,0)</th>
<th>(2z*0,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| F & 3m1' | | | | |

<table>
<thead>
<tr>
<th>F & 3'm</th>
<th>F23</th>
<th>(0,0,0;a,b,c)</th>
<th>(1*0,0,0)</th>
<th>(2x*0,0,0)</th>
<th>(2y*0,0,0)</th>
<th>(2z*0,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
<td>(3xyz*0,0,0)</td>
<td>(3xyz*1,0,0)</td>
</tr>
<tr>
<td>Volume</td>
<td>L & 3m</td>
<td>L & 3m1'</td>
<td>L &'3m'</td>
<td>I23</td>
<td>L & 3m</td>
<td>P & 3m</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>217.1.1580</td>
<td>$1*0,0,0$</td>
<td>$(2_x*0,0,0)$</td>
<td>$(2_y*0,0,0)$</td>
<td>$(2_z*0,0,0)$</td>
<td>$(1*0,0,0)$</td>
<td>$(2_x*0,0,0)$</td>
</tr>
<tr>
<td>217.2.1581</td>
<td>$(3_y*0,0,0)$</td>
<td>$(3_y*0,0,0)'$</td>
<td>$(3_y*0,0,0)$</td>
<td>$(3_y*0,0,0)$</td>
<td>$(3_y*0,0,0)$</td>
<td>$(3_y*0,0,0)'$</td>
</tr>
<tr>
<td>217.3.1582</td>
<td>$(4_y*0,0,0)$</td>
<td>$(4_y*0,0,0)'$</td>
<td>$(4_y*0,0,0)$</td>
<td>$(4_y*0,0,0)$</td>
<td>$(4_y*0,0,0)$</td>
<td>$(4_y*0,0,0)'$</td>
</tr>
<tr>
<td>217.4.1583</td>
<td>$(5_y*0,0,0)$</td>
<td>$(5_y*0,0,0)'$</td>
<td>$(5_y*0,0,0)$</td>
<td>$(5_y*0,0,0)$</td>
<td>$(5_y*0,0,0)$</td>
<td>$(5_y*0,0,0)'$</td>
</tr>
<tr>
<td>217.5.1584</td>
<td>$(6_y*0,0,0)$</td>
<td>$(6_y*0,0,0)'$</td>
<td>$(6_y*0,0,0)$</td>
<td>$(6_y*0,0,0)$</td>
<td>$(6_y*0,0,0)$</td>
<td>$(6_y*0,0,0)'$</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 166
<table>
<thead>
<tr>
<th>Magnetic Space Group Elements</th>
<th>218.1.1585 P43n</th>
<th>218.2.1586 P43n1'</th>
<th>218.3.1587 P4′3n</th>
<th>219.1.1588 F43c</th>
<th>219.2.1589 F43c1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4x1/2,1/2,1/2) (4y1/2,1/2,1/2) (4z1/2,1/2,1/2) (m_{xz}^*1/2,1/2,1/2) (m_{yz}^*1/2,1/2,1/2)</td>
<td>(10,0,0) (2_{x}^*0,0,0) (2_{y}^*0,0,0) (2_{z}^*0,0,0) (2_{x}^*0,0,0)</td>
<td>(3_{xyz}^*0,0,0) (3_{xyz}^{-1}*0,0,0) (3_{x& yz}^*0,0,0) (3_{x& yz}^{-1}*0,0,0) (3_{x& yz}^*0,0,0)</td>
<td>(3_{xyz}^*0,0,0) (3_{xyz}^{-1}*0,0,0) (3_{x& yz}^*0,0,0) (3_{x& yz}^{-1}*0,0,0) (3_{x& yz}^*0,0,0)</td>
<td>(10,0,0) (2_{x}^*0,0,0) (2_{y}^*0,0,0) (2_{z}^*0,0,0) (2_{x}^*0,0,0)</td>
<td>(3_{xyz}^*0,0,0) (3_{xyz}^{-1}*0,0,0) (3_{x& yz}^*0,0,0) (3_{x& yz}^{-1}*0,0,0) (3_{x& yz}^*0,0,0)</td>
</tr>
<tr>
<td>(4x1/2,1/2,1/2) (4y1/2,1/2,1/2) (4z1/2,1/2,1/2) (m_{xz}^*1/2,1/2,1/2) (m_{yz}^*1/2,1/2,1/2)</td>
<td>(3_{xyz}^*0,0,0) (3_{xyz}^{-1}*0,0,0) (3_{x& yz}^*0,0,0) (3_{x& yz}^{-1}*0,0,0) (3_{x& yz}^*0,0,0)</td>
<td>(3_{xyz}^*0,0,0) (3_{xyz}^{-1}*0,0,0) (3_{x& yz}^*0,0,0) (3_{x& yz}^{-1}*0,0,0) (3_{x& yz}^*0,0,0)</td>
<td>(3_{xyz}^*0,0,0) (3_{xyz}^{-1}*0,0,0) (3_{x& yz}^*0,0,0) (3_{x& yz}^{-1}*0,0,0) (3_{x& yz}^*0,0,0)</td>
<td>(10,0,0) (2_{x}^*0,0,0) (2_{y}^*0,0,0) (2_{z}^*0,0,0) (2_{x}^*0,0,0)</td>
<td>(3_{xyz}^*0,0,0) (3_{xyz}^{-1}*0,0,0) (3_{x& yz}^*0,0,0) (3_{x& yz}^{-1}*0,0,0) (3_{x& yz}^*0,0,0)</td>
</tr>
<tr>
<td>(3_{xyz}^*0,0,0) (3_{xyz}^{-1}*0,0,0) (3_{x& yz}^*0,0,0) (3_{x& yz}^{-1}*0,0,0) (3_{x& yz}^*0,0,0)</td>
<td>(10,0,0) (2_{x}^*0,0,0) (2_{y}^*0,0,0) (2_{z}^*0,0,0) (2_{x}^*0,0,0)</td>
<td>(3_{xyz}^*0,0,0) (3_{xyz}^{-1}*0,0,0) (3_{x& yz}^*0,0,0) (3_{x& yz}^{-1}*0,0,0) (3_{x& yz}^*0,0,0)</td>
</tr>
<tr>
<td>(m_{x}^*1/2,1/2,1/2)</td>
<td>(m_{x}^*1/2,1/2,1/2)</td>
<td>(m_{y}^*1/2,1/2,1/2)</td>
<td>(m_{y}^*1/2,1/2,1/2)</td>
<td>(m_{y}^*1/2,1/2,1/2)</td>
<td>(m_{y}^*1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(m_{y}^*1/2,1/2,1/2)</td>
<td>(m_{y}^*1/2,1/2,1/2)</td>
<td>(m_{y}^*1/2,1/2,1/2)</td>
<td>(m_{y}^*1/2,1/2,1/2)</td>
<td>(m_{y}^*1/2,1/2,1/2)</td>
<td>(m_{y}^*1/2,1/2,1/2)</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 167
<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>F & '3c'</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>I & '3d'</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*1/2,1/2,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(2*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(3*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(3*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(3*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(3*0,1/2,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>I & '3d'</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*1/2,1/2,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(2*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(3*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(3*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(3*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(3*0,1/2,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>I & '3d1'</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*1/2,1/2,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(2*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(3*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(3*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(3*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(3*0,1/2,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>I2, 3</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*1/2,1/2,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(2*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(3*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(3*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(3*0,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(3*0,1/2,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pm &'m'</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Group</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*0,0,0)</td>
</tr>
</tbody>
</table>
221.2.1595 Pm\&m 1'

221.3.1596 Pm'&m P&3m (0,0,0;a,b,c)

221.4.1597 Pm&m' Pm& (0,0,0;a,b,c)

221.5.1598 Pm'&m' P432 (0,0,0;a,b,c)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1*0,0,0)</td>
<td>(2_x*0,0,0)</td>
<td>(2,*0,0,0)</td>
<td>(2_z*0,0,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3_x*0,0,0)</td>
<td>(3_y*0,0,0)</td>
<td>(3_z*0,0,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3_x*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3_x*0,0,0)</td>
<td>(3_y*0,0,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(4_x*0,0,0)</td>
<td>(4_x*0,0,0)</td>
<td>(4_y*0,0,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4_y*0,0,0)</td>
<td>(4_x*0,0,0)</td>
<td>(4*0,0,0)</td>
<td>(4_z*0,0,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4_z*0,0,0)</td>
<td>(4*0,0,0)</td>
<td>(4*0,0,0)</td>
<td>(m*0,0,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*0,0,0)</td>
<td>(m*0,0,0)</td>
<td>(m*0,0,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*0,0,0)</td>
<td>(m*0,0,0)</td>
<td>(m*0,0,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*0,0,0)</td>
<td>(m*0,0,0)</td>
<td>(m*0,0,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 169
<table>
<thead>
<tr>
<th>Magnetic Space Group Elements</th>
<th>221.6.1599 Pm"m Fm"m</th>
<th>(0,0;0,a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3*xyz,0,0)</td>
<td>(3*xyz,-1,0,0)</td>
<td>(3*xyz,0,0,0)</td>
</tr>
<tr>
<td>(4*x,0,0,0)</td>
<td>(4*x,1,0,0)</td>
<td>(2*xy,0,0,0)</td>
</tr>
<tr>
<td>(4*y,0,0,0)</td>
<td>(4*y,1,0,0)</td>
<td>(2*yz,0,0,0)</td>
</tr>
<tr>
<td>(4*z,0,0,0)</td>
<td>(4*z,1,0,0)</td>
<td>(2*zy,0,0,0)</td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*y,0,0,0)</td>
<td>(m*z,0,0,0)</td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*y,1,0,0)</td>
<td>(m*z,1,0,0)</td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*y,1,0,0)</td>
<td>(m*z,1,0,0)</td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*y,1,0,0)</td>
<td>(m*z,1,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>221.7.1600 Pm"m' Fm"c</th>
<th>(0,0;2a,2b,2c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1*0,0,0)</td>
<td>(2*x,0,0,0)</td>
</tr>
<tr>
<td>(3*xyz,0,0,0)</td>
<td>(3*xyz,-1,0,0)</td>
</tr>
<tr>
<td>(3*xyz,0,0,0)</td>
<td>(3*xyz,-1,0,0)</td>
</tr>
<tr>
<td>(4*x,0,0,0)</td>
<td>(4*x,1,0,0)</td>
</tr>
<tr>
<td>(4*y,0,0,0)</td>
<td>(4*y,1,0,0)</td>
</tr>
<tr>
<td>(4*z,0,0,0)</td>
<td>(4*z,1,0,0)</td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*y,0,0,0)</td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*y,1,0,0)</td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*y,1,0,0)</td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*y,1,0,0)</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 170
<table>
<thead>
<tr>
<th>Space Group</th>
<th>Description</th>
<th>Magnetic Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>222.1.1601 Pn&n</td>
<td>(1*0,0,0)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3xyz0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3xyz0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3xyz0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>222.2.1602 Pn&n1'</td>
<td>(1*0,0,0)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3xyz0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3xyz0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3xyz0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>222.3.1603 Pn&n</td>
<td>(0,0,0;a,b,c)</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td></td>
<td>(1*0,0,0)</td>
<td>(1*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3xyz0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3xyz0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3xyz0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 171
222.4.1604 Pn\&n’ Pn\& (0,0,0; a, b, c)

<table>
<thead>
<tr>
<th>(1)0,0,0</th>
<th>(2)0,0,0</th>
<th>(2)0,0,0</th>
<th>(2)0,0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)xyz0,0,0</td>
<td>(3)xyz0,0,0</td>
<td>(2)xyz0,0,0</td>
<td>(2)xyz0,0,0</td>
</tr>
<tr>
<td>(3)xyz0,0,0</td>
<td>(3)xyz0,0,0</td>
<td>(3)xyz0,0,0</td>
<td>(3)xyz0,0,0</td>
</tr>
<tr>
<td>(4)0,0,0</td>
<td>(2)0,0,0</td>
<td>(2)0,0,0</td>
<td>(2)0,0,0</td>
</tr>
<tr>
<td>(4)0,0,0</td>
<td>(4)0,0,0</td>
<td>(2)0,0,0</td>
<td>(2)0,0,0</td>
</tr>
</tbody>
</table>

222.5.1605 Pn’n’ P432 (0,0,0; a, b, c)

<table>
<thead>
<tr>
<th>(1)0,0,0</th>
<th>(2)0,0,0</th>
<th>(2)0,0,0</th>
<th>(2)0,0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)xyz0,0,0</td>
<td>(3)xyz0,0,0</td>
<td>(3)xyz0,0,0</td>
<td>(3)xyz0,0,0</td>
</tr>
<tr>
<td>(3)xyz0,0,0</td>
<td>(3)xyz0,0,0</td>
<td>(3)xyz0,0,0</td>
<td>(3)xyz0,0,0</td>
</tr>
<tr>
<td>(4)0,0,0</td>
<td>(2)0,0,0</td>
<td>(2)0,0,0</td>
<td>(2)0,0,0</td>
</tr>
<tr>
<td>(4)0,0,0</td>
<td>(4)0,0,0</td>
<td>(2)0,0,0</td>
<td>(2)0,0,0</td>
</tr>
</tbody>
</table>

223.1.1606 Pm\&n

<table>
<thead>
<tr>
<th>(1)0,0,0</th>
<th>(2)0,0,0</th>
<th>(2)0,0,0</th>
<th>(2)0,0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)xyz0,0,0</td>
<td>(3)xyz0,0,0</td>
<td>(3)xyz0,0,0</td>
<td>(3)xyz0,0,0</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 172
<table>
<thead>
<tr>
<th>Group</th>
<th>Elements</th>
<th>(0,0,0; a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pm$n1'$</td>
<td>(1*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>Pmn</td>
<td>(2*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td>Pmn</td>
<td>(3*0,0,0)</td>
<td>(4*0,0,0)</td>
</tr>
<tr>
<td>Pmn</td>
<td>(4*0,0,0)</td>
<td>(5*0,0,0)</td>
</tr>
<tr>
<td>Pmn</td>
<td>(5*0,0,0)</td>
<td>(6*0,0,0)</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 173
MAGNETIC SPACE GROUP ELEMENTS

223.5.1610 Pm"n" P4,32 (0,0,0; a,b,c)

(1,0*0,0) (2,0*0,0) (2,0*0,0) (2,0*0,0)
(3,xyz*0,0) (3,xyz*0,0) (3,xyz*0,0) (3,xyz*0,0)
(3,x*yz*0,0) (3,x*yz*0,0) (3,x*yz*0,0) (3,x*yz*0,0)
(4,xyz*1/2,1/2,1/2) (4,xyz*1/2,1/2,1/2) (4,xyz*1/2,1/2,1/2) (4,xyz*1/2,1/2,1/2)
(4,xyz*1/2,1/2,1/2) (4,xyz*1/2,1/2,1/2) (4,xyz*1/2,1/2,1/2) (4,xyz*1/2,1/2,1/2)

224.1.1611 Pn&m

(1,0*0,0) (2,0*0,0) (2,0*0,0) (2,0*0,0)
(3,xyz*0,0) (3,xyz*0,0) (3,xyz*0,0) (3,xyz*0,0)
(3,x*yz*0,0) (3,x*yz*0,0) (3,x*yz*0,0) (3,x*yz*0,0)
(4,xyz*1/2,1/2,1/2) (4,xyz*1/2,1/2,1/2) (4,xyz*1/2,1/2,1/2) (4,xyz*1/2,1/2,1/2)
(4,xyz*1/2,1/2,1/2) (4,xyz*1/2,1/2,1/2) (4,xyz*1/2,1/2,1/2) (4,xyz*1/2,1/2,1/2)

224.2.1612 Pn&m1

(1,0*0,0) (2,0*0,0) (2,0*0,0) (2,0*0,0)
(3,xyz*0,0) (3,xyz*0,0) (3,xyz*0,0) (3,xyz*0,0)
(3,x*yz*0,0) (3,x*yz*0,0) (3,x*yz*0,0) (3,x*yz*0,0)
(4,xyz*1/2,1/2,1/2) (4,xyz*1/2,1/2,1/2) (4,xyz*1/2,1/2,1/2) (4,xyz*1/2,1/2,1/2)
(4,xyz*1/2,1/2,1/2) (4,xyz*1/2,1/2,1/2) (4,xyz*1/2,1/2,1/2) (4,xyz*1/2,1/2,1/2)

MAGNETIC SPACE GROUP ELEMENTS 174
<table>
<thead>
<tr>
<th>Magnetic Space Group Elements</th>
<th>224.3.1613 Pn&'m, P&3m</th>
<th>(0,0,0; a,b,c)</th>
<th>(1*0,0,0)</th>
<th>(2,*0,0,0)</th>
<th>(2,*0,0,0)</th>
<th>(2,*0,0,0)</th>
<th>(2,*0,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3,*0,0,0)</td>
<td>3, 1, 1, 0</td>
<td>(3,*0,0,0)</td>
<td>(3,*0,0,0)</td>
<td>(3,*0,0,0)</td>
<td>(3,*0,0,0)</td>
<td>(3,*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4,*1/2,1/2)</td>
<td>4, 3, 2, 1</td>
<td>(4,*1/2,1/2)</td>
<td>(4,*1/2,1/2)</td>
<td>(4,*1/2,1/2)</td>
<td>(4,*1/2,1/2)</td>
<td>(4,*1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(5,*0,0,0)</td>
<td>5, 4, 3, 2</td>
<td>(5,*0,0,0)</td>
<td>(5,*0,0,0)</td>
<td>(5,*0,0,0)</td>
<td>(5,*0,0,0)</td>
<td>(5,*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(6,*0,0,0)</td>
<td>6, 5, 4, 3</td>
<td>(6,*0,0,0)</td>
<td>(6,*0,0,0)</td>
<td>(6,*0,0,0)</td>
<td>(6,*0,0,0)</td>
<td>(6,*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(7,*0,0,0)</td>
<td>7, 6, 5, 4</td>
<td>(7,*0,0,0)</td>
<td>(7,*0,0,0)</td>
<td>(7,*0,0,0)</td>
<td>(7,*0,0,0)</td>
<td>(7,*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(8,*0,0,0)</td>
<td>8, 7, 6, 5</td>
<td>(8,*0,0,0)</td>
<td>(8,*0,0,0)</td>
<td>(8,*0,0,0)</td>
<td>(8,*0,0,0)</td>
<td>(8,*0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnetic Space Group Elements</th>
<th>224.4.1614 Pn&m', Pn&</th>
<th>(0,0,0; a,b,c)</th>
<th>(1*0,0,0)</th>
<th>(2,*0,0,0)</th>
<th>(2,*0,0,0)</th>
<th>(2,*0,0,0)</th>
<th>(2,*0,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3,*0,0,0)</td>
<td>3, 1, 1, 0</td>
<td>(3,*0,0,0)</td>
<td>(3,*0,0,0)</td>
<td>(3,*0,0,0)</td>
<td>(3,*0,0,0)</td>
<td>(3,*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4,*1/2,1/2)</td>
<td>4, 3, 2, 1</td>
<td>(4,*1/2,1/2)</td>
<td>(4,*1/2,1/2)</td>
<td>(4,*1/2,1/2)</td>
<td>(4,*1/2,1/2)</td>
<td>(4,*1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(5,*0,0,0)</td>
<td>5, 4, 3, 2</td>
<td>(5,*0,0,0)</td>
<td>(5,*0,0,0)</td>
<td>(5,*0,0,0)</td>
<td>(5,*0,0,0)</td>
<td>(5,*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(6,*0,0,0)</td>
<td>6, 5, 4, 3</td>
<td>(6,*0,0,0)</td>
<td>(6,*0,0,0)</td>
<td>(6,*0,0,0)</td>
<td>(6,*0,0,0)</td>
<td>(6,*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(7,*0,0,0)</td>
<td>7, 6, 5, 4</td>
<td>(7,*0,0,0)</td>
<td>(7,*0,0,0)</td>
<td>(7,*0,0,0)</td>
<td>(7,*0,0,0)</td>
<td>(7,*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(8,*0,0,0)</td>
<td>8, 7, 6, 5</td>
<td>(8,*0,0,0)</td>
<td>(8,*0,0,0)</td>
<td>(8,*0,0,0)</td>
<td>(8,*0,0,0)</td>
<td>(8,*0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Magnetic Space Group Elements</th>
<th>224.5.1615 Pn&'m', P4_232</th>
<th>(0,0,0; a,b,c)</th>
<th>(1*0,0,0)</th>
<th>(2,*0,0,0)</th>
<th>(2,*0,0,0)</th>
<th>(2,*0,0,0)</th>
<th>(2,*0,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(3,*0,0,0)</td>
<td>3, 1, 1, 0</td>
<td>(3,*0,0,0)</td>
<td>(3,*0,0,0)</td>
<td>(3,*0,0,0)</td>
<td>(3,*0,0,0)</td>
<td>(3,*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(4,*1/2,1/2)</td>
<td>4, 3, 2, 1</td>
<td>(4,*1/2,1/2)</td>
<td>(4,*1/2,1/2)</td>
<td>(4,*1/2,1/2)</td>
<td>(4,*1/2,1/2)</td>
<td>(4,*1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(5,*0,0,0)</td>
<td>5, 4, 3, 2</td>
<td>(5,*0,0,0)</td>
<td>(5,*0,0,0)</td>
<td>(5,*0,0,0)</td>
<td>(5,*0,0,0)</td>
<td>(5,*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(6,*0,0,0)</td>
<td>6, 5, 4, 3</td>
<td>(6,*0,0,0)</td>
<td>(6,*0,0,0)</td>
<td>(6,*0,0,0)</td>
<td>(6,*0,0,0)</td>
<td>(6,*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(7,*0,0,0)</td>
<td>7, 6, 5, 4</td>
<td>(7,*0,0,0)</td>
<td>(7,*0,0,0)</td>
<td>(7,*0,0,0)</td>
<td>(7,*0,0,0)</td>
<td>(7,*0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(8,*0,0,0)</td>
<td>8, 7, 6, 5</td>
<td>(8,*0,0,0)</td>
<td>(8,*0,0,0)</td>
<td>(8,*0,0,0)</td>
<td>(8,*0,0,0)</td>
<td>(8,*0,0,0)</td>
</tr>
<tr>
<td>Magnetic Space Group Elements 176</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224.6.1616 P_F n&m Fd&m (0,0,0;2a,2b,2c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10,0,0) (2_x0,0,0) (2,0,0,0) (2_z0,0,0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3_{xyz}*0,0,0) (3_{xyz}10,0,0) (3_{xyz}*0,0,0) (3_{xyz}10,0,0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3_{xyz}*0,0,0) (3_{xyz}10,0,0) (3_{xyz}*0,0,0) (3_{xyz}10,0,0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4_x1/2,1/2,1/2) (4_y1/2,1/2,1/2) (4_z*1/2,1/2,1/2) (4_{xyz}*1/2,1/2,1/2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4_x1/2,1/2,1/2) (4_y1/2,1/2,1/2) (4_z*1/2,1/2,1/2) (4_{xyz}*1/2,1/2,1/2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4_z*1/2,1/2,1/2) (4_{xyz}*1/2,1/2,1/2) (4_{xyz}*1/2,1/2,1/2) (4_{xyz}*1/2,1/2,1/2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4_{xyz}*1/2,1/2,1/2) (4_{xyz}*1/2,1/2,1/2) (4_{xyz}*1/2,1/2,1/2) (4_{xyz}*1/2,1/2,1/2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224.7.1617 P_F n&m' Fd&c (0,0,0;2a,2b,2c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10,0,0) (2_x0,0,0) (2,0,0,0) (2_z0,0,0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3_{xyz}*0,0,0) (3_{xyz}10,0,0) (3_{xyz}*0,0,0) (3_{xyz}10,0,0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3_{xyz}*0,0,0) (3_{xyz}10,0,0) (3_{xyz}*0,0,0) (3_{xyz}10,0,0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4_x3/2,1/2,1/2) (4_y3/2,1/2,1/2) (4_z*3/2,1/2,1/2) (4_{xyz}*3/2,1/2,1/2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4_x3/2,1/2,1/2) (4_y3/2,1/2,1/2) (4_z*3/2,1/2,1/2) (4_{xyz}*3/2,1/2,1/2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4_z*3/2,1/2,1/2) (4_{xyz}*3/2,1/2,1/2) (4_{xyz}*3/2,1/2,1/2) (4_{xyz}*3/2,1/2,1/2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4_{xyz}*3/2,1/2,1/2) (4_{xyz}*3/2,1/2,1/2) (4_{xyz}*3/2,1/2,1/2) (4_{xyz}*3/2,1/2,1/2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>Magnetic Space Group Elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.1.1618</td>
<td>Fm&m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.1.1619</td>
<td>Fm&m'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.2.1619</td>
<td>Fm&m1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.3.1620</td>
<td>Fm'&m F&3m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.4.1621</td>
<td>Fm&m' Fm&</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Volume</th>
<th>Magnetic Space Group Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>225.1.1618</td>
<td>Fm&m</td>
</tr>
<tr>
<td>225.1.1619</td>
<td>Fm&m'</td>
</tr>
<tr>
<td>225.2.1619</td>
<td>Fm&m1'</td>
</tr>
<tr>
<td>225.3.1620</td>
<td>Fm'&m F&3m</td>
</tr>
<tr>
<td>225.4.1621</td>
<td>Fm&m' Fm&</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 177
<table>
<thead>
<tr>
<th>226.2.1624</th>
<th>Fm&c1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>226.3.1625</td>
<td>Fm'&c F&3c (0,0,0; a,b,c)</td>
</tr>
<tr>
<td>226.4.1626</td>
<td>Fm&c' Fm& (0,0,0; a,b,c)</td>
</tr>
<tr>
<td>226.5.1627</td>
<td>Fm'&c' F432 (1/4,1/4,1/4; a,b,c)</td>
</tr>
<tr>
<td>227.1.1628</td>
<td>Fd&m</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>(1*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td>(4*1/2,1/2,1/2)</td>
<td>(4*1/2,1/2,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>227.2.1629</th>
<th>Fd&m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td>(4*1/2,1/2,1/2)</td>
<td>(4*1/2,1/2,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>227.3.1630</th>
<th>Fd&'m</th>
<th>F&3m</th>
<th>(0,0,0;a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td>(4*1/2,1/2,1/2)</td>
<td>(4*1/2,1/2,1/2)</td>
<td>(4*1/2,1/2,1/2)</td>
<td>(4*1/2,1/2,1/2)</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 180
227.4.1631 Fd&m' Fd& (0,0,0; a,b,c)

227.5.1632 Fd&m' F4,32 (0,0,0; a,b,c)
MAGNETIC SPACE GROUP ELEMENTS

228.1633 Fd\&c

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1*0,0,0)$</td>
<td>$(2_x*1/2,1/4,3/4)$</td>
</tr>
<tr>
<td>$(3_{xyz}*0,0,0)$</td>
<td>$(3_{xyz}-10,0,0)$</td>
</tr>
<tr>
<td>$(3_{xyz}*1/4,3/4,1/2)$</td>
<td>$(3_{xyz}*1/2,1/4,3/4)$</td>
</tr>
<tr>
<td>$(4_x*1/4,0,3/4)$</td>
<td>$(4_x*1/4,3/4,1/4)$</td>
</tr>
<tr>
<td>$(4_y*3/4,1/4,0)$</td>
<td>$(4_y*0,3/4,1/4)$</td>
</tr>
<tr>
<td>$(4_z*0,3/4,1/4)$</td>
<td>$(4_z*1/4,0,3/4)$</td>
</tr>
<tr>
<td>$(&*0,0,0)$</td>
<td>$(&*1/2,3/4,1/4)$</td>
</tr>
<tr>
<td>$(&_{xyz}*0,0,0)$</td>
<td>$(&_{xyz}-10,0,0)$</td>
</tr>
<tr>
<td>$(&_{xyz}*3/4,0,1/4)$</td>
<td>$(&_{xyz}*1/2,3/4,1/4)$</td>
</tr>
<tr>
<td>$(&_{xyz}*1/4,3/4,0)$</td>
<td>$(&_{xyz}-10,1/4,3/4)$</td>
</tr>
<tr>
<td>$(&_{xyz}*0,1/4,3/4)$</td>
<td>$(&_{xyz}*-3/4,0,1/4)$</td>
</tr>
</tbody>
</table>

228.2.1634 Fd\&c1'

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1*0,0,0)$</td>
<td>$(2_x*1/2,1/4,3/4)$</td>
</tr>
<tr>
<td>$(3_{xyz}*0,0,0)$</td>
<td>$(3_{xyz}-10,0,0)$</td>
</tr>
<tr>
<td>$(3_{xyz}*1/4,3/4,1/2)$</td>
<td>$(3_{xyz}*1/2,1/4,3/4)$</td>
</tr>
<tr>
<td>$(4_x*1/4,0,3/4)$</td>
<td>$(4_x*1/4,3/4,1/4)$</td>
</tr>
<tr>
<td>$(4_y*3/4,1/4,0)$</td>
<td>$(4_y*0,3/4,1/4)$</td>
</tr>
<tr>
<td>$(4_z*0,3/4,1/4)$</td>
<td>$(4_z*1/4,0,3/4)$</td>
</tr>
<tr>
<td>$(&_{xyz}*0,0,0)$</td>
<td>$(&_{xyz}-10,0,0)$</td>
</tr>
<tr>
<td>$(&_{xyz}*3/4,0,1/4)$</td>
<td>$(&_{xyz}*1/2,3/4,1/4)$</td>
</tr>
<tr>
<td>$(&_{xyz}*1/4,3/4,0)$</td>
<td>$(&_{xyz}-10,1/4,3/4)$</td>
</tr>
<tr>
<td>$(&_{xyz}*0,1/4,3/4)$</td>
<td>$(&_{xyz}*-3/4,0,1/4)$</td>
</tr>
</tbody>
</table>

228.3.1635 Fd'\&c F\&3c

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1*0,0,0)$</td>
<td>$(2_x*1/2,1/4,3/4)$</td>
</tr>
<tr>
<td>$(3_{xyz}*0,0,0)$</td>
<td>$(3_{xyz}-10,0,0)$</td>
</tr>
<tr>
<td>$(3_{xyz}*1/4,3/4,1/2)$</td>
<td>$(3_{xyz}*1/2,1/4,3/4)$</td>
</tr>
<tr>
<td>$(4_x*1/4,0,3/4)$</td>
<td>$(4_x*1/4,3/4,1/4)$</td>
</tr>
<tr>
<td>$(4_y*3/4,1/4,0)$</td>
<td>$(4_y*0,3/4,1/4)$</td>
</tr>
<tr>
<td>$(4_z*0,3/4,1/4)$</td>
<td>$(4_z*1/4,0,3/4)$</td>
</tr>
<tr>
<td>$(&_{xyz}*0,0,0)$</td>
<td>$(&_{xyz}-10,0,0)$</td>
</tr>
<tr>
<td>$(&_{xyz}*3/4,0,1/4)$</td>
<td>$(&_{xyz}*1/2,3/4,1/4)$</td>
</tr>
<tr>
<td>$(&_{xyz}*1/4,3/4,0)$</td>
<td>$(&_{xyz}-10,1/4,3/4)$</td>
</tr>
<tr>
<td>$(&_{xyz}*0,1/4,3/4)$</td>
<td>$(&_{xyz}*-3/4,0,1/4)$</td>
</tr>
</tbody>
</table>

228.4.1636 Fd\&c' Fd\&

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1*0,0,0)$</td>
<td>$(2_x*1/2,1/4,3/4)$</td>
</tr>
<tr>
<td>$(3_{xyz}*0,0,0)$</td>
<td>$(3_{xyz}-10,0,0)$</td>
</tr>
<tr>
<td>$(3_{xyz}*1/4,3/4,1/2)$</td>
<td>$(3_{xyz}*1/2,1/4,3/4)$</td>
</tr>
<tr>
<td>$(4_x*1/4,0,3/4)$</td>
<td>$(4_x*1/4,3/4,1/4)$</td>
</tr>
<tr>
<td>$(4_y*3/4,1/4,0)$</td>
<td>$(4_y*0,3/4,1/4)$</td>
</tr>
<tr>
<td>$(4_z*0,3/4,1/4)$</td>
<td>$(4_z*1/4,0,3/4)$</td>
</tr>
<tr>
<td>$(&_{xyz}*0,0,0)$</td>
<td>$(&_{xyz}-10,0,0)$</td>
</tr>
<tr>
<td>$(&_{xyz}*3/4,0,1/4)$</td>
<td>$(&_{xyz}*1/2,3/4,1/4)$</td>
</tr>
<tr>
<td>$(&_{xyz}*1/4,3/4,0)$</td>
<td>$(&_{xyz}-10,1/4,3/4)$</td>
</tr>
<tr>
<td>$(&_{xyz}*0,1/4,3/4)$</td>
<td>$(&_{xyz}*-3/4,0,1/4)$</td>
</tr>
<tr>
<td>Magnetic Space Group Elements 183</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>(1*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>(3*xyz,0,0)</td>
<td>(3*xyz,0,0)</td>
</tr>
<tr>
<td>(3*xg,0,0)</td>
<td>(3*xg,0,0)</td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(4*0,0,0)</td>
</tr>
<tr>
<td>(4*y,0,0)</td>
<td>(4*y,0,0)</td>
</tr>
<tr>
<td>(4*z,0,0)</td>
<td>(4*z,0,0)</td>
</tr>
<tr>
<td>(m*0,0,0)</td>
<td>(m*0,0,0)</td>
</tr>
<tr>
<td>(mxy,0,0)</td>
<td>(mxy,0,0)</td>
</tr>
<tr>
<td>(mxyz,0,0)</td>
<td>(mxyz,0,0)</td>
</tr>
<tr>
<td>(mz,0,0)</td>
<td>(mz,0,0)</td>
</tr>
</tbody>
</table>

228.1.1638 Im&m

228.5.1637 Fd'ac' F4_32 (1/8,1/8,1/8;a,b,c)
<table>
<thead>
<tr>
<th>Group</th>
<th>Space Group</th>
<th>Symmetry Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>229.2.1639</td>
<td>Im&m1'</td>
<td>(0,0,0;a,b,c)</td>
</tr>
<tr>
<td>229.3.1640</td>
<td>Im&m</td>
<td>I&3m</td>
</tr>
<tr>
<td>229.4.1641</td>
<td>Im&m</td>
<td>Im&</td>
</tr>
<tr>
<td>229.5.1642</td>
<td>Im&m</td>
<td>I432</td>
</tr>
<tr>
<td>229.6.1643</td>
<td>l_p m & m</td>
<td>Pm & m</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>(1*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(4*0,0,0)</td>
<td>(4*0,0,0)</td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(4*0,0,0)</td>
<td>(4*0,0,0)</td>
</tr>
<tr>
<td>(4*0,0,0)</td>
<td>(4*0,0,0)</td>
<td>(4*0,0,0)</td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>229.7.1644</th>
<th>l_p m' & m'</th>
<th>Pn & m</th>
<th>(0,0,0; a,b,c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
<td>(2*0,0,0)</td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td>(4*1/2,1/2,1/2)</td>
<td>(4*1/2,1/2,1/2)</td>
<td>(2*1/2,1/2,1/2)</td>
<td>(2*1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td>(4*1/2,1/2,1/2)</td>
<td>(4*1/2,1/2,1/2)</td>
<td>(2*1/2,1/2,1/2)</td>
<td>(2*1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
<tr>
<td>(4*1/2,1/2,1/2)</td>
<td>(4*1/2,1/2,1/2)</td>
<td>(2*1/2,1/2,1/2)</td>
<td>(2*1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
<td>(3*0,0,0)</td>
</tr>
</tbody>
</table>
229.8.1645 l_p, m&m' Pm&n (0,0,0; a,b,c)
(1*0,0,0) (2,0,0,0) (2,0,0,0) (2,0,0,0) (2,0,0,0)
(3*0,0,0) (3,0,0,0) (3,0,0,0) (3,0,0,0) (3,0,0,0)
(3*0,0,0) (3,0,0,0) (3,0,0,0) (3,0,0,0) (3,0,0,0)
(3*0,0,0) (3,0,0,0) (3,0,0,0) (3,0,0,0) (3,0,0,0)
(4,1/2,1/2,1/2) (4,1/2,1/2,1/2) (4,1/2,1/2,1/2) (4,1/2,1/2,1/2) (4,1/2,1/2,1/2)
(4,1/2,1/2,1/2) (4,1/2,1/2,1/2) (4,1/2,1/2,1/2) (4,1/2,1/2,1/2) (4,1/2,1/2,1/2)

229.9.1646 l_p, m&m' Pn&n (0,0,0; a,b,c)
(1*0,0,0) (2,0,0,0) (2,0,0,0) (2,0,0,0) (2,0,0,0)
(3*0,0,0) (3,0,0,0) (3,0,0,0) (3,0,0,0) (3,0,0,0)
(3*0,0,0) (3,0,0,0) (3,0,0,0) (3,0,0,0) (3,0,0,0)
(3*0,0,0) (3,0,0,0) (3,0,0,0) (3,0,0,0) (3,0,0,0)
(4,1/2,1/2,1/2) (4,1/2,1/2,1/2) (4,1/2,1/2,1/2) (4,1/2,1/2,1/2) (4,1/2,1/2,1/2)
(4,1/2,1/2,1/2) (4,1/2,1/2,1/2) (4,1/2,1/2,1/2) (4,1/2,1/2,1/2) (4,1/2,1/2,1/2)

230.1.1647 l&d
(1*0,0,0) (2,1/2,1/2,0) (2,1/2,1/2,0) (2,1/2,1/2,0) (2,1/2,1/2,0)
(3*0,0,0) (3,1/2,1/2,0) (3,1/2,1/2,0) (3,1/2,1/2,0) (3,1/2,1/2,0)
(3*1/2,0,1/2) (3,1/2,1/2,0) (3,1/2,1/2,0) (3,1/2,1/2,0) (3,1/2,1/2,0)
(4,1/4,1,3/4) (4,1/4,1,3/4) (4,1/4,1,3/4) (4,1/4,1,3/4) (4,1/4,1,3/4)
(4,1/4,1,3/4) (4,1/4,1,3/4) (4,1/4,1,3/4) (4,1/4,1,3/4) (4,1/4,1,3/4)
(5 \times y^{3/4,1/4,1/4})' (5 \times y^{-1} * 1/4,1/4,1/4)' (m xz * 1/4,1/4,3/4)' (m x * 1/4,3/4,3/4)'

(5 \times z^{1/4,3/4,1/4})' (5 \times z^{-1} * 1/4,1/4,3/4)' (m yz * 1/4,3/4,1/4)' (m y * 3/4,3/4,3/4)'

(1 * 0,0,0)' (2 \times * 1/2,1/2,0)' (2 \times * 0,1/2,1/2)' (2 \times * 1/2,1/2,0)' (2 \times * 1/2,0,1/2)'

(3 \times y^{0,0,0})' (3 \times y^{-1} * 0,0,0)' (3 \times y^{0,1/2,1/2})' (3 \times y^{-1} * 1/2,0,1/2)'

(3 \times x^{1/2,0,1/2})' (3 \times x^{-1} * 1/2,1/2,0)' (3 \times x^{0,1/2,1/2})' (3 \times x^{-1} * 0,1/2,1/2)'

I4_32 (0,0,0; a, b, c)
Index: Superfamilies of Two-Dimensional Magnetic Space Groups

1.1.1	p1	6.5.28	p_{2a}2m'1m'	11.4.56	p_{4}'mm'
1.2.2	p11'	6.6.29	p_c2mm	11.5.57	p_{4}'m'm'
1.3.3	p_{2a}1	6.7.30	p_{2a}2mm	11.6.58	p_{4}'m'm'
					p_{4}mm
2.1.4	p211	7.1.31	p_2mg	12.1.60	p_{4}gm
2.2.5	p2111'	7.2.32	p_2mg1'	12.2.61	p_{4}g'm1'
2.3.6	p2'11	7.3.33	p_2mg'	12.3.62	p_{4}g'm'
2.4.7	p_{2a}211	7.4.34	p_2m'g	12.4.63	p_{4}g'm
3.1.8	p1m1	7.6.36	p_{2b}2m'g'	12.5.64	p_{4}'g'm
3.2.9	p1m11'	7.7.37	p_{2b}2mg		
3.3.10	p1m'1			13.1.65	p_{3}
3.4.11	p_{2a}1m1	8.1.38	p_2gg	13.2.66	p_{3}1'
3.5.12	p_{2b}1m1	8.2.39	p_2gg1'		
3.6.13	p_{2b}1m'1	8.3.40	p_2g'g'	14.1.67	p_{3}m1
3.7.14	p_{c}1m1	8.4.41	p_2g'g'	14.2.68	p_{3}m11'
				14.3.69	p_{3}m1'
4.1.15	p1g1	9.1.42	c2mm		
4.2.16	p1g11'	9.2.43	c2mm1'	15.1.70	p_{3}1m
4.3.17	p1g'1	9.3.44	c2m'm'	15.2.71	p_{3}1m1'
4.4.18	p_{2a}1g1	9.4.45	c_{2}mm'	15.3.72	p_{3}1m'
5.1.19	c1m1	9.6.47	c_{p}2m'm'	16.1.73	p_{6}
5.2.20	c1m11'	9.7.48	c_{p}2'm'm'	16.2.74	p_{6}1'
5.3.21	c1m'1			16.3.75	p_{6}
5.4.22	c_{p}1m1	10.1.49	p_{4}		
5.5.23	c_{p}1m'1	10.2.50	p_{4}'1'	17.1.76	p_{6}mm
					p_{6}mm
6.1.24	p2mm	10.4.52	p_{p}4	17.2.77	p_{6}mm1'
6.2.25	p2mm1'	11.1.53	p_{4}mm	17.4.79	p_{6}mm'
6.3.26	p2m'm'	11.2.54	p_{4}mm1'	17.5.80	p_{6}m'm
6.4.27	p2'm'm'	11.3.55	p_{4}m'm'		
Superfamilies of Two-Dimensional Magnetic Space Groups

<table>
<thead>
<tr>
<th>Serial Number</th>
<th>Symbol</th>
<th>Non-Magnetic Subgroup of Index Two</th>
<th>Standard Set of Coset Representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>p1</td>
<td></td>
<td>(1</td>
</tr>
<tr>
<td>1.2.2</td>
<td>p11'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.3</td>
<td>p_{2a}</td>
<td>p1</td>
<td>(00;2a,b)</td>
</tr>
<tr>
<td>2.1.4</td>
<td>p211</td>
<td></td>
<td>(1</td>
</tr>
<tr>
<td>2.2.5</td>
<td>p2111'</td>
<td></td>
<td>(2_z</td>
</tr>
<tr>
<td>2.3.6</td>
<td>p2'11</td>
<td>p1</td>
<td>(1</td>
</tr>
<tr>
<td>2.4.7</td>
<td>p_{2a}211</td>
<td>p211</td>
<td>(2_z</td>
</tr>
<tr>
<td>3.1.8</td>
<td>p1m1</td>
<td></td>
<td>(1</td>
</tr>
<tr>
<td>3.2.9</td>
<td>p1m11'</td>
<td></td>
<td>(m_x</td>
</tr>
<tr>
<td>3.3.10</td>
<td>p1m'1</td>
<td>p1</td>
<td>(1</td>
</tr>
<tr>
<td>3.4.11</td>
<td>p_{2a}1m1</td>
<td>p1m1</td>
<td>(m_x</td>
</tr>
<tr>
<td>3.5.12</td>
<td>p_{2b}1m1</td>
<td>p1m1</td>
<td>(m_x</td>
</tr>
<tr>
<td>3.6.13</td>
<td>p_{2b}1m'1</td>
<td>p1g1</td>
<td>(m_x</td>
</tr>
<tr>
<td>3.7.14</td>
<td>p_{c}1m1</td>
<td>c1m1</td>
<td>(m_x</td>
</tr>
<tr>
<td>4.1.15</td>
<td>p1g1</td>
<td></td>
<td>(1</td>
</tr>
<tr>
<td>4.2.16</td>
<td>p1g11'</td>
<td></td>
<td>(m_x</td>
</tr>
<tr>
<td>4.3.17</td>
<td>p1g'1</td>
<td>p1</td>
<td>(1</td>
</tr>
<tr>
<td>4.4.18</td>
<td>p_{2a}1g1</td>
<td>p1g1</td>
<td>(m_x</td>
</tr>
<tr>
<td>5.1.19</td>
<td>c1m1</td>
<td></td>
<td>(1</td>
</tr>
<tr>
<td>5.2.20</td>
<td>c1m11'</td>
<td></td>
<td>(m_x</td>
</tr>
<tr>
<td>5.3.21</td>
<td>c1m'1</td>
<td>p1</td>
<td>(1</td>
</tr>
<tr>
<td>5.4.22</td>
<td>c_{p}1m1</td>
<td>p1m1</td>
<td>(m_x</td>
</tr>
<tr>
<td>5.5.23</td>
<td>c_{p}1m'1</td>
<td>p1g1</td>
<td>(m_x</td>
</tr>
<tr>
<td>Space Group</td>
<td>Magnetic Space Group Elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1.24</td>
<td>p2mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2.25</td>
<td>p2mm1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3.26</td>
<td>p2m'm' p211 (00; a, b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.4.27</td>
<td>p2'm'm' p1m1 (00; a, b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5.28</td>
<td>p2a2m'm' p2mg (00; 2a, b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.6.29</td>
<td>p2a2mm c2mm (00; 2a, 2b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.7.30</td>
<td>p2a2mm p2mm (00; 2a, b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1.31</td>
<td>p2mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.32</td>
<td>p2mg1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3.33</td>
<td>p2m'g' p211 (00; a, b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4.34</td>
<td>p2'm'g' p1g1 (00; b, a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5.35</td>
<td>p2'm'g' p1m1 (¼0; a, b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.6.36</td>
<td>p2b2m'g' p2gg (00; a, 2b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.7.37</td>
<td>p2b2mg p2gg (00; a, 2b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1.38</td>
<td>p2gg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2.39</td>
<td>p2gg1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.3.40</td>
<td>p2g'g' p211 (00; a, b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.4.41</td>
<td>p2'gg' p1g1 (¼0; a, b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1.42</td>
<td>c2mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.2.43</td>
<td>c2mm1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.3.44</td>
<td>c2m'm' p211 (00; a, (a+b)/2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.4.45</td>
<td>c2'm'm' p1m1 (00; a, (a+b)/2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.5.46</td>
<td>c2p2mm pmm2 (00; a, b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.6.47</td>
<td>c2p2mm' p2gg (00; a, b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.7.48</td>
<td>c2p2'm'm' p2mg (¼¼; a, b)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

xy z

(100) (m, 00) (m, 00) (2, 00)

(00; a, b) (100) (m, 00)' (m, 00)' (2, 00)'

(00; a, b) (100) (m, 00) (m, 00)' (2, 00)'

(00; 2a, b) (100) (m, 00) (m, 00) (2, 00)

(00; 2a, b) (100) (m, 00) (m, 00) (2, 00)

(00; a, b) (100) (m, 00)' (m, 00)' (2, 00)'

(00; a, b) (100) (m, 00) (m, 00) (2, 00)

(00; a, (a+b)/2) (100) (m, 00)' (m, 00)' (2, 00)'

(00; a, (a+b)/2) (100) (m, 00) (m, 00)' (2, 00)'

(00; a, b) (100) (m, 00) (m, 00) (2, 00)

(00; a, b) (100) (m, 00)' (m, 00)' (2, 00)'

(¼¼; a, b) (100) (m, 00) (m, 00) (2, 00)
| 10.1.49 | p4 | (1|00) | (4z|00) | (2z|00) | (4z⁻¹|00) |
|---------|----|------|--------|--------|---------|
| 10.2.50 | p41' | | | | |
| 10.3.51 | p4' | p211 | (00;a,b) | (1|00) | (4z|00)' | (2z|00) | (4z⁻¹|00)'
| 10.4.52 | p₄⁴ | p4 | (00;a-b,a+b) | (1|00) | (4z|00) | (2z|00) | (4z⁻¹|00) |

| 11.1.53 | p4mm | (1|00) | (4z|00) | (2z|00) | (4z⁻¹|00) |
|---------|------|--------|--------|--------|---------|
| | | (mₓ|00) | (mᵧ|00) | (mₓᵧ|00) | (mₓᵧ|00) |
| 11.2.54 | p4mm1' | | | | |

| 11.3.55 | p4m'm' | p4 | (00;a,b) | (1|00) | (4z|00) | (2z|00) | (4z⁻¹|00) |
| | | | | (mₓ|00)' | (mᵧ|00)' | (mₓᵧ|00)' | (mₓᵧ|00)'
| 11.4.56 | p4'm'm' | p2mm | (00;a,b) | (1|00) | (4z|00)' | (2z|00) | (4z⁻¹|00)'
| | | | | (mₓ|00) | (mᵧ|00) | (mₓᵧ|00)' | (mₓᵧ|00)'
| 11.5.57 | p4'm'm' | c2mm | (00;a-b,a+b) | (1|00) | (4z|00)' | (2z|00) | (4z⁻¹|00)'
				(mₓ	00)'	(mᵧ	00)'	(mₓᵧ	00)	(mₓᵧ	00)
11.6.58	p₄⁴m'm'	p4gm	(00;a-b,a+b)	(1	00)	(4z	00)	(2z	00)	(4z⁻¹	00)
				(mₓ	10)	(mᵧ	10)	(mₓᵧ	10)	(mₓᵧ	10)
11.7.59	p₄⁴mm	p4mm	(00;a-b,a+b)	(1	00)	(4z	00)	(2z	00)	(4z⁻¹	00)
				(mₓ	00)	(mᵧ	00)	(mₓᵧ	00)	(mₓᵧ	00)
12.1.60	p4gm	(1	00)	(4z	00)	(2z	00)	(4z⁻¹	00)		
		(mₓ	½½)	(mᵧ	½½)	(mₓᵧ	½½)	(mₓᵧ	½½)		

MAGNETIC SPACE GROUP ELEMENTS 191
12.2.61	p4gm1'					
12.3.62	p4g'm' p4 (00;a,b)	(1	00) (4z	00) (2z	00) (4z\(^{-1}\)	00)
		(m\(_x\)	½½\(^\prime\)) (m\(_y\)	½½\(^\prime\)) (m\(_{xy}\)	½½\(^\prime\))	
12.4.63	p4'gm' p2gg (00;a,b)	(1	00) (4z	00\(^\prime\)) (2z	00) (4z\(^{-1}\)	00\(^\prime\))
		(m\(_x\)	½½) (m\(_y\)	½½) (m\(_{xy}\)	½½\(^\prime\))	
12.5.64	p4'g'm c2mm (½0;a-b,a+b)	(1	00) (4z	00\(^\prime\)) (2z	00) (4z\(^{-1}\)	00\(^\prime\))
		(m\(_x\)	½½\(^\prime\)) (m\(_y\)	½½\(^\prime\)) (m\(_{xy}\)	½½)	
13.1.65	p3	(1	00) (3z	00) (3z\(^{-1}\)	00)	
13.2.66	p31'					
14.1.67	p3m1	(1	00) (3z	00) (3z\(^{-1}\)	00)	
		(m\(_x\)	00) (m\(_y\)	00) (m\(_{xy}\)	00)	
14.2.68	p3m11'					
14.3.69	p3m'1 p3 (00;a,b)	(1	00) (3z	00) (3z\(^{-1}\)	00)	
		(m\(_x\)	00\(^\prime\)) (m\(_y\)	00\(^\prime\)) (m\(_{xy}\)	00\(^\prime\))	
15.1.70	p31m	(1	00) (3z	00) (3z\(^{-1}\)	00)	
		(m\(_l\)	00) (m\(_z\)	00) (m\(_z\)	00)	
15.2.71	p31m1'					

MAGNETIC SPACE GROUP ELEMENTS 192
15.3.72	p31m'	p3	(00; a,b)	(1	00)	(3	00)	(3Z^-1	00)
				(m1	00)'	(m2	00)'	(m3	00)'
16.1.73	p6			(1	00)	(3	00)	(3Z^-1	00)
				(6	00)	(2	00)	(6Z^-1	00)
16.2.74	p61'								
16.3.75	p6'	p3	(00; a,b)	(1	00)	(3	00)	(3Z^-1	00)
				(6	00)	(2	00)	(6Z^-1	00)
17.1.76	p6mm			(1	00)	(3	00)	(3Z^-1	00)
				(6	00)	(2	00)	(6Z^-1	00)
				(m	00)	(m	00)	(m	00)
17.2.77	p6mm1'								
17.3.78	p6m'm'	p6	(000; a,b)	(1	00)	(3	00)	(3Z^-1	00)
				(6	00)	(2	00)	(6Z^-1	00)
				(m	00)'	(m	00)'	(m	00)'
17.4.79	p6'm'm'	p3m1	(00; a,b)	(1	00)	(3	00)	(3Z^-1	00)
| 17.5.80 | p6'm'm | p31m | (00; a, b) | (6z|00)' | (2z|00)' | (6z⁻¹|00)' |
|---------|--------|-------|-----------|----------|----------|----------|
| | | | | (m_x|00) | (m_y|00) | (m_y|00) |
| | | | | (m_x|00)' | (m_y|00)' | (m_y|00)' |
| | | | | (m_x|00) | (m_y|00) | (m_y|00) |
| | | | | (m_x|00)' | (m_y|00)' | (m_y|00)' |
| | | | | (m_x|00) | (m_y|00) | (m_y|00) |
Superfamilies of One-Dimensional Magnetic Space Groups

<table>
<thead>
<tr>
<th>Serial Number</th>
<th>Symbol</th>
<th>Non-Magnetic Subgroup of Index Two</th>
<th>Standard Set of Coset Representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>$p1$</td>
<td>$(0; a)$</td>
<td>$(1</td>
</tr>
<tr>
<td>1.2.2</td>
<td>$p11'$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.3</td>
<td>$p_{2a}1$</td>
<td>$p1$</td>
<td>$(1</td>
</tr>
<tr>
<td>2.1.4</td>
<td>pm</td>
<td>$(0; a)$</td>
<td>$(1</td>
</tr>
<tr>
<td>2.2.5</td>
<td>$pm1'$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.6</td>
<td>pm'</td>
<td>$p1$</td>
<td>$(1</td>
</tr>
<tr>
<td>2.4.7</td>
<td>$p_{2a}m$</td>
<td>pm</td>
<td>$(1</td>
</tr>
</tbody>
</table>

MAGNETIC SPACE GROUP ELEMENTS 195
<table>
<thead>
<tr>
<th>Crystal system</th>
<th>Restrictions on cell parameter</th>
<th>Parameters to be determined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triclinic</td>
<td>None</td>
<td>a,b,c; α,β,γ</td>
</tr>
<tr>
<td>Monoclinic</td>
<td>α = γ = 90°</td>
<td>a,b,c; γ</td>
</tr>
<tr>
<td>Orthorhombic</td>
<td>α = β = γ = 90°</td>
<td>a,b,c</td>
</tr>
<tr>
<td>Tetragonal</td>
<td>a = b; α = β = γ = 90°</td>
<td>a,c</td>
</tr>
<tr>
<td>Trigonal</td>
<td>Hexagonal axes: a = b; α = β = γ = 90°</td>
<td>a,c</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>a = b; α = β = γ = 120°</td>
<td>a,c</td>
</tr>
<tr>
<td>Cubic</td>
<td>a = b = c; α = β = γ = 90°</td>
<td>a</td>
</tr>
</tbody>
</table>

Two-Dimensional

<table>
<thead>
<tr>
<th>Crystal system</th>
<th>Restrictions on cell parameter</th>
<th>Parameters to be determined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oblique</td>
<td>None</td>
<td>a,b,γ</td>
</tr>
<tr>
<td>Rectangular</td>
<td>γ = 90°</td>
<td>a,b</td>
</tr>
<tr>
<td>Square</td>
<td>a = b</td>
<td>a</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>a = b; γ = 120°</td>
<td>a</td>
</tr>
</tbody>
</table>

One Dimensional

<table>
<thead>
<tr>
<th>Crystal system</th>
<th>Restrictions on cell parameter</th>
<th>Parameters to be determined</th>
</tr>
</thead>
<tbody>
<tr>
<td>----------</td>
<td>None</td>
<td>a</td>
</tr>
</tbody>
</table>
Table 1.3.1: Symmetry directions and position in Hermann-Mauguin symbols

Directions which belong to the same set of equivalent symmetry directions are given between braces. The first entry in each set is taken as the representative of that set.

Three-Dimensional

<table>
<thead>
<tr>
<th>Lattice</th>
<th>Primary</th>
<th>Secondary</th>
<th>Tertiary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triclinic</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monoclinic</td>
<td>[010]</td>
<td>unique axis b</td>
<td></td>
</tr>
<tr>
<td>Orthorhombic</td>
<td>[100]</td>
<td>[010]</td>
<td>[001]</td>
</tr>
<tr>
<td>Tetragonal</td>
<td></td>
<td>{[100]}</td>
<td>{[1\overline{1}0]}</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>[001]</td>
<td>{[100]}</td>
<td>{[1\overline{1}0]}</td>
</tr>
<tr>
<td>Hexagonal (hexagonal axes)</td>
<td>[001]</td>
<td>{[100]}</td>
<td>{[1\overline{1}0]}</td>
</tr>
<tr>
<td>Rhombohedral</td>
<td>[001]</td>
<td>{[100]}</td>
<td>{[1\overline{1}0]}</td>
</tr>
<tr>
<td>Cubic</td>
<td>{[100]}</td>
<td>{[11\overline{1}]}</td>
<td>{[1\overline{1}0]}</td>
</tr>
<tr>
<td></td>
<td>{[010]}</td>
<td>{[1\overline{1}1]}</td>
<td>{[1\overline{1}]0}</td>
</tr>
<tr>
<td></td>
<td>{[001]}</td>
<td>{[1\overline{1}]1}</td>
<td>{[1\overline{1}]1}</td>
</tr>
</tbody>
</table>

Table 1.3.1 - 1
Two-Dimensional

Symmetry direction
(position in Hermann-Mauguin symbol)

<table>
<thead>
<tr>
<th>Lattice</th>
<th>Primary</th>
<th>Secondary</th>
<th>Tertiary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oblique</td>
<td>Rotation Point in Plane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectangular</td>
<td>Rotation Point in Plane</td>
<td>[10]</td>
<td>[01]</td>
</tr>
<tr>
<td>Square</td>
<td>Rotation Point in Plane</td>
<td>{[10]}</td>
<td>{[1 \bar{1}]}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{[01]}</td>
<td>{[11]}</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>Rotation Point in Plane</td>
<td>{[10]}</td>
<td>{[1 \bar{1}]}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{[01]}</td>
<td>{[2 \bar{1}]}</td>
</tr>
</tbody>
</table>
Table 1.3.2: Symmetry direction subindex symbols

Three-Dimensional

<table>
<thead>
<tr>
<th>Lattice</th>
<th>Symmetry direction</th>
<th>Subindex symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoclinic</td>
<td>[010]</td>
<td>y</td>
</tr>
<tr>
<td>Orthorhomic</td>
<td>[100]</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>[010]</td>
<td>y</td>
</tr>
<tr>
<td></td>
<td>[001]</td>
<td>z</td>
</tr>
<tr>
<td>Tetragonal</td>
<td>[001]</td>
<td>z</td>
</tr>
<tr>
<td></td>
<td>[100]</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>[010]</td>
<td>y</td>
</tr>
<tr>
<td></td>
<td>[110]</td>
<td>xy</td>
</tr>
<tr>
<td></td>
<td>[110]</td>
<td>xy</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>[001]</td>
<td>z</td>
</tr>
<tr>
<td></td>
<td>[100]</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>[010]</td>
<td>y</td>
</tr>
<tr>
<td></td>
<td>[110]</td>
<td>xy</td>
</tr>
<tr>
<td></td>
<td>[210]</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>[120]</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>[110]</td>
<td>3</td>
</tr>
<tr>
<td>Rhombohedral (hexagonal axes)</td>
<td>[001]</td>
<td>z</td>
</tr>
<tr>
<td></td>
<td>[100]</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>[010]</td>
<td>y</td>
</tr>
<tr>
<td></td>
<td>[110]</td>
<td>xy</td>
</tr>
<tr>
<td>Cubic</td>
<td>[100]</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>[010]</td>
<td>y</td>
</tr>
<tr>
<td></td>
<td>[001]</td>
<td>z</td>
</tr>
<tr>
<td></td>
<td>[111]</td>
<td>xyz</td>
</tr>
<tr>
<td></td>
<td>[111]</td>
<td>xyz</td>
</tr>
<tr>
<td></td>
<td>[111]</td>
<td>xyz</td>
</tr>
<tr>
<td></td>
<td>[110]</td>
<td>xy</td>
</tr>
<tr>
<td></td>
<td>[110]</td>
<td>xy</td>
</tr>
<tr>
<td></td>
<td>[011]</td>
<td>yz</td>
</tr>
<tr>
<td></td>
<td>[011]</td>
<td>yz</td>
</tr>
<tr>
<td></td>
<td>[101]</td>
<td>xz</td>
</tr>
<tr>
<td></td>
<td>[101]</td>
<td>xz</td>
</tr>
</tbody>
</table>

TABLE 1.3.2 - 1
Two-dimensional

<table>
<thead>
<tr>
<th>Lattice</th>
<th>Symmetry direction</th>
<th>Subindex symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oblique</td>
<td>[10]</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>[01]</td>
<td>y</td>
</tr>
<tr>
<td>Rectangular</td>
<td>[10]</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>[01]</td>
<td>y</td>
</tr>
<tr>
<td>Square</td>
<td>[10]</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>[01]</td>
<td>y</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>[10]</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>[01]</td>
<td>y</td>
</tr>
<tr>
<td></td>
<td>[21]</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>[12]</td>
<td>2</td>
</tr>
</tbody>
</table>

![Oblique Diagram](image1.png)

![Rectangular Diagram](image2.png)

![Rectangular Diagram](image3.png)

![Hexagonal Diagram](image4.png)

TABLE 1.3.2 - 2
Tables 1.4: Comparison of Magnetic Space Group and Black and White Space Group Symbols

Table 1.4 - 3D

Three-dimensional: Opechowski and Guccione (OG) symbols, Table 1.1-3D, compared with Belov, Neronova and Smirnova (BNS) symbols (1955, 1957). If the symbols are the same, no symbol is given in the BNS column.

<table>
<thead>
<tr>
<th>TRICLINIC SYSTEM</th>
<th>BNS</th>
<th></th>
<th>BNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1 P1</td>
<td>4.1.15</td>
<td>P2_1</td>
<td></td>
</tr>
<tr>
<td>1.2.2 P11'</td>
<td>4.2.16</td>
<td>P2_1'</td>
<td></td>
</tr>
<tr>
<td>1.3.3 P_2s 1</td>
<td>P_1</td>
<td>4.3.17</td>
<td>P2_1'</td>
</tr>
<tr>
<td>2.1.4 P_1</td>
<td>4.4.18</td>
<td>P_2a 2_1</td>
<td>P_a 2_1</td>
</tr>
<tr>
<td>2.2.5 P_11'</td>
<td>5.1.19</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>2.3.6 P_1'</td>
<td>5.2.20</td>
<td>C2_1'</td>
<td></td>
</tr>
<tr>
<td>2.4.7 P_2s_1</td>
<td>P_1</td>
<td>5.3.21</td>
<td>C2_1</td>
</tr>
<tr>
<td></td>
<td>5.4.22</td>
<td>C_2c 2</td>
<td>C_c 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MONOCLINIC SYSTEM</th>
<th>BNS</th>
<th></th>
<th>BNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.8 P2</td>
<td>5.5.23</td>
<td>C_p 2</td>
<td>P_c 2</td>
</tr>
<tr>
<td>3.2.9 P21'</td>
<td>5.6.24</td>
<td>C_p 2_1</td>
<td>P_c 2_1</td>
</tr>
<tr>
<td>3.3.10 P2'</td>
<td>6.1.25</td>
<td>Pm</td>
<td></td>
</tr>
<tr>
<td>3.4.11 P_2a 2</td>
<td>P_a 2</td>
<td>6.2.26</td>
<td>Pm_1'</td>
</tr>
<tr>
<td>3.5.12 P_2b 2</td>
<td>P_b 2</td>
<td>6.3.27</td>
<td>Pm_1'</td>
</tr>
<tr>
<td>3.6.13 P_c 2</td>
<td>C_a 2</td>
<td>6.4.28</td>
<td>P_2a m</td>
</tr>
<tr>
<td>3.7.14 P_2b 2'</td>
<td>P_b 2_1</td>
<td>6.5.29</td>
<td>P_2b m</td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 1
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6.30</td>
<td>P<sub>c</sub>m</td>
<td>C<sub>a</sub>m</td>
<td>10.3.51</td>
<td>P2'/m</td>
</tr>
<tr>
<td>6.7.31</td>
<td>P<sub>2c</sub>m'</td>
<td>P<sub>c</sub>c</td>
<td>10.4.52</td>
<td>P2/m'</td>
</tr>
<tr>
<td>7.1.32</td>
<td>P<sub>c</sub>c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2.33</td>
<td>P<sub>c</sub>c1'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3.34</td>
<td>P<sub>c</sub>c'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4.35</td>
<td>P<sub>2a</sub>c</td>
<td>P<sub>a</sub>c</td>
<td>10.9.57</td>
<td>P<sub>2a</sub>2'/m</td>
</tr>
<tr>
<td>7.5.36</td>
<td>P<sub>2b</sub>c</td>
<td>P<sub>b</sub>c</td>
<td>10.10.58</td>
<td>P<sub>2c</sub>2'/m</td>
</tr>
<tr>
<td>7.6.37</td>
<td>P<sub>c</sub>c</td>
<td>C<sub>a</sub>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1.38</td>
<td>C<sub>m</sub>c</td>
<td></td>
<td></td>
<td>11.1.59</td>
</tr>
<tr>
<td>8.2.39</td>
<td>C<sub>m</sub>c1'</td>
<td></td>
<td></td>
<td>11.2.60</td>
</tr>
<tr>
<td>8.3.40</td>
<td>C<sub>m</sub>c'</td>
<td></td>
<td></td>
<td>11.3.61</td>
</tr>
<tr>
<td>8.4.41</td>
<td>C<sub>2a</sub>m</td>
<td>C<sub>c</sub>m</td>
<td>11.5.63</td>
<td>P2<sub>y</sub>'/m</td>
</tr>
<tr>
<td>8.5.42</td>
<td>C<sub>p</sub>m</td>
<td>P<sub>c</sub>m</td>
<td>11.6.64</td>
<td>P<sub>2a</sub>2<sub>y</sub>/m</td>
</tr>
<tr>
<td>8.6.43</td>
<td>C<sub>2a</sub>m'</td>
<td>C<sub>c</sub>c</td>
<td>11.7.65</td>
<td>P<sub>2a</sub>2<sub>y</sub>/m</td>
</tr>
<tr>
<td>8.7.44</td>
<td>C<sub>p</sub>m'</td>
<td>P<sub>A</sub>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1.45</td>
<td>C<sub>c</sub>c</td>
<td></td>
<td></td>
<td>12.1.66</td>
</tr>
<tr>
<td>9.2.46</td>
<td>C<sub>c</sub>c1'</td>
<td></td>
<td></td>
<td>12.2.67</td>
</tr>
<tr>
<td>9.3.47</td>
<td>C<sub>c</sub>c'</td>
<td></td>
<td></td>
<td>12.3.68</td>
</tr>
<tr>
<td>9.4.48</td>
<td>C<sub>p</sub>c</td>
<td>P<sub>c</sub>c</td>
<td>12.4.69</td>
<td>C2/m'</td>
</tr>
<tr>
<td>10.1.49</td>
<td>P2/m</td>
<td></td>
<td></td>
<td>12.5.70</td>
</tr>
<tr>
<td>10.2.50</td>
<td>P2/m1'</td>
<td></td>
<td></td>
<td>12.6.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.7.72</td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 2
<table>
<thead>
<tr>
<th>Year</th>
<th>System</th>
<th>Symbol</th>
<th>Structure</th>
<th>Symmetry</th>
<th>Symbol</th>
<th>Structure</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.8.73</td>
<td>C2/m'</td>
<td>Cc</td>
<td>2/m'</td>
<td>P2</td>
<td>12.8.74</td>
<td>C2/m'</td>
<td>P2</td>
</tr>
<tr>
<td>Section</td>
<td>Symbol 1</td>
<td>Symbol 2</td>
<td>Section</td>
<td>Symbol 1</td>
<td>Symbol 2</td>
<td>Section</td>
<td>Symbol 1</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>18.2.114</td>
<td>P2\textsubscript{1}2\textsubscript{1}21'</td>
<td>21.7.135</td>
<td>C\textsubscript{i}222</td>
<td>I\textsubscript{c}222</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.3.115</td>
<td>P2\textsubscript{1}2\textsubscript{1}'2</td>
<td>21.8.136</td>
<td>C\textsubscript{2c}22'2'</td>
<td>C\textsubscript{c}222 \textsubscript{1}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.4.116</td>
<td>P2\textsubscript{1}2\textsubscript{1}'2</td>
<td>21.9.137</td>
<td>C\textsubscript{p}2'2'2</td>
<td>P\textsubscript{c}2\textsubscript{1}2\textsubscript{1}2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.5.117</td>
<td>P\textsubscript{2c}2\textsubscript{1}2\textsubscript{1}2</td>
<td>P\textsubscript{c}2\textsubscript{1}2\textsubscript{1}2</td>
<td>21.10.138</td>
<td>C\textsubscript{p}22''2'</td>
<td>P\textsubscript{A}222 \textsubscript{1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.6.118</td>
<td>P\textsubscript{2c}2\textsubscript{1}2\textsubscript{1}'2'</td>
<td>P\textsubscript{s}2\textsubscript{1}2\textsubscript{1}2\textsubscript{1}</td>
<td>21.11.139</td>
<td>C\textsubscript{i}2'22'</td>
<td>I\textsubscript{c}2\textsubscript{1}2\textsubscript{1}2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.1.119</td>
<td>P2\textsubscript{1}2\textsubscript{1}2\textsubscript{1}</td>
<td>22.1.140</td>
<td>F222</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.2.120</td>
<td>P2\textsubscript{1}2\textsubscript{1}2\textsubscript{1}'1'</td>
<td>22.2.141</td>
<td>F2221'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.3.121</td>
<td>P2\textsubscript{1}2\textsubscript{1}'2\textsubscript{1}</td>
<td>22.3.142</td>
<td>F2'2'2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.1.122</td>
<td>C222 \textsubscript{1}</td>
<td>22.4.143</td>
<td>F\textsubscript{C}222</td>
<td>C\textsubscript{A}222</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.2.123</td>
<td>C222\textsubscript{1}1'</td>
<td>22.5.144</td>
<td>F\textsubscript{C}22'2'</td>
<td>C\textsubscript{A}222 \textsubscript{1}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.3.124</td>
<td>C2'2'2\textsubscript{1}</td>
<td>23.1.145</td>
<td>I222</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.4.125</td>
<td>C22'2\textsubscript{1}'</td>
<td>23.2.146</td>
<td>I2221'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.5.126</td>
<td>C\textsubscript{p}222 \textsubscript{1}</td>
<td>P\textsubscript{c}222 \textsubscript{1}</td>
<td>23.3.147</td>
<td>I2'2'2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.6.127</td>
<td>C\textsubscript{p}2'2'2\textsubscript{1}</td>
<td>P\textsubscript{c}2\textsubscript{1}2\textsubscript{1}2\textsubscript{1}</td>
<td>23.4.148</td>
<td>I\textsubscript{p}222</td>
<td>P\textsubscript{i}222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.7.128</td>
<td>C\textsubscript{p}22'2\textsubscript{1}'</td>
<td>P\textsubscript{A}2\textsubscript{1}2\textsubscript{1}2</td>
<td>23.5.149</td>
<td>I\textsubscript{p}2'2'2</td>
<td>P\textsubscript{i}2\textsubscript{1}2\textsubscript{1}2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.1.129</td>
<td>C222</td>
<td>24.1.150</td>
<td>I2,2,2 \textsubscript{1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.2.130</td>
<td>C2221'</td>
<td>24.2.151</td>
<td>I2,2,2,1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.3.131</td>
<td>C2'2'2</td>
<td>24.3.152</td>
<td>I2,2',2 \textsubscript{1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.4.132</td>
<td>C22'2'</td>
<td>24.4.153</td>
<td>I\textsubscript{p}2,2,2,2,2 \textsubscript{1}</td>
<td>P\textsubscript{i}2\textsubscript{1}2\textsubscript{1}2 \textsubscript{1}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.5.133</td>
<td>C\textsubscript{2c}222</td>
<td>C\textsubscript{c}222</td>
<td>24.5.154</td>
<td>I\textsubscript{p}2,2,2,1'2, \textsubscript{1}</td>
<td>P\textsubscript{i}222 \textsubscript{1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.6.134</td>
<td>C\textsubscript{p}222</td>
<td>P\textsubscript{c}222</td>
<td>25.1.155</td>
<td>Pmm2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.2.156</td>
<td>Pmm21'</td>
<td>27.1.178</td>
<td>Pcc2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.3.157</td>
<td>Pm'm2'</td>
<td>27.2.179</td>
<td>Pcc21'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.4.158</td>
<td>Pm'm2</td>
<td>27.3.180</td>
<td>Pc'c2'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.5.159</td>
<td>P_{2c} mm2</td>
<td>P_{c} mm2</td>
<td>27.4.181</td>
<td>Pc'c'2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.6.160</td>
<td>P_{2a} mm2</td>
<td>P_{a} mm2</td>
<td>27.5.182</td>
<td>P_{2a} cc2</td>
<td>P_{a} cc2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.7.161</td>
<td>P_{c} mm2</td>
<td>C_{a} mm2</td>
<td>27.6.183</td>
<td>P_{c} cc2</td>
<td>C_{a} cc2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.8.162</td>
<td>P_{A} mm2</td>
<td>A_{c} mm2</td>
<td>27.7.184</td>
<td>P_{2b} c'c2'</td>
<td>P_{b} nc2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.9.163</td>
<td>P_{F} mm2</td>
<td>F_{s} mm2</td>
<td>28.1.185</td>
<td>Pma2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.10.164</td>
<td>P_{2c} mm'2'</td>
<td>P_{c} mc2</td>
<td>28.2.186</td>
<td>Pma21'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.11.165</td>
<td>P_{2c} m'm'2</td>
<td>P_{c} cc2</td>
<td>28.3.187</td>
<td>Pm'a2'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.12.166</td>
<td>P_{2a} m'm'2</td>
<td>P_{a} ma2</td>
<td>28.4.188</td>
<td>Pma'2'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.13.167</td>
<td>P_{A} m'm'2</td>
<td>A_{c} bm2</td>
<td>28.5.189</td>
<td>Pm'a2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

26.1.168	Pmc2_1	28.6.190	P_{2b} ma2	P_{b} ma2	
26.2.169	Pmc2_1,1'	28.7.191	P_{2c} ma2	P_{c} ma2	
26.3.170	Pm'c2_1,'	28.8.192	P_{A} ma2	A_{c} ma2	
26.4.171	Pmc'2_1,'	28.9.193	P_{2a} m'a2'	P_{a} ba2	
26.5.172	Pm'c'2_1	28.10.194	P_{2c} m'a2'	P_{c} ca2	
26.6.173	P_{2a} mc2_1	P_{a} mc2	28.11.195	P_{2c} ma'2'	P_{c} mn2
26.7.174	P_{2b} mc2_1	P_{b} mc2	28.12.196	P_{2c} m'a2'	P_{c} nc2
26.8.175	P_{c} mc2_1	C_{a} mc2	28.13.197	P_{A} m'a2'	A_{c} ba2
26.9.176	P_{2a} mc'2_1	P_{s} mn2	29.1.198	Pca2_1	
26.10.177	P_{2b} m'c'2_1	P_{a} ca2	29.2.199	Pca2_1,1'	

TABLE 1.4 - 3D - 5
<table>
<thead>
<tr>
<th>Table 1.4 - 3D - 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.3.200 P_{c'a_2}</td>
</tr>
<tr>
<td>29.4.201 P_{ca_2}</td>
</tr>
<tr>
<td>29.5.202 P_{c'a_2}</td>
</tr>
<tr>
<td>29.6.203 P_{2b_2}c_{a_2}</td>
</tr>
<tr>
<td>29.7.204 P_{2b_2}c'a_{2_2}</td>
</tr>
<tr>
<td>30.1.205 P_{nc_2}</td>
</tr>
<tr>
<td>30.2.206 P_{nc_21'}</td>
</tr>
<tr>
<td>30.3.207 P_{n'c_2}</td>
</tr>
<tr>
<td>30.4.208 P_{nc_2}</td>
</tr>
<tr>
<td>30.5.209 P_{n'c_2}</td>
</tr>
<tr>
<td>30.6.210 P_{2a_2}hc_2</td>
</tr>
<tr>
<td>30.7.211 P_{2a_2}nc_2'</td>
</tr>
<tr>
<td>31.1.212 P_{mn_21}</td>
</tr>
<tr>
<td>31.2.213 P_{mn_21'}</td>
</tr>
<tr>
<td>31.3.214 P_{m'n_21'}</td>
</tr>
<tr>
<td>31.4.215 P_{mn_21'}</td>
</tr>
<tr>
<td>31.5.216 P_{mn_21'}</td>
</tr>
<tr>
<td>31.6.217 P_{2b_2}mn_{2_1}</td>
</tr>
<tr>
<td>31.7.218 P_{2b_2}m'n_{2_1}'</td>
</tr>
<tr>
<td>32.1.219 P_{ba_2}</td>
</tr>
<tr>
<td>32.2.220 P_{ba_21'}</td>
</tr>
<tr>
<td>35.1.236 C_{mm_2}</td>
</tr>
<tr>
<td>35.2.237 C_{mm_21'}</td>
</tr>
<tr>
<td>35.3.238 C_{m'm_2}</td>
</tr>
<tr>
<td>35.4.239 C_{m'm_21'}</td>
</tr>
<tr>
<td>35.5.240 C_{zc}mm_2</td>
</tr>
<tr>
<td>35.6.241 C_{p}mm_2</td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 6
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
<th>Description</th>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.7.242</td>
<td>C₁ mm²</td>
<td>35.7.243</td>
<td>C₂ₘ m'm²'</td>
<td>35.7.244</td>
<td>C₃ c c</td>
</tr>
<tr>
<td></td>
<td>lₚ mm²</td>
<td></td>
<td>C₃ mc₂</td>
<td>35.7.245</td>
<td>C₄ m m²'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C₄ c c</td>
<td>35.7.246</td>
<td>C₅ m m²'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lₕ m`a²</td>
<td>35.7.247</td>
<td>C₆ m' c²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.8.249</td>
<td>C₇ m 'a²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.8.250</td>
<td>C₈ m' a²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.8.251</td>
<td>C₉ m' a²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35.8.252</td>
<td>C₉ m' a²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.1.249</td>
<td>C₁₀ m m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.2.250</td>
<td>C₁₀ m m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.3.251</td>
<td>C₁₀ c c²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.4.252</td>
<td>C₁₀ c c²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.5.253</td>
<td>C₁₀ c c²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.6.254</td>
<td>C₁₀ m c²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.7.255</td>
<td>C₁₀ m c²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.8.256</td>
<td>C₁₀ m c²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.9.257</td>
<td>C₁₀ c c²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37.1.258</td>
<td>C₁₁ m m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37.2.259</td>
<td>C₁₁ m m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37.3.260</td>
<td>C₁₁ c c²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37.4.261</td>
<td>C₁₁ c c²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37.5.262</td>
<td>C₁₁ c c²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37.6.263</td>
<td>C₁₁ c c²</td>
</tr>
<tr>
<td>38.1.265</td>
<td>Amm²</td>
<td>38.1.266</td>
<td>Amm²'</td>
<td>38.1.267</td>
<td>Amm²'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.2.266</td>
<td>Amm²'</td>
<td>38.3.267</td>
<td>Amm²'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.4.268</td>
<td>Amm²'</td>
<td>38.5.269</td>
<td>Amm²'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.6.270</td>
<td>A₂₃ m m²</td>
<td>38.7.271</td>
<td>A₃₃ m m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.8.272</td>
<td>A₄₃ m m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.9.273</td>
<td>A₵₃ m m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.1.278</td>
<td>Abm²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.2.279</td>
<td>Abm²'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.3.280</td>
<td>Abm²'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.4.281</td>
<td>Abm²'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.5.282</td>
<td>Abm²'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.6.283</td>
<td>Abm²'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.7.284</td>
<td>Abm²'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39.8.285</td>
<td>Abm²'</td>
</tr>
</tbody>
</table>

Table 1.4 - 3D - 7
<p>| 39.9.286 | A₂₉ b'm'² | Aₙ ba2 | 41.9.308 | Aₚ b'a'² | Pₜ nc2 |
| 39.10.287 | Aₚ b'm²' | Pₜ mc²₁ | 42.1.309 | Fmm2 | |
| 39.11.288 | Aₚ bm'²' | Pₜ ca²₁ | 42.2.310 | Fmm21' |
| 39.12.289 | Aₚ b'm²' | Pₐ cc² | 42.3.311 | Fm'm²' |
| 39.13.290 | Aₙ b'm²' | lₙ ba2 | 42.4.312 | Fm'm²' |
| 40.1.291 | Ama2 | 42.5.313 | F₁ₙ mm² | Cₐ mm² |
| 40.2.292 | Ama21' | 42.6.314 | Fₐ mm² | Aₐ mm² |
| 40.3.293 | Am'a2' | 42.7.315 | F₁ₚ mm²' | Cₐ mc²₁ |
| 40.4.294 | Ama'2 | 42.8.316 | F₁ₚ m'm² | Cₐ cc² |
| 40.5.295 | Am'a2 | 42.9.317 | Fₐ m'm²' | Aₐ bm² |
| 40.6.296 | Aₚ ma2 | Pₐ ma2 | 42.10.318 | Fₐ mm²' | Aₐ ma2 |
| 40.7.297 | Aₚ m'a2' | Pₐ na₂₁ | 42.11.319 | Fₐ m'm² | Aₐ ba2 |
| 40.8.298 | Aₚ ma'2' | Pₐ mn²₁ | 43.1.320 | Fdd2 |
| 40.9.299 | Aₚ m'a2 | Pₐ nn² | 43.2.321 | Fdd21' |
| 41.1.300 | Aba2 | 43.3.322 | Fd'd²' |
| 41.2.301 | Aba21' | 43.4.323 | Fd'd² |
| 41.3.302 | Ab'a2' | 44.1.324 | Imm² |
| 41.4.303 | Ab'a2 | 44.2.325 | Imm21' |
| 41.5.304 | Ab'a2 | 44.3.326 | Im'm² |
| 41.6.305 | Aₚ ba2 | Pₐ ba2 | 44.4.327 | Im'm² |
| 41.7.306 | Aₚ b'a2' | Pₐ ca²₁ | 44.5.328 | Iₚ mm² | P₁ₚ mm² |
| 41.8.307 | Aₚ ba'²' | Pₜ na²₁ |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Space Group</th>
<th>Notation</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.6.329</td>
<td>(P_{\text{mm}})</td>
<td>(P_{\text{mm}})</td>
<td>47.4.350</td>
</tr>
<tr>
<td>44.7.330</td>
<td>(P_{\text{mm}})</td>
<td>(P_{\text{mm}})</td>
<td>47.5.351</td>
</tr>
<tr>
<td>45.1.331</td>
<td>(I_{ba2})</td>
<td>(I_{ba2})</td>
<td>47.6.352</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.2.332</td>
<td>(I_{ba21})</td>
<td>(I_{ba21})</td>
<td>47.7.353</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.3.333</td>
<td>(I_{ba2})</td>
<td>(I_{ba2})</td>
<td>47.8.354</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.4.334</td>
<td>(I_{ba2})</td>
<td>(I_{ba2})</td>
<td>47.9.355</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.5.335</td>
<td>(I_{ba2})</td>
<td>(I_{ba2})</td>
<td>47.10.356</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.6.336</td>
<td>(I_{ba2})</td>
<td>(I_{ba2})</td>
<td>47.11.357</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.7.337</td>
<td>(I_{ba2})</td>
<td>(I_{ba2})</td>
<td>48.1.358</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.1.338</td>
<td>(I_{ma2})</td>
<td>(I_{ma2})</td>
<td>48.2.359</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.2.339</td>
<td>(I_{ma2})</td>
<td>(I_{ma2})</td>
<td>48.3.360</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.3.340</td>
<td>(I_{ma2})</td>
<td>(I_{ma2})</td>
<td>48.4.361</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.4.341</td>
<td>(I_{ma2})</td>
<td>(I_{ma2})</td>
<td>48.5.362</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.5.342</td>
<td>(I_{ma2})</td>
<td>(I_{ma2})</td>
<td>48.6.363</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.6.343</td>
<td>(I_{ma2})</td>
<td>(I_{ma2})</td>
<td>49.1.364</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.7.344</td>
<td>(I_{ma2})</td>
<td>(I_{ma2})</td>
<td>49.2.365</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.8.345</td>
<td>(I_{ma2})</td>
<td>(I_{ma2})</td>
<td>49.3.366</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.9.346</td>
<td>(I_{ma2})</td>
<td>(I_{ma2})</td>
<td>49.4.367</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.1.347</td>
<td>(P_{mmm})</td>
<td>(P_{mmm})</td>
<td>49.5.368</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.2.348</td>
<td>(P_{mmm1})</td>
<td>(P_{mmm1})</td>
<td>49.6.369</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.3.349</td>
<td>(P_{m})</td>
<td>(P_{m})</td>
<td>49.7.370</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.8.371</td>
<td>(P_{mmm})</td>
<td>(P_{mmm})</td>
<td>49.8.371</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 9
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>49.9.372</td>
<td>P\text{\textsubscript{c}} ccm</td>
<td>C\text{\textsubscript{a}} ccm</td>
<td>51.8.394</td>
<td>Pm'm'\text{\textsubscript{ma}}'</td>
<td></td>
</tr>
<tr>
<td>49.10.373</td>
<td>P\text{\textsubscript{2c}} ccm'</td>
<td>P\text{\textsubscript{a}} cca</td>
<td>51.9.395</td>
<td>Pm'm'\text{\textsubscript{ma}}'</td>
<td></td>
</tr>
<tr>
<td>49.11.374</td>
<td>P\text{\textsubscript{2c}} c'c'm</td>
<td>P\text{\textsubscript{c}} mna</td>
<td>51.10.396</td>
<td>P\text{\textsubscript{2c}} mma</td>
<td>P\text{\textsubscript{b}} mma</td>
</tr>
<tr>
<td>49.12.375</td>
<td>P\text{\textsubscript{2c}} c'c'm'</td>
<td>P\text{\textsubscript{a}} ban</td>
<td>51.11.397</td>
<td>P\text{\textsubscript{2c}} mma</td>
<td>P\text{\textsubscript{c}} mma</td>
</tr>
<tr>
<td>49.13.376</td>
<td>P\text{\textsubscript{c}} ccm'</td>
<td>C\text{\textsubscript{a}} cca</td>
<td>51.12.398</td>
<td>P\text{\textsubscript{A}} mma</td>
<td>C\text{\textsubscript{a}} mcm</td>
</tr>
<tr>
<td>50.1.377</td>
<td>Pban</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.2.378</td>
<td>Pban1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.3.379</td>
<td>Pb'an</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.4.380</td>
<td>Pban'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.5.381</td>
<td>Pb'a'n</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.6.382</td>
<td>Pb'an'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.7.383</td>
<td>Pb'a'n'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.8.384</td>
<td>P\text{\textsubscript{2c}} ban</td>
<td>P\text{\textsubscript{c}} ban</td>
<td>52.1.406</td>
<td>Pnna</td>
<td></td>
</tr>
<tr>
<td>50.9.385</td>
<td>P\text{\textsubscript{2c}} b'an</td>
<td>P\text{\textsubscript{b}} nna</td>
<td>52.2.407</td>
<td>Pnna1'</td>
<td></td>
</tr>
<tr>
<td>50.10.386</td>
<td>P\text{\textsubscript{2c}} b'a'n</td>
<td>P\text{\textsubscript{a}} nnn</td>
<td>52.3.408</td>
<td>Pn'na</td>
<td></td>
</tr>
<tr>
<td>51.1.387</td>
<td>Pm\text{\textsubscript{ma}}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.2.388</td>
<td>Pm\text{\textsubscript{ma}}1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.3.389</td>
<td>Pm'm'a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.4.390</td>
<td>Pmm'a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.5.391</td>
<td>Pm\text{\textsubscript{ma}}'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.6.392</td>
<td>Pm'm'a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.7.393</td>
<td>Pmm'\text{\textsubscript{a}}'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 10
<table>
<thead>
<tr>
<th>Page</th>
<th>Code</th>
<th>Description</th>
<th>Page</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>53.2.416</td>
<td>Pmna1'</td>
<td>54.11.438</td>
<td>P_{2b} c'ca</td>
<td>P_a bcn</td>
<td></td>
</tr>
<tr>
<td>53.3.417</td>
<td>Pm'na</td>
<td>54.12.439</td>
<td>P_{2b} cca'</td>
<td>P_a ccn</td>
<td></td>
</tr>
<tr>
<td>53.4.418</td>
<td>Pmn'a</td>
<td>54.13.440</td>
<td>P_{2b} c'ca'</td>
<td>P_c nna</td>
<td></td>
</tr>
<tr>
<td>53.5.419</td>
<td>Pmna'</td>
<td>55.1.441</td>
<td>Pbam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.6.420</td>
<td>Pm'n'a</td>
<td>55.2.442</td>
<td>Pbam1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.7.421</td>
<td>Pmn'a'</td>
<td>55.3.443</td>
<td>Pb'am</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.8.422</td>
<td>Pm'na'</td>
<td>55.4.444</td>
<td>Pbam'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.9.423</td>
<td>Pm'n'a'</td>
<td>55.5.445</td>
<td>Pb'a'm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.10.424</td>
<td>P_{2b} mna</td>
<td>55.6.446</td>
<td>Pb'am'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.11.425</td>
<td>P_{2b} m'na</td>
<td>55.7.447</td>
<td>Pb'a'm'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.12.426</td>
<td>P_{2b} mna'</td>
<td>55.8.448</td>
<td>P_{2c} b'am</td>
<td>P_c bam</td>
<td></td>
</tr>
<tr>
<td>53.13.427</td>
<td>P_{2b} m'na'</td>
<td>55.9.449</td>
<td>P_{2c} b'am</td>
<td>P_b nma</td>
<td></td>
</tr>
<tr>
<td>54.1.428</td>
<td>Pcc'a</td>
<td>55.10.450</td>
<td>P_{2c} b'a'm</td>
<td>P_c nna</td>
<td></td>
</tr>
<tr>
<td>54.2.429</td>
<td>Pcc'a1'</td>
<td>56.1.451</td>
<td>Pccn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.3.430</td>
<td>Pc'ca</td>
<td>56.2.452</td>
<td>Pccn1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.4.431</td>
<td>Pcc'a</td>
<td>56.3.453</td>
<td>Pc'cn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.5.432</td>
<td>Pcca'</td>
<td>56.4.454</td>
<td>Pccn'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.6.433</td>
<td>Pc'c'a</td>
<td>56.5.455</td>
<td>Pc'c'n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.7.434</td>
<td>Pcc'a'</td>
<td>56.6.456</td>
<td>Pc'cn'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.8.435</td>
<td>Pc'ca'</td>
<td>56.7.457</td>
<td>Pc'c'n'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.9.436</td>
<td>Pc'c'a'</td>
<td>57.1.458</td>
<td>Pbcm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.10.437</td>
<td>P_{2b} cca</td>
<td>57.1.458</td>
<td>P_b cca</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 11
<table>
<thead>
<tr>
<th>Code</th>
<th>Space Group</th>
<th></th>
<th>Code</th>
<th>Space Group</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>57.2.459</td>
<td>Pbcm1'</td>
<td>59.4.481</td>
<td>Pmmn'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.3.460</td>
<td>Pb'cm</td>
<td>59.5.482</td>
<td>Pm'm'n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.4.461</td>
<td>Pbc'm</td>
<td>59.6.483</td>
<td>Pmm'n'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.5.462</td>
<td>Pbc'm</td>
<td>59.7.484</td>
<td>Pm'm'n'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.6.463</td>
<td>Pb'c'm</td>
<td>59.8.485</td>
<td>P_{2c} mmn</td>
<td>P_c mmn</td>
<td></td>
</tr>
<tr>
<td>57.7.464</td>
<td>Pbc'm'</td>
<td>59.9.486</td>
<td>P_{2c} m'mn</td>
<td>P_a nma</td>
<td></td>
</tr>
<tr>
<td>57.8.465</td>
<td>Pb'cm'</td>
<td>59.10.487</td>
<td>P_{2c} m'm'n</td>
<td>P_c ccn</td>
<td></td>
</tr>
<tr>
<td>57.9.466</td>
<td>Pb'c'm'</td>
<td>60.1.488</td>
<td>Pbc'n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.10.467</td>
<td>P_{2a} bcm</td>
<td>P_a bcm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.11.468</td>
<td>P_{2a} bc'm</td>
<td>P_c nma</td>
<td>60.2.489</td>
<td>Pbcn1'</td>
<td></td>
</tr>
<tr>
<td>57.12.469</td>
<td>P_{2a} bcm'</td>
<td>P_a bca</td>
<td>60.3.490</td>
<td>Pb'cn</td>
<td></td>
</tr>
<tr>
<td>57.13.470</td>
<td>P_{2a} bc'm'</td>
<td>P_b bcn</td>
<td>60.4.491</td>
<td>Pbc'n</td>
<td></td>
</tr>
<tr>
<td>58.1.471</td>
<td>Pnnm</td>
<td>60.5.492</td>
<td>Pbc'n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.2.472</td>
<td>Pnnm1'</td>
<td>60.6.493</td>
<td>Pb'c'n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.3.473</td>
<td>Pn'n'm</td>
<td>60.7.494</td>
<td>Pbc'n'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.4.474</td>
<td>Pnnm'</td>
<td>60.8.495</td>
<td>Pb'cn'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.5.475</td>
<td>Pn'n'm</td>
<td>60.9.496</td>
<td>Pb'c'n'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.6.476</td>
<td>Pnn'm'</td>
<td>61.1.497</td>
<td>Pbca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.7.477</td>
<td>Pn'n'm'</td>
<td>61.2.498</td>
<td>Pbca1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59.1.478</td>
<td>Pmmm</td>
<td>61.3.499</td>
<td>Pb'ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59.2.479</td>
<td>Pmmn1'</td>
<td>61.4.500</td>
<td>Pb'c'a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59.3.480</td>
<td>Pmmn</td>
<td>61.5.501</td>
<td>Pb'c'a'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.1.502</td>
<td>Pnma</td>
<td>63.14.524</td>
<td>Cₚ m'c'm</td>
<td>Pₜ nma</td>
<td></td>
</tr>
<tr>
<td>62.2.503</td>
<td>Pnma'</td>
<td>63.15.525</td>
<td>Cₚ mc'm'</td>
<td>Pₜ nnm</td>
<td></td>
</tr>
<tr>
<td>62.3.504</td>
<td>Pn'ma</td>
<td>63.16.526</td>
<td>Cₚ m'c'm'</td>
<td>Pₜ bcm</td>
<td></td>
</tr>
<tr>
<td>62.4.505</td>
<td>Pnm'a</td>
<td>63.17.527</td>
<td>Cₚ m'c'm'</td>
<td>Pₜ nna</td>
<td></td>
</tr>
<tr>
<td>62.5.506</td>
<td>Pnma'</td>
<td>64.1.528</td>
<td>Cmca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.6.507</td>
<td>Pn'm'a</td>
<td>64.2.529</td>
<td>Cmca'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.7.508</td>
<td>Pnm'a'</td>
<td>64.3.530</td>
<td>Cm'ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.8.509</td>
<td>Pn'm'a'</td>
<td>64.4.531</td>
<td>Cm'ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.9.510</td>
<td>Pn'm'a'</td>
<td>64.5.532</td>
<td>Cmca'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.1.511</td>
<td>Cmcm</td>
<td>64.6.533</td>
<td>Cm'c'a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.2.512</td>
<td>Cmcm'</td>
<td>64.7.534</td>
<td>Cm'ca'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.3.513</td>
<td>Cm'cm</td>
<td>64.8.535</td>
<td>Cm'ca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.4.514</td>
<td>Cmc'm</td>
<td>64.9.536</td>
<td>Cm'c'a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.5.515</td>
<td>Cmcm'</td>
<td>64.10.537</td>
<td>Cₚ mca</td>
<td>Pₜ bam</td>
<td></td>
</tr>
<tr>
<td>63.6.516</td>
<td>Cm'c'm</td>
<td>64.11.538</td>
<td>Cₚ m'ca</td>
<td>Pₜ cca</td>
<td></td>
</tr>
<tr>
<td>63.7.517</td>
<td>Cmc'm'</td>
<td>64.12.539</td>
<td>Cₚ mc'a</td>
<td>Pₜ nma</td>
<td></td>
</tr>
<tr>
<td>63.8.518</td>
<td>Cm'cm'</td>
<td>64.13.540</td>
<td>Cₚ mca'</td>
<td>Pₜ bcm</td>
<td></td>
</tr>
<tr>
<td>63.9.519</td>
<td>Cm'c'm'</td>
<td>64.14.541</td>
<td>Cₚ m'c'a</td>
<td>Pₜ ccn</td>
<td></td>
</tr>
<tr>
<td>63.10.520</td>
<td>Cₚ mcm</td>
<td>Pₜ mma</td>
<td>64.15.542</td>
<td>Cₚ mc'a'</td>
<td>Pₜ mna</td>
</tr>
<tr>
<td>63.11.521</td>
<td>Cₚ m'cm</td>
<td>Pₜ bcm</td>
<td>64.16.543</td>
<td>Cₚ m'ca'</td>
<td>Pₜ bca</td>
</tr>
<tr>
<td>63.12.522</td>
<td>Cₚ mc'm</td>
<td>Pₜ mmn</td>
<td>64.17.544</td>
<td>Cₚ m'c'a'</td>
<td>Pₜ bcn</td>
</tr>
<tr>
<td>63.13.523</td>
<td>Cₚ mcm'</td>
<td>Pₜ nma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.1.545</td>
<td>Cmmm</td>
<td>66.4.567</td>
<td>Cccm'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.2.546</td>
<td>Cmmm1'</td>
<td>66.5.568</td>
<td>Cc'c'm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.3.547</td>
<td>Cmm'm</td>
<td>66.6.569</td>
<td>Ccc'm'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.4.548</td>
<td>Cmmm'</td>
<td>66.7.570</td>
<td>Cc'c'm'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.5.549</td>
<td>Cmm'm'm</td>
<td>66.8.571</td>
<td>C_p ccm</td>
<td>P_c ccm</td>
<td></td>
</tr>
<tr>
<td>65.6.550</td>
<td>Cmm'm'</td>
<td>66.9.572</td>
<td>C_p c'cm</td>
<td>P_A mna</td>
<td></td>
</tr>
<tr>
<td>65.7.551</td>
<td>Cmm'm'm'</td>
<td>66.10.573</td>
<td>C_p ccm'</td>
<td>P_c ccn</td>
<td></td>
</tr>
<tr>
<td>65.8.552</td>
<td>C_{2c} mmm</td>
<td>C_{c} mmm</td>
<td>66.11.574</td>
<td>C_p c'c'm</td>
<td>P_c nnn</td>
</tr>
<tr>
<td>65.9.553</td>
<td>C_p mmm</td>
<td>P_{c} mmm</td>
<td>66.12.575</td>
<td>C_p cc'm'</td>
<td>P_A nna</td>
</tr>
<tr>
<td>65.10.554</td>
<td>C_{l} mmm</td>
<td>I_{c} mmm</td>
<td>66.13.576</td>
<td>C_p c'c'm'</td>
<td>P_c nnn</td>
</tr>
<tr>
<td>65.11.555</td>
<td>C_{2c} m'm'm</td>
<td>C_{c} ccn</td>
<td>67.1.577</td>
<td>Cmma</td>
<td></td>
</tr>
<tr>
<td>65.12.556</td>
<td>C_{2c} m'm'm'</td>
<td>C_{c} mcm</td>
<td>67.2.578</td>
<td>Cmma1'</td>
<td></td>
</tr>
<tr>
<td>65.13.557</td>
<td>C_p m'm'm</td>
<td>P_{b} mma</td>
<td>67.3.579</td>
<td>Cm'm'a</td>
<td></td>
</tr>
<tr>
<td>65.14.558</td>
<td>C_p mmm'</td>
<td>P_{c} mmn</td>
<td>67.4.580</td>
<td>Cmma'</td>
<td></td>
</tr>
<tr>
<td>65.15.559</td>
<td>C_p m'm'm</td>
<td>P_{c} bam</td>
<td>67.5.581</td>
<td>Cm'm'a'</td>
<td></td>
</tr>
<tr>
<td>65.16.560</td>
<td>C_p mm'm'</td>
<td>P_{b} bna</td>
<td>67.6.582</td>
<td>Cmm'a'</td>
<td></td>
</tr>
<tr>
<td>65.17.561</td>
<td>C_p m'm'm'</td>
<td>P_{c} ban</td>
<td>67.7.583</td>
<td>Cm'm'a'</td>
<td></td>
</tr>
<tr>
<td>65.18.562</td>
<td>C_{l} m'm'm</td>
<td>I_{a} mma</td>
<td>67.8.584</td>
<td>C_{2c} mma</td>
<td>C_{c} mma</td>
</tr>
<tr>
<td>65.19.563</td>
<td>C_{l} m'm'm</td>
<td>I_{c} bna</td>
<td>67.9.585</td>
<td>C_{p} mma</td>
<td>P_{A} ccm</td>
</tr>
<tr>
<td>66.1.564</td>
<td>Cccm</td>
<td>67.10.586</td>
<td>C_{l} mma</td>
<td>I_{a} bna</td>
<td></td>
</tr>
<tr>
<td>66.2.565</td>
<td>Cccm1'</td>
<td>67.11.587</td>
<td>C_{2c} m'ma</td>
<td>C_{c} mca</td>
<td></td>
</tr>
<tr>
<td>66.3.566</td>
<td>Cc'cm</td>
<td>67.12.588</td>
<td>C_{2c} m'm'a</td>
<td>C_{c} cca</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>67.13.589</td>
<td>C_p m'ma</td>
<td>P_b cca</td>
<td>69.7.611</td>
<td>F_c m'mm</td>
<td>C_A mcm</td>
</tr>
<tr>
<td>67.14.590</td>
<td>C_p mm'a</td>
<td>P_c mma</td>
<td>69.8.612</td>
<td>F_c mmm'</td>
<td>C_A mma</td>
</tr>
<tr>
<td>67.15.591</td>
<td>C_p mma'</td>
<td>P_A bcm</td>
<td>69.9.613</td>
<td>F_c m'm'm</td>
<td>C_A ccm</td>
</tr>
<tr>
<td>67.16.592</td>
<td>C_i mm'a</td>
<td>I_c mma</td>
<td>69.10.614</td>
<td>F_c mm'm'</td>
<td>C_A mca</td>
</tr>
<tr>
<td>67.17.593</td>
<td>C_i m'ma'</td>
<td>I_c bca</td>
<td>69.11.615</td>
<td>F_c m'm'm'</td>
<td>C_A cca</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.1.594</td>
<td>Ccca</td>
<td></td>
<td>70.1.616</td>
<td>Fddd</td>
<td></td>
</tr>
<tr>
<td>68.2.595</td>
<td>Ccca1'</td>
<td></td>
<td>70.2.617</td>
<td>Fddd1'</td>
<td></td>
</tr>
<tr>
<td>68.3.596</td>
<td>Cc'ca</td>
<td></td>
<td>70.3.618</td>
<td>F'd'dd</td>
<td></td>
</tr>
<tr>
<td>68.4.597</td>
<td>Ccca'</td>
<td></td>
<td>70.4.619</td>
<td>F'd'd'd</td>
<td></td>
</tr>
<tr>
<td>68.5.598</td>
<td>Cc'c'a</td>
<td></td>
<td>70.5.620</td>
<td>F'd'd'd'</td>
<td></td>
</tr>
<tr>
<td>68.6.599</td>
<td>Ccc'a'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.7.600</td>
<td>Cc'c'a'</td>
<td></td>
<td>71.1.621</td>
<td>Immm</td>
<td></td>
</tr>
<tr>
<td>68.8.601</td>
<td>C_p cca</td>
<td>P_A ban</td>
<td>71.2.622</td>
<td>Immm1'</td>
<td></td>
</tr>
<tr>
<td>68.9.602</td>
<td>C_p c'ca</td>
<td>P_c cca</td>
<td>71.3.623</td>
<td>lm'mm</td>
<td></td>
</tr>
<tr>
<td>68.10.603</td>
<td>C_p cca'</td>
<td>P_b bcn</td>
<td>71.4.624</td>
<td>lm'm'm</td>
<td></td>
</tr>
<tr>
<td>68.11.604</td>
<td>C_p cc'a'</td>
<td>P_c nna</td>
<td>71.5.625</td>
<td>lm'm'm'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.1.605</td>
<td>Fmmm</td>
<td></td>
<td>71.7.627</td>
<td>I_p m'mm</td>
<td>P_i mmm</td>
</tr>
<tr>
<td>69.2.606</td>
<td>Fmmm1'</td>
<td></td>
<td>71.8.628</td>
<td>I_p m'm'm</td>
<td>P_i nmm</td>
</tr>
<tr>
<td>69.3.607</td>
<td>Fm'mm</td>
<td></td>
<td>71.9.629</td>
<td>I_p m'm'm'</td>
<td>P_i nnn</td>
</tr>
<tr>
<td>69.4.608</td>
<td>Fm'm'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.5.609</td>
<td>Fm'm'm'</td>
<td></td>
<td>72.1.630</td>
<td>Ibam</td>
<td></td>
</tr>
<tr>
<td>69.6.610</td>
<td>F_c mmm</td>
<td>C_A mmm</td>
<td>72.2.631</td>
<td>Ibam1'</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 15
<table>
<thead>
<tr>
<th>Reference</th>
<th>Symbol</th>
<th>Reference</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>72.3.632</td>
<td>Ib'am</td>
<td>74.5.654</td>
<td>Im'm'a</td>
</tr>
<tr>
<td>72.4.633</td>
<td>Ib'am'</td>
<td>74.6.655</td>
<td>Im'm'a'</td>
</tr>
<tr>
<td>72.5.634</td>
<td>Ib'a'm</td>
<td>74.7.656</td>
<td>Im'm'a'</td>
</tr>
<tr>
<td>72.6.635</td>
<td>Ib'a'm'</td>
<td>74.8.657</td>
<td>I_p mma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P_i mma</td>
</tr>
<tr>
<td>72.7.636</td>
<td>Ib'a'm'</td>
<td>74.9.658</td>
<td>I_p m'm'a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P_i nna</td>
</tr>
<tr>
<td>72.8.637</td>
<td>I_p, bam</td>
<td>74.10.659</td>
<td>I_p mm'a'</td>
</tr>
<tr>
<td></td>
<td>P_i ccm</td>
<td></td>
<td>P_i mna</td>
</tr>
<tr>
<td>72.9.638</td>
<td>I_p, b'am</td>
<td>74.11.660</td>
<td>I_p m'ma'</td>
</tr>
<tr>
<td></td>
<td>P_i bcm</td>
<td></td>
<td>P_i nna</td>
</tr>
<tr>
<td>72.10.639</td>
<td>I_p, bam'</td>
<td>75.1.661</td>
<td>P4</td>
</tr>
<tr>
<td></td>
<td>P_i ccn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.11.640</td>
<td>I_p, b'a'm</td>
<td>75.2.662</td>
<td>P4'</td>
</tr>
<tr>
<td></td>
<td>P_i bam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.12.641</td>
<td>I_p, b'am'</td>
<td>75.3.663</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P_i bcn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.13.642</td>
<td>I_p, b'a'm'</td>
<td>75.4.664</td>
<td>P_2c 4</td>
</tr>
<tr>
<td></td>
<td>P_i ban</td>
<td></td>
<td>P_c 4</td>
</tr>
<tr>
<td>73.1.643</td>
<td>Ibca</td>
<td>75.5.665</td>
<td>P 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P_c 4</td>
</tr>
<tr>
<td>73.2.644</td>
<td>Ibca1'</td>
<td>75.6.666</td>
<td>P 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I_c 4</td>
</tr>
<tr>
<td>73.3.645</td>
<td>Ib'ca</td>
<td>75.7.667</td>
<td>P_2c 4'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P_c 4_2</td>
</tr>
<tr>
<td>73.4.646</td>
<td>Ib'c'a</td>
<td>76.1.668</td>
<td>P4_1</td>
</tr>
<tr>
<td>73.5.647</td>
<td>Ib'c'a'</td>
<td>76.2.669</td>
<td>P4_1'</td>
</tr>
<tr>
<td>73.6.648</td>
<td>I_p, bca</td>
<td>76.3.670</td>
<td>P4_1</td>
</tr>
<tr>
<td></td>
<td>P_i bca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.7.649</td>
<td>I_p, b'ca</td>
<td>76.4.671</td>
<td>P 4_1</td>
</tr>
<tr>
<td></td>
<td>P_i cca</td>
<td></td>
<td>P_c 4_1</td>
</tr>
<tr>
<td>74.1.650</td>
<td>Imma</td>
<td>77.1.672</td>
<td>P4_2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74.2.651</td>
<td>Imma1'</td>
<td>77.2.673</td>
<td>P4_2'</td>
</tr>
<tr>
<td>74.3.652</td>
<td>Im'ma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74.4.653</td>
<td>Imma'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 16
<table>
<thead>
<tr>
<th>Code</th>
<th>Space Group</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>77.3.674</td>
<td>P4_1'</td>
<td>81.3.695</td>
</tr>
<tr>
<td>77.4.675</td>
<td>P_{2c} 4_2</td>
<td>81.4.696</td>
</tr>
<tr>
<td>77.5.676</td>
<td>P_{p} 4_2</td>
<td>81.5.697</td>
</tr>
<tr>
<td>77.6.677</td>
<td>P_{l} 4_2</td>
<td>81.6.698</td>
</tr>
<tr>
<td>77.7.678</td>
<td>P_{2c} \bar{4}_2'</td>
<td>82.1.699</td>
</tr>
<tr>
<td>78.1.679</td>
<td>P4_3</td>
<td>82.2.700</td>
</tr>
<tr>
<td>78.2.680</td>
<td>P4_3 1'</td>
<td>82.3.701</td>
</tr>
<tr>
<td>78.3.681</td>
<td>P4_1'</td>
<td>82.4.702</td>
</tr>
<tr>
<td>78.4.682</td>
<td>P_{p} 4_3</td>
<td>83.1.703</td>
</tr>
<tr>
<td>79.1.683</td>
<td>I4</td>
<td>83.2.704</td>
</tr>
<tr>
<td>79.2.684</td>
<td>I4_1</td>
<td>83.3.705</td>
</tr>
<tr>
<td>79.3.685</td>
<td>I4'</td>
<td>83.4.706</td>
</tr>
<tr>
<td>79.4.686</td>
<td>I_p 4</td>
<td>83.5.707</td>
</tr>
<tr>
<td>79.5.687</td>
<td>I_p 4'</td>
<td>83.6.708</td>
</tr>
<tr>
<td>80.1.688</td>
<td>I4_1</td>
<td>83.7.709</td>
</tr>
<tr>
<td>80.2.689</td>
<td>I4_1 1'</td>
<td>83.8.710</td>
</tr>
<tr>
<td>80.3.690</td>
<td>I4_1'</td>
<td>83.9.711</td>
</tr>
<tr>
<td>80.4.691</td>
<td>I_p 4_1</td>
<td>83.10.712</td>
</tr>
<tr>
<td>80.5.692</td>
<td>I_p 4_1'</td>
<td>84.1.713</td>
</tr>
<tr>
<td>81.1.693</td>
<td>P4</td>
<td>84.1.714</td>
</tr>
<tr>
<td>81.2.694</td>
<td>P4_1'</td>
<td>84.3.715</td>
</tr>
<tr>
<td>81.2.694</td>
<td>P4_1'</td>
<td>84.4.716</td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 17
<table>
<thead>
<tr>
<th>Page No.</th>
<th>Structure Code</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>84.5.717</td>
<td>P4'2/m'</td>
<td>87.6.738</td>
</tr>
<tr>
<td>84.6.718</td>
<td>P_p 4_2/m</td>
<td>P_c 4_2/m</td>
</tr>
<tr>
<td>84.7.719</td>
<td>P_p 4_2/m'</td>
<td>P_c 4_2/n</td>
</tr>
<tr>
<td>85.1.720</td>
<td>P4/n</td>
<td>87.9.741</td>
</tr>
<tr>
<td>85.2.721</td>
<td>P4/n'</td>
<td>88.1.742</td>
</tr>
<tr>
<td>85.3.722</td>
<td>P4'/n</td>
<td>88.2.743</td>
</tr>
<tr>
<td>85.4.723</td>
<td>P4/n'</td>
<td>88.3.744</td>
</tr>
<tr>
<td>85.5.724</td>
<td>P4'/n'</td>
<td>88.4.745</td>
</tr>
<tr>
<td>85.6.725</td>
<td>P_2c 4/n</td>
<td>P_c 4/n</td>
</tr>
<tr>
<td>85.7.726</td>
<td>P_2c 4'/n</td>
<td>P_c 4_2/n</td>
</tr>
<tr>
<td>86.1.727</td>
<td>P4_2/n</td>
<td>89.2.748</td>
</tr>
<tr>
<td>86.2.728</td>
<td>P4_2/n1'</td>
<td>89.3.749</td>
</tr>
<tr>
<td>86.3.729</td>
<td>P4_2'/n</td>
<td>89.4.750</td>
</tr>
<tr>
<td>86.4.730</td>
<td>P4_2'/n'</td>
<td>89.5.751</td>
</tr>
<tr>
<td>86.5.731</td>
<td>P4_2'/n'</td>
<td>89.6.752</td>
</tr>
<tr>
<td>86.6.732</td>
<td>P_1 4_2 /n</td>
<td>I_c 4_1/a</td>
</tr>
<tr>
<td>87.1.733</td>
<td>I4/m</td>
<td>89.8.754</td>
</tr>
<tr>
<td>87.2.734</td>
<td>I4/m1'</td>
<td>89.9.755</td>
</tr>
<tr>
<td>87.3.735</td>
<td>I4'/m</td>
<td>89.10.756</td>
</tr>
<tr>
<td>87.4.736</td>
<td>I4/m'</td>
<td>90.1.757</td>
</tr>
<tr>
<td>87.5.737</td>
<td>I4'/m'</td>
<td>90.2.758</td>
</tr>
<tr>
<td>90.3.759</td>
<td>(\text{P}_4'^2,2')</td>
<td>93.5.780</td>
</tr>
<tr>
<td>90.4.760</td>
<td>(\text{P}_4'2,2')</td>
<td>93.6.781</td>
</tr>
<tr>
<td>90.5.761</td>
<td>(\text{P}_4'^2,2')</td>
<td>93.7.782</td>
</tr>
<tr>
<td>90.6.762</td>
<td>(\text{P}_{2c} \text{ } 4_2,2) (\text{P}_c \text{ } 4_2,2)</td>
<td>93.8.783</td>
</tr>
<tr>
<td>90.7.763</td>
<td>(\text{P}_{2c} \text{ } 4'^2,2') (\text{P}_c \text{ } 4_2,2 \text{ } 22)</td>
<td>93.9.784</td>
</tr>
<tr>
<td>(91.1.764)</td>
<td>(\text{P}_4,22)</td>
<td>(94.1.786)</td>
</tr>
<tr>
<td>91.2.765</td>
<td>(\text{P}_4,221')</td>
<td>(94.2.787)</td>
</tr>
<tr>
<td>91.3.766</td>
<td>(\text{P}_4,1',22')</td>
<td>94.3.788</td>
</tr>
<tr>
<td>91.4.767</td>
<td>(\text{P}_4,2'2')</td>
<td>94.4.789</td>
</tr>
<tr>
<td>91.5.768</td>
<td>(\text{P}_4,1'2')</td>
<td>94.5.790</td>
</tr>
<tr>
<td>91.6.769</td>
<td>(\text{P}_p \text{ } 4_1,22) (\text{P}_c \text{ } 4_1,22)</td>
<td>94.6.791</td>
</tr>
<tr>
<td>(92.1.771)</td>
<td>(\text{P}_4,2,2)</td>
<td>(94.7.792)</td>
</tr>
<tr>
<td>92.2.772</td>
<td>(\text{P}_4,2,21')</td>
<td>(95.1.793)</td>
</tr>
<tr>
<td>92.3.773</td>
<td>(\text{P}_4,1',2,2')</td>
<td>95.2.794</td>
</tr>
<tr>
<td>92.4.774</td>
<td>(\text{P}_4,1,2')</td>
<td>95.3.795</td>
</tr>
<tr>
<td>92.5.775</td>
<td>(\text{P}_4,1',2')</td>
<td>95.4.796</td>
</tr>
<tr>
<td>(93.1.776)</td>
<td>(\text{P}_4,22)</td>
<td>(95.5.797)</td>
</tr>
<tr>
<td>93.2.777</td>
<td>(\text{P}_4,221')</td>
<td>95.6.798</td>
</tr>
<tr>
<td>93.3.778</td>
<td>(\text{P}_4,22')</td>
<td>95.7.799</td>
</tr>
<tr>
<td>93.4.779</td>
<td>(\text{P}_4,2'2')</td>
<td>(96.1.800)</td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 19
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.2.801</td>
<td>P4₃2₁2₁'</td>
<td>99.1.823</td>
</tr>
<tr>
<td>96.3.802</td>
<td>P4₃2₁₂'</td>
<td>99.2.824</td>
</tr>
<tr>
<td>96.4.803</td>
<td>P4₃2₁₂'</td>
<td>99.3.825</td>
</tr>
<tr>
<td>96.5.804</td>
<td>P4₃2₁₂'</td>
<td>99.4.826</td>
</tr>
<tr>
<td>97.1.805</td>
<td>I₄2₂</td>
<td>99.5.827</td>
</tr>
<tr>
<td>97.2.806</td>
<td>I₄2₂</td>
<td>99.6.828</td>
</tr>
<tr>
<td>97.3.807</td>
<td>I₄'2₂</td>
<td>99.7.829</td>
</tr>
<tr>
<td>97.4.808</td>
<td>I₄2₂</td>
<td>99.8.830</td>
</tr>
<tr>
<td>97.5.809</td>
<td>I₄'2₂</td>
<td>99.9.831</td>
</tr>
<tr>
<td>97.6.810</td>
<td>Iₐp42₂</td>
<td>P₁42₂</td>
</tr>
<tr>
<td>97.7.811</td>
<td>Iₐp4'2₂</td>
<td>P₁4₂₂</td>
</tr>
<tr>
<td>97.8.812</td>
<td>Iₐp4₂₂</td>
<td>P₁4₂₂</td>
</tr>
<tr>
<td>97.9.813</td>
<td>Iₐp4'2₂</td>
<td>P₁4₂₂₂</td>
</tr>
<tr>
<td>98.1.814</td>
<td>I₄₂₂</td>
<td>100.1.836</td>
</tr>
<tr>
<td>98.2.815</td>
<td>I₄₂₂₁'</td>
<td>100.2.837</td>
</tr>
<tr>
<td>98.3.816</td>
<td>I₄₁'2₂</td>
<td>100.3.838</td>
</tr>
<tr>
<td>98.4.817</td>
<td>I₄₂₂</td>
<td>100.4.839</td>
</tr>
<tr>
<td>98.5.818</td>
<td>I₄₁'2₂</td>
<td>100.5.840</td>
</tr>
<tr>
<td>98.6.819</td>
<td>Iₐp4₂₂</td>
<td>P₁4₂₂</td>
</tr>
<tr>
<td>98.7.820</td>
<td>Iₐp4₁'2₂</td>
<td>P₁4₃₂₂</td>
</tr>
<tr>
<td>98.8.821</td>
<td>Iₐp4₂₂</td>
<td>P₁4₂₂</td>
</tr>
<tr>
<td>98.9.822</td>
<td>Iₐp4₁'2₂</td>
<td>P₁4₃₂₂</td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 20
<table>
<thead>
<tr>
<th>Row</th>
<th>Symbol</th>
<th>Description</th>
<th>Row</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>101.1.845</td>
<td>P4_2 cm</td>
<td>104.1.866</td>
<td>P4nc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101.2.846</td>
<td>P4_2 cm1'</td>
<td>104.2.867</td>
<td>P4nc1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101.3.847</td>
<td>P4_2 'c'm</td>
<td>104.3.868</td>
<td>P4'n'c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101.4.848</td>
<td>P4_2 'cm'</td>
<td>104.4.869</td>
<td>P4'n'c'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101.5.849</td>
<td>P4_2 c'm</td>
<td>104.5.870</td>
<td>P4n'c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101.6.850</td>
<td>P_p 4_2 cm</td>
<td>105.1.871</td>
<td>P4_2 mc</td>
<td>105.1.871</td>
<td>P4_2 mc</td>
</tr>
<tr>
<td>101.7.851</td>
<td>P_p 4_2 'cm'</td>
<td>105.2.872</td>
<td>P4_2 mc1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102.1.852</td>
<td>P4_2 nm</td>
<td>105.3.873</td>
<td>P4_2 'm'c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102.2.853</td>
<td>P4_2 nm1'</td>
<td>105.4.874</td>
<td>P4_2 mc'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102.3.854</td>
<td>P4_2 'n'm</td>
<td>105.5.875</td>
<td>P4_2 m'c'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102.4.855</td>
<td>P4_2 'nm'</td>
<td>105.6.876</td>
<td>P_p 4_2 mc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102.5.856</td>
<td>P4_2 'n'm'</td>
<td>105.7.877</td>
<td>P_p 4_2 'mc'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102.6.857</td>
<td>P_4_2 nm</td>
<td>106.1.878</td>
<td>P4_2 bc</td>
<td>106.1.878</td>
<td>P4_2 bc</td>
</tr>
<tr>
<td>102.7.858</td>
<td>P_4_2 'nm'</td>
<td>106.2.879</td>
<td>P4_2 bc1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103.1.859</td>
<td>P4cc</td>
<td>106.3.880</td>
<td>P4_2 'b'c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103.2.860</td>
<td>P4cc1'</td>
<td>106.4.881</td>
<td>P4_2 'bc'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103.3.861</td>
<td>P4'c'c</td>
<td>106.5.882</td>
<td>P4_2 b'c'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103.4.862</td>
<td>P4'cc'</td>
<td>107.1.883</td>
<td>l4mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103.5.863</td>
<td>P4c'c'</td>
<td>107.2.884</td>
<td>l4mm1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103.6.864</td>
<td>P_p 4cc</td>
<td>107.3.885</td>
<td>l4'm'm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103.7.865</td>
<td>P_p 4'cc'</td>
<td>107.4.886</td>
<td>l4'm'm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 21
107.5.887	l4m'm'	110.3.908	l4,'c'd'		
107.6.888	l_p, 4mm	P, 4mm	110.4.909	l4,'cd'	
107.7.889	l_p, 4'm'm'	P, 4_2 nm	110.5.910	l4,'c'd'	
107.8.890	l_p, 4'm'm'	P, 4_2 mc			
107.9.891	l_p, 4'm'm'	P, 4 mc	111.1.911	P42m	
			111.2.912	P42m1'	
108.1.892	l4cm	111.3.913	P4'2'm		
108.2.893	l4cm1'	111.4.914	P4'2m'		
108.3.894	l4'c'm	111.5.915	P42'm'		
108.4.895	l4'cm'	111.6.916	P_2c 42m	P_c 42m	
108.5.896	l4'cm'	111.7.917	P_p 42m	P_c 4m2	
108.6.897	l_p, 4cm	P, 4bm	111.8.918	P_1 42m	l_c 4m2
108.7.898	l_p, 4'c'm	P, 4_2 cm	111.9.919	P_2c 42'm'	P_c 42c
108.8.899	l_p, 4'cm'	P, 4_2 bc	111.10.920	P_p 4'2m'	P_c 4b2
108.9.900	l_p, 4c'm'	P, 4cc	111.11.921	P_1 4'2m'	l_c 4c2
109.1.901	l4, md	112.1.922	P42c		
109.2.902	l4, md1'	112.2.923	P42c1'		
109.3.903	l4,'m'd	112.3.924	P4'2c'		
109.4.904	l4,'md'	112.4.925	P4'2c'		
109.5.905	l4,'m'd'	112.5.926	P42'c'		
			112.6.927	P_p 42c	P_c 4c2
110.1.906	l4, cd	112.7.928	P_p 4'2c'	P_c 4n2	
110.2.907	l4, cd1'				

TABLE 1.4 - 3D - 22
<table>
<thead>
<tr>
<th>Code</th>
<th>Symbol</th>
<th>Code</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>113.1.929</td>
<td>P42,m</td>
<td>116.1.951</td>
<td>P4c2</td>
</tr>
<tr>
<td>113.2.930</td>
<td>P42,m1'</td>
<td>116.2.952</td>
<td>P4c21'</td>
</tr>
<tr>
<td>113.3.931</td>
<td>P4'2,1'</td>
<td>116.3.953</td>
<td>P4'c2'</td>
</tr>
<tr>
<td>113.4.932</td>
<td>P4'2,1'</td>
<td>116.4.954</td>
<td>P4'c2'</td>
</tr>
<tr>
<td>113.5.933</td>
<td>P42,1'</td>
<td>116.5.955</td>
<td>P4c2'</td>
</tr>
<tr>
<td>113.6.934</td>
<td>P2c 42,m</td>
<td>116.6.956</td>
<td>P2 4c2</td>
</tr>
<tr>
<td>113.7.935</td>
<td>P2c 4'2,1'</td>
<td>116.7.957</td>
<td>P2 4'c2'</td>
</tr>
<tr>
<td></td>
<td>P42,m</td>
<td></td>
<td>P4c2'</td>
</tr>
<tr>
<td>114.1.936</td>
<td>P42,c</td>
<td>117.1.958</td>
<td>P4b2</td>
</tr>
<tr>
<td>114.2.937</td>
<td>P42,c1'</td>
<td>117.2.959</td>
<td>P4b21'</td>
</tr>
<tr>
<td>114.3.938</td>
<td>P4'2,1'</td>
<td>117.3.960</td>
<td>P4'b2'</td>
</tr>
<tr>
<td>114.4.939</td>
<td>P4'2,1'</td>
<td>117.4.961</td>
<td>P4'b2'</td>
</tr>
<tr>
<td>114.5.940</td>
<td>P42,1'</td>
<td>117.5.962</td>
<td>P4b2'</td>
</tr>
<tr>
<td>115.1.941</td>
<td>P4m2</td>
<td>117.6.963</td>
<td>P2c 4b2</td>
</tr>
<tr>
<td>115.2.942</td>
<td>P4m21'</td>
<td>117.7.964</td>
<td>P2c 4'b2'</td>
</tr>
<tr>
<td>115.3.943</td>
<td>P4'm2'</td>
<td>117.8.965</td>
<td>P4b2'</td>
</tr>
<tr>
<td>115.4.944</td>
<td>P4'm2'</td>
<td>118.1.965</td>
<td>P4n2</td>
</tr>
<tr>
<td>115.5.945</td>
<td>P4'm2'</td>
<td>118.2.966</td>
<td>P4n21'</td>
</tr>
<tr>
<td>115.6.946</td>
<td>P2c 4m2</td>
<td>118.3.967</td>
<td>P4'n2</td>
</tr>
<tr>
<td>115.7.947</td>
<td>P2 4m2</td>
<td>118.4.968</td>
<td>P4'n2'</td>
</tr>
<tr>
<td>115.8.948</td>
<td>P2 4m2</td>
<td>118.5.969</td>
<td>P4n'2'</td>
</tr>
<tr>
<td>115.9.949</td>
<td>P2c 4'm2'</td>
<td>118.6.970</td>
<td>P2 4n2</td>
</tr>
<tr>
<td>115.10.950</td>
<td>P2 4'm2'</td>
<td>119.1.971</td>
<td>4m2</td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 23
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>119.2.972</td>
<td>$I\overline{4}m21'$</td>
<td>121.9.993</td>
<td>$I_p \overline{4}2'm'$</td>
</tr>
<tr>
<td>119.3.973</td>
<td>$I\overline{4}'m'2$</td>
<td>122.1.994</td>
<td>$I\overline{4}2d$</td>
</tr>
<tr>
<td>119.4.974</td>
<td>$I\overline{4}'m'2$</td>
<td>122.2.995</td>
<td>$I\overline{4}2d1'$</td>
</tr>
<tr>
<td>119.5.975</td>
<td>$I\overline{4}m'2$</td>
<td>122.3.996</td>
<td>$I\overline{4}'2'd$</td>
</tr>
<tr>
<td>119.6.976</td>
<td>$I_p \overline{4}m2$</td>
<td>122.4.997</td>
<td>$I\overline{4}'2'd'$</td>
</tr>
<tr>
<td>119.7.977</td>
<td>$I_p \overline{4}'m'2$</td>
<td>122.5.998</td>
<td>$I\overline{4}2'd'$</td>
</tr>
<tr>
<td>120.1.978</td>
<td>$I\overline{4}c2$</td>
<td>123.1.999</td>
<td>$P4/mmm$</td>
</tr>
<tr>
<td>120.2.979</td>
<td>$I\overline{4}c21'$</td>
<td>123.2.1000</td>
<td>$P4/mmm1'$</td>
</tr>
<tr>
<td>120.3.980</td>
<td>$I\overline{4}'c'2$</td>
<td>123.3.1001</td>
<td>$P4/m'mm$</td>
</tr>
<tr>
<td>120.4.981</td>
<td>$I\overline{4}'c'2$</td>
<td>123.4.1002</td>
<td>$P4'/m'm'm$</td>
</tr>
<tr>
<td>120.5.982</td>
<td>$I\overline{4}c'2$</td>
<td>123.5.1003</td>
<td>$P4'/mmm'$</td>
</tr>
<tr>
<td>120.6.983</td>
<td>$I_p \overline{4}c2$</td>
<td>123.6.1004</td>
<td>$P4'/m'm'm$</td>
</tr>
<tr>
<td>120.7.984</td>
<td>$I_p \overline{4}'c'2'$</td>
<td>123.7.1005</td>
<td>$P4/mm'm'$</td>
</tr>
<tr>
<td>121.1.985</td>
<td>$I\overline{4}2m$</td>
<td>123.8.1006</td>
<td>$P4'/m'm'm'$</td>
</tr>
<tr>
<td>121.2.986</td>
<td>$I\overline{4}2m1'$</td>
<td>123.9.1007</td>
<td>$P4/m'm'm'$</td>
</tr>
<tr>
<td>121.3.987</td>
<td>$I\overline{4}'2'm$</td>
<td>123.10.1008</td>
<td>$P_{2c} 4/mmm$</td>
</tr>
<tr>
<td>121.4.988</td>
<td>$I\overline{4}'2'm'$</td>
<td>123.11.1009</td>
<td>$P_p 4/mmm$</td>
</tr>
<tr>
<td>121.5.989</td>
<td>$I\overline{4}'2'm'$</td>
<td>123.12.1010</td>
<td>$P_I 4/mmm$</td>
</tr>
<tr>
<td>121.6.990</td>
<td>$I_p 42m$</td>
<td>123.13.1011</td>
<td>$P_{2c} 4'/m'm'm'$</td>
</tr>
<tr>
<td>121.7.991</td>
<td>$I_p \overline{4}'2'm$</td>
<td>123.14.1012</td>
<td>$P_{2c} 4'/mmm'$</td>
</tr>
<tr>
<td>121.8.992</td>
<td>$I_p \overline{4}'2'm'$</td>
<td>123.15.1013</td>
<td>$P_{2c} 4/mm'm'm'$</td>
</tr>
</tbody>
</table>

Table 1.4 - 3D - 24
<table>
<thead>
<tr>
<th>Code</th>
<th>Structure</th>
<th>Code</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>123.17.1015</td>
<td>P₄ 4'/mmm'</td>
<td>P₄ 4'/mmm'</td>
<td>125.7.1037</td>
</tr>
<tr>
<td>123.18.1016</td>
<td>P₄ 4'/m'mm'</td>
<td>P₄ 4'/m'mm'</td>
<td>125.8.1038</td>
</tr>
<tr>
<td>123.19.1017</td>
<td>P₄ 4/mm'm'</td>
<td>I₄ 4/mcm</td>
<td>125.9.1039</td>
</tr>
<tr>
<td>124.1.1018</td>
<td>P₄/mcc</td>
<td>125.10.1040</td>
<td>P₂c 4/nbm</td>
</tr>
<tr>
<td>124.2.1019</td>
<td>P₄/mcc1'</td>
<td>125.11.1041</td>
<td>P₂c 4'/nb'm</td>
</tr>
<tr>
<td>124.3.1020</td>
<td>P₄/m'cc</td>
<td>125.12.1042</td>
<td>P₂c 4'/nb'm'</td>
</tr>
<tr>
<td>124.4.1021</td>
<td>P₄'/mc'c</td>
<td>125.13.1043</td>
<td>P₂c 4'/nb'm'</td>
</tr>
<tr>
<td>124.5.1022</td>
<td>P₄'/mcc'</td>
<td>126.1.1044</td>
<td>P₄/nnc</td>
</tr>
<tr>
<td>124.6.1023</td>
<td>P₄'/m'c'c</td>
<td>126.2.1045</td>
<td>P₄/nnc1'</td>
</tr>
<tr>
<td>124.7.1024</td>
<td>P₄/mc'c'</td>
<td>126.3.1046</td>
<td>P₄/n'nc</td>
</tr>
<tr>
<td>124.8.1025</td>
<td>P₄'/m'cc'</td>
<td>126.4.1047</td>
<td>P₄'/nn'c</td>
</tr>
<tr>
<td>124.9.1026</td>
<td>P₄/m'c'c'</td>
<td>126.5.1048</td>
<td>P₄'/nnc'</td>
</tr>
<tr>
<td>124.10.1027</td>
<td>P₄ 4/mcc</td>
<td>P₄ 4/mcc</td>
<td>126.6.1049</td>
</tr>
<tr>
<td>124.11.1028</td>
<td>P₄ 4/m'cc</td>
<td>P₄ 4/ncc</td>
<td>126.7.1050</td>
</tr>
<tr>
<td>124.12.1029</td>
<td>P₄ 4'/mcc'</td>
<td>P₄ 4/mnc</td>
<td>126.8.1051</td>
</tr>
<tr>
<td>124.13.1030</td>
<td>P₄ 4'/m'cc'</td>
<td>P₄ 4/nnc</td>
<td>126.9.1052</td>
</tr>
<tr>
<td>125.1.1031</td>
<td>P₄/nbm</td>
<td>127.1.1053</td>
<td>P₄/mbm</td>
</tr>
<tr>
<td>125.2.1032</td>
<td>P₄/nbm1'</td>
<td>127.2.1054</td>
<td>P₄/mbm1'</td>
</tr>
<tr>
<td>125.3.1033</td>
<td>P₄/n'bm</td>
<td>127.3.1055</td>
<td>P₄'m'bm</td>
</tr>
<tr>
<td>125.4.1034</td>
<td>P₄'/nb'm</td>
<td>127.4.1056</td>
<td>P₄'/mb'c'</td>
</tr>
<tr>
<td>125.5.1035</td>
<td>P₄'/nb'm</td>
<td>127.5.1057</td>
<td>P₄'/mb'c'</td>
</tr>
<tr>
<td>125.6.1036</td>
<td>P₄'/n'b'm</td>
<td>127.6.1058</td>
<td>P₄'/m'b'm</td>
</tr>
<tr>
<td>Table Row</td>
<td>Structure</td>
<td>Table Row</td>
<td>Structure</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>127.7.1059</td>
<td>P4/mb'm'</td>
<td>129.7.1081</td>
<td>P4/nm'm'</td>
</tr>
<tr>
<td>127.8.1060</td>
<td>P4'/m'bm'</td>
<td>129.8.1082</td>
<td>P4'/n'm'm'</td>
</tr>
<tr>
<td>127.9.1061</td>
<td>P4/m'b'm'</td>
<td>129.9.1083</td>
<td>P4/n'm'm'</td>
</tr>
<tr>
<td>127.10.1062</td>
<td>P_{2c} 4/mbm</td>
<td>129.10.1084</td>
<td>P_{2c} 4/nmm</td>
</tr>
<tr>
<td>127.11.1063</td>
<td>P_{2c} 4'/mb'm</td>
<td>129.11.1085</td>
<td>P_{2c} 4'/nm'm</td>
</tr>
<tr>
<td>127.12.1064</td>
<td>P_{2c} 4'/mb'm</td>
<td>129.12.1086</td>
<td>P_{2c} 4'/nm'm'</td>
</tr>
<tr>
<td>127.13.1065</td>
<td>P_{2c} 4'/mb'm'</td>
<td>129.13.1087</td>
<td>P_{2c} 4/nm'm'</td>
</tr>
<tr>
<td>128.1.1066</td>
<td>P4/mnc</td>
<td>130.1.1088</td>
<td>P4/ncc</td>
</tr>
<tr>
<td>128.2.1067</td>
<td>P4/mnc1'</td>
<td>130.2.1089</td>
<td>P4/ncc1'</td>
</tr>
<tr>
<td>128.3.1068</td>
<td>P4/m'nc</td>
<td>130.3.1090</td>
<td>P4/n'cc</td>
</tr>
<tr>
<td>128.4.1069</td>
<td>P4'/mn'c</td>
<td>130.4.1091</td>
<td>P4'/nc'c</td>
</tr>
<tr>
<td>128.5.1070</td>
<td>P4'/mnc'</td>
<td>130.5.1092</td>
<td>P4'/ncc'</td>
</tr>
<tr>
<td>128.6.1071</td>
<td>P4'/m'n'c</td>
<td>130.6.1093</td>
<td>P4'/n'c'c</td>
</tr>
<tr>
<td>128.7.1072</td>
<td>P4/mn'c'</td>
<td>130.7.1094</td>
<td>P4/nc'c'</td>
</tr>
<tr>
<td>128.8.1073</td>
<td>P4'/m'nc'</td>
<td>130.8.1095</td>
<td>P4'/n'cc'</td>
</tr>
<tr>
<td>128.9.1074</td>
<td>P4/m'n'c'</td>
<td>130.9.1096</td>
<td>P4/n'c'c'</td>
</tr>
<tr>
<td>129.1.1075</td>
<td>P4/nmm</td>
<td>131.1.1097</td>
<td>P4_{2}/mmc</td>
</tr>
<tr>
<td>129.2.1076</td>
<td>P4/nmm1'</td>
<td>131.2.1098</td>
<td>P4_{2}/mmc1'</td>
</tr>
<tr>
<td>129.3.1077</td>
<td>P4/n'mm</td>
<td>131.3.1099</td>
<td>P4_{2}/m'mc</td>
</tr>
<tr>
<td>129.4.1078</td>
<td>P4'/nm'm</td>
<td>131.4.1100</td>
<td>P4_{2}'/mm'c</td>
</tr>
<tr>
<td>129.5.1079</td>
<td>P4'/nmm'</td>
<td>131.5.1101</td>
<td>P4_{2}'/mmc'</td>
</tr>
<tr>
<td>129.6.1080</td>
<td>P4'/n'm'm</td>
<td>131.6.1102</td>
<td>P4_{2}'/m'm'c</td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 26
<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>131.7.1103</td>
<td>P4 _2/ mm'c'</td>
<td>133.3.1125</td>
</tr>
<tr>
<td>131.8.1104</td>
<td>P4 _2/ 'm'm'c'</td>
<td>133.4.1126</td>
</tr>
<tr>
<td>131.9.1105</td>
<td>P4 _2/ m'm'c'</td>
<td>133.5.1127</td>
</tr>
<tr>
<td>131.10.1106</td>
<td>P _p _p 4 _2/ mm'rec</td>
<td>P _c 4 _2/ mcm</td>
</tr>
<tr>
<td>131.11.1107</td>
<td>P _p _p 4 _2/ m'm'c</td>
<td>P _c 4 _2/ ncm</td>
</tr>
<tr>
<td>131.12.1108</td>
<td>P _p _p 4 _2/ mm'c'</td>
<td>P _c 4 _2/ nmn</td>
</tr>
<tr>
<td>131.13.1109</td>
<td>P _p _p 4 _2/ 'm'm'c'</td>
<td>P _c 4 _2/ nnn</td>
</tr>
<tr>
<td>132.1.1110</td>
<td>P4 _2/ mcm</td>
<td>134.1.1132</td>
</tr>
<tr>
<td>132.2.1111</td>
<td>P4 _2/ mcm1'</td>
<td>134.2.1133</td>
</tr>
<tr>
<td>132.3.1112</td>
<td>P4 _2/ m'cm</td>
<td>134.3.1134</td>
</tr>
<tr>
<td>132.4.1113</td>
<td>P4 _2/ 'm'm'c</td>
<td>134.4.1135</td>
</tr>
<tr>
<td>132.5.1114</td>
<td>P4 _2/ 'm'm'c'</td>
<td>134.5.1136</td>
</tr>
<tr>
<td>132.6.1115</td>
<td>P4 _2/ m'c'm</td>
<td>134.6.1137</td>
</tr>
<tr>
<td>132.7.1116</td>
<td>P4 _2/ mc'm</td>
<td>134.7.1138</td>
</tr>
<tr>
<td>132.8.1117</td>
<td>P4 _2/ 'm'm'c'</td>
<td>134.8.1139</td>
</tr>
<tr>
<td>132.9.1118</td>
<td>P4 _2/ m'c'm</td>
<td>134.9.1140</td>
</tr>
<tr>
<td>132.10.1119</td>
<td>P _p _p 4 _2/ mcm</td>
<td>P _c 4 _2/ mm'rec</td>
</tr>
<tr>
<td>132.11.1120</td>
<td>P _p _p 4 _2/ m'm'c</td>
<td>P _c 4 _2/ nmc</td>
</tr>
<tr>
<td>132.12.1121</td>
<td>P _p _p 4 _2/ 'm'm'c'</td>
<td>P _c 4 _2/ mbc</td>
</tr>
<tr>
<td>132.13.1122</td>
<td>P _p _p 4 _2/ 'm'm'c'</td>
<td>P _c 4 _2/ nbc</td>
</tr>
<tr>
<td>133.1.1123</td>
<td>P4 _2/ nbc</td>
<td>135.3.1145</td>
</tr>
<tr>
<td>133.2.1124</td>
<td>P4 _2/ nbc1'</td>
<td>135.4.1146</td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 27
135.5.1147	P4 \textsubscript{2}/mbc'	137.9.1169	P4 \textsubscript{2}/n'mc'
135.6.1148	P4 \textsubscript{2}/m'b'c		
135.7.1149	P4 \textsubscript{2}/mb'c'	138.1.1170	P4 \textsubscript{2}/ncm
135.8.1150	P4 \textsubscript{2}/m'bc'	138.2.1171	P4 \textsubscript{2}/ncm1'
135.9.1151	P4 \textsubscript{2}/m'b'c'	138.3.1172	P4 \textsubscript{2}/n'c'
136.1.1152	**P4 \textsubscript{2}/nmn**	138.4.1173	P4 \textsubscript{2}/nc'm
136.2.1153	P4 \textsubscript{2}/nmn1'	138.5.1174	P4 \textsubscript{2}/nc'm'
136.3.1154	P4 \textsubscript{2}/m'n'm	138.6.1175	P4 \textsubscript{2}/n'c'm
136.4.1155	P4 \textsubscript{2}/mn'm	138.7.1176	P4 \textsubscript{2}/nc'm'
136.5.1156	P4 \textsubscript{2}/mn'm'	138.8.1177	P4 \textsubscript{2}/n'c'm'
136.6.1157	P4 \textsubscript{2}/m'n'm	138.9.1178	P4 \textsubscript{2}/n'c'm'
136.7.1158	P4 \textsubscript{2}/mn'm'	139.1.1179	I4/mmm
136.8.1159	P4 \textsubscript{2}/m'n'm'	139.2.1180	I4/mmm1'
136.9.1160	P4 \textsubscript{2}/m'n'm'	139.3.1181	I4/m'mm
137.1.1161	**P4 \textsubscript{2}/nmc**	139.4.1182	I4'/mm'm
137.2.1162	P4 \textsubscript{2}/nmc1'	139.5.1183	I4'/mmm'
137.3.1163	P4 \textsubscript{2}/n'mc	139.6.1184	I4'/m'm'm
137.4.1164	P4 \textsubscript{2}/nm'c	139.7.1185	I4/mm'm'
137.5.1165	P4 \textsubscript{2}/n'mc'	139.8.1186	I4'/m'm'm'
137.6.1166	P4 \textsubscript{2}/n'mc	139.9.1187	I4/m'm'm'
137.7.1167	P4 \textsubscript{2}/nm'c'	139.10.1188	I_{p} 4/mmm
137.8.1168	P4 \textsubscript{2}/n'mc'	139.11.1189	I_{p} 4/m'mm'

TABLE 1.4 - 3D - 28
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>139.13.1191</td>
<td>$I_p, 4'/mmm'$</td>
<td>$P_1, 4_z/mmc$</td>
<td>141.1.1213</td>
</tr>
<tr>
<td>139.14.1192</td>
<td>$I_p, 4'/m'm'm$</td>
<td>$P_1, 4_z/nnc$</td>
<td>141.2.1214</td>
</tr>
<tr>
<td>139.15.1193</td>
<td>$I_p, 4/mm'm'$</td>
<td>$P_1, 4/mnc$</td>
<td>141.3.1215</td>
</tr>
<tr>
<td>139.16.1194</td>
<td>$I_p, 4'/m'm'm$</td>
<td>$P_1, 4_z/nmc$</td>
<td>141.4.1216</td>
</tr>
<tr>
<td>139.17.1195</td>
<td>$I_p, 4/m'm'm'$</td>
<td>$P_1, 4/nnc$</td>
<td>141.5.1217</td>
</tr>
<tr>
<td>140.1.1196</td>
<td>I_4/mcm</td>
<td></td>
<td>141.5.1218</td>
</tr>
<tr>
<td>140.2.1197</td>
<td>$I_4/mcm'1'$</td>
<td></td>
<td>141.6.1219</td>
</tr>
<tr>
<td>140.3.1198</td>
<td>$I_4/m'cm$</td>
<td></td>
<td>141.7.1220</td>
</tr>
<tr>
<td>140.4.1199</td>
<td>$I_4'/mc'm$</td>
<td></td>
<td>141.8.1221</td>
</tr>
<tr>
<td>140.5.1200</td>
<td>I_4'/mcm'</td>
<td></td>
<td>142.1.1222</td>
</tr>
<tr>
<td>140.6.1201</td>
<td>$I_4'/m'c'm$</td>
<td></td>
<td>142.2.1223</td>
</tr>
<tr>
<td>140.7.1202</td>
<td>$I_4/mc'm'$</td>
<td></td>
<td>142.3.1224</td>
</tr>
<tr>
<td>140.8.1203</td>
<td>$I_4'/m'c'm'$</td>
<td></td>
<td>142.4.1225</td>
</tr>
<tr>
<td>140.9.1204</td>
<td>$I_4/m'c'm'$</td>
<td></td>
<td>142.5.1226</td>
</tr>
<tr>
<td>140.10.1205</td>
<td>$I_p, 4/mcm$</td>
<td>$P_1, 4/mcc$</td>
<td>142.6.1227</td>
</tr>
<tr>
<td>140.11.1206</td>
<td>$I_p, 4/m'cm$</td>
<td>$P_1, 4/ncc$</td>
<td>142.7.1228</td>
</tr>
<tr>
<td>140.12.1207</td>
<td>$I_p, 4'/mc'm$</td>
<td>$P_1, 4_z/mbc$</td>
<td>142.8.1229</td>
</tr>
<tr>
<td>140.13.1208</td>
<td>$I_p, 4'/mcm'$</td>
<td>$P_1, 4_z/mcm$</td>
<td>142.9.1230</td>
</tr>
<tr>
<td>140.14.1209</td>
<td>$I_p, 4'/m'c'm$</td>
<td>$P_1, 4_z/nbc$</td>
<td></td>
</tr>
<tr>
<td>140.15.1210</td>
<td>$I_p, 4/mc'm'$</td>
<td>$P_1, 4/mbm$</td>
<td></td>
</tr>
<tr>
<td>140.16.1211</td>
<td>$I_p, 4'/m'cm'$</td>
<td>$P_1, 4_z/ncm$</td>
<td>143.1.1231</td>
</tr>
<tr>
<td>140.17.1212</td>
<td>$I_p, 4/m'c'm'$</td>
<td>$P_1, 4/nbm$</td>
<td>143.2.1232</td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 29
<table>
<thead>
<tr>
<th>Table 1.4 - 3D - 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>143.3.1233 P₂₃ ³</td>
</tr>
<tr>
<td>144.1.1234 P₃₁</td>
</tr>
<tr>
<td>144.2.1235 P₃₁₁'</td>
</tr>
<tr>
<td>144.3.1236 P₂₃ ³₂</td>
</tr>
<tr>
<td>145.1.1237 P₃₂</td>
</tr>
<tr>
<td>145.2.1238 P₃₂₁'</td>
</tr>
<tr>
<td>145.3.1239 P₂₃ ³₁</td>
</tr>
<tr>
<td>146.1.1240 R₃</td>
</tr>
<tr>
<td>146.2.1241 R₃₁'</td>
</tr>
<tr>
<td>146.3.1242 Rᵣ ³</td>
</tr>
<tr>
<td>147.1.1243 Pᵣ³</td>
</tr>
<tr>
<td>147.2.1244 Pᵣ³₁'</td>
</tr>
<tr>
<td>147.3.1245 Pᵣ³</td>
</tr>
<tr>
<td>147.4.1246 P₂₃ ³</td>
</tr>
<tr>
<td>148.1.1247 R₃</td>
</tr>
<tr>
<td>148.2.1248 R₃₁</td>
</tr>
<tr>
<td>148.3.1249 Rᵣ³</td>
</tr>
<tr>
<td>148.4.1250 Rᵣᵣ³</td>
</tr>
<tr>
<td>149.1.1251 P₃₁₂</td>
</tr>
<tr>
<td>149.2.1252 P₃₁₂₁</td>
</tr>
<tr>
<td>154.3.1273</td>
</tr>
<tr>
<td>154.4.1274</td>
</tr>
</tbody>
</table>

155.1.1275 R₃₂
160.1.1295 R₃m

155.2.1276	R₃₂₁'	160.2.1296	R₃m₁'		
155.3.1277	R₃₂'	160.3.1297	R₃m'		
155.4.1278	R₉₃₂	R₉₃₂	160.4.1298	R₉₃m	R₉₃m
			160.5.1299	R₉₃m'	R₉₃c

156.1.1279 P₃m₁
| 161.1.1300 | R₃c |

156.2.1280	P₃m₁₁'	161.2.1301	R₃c₁'	
156.3.1281	P₃m₁'	161.3.1302	R₃c'	
156.4.1282	P₂c₃m₁	P₃m₁	161.4.1303	P₃₁m
156.5.1283	P₂c₃m₁'	P₃c₁		

157.1.1284 P₃₁m
| 162.1.1304 | P₃₁m₁' |

157.2.1285	P₃₁m₁'	162.3.1305	P₃'₁m		
157.3.1286	P₃₁m'	162.4.1306	P₃'₁m'		
157.4.1287	P₂c₃₁m	P₃₁m	162.5.1307	P₃₁m'	
157.5.1288	P₂c₃₁m'	P₃₁c	162.6.1308	P₂c₃₁m	P₂c₃₁m
	162.7.1309	P₂c₃₁m'	P₂c₃₁c		

158.1.1289 P₃c₁
| 163.1.1310 | P₃₁c |

| 158.2.1290 | P₃c₁₁' | 163.2.1311 | P₃₁c₁' |
| 158.3.1291 | P₃c'₁ | 163.3.1312 | P₃'₁c |

159.1.1292 P₃₁c
| 163.4.1313 | P₃'₁c' |

TABLE 1.4 - 3D - 31
<table>
<thead>
<tr>
<th>Code</th>
<th>Symbol</th>
<th>Code</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>163.5.1314</td>
<td>P31c'</td>
<td>167.2.1335</td>
<td>R3c1'</td>
</tr>
<tr>
<td>164.1.1315</td>
<td>P3m1</td>
<td>167.3.1336</td>
<td>R3'c</td>
</tr>
<tr>
<td>164.2.1316</td>
<td>P3m11'</td>
<td>167.4.1337</td>
<td>R3'c'</td>
</tr>
<tr>
<td>164.3.1317</td>
<td>P3'm1</td>
<td>167.5.1338</td>
<td>R3c'</td>
</tr>
<tr>
<td>164.4.1318</td>
<td>P3'm1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>164.5.1319</td>
<td>P3m'1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>164.6.1320</td>
<td>P2c3m1</td>
<td>Pc3m1</td>
<td></td>
</tr>
<tr>
<td>164.7.1321</td>
<td>P2c3m1'</td>
<td>Pc3c1</td>
<td></td>
</tr>
<tr>
<td>165.1.1322</td>
<td>P3c1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165.2.1323</td>
<td>P3c11'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165.3.1324</td>
<td>P3'c1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165.4.1325</td>
<td>P3'c'1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165.5.1326</td>
<td>P3c'1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166.1.1327</td>
<td>R3m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166.2.1328</td>
<td>R3m1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166.3.1329</td>
<td>R3'm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166.4.1330</td>
<td>R3'm'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166.5.1331</td>
<td>R3m'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166.6.1332</td>
<td>R3m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166.7.1333</td>
<td>R3m'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>167.1.1334</td>
<td>R3c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HEXAGONAL SYSTEM

<table>
<thead>
<tr>
<th>Code</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>168.1.1339</td>
<td>P6</td>
</tr>
<tr>
<td>168.2.1340</td>
<td>P61'</td>
</tr>
<tr>
<td>168.3.1341</td>
<td>P6'</td>
</tr>
<tr>
<td>168.4.1342</td>
<td>P2c6</td>
</tr>
<tr>
<td>168.5.1343</td>
<td>P2c6'</td>
</tr>
<tr>
<td>169.1.1344</td>
<td>P6_1</td>
</tr>
<tr>
<td>169.2.1345</td>
<td>P6_1'</td>
</tr>
<tr>
<td>169.3.1346</td>
<td>P6_1'</td>
</tr>
<tr>
<td>170.1.1347</td>
<td>P6_5</td>
</tr>
<tr>
<td>170.2.1348</td>
<td>P6_5'</td>
</tr>
<tr>
<td>170.3.1349</td>
<td>P6_5'</td>
</tr>
<tr>
<td>171.1.1350</td>
<td>P6_2</td>
</tr>
<tr>
<td>171.2.1351</td>
<td>P6_2'</td>
</tr>
<tr>
<td>171.3.1352</td>
<td>P6_2'</td>
</tr>
<tr>
<td>171.4.1353</td>
<td>P2c6_2</td>
</tr>
<tr>
<td>171.5.1354</td>
<td>P2c6_2'</td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 32
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.1.1355</td>
<td>P6(_4)</td>
<td>176.2.1375</td>
<td>P6(_3) /m1'</td>
</tr>
<tr>
<td>172.2.1356</td>
<td>P6(_4) 1'</td>
<td>176.3.1376</td>
<td>P6(_3) /m</td>
</tr>
<tr>
<td>172.3.1357</td>
<td>P6(_4)</td>
<td>176.4.1377</td>
<td>P6(_3) /m'</td>
</tr>
<tr>
<td>172.4.1358</td>
<td>P(_{2c}) 6(_4)</td>
<td>176.5.1378</td>
<td>P6(_3) /m'</td>
</tr>
<tr>
<td>172.5.1359</td>
<td>P(_{2c}) 6(_4)'</td>
<td></td>
<td>177.1.1379</td>
</tr>
<tr>
<td>173.1.1360</td>
<td>P6(_3)</td>
<td>177.2.1380</td>
<td>P6221'</td>
</tr>
<tr>
<td>173.2.1361</td>
<td>P6(_3) 1'</td>
<td>177.3.1381</td>
<td>P6'2'22</td>
</tr>
<tr>
<td>173.3.1362</td>
<td>P6(_3)</td>
<td>177.4.1382</td>
<td>P6'22'2</td>
</tr>
<tr>
<td>174.1.1363</td>
<td>P6</td>
<td>177.5.1383</td>
<td>P6'22'2</td>
</tr>
<tr>
<td>174.2.1364</td>
<td>P(_6)'1'</td>
<td>177.6.1384</td>
<td>P(_{2c}) 622</td>
</tr>
<tr>
<td>174.3.1365</td>
<td>P6(_6)'</td>
<td>177.7.1385</td>
<td>P(_{2c}) 6'22'2</td>
</tr>
<tr>
<td>174.4.1366</td>
<td>P(_{2c}) 6(_6)</td>
<td>178.1.1386</td>
<td>P6,22</td>
</tr>
<tr>
<td>175.1.1367</td>
<td>P6/m</td>
<td>178.2.1387</td>
<td>P6,221'</td>
</tr>
<tr>
<td>175.2.1368</td>
<td>P6/m1'</td>
<td>178.3.1388</td>
<td>P6,'2'2</td>
</tr>
<tr>
<td>175.3.1369</td>
<td>P6'/m</td>
<td>178.4.1389</td>
<td>P6,'2'22</td>
</tr>
<tr>
<td>175.4.1370</td>
<td>P6/m'</td>
<td>178.5.1390</td>
<td>P6,'2'2</td>
</tr>
<tr>
<td>175.5.1371</td>
<td>P6'/m'</td>
<td>179.1.1391</td>
<td>P6(_5) 22</td>
</tr>
<tr>
<td>175.6.1372</td>
<td>P(_{2c}) 6/m</td>
<td>179.2.1392</td>
<td>P6(_5) 221'</td>
</tr>
<tr>
<td>175.7.1373</td>
<td>P(_{2c}) 6'/m</td>
<td>179.3.1393</td>
<td>P6(_5)'2'2</td>
</tr>
<tr>
<td>176.1.1374</td>
<td>P6(_3) /m</td>
<td>179.4.1394</td>
<td>P6(_5)'2'2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>179.5.1395</td>
<td>P6(_5)'2'2</td>
</tr>
<tr>
<td>Code</td>
<td>Symbol</td>
<td>Code</td>
<td>Symbol</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>180.1.1396</td>
<td>P6₂ 2₂</td>
<td>183.3.1417</td>
<td>P6'm'm</td>
</tr>
<tr>
<td>180.2.1397</td>
<td>P6₂ 2₂1'</td>
<td>183.4.1418</td>
<td>P6'm'm'</td>
</tr>
<tr>
<td>180.3.1398</td>
<td>P6₂'2'2</td>
<td>183.5.1419</td>
<td>P6m'm'</td>
</tr>
<tr>
<td>180.4.1399</td>
<td>P6₂'2'2</td>
<td>183.6.1420</td>
<td>P₂c 6mm</td>
</tr>
<tr>
<td>180.5.1400</td>
<td>P6₂ 2₂'2</td>
<td>183.7.1421</td>
<td>P₂c 6'm'm'</td>
</tr>
<tr>
<td>180.6.1401</td>
<td>P₂c 6₂ 2₂</td>
<td>P₆ 6₂ 2₂</td>
<td>183.8.1422</td>
</tr>
<tr>
<td>180.7.1402</td>
<td>P₂c 6₂'2'2</td>
<td>P₆ 6₂ 2₂</td>
<td>183.9.1423</td>
</tr>
<tr>
<td>181.1.1403</td>
<td>P₆₄ 2₂</td>
<td>184.1.1424</td>
<td>P6cc</td>
</tr>
<tr>
<td>181.2.1404</td>
<td>P₆₄ 2₂1'</td>
<td>184.2.1425</td>
<td>P6cc1'</td>
</tr>
<tr>
<td>181.3.1405</td>
<td>P₆₄'2'2</td>
<td>184.3.1426</td>
<td>P6'c'c'</td>
</tr>
<tr>
<td>181.4.1406</td>
<td>P₆₄'2'2</td>
<td>184.4.1427</td>
<td>P6'cc'</td>
</tr>
<tr>
<td>181.5.1407</td>
<td>P₆₄ 2'2'</td>
<td>184.5.1428</td>
<td>P6c'c'</td>
</tr>
<tr>
<td>181.6.1408</td>
<td>P₂c 6₄ 2₂</td>
<td>P₆ 6₁ 2₂</td>
<td>185.1.1429</td>
</tr>
<tr>
<td>181.7.1409</td>
<td>P₂c 6₄'2'2</td>
<td>P₆ 6₁ 2₂</td>
<td>185.2.1430</td>
</tr>
<tr>
<td>182.1.1410</td>
<td>p₆₃ 2₂</td>
<td>185.3.1431</td>
<td>P₆₃'c'm</td>
</tr>
<tr>
<td>182.2.1411</td>
<td>p₆₃ 2₂1'</td>
<td>185.4.1432</td>
<td>P₆₃'c'm'</td>
</tr>
<tr>
<td>182.3.1412</td>
<td>p₆₃'2'2</td>
<td>185.5.1433</td>
<td>P₆₃ c'm'</td>
</tr>
<tr>
<td>182.4.1413</td>
<td>p₆₃'2'2</td>
<td>186.1.1434</td>
<td>P₆₃ mc</td>
</tr>
<tr>
<td>182.5.1414</td>
<td>p₆₃'2'2</td>
<td>186.2.1435</td>
<td>P₆₃ mc1'</td>
</tr>
<tr>
<td>183.1.1415</td>
<td>p₆mm</td>
<td>186.3.1436</td>
<td>P₆₃ m'c</td>
</tr>
<tr>
<td>183.2.1416</td>
<td>P₆mm1'</td>
<td>186.4.1437</td>
<td>P₆₃ 'mc'</td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 34
186.5.1438	P\textsubscript{6}\textsubscript{3} m'c'	190.2.1459	P6\textsubscript{2}c1'	
187.1.1439	P6m2	190.3.1460	P6'2'c	
187.2.1440	P6m21'	190.4.1461	P6'2c'	
187.3.1441	P\bar{6}m'2	190.5.1462	P6'2'c'	
187.4.1442	P6'm2'	191.1.1463	P6/mmm	
187.5.1443	P6m'2'	191.2.1464	P6/mmm1'	
187.6.1444	P\textsubscript{2}c \bar{6}m2	P\textsubscript{c} \bar{6}m2	191.3.1465	P6/m'mm
187.7.1445	P\textsubscript{2}c \bar{6}'m'2	P\textsubscript{c} \bar{6}c2	191.4.1466	P6'/mm'm
188.1.1446	P6c2	191.5.1467	P6'/mmm'	
188.2.1447	P\bar{6}c21'	191.6.1468	P6'/m'm'm	
188.3.1448	P\textsubscript{6}c'2	191.7.1469	P6'/m'm'm'	
188.4.1449	P\textsubscript{6}'c2'	191.8.1470	P6/mm'm'	
188.5.1450	P\textsubscript{6}c'2'	191.9.1471	P6/m'm'm'	
189.1.1451	P62m	191.10.1472	P\textsubscript{2}c 6/mmm	P\textsubscript{c} 6/mmm
189.2.1452	P\bar{6}2m1'	191.11.1473	P\textsubscript{2}c 6'/mm'm	P\textsubscript{c} 6\textsubscript{3} /mcm
189.3.1453	P6'2'm	191.12.1474	P\textsubscript{2}c 6'/mmm'	P\textsubscript{c} 6\textsubscript{3} /mmc
189.4.1454	P6'2'm'	191.13.1475	P\textsubscript{2}c 6/m'm'm'	P\textsubscript{c} 6/mcc
189.5.1455	P\bar{6}2'm'	192.1.1476	P6/mcc	
189.6.1456	P\textsubscript{2}c \bar{6}2m	P\textsubscript{c} \bar{6}2m	192.2.1477	P6/mcc1'
189.7.1457	P\textsubscript{2}c \bar{6}'2m'	P\textsubscript{c} \bar{6}2c	192.3.1478	P6/m'cc
190.1.1458	P6\textsubscript{2}c	192.4.1479	P6'/mc'c	

TABLE 1.4 - 3D - 35
192.5.1480	P6'/mcc'	194.9.1502	P6₃/m'm'c'	
192.6.1481	P6'/m'c'c			
192.7.1482	P6'/m'cc'			
192.8.1483	P6/mc'c'	**CUBIC SYSTEM**		
192.9.1484	P6/m'c'c'			
193.1.1485	**P6₃/mcm**			
193.2.1486	P6₃/mcm1'	**196.1.1506**	F23	
193.3.1487	P6₃/m'cm			
193.4.1488	P6₃/mc'm			
193.5.1489	P6₃/mcm'	**197.1.1508**	I23	
193.6.1490	P6₃/m'c'm			
193.7.1491	P6₃/m'cm'			
193.8.1492	P6₃/mc'm'	**198.1.1511**	P2,3	
193.9.1493	P6₃/m'c'm'			
194.1.1494	**P6₃/mmc**			
194.2.1495	P6₃/mmc1'	**199.1.1513**	I2,3	
194.3.1496	P6₃/m'mc			
194.4.1497	P6₃/m'mc'			
194.5.1498	P6₃/mm'm'c	**200.1.1516**	Pm̅3	
194.6.1499	P6₃/m'm'm'c			
194.7.1500	P6₃/m'm'mc'			
194.8.1501	P6₃/mm'm'c'	**200.4.1519**	P F m̅3	
				Fₘ m̅3

TABLE 1.4 - 3D - 36
<table>
<thead>
<tr>
<th>Code</th>
<th>Symbol</th>
<th>Code</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>201.1.1520</td>
<td>Pn$\bar{3}$</td>
<td>206.3.1540</td>
<td>Ia$'^3$'</td>
</tr>
<tr>
<td>201.2.1521</td>
<td>Pn31'</td>
<td>206.4.1541</td>
<td>Ip a$'^3$</td>
</tr>
<tr>
<td>201.3.1522</td>
<td>Pn$'^3$'</td>
<td></td>
<td>P_{I} a$'^3$</td>
</tr>
<tr>
<td>201.4.1523</td>
<td>P$_{F}$ n$\bar{3}$</td>
<td>207.2.1543</td>
<td>P4321'</td>
</tr>
<tr>
<td></td>
<td>F$_{s}$ d$\bar{3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202.1.1524</td>
<td>Fm$\bar{3}$</td>
<td>207.3.1544</td>
<td>P4'$32'$</td>
</tr>
<tr>
<td>202.2.1525</td>
<td>Fm31'</td>
<td>207.4.1545</td>
<td>P$_{F}$ 432</td>
</tr>
<tr>
<td>202.3.1526</td>
<td>Fm$'^3$'</td>
<td></td>
<td>F$_{s}$ 432</td>
</tr>
<tr>
<td>203.1.1527</td>
<td>Fd$\bar{3}$</td>
<td>208.2.1547</td>
<td>P${4{2}}$ 321'</td>
</tr>
<tr>
<td>203.2.1528</td>
<td>Fd31'</td>
<td>208.3.1548</td>
<td>P${4{2}}'$32'</td>
</tr>
<tr>
<td>203.3.1529</td>
<td>Fd$'^3$'</td>
<td>208.4.1549</td>
<td>P${F{2}}$ 4,32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F$_{s}$ 4,32</td>
</tr>
<tr>
<td>204.1.1530</td>
<td>Im$\bar{3}$</td>
<td>209.1.1550</td>
<td>F432</td>
</tr>
<tr>
<td>204.2.1531</td>
<td>Im31'</td>
<td>209.2.1551</td>
<td>F4321'</td>
</tr>
<tr>
<td>204.3.1532</td>
<td>Im$'^3$'</td>
<td>209.3.1552</td>
<td>F4'$32'$</td>
</tr>
<tr>
<td>204.4.1533</td>
<td>I$_{p}$ m$\bar{3}$</td>
<td>210.2.1554</td>
<td>F${4{2}}'$32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F$_{4}$,32</td>
</tr>
<tr>
<td>204.5.1534</td>
<td>I$_{p}$ m31'</td>
<td>210.2.1554</td>
<td>F$_{4}$,321'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205.1.1535</td>
<td>Pa$\bar{3}$</td>
<td>210.3.1555</td>
<td>P${4{1}}'$32'</td>
</tr>
<tr>
<td>205.2.1536</td>
<td>Pa$\bar{3}$</td>
<td></td>
<td>P${4{1}}$ 32</td>
</tr>
<tr>
<td>205.3.1537</td>
<td>Pa$'^3$'</td>
<td>211.2.1557</td>
<td>I4321'</td>
</tr>
<tr>
<td>206.1.1538</td>
<td>Ia$\bar{3}$</td>
<td>211.3.1558</td>
<td>I4'$32'$</td>
</tr>
<tr>
<td>206.2.1539</td>
<td>Ia$'^3$1'</td>
<td>211.4.1559</td>
<td>Ip 432</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P$_{I}$ 432</td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 37
TABLE 1. 4 - 3D - 38

211.5.1560 \(I_p, 4'32' \) \(P_1 4_2 32 \) \(217.1.1580 \(I\bar{4}3m \)

212.1.1561 \(P_{43} 32 \) \(217.2.1581 I\bar{4}3m1' \)

212.2.1562 \(P_{43} 321' \) \(217.3.1582 I4'3m' \)

212.3.1563 \(P_{43} 32' \) \(217.4.1583 I_p \bar{4}3m \) \(P_4 43m \)

213.1.1564 \(P_{43} 32 \) \(218.1.1585 P_{43n} \)

213.2.1565 \(P_{43} 321' \) \(218.2.1586 P_{43} 3n1' \)

213.3.1566 \(P_{43} 32' \) \(218.3.1587 P_{43} 3n' \)

214.1.1567 \(I4, 32 \) \(219.1.1588 F_{43c} \)

214.2.1568 \(I4, 321' \) \(219.2.1589 F_{43c1'} \)

214.3.1569 \(I4, 32' \) \(219.3.1590 F4'3c' \)

214.4.1570 \(I_p 4, 32 \) \(P_1 4_3 32 \) \(219.4.1583 I43d \)

214.5.1571 \(I_p 4_1, 32' \) \(P_1 4_1 32 \) \(220.1.1591 I43d \)

215.1.1572 \(P_{43m} \) \(220.2.1592 I\bar{4}3d1' \)

215.2.1573 \(P_{43m1'} \) \(220.3.1593 I4'3d' \)

215.3.1574 \(P_{43m'} \) \(221.1.1594 P_{m\bar{3}m} \)

215.4.1575 \(P_{r43m} \) \(F_s 43m \) \(221.2.1595 P_{m\bar{3}m1'} \)

215.5.1576 \(P_{r43m'} \) \(F_s 43c \) \(221.3.1596 P_{m\bar{3}m'} \)

216.1.1577 \(F_{43m} \) \(221.4.1597 P_{m\bar{3}m} \)

216.2.1578 \(F_{43m1'} \) \(221.5.1598 P_{m\bar{3}m} \)

216.3.1579 \(F_{43m'} \) \(221.6.1599 P_{F} m3m \) \(F_s m3m \)

217.1.1580 \(I\bar{4}3m \)

217.2.1581 \(I\bar{4}3m1' \)

217.3.1582 \(I4'3m' \)

217.4.1583 \(I_p \bar{4}3m \) \(P_4 43m \)

217.5.1584 \(I_p 4'3m' \) \(P_4 43n \)

218.1.1585 \(P_{43n} \)

218.2.1586 \(P_{43} 3n1' \)

218.3.1587 \(P_{43} 3n' \)

219.1.1588 \(F_{43c} \)

219.2.1589 \(F_{43c1'} \)

219.3.1590 \(F4'3c' \)

219.4.1583 \(I43d \)

220.1.1591 \(I43d \)

220.2.1592 \(I\bar{4}3d1' \)

220.3.1593 \(I4'3d' \)

221.1.1594 \(P_{m\bar{3}m} \)

221.2.1595 \(P_{m\bar{3}m1'} \)

221.3.1596 \(P_{m\bar{3}m'} \)

221.4.1597 \(P_{m\bar{3}m} \)

221.5.1598 \(P_{m\bar{3}m} \)

221.6.1599 \(P_{F} m3m \) \(F_s m3m \)

221.7.1600 \(P_{F} m3m' \) \(F_s m3c \)
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>222.1.1601</td>
<td>Pn3n</td>
<td>225.5.1622</td>
<td>Fm3'3'm'</td>
</tr>
<tr>
<td>222.2.1602</td>
<td>Pn3n1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>222.3.1603</td>
<td>Pn'3'n</td>
<td>226.2.1624</td>
<td>Fm3c1'</td>
</tr>
<tr>
<td>222.4.1604</td>
<td>Pn3n'</td>
<td>226.3.1625</td>
<td>Fm3'3'c</td>
</tr>
<tr>
<td>222.5.1605</td>
<td>Pn'3'n'</td>
<td>226.4.1626</td>
<td>Fm3c'</td>
</tr>
<tr>
<td>223.1.1606</td>
<td>Pm3n</td>
<td>226.5.1627</td>
<td>Fm3'3'c'</td>
</tr>
<tr>
<td>223.2.1607</td>
<td>Pm3n1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>223.3.1608</td>
<td>Pm'3'n</td>
<td>227.2.1629</td>
<td>Fd3m1'</td>
</tr>
<tr>
<td>223.4.1609</td>
<td>Pm3n'</td>
<td>227.3.1630</td>
<td>Fd3'3'm</td>
</tr>
<tr>
<td>223.5.1610</td>
<td>Pm'3'n'</td>
<td>227.4.1631</td>
<td>Fd3m'</td>
</tr>
<tr>
<td>224.1.1611</td>
<td>Pn3m</td>
<td>227.5.1632</td>
<td>Fd'3'm'</td>
</tr>
<tr>
<td>224.2.1612</td>
<td>Pn3m1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>224.3.1613</td>
<td>Pn'3'm</td>
<td>228.2.1634</td>
<td>Fd3c1'</td>
</tr>
<tr>
<td>224.4.1614</td>
<td>Pn3m'</td>
<td>228.3.1635</td>
<td>Fd'3'c</td>
</tr>
<tr>
<td>224.5.1615</td>
<td>Pn'3'm'</td>
<td>228.4.1636</td>
<td>Fd3c'</td>
</tr>
<tr>
<td>224.6.1616</td>
<td>P_f n3m</td>
<td>228.5.1637</td>
<td>Fd'3c'</td>
</tr>
<tr>
<td>224.7.1617</td>
<td>P_f n3m'</td>
<td>F_s d3m</td>
<td></td>
</tr>
<tr>
<td>225.1.1618</td>
<td>Fm3m</td>
<td>229.1.1638</td>
<td>Im3m</td>
</tr>
<tr>
<td>225.2.1619</td>
<td>Fm3m1'</td>
<td>229.2.1639</td>
<td>Im3m1'</td>
</tr>
<tr>
<td>225.3.1620</td>
<td>Fm'3'm</td>
<td>229.3.1640</td>
<td>Im'3'm</td>
</tr>
<tr>
<td>225.4.1621</td>
<td>Fm3m'</td>
<td>229.4.1641</td>
<td>Im3m'</td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 39
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>229.6.1643</td>
<td>Iₚm₃m</td>
<td>Pₚm₃m</td>
</tr>
<tr>
<td>229.7.1644</td>
<td>Iₚm'₃'m</td>
<td>Pₚn₃m</td>
</tr>
<tr>
<td>229.8.1645</td>
<td>Iₚm₃m'</td>
<td>Pₚm₃n</td>
</tr>
<tr>
<td>229.9.1646</td>
<td>Iₚm'₃'m'</td>
<td>Pₚn₃n</td>
</tr>
<tr>
<td>230.1.1647</td>
<td>Iₚ₃d</td>
<td></td>
</tr>
<tr>
<td>230.2.1648</td>
<td>Iₚ₃d₁'</td>
<td></td>
</tr>
<tr>
<td>230.3.1649</td>
<td>Iₚ'₃'d</td>
<td></td>
</tr>
<tr>
<td>230.4.1650</td>
<td>Iₚ₃d'</td>
<td></td>
</tr>
<tr>
<td>230.5.1651</td>
<td>Iₚ'₃'d'</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1.4 - 3D - 40
Table 1.4 - 2D

Table 1.4 - 2D

Two-dimensional: Magnetic space group symbols of Table 1.1-2D compared with the one-dimensional black and white symbols given by Belov and Tarkhova (BT) (1956).

<table>
<thead>
<tr>
<th>Table 1.1-2D</th>
<th>BT</th>
<th>Table 1.1-2D</th>
<th>BT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1 p1</td>
<td>p1</td>
<td>7.3.33</td>
<td>p2m'g'</td>
</tr>
<tr>
<td>1.2.2 p11'</td>
<td>p11'</td>
<td>7.4.34</td>
<td>p2'm'g'</td>
</tr>
<tr>
<td>1.3.3 p2a1</td>
<td>p'1</td>
<td>7.5.35</td>
<td>p2'mg'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.6.36</td>
<td>p2a2m'g'</td>
</tr>
<tr>
<td>2.1.4 p211</td>
<td>p2</td>
<td>7.7.37</td>
<td>p2b2mg</td>
</tr>
<tr>
<td>2.2.5 p2111'</td>
<td>p21'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.6 p2'11</td>
<td>p2'</td>
<td>8.1.38</td>
<td>p2gg</td>
</tr>
<tr>
<td>2.4.7 p2a211</td>
<td>p2'</td>
<td>8.2.39</td>
<td>p2gg1'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.3.40</td>
<td>p2g'g'</td>
</tr>
<tr>
<td>3.1.8 p1m1</td>
<td>pm</td>
<td>8.4.41</td>
<td>p2gg</td>
</tr>
<tr>
<td>3.2.9 p1m11'</td>
<td>pm1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.10 p1m'</td>
<td>pm'</td>
<td>9.1.42</td>
<td>c2mm</td>
</tr>
<tr>
<td>3.4.11 p2a1m1</td>
<td>p'1m</td>
<td>9.2.43</td>
<td>c2mm1'</td>
</tr>
<tr>
<td>3.5.12 p2a1m1</td>
<td>p'1m</td>
<td>9.3.44</td>
<td>c2m'm'</td>
</tr>
<tr>
<td>3.6.13 p2a1m1</td>
<td>p'1g</td>
<td>9.4.45</td>
<td>c2mm'</td>
</tr>
<tr>
<td>3.7.14 p.c1m1</td>
<td>c'm</td>
<td>9.5.46</td>
<td>c2mm'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.6.47</td>
<td>c2m'm'</td>
</tr>
<tr>
<td>4.1.15 p1g1</td>
<td>pg</td>
<td>9.7.48</td>
<td>c2m'm'</td>
</tr>
<tr>
<td>4.2.16 p1g11'</td>
<td>pg1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3.17 p1g'1</td>
<td>pg'</td>
<td>10.1.49</td>
<td>p4</td>
</tr>
<tr>
<td>4.4.18 p2a1g1</td>
<td>p'1g</td>
<td>10.2.50</td>
<td>p41'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.3.51</td>
<td>p4'</td>
</tr>
<tr>
<td>5.1.19 c1m1</td>
<td>cm</td>
<td>10.4.52</td>
<td>p_p4</td>
</tr>
<tr>
<td>5.2.20 c1m11'</td>
<td>cm1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3.21 c1m'</td>
<td>cm'</td>
<td>11.1.53</td>
<td>p4mm</td>
</tr>
<tr>
<td>5.4.22 c_p1m1</td>
<td>p'cm</td>
<td>11.2.54</td>
<td>p4mm1'</td>
</tr>
<tr>
<td>5.5.23 c_p1m1</td>
<td>p'c g</td>
<td>11.3.55</td>
<td>p4m'm'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.4.56</td>
<td>p4m'm'</td>
</tr>
<tr>
<td>6.1.24 p2mm</td>
<td>pmm2</td>
<td>11.5.57</td>
<td>p4m'm'</td>
</tr>
<tr>
<td>6.2.25 p2mm1'</td>
<td>pmm21'</td>
<td>11.6.58</td>
<td>p_p4m'</td>
</tr>
<tr>
<td>6.3.26 p2m'm'</td>
<td>pm'm'</td>
<td>11.7.59</td>
<td>p_p4m'</td>
</tr>
<tr>
<td>6.4.27 p2'm'm'</td>
<td>pmm'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.5.28 p2a2m'm'</td>
<td>p'bgm</td>
<td>12.1.60</td>
<td>p4gm</td>
</tr>
<tr>
<td>6.6.29 p2mm</td>
<td>c'mm</td>
<td>12.2.61</td>
<td>p4gm1'</td>
</tr>
<tr>
<td>6.7.30 p2a2mm</td>
<td>p'bgm</td>
<td>12.3.62</td>
<td>p4g'm'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.4.63</td>
<td>p4g'm'</td>
</tr>
<tr>
<td>7.1.31 p2mg</td>
<td>pmm2</td>
<td>12.5.64</td>
<td>p4g'm'</td>
</tr>
<tr>
<td>7.2.32 p2mg1'</td>
<td>pmm21'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1.4 - 2D - 1
<table>
<thead>
<tr>
<th>Table 1.1-2D</th>
<th>BT</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1.65</td>
<td>p3</td>
</tr>
<tr>
<td>13.2.66</td>
<td>p31'</td>
</tr>
<tr>
<td>14.1.67</td>
<td>p3m1</td>
</tr>
<tr>
<td>14.2.68</td>
<td>p3m11'</td>
</tr>
<tr>
<td>14.3.69</td>
<td>p3m'1</td>
</tr>
<tr>
<td>15.1.70</td>
<td>p31m</td>
</tr>
<tr>
<td>15.2.71</td>
<td>p31m1'</td>
</tr>
<tr>
<td>15.3.72</td>
<td>p31m'</td>
</tr>
<tr>
<td>16.1.73</td>
<td>p6</td>
</tr>
<tr>
<td>16.2.74</td>
<td>p61'</td>
</tr>
<tr>
<td>16.3.75</td>
<td>p6'</td>
</tr>
<tr>
<td>17.1.76</td>
<td>p6mm</td>
</tr>
<tr>
<td>17.2.77</td>
<td>p6mm1'</td>
</tr>
<tr>
<td>17.3.78</td>
<td>p6m'm'</td>
</tr>
<tr>
<td>17.4.79</td>
<td>p6'm'm'</td>
</tr>
<tr>
<td>17.5.80</td>
<td>p6'm'm'</td>
</tr>
</tbody>
</table>
Table 1.4 - 1D

One-Dimensional: Magnetic space group symbols of Table 1.1-1D compared with the one-dimensional black and white symbols given by Niggli (1964).

<table>
<thead>
<tr>
<th>Table 1.1-1D</th>
<th>Niggli</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>p1</td>
</tr>
<tr>
<td>1.2.2</td>
<td>p11'</td>
</tr>
<tr>
<td>1.3.3</td>
<td>p_{2a}1</td>
</tr>
<tr>
<td>2.1.4</td>
<td>pm</td>
</tr>
<tr>
<td>2.2.5</td>
<td>pm1'</td>
</tr>
<tr>
<td>2.3.6</td>
<td>pm'</td>
</tr>
<tr>
<td>2.3.7</td>
<td>p_{2a}m</td>
</tr>
</tbody>
</table>
Table 2.2.3-3D Graphical Symbols

Three-Dimensional Magnetic Space Groups

2.2.3.1 Symmetry axes parallel to the plane of projection

<table>
<thead>
<tr>
<th>Symmetry Axis</th>
<th>Graphical symbol</th>
<th>Screw vector of a right-handed screw rotation in units of the shortest non-primed translation vector parallel to the axis</th>
<th>Printed symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twofold unprimed rotation axis,</td>
<td></td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Twofold primed rotation axis</td>
<td></td>
<td>None</td>
<td>2'</td>
</tr>
<tr>
<td>Twofold unprimed screw axis, 2 sub 1</td>
<td></td>
<td>1/2</td>
<td>2,</td>
</tr>
<tr>
<td>Twofold primed screw axis, 2 sub 1 primed</td>
<td></td>
<td>1/2</td>
<td>2, primed</td>
</tr>
<tr>
<td>Fourfold unprimed rotation axis</td>
<td></td>
<td>None</td>
<td>4</td>
</tr>
<tr>
<td>Fourfold primed rotation axis</td>
<td></td>
<td>None</td>
<td>4'</td>
</tr>
<tr>
<td>Fourfold unprimed screw axis, 4 sub 1</td>
<td></td>
<td>1/4</td>
<td>4,</td>
</tr>
<tr>
<td>Fourfold primed screw axis, 4 sub 1 primed</td>
<td></td>
<td>1/4</td>
<td>4, primed</td>
</tr>
<tr>
<td>Fourfold unprimed screw axis, 4 sub 2</td>
<td></td>
<td>1/2</td>
<td>4,</td>
</tr>
<tr>
<td>Fourfold primed screw axis, 4 sub 2 primed</td>
<td></td>
<td>1/2</td>
<td>4, primed</td>
</tr>
</tbody>
</table>
2.2.3.2 Symmetry axes normal to the plane of projection

<table>
<thead>
<tr>
<th>Symmetry Axis or symmetry point</th>
<th>Graphical symbol</th>
<th>Screw vector of a right-handed screw rotation in units of the shortest non-primed translation vector parallel to the axis.</th>
<th>Printed symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>None</td>
<td>None</td>
<td>1</td>
</tr>
<tr>
<td>Twofold unprimed rotation axis, 2</td>
<td></td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td>Twofold primed rotation axis, 2 primed</td>
<td></td>
<td>None</td>
<td>2'</td>
</tr>
<tr>
<td>Twofold unprimed screw axis, 2 sub 1</td>
<td></td>
<td>1/2</td>
<td>2_1</td>
</tr>
<tr>
<td>Twofold primed screw axis, 2 sub 1 primed</td>
<td></td>
<td>1/2</td>
<td>2'_1</td>
</tr>
<tr>
<td>Axis Type</td>
<td>Symbol</td>
<td>Prime</td>
<td>Factor</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>Threefold unprimed</td>
<td></td>
<td>None</td>
<td>1/3</td>
</tr>
<tr>
<td>Threefold primed</td>
<td></td>
<td>None</td>
<td>1/3</td>
</tr>
<tr>
<td>Threefold unprimed</td>
<td></td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>Threefold primed</td>
<td></td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>Fourfold unprimed</td>
<td></td>
<td>None</td>
<td>1/4</td>
</tr>
<tr>
<td>Fourfold primed</td>
<td></td>
<td>None</td>
<td>1/4</td>
</tr>
<tr>
<td>Fourfold unprimed</td>
<td></td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>Fourfold primed</td>
<td></td>
<td>1/4</td>
<td>1/4</td>
</tr>
</tbody>
</table>

Table 2.2.3 - 3
<table>
<thead>
<tr>
<th>Axis Type</th>
<th>Description</th>
<th>Axis Order</th>
<th>Subscript</th>
<th>Prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourfold unprimed</td>
<td>Screw axis, 4 sub 2</td>
<td>1/2</td>
<td>4</td>
<td>4_2</td>
</tr>
<tr>
<td>Fourfold primed</td>
<td>Screw axis, 4 sub 2 primed</td>
<td>1/2</td>
<td>4</td>
<td>$4_2'$</td>
</tr>
<tr>
<td>Fourfold unprimed</td>
<td>Screw axis, 4 sub 3</td>
<td>3/4</td>
<td>4</td>
<td>4_3</td>
</tr>
<tr>
<td>Fourfold primed</td>
<td>Screw axis, 4 sub 3 primed</td>
<td>3/4</td>
<td>4</td>
<td>$4_3'$</td>
</tr>
<tr>
<td>Sixfold unprimed</td>
<td>Rotation axis, 6</td>
<td>None</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Sixfold primed</td>
<td>Rotation axis, 6 primed</td>
<td>None</td>
<td>6</td>
<td>$6'$</td>
</tr>
<tr>
<td>Sixfold unprimed</td>
<td>Screw axis, 6 sub 1</td>
<td>1/6</td>
<td>6</td>
<td>6_1</td>
</tr>
<tr>
<td>Sixfold primed</td>
<td>Screw axis, 6 sub 1 primed</td>
<td>1/6</td>
<td>6</td>
<td>$6_1'$</td>
</tr>
<tr>
<td>Sixfold unprimed</td>
<td>Screw axis, 6 sub 2</td>
<td>1/3</td>
<td>6</td>
<td>6_2</td>
</tr>
<tr>
<td>Sixfold primed</td>
<td>Screw axis, 6 sub 2 primed</td>
<td>1/3</td>
<td>6</td>
<td>$6_2'$</td>
</tr>
</tbody>
</table>

Table 2.2.3 - 4
<table>
<thead>
<tr>
<th>Symmetry Type</th>
<th>Axis Type</th>
<th>Factor</th>
<th>Letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sixfold unprimed</td>
<td>screw axis</td>
<td>1/2</td>
<td>6_3</td>
</tr>
<tr>
<td>Sixfold primed</td>
<td>screw axis</td>
<td>1/2</td>
<td>$6_3'$</td>
</tr>
<tr>
<td>Sixfold unprimed</td>
<td>screw axis</td>
<td>2/3</td>
<td>6_4</td>
</tr>
<tr>
<td>Sixfold primed</td>
<td>screw axis</td>
<td>2/3</td>
<td>$6_4'$</td>
</tr>
<tr>
<td>Sixfold unprimed</td>
<td>screw axis</td>
<td>5/6</td>
<td>6_5</td>
</tr>
<tr>
<td>Sixfold primed</td>
<td>screw axis</td>
<td>5/6</td>
<td>$6_5'$</td>
</tr>
<tr>
<td>Unprimed center of symmetry,</td>
<td>None</td>
<td></td>
<td>$\bar{1}$</td>
</tr>
<tr>
<td>unprimed inversion center,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 bar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primed center of symmetry,</td>
<td>None</td>
<td></td>
<td>$\bar{1}'$</td>
</tr>
<tr>
<td>primed inversion center,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 bar primed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twofold unprimed rotation</td>
<td>None</td>
<td></td>
<td>$2, \bar{1} = 2/m$</td>
</tr>
<tr>
<td>axis with unprimed center of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>symmetry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twofold primed rotation axis</td>
<td>None</td>
<td></td>
<td>$2', \bar{1}' = 2'/m'$</td>
</tr>
<tr>
<td>axis with unprimed center of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>symmetry</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.2.3 - 5
<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Image</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twofold unprimed rotation axis with primed center of symmetry</td>
<td>2, (\overline{1}' = \frac{2}{m'})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twofold primed rotation axis with primed center of symmetry</td>
<td>2', (\overline{1}' = \frac{2'}{m})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twofold unprimed screw axis with unprimed center of symmetry</td>
<td>(\frac{1}{2})</td>
<td>2₁, (\overline{\tau})</td>
<td></td>
</tr>
<tr>
<td>Twofold primed screw axis with unprimed center of symmetry</td>
<td>(\frac{1}{2})</td>
<td>2₁', (\overline{\tau})</td>
<td></td>
</tr>
<tr>
<td>Twofold unprimed screw axis with primed center of symmetry</td>
<td>(\frac{1}{2})</td>
<td>2₁, (\overline{1}')</td>
<td></td>
</tr>
<tr>
<td>Twofold primed screw axis with primed center of symmetry</td>
<td>(\frac{1}{2})</td>
<td>2₁', (\overline{1}')</td>
<td></td>
</tr>
<tr>
<td>Twofold unprimed screw axis, twofold unprimed rotation axis,</td>
<td>(\frac{1}{2})</td>
<td>2₁,2'</td>
<td></td>
</tr>
<tr>
<td>and primed and unprimed centers of symmetry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twofold unprimed screw axis, twofold primed rotation axis, and</td>
<td>(\frac{1}{2})</td>
<td>2₁,2',1,(\overline{1}')</td>
<td></td>
</tr>
<tr>
<td>primed and unprimed centers of symmetry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twofold unprimed screw axis, twofold primed rotation axis, and</td>
<td>(\frac{1}{2})</td>
<td>2₁,2',(\overline{1}',\overline{\tau})</td>
<td></td>
</tr>
<tr>
<td>primed and unprimed centers of symmetry</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.2.3 - 6
<table>
<thead>
<tr>
<th>Symmetry Operation</th>
<th>Description</th>
<th>Image</th>
<th>Center of Symmetry</th>
<th>Symmetry Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threefold unprimed</td>
<td>Rotation axis with unprimed</td>
<td></td>
<td>None</td>
<td>$3, \bar{1} = \bar{3}$</td>
</tr>
<tr>
<td>Threefold unprimed</td>
<td>Rotation axis with primed</td>
<td></td>
<td>None</td>
<td>$3, \bar{1}' = \bar{3}'$</td>
</tr>
<tr>
<td>Threefold unprimed</td>
<td>Rotation axis with primed and</td>
<td></td>
<td>None</td>
<td>$3, \bar{1}', \bar{1}$</td>
</tr>
<tr>
<td>Fourfold unprimed</td>
<td>Rotation axis with unprimed</td>
<td></td>
<td>None</td>
<td>$4, \bar{1} = 4/m$</td>
</tr>
<tr>
<td>Fourfold primed</td>
<td>Rotation axis with unprimed</td>
<td></td>
<td>None</td>
<td>$4', \bar{1} = 4'/m$</td>
</tr>
<tr>
<td>Fourfold unprimed</td>
<td>Rotation axis with primed</td>
<td></td>
<td>None</td>
<td>$4, \bar{1}' = 4/m'$</td>
</tr>
<tr>
<td>Fourfold primed</td>
<td>Rotation axis with primed</td>
<td></td>
<td>None</td>
<td>$4, \bar{1}' = 4/m'$</td>
</tr>
<tr>
<td>Fourfold unprimed</td>
<td>Screw axis with unprimed</td>
<td></td>
<td>1/2</td>
<td>$4_2, \bar{1}$</td>
</tr>
<tr>
<td>Fourfold primed</td>
<td>Screw axis with unprimed</td>
<td></td>
<td>1/2</td>
<td>$4_{2}', \bar{1}$</td>
</tr>
<tr>
<td>Fourfold unprimed</td>
<td>Screw axis with primed</td>
<td></td>
<td>1/2</td>
<td>$4_{2}, \bar{1}'$</td>
</tr>
</tbody>
</table>

Table 2.2.3 - 7
<table>
<thead>
<tr>
<th>Description</th>
<th>Diagram</th>
<th>Value</th>
<th>Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourfold primed screw axis with primed center of symmetry</td>
<td></td>
<td>1/2</td>
<td>$4_2', \overline{1}'$</td>
</tr>
<tr>
<td>Fourfold primed screw axis with fourfold unprimed rotation axis</td>
<td></td>
<td>1/2</td>
<td>$4_2', 4$</td>
</tr>
<tr>
<td>Fourfold unprimed screw axis with fourfold primed rotation axis</td>
<td></td>
<td>1/2</td>
<td>$4_2, 4'$</td>
</tr>
<tr>
<td>Fourfold primed screw axis, fourfold unprimed rotation axis and primed and unprimed and center of symmetry</td>
<td></td>
<td>1/2</td>
<td>$4_2', 4, \overline{1}', \overline{1}$</td>
</tr>
<tr>
<td>Fourfold unprimed screw axis, fourfold primed rotation axis, and primed and unprimed and center of symmetry</td>
<td></td>
<td>1/2</td>
<td>$4_2, 4', \overline{1}', \overline{1}$</td>
</tr>
<tr>
<td>Fourfold unprimed screw axis 4 sub 1 and fourfold primed screw axis 4 sub 3 prime</td>
<td></td>
<td>1/4, 3/4</td>
<td>$4_1, 4_3'$</td>
</tr>
<tr>
<td>Fourfold primed screw axis 4 sub 1 prime and fourfold unprimed screw axis 4 sub 3</td>
<td></td>
<td>1/4, 3/4</td>
<td>$4_1', 4_3$</td>
</tr>
<tr>
<td>Unprimed inversion axis 4 bar</td>
<td></td>
<td>None</td>
<td>$\overline{4}, 2 = \overline{4}$</td>
</tr>
<tr>
<td>Primed inversion axis 4 bar prime</td>
<td></td>
<td>None</td>
<td>$\overline{4}', 2 = \overline{4}'$</td>
</tr>
</tbody>
</table>
| Primed and unprimed inversion axes 4 bar and 4 bar prime, and primed twofold screw axis | ![Diagram](image10) | 1/2 | $\overline{4}, 2 = \overline{4}$
| | | | $\overline{4}', 2 = \overline{4}'$
| | | | $2_1'$ |

Table 2.2.3 - 8
<table>
<thead>
<tr>
<th>Symmetry Operation</th>
<th>Center of Symmetry</th>
<th>6, $\overline{1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sixfold unprimed rotation axis with unprimed center</td>
<td>None</td>
<td>$6, \overline{1} = 6/m$</td>
</tr>
<tr>
<td>of symmetry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sixfold primed rotation axis with unprimed center</td>
<td>None</td>
<td>$6', \overline{1} = 6'/m$</td>
</tr>
<tr>
<td>of symmetry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sixfold unprimed rotation axis with primed center</td>
<td>None</td>
<td>$6, \overline{1}' = 6/m'$</td>
</tr>
<tr>
<td>of symmetry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sixfold primed rotation axis with primed center</td>
<td>None</td>
<td>$6', \overline{1}' = 6'/m'$</td>
</tr>
<tr>
<td>of symmetry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sixfold unprimed screw axis 6 sub 3 with unprimed</td>
<td>1/2</td>
<td>$6_3, \overline{1}$</td>
</tr>
<tr>
<td>center of symmetry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sixfold primed screw axis 6 sub 3 prime with</td>
<td>1/2</td>
<td>$6_3', \overline{1}$</td>
</tr>
<tr>
<td>unprimed center of symmetry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sixfold unprimed screw axis 6 sub 3 with primed</td>
<td>1/2</td>
<td>$6_3, \overline{1}'$</td>
</tr>
<tr>
<td>center of symmetry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sixfold primed screw axis 6 sub 3 prime with</td>
<td>1/2</td>
<td>$6_3', \overline{1}'$</td>
</tr>
<tr>
<td>primed center of symmetry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sixfold unprimed rotation axis, sixfold primed screw</td>
<td>1/2</td>
<td>$6_3', 6$</td>
</tr>
<tr>
<td>axis 6 sub 3 prime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sixfold primed rotation axis, sixfold unprimed screw</td>
<td>1/2</td>
<td>$6_3, 6'$</td>
</tr>
<tr>
<td>axis 6 sub 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.2.3 - 9
Table 2.2.3 - 10

Sixfold unprimed rotation axis, sixfold primed screw axis 6 sub 3 prime, with primed and unprimed centers of symmetry

Sixfold primed rotation axis, sixfold unprimed screw axis 6 sub 3, with primed and unprimed centers of symmetry

Unprimed inversion axis
6 bar

Primed inversion axis
6 bar prime

Primed and unprimed inversion axes, 6 bar prime and 6 bar

Primed and unprimed centers of symmetry

2.2.3.3 Symmetry planes normal to the plane of projection

<table>
<thead>
<tr>
<th>Symmetry plane</th>
<th>Graphical symbol</th>
<th>Glide vector in units of unprimed lattice translation parallel and normal to the projection plane</th>
<th>Printed symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unprimed reflection plane</td>
<td>![Graphic]</td>
<td>None</td>
<td>m</td>
</tr>
<tr>
<td>Primed reflection plane</td>
<td>![Graphic]</td>
<td>None</td>
<td>m'</td>
</tr>
<tr>
<td>Unprimed axial glide plane</td>
<td>![Graphic]</td>
<td>1/2 along line parallel to projection plane</td>
<td>a,b</td>
</tr>
<tr>
<td>Glide Plane Type</td>
<td>Glide Component Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primed Axial Glide Plane</td>
<td>1/2 along line parallel to projection plane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unprimed Axial Glide Plane</td>
<td>1/2 along line normal to projection plane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primed Axial Glide Plane</td>
<td>1/2 along line normal to projection plane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unprimed Diagonal Glide Plane</td>
<td>One glide plane with two components: 1/2 along line parallel to projection plane and 1/2 normal to projection plane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primed Diagonal Glide Plane</td>
<td>One glide plane with two components: 1/2 along line parallel to projection plane and 1/2 normal to projection plane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unprimed Diamond Glide Plane</td>
<td>One glide plane with two components: 1/4 along line parallel to projection plane in direction of arrow and 1/4 up normal to projection plane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primed Diamond Glide Plane</td>
<td>One glide plane with two components: 1/4 along line parallel to projection plane in direction of arrow and 3/4 up normal to projection plane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unprimed Diamond Glide Plane</td>
<td>One glide plane with two components: 1/4 along line parallel to projection plane in direction of arrow and 3/4 up normal to projection plane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primed Diamond Glide Plane</td>
<td>One glide plane with two components: 1/4 along line parallel to projection plane in direction of arrow and 3/4 up normal to projection plane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unprimed Axial Glide Planes</td>
<td>Two glide planes each with one component: 1/2 along line parallel to projection plane; 1/2 normal to projection plane</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2.3.4 Symmetry planes parallel to the plane of projection

<table>
<thead>
<tr>
<th>Symmetry plane</th>
<th>Graphical symbol</th>
<th>Glide vector in units of unprimed lattice translation parallel to the projection plane</th>
<th>Printed symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unprimed reflection plane</td>
<td></td>
<td>None 1/2 along direction parallel to arrow</td>
<td>m</td>
</tr>
<tr>
<td>Primed reflection plane</td>
<td></td>
<td>None 1/2 along direction parallel to arrow</td>
<td>m'</td>
</tr>
<tr>
<td>Unprimed axial glide plane</td>
<td></td>
<td>1/2 along direction parallel to arrow</td>
<td>a,b</td>
</tr>
<tr>
<td>Primed axial glide plane</td>
<td></td>
<td>1/2 along direction parallel to arrow</td>
<td>a',b'</td>
</tr>
<tr>
<td>Unprimed double glide plane</td>
<td></td>
<td>Two glide planes each with one component 1/2 along directions parallel to the two arrows</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.2.3 - 13

<table>
<thead>
<tr>
<th>Symmetry plane</th>
<th>Graphical symbol</th>
<th>Screw vector of a right-handed screw rotation in units of the shortest unprimed lattice translation parallel to the axis</th>
<th>Printed symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unprimed twofold rotation axis parallel to a face diagonal of the cube</td>
<td></td>
<td>None</td>
<td>2</td>
</tr>
</tbody>
</table>

2.2.3.5 Symmetry axes inclined to the plane of projection (in cubic magnetic space groups only)

- **Primed double glide plane**: Two glide planes each with one component 1/2 along directions parallel to the two arrows.
- **Unprimed diagonal glide plane**: 1/2 along direction parallel to arrow.
- **Primed diagonal glide plane**: 1/2 along direction parallel to arrow.
- **Unprimed double glide plane and unprimed diagonal glide plane**: Three glide planes each with one component 1/2 along directions parallel to the three arrows.
- **Primed double glide plane and primed diagonal glide plane**: Three glide planes each with one component 1/2 along directions parallel to the three arrows.
- **Unprimed double diagonal glide planes**: Two glide planes each with one component 1/2 along directions parallel to the two arrows.
- **Primed double diagonal glide planes**: Two glide planes each with one component 1/2 along directions parallel to the two arrows.
<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol 1</th>
<th>Symbol 2</th>
<th>Prime</th>
<th>Rotation Axis</th>
<th>Other Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primed twofold rotation axis parallel to a face diagonal of the cube</td>
<td></td>
<td></td>
<td>None</td>
<td>2'</td>
<td></td>
</tr>
<tr>
<td>Unprimed twofold screw axis 2 sub 1 parallel to a face diagonal of the cube</td>
<td></td>
<td></td>
<td>1/2</td>
<td>2<sub>1</sub></td>
<td></td>
</tr>
<tr>
<td>Primed twofold screw axis 2 sub 1 prime parallel to a face diagonal of the cube</td>
<td></td>
<td></td>
<td>1/2</td>
<td>2<sub>1'</sub></td>
<td></td>
</tr>
<tr>
<td>Unprimed threefold rotation axis parallel to a body diagonal of the cube</td>
<td></td>
<td></td>
<td>None</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Unprimed threefold screw axis 3 sub 1 parallel to a body diagonal of the cube</td>
<td></td>
<td></td>
<td>1/3</td>
<td>3<sub>1</sub></td>
<td></td>
</tr>
<tr>
<td>Primed threefold screw axis 3 sub 1 prime parallel to a body diagonal of the cube</td>
<td></td>
<td></td>
<td>1/3</td>
<td>3<sub>1'</sub></td>
<td></td>
</tr>
<tr>
<td>Unprimed threefold screw axis 3 sub 2 parallel to a body diagonal of the cube</td>
<td></td>
<td></td>
<td>2/3</td>
<td>3<sub>2</sub></td>
<td></td>
</tr>
<tr>
<td>Primed threefold screw axis 3 sub 2 prime parallel to a body diagonal of the cube</td>
<td></td>
<td></td>
<td>2/3</td>
<td>3<sub>2'</sub></td>
<td></td>
</tr>
<tr>
<td>Unprimed inversion axis 3 bar parallel to a body diagonal of the cube</td>
<td></td>
<td></td>
<td>None</td>
<td>3,1 = 3</td>
<td></td>
</tr>
</tbody>
</table>
2.2.3.6 Symmetry planes inclined to the plane of projection (in cubic magnetic space groups only)

<table>
<thead>
<tr>
<th>Symmetry Plane Symbol</th>
<th>Graphical symbol for planes normal to [011] and [01(\overline{1})]; [101] and [10(\overline{1})]</th>
<th>Glide vectors in units of unprimed lattice translation for planes normal to [011] and [01(\overline{1})]; [101] and [10(\overline{1})]</th>
<th>Printed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unprimed Reflection plane</td>
<td></td>
<td>None</td>
<td>m</td>
</tr>
<tr>
<td>Primed Reflection plane</td>
<td></td>
<td>None</td>
<td>m'</td>
</tr>
<tr>
<td>Unprimed axial glide plane</td>
<td></td>
<td>1/2 along [100]</td>
<td>a,b</td>
</tr>
<tr>
<td>Primed axial glide plane</td>
<td></td>
<td>1/2 along [100]</td>
<td>a',b'</td>
</tr>
<tr>
<td>Unprimed axial glide plane</td>
<td></td>
<td>1/2 along [01(\overline{1})] or [101]</td>
<td></td>
</tr>
<tr>
<td>Unprimed axial glide plane</td>
<td></td>
<td>1/2 along [01(\overline{1})] or [101]</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.2.3 - 16

<table>
<thead>
<tr>
<th>Unprimed double glide plane</th>
<th>Two glide vectors: 1/2 along [100] and 1/2 along [011] or [011]</th>
<th>Two glide vectors: 1/2 along [010] and 1/2 along [101] or [101]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primed double glide plane</td>
<td>Two glide vectors: 1/2 along [100] and 1/2 along [011] or [011]</td>
<td>Two glide vectors: 1/2 along [010] and 1/2 along [101] or [101]</td>
</tr>
<tr>
<td>Unprimed diagonal glide plane</td>
<td>1/2 along [111] or [111]</td>
<td>1/2 along [111] or [111]</td>
</tr>
<tr>
<td>Primed diagonal glide plane</td>
<td>1/2 along [111] or [111]</td>
<td>1/2 along [111] or [111]</td>
</tr>
<tr>
<td>Unprimed diamond glide plane</td>
<td>1/2 along [111] or [111]</td>
<td>1/2 along [111] or [111]</td>
</tr>
<tr>
<td></td>
<td>1/2 along [111] or [111]</td>
<td>1/2 along [111] or [111]</td>
</tr>
</tbody>
</table>
Table 2.2.3 - 17

<table>
<thead>
<tr>
<th>Primed diamond glide plane</th>
<th>1/2 along [111] or [111]</th>
<th>1/2 along [111] or [111]</th>
<th>d'</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unprimed axial glide planes</th>
<th>Two glide vectors: 1/2 along [100] and 1/2 along [011]</th>
<th>Two glide vectors: 1/2 along [010] and 1/2 along [101]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unprimed axial glide planes</th>
<th>Two glide vectors: 1/2 along [100] and 1/2 along [011]</th>
<th>Two glide vectors: 1/2 along [010] and 1/2 along [101]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Primed axial glide planes</th>
<th>Two glide vectors: 1/2 along [100] and 1/2 along [011]</th>
<th>Two glide vectors: 1/2 along [010] and 1/2 along [101]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Primed axial glide planes</th>
<th>Two glide vectors: 1/2 along [100] and 1/2 along [011]</th>
<th>Two glide vectors: 1/2 along [010] and 1/2 along [101]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unprimed diamond</td>
<td>1/2 along</td>
<td>1/2 along</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>glide plane</td>
<td>[1{1}1]</td>
<td>[1{1}1]</td>
</tr>
<tr>
<td></td>
<td>[1{1}1]</td>
<td>[1{1}1]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primed diamond</th>
<th>1/2 along</th>
<th>1/2 along</th>
</tr>
</thead>
<tbody>
<tr>
<td>glide plane</td>
<td>[1{1}1]</td>
<td>[1{1}1]</td>
</tr>
<tr>
<td></td>
<td>[1{1}1]</td>
<td>[1{1}1]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unprimed diamond</th>
<th>1/2 along</th>
<th>1/2 along</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[1{1}1]</td>
<td>[1{1}1]</td>
</tr>
<tr>
<td></td>
<td>[1{1}1]</td>
<td>[1{1}1]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primed diamond</th>
<th>1/2 along</th>
<th>1/2 along</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[1{1}1]</td>
<td>[1{1}1]</td>
</tr>
<tr>
<td></td>
<td>[1{1}1]</td>
<td>[1{1}1]</td>
</tr>
</tbody>
</table>
2.2.3.7 Height of symmetry operations above plane of projection

Heights are given as a fraction of the shortest primed or unprimed translation perpendicular to the plane of projection. Fractions are color coded black and red corresponding to related unprimed and primed operations, respectively. Examples are as follows:

2.2.3.7a Rotation axes, screw axes, inversion axes and reflection and glide planes parallel to the plane of projection

2.2.3.7b Inversion centers and inversion axes perpendicular to the plane of projection (i.e. height of inversion center of rotation-inversion)
<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Graphical Symbol</th>
<th>Printed Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unprimed reflection line, mirror line</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>Primed reflection line, mirror line</td>
<td>m’</td>
<td>m’</td>
</tr>
<tr>
<td>Unprimed glide line, ½ lattice vector along line in plane</td>
<td>g</td>
<td>g</td>
</tr>
<tr>
<td>Primed glide line, ½ lattice vector along line in plane</td>
<td>g’</td>
<td>g’</td>
</tr>
<tr>
<td>Unprimed two-fold rotation point</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Primed two-fold rotation point</td>
<td>2’</td>
<td>2’</td>
</tr>
<tr>
<td>Unprimed three-fold rotation point</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Primed three-fold rotation point</td>
<td>3’</td>
<td>3’</td>
</tr>
<tr>
<td>Unprimed four-fold rotation point</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Primed four-fold rotation point</td>
<td>4’</td>
<td>4’</td>
</tr>
<tr>
<td>Unprimed six-fold rotation point</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Primed six-fold rotation point</td>
<td>6’</td>
<td>6’</td>
</tr>
</tbody>
</table>
Table 2.2.3-1D Graphical Symbols

One-Dimensional Magnetic Space Groups

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Graphical Symbol</th>
<th>Printed Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unprimed point of reflection</td>
<td>![Graphical Symbol]</td>
<td>m</td>
</tr>
<tr>
<td>Primed point of reflection</td>
<td>![Graphical Symbol]</td>
<td>m'</td>
</tr>
</tbody>
</table>
Table 3 - 1D:

One-Dimensional Magnetic Space Group Tables

ONE-DIMENSIONAL MAGNETIC SPACE GROUP INDEX

Figures 1.1-3D: Three-dimensional Magnetic Space Group Lattices
Figures 1.1-2D: Two-dimensional Magnetic Space Group Lattices
Index of One-Dimensional Magnetic Space Groups

1.1.1 \(p1 \)
1.2.2 \(p11' \)
1.3.3 \(p_{2a1} \)

2.1.4 \(pm \)
2.2.5 \(pm1' \)
2.3.6 \(pm' \)
2.4.7 \(p_{2a}m \)
Origin arbitrary

Asymmetric unit \(0 \leq z \leq 1\)

Symmetry operations

\((1) 1\)
\((1|0,0,0)\)

Generators selected \((1); \ t(1)\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
</tr>
</thead>
</table>

| 1 a 1 | (1) x [u] |
Origin arbitrary

Asymmetric unit \(0 \leq x \leq 1 \)

Symmetry operations

For \(1+\) set
\[
(1)\ 1 \\
(1|0)
\]

For \(1'+\) set
\[
(1)\ 1' \\
(1|0)'
\]

Generators selected (1); t(1); 1'

Positions

Coordinates

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
<th>1+</th>
<th>1' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 a 11' (1) x [0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
p_{2a1}

No. 1.3.3

p_{2a1}

Origin arbitrary

Asymmetric unit $0 \leq x \leq 1$

Symmetry operations

For $(0) +$ set

(1) 1
 (1\mid 0)

For $(1)' +$ set

(1) t' (1)
 (1\mid 1)'

Generators selected $(1); t(1)'$

Positions

Coordinates

Multiplicity,
Wyckoff letter,
Site symmetry

(0)+ (1)' +

1 a 1 (1) x [u]
Origin on mirror m

Asymmetric unit $0 \leq x \leq \frac{1}{2}$

Symmetry operations

(1) 1 (2) m 0
(1|0) (m|0)

Generators selected (1); t(1); (2)

Positions

<table>
<thead>
<tr>
<th>Multiplicity,</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 c 1</td>
<td>(1) x [u]</td>
</tr>
<tr>
<td>1 b m</td>
<td>1/2 [u]</td>
</tr>
<tr>
<td>1 a m</td>
<td>0 [u]</td>
</tr>
</tbody>
</table>

TABLE 3 - 1D -4
TABLE 3 - 1D -5

Origin on mirror m1’

Asymmetric unit 0 ≤ x ≤ ½

Symmetry operations

For 1 + set
(1) 1 (2) m 0
 (1|0) (m|0)

For 1’ + set
(1) 1’ (2) m’ 0
 (1|0)’ (m|0)’

Generators selected (1); t(1); (2); 1’

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 c 11’</td>
<td>(1) x [0]</td>
<td>(2) −x [0]</td>
<td></td>
</tr>
<tr>
<td>1 b m1’</td>
<td>1/2 [0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 a m1’</td>
<td>0 [0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3 - 1D -5
Origin on mirror m'

Asymmetric unit $0 \leq x \leq \frac{1}{2}$

Symmetry operations

(1) 1
(2) $m' \ 0$

(1|0) \quad (m|0)'

Generators selected (1); t(1); (2)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 c 1</td>
<td>(1) x [u]</td>
</tr>
<tr>
<td></td>
<td>(2) \bar{x} [u]</td>
</tr>
<tr>
<td>1 b m'</td>
<td>1/2 [0]</td>
</tr>
<tr>
<td>1 a m'</td>
<td>0 [0]</td>
</tr>
</tbody>
</table>
Table 3 - 1D -7

<table>
<thead>
<tr>
<th>No. 2.4.7</th>
<th>(p_{2a}m)</th>
<th>(m1')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>on mirror (m)</td>
<td></td>
</tr>
<tr>
<td>Asymmetric unit</td>
<td>(0 \leq x \leq \frac{1}{2})</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry operations

For \((0) + \) set:

- \((1) \); \((2) m \) \(0\) \((m|0)\)
- \((1|0)\)

For \((1)' + \) set:

- \((1) t' (1) \); \((2) m' \) \(1/2\) \((m|1)'
- \((1|1)'

Generators selected

\((1); \ t(1)'; \ (2)\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
<th>((0)+)</th>
<th>((1)' +)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 \ c \ 1)</td>
<td>((1) x [u])</td>
<td>((2) \bar{x} [u])</td>
</tr>
<tr>
<td>(1 \ b \ m')</td>
<td>(1/2 [0])</td>
<td></td>
</tr>
<tr>
<td>(1 \ a \ m)</td>
<td>(0 [u])</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3 - 1D -7
Table 3 - 2D:

Two-Dimensional Magnetic Space Group Tables

TWO-DIMENSIONAL MAGNETIC SPACE GROUP INDEX

Table 3 - 3D: Three-Dimensional Magnetic Space Group Tables
Table 3 - 1D: One-Dimensional Magnetic Space Group Tables
<table>
<thead>
<tr>
<th>Index</th>
<th>Symbol</th>
<th>No. 1</th>
<th>No. 2</th>
<th>No. 3</th>
<th>No. 4</th>
<th>No. 5</th>
<th>No. 6</th>
<th>No. 7</th>
<th>No. 8</th>
<th>No. 9</th>
<th>No. 10</th>
<th>No. 11</th>
<th>No. 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>p1</td>
<td>8.1.38 p2gg</td>
<td>17.1.76 p6mm</td>
<td></td>
</tr>
<tr>
<td>1.2.2</td>
<td>p11'</td>
<td>8.2.39 p2gg1'</td>
<td>17.2.77 p6mm1'</td>
<td></td>
</tr>
<tr>
<td>1.3.3</td>
<td>p2a1</td>
<td>8.3.40 p2g'g'</td>
<td>17.3.78 p6m'm'</td>
<td></td>
</tr>
<tr>
<td>2.1.4</td>
<td>p211</td>
<td>8.4.41 p2'gg'</td>
<td>17.4.79 p6'mm'</td>
<td></td>
</tr>
<tr>
<td>2.2.5</td>
<td>p2111'</td>
<td>9.1.42 c2mm</td>
<td></td>
</tr>
<tr>
<td>2.3.6</td>
<td>p2'11</td>
<td>9.2.43 c2mm1'</td>
<td></td>
</tr>
<tr>
<td>2.4.7</td>
<td>p2a211</td>
<td>9.3.44 c2m'm'</td>
<td></td>
</tr>
<tr>
<td>3.1.8</td>
<td>p1m1</td>
<td>9.5.46 c2,2mm</td>
<td></td>
</tr>
<tr>
<td>3.2.9</td>
<td>p1m11'</td>
<td>9.6.47 c2,2m'm'</td>
<td></td>
</tr>
<tr>
<td>3.3.10</td>
<td>p1m'1</td>
<td>9.7.48 c2,2m'm'</td>
<td></td>
</tr>
<tr>
<td>3.4.11</td>
<td>p2a1m1</td>
<td>10.1.49 p4</td>
<td></td>
</tr>
<tr>
<td>3.5.12</td>
<td>p2b1m1</td>
<td>10.2.50 p41'</td>
<td></td>
</tr>
<tr>
<td>3.6.13</td>
<td>p2b1m'1</td>
<td>10.3.51 p4'</td>
<td></td>
</tr>
<tr>
<td>3.7.14</td>
<td>p1c1m1</td>
<td>10.4.52 p4'</td>
<td></td>
</tr>
<tr>
<td>4.1.15</td>
<td>p1g1</td>
<td>11.1.53 p4mm</td>
<td></td>
</tr>
<tr>
<td>4.2.16</td>
<td>p1g11'</td>
<td>11.2.54 p4mm1'</td>
<td></td>
</tr>
<tr>
<td>4.3.17</td>
<td>p1g'1</td>
<td>11.3.55 p4'm'm'</td>
<td></td>
</tr>
<tr>
<td>4.4.18</td>
<td>p2a1g1</td>
<td>11.4.56 p4'mm'</td>
<td></td>
</tr>
<tr>
<td>5.1.19</td>
<td>c1m1</td>
<td>11.5.57 p4'm'm'</td>
<td></td>
</tr>
<tr>
<td>5.2.20</td>
<td>c1m11'</td>
<td>11.6.58 p4',m'm'</td>
<td></td>
</tr>
<tr>
<td>5.3.21</td>
<td>c1m'1</td>
<td>11.7.59 p4',m'm'</td>
<td></td>
</tr>
<tr>
<td>5.4.22</td>
<td>c2,1m1</td>
<td>12.1.60 p4gm</td>
<td></td>
</tr>
<tr>
<td>5.5.23</td>
<td>c2,1m'1</td>
<td>12.2.61 p4gm1'</td>
<td></td>
</tr>
<tr>
<td>6.1.24</td>
<td>p22mm</td>
<td>12.3.62 p4g'm'</td>
<td></td>
</tr>
<tr>
<td>6.2.25</td>
<td>p22mm1'</td>
<td>12.4.63 p4g'm'</td>
<td></td>
</tr>
<tr>
<td>6.3.26</td>
<td>p2m'm'</td>
<td>12.5.64 p4g'm'</td>
<td></td>
</tr>
<tr>
<td>6.4.27</td>
<td>p2'm'm'</td>
<td>13.1.65 p3</td>
<td></td>
</tr>
<tr>
<td>6.5.28</td>
<td>p2a2m'm'</td>
<td>13.2.66 p31'</td>
<td></td>
</tr>
<tr>
<td>6.6.29</td>
<td>p2c2mm</td>
<td>14.1.67 p3m1</td>
<td></td>
</tr>
<tr>
<td>6.7.30</td>
<td>p2a2mm</td>
<td>14.2.68 p3m11'</td>
<td></td>
</tr>
<tr>
<td>7.1.31</td>
<td>p2mg</td>
<td>14.3.69 p3m'1</td>
<td></td>
</tr>
<tr>
<td>7.2.32</td>
<td>p2mg1'</td>
<td>15.1.70 p31m</td>
<td></td>
</tr>
<tr>
<td>7.3.33</td>
<td>p2m'g'</td>
<td>15.2.71 p31m1'</td>
<td></td>
</tr>
<tr>
<td>7.4.34</td>
<td>p2'm'g</td>
<td>15.3.72 p31m'</td>
<td></td>
</tr>
<tr>
<td>7.5.35</td>
<td>p2'm'g'</td>
<td>16.1.73 p6</td>
<td></td>
</tr>
<tr>
<td>7.6.36</td>
<td>p2a2m'g'</td>
<td>16.2.74 p61'</td>
<td></td>
</tr>
<tr>
<td>7.7.37</td>
<td>p2b2mg</td>
<td>16.3.75 p6'</td>
<td></td>
</tr>
</tbody>
</table>
Origin arbitrary

Asymmetric unit $0 \leq x \leq 1; \quad 0 \leq y \leq 1$

Symmetry operations

(1) 1
 (1|0,0)
Continued

Generators selected (1); t(1,0); t(0,1)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 a 1</td>
</tr>
<tr>
<td>(1) x,y [u,v]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

<table>
<thead>
<tr>
<th>Along [10] p1</th>
<th>Along [01] p1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b_p</td>
<td>a* = a_p</td>
</tr>
<tr>
<td>Origin at x,0</td>
<td>Origin at 0,y</td>
</tr>
</tbody>
</table>
Origin arbitrary $1'$

Asymmetric unit $0 \leq x \leq 1; \ 0 \leq y \leq 1$

Symmetry operations

For $1 +$ set

(1) 1

(1|0,0)

For $1' +$ set

(1) $1'$

(1|0,0)'
Table 3 - 2D

Continued

No. 1.2.2

<table>
<thead>
<tr>
<th>Generators selected</th>
<th>(1); t(1,0); t(0,1); 1'</th>
</tr>
</thead>
</table>

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+ 1' +</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 a 11'</th>
<th>(1) x,y</th>
<th>[0,0]</th>
</tr>
</thead>
</table>

Symmetry of special projections

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b_p</td>
<td>a* = a_p</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Origin at x,0</th>
<th>Origin at 0,y</th>
</tr>
</thead>
</table>

TABLE 3 - 2D -4
Origin arbitrary

Asymmetric unit \(0 \leq x \leq 1; \quad 0 \leq y \leq 1\)

Symmetry operations

For \((0,0)\) + set

\[
\begin{array}{l}
(1) 1 \\
(1|0,0)
\end{array}
\]

For \((1,0)\)' + set

\[
\begin{array}{l}
(1) t' (1,0) \\
(1|1,0)'
\end{array}
\]
Generators selected (1); t(1,0)'; t(0,1)

Positions

Multiplicity, Wyckoff letter, Site symmetry

Coordinates

 (0,0)+ (1,0)' +

1 a 1 (1) x,y [u,v]

Symmetry of special projections

Along [10] \(p11' \) Along [01] \(p_{2a}' \)
\(a^* = b_p \) \(a^* = a_p \)
Origin at x,0 Origin at 0,y
Origin on 2

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1 \)

Symmetry operations

(1) 1 \((1|0,0) \) \((1|0,0) \) \((1|0,0) \) \((1|0,0) \)

(2) 2 0,0 \((2|0,0) \) \((2|0,0) \) \((2|0,0) \) \((2|0,0) \)
Generators selected (1): t(1,0); t(0,1); (2)

Positions

Multiplicity, Wyckoff letter, Site symmetry

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Letter</th>
<th>Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 e 1</td>
<td>x,y [u,v]</td>
<td>(1) x,y [u,v]</td>
</tr>
<tr>
<td>1 d 2</td>
<td>1/2,1/2 [0,0]</td>
<td></td>
</tr>
<tr>
<td>1 c 2</td>
<td>1/2,0 [0,0]</td>
<td></td>
</tr>
<tr>
<td>1 b 2</td>
<td>0,1/2 [0,0]</td>
<td></td>
</tr>
<tr>
<td>1 a 2</td>
<td>0,0 [0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] p1m'1 Along [01] p1m'1
a* = b_p a* = a_p
Origin at x,0 Origin at 0,y

TABLE 3 - 2D -8
Origin on 21'

Asymmetric unit \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1 \)

Symmetry operations

For 1 + set

1

\((1|0,0)\)

(2) \(2\ 0,0\)

\((2_z|0,0)\)

For 1' + set

1'

\((1|0,0)'\)

(2) \(2'\ 0,0\)

\((2_z|0,0)'\)
Generators selected
(1): t(1,0); t(0,1); (2): 1

Positions

Multiplicity, Wyckoff letter, Site symmetry

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 e 11'</td>
<td>(1) x,y [0,0]</td>
<td>(2) x̅,y̅ [0,0]</td>
</tr>
<tr>
<td>1 d 21'</td>
<td>1/2,1/2 [0,0]</td>
<td></td>
</tr>
<tr>
<td>1 c 21'</td>
<td>1/2,0 [0,0]</td>
<td></td>
</tr>
<tr>
<td>1 b 21'</td>
<td>0,1/2 [0,0]</td>
<td></td>
</tr>
<tr>
<td>1 a 21'</td>
<td>0,0 [0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] pm 1' Along [01] pm 1'

a* = b a* = a
Origin at x,0 Origin at 0,y
<table>
<thead>
<tr>
<th>Origin</th>
<th>Asymmetric unit</th>
<th>Symmetry operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>on 2'</td>
<td>$0 \leq x \leq 1/2$;</td>
<td>(1) 1</td>
</tr>
<tr>
<td></td>
<td>$0 \leq y \leq 1$</td>
<td>(2) 2' 0,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2</td>
</tr>
</tbody>
</table>
Generators selected (1): t(1,0); t(0,1); (2)

Positions

Multiplicity,
Wyckoff letter,
Site symmetry

\[
\begin{align*}
2 & \text{ e 1} \quad (1) \ x,y [u,v] \quad (2) \ \bar{x},\bar{y} [u,v] \\
1 & \text{ d 2'} \quad 1/2,1/2 [u,v] \\
1 & \text{ c 2'} \quad 1/2,0 [u,v] \\
1 & \text{ b 2'} \quad 0,1/2 [u,v] \\
1 & \text{ a 2'} \quad 0,0 [u,v] \\
\end{align*}
\]

Symmetry of special projections

Along [10] pm Along [01] pm
\[a^* = b_p\] \[a^* = a_p\]
Origin at x,0 Origin at 0,y
Origin on 2

Asymmetric unit \(0 \leq x \leq \frac{1}{2}; \ 0 \leq y \leq 1 \)

Symmetry operations

For \((0,0)\) + set

\[
\begin{align*}
(1) & \ 1 \\
(1) & \ (0,0) \\
(2) & \ 2 \ 0,0 \\
(2) & \ (2,0,0)
\end{align*}
\]

For \((1,0)\)' + set

\[
\begin{align*}
(1) & \ t' \ (1,0) \\
(1) & \ (1,0)' \\
(2) & \ 2' \ 1/2,0 \\
(2) & \ (2,1,0)'
\end{align*}
\]
Generators selected

(1): \(t(1,0)\); \(t(0,1)\); (2)

Positions

Multiplicity, Wyckoff letter, Site symmetry

\[
\begin{align*}
(0,0) & + (1,0)' + \\
2 & e 1 \\
1 & d 2' \\
1 & c 2' \\
1 & b 2 \\
1 & a 2 \\
\end{align*}
\]

\[
\begin{align*}
(1) x,y [u,v] & \quad (2) \bar{x},\bar{y} [\bar{u},\bar{v}] \\
1/2,1/2 [u,v] & \quad 1/2,0 [u,v] \\
0,1/2 [0,0] & \quad 0,0 [0,0] \\
\end{align*}
\]

Symmetry of special projections

Along [10] \(p\overline{1}m1'\) Along [01] \(p_{2a}m'\)

\[
\begin{align*}
a^* &= b_p \\
a^* &= a_p \\
\end{align*}
\]

Origin at \(x,0\) Origin at \(0,y\)
Origin on mirror line \(m \)

Asymmetric unit \(0 \leq x < 1/2; \quad 0 \leq y \leq 1 \)

Symmetry operations

\[
\begin{align*}
(1) & \quad 1 \\
(1|0,0) & \\
(2) & \quad m \quad 0, y \\
(m_\perp|0,0) &
\end{align*}
\]
Generators selected (1): t(1,0); t(0,1); (2)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 c 1</td>
<td>(1) x,y [u,v] (2) (\bar{x},y [\bar{u},\bar{v}])</td>
</tr>
<tr>
<td>1 b m</td>
<td>1/2,y [u,0]</td>
</tr>
<tr>
<td>1 a m</td>
<td>0,y [u,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

- Along [10] \(p11' \)
- Along [01] \(pm \)

\(a^* = b \)
\(a^* = a \)

Origin at x,0
Origin at 0,y
Origin on mirror line m_1'

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1$

Symmetry operations

For $1 +$ set

(1) 1
(1) 0,0
(1) 0,0

(2) m 0,0
(2) m_{x} 0,0

For $1' +$ set

(1) 1'
(1) 0,0'
(1) 0,0'

(2) m' 0,0
(2) m_{x} 0,0

TABLE 3 - 2D -17
Generators selected

(1): t(1,0); t(0,1); (2): 1'

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>1' +</td>
</tr>
<tr>
<td>2 c 11'</td>
<td>(1) x,y [0,0] (2) \bar{x},y [0,0]</td>
</tr>
<tr>
<td>1 b m1'</td>
<td>1/2,y [0,0]</td>
</tr>
<tr>
<td>1 a m1'</td>
<td>0,y [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] p11' Along [01] pm1'

a* = b a* = a

Origin at x,0 Origin at 0,y
Origin on mirror line m'

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1$

Symmetry operations

(1) 1 \hspace{1cm} (2) $m' \ 0, y$

$(1 \ |0,0) \hspace{1cm} (m_x |0,0)'$
Continued No. 3.3.10 p1m'1

Generators selected
(1): t(1,0); t(0,1); (2)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 c 1</td>
<td>(1) x, y [u, v]</td>
</tr>
<tr>
<td></td>
<td>(2) x', y [u', v]</td>
</tr>
<tr>
<td>1 b m'</td>
<td>1/2, y [0, v]</td>
</tr>
<tr>
<td>1 a m'</td>
<td>0, y [0, v]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

<table>
<thead>
<tr>
<th>Along [10] p1</th>
<th>Along [01] pm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b</td>
<td>a* = a</td>
</tr>
<tr>
<td>Origin at x, 0</td>
<td>Origin at 0, y</td>
</tr>
</tbody>
</table>

TABLE 3 - 2D -20
Origin on mirror line m

Asymmetric unit \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1 \)

Symmetry operations

For \((0,0) + \) set

1. \((1,0)\)
2. \(m\ 0, y\)
3. \((m_1,0)\)

For \((1,0)' + \) set

1. \((1,0)'\)
2. \(m' 1/2, y\)
3. \((m_1,1,0)'\)

TABLE 3 - 2D -21
Generators selected (1); t(1,0)'; t(0,1); (2)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
<th>Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)+</td>
<td>(1,0)' +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c 1</td>
<td>(1) x,y [u,v]</td>
<td>(2) x̅,y [u,ν]</td>
<td></td>
</tr>
<tr>
<td>1 b m'</td>
<td>1/2,y [0,v]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 a m</td>
<td>0,y [u,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] p11' Along [01] p_{2a}m
a* = b a* = a
Origin at x,0 Origin at 0,y

TABLE 3 - 2D -22
TABLE 3 - 2D -23

 Origin on mirror line m

 Asymmetric unit \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1 \)

 Symmetry operations

 For \((0,0)\) + set

 (1) 1
 (2) m \(0,y\)
 (1|0,0) \(m_x|0,0\)

 For \((0,1)\)' + set

 (1) \(t'\) \((0,1)\)
 (2) \(g'\) \((0,1)\) \(0,y\)
 (1|0,1)’ \((m_x|0,1)\)’
Generators selected (1): t(1,0); t(0,1)'; (2)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)+</td>
</tr>
<tr>
<td>(0,1)' +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 c 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y [u,v]</td>
</tr>
<tr>
<td>(2) x̅,y [u,ν]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 b m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2,y [u,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 a m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,y [u,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] p11' Along [01] pm1'

a* = b a* = a

Origin at x,0 Origin at 0,y
Origin on mirror line m'

Asymmetric unit $0 \leq x \leq 1/2; \hspace{1em} 0 \leq y \leq 1$

Symmetry operations

For $(0,0)$ set

(1) 1 \hspace{1em} (2) $m' \hspace{1em} 0, y$

$(1|0,0) \hspace{1em} (m_x|0,0)'$

For $(0,1)'$ set

(1) $t' \hspace{1em} (0,1)$ \hspace{1em} (2) $g \hspace{1em} (0,1) \hspace{1em} 0, y$

$(1|0,1)' \hspace{1em} (m_x|0,1)$
Generators selected \((1): t(1,0); t(0,1)^\prime; (2) \)

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0)^+)</td>
<td>((0,1)^\prime +)</td>
</tr>
<tr>
<td>(2 c 1)</td>
<td>((1) x,y [u,v]) (2) \bar{x},y [\bar{u},v])</td>
</tr>
<tr>
<td>(1 b m')</td>
<td>(1/2,y [0,v])</td>
</tr>
<tr>
<td>(1 a m')</td>
<td>(0,y [0,v])</td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] \(p_{2a^*1} \) Along [01] \(p_{m1} \)
\(a^* = b \) \(a^* = a \)
Origin at x,0 Origin at 0,y
Origin on mirror line m

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1$

Symmetry operations

For $(0,0)$ set

1. 1
2. $m \quad 0,y$

For $(0,1)'$ set

1. $t' \quad (0,1)$
2. $g' \quad (0,1) \quad 0,y$

$\begin{array}{c}
(1|0,0) \\
(m_x|0,0) \\
(1|0,1)' \\
(m_x|0,1)'
\end{array}$
Generators selected
(1): t(1,0)' ; t(0,1)' ; (2)

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0)+</td>
</tr>
<tr>
<td>2 c 1</td>
<td>(1) x,y [u,v]</td>
</tr>
<tr>
<td>1 b m'</td>
<td>1/2, y [0,v]</td>
</tr>
<tr>
<td>1 a m</td>
<td>0, y [u,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections
Along [1 0] p11'
\[a^* = b \]
Origin at x,0
Along [0 1] pm1'
\[a^* = a \]
Origin at 0, y
Origin on glide line g

Asymmetric unit \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1 \)

Symmetry operations

\[
\begin{align*}
(1) \ 1 \\
(1|0,0) \\

(2) \ g \ (0,1/2) \ 0,y \\
(m,0,1/2)
\end{align*}
\]
Generators selected (1): \(t(1,0); \ t(0,1); \ (2) \)

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site symmetry</td>
<td></td>
</tr>
<tr>
<td>2 (a) 1</td>
<td>(1) (x,y \ [u,v]) (2) (x, y+1/2 \ [u,v])</td>
</tr>
</tbody>
</table>

Symmetry of special projections

<table>
<thead>
<tr>
<th>Along [10] (\text{p}_{2a}) 11</th>
<th>Along [01] (\text{p}) m</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = b/2)</td>
<td>(a^* = a)</td>
</tr>
<tr>
<td>Origin at (x,0)</td>
<td>Origin at (0,y)</td>
</tr>
</tbody>
</table>
Origin on glide line g_1'

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1$

Symmetry operations

For $1 +$ set

(1) 1
(1) $0, 0$

(2) g
(2) $(0, 1/2)$
(2) $0, y$
(2) $(m_x, 0, 1/2)$

For $1' +$ set

(1) $1'$
(1) $(0, 0)'$

(2) g'
(2) $(0, 1/2)$
(2) $0, y$
(2) $(m_x, 0, 1/2)'$
Generators selected (1): t(1,0); t(0,1); (2): 1'

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+ 1'</td>
<td>2 a 11'</td>
</tr>
<tr>
<td>11' (1) x,y [0,0]</td>
<td>(1) x,y [0,0]</td>
</tr>
<tr>
<td>1' (2) x̅,y+ 1/2 [0,0]</td>
<td>(2) x̅,y+ 1/2 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] p1 1' Along [01] pm 1'
\(a^* = \frac{b}{2} \) \(a^* = a \)
Origin at x,0 Origin at 0,y
Origin on glide line g'

Asymmetric unit: $0 \leq x \leq 1/2; \ 0 \leq y \leq 1$

Symmetry operations

(1) 1
(1|0,0)

(2) g' (0,1/2) 0,x
(m|0,1/2)'
Generators selected (1); t(1,0); t(0,1); (2)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 a 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x, y [u, v]</td>
</tr>
<tr>
<td>(2) (\bar{x}, y + 1/2) [(\bar{u}, v)]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

<table>
<thead>
<tr>
<th>Along [10] p1</th>
<th>Along [01] pm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = b/2)</td>
<td>(a^* = a)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Origin at x,0</th>
<th>Origin at 0, y</th>
</tr>
</thead>
</table>
Origin: on glide line g

Asymmetric unit: $0 \leq x \leq 1/2; \ 0 \leq y \leq 1$

Symmetry operations:

For $(0,0)$:

- 1
- $g\ (0.1/2)\ 0,y$
- $(1|0,0)$
- $(m_x|0.1/2)$

For $(1,0)’$:

- $t’\ (1,0)$
- $g’\ (0.1/2)\ 1/2,y$
- $(1|1,0)'$
- $(m_x|1.1/2)'$
Generators selected

\begin{align*}
&1; \ t(1,0)^1; \ t(0,1); \ (2) \\
\end{align*}

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)+ \quad (1,0)' +</td>
</tr>
</tbody>
</table>

\begin{align*}
2 & a \ 1 \quad (1) \ x,y \ [u,v] \quad & (2) \ \bar{x},y+1/2 \ [u,\bar{v}] \\
\end{align*}

Symmetry of special projections

\begin{align*}
\text{Along [10]} & \quad p11' \quad \text{Along [01]} & \quad p_{2a^*m} \\
a^* = b/2 & \quad a^* = a \\
\text{Origin at } x,0 & \quad \text{Origin at } 0,y \\
\end{align*}
Origin on mirror line m

Asymmetric unit \(0 \leq x \leq 1/4; \ 0 \leq y \leq 1 \)

Symmetry operations

For \((0,0) + \) set

(1) \(t \) \((1/2,1/2) \)
(1\(|\)0,0)

(2) \(m \) \(0,y \)
(1\(|\)0,0)

\((m_1,0,0) \)

For \((1/2,1/2) + \) set

(1) \(t \) \((1/2,1/2) \)
(1\(|\)1/2,1/2)

(2) \(g \) \((0,1/2) \) \(1/4,y \)
(1\(|\)1/2,1/2)

\((m_1,1/2,1/2) \)
Continued

| No. 5.1.19 | c1m1 |

Generators selected

(1); t(1,0); t(0,1); t(1/2,1/2); (2)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0) + (1/2,1/2) +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 b 1</th>
<th>(1) x,y [u,v]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 a m</td>
<td>0,y [u,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] p11' Along [01] pm

a* = b/2 a* = a/2

Origin at x,0 Origin at 0,y
| No. 5.2.20 | c1m11' | m1' |

Origin on mirror line m1'

Asymmetric unit \(0 \leq x \leq \frac{1}{4}; \quad 0 \leq y \leq 1\)

Symmetry operations

For \((0,0)\) + set

1. \(I\)
2. \(m\) \((0,0)\)
 \((m,0,0)\)

For \((1/2,1/2)\) + set

1. \(t\) \((1/2,1/2)\)
2. \(g\) \((0,1/2)\) \(1/4, y\)
 \((m,1/2,1/2)\)

For \((0,0)\)' + set

1. \(I'\) \((0,0)\)'
2. \(m'\) \((0,0)\)'
 \((m,0,0)\)'

For \((1/2,1/2)\)' + set

1. \(t'\) \((1/2,1/2)\)'
2. \(g'\) \((0,1/2)\) \(1/4, y\)
 \((m,1/2,1/2)\)'

TABLE 3 - 2D -39
Continued No. 5.2.20 c1m11'

Generators selected (1); t(1,0); t(0,1); t(1/2,1/2); (2); 1'

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0) +</td>
</tr>
<tr>
<td>(1/2,1/2) +</td>
</tr>
<tr>
<td>(0,0)' +</td>
</tr>
<tr>
<td>(1/2,1/2)' +</td>
</tr>
</tbody>
</table>

Coordinates

| 4 b 11' (1) x,y [0,0] (2) x̅,y [0,0] |

| 2 a m1' 0,y [0,0] |

Symmetry of special projections

Along [10] p11' Along [01] pm1'

$\mathbf{a}^* = \mathbf{b}/2 \quad \mathbf{a}^* = \mathbf{a}/2$

Origin at x,0 Origin at 0,y
Origin on mirror line m'

Asymmetric unit \(0 \leq x \leq 1/4; \, 0 \leq y \leq 1 \)

Symmetry operations

For (0,0) + set

(1) \(t\) \((0,0)\)
(2) \(m'\) \(0,y\)

\((1|0,0)\) \((m_x|0,0)'\)

For (1/2,1/2) + set

(1) \(t\) \((1/2,1/2)\)
(2) \(g'\) \((0,1/2)\)

\((1|1/2,1/2)\) \((m_x|1/2,1/2)'\)
Continued

No. 5.3.21

Generators selected
(1); \(t(1,0);\) \(t(0,1);\) \(t(1/2,1/2);\) (2)

Positions

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0) + (1/2,1/2) +</td>
<td>4 b 1 ((1) x,y [u,v]) ((2) \bar{x}, y [\bar{u},v])</td>
</tr>
<tr>
<td>2 a m'</td>
<td>0,y [0,v]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] \(p1\)
\(a^* = b/2\)
Origin at \(x,0\)

Along [01] \(pm'\)
\(a^* = a/2\)
Origin at 0,\(y\)
Origin

Origin on mirror line m

Asymmetric unit

$0 \leq x \leq 1/4; \quad 0 \leq y \leq 1$

Symmetry operations

For $(0,0) +$ set

1. 1
2. $m \quad 0,y$

For $(1/2,1/2)' +$ set

1. $t' \quad (1/2,1/2)$
2. $g' \quad (0,1/2) \quad 1/4,y$

TABLE 3 - 2D -43
Generators selected

(1); t(1,0); t(0,1); t(1/2,1/2)'; (2)

Positions

Coordinates

Multiplicity,
Wyckoff letter,
Site symmetry

(0,0) +
(1/2,1/2)' +

4 b 1 (1) x,y [u,v] (2) x̅,y [u,ν]

2 a m 0,y [u,0]

Symmetry of special projections

Along [10] p11' Along [01] p2a'm

a* = b/2 a* = a/2

Origin at x,0 Origin at 0,y
TABLE 3 - 2D - 45

No. 5. 5. 23

 Origin on mirror line m'

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1\)

Symmetry operations

For \((0,0) +\) set

\[
\begin{align*}
(1) & \quad 1 \\
(1 | 0,0) & \quad (m | 0,0)'
\end{align*}
\]

For \((1/2,1/2)' +\) set

\[
\begin{align*}
(1)' & \quad (1/2,1/2) \\
(1 | 1/2,1/2)' & \quad (m_s|1/2,1/2)
\end{align*}
\]

\[
\begin{align*}
(1) & \quad (1/2,1/2) \\
(1 | 0,1/2) & \quad 1/4, y
\end{align*}
\]
Generators selected
(1): t(1,0); t(0,1); t(1/2,1/2)'; (2)

Positions
Coordinates

Multiplicity,
Wyckoff letter,
Site symmetry

(0,0) + (1/2,1/2)'

4 b 1 (1) x,y [u,v] (2) x̅,y [u̅,v]

2 a m' 0,y [0,v]

Symmetry of special projections
Along [10] \(p_{2a} \) Along [01] \(p_{2a} \) m
\(a^* = b/2 \) \(a^* = a/2 \)
Origin at x,0 Origin at 1/4,y
Origin on 2mm

Asymmetric unit \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2 \)

Symmetry operations

1. \(1 \)
 \((1;0,0) \)
2. \(2 \)
 \((2_x;0,0) \)
3. \(m \)
 \((m_y;0,0) \)
4. \(m \)
 \((m_x;0,0) \)
Generators selected (1): t(1,0); t(0,1); (2): (3)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 i 1</td>
<td>(1) x, y [u, v] (2) (\bar{x}, \bar{y} [u, v]) (3) x, (\bar{y} [u, v]) (4) (\bar{x}, y [u, v])</td>
</tr>
<tr>
<td>2 h .m.</td>
<td>1/2, y [u, 0] 1/2, (\bar{y} [u, 0])</td>
</tr>
<tr>
<td>2 g .m.</td>
<td>0, y [u, 0] 0, (\bar{y} [u, 0])</td>
</tr>
<tr>
<td>2 f ..m</td>
<td>x, 1/2 [0, v] (\bar{x}, 1/2 [0, v])</td>
</tr>
<tr>
<td>2 e ..m</td>
<td>x, 0 [0, v] (\bar{x}, 0 [0, v])</td>
</tr>
<tr>
<td>1 d 2mm</td>
<td>1/2, 1/2 [0, 0]</td>
</tr>
<tr>
<td>1 c 2mm</td>
<td>1/2, 0 [0, 0]</td>
</tr>
<tr>
<td>1 b 2mm</td>
<td>0, 1/2 [0, 0]</td>
</tr>
<tr>
<td>1 a 2mm</td>
<td>0, 0 [0, 0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

- Along [10] \(pm1' \) \(a^* = b \) Origin at x,0
- Along [01] \(pm1' \) \(a^* = a \) Origin at 0, y

TABLE 3 - 2D -48
Origin on 2mm1'

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2$

Symmetry operations

For 1 + set

1. 1
 $(1|0,0)$

2. 2
 $(2z|0,0)$

3. m
 $(m_y|0,0)$

4. m
 $(m_z|0,0)$

For 1' + set

1. $1'$
 $(1|0,0)'$

2. $2'$
 $(2z|0,0)'$

3. m'
 $(m_y|0,0)'$

4. m'
 $(m_z|0,0)'$
Generators selected (1); t(1,0); t(0,1); (2); (3); 1’

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site symmetry</td>
<td>1+ 1’ +</td>
</tr>
<tr>
<td>4 i 11’</td>
<td>(1) x,y [0,0] (2) x̅,y [0,0] (3) x̅,y [0,0] (4) x̅,y [0,0]</td>
</tr>
<tr>
<td>2 h .m.1’</td>
<td>1/2,y [0,0] 1/2,y [0,0]</td>
</tr>
<tr>
<td>2 g .m.1’</td>
<td>0,y [0,0] 0,y [0,0]</td>
</tr>
<tr>
<td>2 f ..m1’</td>
<td>x,1/2 [0,0] x̅,1/2 [0,0]</td>
</tr>
<tr>
<td>2 e ..m1’</td>
<td>x,0 [0,0] x̅,0 [0,0]</td>
</tr>
<tr>
<td>1 d 2mm1’</td>
<td>1/2,1/2 [0,0]</td>
</tr>
<tr>
<td>1 c 2mm1’</td>
<td>1/2,0 [0,0]</td>
</tr>
<tr>
<td>1 b 2mm1’</td>
<td>0,1/2 [0,0]</td>
</tr>
<tr>
<td>1 a 2mm1’</td>
<td>0,0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

<table>
<thead>
<tr>
<th>Along [10] pm1’</th>
<th>Along [01] pm1’</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b</td>
<td>a* = a</td>
</tr>
<tr>
<td>Origin at x,0</td>
<td>Origin at 0,y</td>
</tr>
</tbody>
</table>

TABLE 3 - 2D -50
Origin on $2m'm'$

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2$

Symmetry operations

1. 1 \hspace{1cm} (1) 1
 \hspace{1cm} (1:0,0)
2. $2 \ 0,0$ \hspace{1cm} (2) $2 \ 0,0$
 \hspace{1cm} (2:0,0)
3. $m' \ x,0$ \hspace{1cm} (3) $m' \ x,0$
 \hspace{1cm} (m:0,0')
4. $m' \ 0,y$ \hspace{1cm} (4) $m' \ 0,y$
 \hspace{1cm} (m:0,0')

TABLE 3 - 2D -51
Generators selected \((1); \ t(1,0); \ t(0,1); \ (2); \ (3) \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity,</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wyckoff letter,</td>
<td>Site symmetry</td>
</tr>
<tr>
<td>Symmetry of special projections</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4\ i\ 1)</td>
<td>(1)</td>
<td>(x, y [u, v])</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>(\bar{x}, \bar{y} [\bar{u}, \bar{v}])</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>(x, \bar{y} [u, \bar{v}])</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(\bar{x}, y [\bar{u}, v])</td>
</tr>
<tr>
<td>(2\ h\ .m'.)</td>
<td>(1/2, y [0, v])</td>
<td>(1/2, \bar{y} [0, \bar{v}])</td>
</tr>
<tr>
<td>(2\ g\ .m'.)</td>
<td>(0, y [0, v])</td>
<td>(0, \bar{y} [0, \bar{v}])</td>
</tr>
<tr>
<td>(2\ f\ .m')</td>
<td>(x, 1/2 [u, 0])</td>
<td>(\bar{x}, 1/2 [\bar{u}, 0])</td>
</tr>
<tr>
<td>(2\ e\ .m')</td>
<td>(x, 0 [u, 0])</td>
<td>(\bar{x}, 0 [\bar{u}, 0])</td>
</tr>
<tr>
<td>(1\ d\ 2m'm')</td>
<td>(1/2, 1/2 [0, 0])</td>
<td></td>
</tr>
<tr>
<td>(1\ c\ 2m'm')</td>
<td>(1/2, 0 [0, 0])</td>
<td></td>
</tr>
<tr>
<td>(1\ b\ 2m'm')</td>
<td>(0, 1/2 [0, 0])</td>
<td></td>
</tr>
<tr>
<td>(1\ a\ m'm'2)</td>
<td>(0, 0 [0, 0])</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of special projections

<table>
<thead>
<tr>
<th>Along [10] pm'</th>
<th>Along [01] pm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = b)</td>
<td>(a^* = a)</td>
</tr>
<tr>
<td>Origin at (x, 0)</td>
<td>Origin at (0, y)</td>
</tr>
</tbody>
</table>
Origin on 2'\text{mm}''

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2 \)

Symmetry operations

\begin{align*}
(1) & \quad 1 \quad (2) & \quad 2' \quad 0,0 \\
& \quad (1;0,0) \quad & \quad (2_z;0,0)' \\
(3) & \quad m' \quad x,0 \\
& \quad (m;0,0)' \\
(4) & \quad m \quad 0,y \\
& \quad (m_x;0,0)'
\end{align*}
Generators selected \((1); \ t(1,0); \ t(0,1); \ (2); \ (3)\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 i 1</td>
<td>((1) \ x,y \ [u,v])</td>
</tr>
<tr>
<td></td>
<td>((3) \ x, \bar{y} \ [u,\bar{v}])</td>
</tr>
<tr>
<td>2 h .m.</td>
<td>(1/2, y \ [u,0])</td>
</tr>
<tr>
<td>2 g .m.</td>
<td>(0, y \ [u,0])</td>
</tr>
<tr>
<td>2 f .m’</td>
<td>(x, 1/2 \ [u,0])</td>
</tr>
<tr>
<td>2 e .m’</td>
<td>(x, 0 \ [u,0])</td>
</tr>
<tr>
<td>1 d 2’mm’</td>
<td>(1/2, 1/2 \ [u,0])</td>
</tr>
<tr>
<td>1 c 2’mm’</td>
<td>(1/2, 0 \ [u,0])</td>
</tr>
<tr>
<td>1 b 2’mm’</td>
<td>(0, 1/2 \ [u,0])</td>
</tr>
<tr>
<td>1 a 2’mm’</td>
<td>(0, 0 \ [u,0])</td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] pm1’\(\ qm\)Along [01] pm\(\ qm\)

\(a^* = b\) \(a^* = a\)

Origin at \(x,0\) Origin at \(0,y\)

TABLE 3 - 2D -54
Origin on 2m\'m'

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2 \]

Symmetry operations

For (0,0) + set

1. 1
2. 2 0,0
 (1) (0,0)
 (2) (2,0)
3. m' x,0
 (1) m' 0,0'
 (2) (m,0)
4. m' 0,y
 (1) m' 0,0'
 (2) (m,0)

For (1,0)' + set

1. t' (1,0)
2. 2' 1/2,0
 (1) (1,0)'
 (2) (2,1,0)'
3. g (1,0) x,0
 (1) g (1,0)'
 (2) (g,1,0)
4. m 1/2,y
 (1) (m,1)'
 (2) (m,1)
Generators selected

(1) \(t(1.0)' \); \(t(0.1) \); (2); (3)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)+</td>
<td>(1,0)' +</td>
</tr>
<tr>
<td>4 i 1</td>
<td>(1) (x,y) [u,v]</td>
</tr>
<tr>
<td></td>
<td>(3) (x, \bar{y}) [u,(v)]</td>
</tr>
<tr>
<td>2 h .m.</td>
<td>1/2,(y) [u,0]</td>
</tr>
<tr>
<td>2 g .m'.</td>
<td>0,(y) [0,(v)]</td>
</tr>
<tr>
<td>2 f .m'</td>
<td>(x,1/2) [u,0]</td>
</tr>
<tr>
<td>2 e .m'</td>
<td>(x,0) [u,0]</td>
</tr>
<tr>
<td>1 d 2'mm'</td>
<td>1/2,1/2 [u,0]</td>
</tr>
<tr>
<td>1 c 2'mm'</td>
<td>1/2,0 [u,0]</td>
</tr>
<tr>
<td>1 b 2'm'm'</td>
<td>0,1/2 [0,0]</td>
</tr>
<tr>
<td>1 a 2'm'm'</td>
<td>0,0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

- **Along [10] pm1'**
 - \(a^* = b \)
 - Origin at \(x,0 \)
- **Along [01] \(p_{2a}m \)**
 - \(a^* = a \)
 - Origin at \(1/2,y \)

TABLE 3 - 2D -56
Origin on 2mm

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2$

Symmetry operations

For (0,0) + set

1. $I (1,0,0)$
2. $2 (2,0,0)$
3. $m x,0 (m_x,0,0)$
4. $m 0,y (m_x,0,0)$

For (0,1) + set

1. $t' (0,1,0,1)$
2. $2' (0,1/2,0,1)$
3. $m' x,1/2 (m_x,0,1)$
4. $g' (0,1,0,1)$

TABLE 3 - 2D -57
Generators selected (1); t(1,0)'; t(0,1)'; (2); (3)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 i 1</td>
<td>(1) x,y [u,v]</td>
<td>(2) (\bar{x},y [\bar{u},v])</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) (x,\bar{y} [\bar{u},v])</td>
<td>(4) (\bar{x},y [u,\bar{v}])</td>
<td></td>
</tr>
<tr>
<td>2 h .m'</td>
<td>1/2,y [0,v]</td>
<td>1/2,(\bar{y} [0,v])</td>
<td></td>
</tr>
<tr>
<td>2 g .m</td>
<td>0,y [u,0]</td>
<td>0,(\bar{y} [\bar{u},0])</td>
<td></td>
</tr>
<tr>
<td>2 f .m'</td>
<td>x,1/2 [u,0]</td>
<td>(\bar{x},1/2 [u,0])</td>
<td></td>
</tr>
<tr>
<td>2 e .m</td>
<td>x,0 [0,v]</td>
<td>(\bar{x},0 [0,\bar{v}])</td>
<td></td>
</tr>
<tr>
<td>1 d 2m'm'</td>
<td>1/2,1/2 [0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 c 2'm'm'</td>
<td>1/2,0 [0,v]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 b 2'm'm'</td>
<td>0,1/2 [u,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 a 2mm</td>
<td>0,0 [0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of special projections

- Along [10] \(p1m'\)
 - \(a'^* = b\)
 - Origin at \(x,0\)

- Along [01] \(p1m'\)
 - \(a'^* = a\)
 - Origin at \(0,y\)
Origin
Origin on 2mm

Asymmetric unit
$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2$

Symmetry operations

<table>
<thead>
<tr>
<th>For (0,0) + set</th>
<th>(1) 1 (1,0)</th>
<th>(2) 2 2,0 (2,0)</th>
<th>(3) m x,0 (m,0)</th>
<th>(4) m 0,y (m,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1 (0,0)</td>
<td>(2) 2 0,0 (2,0)</td>
<td>(3) m x,0 (m,0)</td>
<td>(4) m 0,y (m,0)</td>
<td></td>
</tr>
<tr>
<td>For (1,0)' + set</td>
<td>(1) t' (1,0)</td>
<td>(2) 2' 1/2,0 (2,0)'</td>
<td>(3) g' (1,0) x,0 (m,0)'</td>
<td>(4) m' 1/2,y (m,0)'</td>
</tr>
<tr>
<td>(1) 1</td>
<td>(2) 2 (2,0)</td>
<td>(3) m x,0 (m,0)</td>
<td>(4) m 0,y (m,0)</td>
<td>(m,0)'</td>
</tr>
<tr>
<td>(1,0)'</td>
<td>(2,0)'</td>
<td>(m,0)'</td>
<td>(m,0)'</td>
<td>(m,0)'</td>
</tr>
</tbody>
</table>
Generators selected (1); t(1,0)'; t(0,1); (2); (3)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 i 1</td>
<td>(1) x,y [u,v]</td>
<td>(2) (\bar{x},\bar{y} [u,v])</td>
</tr>
<tr>
<td></td>
<td>(3) x,(\bar{y}) [(\bar{u},v)]</td>
<td>(4) (\bar{x},y [u,\bar{v}])</td>
</tr>
<tr>
<td>2 h .m'</td>
<td>1/2,y [0,v]</td>
<td>1/2,(\bar{y}) [0,v]</td>
</tr>
<tr>
<td>2 g .m</td>
<td>0,y [u,0]</td>
<td>0,(\bar{y}) [(\bar{u},0)]</td>
</tr>
<tr>
<td>2 f ..m</td>
<td>x,1/2 [0,v]</td>
<td>(\bar{x},1/2 [0,\bar{v}])</td>
</tr>
<tr>
<td>2 e ..m</td>
<td>x,0 [0,v]</td>
<td>(\bar{x},0 [0,\bar{v}])</td>
</tr>
<tr>
<td>1 d 2'm'm</td>
<td>1/2,1/2 [0,v]</td>
<td></td>
</tr>
<tr>
<td>1 c 2'm'm</td>
<td>1/2,0 [0,v]</td>
<td></td>
</tr>
<tr>
<td>1 b 2mm</td>
<td>0,1/2 [0,0]</td>
<td></td>
</tr>
<tr>
<td>1 a 2mm</td>
<td>0,0 [0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] \(p1m11'\) Along [01] \(p1m11'\)
\(a^* = b\) \(a^* = a\)
Origin at x,0,0 Origin at 0,y,0
Origin on 21g

Asymmetric unit \(0 \leq x \leq \frac{1}{4}; \quad 0 \leq y \leq 1 \)

Symmetry operations

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1;0,0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(2;0,0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>g</td>
<td>(1/2,0)</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>(m;1/2,0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>m</td>
<td>1/4</td>
<td>y</td>
</tr>
<tr>
<td></td>
<td>(m;1/2,0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Generators selected
(1); t(1,0); t(0,1); (2); (3)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 d 1</td>
<td>(1) x,y [u,v]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,\̅y [u\̅,v]</td>
</tr>
<tr>
<td>2 c .m.</td>
<td>1/4,y [u,0]</td>
</tr>
<tr>
<td>2 b 2..</td>
<td>0,1/2 [0,0]</td>
</tr>
<tr>
<td>2 a 2..</td>
<td>0,0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

- Along [10] pm1':
 - \(a^* = b\)
 - Origin at x,0

- Along [01] \(p_{2a}\cdot m\):
 - \(a^* = a/2\)
 - Origin at 1/4,y
Origin on 21g1'

Asymmetric unit \(0 \leq x \leq 1/4; \ 0 \leq y \leq 1 \)

Symmetry operations

For 1 + set

(1) 1
\((1|0,0)\)

(2) 2 0,0
\((2_2|0,0)\)

(3) \(g\) \((1/2,0)\) \(x,0\)
\((m_y|1/2,0)\)

(4) \(m\) \(1/4,y\)
\((m_x|1/2,0)\)

For 1' + set

(1) 1'
\((1|0,0)\)'

(2) 2' 0,0
\((2_2|0,0)\)'

(3) \(g'\) \((1/2,0)\) \(x,0\)
\((m_y|1/2,0)'\)

(4) \(m'\) \(1/4,y\)
\((m_x|1/2,0)'\)
Generators selected
(1); t(1,0); t(0,1); (2); (3); 1’

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site symmetry</td>
<td>1+ 1’ +</td>
</tr>
<tr>
<td>4 d 11’</td>
<td>(1) x, y [0,0] (2) x, y [0,0] (3) x+1/2, y [0,0] (4) x+1/2, y [0,0]</td>
</tr>
<tr>
<td>2 c .m.1’</td>
<td>1/4, y [0,0] 3/4, y [0,0]</td>
</tr>
<tr>
<td>2 b 2..1’</td>
<td>0, 1/2 [0,0] 1/2, 1/2 [0,0]</td>
</tr>
<tr>
<td>2 a 2..1’</td>
<td>0, 0 [0,0] 1/2, 0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

<table>
<thead>
<tr>
<th>Along [10] pm 1’</th>
<th>Along [01] pm 1’</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b</td>
<td>a* = a/2</td>
</tr>
<tr>
<td>Origin at x, 0</td>
<td>Origin at 0, y</td>
</tr>
</tbody>
</table>
Origin on 21g'

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1

Symmetry operations

1. 1
2. 2 0,0
3. g' (1/2,0) x,0
4. m' 1/4,y

TABLE 3 - 2D -65
Generators selected (1); t(1,0); t(0,1); (2); (3)

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site symmetry</td>
<td></td>
</tr>
<tr>
<td>4 d 1</td>
<td>(1) x,y [u,v] (2) x,y [u,v] (3) x+1/2,y [u,v] (4) x+1/2,y [u,v]</td>
</tr>
<tr>
<td>2 c .m'</td>
<td>1/4,y [u,v] 3/4,y [0,v]</td>
</tr>
<tr>
<td>2 b 2..</td>
<td>0,1/2 [0,0] 1/2,1/2 [0,0]</td>
</tr>
<tr>
<td>2 a 2..</td>
<td>0,0 [0,0] 1/2,0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] pm' Along [01] pm'
\(a^* = b \) \(a^* = a/2 \)
Origin at x,0 Origin at 0,y
Table 3 - 2D - 67

<table>
<thead>
<tr>
<th>Symmetry Operations</th>
<th>p2'm'g</th>
<th>2'm'm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>on 2'1g</td>
<td></td>
</tr>
<tr>
<td>Asymmetric unit</td>
<td>[0 \leq x \leq 1/4; 0 \leq y \leq 1]</td>
<td></td>
</tr>
<tr>
<td>Symmetry operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1</td>
<td>0,0)</td>
<td></td>
</tr>
<tr>
<td>(2) 2' 0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2_2</td>
<td>0,0)'</td>
<td></td>
</tr>
<tr>
<td>(3) g (1/2,0) x,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m_1</td>
<td>1/2,0)</td>
<td></td>
</tr>
<tr>
<td>(4) m' 1/4,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m_x</td>
<td>1/2,0)'</td>
<td></td>
</tr>
</tbody>
</table>
Generators selected (1); t(1,0); t(0,1); (2); (3)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
</table>
| 4 d 1 | (1) x,y [u,v]
 | (2) x, y [u,v] |
| | (3) x+1/2, y [u,v]
 | (4) x+1/2, y [u,v] |
| 2 c .m' | 1/4, y [0,v]
 | 3/4, y [0,v] |
| 2 b 2'.. | 0,1/2 [u,v]
 | 1/2,1/2 [u,v] |
| 2 a 2'.. | 0,0 [u,v]
 | 1/2,0 [u,v] |

Symmetry of special projections

Along [10] \(\rho m \)
Along [01] \(\rho a'm \)
\(a^* = b \)
\(a^* = a/2 \)
Origin at x,0
Origin at 0,y
Origin on 2'1g'

Asymmetric unit \(0 \leq x \leq 1/4; \ 0 \leq y \leq 1 \)

Symmetry operations

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad g' (1/2,0) \\
(3) & \quad m' (1/2,0)' \\
(4) & \quad m (1/4,y) \\
(1/0,0) & \quad (2,0,0)' \\
(m_x 1/2,0)' & \quad (m_x 1/2,0)'
\end{align*}
\]
Generators selected
(1); t(1,0); t(0,1); (2); (3)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 d 1</td>
<td>(1) x,y [u,v]</td>
</tr>
<tr>
<td></td>
<td>(2) x̅,y [u,v]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,y [u,ν]</td>
</tr>
<tr>
<td></td>
<td>(4) x̅+1/2,y [u,ν]</td>
</tr>
<tr>
<td>2 c .m.</td>
<td>1/4,y [u,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,y [u,0]</td>
</tr>
<tr>
<td>2 b 2′..</td>
<td>0,1/2 [u,v]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2 [u,ν]</td>
</tr>
<tr>
<td>2 a 2′..</td>
<td>0,0 [u,v]</td>
</tr>
<tr>
<td></td>
<td>1/2,0 [u,ν]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] pm1'
Along [01] pm
\(a^* = b\)
\(a^* = a/2\)
Origin at x,0
Origin at 0,y
Origin on 21g'

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1\)

Symmetry operations

For (0,0) + set

1. \((1,0,0)\)
 \((1/2,0,0)\)

2. \((0,0)\)
 \((1/2,0)\)
 \((0,1/2)\)
 \((1/2,1/2)\)

For (0,1) + set

1. \((0,1)\)
 \((0,1/2)\)
 \((1,0)\)
 \((1/2,1)\)

\(g\) is a rotation by \(90^\circ\) about the origin.

\(m\) is a mirror plane.

\(t\) is a translation by \(1/2\) in the \(x\) direction.

\(x, y, z\) are Cartesian coordinates.
Continued

No. 7.6.36

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generators selected</td>
<td>(1); t(1,0); t(0,1)'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
<th>(0,0)*</th>
<th>(0,1)' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 d 1</td>
<td>(1) x,y [u,v]</td>
<td>(2) x̄,y [ū,v]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,y [u,v]</td>
<td>(4) x̄+1/2,y [ū,v]</td>
</tr>
<tr>
<td>2 c .m'</td>
<td>1/4,y [0,v]</td>
<td>3/4,y [0,v]</td>
</tr>
<tr>
<td>2 b 2'..</td>
<td>0,1/2 [u,v]</td>
<td>1/2,1/2 [ū,v]</td>
</tr>
<tr>
<td>2 a 2..</td>
<td>0,0 [0,0]</td>
<td>1/2,0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

- Along [10] \(p_{2a}m \)
- Along [01] \(pm1' \)
- \(a^* = b \)
- \(a^* = a/2 \)
- Origin at x,1/2
- Origin at 0,y
Origin on 21g

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1

Symmetry operations

For (0,0) + set
(1) 1 (0,0) (2) 2 0,0 (3) g (1/2,0) x,0 (4) m 1/4,y
(1') 0,0 (2') 0,0 (3') 1/2,0 x,1/2 (4') 0,1 1/4,y

For (0,1)' + set
(1) t' (0,1) (2) t 0,1/2 (3) g' (1/2,0) x,1/2 (4) g' (0,1) 1/4,y
(1') 0,1 (2') 0,1/2 (3') 1/2,0 x,1/2 (4') 1/2,1 1/4,y

TABLE 3 - 2D -73
Generators selected (1); t(1,0); t(0,1)'; (2); (3)

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site symmetry</td>
<td></td>
</tr>
<tr>
<td>(0,0)*</td>
<td>(0,1)*</td>
</tr>
<tr>
<td>4 d 1</td>
<td>(1) x,y [u,v] (2) (\bar{x},y [u,v])</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,(\bar{y}) [(\bar{u},v)] (4) (\bar{x}+1/2,y [u,\bar{v}])</td>
</tr>
<tr>
<td>2 c .m.</td>
<td>1/4,(y [u,0]) 3/4,(\bar{y} [u,0])</td>
</tr>
<tr>
<td>2 b 2'..</td>
<td>0,1/2 [u,v] 1/2,1/2 [u,(\bar{v})]</td>
</tr>
<tr>
<td>2 a 2..</td>
<td>0,0 [0,0] 1/2,0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

<table>
<thead>
<tr>
<th>Along [10] pm1'</th>
<th>Along [01] pm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = b)</td>
<td>(a^* = a/2)</td>
</tr>
<tr>
<td>Origin at x,0</td>
<td>Origin at 0,y</td>
</tr>
</tbody>
</table>

TABLE 3 - 2D -74
Origin on 211

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2$

Symmetry operations

(1) 1
(1:0,0)

(2) $2 \ 0,0$
(2:0,0)

(3) $g \ (1/2,0) \ x,1/4$
(m:1/2,1/2)

(4) $g \ (0,1/2) \ 1/4,y$
(m:1/2,1/2)
Generators selected (1); t(1,0); t(0,1); (2); (3)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) x,y [u,v] (2) x̅,y [u̅,v̅] (3) x+1/2, y+1/2 [u̅,v] (4) x̅+1/2, y+1/2 [u,v̅]</td>
</tr>
<tr>
<td>2 b 2..</td>
<td>0,1/2 [0,0] 1/2,0 [0,0]</td>
</tr>
<tr>
<td>2 a 2..</td>
<td>0,0 [0,0] 1/2,1/2 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] $p_{2a.m}$ Along [01] $p_{2a.m}$

$a^* = b/2$ $a^* = a/2$

Origin at x,1/4 Origin at 1/4,y
Origin on 2111’

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2$

Symmetry operations

For 1 + set

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>g</td>
<td>g'</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>(1:0,0)</td>
<td>(2:0,0)</td>
<td>(1/2,0)</td>
<td>(0,1/2)</td>
</tr>
<tr>
<td>(m:1/2,1/2)</td>
<td>(m:1/2,1/2)</td>
<td>(m:1/2,1/2)</td>
<td>(m:1/2,1/2)</td>
</tr>
</tbody>
</table>

For 1' + set

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1'</td>
<td>2'</td>
<td>g'</td>
<td>g'</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>(1:0,0)'</td>
<td>(2:0,0)'</td>
<td>(1/2,0)</td>
<td>(0,1/2)</td>
</tr>
<tr>
<td>(m:1/2,1/2)'</td>
<td>(m:1/2,1/2)'</td>
<td>(m:1/2,1/2)'</td>
<td>(m:1/2,1/2)'</td>
</tr>
</tbody>
</table>

TABLE 3 - 2D -77
Continued

Generators selected (1); t(1,0); t(0,1); (2); (3); 1’

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>1’ +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wyckoff letter</th>
<th>Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 11’</td>
<td>(1) x,y [0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y [0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,y+1/2 [0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y+1/2 [0,0]</td>
</tr>
</tbody>
</table>

| 2 b 2..1’ | 0,1/2 [0,0] |
| | 1/2,0 [0,0] |

| 2 a 2..1’ | 0,0 [0,0] |
| | 1/2,1/2 [0,0] |

Symmetry of special projections

- Along [10] pm1’
 \(a^* = b/2 \)
 Origin at x,0

- Along [01] pm1’
 \(a^* = a/2 \)
 Origin at 0,y

TABLE 3 - 2D -78
TABLE 3 - 2D - 79

p2g'g'

No. 8.3.40

2m'm'

p2g'g'

Origin on 211

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2$

Symmetry operations

1. 1
2. $0,0$
3. $g' (1/2,0) x,1/4$
4. $g' (0,1/2) 1/4,y$

TABLE 3 - 2D - 79
Generators selected (1); t(1,0); t(0,1); (2); (3)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>c</td>
<td>(1) x,y [u,v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x̅,y̅ [u̅,v̅]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+1/2,y+1/2 [u,v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x̅+1/2,y+1/2 [u̅,v]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>0,1/2 [0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0 [0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>0,0 [0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

- Along [10] pm'
 \(\mathbf{a^*} = \mathbf{b}/2 \)
 Origin at x,0

- Along [01] pm'
 \(\mathbf{a^*} = \mathbf{a}/2 \)
 Origin at 0,y

TABLE 3 - 2D -80
Origin on 2'11

Asymmetric unit \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2\)

Symmetry operations

(1) 1
\((1|0,0)\)

(2) 2' 0,0
\((2_\|_0,0)'\)

(3) g' (1/2,0) x,1/4
\((m_\|_1/2,1/2)'\)

(4) g (0,1/2) 1/4,y
\((m_\|_1/2,1/2)\)
Generators selected
(1); t(1,0); t(0,1); (2); (3)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) x,y [u,v]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y [u,v]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,y+1/2 [u,v]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y+1/2 [u,v]</td>
</tr>
<tr>
<td>2 b 2'.</td>
<td>0,1/2 [u,v]</td>
</tr>
<tr>
<td></td>
<td>1/2,0 [u,v]</td>
</tr>
<tr>
<td>2 a 2'.</td>
<td>0,0 [u,v]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2 [u,v]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] \(p_{2a,m} \)
Along [01] \(pm \)

\(a^* = b/2 \)
\(a^* = a/2 \)

Origin at x,0
Origin at 0,y

TABLE 3 - 2D -82
Origin on 2mm

Asymmetric unit \(0 \leq x \leq \frac{1}{4}; \ 0 \leq y \leq \frac{1}{2}\)

Symmetry operations

For \((0,0)\) + set

\[
\begin{align*}
1 & \quad (0,0) \\
(1) & \quad 2 \quad (0,0) \\
(2) & \quad m \quad x,0 \\
(3) & \quad m \quad 0,y \\
(4) & \quad m \quad 0,0 \\
\end{align*}
\]

For \((1/2,1/2)\) + set

\[
\begin{align*}
1 & \quad (1/2,0) \\
(1) & \quad 2 \quad 1/4,1/4 \\
(2) & \quad 1/4,1/4 \\
(3) & \quad g \quad (1/2,0) \quad x,1/4 \\
(4) & \quad g \quad 0,1/2 \quad 1/4,y \\
\end{align*}
\]

[Diagram of the symmetry operations]
Generators selected
(1); t(1,0); t(0,1); t(1/2,1/2); (2); (3)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0) +</td>
<td>(1/2,1/2) +</td>
</tr>
<tr>
<td>8 f 1</td>
<td></td>
</tr>
<tr>
<td>(1) x,y [u,v]</td>
<td>(2) x̅,y [u̅,v̅]</td>
</tr>
<tr>
<td>(3) x,y [u,v]</td>
<td>(4) x̅,y [u̅,v̅]</td>
</tr>
<tr>
<td>4 e .m.</td>
<td></td>
</tr>
<tr>
<td>0,y [u,0]</td>
<td>0, y̅ [u̅,0]</td>
</tr>
<tr>
<td>4 d ..m</td>
<td></td>
</tr>
<tr>
<td>x,0 [0,v]</td>
<td>x̅,0 [0,v]</td>
</tr>
<tr>
<td>4 c 2..</td>
<td></td>
</tr>
<tr>
<td>1/4,1/4 [0,0]</td>
<td>1/4,3/4 [0,0]</td>
</tr>
<tr>
<td>2 b 2mm</td>
<td></td>
</tr>
<tr>
<td>0,1/2 [0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 2mm</td>
<td></td>
</tr>
<tr>
<td>0,0 [0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] pm 1'
Along [01] pm 1'
\(a^* = b/2\)
\(a^* = a/2\)
Origin at x,0
Origin at 0, y

TABLE 3 - 2D -84
Origin on 2mm1'

Asymmetric unit $0 \leq x \leq 1/4; \ 0 \leq y \leq 1/2$

Symmetry operations

For (0,0) + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>2</td>
<td>0,0</td>
</tr>
<tr>
<td>m</td>
<td>x,0</td>
</tr>
<tr>
<td>m</td>
<td>0,y</td>
</tr>
</tbody>
</table>

For (1/2,1/2) + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>(1/2,1/2)</td>
</tr>
<tr>
<td>2</td>
<td>1/4,1/4</td>
</tr>
<tr>
<td>g</td>
<td>(1/2,0) x,1/4</td>
</tr>
<tr>
<td>g</td>
<td>(0,1/2) 1/4,y</td>
</tr>
</tbody>
</table>

For (0,0)' + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1'</td>
<td>(1,0,0)'</td>
</tr>
<tr>
<td>2'</td>
<td>0,0</td>
</tr>
<tr>
<td>m'</td>
<td>x,0</td>
</tr>
<tr>
<td>m'</td>
<td>0,y</td>
</tr>
</tbody>
</table>

For (1/2,1/2)' + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>t'</td>
<td>(1/2,1/2)</td>
</tr>
<tr>
<td>2'</td>
<td>1/4,1/4</td>
</tr>
<tr>
<td>g'</td>
<td>(1/2,0) x,1/4</td>
</tr>
<tr>
<td>g'</td>
<td>(0,1/2) 1/4,y</td>
</tr>
</tbody>
</table>

TABLE 3 - 2D -85
Generators selected (1); t(1,0); t(0,1); t(1/2,1/2); (2); (3); 1'

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0) +</td>
<td>(1/2,1/2) +</td>
</tr>
<tr>
<td>(0,0)'+</td>
<td>(1/2,1/2)'+</td>
</tr>
</tbody>
</table>

| 8 | f | 11' | (1) x,y [0,0] | (2) x̅,y [0,0] |
| | | | (3) x,ŷ [0,0] | (4) ŷ,x [0,0] |

| 4 | e | .m.1' | 0,y [0,0] | ŷ,0 [0,0] |

| 4 | d | ..m1' | x,0 [0,0] | ŷ,0 [0,0] |

| 4 | c | 2..1' | 1/4,1/4 [0,0] | 1/4,3/4 [0,0] |

| 2 | b | 2mm1' | 0,1/2 [0,0] |

| 2 | a | 2mm1' | 0,0 [0,0] |

Symmetry of special projections

Along [10] pm1'
\(a^* = b/2\)

Along [01] pm1'
\(a^* = a/2\)

Origin at x,0
Origin at 0,y
Origin on 2m’m’

Asymmetric unit $0 \leq x \leq 1/4; \ 0 \leq y \leq 1/2$

Symmetry operations

For (0,0) + set

(1) 1
(2) $2 \ 0,0$
(3) $m' \ x,0$
(4) $m' \ 0,y$

For $(1/2,1/2)$ + set

(1) $t \ (1/2,1/2)$
(2) $2 \ 1/4,1/4$
(3) $g' \ (1/2,0) \ x,1/4$
(4) $g' \ (0,1/2) \ 1/4,y$

TABLE 3 - 2D -87
Generators selected (1); t(1,0); t(0,1); t(1/2,1/2); (2); (3)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0) +</td>
<td>(1/2,1/2) +</td>
</tr>
</tbody>
</table>

8 f 1
(1) x,y [u,v]
(2) \(\bar{x}, \bar{y} [\bar{u}, \bar{v}] \)
(3) x,\(\bar{y} [u, \bar{v}] \)
(4) \(\bar{x}, y [\bar{u}, v] \)

4 e .m'. 0,y [0,v] 0,\(\bar{y} [0, \bar{v}] \)

4 d .m' x,0 [u,0] \(\bar{x}, 0 [\bar{u}, 0] \)

4 c 2.. 1/4,1/4 [0,0] 1/4,3/4 [0,0]

2 b 2m'm' 0,1/2 [0,0]

2 a 2m'm' 0,0 [0,0]

Symmetry of special projections

Along [10] pm' Along [01] pm'
\(a^{*} = b/2 \) \(a^{*} = a/2 \)
Origin at x,0 Origin at 0,y

TABLE 3 - 2D -88
Origin on 2'mm'

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2\)

Symmetry operations

For \((0,0) + \) set

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(0,0)</td>
</tr>
<tr>
<td>2</td>
<td>2'</td>
<td>(0,0)'</td>
</tr>
<tr>
<td>3</td>
<td>m'</td>
<td>(0,0)'</td>
</tr>
<tr>
<td>4</td>
<td>m</td>
<td>(0,0)</td>
</tr>
</tbody>
</table>

For \((1/2,1/2) + \) set

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>t</td>
<td>(1/2,1/2)</td>
</tr>
<tr>
<td>2</td>
<td>2'</td>
<td>(1/4,1/4)</td>
</tr>
<tr>
<td>3</td>
<td>g'</td>
<td>(0,1/2)</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>(0,1/2)</td>
</tr>
</tbody>
</table>

TABLE 3 - 2D -89
Generators selected

(1); t(1,0); t(0,1); t(1/2,1/2); (2); (3)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y [u,v]</td>
<td>(2) x̄,y [u,v]</td>
</tr>
<tr>
<td></td>
<td>(3) x̄,y [u,v]</td>
<td>(4) x,y [u,v̄]</td>
</tr>
<tr>
<td>4 e .m.</td>
<td>0,y [u,0]</td>
<td>0,ȳ [u,0]</td>
</tr>
<tr>
<td>4 d ..m'</td>
<td>x,0 [u,0]</td>
<td>x̄,0 [u,0]</td>
</tr>
<tr>
<td>4 c 2'. .</td>
<td>1/4,1/4 [u,v]</td>
<td>1/4,3/4 [u,v̄]</td>
</tr>
<tr>
<td>2 b 2'mm'</td>
<td>0,1/2 [u,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 2'mm'</td>
<td>0,0 [u,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of special projections

- Along [10] pm1'
 - \(a^* = b/2 \)
 - Origin at x,0

- Along [01] pm
 - \(a^* = a/2 \)
 - Origin at 0,y
Origin on 2mm

Asymmetric unit \(0 \leq x \leq 1/4; \ 0 \leq y \leq 1/2 \)

Symmetry operations

For \((0,0)\) + set

(1) \(1 \ \ \ (1|0,0) \)
(2) \(2 \ 0,0 \ \ (2|0,0) \)
(3) \(m \ x,0 \ \ (m|0,0) \)
(4) \(m \ 0,y \ \ (m|0,0) \)

For \((1/2,1/2)'\) + set

(1) \(t' \ \ (1/2,1/2) \)
(2) \(2' \ 1/4,1/4 \)
(3) \(g' \ (1/2,0) \ x,1/4 \)
(4) \(g' \ (0,1/2) \ 1/4,y \)

\(\text{TABLE 3 - 2D -91} \)
Generators selected

(1); t(1,0); t(0,1); t(1/2,1/2)'; (2); (3)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0) +</td>
<td>(1/2,1/2)'+</td>
</tr>
</tbody>
</table>

| 8 f 1 | 1 | (1) x,y [u,v] | (2) x,y [u,v] |
| | | (3) x,y [u,v] | (4) x,y [u,v] |

4 e .m.	0,y [u,0]	0,y [u,0]
4 d ..m	x,0 [0,v]	x,0 [0,v]
4 c 2'..	1/4,1/4 [u,v]	1/4,3/4 [u,v]
2 b 2mm	0,1/2 [0,0]	
2 a 2mm	0,0 [0,0]	

Symmetry of special projections

Along [10] pm1' Along [01] pm1'

a* = b/2 a* = a/2

Origin at x,0 Origin at 0,y
Origin on 2mm'

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2\)

Symmetry operations

For \((0,0)\) + set

1. \(1\) \hspace{1cm} \(2\) \hspace{1cm} \(3\) \hspace{1cm} \(4\)
 \(0,0\) \hspace{1cm} \(0,0\) \hspace{1cm} \((1/0,0)\) \hspace{1cm} \((m,0,0)\) \hspace{1cm} \((m,0,0)\) \hspace{1cm} \(0,y\)

For \((1/2,1/2)\) + set

1. \(t\) \hspace{1cm} \(2\) \hspace{1cm} \(3\) \hspace{1cm} \(4\)
 \((1/2,1/2)\) \hspace{1cm} \((1/2,1/4)\) \hspace{1cm} \((1/2,0)\) \hspace{1cm} \((0,1/2)\)

 \((1/2,1/2)\) \hspace{1cm} \((1/2,1/4)\) \hspace{1cm} \((m,1/2,1/4)\) \hspace{1cm} \((m,1/2,1/2)\)

 \((1/2,1/2)\) \hspace{1cm} \((1/2,1/4)\) \hspace{1cm} \((m,1/2,1/4)\) \hspace{1cm} \((m,1/2,1/2)\)
Continued

TABLE 3 - 2D - 94

Generators selected
(1); t(1,0); t(0,1); t(1/2,1/2)'; (2); (3)

Positions

<table>
<thead>
<tr>
<th>Symmetry of special projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [10] \rho_{2a}\cdot m</td>
</tr>
<tr>
<td>\mathbf{a}^* = \frac{\mathbf{b}}{2}</td>
</tr>
<tr>
<td>Origin at \mathbf{x},1/4</td>
</tr>
</tbody>
</table>
Origin on 2mm'

Asymmetric unit \(0 \leq x \leq 1/4; \ 0 \leq y \leq 1/2\)

Symmetry operations

For \((0,0) +\) set

(1) \(1\) \(\begin{array}{c}
(0,0) \\
(1,0,0)
\end{array}\)

(2) \(2'\) \(\begin{array}{c}
0,0 \\
(2_2,0,0)'
\end{array}\)

(3) \(m'\) \(\begin{array}{c}
x,0 \\
(m_y,0,0)'
\end{array}\)

(4) \(m\) \(\begin{array}{c}
0,y \\
(m_x,0,0)
\end{array}\)

For \((1/2,1/2)' +\) set

(1) \(t'\) \(\begin{array}{c}
(1/2,1/2) \\
(1,2,1/2)'
\end{array}\)

(2) \(2\) \(\begin{array}{c}
1/4,1/4 \\
(2_2,1/2,1/2)
\end{array}\)

(3) \(g\) \(\begin{array}{c}
(1/2,0) \\
(1,2,1/2)
\end{array}\)

(4) \(g'\) \(\begin{array}{c}
(0,1/2) \\
(m_x,1/2,1/2)
\end{array}\)
Generators selected (1); t(1,0); t(0,1); t(1/2,1/2)'; (2); (3)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y [u,v]</td>
<td>(2) x̅,y [u,v]</td>
</tr>
<tr>
<td></td>
<td>(3) x̅,y [u,v̅]</td>
<td>(4) x̅,y [u,v̅]</td>
</tr>
<tr>
<td>4 e .m.</td>
<td>0,y [u,0]</td>
<td>0,y̅ [u,0]</td>
</tr>
<tr>
<td>4 d ..m'</td>
<td>x,0 [u,0]</td>
<td>x̅,0 [u,0]</td>
</tr>
<tr>
<td>4 c 2..</td>
<td>1/4,1/4 [0,0]</td>
<td>1/4,3/4 [0,0]</td>
</tr>
<tr>
<td>2 b 2'mm'</td>
<td>0,1/2 [u,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 2'mm'</td>
<td>0,0 [u,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] p m1'
-origin at x,0

Along [01] p 2m
-origin at 0,y
Origin on 4

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2

Symmetry operations

(1) 1 (2) 2 0,0 (3) 4* 0,0 (4) 4* 0,0
(1|0,0) (2|0,0) (4z|0,0) (4z |0,0)
Continued

Table 3 - 2D - 98

Generators selected
(1); t(1,0); t(0,1); (2); (3)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 d 1</td>
<td>(1) x,y [u,v] (2) x, y [u,v] (3) y,x [v,u] (4) y,x [v,u]</td>
</tr>
<tr>
<td>2 c 2..</td>
<td>0,1/2 [0,0] 1/2,0 [0,0]</td>
</tr>
<tr>
<td>1 b 4..</td>
<td>1/2,1/2 [0,0]</td>
</tr>
<tr>
<td>1 a 4..</td>
<td>0,0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

\[a^* = b \quad a^* = (-a+b)/2 \]

Origin at x,0 Origin at x,x
Origin on 41'

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2 \)

Symmetry operations

For 1 + set

(1) 1
\((1,0,0) \)

(2) 2 0,0
\((2z,0,0) \)

(3) 4^+ 0,0
\((4z,0,0) \)

(4) 4^- 0,0
\((4z^{-1},0,0) \)

For 1' + set

(1) 1'
\((1,0,0)' \)

(2) 2' 0,0
\((2z,0,0)' \)

(3) 4'^+ 0,0
\((4z,0,0)' \)

(4) 4'^- 0,0
\((4z^{-1},0,0)' \)
Generators selected (1); t(1,0); t(0,1); (2); (3); 1’

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>d</td>
<td>11’</td>
</tr>
<tr>
<td>1’+</td>
<td>d</td>
<td>11’</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>21’</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>41’</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>41’</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>d</td>
<td>11’</td>
<td>(1) x, y [0,0]</td>
</tr>
<tr>
<td>1’+</td>
<td>d</td>
<td>11’</td>
<td>(2) x̅, y [0,0]</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>21’</td>
<td>(3) y, x [0,0]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>41’</td>
<td>(4) y, x̅ [0,0]</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>41’</td>
<td>0, 0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

- **Along [10] pm1’**
 - a* = b
 - Origin at x, 0
- **Along [11] pm1’**
 - a* = (-a + b) / 2
 - Origin at x, x
Origin on 4'

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2$

Symmetry operations

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1</td>
<td>(2)</td>
<td>2 0.0</td>
</tr>
<tr>
<td>(1)</td>
<td>(0,0)</td>
<td>(2)</td>
<td>(z,0)</td>
</tr>
<tr>
<td>(3)</td>
<td>4+, 0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>4-, 0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>(4,0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>(4,1,0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3 - 2D -101
Generators selected (1); t(1,0,0); t(0,1,0); (2); (3)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 d 1</td>
<td>(1) x,y [u,v]</td>
</tr>
<tr>
<td>2 c 2..</td>
<td>0,1/2 [0,0]</td>
</tr>
<tr>
<td>1 b 4'..</td>
<td>1/2,1/2 [0,0]</td>
</tr>
<tr>
<td>1 a 4'..</td>
<td>0,0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b</td>
<td>a* =(-a+b)/2</td>
</tr>
<tr>
<td>Origin at x,0</td>
<td>Origin at x,x</td>
</tr>
</tbody>
</table>
Origin on 4

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2

Symmetry operations

For (0,0) + set
(1) 1 0,0
(2) 2 0,0
(3) 4+ 0,0
(4) 4− 0,0

For (1,0)' + set
(1) t' (1,0)
(2) 2' 1/2,0
(3) 4+ ' 1/2,1/2
(4) 4− ' 1/2,1/2

TABLE 3 - 2D -103
Generators selected (1); t(1,0)'; t(0,1)'; (2); (3)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)*</td>
<td>(1,0)’*</td>
</tr>
<tr>
<td>4 d 1</td>
<td>(1) x,y [u,v]</td>
</tr>
<tr>
<td>2 C 2’..</td>
<td>0,1/2 [u,v]</td>
</tr>
<tr>
<td>1 B 4’..</td>
<td>1/2,1/2 [0,0]</td>
</tr>
<tr>
<td>1 A 4’..</td>
<td>0,0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

- Along [10] $p_{2a}m$: $a^* = b$
- Origin at $x,1/2$
- Origin at $x-1/4,x+1/4$

TABLE 3 - 2D -104
Origin on 4mm

Asymmetric unit \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ x \leq y\)

Symmetry operations

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(1</td>
</tr>
<tr>
<td>2</td>
<td>2 0,0</td>
<td>(2</td>
</tr>
<tr>
<td>3</td>
<td>4+ 0,0</td>
<td>(4</td>
</tr>
<tr>
<td>4</td>
<td>4− 0,0</td>
<td>(4</td>
</tr>
<tr>
<td>5</td>
<td>m x,0</td>
<td>(m</td>
</tr>
<tr>
<td>6</td>
<td>m 0,y</td>
<td>(m</td>
</tr>
<tr>
<td>7</td>
<td>m x,x</td>
<td>(m</td>
</tr>
<tr>
<td>8</td>
<td>m x,x</td>
<td>(m</td>
</tr>
</tbody>
</table>
Generators selected (1); t(1,0); t(0,1); (2); (3); (5)

Positions

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
</table>
| 8 g 1 | (1) x,y [u,v]
 | (2) x̅,y [u̅,v]
 | (3) y,x [v,u]
 | (4) y,x [v,u̅]
 | (5) x,y [u,v]
 | (6) x̅,y [u̅,v]
 | (7) x̅,x [u,u̅]
 | (8) x,y [v,u̅] |
| 4 f .m. | x,1/2 [0,v]
 | x̅,1/2 [0,v̅]
 | 1/2,x [v̅,0]
 | 1/2,x [v,0] |
| 4 e .m. | x,0 [0,v]
 | x̅,0 [0,v̅]
 | 0,x [v̅,0]
 | 0,x [v,0] |
| 4 d ..m | x,x [u̅,u]
 | x̅,x [u̅,u]
 | x,x [u,u]
 | x,x [u,u] |
| 2 c 2mm. | 1/2,0 [0,0]
 | 0,1/2 [0,0] |
| 1 b 4mm | 1/2,1/2 [0,0] |
| 1 a 4mm | 0,0 [0,0] |

Symmetry of special projections

- Along [10] pm1'
 - $a^* = b$
 - $a^* = (-a+b)/2$
- Along [11] pm1'
 - Origin at x,0
 - Origin at x,x
Origin on 4mm1’

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ x \leq y$

Symmetry operations

<table>
<thead>
<tr>
<th>Set</th>
<th>1</th>
<th>2 0,0</th>
<th>4 0,0</th>
<th>4’ 0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>For 1’ + set</td>
<td>1’</td>
<td>2’ 0,0</td>
<td>4’ 0,0</td>
<td>4’ 0,0</td>
</tr>
<tr>
<td>(1) m’ x,0</td>
<td>m’ 0,y</td>
<td>m’ x,\bar{x}</td>
<td>m’ x,x</td>
<td></td>
</tr>
<tr>
<td>(5) m’ 0,0</td>
<td>m’ 0,0</td>
<td>m’ 0,0</td>
<td>m’ 0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set</th>
<th>1</th>
<th>2 0,0</th>
<th>4 0,0</th>
<th>4’ 0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>For 1 + set</td>
<td>1</td>
<td>2 0,0</td>
<td>4 0,0</td>
<td>4’ 0,0</td>
</tr>
<tr>
<td>(1) m x,0</td>
<td>m 0,y</td>
<td>m x,\bar{x}</td>
<td>m x,x</td>
<td></td>
</tr>
<tr>
<td>(5) m 0,0</td>
<td>m 0,0</td>
<td>m 0,0</td>
<td>m 0,0</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3 - 2D - 107
Continued

Generators selected
(1); t(1,0); t(0,1); (2); (3); (5); 1'

Positions

<table>
<thead>
<tr>
<th>Wyckoff letter, Site symmetry</th>
<th>Coordinates</th>
<th>1+</th>
<th>1' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 11'</td>
<td>(1) x,y [0,0]</td>
<td>(2) (\bar{x},\bar{y} [0,0])</td>
<td>(3) (\bar{y},x [0,0])</td>
</tr>
<tr>
<td></td>
<td>(5) x,(\bar{y} [0,0])</td>
<td>(6) x,y [0,0]</td>
<td>(7) (\bar{y},\bar{x} [0,0])</td>
</tr>
<tr>
<td>4 f .m.1'</td>
<td>x,1/2 [0,0]</td>
<td>(\bar{x},1/2 [0,0])</td>
<td>1/2,x [0,0]</td>
</tr>
<tr>
<td>4 e .m.1'</td>
<td>x,0 [0,0]</td>
<td>(\bar{x},0 [0,0])</td>
<td>0,x [0,0]</td>
</tr>
<tr>
<td>4 d ..m1'</td>
<td>x,x [0,0]</td>
<td>(\bar{x},\bar{x} [0,0])</td>
<td>(\bar{x},x [0,0])</td>
</tr>
<tr>
<td>2 c 2mm.1'</td>
<td>1/2,0 [0,0]</td>
<td>0,1/2 [0,0]</td>
<td></td>
</tr>
<tr>
<td>1 b 4mm1'</td>
<td>1/2,1/2 [0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 a 4mm1'</td>
<td>0,0 [0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] pm1'
\(a^* = b\)
 Origin at x,0

Along [11] pm1'
\(a^* = (-a+b)/2\)
 Origin at x,x

TABLE 3 - 2D -108
Table 3 - 2D - 109

p4m’m’

No. 11.3.55

Origin on 4m’m’

Asymmetric unit
$0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ x < y$

Symmetry operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
<td>1</td>
</tr>
<tr>
<td>(1</td>
<td>0,0)</td>
</tr>
<tr>
<td>(2) 2 0,0</td>
<td>2</td>
</tr>
<tr>
<td>(2z</td>
<td>0,0)</td>
</tr>
<tr>
<td>(3) 4 0,0</td>
<td>4^+</td>
</tr>
<tr>
<td>(4z</td>
<td>0,0)</td>
</tr>
<tr>
<td>(4) 4⁻ 0,0</td>
<td></td>
</tr>
<tr>
<td>(4z⁻</td>
<td>0,0)</td>
</tr>
<tr>
<td>(5) m’ x,0</td>
<td>m' x,0</td>
</tr>
<tr>
<td>(m_y</td>
<td>0,0)’</td>
</tr>
<tr>
<td>(6) m’ 0,y</td>
<td>m' 0,y</td>
</tr>
<tr>
<td>(m_z</td>
<td>0,0)’</td>
</tr>
<tr>
<td>(7) m’ x,\overline{x}</td>
<td>m' x,\overline{x}</td>
</tr>
<tr>
<td>(m_y</td>
<td>0,0)’</td>
</tr>
<tr>
<td>(8) m’ x,x</td>
<td>m' x,x</td>
</tr>
<tr>
<td>(m_z</td>
<td>0,0)’</td>
</tr>
</tbody>
</table>
Generators selected (1); t(1,0); t(0,1); (2); (3); (5)

Positions

<table>
<thead>
<tr>
<th>Wyckoff letter, Site symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y [u,v]</td>
</tr>
<tr>
<td></td>
<td>(5) x,\bar{y} [u,\bar{v}]</td>
</tr>
<tr>
<td>4 f .m'</td>
<td>x,1/2 [u,0]</td>
</tr>
<tr>
<td>4 e .m'</td>
<td>x,0 [u,0]</td>
</tr>
<tr>
<td>4 d ..m'</td>
<td>x,x [u,u]</td>
</tr>
<tr>
<td>2 c 2mm'</td>
<td>1/2,0 [0,0]</td>
</tr>
<tr>
<td>1 b 4m'm'</td>
<td>1/2,1/2 [0,0]</td>
</tr>
<tr>
<td>1 a 4m'm'</td>
<td>0,0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] p\bar{m}'

| a* = b | a* =(-a+b)/2 |
| Origin at x,0 | Origin at x,x |

TABLE 3 - 2D -110
TABLE 3 - 2D - 111

p4'mm' 4'mm'
No. 11.4.56 p4'mm'

Origin on 4'mm'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; x ≤ y

Symmetry operations

(1) 1 (2) 2 0,0 (3) 4 ' 0,0 (4) 4 ' 0,0
 (1|0,0) (2|0,0) (4|0,0)' (4|0,0)'

(5) m x,0 (6) m 0,y (7) m ' x,\bar{x} (8) m ' x,x
 (m_y|0,0) (m_x|0,0) (m_{x\bar{y}}|0,0)' (m_{x\bar{y}}|0,0)'

TABLE 3 - 2D - 111
Continued

No. 11.4.56

p4’mm’

Generators selected (1); t(1,0); t(0,1); (2); (3); (5)

Positions

<table>
<thead>
<tr>
<th>Wyckoff letter, Site symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y [u,v]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4 f .m.</td>
<td>x,1/2 [0,v]</td>
</tr>
<tr>
<td>4 e .m.</td>
<td>x,0 [0,v]</td>
</tr>
<tr>
<td>4 d ..m’</td>
<td>x,x [u,u]</td>
</tr>
<tr>
<td>2 c 2mm.</td>
<td>1/2,0 [0,0]</td>
</tr>
<tr>
<td>1 b 4’mm’</td>
<td>1/2,1/2 [0,0]</td>
</tr>
<tr>
<td>1 a 4’mm’</td>
<td>0,0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

a* = b a* = (-a+b)/2

Origin at x,0 Origin at x,x
TABLE 3 - 2D - 113

p4'm'm

No. 11.5.57

4'm'm

p4'm'm

Origin on 4’m’m

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; x ≤ y

Symmetry operations

- (1) 1
 - (1|0,0)

- (2) 2 0,0
 - (2z|0,0)

- (3) 4*’ 0,0
 - (4z|0,0)'

- (4) 4*’ 0,0
 - (4z'|0,0)'

- (5) m' x,0
 - (my|0,0)'

- (6) m' 0,y
 - (mx|0,0)'

- (7) m x,x
 - (my,x|0,0)

- (8) m x,x
 - (mx,y|0,0)
Generators selected (1); t(1,0); t(0,1); (2); (3); (5)

Positions

<table>
<thead>
<tr>
<th>Wyckoff letter, Site symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1 (1) x,y [u,v]</td>
<td>(2) (\bar{x}, \bar{y} [\bar{u}, \bar{v}])</td>
</tr>
<tr>
<td>(3) (y, x [v, \bar{u}])</td>
<td>(4) (y, \bar{x} [\bar{v}, u])</td>
</tr>
<tr>
<td>(5) (x, \bar{y} [u, \bar{v}])</td>
<td>(6) (\bar{x}, y [u, v])</td>
</tr>
<tr>
<td>(7) (\bar{y}, x [v, u])</td>
<td>(8) (y, x [\bar{v}, \bar{u}])</td>
</tr>
<tr>
<td>4 f .m'. x,1/2 [u,0]</td>
<td>(\bar{x}, 1/2 [\bar{u}, 0])</td>
</tr>
<tr>
<td>1/2,x [0,\bar{u}]</td>
<td>1/2,(\bar{x} [0,u])</td>
</tr>
<tr>
<td>4 e .m'. x,0 [u,0]</td>
<td>(\bar{x}, 0 [\bar{u}, 0])</td>
</tr>
<tr>
<td>0,x [0,\bar{u}]</td>
<td>0,(\bar{x} [0,u])</td>
</tr>
<tr>
<td>4 d ..m x,x [u,u]</td>
<td>(\bar{x}, x [\bar{u}, \bar{u}])</td>
</tr>
<tr>
<td>(\bar{x}, x [u, \bar{u}])</td>
<td>x,(\bar{x} [\bar{u}, u])</td>
</tr>
<tr>
<td>2 c 2m'm'. 1/2,0 [0,0]</td>
<td>0,1/2 [0,0]</td>
</tr>
<tr>
<td>1 b 4'm'm 1/2,1/2 [0,0]</td>
<td></td>
</tr>
<tr>
<td>1 a 4'm'm 0,0 [0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of special projections

- Along [10] \(pm \)
 - \(a^* = b \)
 - Origin at \(x,0 \)

- Along [11] \(pm 1' \)
 - \(a^* = (-a + b)/2 \)
 - Origin at \(x,x \)
TABLE 3 - 2D - 115

\[\text{Origin on } 4m'm' \]

\[\text{Asymmetric unit } 0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad x \leq y \]

\[\text{Symmetry operations} \]

For \((0,0) + \text{set}\)

1. \((10,0)\)
2. \((22,0)\)
3. \((40,0)\)
4. \((42,0)\)
5. \((m1,0')\)
6. \((m2,0)\)
7. \((m3,x,x)\)
8. \((m4,0)\)

For \((1,0) + \text{set}\)

1. \((11,0)\)
2. \((22,0)\)
3. \((31,0)\)
4. \((42,0)\)
5. \((g1,0)\)
6. \((m1,1)\)
7. \((m2,1)\)
8. \((m3,1)\)
Generators selected
(1); t(1,0)'; t(0,1)'; (2); (3); (5)

Positions

<table>
<thead>
<tr>
<th>Wyckoff letter, Site symmetry</th>
<th>Coordinates</th>
<th>(0,0)*</th>
<th>(1,0)*'</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y [u,v]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) x, y [u,v]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) y, x [v,u]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) y, x [v,u]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x, y [u,v]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x, y [u,v]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) y, x [v,u]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) y, x [v,u]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 f .m.</td>
<td>x,1/2 [0,v]</td>
<td>1/2,x [v,0]</td>
<td>1/2,x [v,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2 [0,v]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 e .m'.</td>
<td>x,0 [u,0]</td>
<td>0,x [0,u]</td>
<td>0,x [0,u]</td>
</tr>
<tr>
<td></td>
<td>x,0 [u,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 d .m'</td>
<td>x,x [u,u]</td>
<td>x,x [u,u]</td>
<td>x,x [u,u]</td>
</tr>
<tr>
<td></td>
<td>x,x [u,u]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c 2'mm'.</td>
<td>1/2,0 [u,0]</td>
<td>0,1/2 [0,u]</td>
<td></td>
</tr>
<tr>
<td>1 b 4'm'm</td>
<td>1/2,1/2 [0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 a 4m'm'</td>
<td>0,0 [0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] \(p_{2a}m \)
Along [11] \(p_{2a}m \)
\(a^* = b \)
\(a^* = (-a+b)/2 \)
Origin at x,1/2
Origin at x-1/4,x+1/4
Origin on 4mm

Asymmetric unit \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ x \leq y\)

Symmetry operations

For \((0,0) + set\)

\begin{align*}
(1) & \quad 1 \quad (1'0,0) \\
(2) & \quad 2 \quad 0,0 \quad (2_20,0) \\
(3) & \quad 4' \quad 0,0 \quad (4_20,0) \\
(4) & \quad 4' \quad 0,0 \quad (4_21,0) \\
(5) & \quad m \quad x,0 \quad (m_20,0) \\
(6) & \quad m' \quad 0,y \quad (m_20,0) \\
(7) & \quad m' \quad x,x \quad (m_20,0) \\
(8) & \quad m' \quad x,x \quad (m_20,0)
\end{align*}

For \((1,0)' + set\)

\begin{align*}
(1) & \quad t' \quad (1,0) \\
(2) & \quad 2' \quad 1/2,0 \quad (2_21,0) \\
(3) & \quad 4' \quad 1/2,1/2 \quad (4_21,0) \\
(4) & \quad 4' \quad 1/2,1/2 \quad (4_21,0) \\
(5) & \quad g' \quad (1,0) \quad x,0 \quad (m_20,0) \\
(6) & \quad m' \quad 1/2,0 \quad (m_21,0) \\
(7) & \quad g' \quad (1/2,-1/2) \quad x+1/2 \quad (m_21,0) \\
(8) & \quad g' \quad (1/2,1/2) \quad x+1/2 \quad (m_21,0)
\end{align*}
Continued

| No. 11.7.59 | p_p4mm |

Generators selected
(1); t(1,0)'; t(0,1)'; (2); (3); (5)

Positions

<table>
<thead>
<tr>
<th>Wyckoff letter, Site symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0)*</td>
</tr>
<tr>
<td>8 g 1</td>
<td>x,y [u,v]</td>
</tr>
<tr>
<td></td>
<td>x,y [u,v]</td>
</tr>
<tr>
<td></td>
<td>x,y [u,v]</td>
</tr>
<tr>
<td></td>
<td>x,y [u,v]</td>
</tr>
<tr>
<td>4 f .m'</td>
<td>x,1/2 [u,0]</td>
</tr>
<tr>
<td>4 e .m.</td>
<td>x,0 [0,v]</td>
</tr>
<tr>
<td></td>
<td>x,0 [0,v]</td>
</tr>
<tr>
<td></td>
<td>x,0 [0,v]</td>
</tr>
<tr>
<td>4 d ..m</td>
<td>x,x [u,u]</td>
</tr>
<tr>
<td>2 c 2'm'm.</td>
<td>1/2,0 [0,v]</td>
</tr>
<tr>
<td>1 b 4'm'm</td>
<td>1/2,1/2 [0,0]</td>
</tr>
<tr>
<td>1 a 4mm</td>
<td>0,0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = b</td>
<td>a' = (-a+b)/2</td>
</tr>
<tr>
<td>Origin at x,0</td>
<td>Origin at x,x</td>
</tr>
</tbody>
</table>

TABLE 3 - 2D-118
Origin on 41g

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ y \leq 1/2 - x$

Symmetry operations

(1) 1
(1) 0,0

(2) 2 0,0
(2) 0,0

(3) 4* 0,0
(3) 0,0

(4) 4^- 0,0
(4) 0,0

(5) g (1/2,0) x,1/4
(m_y|1/2,1/2)

(6) g (0,1/2) 1/4,y
(m_x|1/2,1/2)

(7) m x+1/2,x
(m_y|1/2,1/2)

(8) g (1/2,1/2) x,x
(m_x|1/2,1/2)

TABLE 3 - 2D -119
Generators selected (1); t(1,0); t(0,1); (2); (3); (5)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y [u,v]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y [u,v]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x [v,u]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x [v,u]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2 [u,v]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2 [u,v]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2 [v,u]</td>
</tr>
<tr>
<td></td>
<td>(8) y+1/2,x+1/2 [v,u]</td>
</tr>
</tbody>
</table>

4 c ..m	x,x+1/2 [u,u]
	x,x+1/2 [u,u]
	x+1/2,x [u,u]
	x+1/2,x [u,u]

| 2 b 2.mm | 1/2,0 [0,0] |
| | 0,1/2 [0,0] |

| 2 a 4.. | 0,0 [0,0] |
| | 1/2,1/2 [0,0] |

Symmetry of special projections

Along [10] pm A
Along [11] pm1'
\(a^* = \frac{b}{2}\)
\(a^* = (-a + b)/2\)

Origin at x,1/2
Origin at x,x
Origin on 41g1'

Asymmetric unit \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ y \leq 1/2 - x\)

Symmetry operations

<table>
<thead>
<tr>
<th></th>
<th>For 1 + set</th>
<th>For 1' + set</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
<td>(1) 1'</td>
<td></td>
</tr>
<tr>
<td>((1</td>
<td>0,0))</td>
<td>((1</td>
</tr>
<tr>
<td></td>
<td>(2) 2 0,0</td>
<td>(2) 2' 0,0</td>
</tr>
<tr>
<td></td>
<td>((2</td>
<td>0,0))</td>
</tr>
<tr>
<td></td>
<td>(3) (4^+) 0,0</td>
<td>(3) (4^+) 0,0</td>
</tr>
<tr>
<td></td>
<td>((4</td>
<td>0,0))</td>
</tr>
<tr>
<td></td>
<td>(4) (4^-) 0,0</td>
<td>(4) (4^-) 0,0</td>
</tr>
<tr>
<td></td>
<td>((4</td>
<td>^{-1}</td>
</tr>
<tr>
<td>(5) (g) ((1/2,0)) x,1/4</td>
<td>(5) (g') ((1/2,0)) x,1/4</td>
<td></td>
</tr>
<tr>
<td>((m_y</td>
<td>1/2,1/2))</td>
<td>((m_y'</td>
</tr>
<tr>
<td>(6) (g) ((0,1/2)) 1/4,y</td>
<td>(6) (g') ((0,1/2)) 1/4,y</td>
<td></td>
</tr>
<tr>
<td>((m_x</td>
<td>1/2,1/2))</td>
<td>((m_x'</td>
</tr>
<tr>
<td>(7) (m) (x+1/2,\bar{x})</td>
<td>(7) (m') (x+1/2,\bar{x})</td>
<td></td>
</tr>
<tr>
<td>((m_{xy}</td>
<td>1/2,1/2))</td>
<td>((m_{xy}'</td>
</tr>
<tr>
<td>(8) (g) ((1/2,1/2)) x,x</td>
<td>(8) (g') ((1/2,1/2)) x,x</td>
<td></td>
</tr>
<tr>
<td>((m_{xy}</td>
<td>1/2,1/2))</td>
<td>((m_{xy}'</td>
</tr>
</tbody>
</table>
Generators selected (1); t(1,0); t(0,1); (2); (3); (5); 1’

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+ 1+ +</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Coords</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 11’</td>
<td>(1) x,y [0,0] (2) x̅,y [0,0] (3) y,x [0,0] (4) y,x̅ [0,0] (5) x+1/2,y+1/2 [0,0] (6) x+1/2,y+1/2 [0,0] (7) y+1/2,x+1/2 [0,0] (8) y+1/2,x+1/2 [0,0]</td>
</tr>
<tr>
<td>4 c ..m1’</td>
<td>x,x+1/2 [0,0] x̅,x+1/2 [0,0] x+1/2,x [0,0] x+1/2,x̅ [0,0]</td>
</tr>
<tr>
<td>2 b 2.mm1’</td>
<td>1/2,0 [0,0] 0,1/2 [0,0]</td>
</tr>
<tr>
<td>2 a 4..1’</td>
<td>0,0 [0,0] 1/2,1/2 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

a* = b/2 a* =(-a+b)/2

Origin at x,0 Origin at x,x
TABLE 3 - 2D - 123

Origin on 41g'

Asymmetric unit
\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad y \leq 1/2 - x \]

Symmetry operations

1. \(1 \)
 \[(1) \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \]

2. \(2 \)
 \[(2) \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \]

3. \(4^+ \)
 \[(3) \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \]

4. \(4^- \)
 \[(4) \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \]

5. \(g' \)
 \[(5) \begin{pmatrix} 1/2 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \]

6. \(g' \)
 \[(6) \begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 1/2 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \]

7. \(m' \)
 \[(7) m' x+1/2,x \begin{pmatrix} 1/2 \end{pmatrix} \begin{pmatrix} 1/2 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \]

8. \(g' \)
 \[(8) g' \begin{pmatrix} 1/2 \end{pmatrix} \begin{pmatrix} 1/2 \end{pmatrix} \begin{pmatrix} x \end{pmatrix} \begin{pmatrix} x \end{pmatrix} \]

\[(m_{y}) \begin{pmatrix} 1/2 \end{pmatrix} \begin{pmatrix} 1/2 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \]

\[(m_{xy}) \begin{pmatrix} 1/2 \end{pmatrix} \begin{pmatrix} 1/2 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix} \]
Generators selected: (1); t(1,0); t(0,1); (2); (3); (5)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y [u,v] (2) x̅,y̅ [u̅,v̅]</td>
</tr>
<tr>
<td></td>
<td>(3) y̅,x [v̅,u] (4) y,x [v,u]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2 [u,v] (6) x̅+1/2,y+1/2 [u̅,v̅]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2 [v̅,u̅] (8) y+1/2,x+1/2 [v,u]</td>
</tr>
<tr>
<td>4 c ..m'</td>
<td>x,x+1/2 [u,u] x̅,x̅+1/2 [u̅,u̅] x̅+1/2,x [u̅,u] x+1/2,x [u,u]</td>
</tr>
<tr>
<td>2 b 2.m'm'</td>
<td>1/2,0 [0,0] 0,1/2 [0,0]</td>
</tr>
<tr>
<td>2 a 4..</td>
<td>0,0 [0,0] 1/2,1/2 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

a* = b/2 a* =(-a+b)/2

Origin at x,0 Origin at x,x

TABLE 3 - 2D -124
TABLE 3 - 2D - 125

p4'gm'

No. 12.4.63

Asymmetric unit

$0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ y \leq 1/2 - x$

Symmetry operations

1. 1

2. $2 \ 0,0$

3. $4^{+} \ 0,0$

4. $4^{-} \ 0,0$
5. $g \ (1/2,0) \ x, 1/4$
6. $g \ (0,1/2) \ 1/4, y$
7. $m' \ x+1/2, \bar{x}$
8. $g' \ (1/2,1/2,0) \ x,x$

Origin on 4'1g'
Continued

No. 12.4.63

p4’gm’

Generators selected

(1); t(1,0); t(0,1); (2); (3); (5)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y [u,v]</td>
</tr>
<tr>
<td></td>
<td>(2) x̅,y̅ [u̅,v̅]</td>
</tr>
<tr>
<td></td>
<td>(3) y̅,x [v̅,u̅]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x [v,u]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2 [u̅,v̅]</td>
</tr>
<tr>
<td></td>
<td>(6) x̅+1/2,y̅+1/2 [u̅,v̅]</td>
</tr>
<tr>
<td></td>
<td>(7) y̅+1/2,x̅+1/2 [v̅,u̅]</td>
</tr>
<tr>
<td></td>
<td>(8) y+1/2,x+1/2 [v,u]</td>
</tr>
<tr>
<td>4 c .m’</td>
<td>x,x+1/2 [u,u]</td>
</tr>
<tr>
<td></td>
<td>x̅,x̅+1/2 [u̅,u̅]</td>
</tr>
<tr>
<td></td>
<td>x̅+1/2,x [u̅,u̅]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x̅ [u,u̅]</td>
</tr>
<tr>
<td>2 b 2.mm</td>
<td>1/2,0 [0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2 [0,0]</td>
</tr>
<tr>
<td>2 a 4’..</td>
<td>0,0 [0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

- Along [10] \(p_{2am}\)
- Along [11] \(pm\)
- \(a^* = b/2\)
- \(a^* = -a+b)/2\)

Origin at x,0
Origin at x,x
Origin on 4'1g

Asymmetric unit \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; y \leq 1/2 - x\)

Symmetry operations

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1) ((1;0,0))</td>
</tr>
<tr>
<td>2</td>
<td>(2) ((0,0))</td>
</tr>
<tr>
<td>3</td>
<td>(4') ((0,0))</td>
</tr>
<tr>
<td>4</td>
<td>(4') ((0,0))</td>
</tr>
<tr>
<td>5</td>
<td>(g') ((1/2,0)) (x,1/4) ((m_y,1/2,1/2))</td>
</tr>
<tr>
<td>6</td>
<td>(g') ((0,1/2)) (1/4,y) ((m_x,1/2,1/2))</td>
</tr>
<tr>
<td>7</td>
<td>(m) (x+1/2,\bar{x}) ((m_x,1/2,1/2))</td>
</tr>
<tr>
<td>8</td>
<td>(g) ((1/2,1/2)) (x,x) ((m_y,1/2,1/2))</td>
</tr>
</tbody>
</table>
Generators selected
(1): t(1,0); t(0,1); (2): (3); (5)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y [u,v] (2) x,¯y [u,¯v]</td>
</tr>
<tr>
<td></td>
<td>(3) y, x [v,¯u] (4) y,¯x [v,u]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2, y+1/2 [u,¯v] (6) x+1/2, y+1/2 [u,v]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2, x+1/2 [v,u] (8) y+1/2, x+1/2 [v,¯u]</td>
</tr>
<tr>
<td>4 c .m</td>
<td>x,x+1/2 [u,¯u] x,x+1/2 [u,¯u] x+1/2,x [u,u] x+1/2,x [u,¯u]</td>
</tr>
<tr>
<td>2 b 2.mm</td>
<td>1/2,0 [0,0] 0,1/2 [0,0]</td>
</tr>
<tr>
<td>2 a 4'..</td>
<td>0,0 [0,0] 1/2,1/2 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] pm
Along [11] pm1'
\(a^* = b/2 \)
\(a^* = (-a+b)/2 \)
Origin at x,0
Origin at x,x

TABLE 3 - 2D -128
Origin on 3

Asymmetric unit 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; x ≤ (1 + y)/2;
 y ≤ min(1 - x, (1 + x)/2)

Vertices 0,0; 1/2,0; 2/3,1/3; 1/3,2/3; 0,1/2

Symmetry operations

(1) 1
 (1|0,0)

(2) 3^+ 0,0
 (3_z|0,0)

(3) 3^- 0,0
 (3_z^{-1}|0,0)
Generators selected
(1); t(1,0); t(0,1); (2)

Positions

<table>
<thead>
<tr>
<th>Wyckoff letter, Site symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 d 1</td>
<td>(1) x,y [u,v]</td>
</tr>
<tr>
<td></td>
<td>(2) y-x-y [v,u-v]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x [u+v,\bar{u}]</td>
</tr>
<tr>
<td>1 c 3..</td>
<td>2/3,1/3 [0,0]</td>
</tr>
<tr>
<td>1 b 3..</td>
<td>1/3,2/3 [0,0]</td>
</tr>
<tr>
<td>1 a 3..</td>
<td>0,0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

- Along [10] p1
- Along [21] p1

\[a^* = (a+2b)/2 \]
\[a^* = b/2 \]

- Origin at x,0
- Origin at x,x/2
Origin on 31'

Asymmetric unit 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; x ≤ (1 + y)/2;

\[y \leq \min(1 - x, (1 + x)/2) \]

Vertices 0,0; 1/2,0; 2/3,1/3; 1/3,2/3; 0,1/2

Symmetry operations

For 1 + set

1. \((1,0,0) \)
2. \(3', 0,0 \)
3. \(3', 0,0 \)

For 1' + set

1. \((1,0,0)' \)
2. \(3'^-, 0,0 \)
3. \(3'^-, 0,0 \)
Generators selected
(1): t(1,0); t(0,1); (2): 1'

Positions

<table>
<thead>
<tr>
<th>Wyckoff letter, Site symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td></td>
</tr>
<tr>
<td>1' +</td>
<td></td>
</tr>
<tr>
<td>3 d 11'</td>
<td>(1) x,y [0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) y-x,y [0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x [0,0]</td>
</tr>
<tr>
<td>1 c 3..1</td>
<td>2/3,1/3 [0,0]</td>
</tr>
<tr>
<td>1 b 3..1'</td>
<td>1/3,2/3 [0,0]</td>
</tr>
<tr>
<td>1 a 3..1'</td>
<td>0,0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] p11'
\(a^* = (a+2b)/2 \)
Origin at x,0

Along [21] p11'
\(a^* = b/2 \)
Origin at x,x/2
Origin on 3m1

Asymmetric unit 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; x ≤ 2y;

y ≤ min(1 - x, 2x)

Vertices 0,0; 2/3,1/3; 1/3,2/3

Symmetry operations

(1) 1
(1|0,0)

(2) 3⁺ 0,0
(3z|0,0)

(3) 3⁻ 0,0
(3z⁻¹|0,0)

(4) m x,x̄
(mₓ|0,0)

(5) m x,2x
(mₓ|0,0)

(6) m 2x,x
(mᵧ|0,0)
Generators selected: (1); t(1,0); t(0,1); (2); (4)

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site symmetry</td>
<td></td>
</tr>
</tbody>
</table>

6 e 1	(1) x, y [u, v]	(2) y, x-y [v, u-v]	(3) x+y, x [u+v, u]
		(4) y, x [v, u]	(5) x+y, y [u-v, v]
		(6) x, x-y [u, u]	(7) x, x [u, u]

| 3 d m. | x, x [u, u] | x, 2x [u, 0] | 2x, x, [0, 0] |

1 c 3m.	2/3, 1/3 [0, 0]
1 b 3m.	1/3, 2/3 [0, 0]
1 a 3m.	0, 0 [0, 0]

Symmetry of special projections

a* = (a+2b)/2 a* = b/2
Origin at x, 0 Origin at x, x/2

TABLE 3 - 2D - 134
Origin on 3m11′

Asymmetric unit
\[0 \leq x \leq 2/3; \ 0 \leq y \leq 2/3; \ x \leq 2y; \]
\[y \leq \min(1 - x, 2x)\]

Vertices
0,0; 2/3,1/3; 1/3,2/3

Symmetry operations

For 1 + set

(1) 1
(1',0,0)

(2) 3' 0,0
(3,2,0,0)

(3) 3' 0,0
(3,2,0,0)

(4) m x,x

m_{x,y}|0,0)

(5) m x,2x

m_{x,y}|0,0)

(6) m 2x,x

m_{x,y}|0,0)

For 1' + set

(1) 1'

(1',0,0)

(2) 3'' 0,0

(3,2,0,0)'

(3) 3'' 0,0

(3,2,0,0)'

(4) m' x,x

m_{x,y}'|0,0)

(5) m' x,2x

m_{x,y}'|0,0)'

(6) m' 2x,x

m_{x,y}'|0,0)'}
Generators selected: \((1); \ t(1,0); \ t(0,1); \ (2); \ (4); \ 1'\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1+)</td>
<td></td>
</tr>
<tr>
<td>(1' +)</td>
<td></td>
</tr>
<tr>
<td>6 e 11'</td>
<td>(1) (x,y\ [0,0])</td>
</tr>
<tr>
<td></td>
<td>(4) (y\bar{x},x [0,0])</td>
</tr>
<tr>
<td>3 d .m.1'</td>
<td>(x,x [0,0])</td>
</tr>
<tr>
<td>1 c 3m.1'</td>
<td>(2/3,1/3 [0,0])</td>
</tr>
<tr>
<td>1 b 3m.1'</td>
<td>(1/3,2/3 [0,0])</td>
</tr>
<tr>
<td>1 a 3m.1'</td>
<td>(0,0 [0,0])</td>
</tr>
</tbody>
</table>

Symmetry of special projections

- Along [10] \(p11'\): \(a^* = (a+2b)/2\)
- Along [21] \(pm1'\): \(a^* = b/2\)
- Origin at \(x,0\)
- Origin at \(x,x/2\)
Table 3 - 2D - 137

p3m’1

No. 14.3.69

3m’1

p3m’1

Origin on 3m’1

Asymmetric unit

\[0 \leq x \leq 2/3; \ 0 \leq y \leq 2/3; \ x \leq 2y; \ y \leq \min(1 - x, 2x) \]

Vertices

\(0,0; \ 2/3,1/3; \ 1/3,2/3\)

Symmetry operations

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>2</td>
<td>3 (0)</td>
<td>(3z,0,0)</td>
</tr>
<tr>
<td>3</td>
<td>3 (0)</td>
<td>(3z^{-1},0,0)</td>
</tr>
<tr>
<td>4</td>
<td>m’ (x,\bar{x})</td>
<td>(m_{xy}(0,0))'</td>
</tr>
<tr>
<td>5</td>
<td>m’ (x,2x)</td>
<td>(m_x(0,0))'</td>
</tr>
<tr>
<td>6</td>
<td>m’ (2x,x)</td>
<td>(m_y(0,0))'</td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0); t(0,1); (2); (4)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 e 1</td>
<td>(1) x,y [u,v]</td>
</tr>
<tr>
<td></td>
<td>(2) y,x-y [v,u-v]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x [u+v,u]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x [v,u]</td>
</tr>
<tr>
<td></td>
<td>(5) x+y,y [u+v,v]</td>
</tr>
<tr>
<td></td>
<td>(6) x-x-y [u-u]</td>
</tr>
<tr>
<td>3 d .m'</td>
<td>x,x [u,u]</td>
</tr>
<tr>
<td></td>
<td>x,2x [u,2u]</td>
</tr>
<tr>
<td></td>
<td>2x,x [2u,2u]</td>
</tr>
<tr>
<td>1 c 3m'</td>
<td>2/3,1/3 [0,0]</td>
</tr>
<tr>
<td>1 b 3m'</td>
<td>1/3,2/3 [0,0]</td>
</tr>
<tr>
<td>1 a 3m'</td>
<td>0,0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

- Along [10] p1
 - \(a^* = (a+2b)/2\)
 - Origin at x,0
- Along [21] pm'
 - \(a^* = b/2\)
 - Origin at x,x/2
Table 3 - 2D - 139

<table>
<thead>
<tr>
<th>Origin</th>
<th>Asymmetric unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>31m</td>
<td>0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/2; x ≤ (y + 1)/2; y ≤ min(1 - x, x)</td>
</tr>
</tbody>
</table>

| Vertices | 0,0; 1/2,0; 2/3,1/3; 1/2,1/2 |

<table>
<thead>
<tr>
<th>Symmetry operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
</tr>
<tr>
<td>(1</td>
</tr>
<tr>
<td>(2) 3⁺ 0,0</td>
</tr>
<tr>
<td>(3⁺</td>
</tr>
<tr>
<td>(3) 3⁻ 0,0</td>
</tr>
<tr>
<td>(3⁻</td>
</tr>
<tr>
<td>(4) m x,x</td>
</tr>
<tr>
<td>(m₃</td>
</tr>
<tr>
<td>(5) m x,0</td>
</tr>
<tr>
<td>(m₂</td>
</tr>
<tr>
<td>(6) m 0,y</td>
</tr>
<tr>
<td>(m₁</td>
</tr>
</tbody>
</table>
Generators selected \((1); \ t(1,0); \ t(0,1); \ (2); \ (4)\):

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site symmetry</td>
<td></td>
</tr>
<tr>
<td>6 d 1</td>
<td>((1) \ x,y \ [u,v])</td>
</tr>
<tr>
<td></td>
<td>((2) \ \bar{y},x-y \ [\bar{v},u-v])</td>
</tr>
<tr>
<td></td>
<td>((3) \ \bar{x}+y,x \ [\bar{u}+v,\bar{u}])</td>
</tr>
<tr>
<td></td>
<td>((4) \ y,x \ [\bar{v},\bar{u}])</td>
</tr>
<tr>
<td></td>
<td>((5) \ x-y,\bar{y} \ [\bar{u}+v,v])</td>
</tr>
<tr>
<td></td>
<td>((6) \ \bar{x},\bar{x} \ [u,u-v])</td>
</tr>
<tr>
<td>3 c ..m</td>
<td>(x,0 \ [u,2u])</td>
</tr>
<tr>
<td></td>
<td>(0,x \ [2u,\bar{u}])</td>
</tr>
<tr>
<td></td>
<td>(\bar{x},\bar{x} \ [u,\bar{u}])</td>
</tr>
<tr>
<td>2 b 3..</td>
<td>(1/3,2/3 \ [0,0])</td>
</tr>
<tr>
<td></td>
<td>(2/3,1/3 \ [0,0])</td>
</tr>
<tr>
<td>1 a 3.m</td>
<td>(0,0 \ [0,0])</td>
</tr>
</tbody>
</table>

Symmetry of special projections:

Along \([10] pm\) \hspace{1cm} Along \([21] p11'\)
\(a^* = (a+2b)/2\) \hspace{1cm} \(a^* = b/2\)
Origin at \(x,0\) \hspace{1cm} Origin at \(x,x/2\)

TABLE 3 - 2D -140
Origin on 31m1'

Asymmetric unit \(0 \leq x \leq 2/3; \ 0 \leq y \leq 1/2; \ x \leq (y + 1)/2; \ y \leq \min(1 - x, x) \)

Vertices 0,0; 1/2,0; 2/3,1/3; 1/2,1/2

Symmetry operations

For 1 + set

(1) 1
(1,0,0)

(2) 3' 0,0
(3_z,0,0)

(4) m x,x
(m_3,0,0)

For 1' + set

(1') 1'
(1',0,0)

(2') 3'' 0,0
(3_z',0,0)

(4') m' x,x
(m_3',0,0)

(3) 3' 0,0
(3_z',0,0)

(4) m x,x
(m_3,0,0)

(5) m' x,x
(m_3',0,0)

(6) m 0,y
(m_1,0,0)

(6') m' 0,y
(m_1',0,0)
Continued No. 15.2.71 p31m1’

Generators selected (1); t(1,0); t(0,1); (2); (4); 1’

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>1’ +</td>
</tr>
</tbody>
</table>

| 6 d 11’ | (1) x,y [0,0] | (2) y̅,x-y [0,0] | (3) x̅+y,y [0,0] |
| | (4) y,x [0,0] | (5) x-y,y [0,0] | (6) x, x+y [0,0] |

| 3 c 3.m1’ | x,0 [0,0] | 0,x [0,0] | x̅,x [0,0] |

| 2 b 3..1’ | 1/3, 2/3 [0,0] | 2/3, 1/3 [0,0] |

| 1 a 3.m1’ | 0,0 [0,0] |

Symmetry of special projections

- Along [10] *pm1’*
 - a* = (a+2b)/2
 - a* = b/2
 - Origin at x,0

- Along [21] *p11’*
 - Origin at x,x/2

TABLE 3 - 2D -142
Origin on 31m'

Asymmetric unit 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/2; x ≤ (y + 1)/2;
y ≤ min(1 - x, x)

Vertices 0,0; 1/2,0; 2/3,1/3; 1/2,1/2

Symmetry operations

(1) 1
 (1|0,0)
(2) 3^+ 0,0
 (3_z|0,0)
(3) 3^- 0,0
 (3_z^-1|0,0)
(4) m' x,x
 (m_3|0,0)'
(5) m' x,0
 (m_2|0,0)'
(6) m' 0,y
 (m_1|0,0)'
Generators selected

(1); t(1,0); t(0,1); (2); (4)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 d 1</td>
<td>[(1) x,y [u,v]]</td>
</tr>
<tr>
<td></td>
<td>[(2) \bar{y},x-y [\bar{v},u-v]]</td>
</tr>
<tr>
<td></td>
<td>[(3) \bar{x}+y,\bar{x} [\bar{u}+v,\bar{u}]]</td>
</tr>
<tr>
<td></td>
<td>[(4) y,x [v,u]]</td>
</tr>
<tr>
<td></td>
<td>[(5) x-y,\bar{y} [u-v,\bar{v}]]</td>
</tr>
<tr>
<td></td>
<td>[(6) \bar{x},\bar{x}+y [\bar{u},\bar{u}+v]]</td>
</tr>
<tr>
<td>3 c ..m'</td>
<td>[x,0 [u,0]]</td>
</tr>
<tr>
<td></td>
<td>[0,x [0,u]]</td>
</tr>
<tr>
<td></td>
<td>[\bar{x},\bar{x} [\bar{u},\bar{u}]]</td>
</tr>
<tr>
<td>2 b 3..</td>
<td>[1/3,2/3 [0,0]]</td>
</tr>
<tr>
<td></td>
<td>[2/3,1/3 [0,0]]</td>
</tr>
<tr>
<td>1 a 3.m'</td>
<td>[0,0 [0,0]]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] \(p_m'\)
- \(a^* = (a+2b)/2\)
- Origin at \(x,0\)

Along [21] \(p1\)
- \(a^* = b/2\)
- Origin at \(x,x/2\)
TABLE 3 - 2D - 145

No. 16. 1.73

Origin on 6

Asymmetric unit 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/2; x ≤ (1 + y)/2;

y ≤ min(1 - x, x)

Vertices 0,0; 1/2,0; 2/3,1/3; 1/2,1/2

Symmetry operations

(1) 1

(2) 3^+ 0,0

(3) 3^- 0,0

(4) 2 0,0

(5) 6^+ 0,0

(6) 6^- 0,0

(1*|0,0) (3z|0,0) (3^-1|0,0)

(2z|0,0) (6z|0,0) (6z^-1|0,0)

TABLE 3 - 2D - 145
Generators selected (1); t(1,0); t(0,1); (2); (4)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinating</th>
<th>Wyckoff letter</th>
<th>Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 d 1</td>
<td>(1) x,y [u,v]</td>
<td>(2) y, x-y [v,u-v]</td>
<td>(3) x+y,x [u+v,u]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y [u,v]</td>
<td>(5) y, x+y [v,u+v]</td>
<td>(6) x-y,x [u-v,u]</td>
</tr>
<tr>
<td>3 c 2..</td>
<td>1/2,0 [0,0]</td>
<td>0,1/2 [0,0]</td>
<td>1/2,1/2 [0,0]</td>
</tr>
<tr>
<td>2 b 3..</td>
<td>1/3,2/3 [0,0]</td>
<td>2/3,1/3 [0,0]</td>
<td></td>
</tr>
<tr>
<td>1 a 6..</td>
<td>0,0 [0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] pm'
Along [11] pm'
a* = (a+2b)/2 a* = b/2
Origin at x,0 Origin at x,x/2
TABLE 3 - 2D - 147

Origin on 61'

Asymmetric unit \(0 \leq x \leq 2/3; \ 0 \leq y \leq 1/2; \ x \leq (1+y)/2;
\ny \leq \min(1-x, x)\n
Vertices 0,0; 1/2,0; 2/3,1/3; 1/2,1/2

Symmetry operations

For 1 + set

(1) 1
(1,0,0)

(2) 3' 0,0
(3' 0,0)

(3) 3' 0,0
(3' 0,0)

(4) 2 0,0
(2,0,0)

(5) 6' 0,0
(6' 0,0)

(6) 6' 0,0
(6' 0,0)

For 1' + set

(1) 1'
(1,0,0)'

(2) 3'' 0,0
(3'' 0,0)'

(3) 3'' 0,0
(3'' 0,0)'

(4) 2' 0,0
(2',0,0)'

(5) 6'' 0,0
(6'',0,0)'

(6) 6'' 0,0
(6'',0,0)'

TABLE 3 - 2D - 147
Generators selected (1); t(1,0); t(0,1); (2); (4); 1’

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>1’ +</td>
</tr>
<tr>
<td>6 d 11’</td>
<td>(1) x,y [0,0] (2) y,x-y [0,0] (3) x+y,x [0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y [0,0] (5) y,x+y [0,0] (6) x-y,x [0,0]</td>
</tr>
<tr>
<td>3 c 2..1’</td>
<td>1/2,0 [0,0] 0,1/2 [0,0] 1/2,1/2 [0,0]</td>
</tr>
<tr>
<td>2 b 3..1’</td>
<td>1/3,2/3 [0,0] 2/3,1/3 [0,0]</td>
</tr>
<tr>
<td>1 a 6..1’</td>
<td>0,0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] \(p\overline{m} 1' \)
Along [21] \(p\overline{m} 1' \)
\(a^* = (a+2b)/2 \)
\(a^* = b/2 \)
Origin at x,0
Origin at x,x/2

TABLE 3 - 2D -148
Origin on 6'

Asymmetric unit \(0 \leq x \leq 2/3; 0 \leq y \leq 1/2; x \leq (1 + y)/2; y \leq \min(1 - x, x)\)

Vertices 0,0; 1/2,0; 2/3,1/3; 1/2,1/2

Symmetry operations

(1) 1
(1)*0,0
(1)*0,0

(2) 3 z 0,0
(3) 3 -1 z 0,0
(4) 2' 0,0
(2) 0,0'
(5) 6 -1 z 0,0
(6) 6 -1 z 0,0
(2) 0,0'
(2) 0,0'

\[\begin{align*}
\text{TABLE 3 - 2D -149}\end{align*}\]
Continued No. 16.3.75 p6’

Generators selected (1); t(1,0); t(0,1); (2); (4)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 d 1</td>
<td>(1) x,y [u,v]</td>
</tr>
<tr>
<td></td>
<td>(2) y-x [v,u-v]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y [u+v,u]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y [u,v]</td>
</tr>
<tr>
<td></td>
<td>(5) y,x [v,u-v]</td>
</tr>
<tr>
<td></td>
<td>(6) x-y [u+v,u]</td>
</tr>
<tr>
<td>3 c 2’..</td>
<td>1/2,0 [u,v]</td>
</tr>
<tr>
<td></td>
<td>0,1/2 [v,u-v]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2 [u+v,u]</td>
</tr>
<tr>
<td>2 b 3..</td>
<td>1/3,2/3 [0,0]</td>
</tr>
<tr>
<td></td>
<td>2/3,1/3 [0,0]</td>
</tr>
<tr>
<td>1 a 6’..</td>
<td>0,0 [0,0]</td>
</tr>
</tbody>
</table>

Symmetry of special projections

- Along [10] pm
- Along [21] pm
- \(a^* = \frac{a+2b}{2} \)
- \(a^* = \frac{b}{2} \)
- Origin at x,0
- Origin at x,x/2

TABLE 3 - 2D -150
Origin on 6mm

Asymmetric unit $0 \leq x \leq 2/3; \ 0 \leq y \leq 1/3; \ x \leq (1 + y)/2; \ y \leq x/2$

Vertices 0,0; 1/2,0; 2/3,1/3

Symmetry operations

1. 1
 (1:0,0)
2. 3
 (2:0,0)
3. 3
 (3:0,0)
4. 2
 (4:0,0)
5. 6
 (5:0,0)
6. 6
 (6:0,0)
7. m
 (7:0,0)
8. m
 (8:0,0)
9. m
 (9:0,0)
10. m
 (10:0,0)
11. m
 (11:0,0)
12. m
 (12:0,0)
Generators selected (1); t(1,0,0); t(0,1,0); (2); (4); (7)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 f 1</td>
<td>(1) x,y [u,v]</td>
<td>(2) y,x-y [v,u-v]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y [u,v]</td>
<td>(5) y,x+y [v,u+v]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x [v,u]</td>
<td>(8) x+y,y [u-v,v]</td>
</tr>
<tr>
<td></td>
<td>(10) y,x [v,u]</td>
<td>(11) x,y,y [u+v,v]</td>
</tr>
<tr>
<td></td>
<td>(6) x-y,x [u-v,u]</td>
<td>(12) x,x [u,u-v]</td>
</tr>
<tr>
<td>6 e .m.</td>
<td>x,x [u,u]</td>
<td>x,2x [u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x [u,u]</td>
<td>x,2x [0,u]</td>
</tr>
<tr>
<td>6 d .m</td>
<td>x,0 [u,2u]</td>
<td>0,x [2u,u]</td>
</tr>
<tr>
<td></td>
<td>0,0 [u,0]</td>
<td>0,0 [2u,u]</td>
</tr>
<tr>
<td>3 c 2mm</td>
<td>1/2,0 [0,0]</td>
<td>0,1/2 [0,0]</td>
</tr>
<tr>
<td>2 b 3m.</td>
<td>1/3,2/3 [0,0]</td>
<td>2/3,1/3 [0,0]</td>
</tr>
<tr>
<td>1 a 6mm</td>
<td>0,0 [0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] pm1' Along [21] pm1'
\(a^* = (a+2b)/2 \) \(a^* = b/2 \)
Origin at x,0 Origin at x,x/2
Origin on 6mm1'

Asymmetric unit 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/3; x ≤ (1 + y)/2; y ≤ x/2

Vertices 0,0; 1/2,0; 2/3,1/3

Symmetry operations

For 1 + set

1. (1) 1
 (1|0,0)
2. (2) 3* 0,0
 (3z,0,0)
3. (3) 3' 0,0
 (3z',0,0)
4. (4) 2 0,0
 (2z|0,0)
5. (5) 6' 0,0
 (6z',0,0)
6. (6) 6' 0,0
 (6z,0,0)
7. (7) m x,x
 (m_x|0,0)
8. (8) m x,2x
 (m_x,0,0)
9. (9) m 2x,x
 (m_x,0,0)
10. (10) m x,x
 (m_x,0,0)
11. (11) m x,0
 (m_y,0,0)
12. (12) m 0,y
 (m_y,0,0)

TABLE 3 - 2D -153
TABLE 3 - 2D - 154

For 1' + set

<table>
<thead>
<tr>
<th>(1) 1'</th>
<th>(2) 3^+ 0,0</th>
<th>(3) 3^- 0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(11,0,0)'</td>
<td>(3z,0,0)'</td>
<td>(3z^-1,0,0)'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4) 2' 0,0</th>
<th>(5) 6^- 0,0</th>
<th>(6) 6^- 0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2z,0,0)'</td>
<td>(6z^-1,0,0)'</td>
<td>(6z,0,0)'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(7) m' x,x</th>
<th>(8) m' x,2x</th>
<th>(9) m' 2x,x</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mx,0,0)'</td>
<td>(m,0,0)'</td>
<td>(m,0,0)'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(10) m' x,x</th>
<th>(11) m' x,0</th>
<th>(12) m' 0,y</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m,0,0)'</td>
<td>(m,0,0)'</td>
<td>(m,0,0)'</td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0); t(0,1); (2); (4); (7); 1'

Positions

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+ 1' +</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12 f 11'</th>
<th>(1) x,y [0,0]</th>
<th>(2) y,x-y [0,0]</th>
<th>(3) x+y,x [0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) x,y [0,0]</td>
<td>(5) y,x+y [0,0]</td>
<td>(6) x-y,x [0,0]</td>
<td></td>
</tr>
<tr>
<td>(7) y,x [0,0]</td>
<td>(8) x+y,x [0,0]</td>
<td>(9) x,x-y [0,0]</td>
<td></td>
</tr>
<tr>
<td>(10) y,x [0,0]</td>
<td>(11) x-y,y [0,0]</td>
<td>(12) x,x+y [0,0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6 e .m.1'</th>
<th>x,x [0,0]</th>
<th>x,2x [0,0]</th>
<th>2x,x [0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,x [0,0]</td>
<td>x,2x [0,0]</td>
<td>2x,x [0,0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6 d .m1'</th>
<th>x,0 [0,0]</th>
<th>0,x [0,0]</th>
<th>x,x [0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,0 [0,0]</td>
<td>0,x [0,0]</td>
<td>x,x [0,0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 c 2mm1'</th>
<th>1/2,0 [0,0]</th>
<th>0,1/2 [0,0]</th>
<th>1/2,1/2 [0,0]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>2 b 3m.1'</th>
<th>1/3,2/3 [0,0]</th>
<th>2/3,1/3 [0,0]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1 a 6mm1'</th>
<th>0,0 [0,0]</th>
<th></th>
</tr>
</thead>
</table>
Symmetry of special projections

<table>
<thead>
<tr>
<th>Along [10] p(m)1'</th>
<th>Along [21] p(m)1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = (a+2b)/2)</td>
<td>(a^* = b/2)</td>
</tr>
<tr>
<td>Origin at x,0</td>
<td>Origin at x,x/2</td>
</tr>
</tbody>
</table>
Table 3 - 2D - 156

p6m' m'

No. 17.3.78

6m' m'

Origin on 6m' m'

Asymmetric unit 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/3; x ≤ (1 + y)/2; y ≤ x/2

Vertices 0,0; 1/2,0; 2/3,1/3

Symmetry operations

1. \(1\) 1
 \(1(0,0)\)

2. \(3^+ 0,0\)
 \(3^+ (0,0)\)

3. \(3^- 0,0\)
 \(3^- (0,0)\)

4. \(2 0,0\)
 \(2(0,0)\)

5. \(6^- 0,0\)
 \(6^- (0,0)\)

6. \(6^- 0,0\)
 \(6^- (0,0)\)

7. \(m' x, x\)
 \(m' (x, 0)\)

8. \(m' x, 2x\)
 \(m' (0, 0)\)

9. \(m' 2x, x\)
 \(m' (0, 0)\)

10. \(m' x, x\)
 \(m' (x, 0)\)

11. \(m' x, x\)
 \(m' (0, 0)\)

12. \(m' x, 0\)
 \(m' (0, 0)\)

TABLE 3 - 2D - 156
Generators selected
(1); t(1,0); t(0,1); (2); (4); (7)

Positions

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y [u,v]</td>
<td>12 f 1</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>(4) x,y [u,v]</td>
<td>6 e .m'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) x,y [v,u]</td>
<td>6 d ..m'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10) y,x [v,u]</td>
<td>3 c 2m'm'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11) x-y,y [u-v,v]</td>
<td>2 b 3m'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12) x-x [u,u]</td>
<td>1 a 6m'm'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>Origin at x,0</th>
<th>Origin at x,x/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,x [u,u]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,x [0,u]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x,u [0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x,y [u,v]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y,x [v,u]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x-y,y [u-v,v]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x-x [u,u]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0 [0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2,0 [0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,1/2 [0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2,1/2 [0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/3,1/3 [0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0 [0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of special projections

- **Along [10] pm'**
 - \(a' = (a+2b)/2\)
 - \(a' = b/2\)

- **Along [21] pm'**
 - Origin at \(x,0\)
 - Origin at \(x,x/2\)
Origin on 6'\text{mm}'

Asymmetric unit 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/3; x ≤ (1 + y)/2; y ≤ x/2

Vertices 0,0; 1/2,0; 2/3,1/3

Symmetry operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Image</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
<td>(1)</td>
<td>0,0</td>
</tr>
<tr>
<td>(2) 3' 0,0</td>
<td>(3)</td>
<td>(3',0,0)</td>
</tr>
<tr>
<td>(4) 2' 0,0</td>
<td>(5)</td>
<td>(2',0,0)'</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>(6',0,0)'</td>
</tr>
<tr>
<td>(7) m x,x</td>
<td>(8)</td>
<td>(m,x,0,0)</td>
</tr>
<tr>
<td></td>
<td>(9)</td>
<td>(m,2x,0,0)</td>
</tr>
<tr>
<td>(10) m' x,x</td>
<td>(11)</td>
<td>(m',x,0,0)'</td>
</tr>
<tr>
<td></td>
<td>(12)</td>
<td>(m',y,0,0)'</td>
</tr>
</tbody>
</table>

Table 3 - 2D - 158
Generators selected
(1); t(1,0); t(0,1); (2); (4); (7)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
</table>
| 12 f 1 | (1) x,y [u,v]
 | (2) y,x-y [v,u-v]
 | (3) x+y,x [v,u+v]
 | (4) x,y [u,v]
 | (5) y,x+y [v,u-v]
 | (6) x-y,x [u+v,u]
 | (7) y,x [v,u]
 | (8) x+y,y [u-v,v]
 | (9) x,x-y [u,u+v]
 | (10) y,x [v,u]
 | (11) x-y,y [v,u]
 | (12) x,x+y [u,u+v]

| 6 e .m. | x,x [u,u]
 | x,x [u,u]
 | x,2x [u,0]
 | x,2x [u,0]

| 6 d .m' | x,0 [u,0]
 | 0,x [u,0]
 | x,x [u,0]

| 3 c 2'mm' | 1/2,0 [u,0]
 | 0,1/2 [u,0]

| 2 b 3m. | 1/3,2/3 [0,0]

| 1 a 6'mm' | 0,0 [0,0]

Symmetry of special projections

Along [10] pm1'
Along [21] pm
a* = (a+2b)/2
an* = b/2
Origin at x,0
Origin at x,x/2

TABLE 3 - 2D -159
Origin on 6\textprime m'\textprime m

Asymmetric unit \(0 \leq x \leq 2/3; \ 0 \leq y \leq 1/3; \ x \leq (1 + y)/2; \ y \leq x/2\)

Vertices \(0,0; \ 1/2,0; \ 2/3,1/3\)

Symmetry operations

\begin{align*}
(1) \ & 1 & 1 \ & 3^+ \ & 0,0 & 3^- \ & 0,0 \\
(1) \ & (1|0,0) & (3_z|0,0) & (3_z^{-1}|0,0) \\
(4) \ & 2' \ & 0,0 & 6^+ \ & 0,0 & 6^{-1} \ & 0,0 \\
(4) \ & (2_z|0,0)' & (6_{z^{-1}}|0,0)' & (6_{z}|0,0)' \\
(7) \ & m' \ & x,\bar{x} & m' \ & 0,2x & m' \ & 2x,x \\
(7) \ & (m_{x'}|0,0)' & (m_{y'}|0,0)' & (m_{y'}|0,0)' \\
(10) \ & m \ & x,x & m \ & 0,0 & y \\
(10) \ & (m_{3}|0,0) & (m_{2}|0,0) & (m_{1}|0,0) \\
\end{align*}
Generators selected

(1); t(1,0); t(0,1); (2); (4); (7)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site symmetry</th>
<th>Coords</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 f 1</td>
<td>(1) x,y [u,v]</td>
<td>(2) y,x-y [v,u-v]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y [u,v]</td>
<td>(5) x,y [v,u-v]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y [v,u]</td>
<td>(8) x+y,y [u+v,v]</td>
</tr>
<tr>
<td></td>
<td>(10) x,y [v,u]</td>
<td>(11) x,y,x [u+v,v]</td>
</tr>
<tr>
<td>6 e .m'</td>
<td>x,x [u,u]</td>
<td>x,2x [u,2u]</td>
</tr>
<tr>
<td></td>
<td>x,x [u,u]</td>
<td>x,2x [u,2u]</td>
</tr>
<tr>
<td>6 d .m</td>
<td>x,0 [u,2u]</td>
<td>0,x [2u,u]</td>
</tr>
<tr>
<td></td>
<td>x,0 [u,2u]</td>
<td>0,x [2u,u]</td>
</tr>
<tr>
<td>3 c 2'm'm</td>
<td>1/2,0 [u,2u]</td>
<td>0,1/2 [2u,u]</td>
</tr>
<tr>
<td>2 b 3m'</td>
<td>1/3,2/3 [0,0]</td>
<td>2/3,1/3 [0,0]</td>
</tr>
<tr>
<td>1 a 6'm'm</td>
<td>0,0 [0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of special projections

Along [10] pm

a* = (a+2b)/2

Along [21] pm1'

a* = b/2

Origin at x,0

Origin at x,x/2

TABLE 3 - 2D -161
Table 3 - 3D:

Three-Dimensional Magnetic Space Group Tables

HIERARCHAL THREE DIMENSIONAL MAGNETIC SPACE GROUP SUPERFAMILY INDEX
THREE DIMENSIONAL MAGNETIC SPACE GROUP INDEX

Table 3 - 2D: Two-Dimensional Magnetic Space Group Tables
Table 3 - 1D: One-Dimensional Magnetic Space Group Tables
<table>
<thead>
<tr>
<th>System</th>
<th>Number</th>
<th>Space Group</th>
<th>Number</th>
<th>Space Group</th>
<th>Number</th>
<th>Space Group</th>
<th>Number</th>
<th>Space Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triclinic System</td>
<td>1</td>
<td>P1</td>
<td>2</td>
<td>P&</td>
<td>3</td>
<td>P2</td>
<td>4</td>
<td>P2_1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>C2</td>
<td>6</td>
<td>Pm</td>
<td>7</td>
<td>Pc</td>
<td>8</td>
<td>Cm</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Cc</td>
<td>10</td>
<td>P2/m</td>
<td>11</td>
<td>P2_1/m</td>
<td>12</td>
<td>C2/m</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>P2/c</td>
<td>14</td>
<td>P2_1/c</td>
<td>15</td>
<td>C2/c</td>
<td>16</td>
<td>P222</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>P222_1</td>
<td>18</td>
<td>P2_2_2</td>
<td>19</td>
<td>P2_2_2_1</td>
<td>20</td>
<td>C222_1</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>C222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monoclinic System</td>
<td>22</td>
<td>F222</td>
<td>48</td>
<td>Pnnn</td>
<td>74</td>
<td>Ima</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>I222</td>
<td>49</td>
<td>Pccm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>I2_1,2_2_1</td>
<td>50</td>
<td>Pbn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Pmm2</td>
<td>51</td>
<td>Pmma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>Pmc2_1</td>
<td>52</td>
<td>Pnna</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>Pcc2</td>
<td>53</td>
<td>Pmna</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>Pma2</td>
<td>54</td>
<td>Pcca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>Pca2_1</td>
<td>55</td>
<td>Pbam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>Pnc2</td>
<td>56</td>
<td>Pccn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>Pmn2_1</td>
<td>57</td>
<td>Pbcm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>Pba2</td>
<td>58</td>
<td>Pnnm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>Pna2_1</td>
<td>59</td>
<td>Pmmn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>Pnn2</td>
<td>60</td>
<td>Pbcn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>Cmm2</td>
<td>61</td>
<td>Pbca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>Cmc2_1</td>
<td>62</td>
<td>Pnma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>Ccc2</td>
<td>63</td>
<td>Cmcm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>Amm2</td>
<td>64</td>
<td>Cmca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>Abm2</td>
<td>65</td>
<td>Cmmm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>Ama2</td>
<td>66</td>
<td>Cccm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>Aba2</td>
<td>67</td>
<td>Cmma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>Fmm2</td>
<td>68</td>
<td>Ccca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>Fdd2</td>
<td>69</td>
<td>Fmmm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>Imm2</td>
<td>70</td>
<td>Fddd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>Iba2</td>
<td>71</td>
<td>Imm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>Ima2</td>
<td>72</td>
<td>Ibam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>Pmmm</td>
<td>73</td>
<td>Ibca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthorhombic System</td>
<td>48</td>
<td></td>
<td>74</td>
<td></td>
<td>94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>P4mm</td>
<td>100</td>
<td>P4bm</td>
<td>101</td>
<td>P4₂cm</td>
<td>102</td>
<td>P4₂nm</td>
<td>103</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Pm &</td>
<td>226</td>
<td>Fm & c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>Pn &</td>
<td>227</td>
<td>Fd & m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>Fm &</td>
<td>228</td>
<td>Fd & c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Fd &</td>
<td>229</td>
<td>Im & m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>Im &</td>
<td>230</td>
<td>Ia & d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Pa &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>Ia &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>P432</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>P4_32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>F432</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>F4,32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>I432</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>P4^32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>P4,32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>I4,32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>P & 3m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>F & 3m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>I & 3m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>P & 3n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>F & 3c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>I & 3d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>Pm & m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>Pn & n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>Pm & n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>Pn & m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>Fm & m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TRICLINIC SYSTEM

<table>
<thead>
<tr>
<th>Code</th>
<th>Space Group</th>
<th>Details</th>
<th>Mill</th>
<th>F.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>P1</td>
<td>5.5.23 Cₚ 2</td>
<td>9.3.47</td>
<td>Cc'</td>
</tr>
<tr>
<td>1.2.2</td>
<td>P11'</td>
<td>5.6.24 Cₚ 2'</td>
<td>9.4.48</td>
<td>Cₚ c</td>
</tr>
<tr>
<td>1.3.3</td>
<td>P₂₁</td>
<td>6.1.25 Pm</td>
<td>10.1.49</td>
<td>P₂/m</td>
</tr>
<tr>
<td>2.1.4</td>
<td>P₂</td>
<td>6.3.27 Pm'</td>
<td>10.3.51</td>
<td>P₂'/m</td>
</tr>
<tr>
<td>2.2.5</td>
<td>P₂₁'</td>
<td>6.4.28 P₂ᵃ m</td>
<td>10.4.52</td>
<td>P₂/m'</td>
</tr>
<tr>
<td>2.3.6</td>
<td>P₂'</td>
<td>6.5.29 P₂ᵇ m</td>
<td>10.5.53</td>
<td>P₂'/m'</td>
</tr>
<tr>
<td>2.4.7</td>
<td>P₂₁ &</td>
<td>6.6.30 P₂ᶜ m</td>
<td>10.6.54</td>
<td>P₂ᵃ 2/m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.7.31 P₂ᶜ m'</td>
<td>10.7.55</td>
<td>P₂ᵇ 2/m</td>
</tr>
</tbody>
</table>

MONOCLINIC SYSTEM

<table>
<thead>
<tr>
<th>Code</th>
<th>Space Group</th>
<th>Details</th>
<th>Mill</th>
<th>F.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.8</td>
<td>P₂</td>
<td>7.1.32 P_c</td>
<td>10.8.56</td>
<td>P₂ c/m</td>
</tr>
<tr>
<td>3.2.9</td>
<td>P₂₁'</td>
<td>7.2.33 P_c1'</td>
<td>10.9.57</td>
<td>P₂ᵇ 2'/m</td>
</tr>
<tr>
<td>3.3.10</td>
<td>P₂'</td>
<td>7.3.34 P_c'</td>
<td>10.10.58</td>
<td>P₂ᶜ 2'/m'</td>
</tr>
<tr>
<td>3.4.11</td>
<td>P₂ᵃ 2</td>
<td>7.4.35 P₂ᵃ c</td>
<td>11.1.59</td>
<td>P₂'/m</td>
</tr>
<tr>
<td>3.5.12</td>
<td>P₂ᵇ 2</td>
<td>7.5.36 P₂ᵇ c</td>
<td>11.2.60</td>
<td>P₂₁ /m1'</td>
</tr>
<tr>
<td>3.6.13</td>
<td>P_c 2</td>
<td>7.6.37 P_c</td>
<td>11.3.61</td>
<td>P₂₁ '/m</td>
</tr>
<tr>
<td>3.7.14</td>
<td>P₂ᵇ 2'</td>
<td>8.1.38 C_m</td>
<td>11.4.62</td>
<td>P₂₁ '/m'</td>
</tr>
<tr>
<td>4.1.15</td>
<td>P₂₁</td>
<td>8.2.39 C_m1'</td>
<td>11.5.63</td>
<td>P₂₁ '/m'</td>
</tr>
<tr>
<td>4.2.16</td>
<td>P₂₁'</td>
<td>8.3.40 C_m'</td>
<td>11.6.64</td>
<td>P₂ᵃ 2₁ /m</td>
</tr>
<tr>
<td>4.3.17</td>
<td>P₂₁'</td>
<td>8.4.41 C₂ᶜ m</td>
<td>11.7.65</td>
<td>P₂ᶜ 2₁ '/m'</td>
</tr>
<tr>
<td>4.4.18</td>
<td>P₂ᵃ 2₁</td>
<td>8.5.42 Cₚ m</td>
<td>12.1.66</td>
<td>C₂/m</td>
</tr>
<tr>
<td>5.1.19</td>
<td>C₂</td>
<td>8.6.43 C₂ᶜ m'</td>
<td>12.2.67</td>
<td>C₂/m1'</td>
</tr>
<tr>
<td>5.2.20</td>
<td>C₂₁'</td>
<td>8.7.44 Cₚ m'</td>
<td>12.3.68</td>
<td>C₂'/m</td>
</tr>
<tr>
<td>5.3.21</td>
<td>C₂'</td>
<td>9.1.45 C_c</td>
<td>12.4.69</td>
<td>C₂'/m'</td>
</tr>
<tr>
<td>5.4.22</td>
<td>C₂ᶜ 2</td>
<td>9.2.46 C_c1'</td>
<td>12.5.70</td>
<td>C₂'/m'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.6.46 C_c1'</td>
<td>12.6.71</td>
<td>C₂ᶜ 2/m</td>
</tr>
<tr>
<td>12.7.72</td>
<td>C _p 2/m</td>
<td>15.5.96</td>
<td>C _p 2'/c</td>
<td>19.1.119</td>
</tr>
<tr>
<td>12.8.73</td>
<td>C_2c 2/m'</td>
<td>15.6.97</td>
<td>C_p 2/c</td>
<td>19.2.120</td>
</tr>
<tr>
<td>12.9.74</td>
<td>C_p 2'/m</td>
<td>15.7.98</td>
<td>C_p 2'/c</td>
<td>19.3.121</td>
</tr>
<tr>
<td>12.10.75</td>
<td>C_p 2/m'</td>
<td>16.1.99</td>
<td>P222</td>
<td>20.1.122</td>
</tr>
<tr>
<td>12.11.76</td>
<td>C_p 2'/m'</td>
<td>16.2.100</td>
<td>P2221'</td>
<td>20.2.123</td>
</tr>
<tr>
<td>13.1.77</td>
<td>P2/c</td>
<td>16.3.101</td>
<td>P2'22</td>
<td>20.3.124</td>
</tr>
<tr>
<td>13.2.78</td>
<td>P2/c1'</td>
<td>16.4.102</td>
<td>P2a 222</td>
<td>20.4.125</td>
</tr>
<tr>
<td>13.3.79</td>
<td>P2'/c</td>
<td>16.5.103</td>
<td>P_c 222</td>
<td>20.5.126</td>
</tr>
<tr>
<td>13.4.80</td>
<td>P2/c'</td>
<td>16.6.104</td>
<td>P_f 222</td>
<td>20.6.127</td>
</tr>
<tr>
<td>13.5.81</td>
<td>P2'/c'</td>
<td>16.7.105</td>
<td>P2c 22'2'</td>
<td>20.7.128</td>
</tr>
<tr>
<td>13.6.82</td>
<td>P2a 2/c</td>
<td>17.1.106</td>
<td>P2221</td>
<td>21.1.129</td>
</tr>
<tr>
<td>13.7.83</td>
<td>P2a 2/c</td>
<td>17.2.107</td>
<td>P2221'</td>
<td>21.2.130</td>
</tr>
<tr>
<td>13.8.84</td>
<td>P_c 2/c</td>
<td>17.3.108</td>
<td>P2'22'1</td>
<td>21.3.131</td>
</tr>
<tr>
<td>13.9.85</td>
<td>P2a 2'/c</td>
<td>17.4.109</td>
<td>P22'2'1'</td>
<td>21.4.132</td>
</tr>
<tr>
<td>14.1.86</td>
<td>P2_1/c</td>
<td>17.5.110</td>
<td>P2a 2221</td>
<td>21.5.133</td>
</tr>
<tr>
<td>14.2.87</td>
<td>P2_1/c1'</td>
<td>17.6.111</td>
<td>P_c 2221</td>
<td>21.6.134</td>
</tr>
<tr>
<td>14.3.88</td>
<td>P2_1'/c</td>
<td>17.7.112</td>
<td>P2a 2'2'2</td>
<td>21.7.135</td>
</tr>
<tr>
<td>14.4.89</td>
<td>P2_1'/c'</td>
<td>18.1.113</td>
<td>P22,2</td>
<td>21.8.136</td>
</tr>
<tr>
<td>14.5.90</td>
<td>P2_1'/c'</td>
<td>18.2.114</td>
<td>P2,2,21'</td>
<td>21.9.137</td>
</tr>
<tr>
<td>14.6.91</td>
<td>P2a 2_1'/c</td>
<td>18.3.115</td>
<td>P2'2',2</td>
<td>21.10.138</td>
</tr>
<tr>
<td>15.1.92</td>
<td>C2/c</td>
<td>18.4.116</td>
<td>P2,2',2'</td>
<td>21.11.139</td>
</tr>
<tr>
<td>15.2.93</td>
<td>C2/c1'</td>
<td>18.5.117</td>
<td>P2c 2,22</td>
<td>22.1.140</td>
</tr>
<tr>
<td>15.3.94</td>
<td>C2'/c</td>
<td>18.6.118</td>
<td>P2c 2,2',2'</td>
<td>22.2.141</td>
</tr>
<tr>
<td>15.4.95</td>
<td>C2/c'</td>
<td>18.7.119</td>
<td>P2c 2,2',2'</td>
<td>22.3.142</td>
</tr>
<tr>
<td>Date</td>
<td>Code</td>
<td>Date</td>
<td>Code</td>
<td>Date</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>22.4.143</td>
<td>F_C 222</td>
<td>25.13.167</td>
<td>P_A m'm'2</td>
<td>28.7.191</td>
</tr>
<tr>
<td>22.5.144</td>
<td>F_C 22'2'</td>
<td>26.1.168</td>
<td>Pmc2_1</td>
<td>28.8.192</td>
</tr>
<tr>
<td>23.1.145</td>
<td>I222</td>
<td>26.2.169</td>
<td>Pmc2_1,1'</td>
<td>28.9.193</td>
</tr>
<tr>
<td>23.2.146</td>
<td>I2221'</td>
<td>26.3.170</td>
<td>P'mc2_1</td>
<td>28.10.194</td>
</tr>
<tr>
<td>23.3.147</td>
<td>I2'2'2</td>
<td>26.4.171</td>
<td>Pmc2_1'</td>
<td>28.11.195</td>
</tr>
<tr>
<td>23.4.148</td>
<td>I_p 222</td>
<td>26.5.172</td>
<td>P'mc2_1</td>
<td>28.12.196</td>
</tr>
<tr>
<td>23.5.149</td>
<td>I_p 2'2'2</td>
<td>26.6.173</td>
<td>P_{2a} mc2_1</td>
<td>28.13.197</td>
</tr>
<tr>
<td>24.1.150</td>
<td>I2,2,2_1</td>
<td>26.7.174</td>
<td>P_{2b} mc2_1</td>
<td>29.1.198</td>
</tr>
<tr>
<td>24.2.151</td>
<td>I2,2,2,1'</td>
<td>26.8.175</td>
<td>P_{c} mc2_1</td>
<td>29.2.199</td>
</tr>
<tr>
<td>24.3.152</td>
<td>I2,2',2_1</td>
<td>26.9.176</td>
<td>P_{2a} mc2_1'</td>
<td>29.3.200</td>
</tr>
<tr>
<td>24.4.153</td>
<td>I_p 2,2,2_1</td>
<td>26.10.177</td>
<td>P_{2b} m'c2_1</td>
<td>29.4.201</td>
</tr>
<tr>
<td>24.5.154</td>
<td>I_p 2',2',2_1</td>
<td>27.1.178</td>
<td>Pcc2</td>
<td>29.5.202</td>
</tr>
<tr>
<td>25.1.155</td>
<td>Pmm2</td>
<td>27.2.179</td>
<td>Pcc21'</td>
<td>29.6.203</td>
</tr>
<tr>
<td>25.2.156</td>
<td>Pmm2,1'</td>
<td>27.3.180</td>
<td>Pc'c2'</td>
<td>30.1.205</td>
</tr>
<tr>
<td>25.3.157</td>
<td>P'm'm2'</td>
<td>27.4.181</td>
<td>Pc'c2'</td>
<td>30.2.206</td>
</tr>
<tr>
<td>25.4.158</td>
<td>P'm'm2</td>
<td>27.5.182</td>
<td>P_{2a} cc2</td>
<td>30.3.207</td>
</tr>
<tr>
<td>25.5.159</td>
<td>P_{2c} mm2</td>
<td>27.6.183</td>
<td>P_{c} cc2</td>
<td>30.4.208</td>
</tr>
<tr>
<td>25.6.160</td>
<td>P_{2a} mm2</td>
<td>27.7.184</td>
<td>P_{2b} c'c2'</td>
<td>30.5.209</td>
</tr>
<tr>
<td>25.7.161</td>
<td>P_{c} mm2</td>
<td>28.1.185</td>
<td>Pma2</td>
<td>30.6.210</td>
</tr>
<tr>
<td>25.8.162</td>
<td>P_A mm2</td>
<td>28.2.186</td>
<td>Pma2',1'</td>
<td>30.7.211</td>
</tr>
<tr>
<td>25.9.163</td>
<td>P_F mm2</td>
<td>28.3.187</td>
<td>P'ma2'</td>
<td>31.1.212</td>
</tr>
<tr>
<td>25.10.164</td>
<td>P_{2c} mm2,1'</td>
<td>28.4.188</td>
<td>Pma2'</td>
<td>31.1.213</td>
</tr>
<tr>
<td>25.11.165</td>
<td>P_{2c} m'm2</td>
<td>28.5.189</td>
<td>P'ma2</td>
<td>31.2.214</td>
</tr>
<tr>
<td>25.12.166</td>
<td>P_{2a} m'm2</td>
<td>28.6.190</td>
<td>P_{2b} ma2</td>
<td>31.3.214</td>
</tr>
<tr>
<td>31.4.215</td>
<td>Pmn'2₁'</td>
<td>35.4.239</td>
<td>Cₘ'm'2</td>
<td>37.7.264</td>
</tr>
<tr>
<td>31.5.216</td>
<td>Pm'n'₂₁</td>
<td>35.5.240</td>
<td>C₂c mm2</td>
<td>38.1.265</td>
</tr>
<tr>
<td>31.6.217</td>
<td>P₂ₘₙ2₁</td>
<td>35.6.241</td>
<td>Cₚ mm2</td>
<td>38.2.266</td>
</tr>
<tr>
<td>31.7.218</td>
<td>P₂ₘₘ'ₙ₂₁</td>
<td>35.7.242</td>
<td>C₁ mm2</td>
<td>38.3.267</td>
</tr>
<tr>
<td>32.1.219</td>
<td>Pba₂</td>
<td>35.8.243</td>
<td>C₂c m'm₂'</td>
<td>38.4.268</td>
</tr>
<tr>
<td>32.2.220</td>
<td>Pba₂₁'</td>
<td>35.9.244</td>
<td>C₂c m'm₂</td>
<td>38.5.269</td>
</tr>
<tr>
<td>32.3.221</td>
<td>Pb'a₂²</td>
<td>35.10.245</td>
<td>Cₚ m'm₂'</td>
<td>38.6.270</td>
</tr>
<tr>
<td>32.4.222</td>
<td>Pb'a₂²</td>
<td>35.11.246</td>
<td>Cₚ m'm₂</td>
<td>38.7.271</td>
</tr>
<tr>
<td>32.5.223</td>
<td>P₂c ba₂</td>
<td>35.12.247</td>
<td>C₁ m'm₂'</td>
<td>38.8.272</td>
</tr>
<tr>
<td>32.6.224</td>
<td>P₂c b'a₂²</td>
<td>35.13.248</td>
<td>C₁ m'm₂</td>
<td>38.9.273</td>
</tr>
<tr>
<td>32.7.225</td>
<td>P₂c b'a₂²</td>
<td>36.1.249</td>
<td>Cmc₂₁</td>
<td>38.10.274</td>
</tr>
<tr>
<td>33.1.226</td>
<td>Pna₂₁</td>
<td>36.2.250</td>
<td>Cmc₂₁'</td>
<td>38.11.275</td>
</tr>
<tr>
<td>33.2.227</td>
<td>Pna₂₁₁'</td>
<td>36.3.251</td>
<td>Cₘ'c₂₁</td>
<td>38.12.276</td>
</tr>
<tr>
<td>33.3.228</td>
<td>Pn'a₂₁'</td>
<td>36.4.252</td>
<td>Cmc₂₁'</td>
<td>38.13.277</td>
</tr>
<tr>
<td>33.4.229</td>
<td>Pn'a₂₁'</td>
<td>36.5.253</td>
<td>Cₘ'c₂₁</td>
<td>39.1.278</td>
</tr>
<tr>
<td>33.5.230</td>
<td>Pn'a₂₁</td>
<td>36.6.254</td>
<td>Cₘ mc₂₁</td>
<td>39.2.279</td>
</tr>
<tr>
<td>34.1.231</td>
<td>Pnn₂</td>
<td>36.7.255</td>
<td>Cₘ m'c₂₁'</td>
<td>39.3.280</td>
</tr>
<tr>
<td>34.2.232</td>
<td>Pnn₀₂₁</td>
<td>36.8.256</td>
<td>Cₘ mc₂₁'</td>
<td>39.4.281</td>
</tr>
<tr>
<td>34.3.233</td>
<td>Pn'n₂₀</td>
<td>36.9.257</td>
<td>Cₘ m'c₂₁</td>
<td>39.5.282</td>
</tr>
<tr>
<td>34.4.234</td>
<td>Pn'n₂</td>
<td>37.1.258</td>
<td>Ccc₂</td>
<td>39.6.283</td>
</tr>
<tr>
<td>34.5.235</td>
<td>Pₙ n₀₂</td>
<td>37.2.259</td>
<td>Ccc₂₁</td>
<td>39.7.284</td>
</tr>
<tr>
<td>35.1.236</td>
<td>Cmm₂</td>
<td>37.3.260</td>
<td>Cc'c₂'</td>
<td>39.8.285</td>
</tr>
<tr>
<td>35.2.237</td>
<td>Cmm₂₁'</td>
<td>37.4.261</td>
<td>Cc'c₂</td>
<td>39.9.286</td>
</tr>
<tr>
<td>35.3.238</td>
<td>Cm'm₂'</td>
<td>37.5.262</td>
<td>Cₚ cc₂</td>
<td>39.10.287</td>
</tr>
<tr>
<td>35.4.239</td>
<td>Cm'm₂</td>
<td>37.6.263</td>
<td>Cₚ c'c₂</td>
<td>39.11.288</td>
</tr>
<tr>
<td>Number</td>
<td>Description</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>39.12.289</td>
<td>Ap b'm'2</td>
<td>42.5.313</td>
<td>Fc mm2</td>
<td>45.7.337</td>
</tr>
<tr>
<td>39.13.290</td>
<td>A_1 b'm'2</td>
<td>42.6.314</td>
<td>Fa mm2</td>
<td>46.1.338</td>
</tr>
<tr>
<td>40.1.291</td>
<td>Ama2</td>
<td>42.7.315</td>
<td>Fc mm2'</td>
<td>46.2.339</td>
</tr>
<tr>
<td>40.2.292</td>
<td>Ama21'</td>
<td>42.8.316</td>
<td>Fc m'm2'</td>
<td>46.3.340</td>
</tr>
<tr>
<td>40.3.293</td>
<td>Am'a2'</td>
<td>42.9.317</td>
<td>Fa m'm2'</td>
<td>46.4.341</td>
</tr>
<tr>
<td>40.4.294</td>
<td>Ama'2'</td>
<td>42.10.318</td>
<td>Fa mm2'</td>
<td>46.5.342</td>
</tr>
<tr>
<td>40.5.295</td>
<td>Am'a2</td>
<td>42.11.319</td>
<td>Fa m'm2</td>
<td>46.6.343</td>
</tr>
<tr>
<td>40.6.296</td>
<td>Ap ma2</td>
<td>43.1.320</td>
<td>Fdd2</td>
<td>46.7.344</td>
</tr>
<tr>
<td>40.7.297</td>
<td>Ap m'a2'</td>
<td>43.2.321</td>
<td>Fdd21'</td>
<td>46.8.345</td>
</tr>
<tr>
<td>40.8.298</td>
<td>Ap ma2'</td>
<td>43.3.322</td>
<td>Fd'd2'</td>
<td>46.9.346</td>
</tr>
<tr>
<td>40.9.299</td>
<td>Ap m'a2</td>
<td>43.4.323</td>
<td>Fd'd2</td>
<td>47.1.347</td>
</tr>
<tr>
<td>41.1.300</td>
<td>Aba2</td>
<td>44.1.324</td>
<td>Imm2</td>
<td>47.2.348</td>
</tr>
<tr>
<td>41.2.301</td>
<td>Aba21'</td>
<td>44.2.325</td>
<td>Imm21'</td>
<td>47.3.349</td>
</tr>
<tr>
<td>41.3.302</td>
<td>Ab'a2'</td>
<td>44.3.326</td>
<td>Im'm2'</td>
<td>47.4.350</td>
</tr>
<tr>
<td>41.4.303</td>
<td>Aba'2'</td>
<td>44.4.327</td>
<td>Im'm2</td>
<td>47.5.351</td>
</tr>
<tr>
<td>41.5.304</td>
<td>Ab'a2</td>
<td>44.5.328</td>
<td>Ip mm2</td>
<td>47.6.352</td>
</tr>
<tr>
<td>41.6.305</td>
<td>Ap ba2</td>
<td>44.6.329</td>
<td>Ip mm2'</td>
<td>47.7.353</td>
</tr>
<tr>
<td>41.7.306</td>
<td>Ap b'a2'</td>
<td>44.7.330</td>
<td>Ip m'm2</td>
<td>47.8.354</td>
</tr>
<tr>
<td>41.8.307</td>
<td>Ap ba'2'</td>
<td>45.1.331</td>
<td>Iba2</td>
<td>47.9.355</td>
</tr>
<tr>
<td>41.9.308</td>
<td>Ap b'a2</td>
<td>45.2.332</td>
<td>Iba21'</td>
<td>47.10.356</td>
</tr>
<tr>
<td>42.1.309</td>
<td>Fmm2</td>
<td>45.3.333</td>
<td>Ib'a2'</td>
<td>47.11.357</td>
</tr>
<tr>
<td>42.2.310</td>
<td>Fmm21'</td>
<td>45.4.334</td>
<td>Ib'a2</td>
<td>48.1.358</td>
</tr>
<tr>
<td>42.3.311</td>
<td>Fm'm2'</td>
<td>45.5.335</td>
<td>Ip ba2</td>
<td>48.2.359</td>
</tr>
<tr>
<td>42.4.312</td>
<td>Fm'm2</td>
<td>45.6.336</td>
<td>Ip ba'2'</td>
<td>48.3.360</td>
</tr>
<tr>
<td>Page</td>
<td>Column</td>
<td>Value 1</td>
<td>Column</td>
<td>Value 2</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>48.4</td>
<td>.361</td>
<td>Pn'n'n</td>
<td>50.10</td>
<td>.386</td>
</tr>
<tr>
<td>48.5</td>
<td>.362</td>
<td>Pn'n'n'</td>
<td>50.2</td>
<td>.414</td>
</tr>
<tr>
<td>48.6</td>
<td>.363</td>
<td>P_{F} nnn</td>
<td>51.2</td>
<td>.388</td>
</tr>
<tr>
<td>49.1</td>
<td>.364</td>
<td>Pccm</td>
<td>51.3</td>
<td>.389</td>
</tr>
<tr>
<td>49.2</td>
<td>.365</td>
<td>Pccm1'</td>
<td>51.4</td>
<td>.390</td>
</tr>
<tr>
<td>49.3</td>
<td>.366</td>
<td>Pc'cm</td>
<td>51.5</td>
<td>.391</td>
</tr>
<tr>
<td>49.4</td>
<td>.367</td>
<td>Pccm'</td>
<td>51.6</td>
<td>.392</td>
</tr>
<tr>
<td>49.5</td>
<td>.368</td>
<td>Pc'c'm</td>
<td>51.7</td>
<td>.393</td>
</tr>
<tr>
<td>49.6</td>
<td>.369</td>
<td>Pc'c'm'</td>
<td>51.8</td>
<td>.394</td>
</tr>
<tr>
<td>49.7</td>
<td>.370</td>
<td>Pc'c'm'</td>
<td>51.9</td>
<td>.395</td>
</tr>
<tr>
<td>49.8</td>
<td>.371</td>
<td>P_{2a} ccm</td>
<td>51.1</td>
<td>.036</td>
</tr>
<tr>
<td>49.9</td>
<td>.372</td>
<td>P C ccm</td>
<td>51.1</td>
<td>.137</td>
</tr>
<tr>
<td>50.1</td>
<td>.373</td>
<td>P_{2a} ccm'</td>
<td>51.1</td>
<td>.238</td>
</tr>
<tr>
<td>50.2</td>
<td>.374</td>
<td>P_{2a} c'c'm</td>
<td>51.1</td>
<td>.339</td>
</tr>
<tr>
<td>50.3</td>
<td>.375</td>
<td>P_{2a} c'c'm'</td>
<td>51.1</td>
<td>.400</td>
</tr>
<tr>
<td>50.4</td>
<td>.376</td>
<td>P C ccm'</td>
<td>51.1</td>
<td>.501</td>
</tr>
<tr>
<td>50.5</td>
<td>.377</td>
<td>P_{2b} m'ma</td>
<td>51.1</td>
<td>.602</td>
</tr>
<tr>
<td>50.6</td>
<td>.378</td>
<td>P_{2b} m'ma</td>
<td>51.1</td>
<td>.703</td>
</tr>
<tr>
<td>50.7</td>
<td>.379</td>
<td>P_{2b} m'ma</td>
<td>51.1</td>
<td>.804</td>
</tr>
<tr>
<td>50.8</td>
<td>.380</td>
<td>P_{2b} m'ma</td>
<td>51.1</td>
<td>.905</td>
</tr>
<tr>
<td>50.9</td>
<td>.381</td>
<td>P_{2b} m'ma</td>
<td>52.1</td>
<td>.046</td>
</tr>
<tr>
<td>50.10</td>
<td>.382</td>
<td>P_{2b} m'ma</td>
<td>52.2</td>
<td>.047</td>
</tr>
<tr>
<td>50.11</td>
<td>.383</td>
<td>P_{2b} m'ma</td>
<td>52.3</td>
<td>.048</td>
</tr>
<tr>
<td>50.12</td>
<td>.384</td>
<td>P_{2b} m'ma</td>
<td>52.4</td>
<td>.049</td>
</tr>
<tr>
<td>50.13</td>
<td>.385</td>
<td>P_{2b} m'ma</td>
<td>52.5</td>
<td>.100</td>
</tr>
</tbody>
</table>
54.9.436
54.10.437
54.11.438
54.12.439
54.13.440
55.1.441
55.2.442
55.3.443
55.4.444
55.5.445
55.6.446
55.7.447
55.8.448
55.9.449
55.10.450
56.1.451
56.2.452
56.3.453
56.4.454
56.5.455
56.6.456
56.7.457
57.1.458
57.2.459
57.3.460
57.4.461
57.5.462
57.6.463
57.7.464
57.8.465
57.9.466
57.10.467
57.11.468
57.12.469
57.13.470
57.14.471
57.15.472
57.16.473
57.17.474
57.18.475
57.19.476
57.20.477
57.21.478
57.22.479
57.23.480
57.24.481
57.25.482
57.26.483
57.27.484
59.4.85
59.9.486
59.10.487
59.10.488
59.2.489
60.1.488
60.2.489
60.5.492
60.6.493
60.7.494
60.3.490
60.4.491
60.5.492
60.6.493
60.7.494
60.8.495
60.9.496
61.1.497
61.2.498
61.3.499
61.4.500
61.5.501
62.1.502
62.2.503
62.3.504
62.4.505
62.5.506
62.6.507
62.7.508

Pc'c'a' 57.3.460 Pb'cm 59.8.485 P_{2c}mmn
P_{2c} cca' 57.4.461 Pbc'm 59.9.486 P_{2c} m'mn
P_{2c} c'c'a' 57.5.462 Pbcm' 59.10.487 P_{2c} m'm'n
P_{2c} cca' 57.6.463 Pb'c'm
P_{2c} c'c'a' 57.7.464 Pbc'm' 60.1.488 Pbcn
P_{2c} c'c'a' 57.8.465 Pb'cm'
Pbam 57.9.466 Pb'c'm'
Pbam1' 57.10.467 P_{2a} bcm
Pb'am 57.11.468 P_{2a} bc'm
Pbam' 57.12.469 P_{2a} bcm'
58.1.471 Pnmn
Pbam' 57.13.470 P_{2a} bc'm'
Pbcm 57.14.471 Pb'cm'
Pbcm1' 57.15.472 Pmm1'
P_{2c} bam 57.16.473 Pnnm
P_{2c} b'am 57.17.474 Pnnm'
P_{2c} b'a'm 57.18.475 Pn'n'm
Pcn 57.19.476 Pnn'm'
Pccn1' 57.20.477 Pn'n'm'
Pc'cn 58.1.478 Pmnm
Pccn' 58.2.479 Pmmn1'
Pc'c'n 58.3.480 Pmmn1'
P_{2c} c'n 58.4.481 Pmmn
P_{2c} c'n 58.5.482 Pm'mn
P_{2c} c'n 59.4.483 Pmmn'
Pbcn 59.5.482 Pm'm'n
Pbcn1' 59.6.483 Pmm'n'
Pbcn' 59.7.484 Pm'm'n'

59.1.451
56.1.451
57.1.458
56.2.452
56.3.453
56.4.454
56.5.455
56.6.456
56.7.457
55.1.441
55.2.442
55.3.443
55.4.444
55.5.445
55.6.446
55.7.447
55.8.448
55.9.449
56.1.451
56.2.452
56.3.453
56.4.454
56.5.455
56.6.456
56.7.457
57.1.458
57.2.459
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Code</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.8.509</td>
<td>Pn'ma'</td>
<td>64.7.534</td>
<td>Cm'c'a'</td>
<td>65.15.559</td>
<td>C_p m'm'm</td>
</tr>
<tr>
<td>62.9.510</td>
<td>Pn'm'a'</td>
<td>64.8.535</td>
<td>Cm'ca'</td>
<td>65.16.560</td>
<td>C_p mm'm'</td>
</tr>
<tr>
<td>63.1.511</td>
<td>Cmcm</td>
<td>64.9.536</td>
<td>Cm'c'a'</td>
<td>65.17.561</td>
<td>C_p m'm'm'</td>
</tr>
<tr>
<td>63.2.512</td>
<td>Cmcm1'</td>
<td>64.10.537</td>
<td>C_p mca</td>
<td>65.18.562</td>
<td>C_l m'mm</td>
</tr>
<tr>
<td>63.3.513</td>
<td>Cm'cm</td>
<td>64.11.538</td>
<td>C_p m'ca</td>
<td>65.19.563</td>
<td>C_l m'm'm</td>
</tr>
<tr>
<td>63.4.514</td>
<td>Cmc'm</td>
<td>64.12.539</td>
<td>C_p mc'a</td>
<td>66.1.564</td>
<td>Cccm</td>
</tr>
<tr>
<td>63.5.515</td>
<td>Cmcm'</td>
<td>64.13.540</td>
<td>C_p mca'</td>
<td>66.2.565</td>
<td>Cccm1'</td>
</tr>
<tr>
<td>63.6.516</td>
<td>Cm'c'm</td>
<td>64.14.541</td>
<td>C_p m'c'a</td>
<td>66.3.566</td>
<td>Cc'cm</td>
</tr>
<tr>
<td>63.7.517</td>
<td>Cmc'm'</td>
<td>64.15.542</td>
<td>C_p mc'a'</td>
<td>66.4.567</td>
<td>Cccm'</td>
</tr>
<tr>
<td>63.8.518</td>
<td>Cm'cm'</td>
<td>64.16.543</td>
<td>C_p m'ca'</td>
<td>66.5.568</td>
<td>Cc'c'm</td>
</tr>
<tr>
<td>63.9.519</td>
<td>Cm'c'm'</td>
<td>64.17.544</td>
<td>C_p m'c'a'</td>
<td>66.6.569</td>
<td>Ccc'm'</td>
</tr>
<tr>
<td>63.10.520</td>
<td>C_p mcm</td>
<td>65.1.545</td>
<td>Cmmm</td>
<td>66.7.570</td>
<td>Cc'c'm'</td>
</tr>
<tr>
<td>63.11.521</td>
<td>C_p m'cm</td>
<td>65.2.546</td>
<td>Cmmm1'</td>
<td>66.8.571</td>
<td>C_p ccm</td>
</tr>
<tr>
<td>63.12.522</td>
<td>C_p mc'm</td>
<td>65.3.547</td>
<td>Cm'mm</td>
<td>66.9.572</td>
<td>C_p c'cm</td>
</tr>
<tr>
<td>63.13.523</td>
<td>C_p mcm'</td>
<td>65.4.548</td>
<td>Cmmm'</td>
<td>66.10.573</td>
<td>C_p ccm'</td>
</tr>
<tr>
<td>63.14.524</td>
<td>C_p m'c'm</td>
<td>65.5.549</td>
<td>Cm'mm</td>
<td>66.11.574</td>
<td>C_p c'c'm</td>
</tr>
<tr>
<td>63.15.525</td>
<td>C_p mc'm'</td>
<td>65.6.550</td>
<td>Cmmm'm</td>
<td>66.12.575</td>
<td>C_p cc'm'</td>
</tr>
<tr>
<td>63.16.526</td>
<td>C_p m'cm'</td>
<td>65.7.551</td>
<td>Cm'm'm</td>
<td>66.13.576</td>
<td>C_p c'c'm'</td>
</tr>
<tr>
<td>63.17.527</td>
<td>C_p m'c'm'</td>
<td>65.8.552</td>
<td>C_2c mmm</td>
<td>67.1.577</td>
<td>Cmma</td>
</tr>
<tr>
<td>64.1.528</td>
<td>Cmca</td>
<td>65.9.553</td>
<td>C_p mmm</td>
<td>67.2.578</td>
<td>Cmma1'</td>
</tr>
<tr>
<td>64.2.529</td>
<td>Cmca1'</td>
<td>65.10.554</td>
<td>C_l mmm</td>
<td>67.3.579</td>
<td>Cm'ma</td>
</tr>
<tr>
<td>64.3.530</td>
<td>Cm'ca</td>
<td>65.11.555</td>
<td>C_2c m'm'm</td>
<td>67.4.580</td>
<td>Cmma'</td>
</tr>
<tr>
<td>64.4.531</td>
<td>Cmc'a</td>
<td>65.12.556</td>
<td>C_2c mm'm'</td>
<td>67.5.581</td>
<td>Cm'm'a</td>
</tr>
<tr>
<td>64.5.532</td>
<td>Cmca'</td>
<td>65.13.557</td>
<td>C_p m'mm</td>
<td>67.6.582</td>
<td>Cmma'a</td>
</tr>
<tr>
<td>64.6.533</td>
<td>Cm'c'a</td>
<td>65.14.558</td>
<td>C_p mmm'</td>
<td>67.7.583</td>
<td>Cm'm'a'</td>
</tr>
</tbody>
</table>
67.8.584 C_{2c} mma 69.5.609 $F'm'm'm'$ 72.4.633 lbam'
67.9.585 C_p mma 69.6.610 F_c mmm 72.5.634 lb'a'm
67.10.586 C_i mma 69.7.611 F_c m'm'm 72.6.635 iba'm'
67.11.587 C_{2c} m'm'a 69.8.612 F_c mmm' 72.7.636 lb'a'm'
67.12.588 C_{2c} m'm'a 69.9.613 F_c m'm'm 72.8.637 lp bam
67.13.589 C_p m'm'a 69.10.614 F_c mm'm' 72.9.638 lp b'am
67.14.590 C_p mm'm'a 69.11.615 F_c m'm'm' 72.10.639 lp bam'
67.15.591 C_p m'm'a' 70.1.616 Fddd 72.11.640 lp b' a'm
67.16.592 C_i mm'm'a 70.2.617 Fddd1' 72.12.641 lp b' a'm'
67.17.593 C_i m'm'm'a 70.3.618 Fd'dd 72.13.642 lp b' a'm'
68.1.594 Ccca 70.4.619 Fd'd'd 73.1.643 lbca
68.2.595 Ccca1' 70.5.620 Fd'd'd' 73.2.644 lbca1'
68.3.596 Cc'ca 71.1.621 Immm 73.3.645 lb'ca
68.4.597 Ccca' 71.2.622 Immm1' 73.4.646 lb' c'a
68.5.598 Cc'c'a 71.3.623 Im'mm 73.5.647 lb' c'a'
68.6.599 Ccc' a' 71.4.624 Im'm'm 73.6.648 lp bca
68.7.600 Cc'c'a' 71.5.625 Im'm'm' 73.7.649 lp b'ca
68.8.601 C_p cca 71.6.626 lp mmm 74.1.650 Imma
68.9.602 C_p c'ca 71.7.627 lp m'm'm 74.2.651 Imma1'
68.10.603 C_p cca' 71.8.628 lp m'm'm' 74.3.652 Im'ma
68.11.604 C_p cc' a' 71.9.629 lp m'm'm' 74.4.653 Imma'
69.1.605 Fmmm 72.1.630 Ibam 74.5.654 Im'm'a
69.2.606 Fmmm1' 72.2.631 Ibam1' 74.6.655 Im'm'a'
69.3.607 Fm'mm 72.3.632 lb'am 74.7.656 Im'm'a'
69.4.608 Fm'm'm 72.4.632 I p mma
<table>
<thead>
<tr>
<th>Page</th>
<th>Lattice Parameters</th>
<th>Space Group</th>
<th>Volume</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>74.9658</td>
<td>l_p m'm'a</td>
<td>78.2680</td>
<td>P4_31'</td>
<td>83.2704</td>
</tr>
<tr>
<td>74.10659</td>
<td>l_p mm'a'</td>
<td>78.3681</td>
<td>P4_3'</td>
<td>83.3705</td>
</tr>
<tr>
<td>74.11660</td>
<td>l_p m'm'a'</td>
<td>78.4682</td>
<td>P_p 4_3</td>
<td>83.4706</td>
</tr>
</tbody>
</table>

TETRAGONAL SYSTEM

<table>
<thead>
<tr>
<th>Page</th>
<th>Lattice Parameters</th>
<th>Space Group</th>
<th>Volume</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>75.1661</td>
<td>P4</td>
<td>79.2684</td>
<td>l41'</td>
<td>83.6708</td>
</tr>
<tr>
<td>75.2662</td>
<td>P41'</td>
<td>79.3685</td>
<td>l4'</td>
<td>83.7709</td>
</tr>
<tr>
<td>75.3663</td>
<td>P4'</td>
<td>79.4686</td>
<td>l_p 4</td>
<td>83.8710</td>
</tr>
<tr>
<td>75.4664</td>
<td>P_2c 4</td>
<td>79.5687</td>
<td>l_p 4'</td>
<td>83.9711</td>
</tr>
<tr>
<td>75.5665</td>
<td>P_p 4</td>
<td>80.1688</td>
<td>l4_1</td>
<td>83.10712</td>
</tr>
<tr>
<td>75.6666</td>
<td>P_1 4</td>
<td>80.2689</td>
<td>l4_1'</td>
<td>84.1713</td>
</tr>
<tr>
<td>75.7667</td>
<td>P_2c 4'</td>
<td>80.3690</td>
<td>l4_1'</td>
<td>84.2714</td>
</tr>
<tr>
<td>76.1668</td>
<td>P4_1</td>
<td>80.4691</td>
<td>l_p 4_1</td>
<td>84.3715</td>
</tr>
<tr>
<td>76.2669</td>
<td>P4_11'</td>
<td>80.5692</td>
<td>l_p 4_1'</td>
<td>84.4716</td>
</tr>
<tr>
<td>76.3670</td>
<td>P4_1'</td>
<td>81.1693</td>
<td>P &</td>
<td>84.6718</td>
</tr>
<tr>
<td>76.4671</td>
<td>P_p 4_1</td>
<td>81.2694</td>
<td>P &1'</td>
<td>84.7719</td>
</tr>
<tr>
<td>77.1672</td>
<td>P4_2</td>
<td>81.3695</td>
<td>P &</td>
<td>85.1720</td>
</tr>
<tr>
<td>77.2673</td>
<td>P4_21'</td>
<td>81.4696</td>
<td>P_2c &</td>
<td>85.2721</td>
</tr>
<tr>
<td>77.3674</td>
<td>P4_2'</td>
<td>81.5697</td>
<td>P_p &</td>
<td>85.3722</td>
</tr>
<tr>
<td>77.4675</td>
<td>P_2c 4_2</td>
<td>82.1699</td>
<td>l &</td>
<td>85.4723</td>
</tr>
<tr>
<td>77.5676</td>
<td>P_p 4_2</td>
<td>82.2700</td>
<td>l &1'</td>
<td>85.5724</td>
</tr>
<tr>
<td>77.6677</td>
<td>P_1 4_2</td>
<td>82.3701</td>
<td>l &</td>
<td>85.6725</td>
</tr>
<tr>
<td>77.7678</td>
<td>P_2c 4_2'</td>
<td>82.4702</td>
<td>l_p &</td>
<td>85.7726</td>
</tr>
<tr>
<td>78.1679</td>
<td>P4_3</td>
<td>83.1703</td>
<td>P4/m</td>
<td>86.1727</td>
</tr>
</tbody>
</table>
| Code | Space Group | a | b | c | α | β | γ | Z | Density
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>86.2.728</td>
<td>P4$_2$/n1'</td>
<td>89.6.752</td>
<td>P$_{2c}$422</td>
<td>93.1.776</td>
<td>P4$_2$22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86.3.729</td>
<td>P4$_2$'/n</td>
<td>89.7.753</td>
<td>P$_p$422</td>
<td>93.2.777</td>
<td>P4$_2$221'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86.4.730</td>
<td>P4$_2$'/n</td>
<td>89.8.754</td>
<td>P$_1$422</td>
<td>93.3.778</td>
<td>P4$_2$'22'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86.5.731</td>
<td>P4$_2$'/n</td>
<td>89.9.755</td>
<td>P$_{2c}$4'22'</td>
<td>93.4.779</td>
<td>P4$_2$22'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86.6.732</td>
<td>P$_1$4$_2$ /n</td>
<td>89.10.756</td>
<td>P$_p$4'22'</td>
<td>93.5.780</td>
<td>P4$_2$'22'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87.1.733</td>
<td>I4/m</td>
<td>90.1.757</td>
<td>P42,2</td>
<td>93.7.782</td>
<td>P$_p$4$_2$22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87.2.734</td>
<td>I4/m1'</td>
<td>90.2.758</td>
<td>P42,21'</td>
<td>93.8.783</td>
<td>P$_1$4$_2$22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87.3.735</td>
<td>I4'/m</td>
<td>90.3.759</td>
<td>P4'_2,2'</td>
<td>93.9.784</td>
<td>P$_{2c}$4'_2,22'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87.4.736</td>
<td>I4/m'</td>
<td>90.4.760</td>
<td>P42,1'2'</td>
<td>93.10.785</td>
<td>P$_p$4$_2$'2,2'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87.5.737</td>
<td>I4'/m'</td>
<td>90.5.761</td>
<td>P4'2,1'2</td>
<td>94.1.786</td>
<td>P4$_2$2,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87.6.738</td>
<td>l$_p$4/m</td>
<td>90.6.762</td>
<td>P$_{2c}$4,2,2</td>
<td>94.3.788</td>
<td>P4$_2$'2,2'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87.7.739</td>
<td>l$_p$4'/m</td>
<td>90.7.763</td>
<td>P$_{2c}$4',2,1'2</td>
<td>94.4.789</td>
<td>P4$_2$2,1'2'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87.8.740</td>
<td>l$_p$4'/m'</td>
<td>91.1.764</td>
<td>P4,22</td>
<td>94.5.790</td>
<td>P4$_2$'2,1'2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.1.742</td>
<td>I$_4$_1/a</td>
<td>91.2.765</td>
<td>P4,221'</td>
<td>94.6.791</td>
<td>P$_{2c}$4$_2$2,1,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.2.743</td>
<td>I$_4$_1/a1'</td>
<td>91.3.766</td>
<td>P4',22'</td>
<td>95.1.793</td>
<td>P4$_3$22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.3.744</td>
<td>I$_4$_1'/'a'</td>
<td>91.4.767</td>
<td>P4,22'</td>
<td>95.2.794</td>
<td>P$_{2c}$4$_2$2,1,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.4.745</td>
<td>I$_4$_1/a'</td>
<td>91.5.768</td>
<td>P4,22'</td>
<td>95.3.795</td>
<td>P4$_3$22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.5.746</td>
<td>I$_4$_1'/'a'</td>
<td>91.6.769</td>
<td>P$_p$4,22</td>
<td>95.4.796</td>
<td>P4$_3$2,2'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89.1.747</td>
<td>P422</td>
<td>92.1.771</td>
<td>P4,2,2</td>
<td>95.5.797</td>
<td>P4$_3$2,2'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89.2.748</td>
<td>P4221'</td>
<td>92.2.772</td>
<td>P4,2,21'</td>
<td>95.6.798</td>
<td>P$_p$4$_3$22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89.3.749</td>
<td>P4'22'</td>
<td>92.3.773</td>
<td>P4',2,2'</td>
<td>95.7.799</td>
<td>P$_p$4$_3$'22'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89.4.750</td>
<td>P42'2'</td>
<td>92.4.774</td>
<td>P4,2',2'</td>
<td>95.8.799</td>
<td>P$_p$4$_3$'22'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89.5.751</td>
<td>P4'2'2</td>
<td>92.5.775</td>
<td>P4',2',2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table lists various space groups along with their identifiers and corresponding codes.
<table>
<thead>
<tr>
<th>Page</th>
<th>Symbol</th>
<th>Number</th>
<th>Description</th>
<th>X</th>
<th>Y</th>
<th>Symbol</th>
<th>Number</th>
<th>Description</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.1.800</td>
<td>P4$_3$2,2</td>
<td>99.2.824</td>
<td>P4mm</td>
<td>1'</td>
<td>101.5.849</td>
<td>P4$_2$ c'm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.2.801</td>
<td>P4$_3$2,21'</td>
<td>99.3.825</td>
<td>P4'm'm</td>
<td>101.6.850</td>
<td>P$_p$ 4$_2$ cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.3.802</td>
<td>P4$_3$'2,2'</td>
<td>99.4.826</td>
<td>P4'm'm</td>
<td>101.7.851</td>
<td>P$_p$ 4$_2$'c'm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.4.803</td>
<td>P4$_3$2,1'2</td>
<td>99.5.827</td>
<td>P4m'm'</td>
<td>102.1.852</td>
<td>P4$_2$ nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96.5.804</td>
<td>P4$_3$'2,1'2</td>
<td>99.6.828</td>
<td>P2c 4mm</td>
<td></td>
<td>102.2.853</td>
<td>P4$_2$ nm1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.1.805</td>
<td>I422</td>
<td>99.8.830</td>
<td>P1,4mm</td>
<td></td>
<td>102.3.854</td>
<td>P4$_2$'n'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.2.806</td>
<td>I422</td>
<td>99.9.831</td>
<td>P2c 4'm'm</td>
<td></td>
<td>102.4.855</td>
<td>P4$_2$'nm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.3.807</td>
<td>I4'22'</td>
<td>99.10.832</td>
<td>P2c 4'nm'm'</td>
<td></td>
<td>102.5.856</td>
<td>P4$_2$ n'm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.4.808</td>
<td>I42'2'</td>
<td>99.11.833</td>
<td>P2c 4'm'm'</td>
<td></td>
<td>102.6.857</td>
<td>P1,4$_2$ nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.5.809</td>
<td>I4'2'2</td>
<td>99.12.834</td>
<td>P2c 4'm'm'</td>
<td></td>
<td>102.7.858</td>
<td>P1,4$_2$ n'm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.6.810</td>
<td>I,422</td>
<td>99.13.835</td>
<td>P1,4'm'm'</td>
<td></td>
<td>103.1.859</td>
<td>P4cc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.7.811</td>
<td>I,4'2'2'</td>
<td>100.1.836</td>
<td>P4bm</td>
<td></td>
<td>103.2.860</td>
<td>P4cc1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.8.812</td>
<td>I,42'2'</td>
<td></td>
<td>100.2.837</td>
<td>P4bm1'</td>
<td></td>
<td>103.3.861</td>
<td>P4'c'c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.9.813</td>
<td>I,4'2'2</td>
<td></td>
<td>100.3.838</td>
<td>P4'b'm</td>
<td></td>
<td>103.4.862</td>
<td>P4'cc'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.1.814</td>
<td>I4,22</td>
<td>100.4.839</td>
<td>P4'b'm</td>
<td></td>
<td>103.5.863</td>
<td>P4c'c'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.2.815</td>
<td>I4,221'</td>
<td>100.5.840</td>
<td>P4'b'm'</td>
<td></td>
<td>103.6.864</td>
<td>P$_p$ 4cc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.3.816</td>
<td>I4,1'2'2</td>
<td>100.6.841</td>
<td>P2c 4bm</td>
<td></td>
<td>103.7.865</td>
<td>P$_p$ 4'cc'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.4.817</td>
<td>I4,2'2'</td>
<td>100.7.842</td>
<td>P2c 4'b'm</td>
<td></td>
<td>104.1.866</td>
<td>P4nc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.5.818</td>
<td>I4,1'2'2</td>
<td>100.8.843</td>
<td>P2c 4'bm'</td>
<td></td>
<td>104.2.867</td>
<td>P4nc1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.6.819</td>
<td>I,4,1'2</td>
<td>100.9.844</td>
<td>P2c 4'b'm'</td>
<td></td>
<td>104.3.868</td>
<td>P4'n'c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.7.820</td>
<td>I,4,1'2'2</td>
<td>100.10.845</td>
<td>P2c 4'b'm'</td>
<td></td>
<td>104.4.869</td>
<td>P4'n'c'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.8.821</td>
<td>I,4,1'2'2</td>
<td></td>
<td>101.1.845</td>
<td>P4$_2$ cm</td>
<td></td>
<td>104.5.870</td>
<td>P4n'c'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.9.822</td>
<td>I,4,1'2'2</td>
<td></td>
<td>101.2.846</td>
<td>P4$_2$ cm1'</td>
<td></td>
<td>105.1.871</td>
<td>P4$_2$ mc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99.1.823</td>
<td>P4mm</td>
<td>101.3.847</td>
<td>P4$_2$'c'm</td>
<td></td>
<td>105.2.872</td>
<td>P4$_2$ mc1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.3.873</td>
<td>P42'mc'</td>
<td>105.4.874</td>
<td>P42'mc'</td>
<td>105.5.875</td>
<td>P42'mc'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105.6.876</td>
<td>P42'mc'</td>
<td>106.1.878</td>
<td>P42bc</td>
<td>106.2.879</td>
<td>P42bc1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106.4.881</td>
<td>P42bc'</td>
<td>106.5.882</td>
<td>P42b'c'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107.1.883</td>
<td>l4mm</td>
<td>107.2.884</td>
<td>l4mm1'</td>
<td>107.3.885</td>
<td>l4'm'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107.4.886</td>
<td>l4'm'm</td>
<td>107.5.887</td>
<td>l4'm'm'</td>
<td>108.1.892</td>
<td>l4cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108.2.893</td>
<td>l4cm1'</td>
<td>108.3.894</td>
<td>l4'c'm</td>
<td>108.4.895</td>
<td>l4'cm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108.5.896</td>
<td>l4c'm'</td>
<td>108.6.897</td>
<td>l4,4cm</td>
<td>109.1.901</td>
<td>l4,md</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>109.2.902</td>
<td>l4,md1'</td>
<td>109.3.903</td>
<td>l4,1'm'd</td>
<td>109.4.904</td>
<td>l4,1'md'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109.5.905</td>
<td>l4,1'm'd'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110.1.906</td>
<td>l4,cd</td>
<td>110.2.907</td>
<td>l4,1cd1'</td>
<td>110.3.908</td>
<td>l4,1'c'd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>111.1.911</td>
<td>P&2m</td>
<td>111.2.912</td>
<td>P&2m1'</td>
<td>111.3.913</td>
<td>P&2'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>111.4.914</td>
<td>P&2m'</td>
<td>111.5.915</td>
<td>P&2'm'</td>
<td>111.6.916</td>
<td>P2cm&2m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>112.1.922</td>
<td>P&2c</td>
<td>112.2.923</td>
<td>P&2c1'</td>
<td>112.3.924</td>
<td>P&'2c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>112.5.926</td>
<td>P&2c'</td>
<td>112.6.927</td>
<td>P&2c</td>
<td>112.7.928</td>
<td>P&2c'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>113.1.929</td>
<td>P&2,m</td>
<td>113.2.930</td>
<td>P&2,m1'</td>
<td>113.3.931</td>
<td>P&2,1'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>113.4.932</td>
<td>P&2,1'm</td>
<td>113.5.933</td>
<td>P&2,1'm'</td>
<td>113.6.934</td>
<td>P2cm&2,1m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>114.1.936</td>
<td>P&2,c</td>
<td>114.2.937</td>
<td>P&2,c1'</td>
<td>114.3.938</td>
<td>P&2,1'c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>114.4.939</td>
<td>P&2,1'c'</td>
<td>114.5.940</td>
<td>P&2,1'c'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>115.1.941</td>
<td>P&m2</td>
<td>115.2.942</td>
<td>P&m21'</td>
<td>115.3.943</td>
<td>P&m'2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>115.4.944</td>
<td>P&m'2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Code</td>
<td></td>
<td>Code</td>
<td></td>
<td>Code</td>
<td></td>
<td>Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td></td>
<td>Code</td>
<td></td>
<td>Code</td>
<td></td>
<td>Code</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115.5.945</td>
<td>P&m'2'</td>
<td>118.5.969</td>
<td>P&m'n2'</td>
<td>121.9.993</td>
<td>l_p &2'm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115.6.946</td>
<td>P_{2c} &m2</td>
<td>118.6.970</td>
<td>P_{2c} &n2</td>
<td>122.1.994</td>
<td>l_{2d}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115.7.947</td>
<td>P_p &m2</td>
<td>119.1.971</td>
<td>l_{m'}2</td>
<td>122.2.995</td>
<td>l_{2d1'}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115.8.948</td>
<td>P_{l} &m2</td>
<td>119.2.972</td>
<td>l_{m'}21'</td>
<td>122.3.996</td>
<td>l_{2'd}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115.9.949</td>
<td>P_{2c} &m'2</td>
<td>119.3.973</td>
<td>l_{m'}2</td>
<td>122.4.997</td>
<td>l_{2d'}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115.10.950</td>
<td>P_p &m'2</td>
<td>119.4.974</td>
<td>l_{m'}2'</td>
<td>122.5.998</td>
<td>l_{2'd'}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116.1.951</td>
<td>P&c2</td>
<td>119.5.975</td>
<td>l_{m'}2'</td>
<td>123.1.999</td>
<td>P4/mmm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116.2.952</td>
<td>P&c21'</td>
<td>119.6.976</td>
<td>l_p &m2</td>
<td>123.2.1000</td>
<td>P4/mmm1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116.3.953</td>
<td>P&c'2</td>
<td>119.7.977</td>
<td>l_p &m'2</td>
<td>123.3.1001</td>
<td>P4/m'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116.4.954</td>
<td>P&c'2'</td>
<td>120.1.978</td>
<td>l_{c2}</td>
<td>123.4.1002</td>
<td>P4'/mm'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116.5.955</td>
<td>P&c'2'</td>
<td>120.2.979</td>
<td>l_{c21'}</td>
<td>123.5.1003</td>
<td>P4'/mmm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116.6.956</td>
<td>P_p &c2</td>
<td>120.3.980</td>
<td>l_{c'}2</td>
<td>123.6.1004</td>
<td>P4'/m'm'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116.7.957</td>
<td>P_p &c'2'</td>
<td>120.4.981</td>
<td>l_{c'}2'</td>
<td>123.7.1005</td>
<td>P4/mm'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.1.958</td>
<td>P&b2</td>
<td>120.5.982</td>
<td>l_{c'}2'</td>
<td>123.8.1006</td>
<td>P4'/m'm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.2.959</td>
<td>P&b21'</td>
<td>120.6.983</td>
<td>l_p &c2</td>
<td>123.9.1007</td>
<td>P4/m'm'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.3.960</td>
<td>P&b'2</td>
<td>120.7.984</td>
<td>l_p &c'2'</td>
<td>123.10.1008</td>
<td>P_{2c} 4/mmm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.4.961</td>
<td>P&b'2</td>
<td>121.1.985</td>
<td>l_{2m}</td>
<td>123.11.1009</td>
<td>P_{p} 4/mmm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.5.962</td>
<td>P&b'2</td>
<td>121.2.986</td>
<td>l_{2m1'}</td>
<td>123.12.1010</td>
<td>P_{l} 4/mmm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.6.963</td>
<td>P_{2c} &b2</td>
<td>121.3.987</td>
<td>l_{2'm}</td>
<td>123.13.1011</td>
<td>P_{2c} 4'/mm'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117.7.964</td>
<td>P_{2c} &b'2</td>
<td>121.4.988</td>
<td>l_{2'm'}</td>
<td>123.14.1012</td>
<td>P_{2c} 4'/mmm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118.1.965</td>
<td>P&n2</td>
<td>121.5.989</td>
<td>l_{2'm'}</td>
<td>123.15.1013</td>
<td>P_{2c} 4/mm'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118.2.966</td>
<td>P&n21'</td>
<td>121.6.990</td>
<td>l_p &2m</td>
<td>123.16.1014</td>
<td>P_{p} 4/m'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118.3.967</td>
<td>P&n'2</td>
<td>121.7.991</td>
<td>l_p &2'm</td>
<td>123.17.1015</td>
<td>P_{p} 4'/mmm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118.4.968</td>
<td>P&n'2</td>
<td>121.8.992</td>
<td>l_p &2'm'</td>
<td>123.18.1016</td>
<td>P_{p} 4'/m'm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119.1.969</td>
<td>P&n'2</td>
<td>121.9.993</td>
<td>l_p &2'm'</td>
<td>123.19.1017</td>
<td>P_{l} 4/mm'm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124.1.1018</td>
<td>P4/mcc</td>
<td>125.12.1042 P_{2c} 4'/nb'm'</td>
<td>128.1.1066</td>
<td>P4/mnc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124.2.1019</td>
<td>P4/mcc1'</td>
<td>125.13.1043 P_{2c} 4/nb'm'</td>
<td>128.2.1067</td>
<td>P4/mnc1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124.3.1020</td>
<td>P4/m'cc</td>
<td>126.2.1045 P4/nnc1'</td>
<td>128.3.1068</td>
<td>P4/m'n'c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124.4.1021</td>
<td>P4'/mc'c</td>
<td>126.3.1046 P4/n'nc</td>
<td>128.4.1069</td>
<td>P4'/mn'c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124.5.1022</td>
<td>P4'/mcc'</td>
<td>126.4.1047 P4'/nn'c</td>
<td>128.5.1070</td>
<td>P4'/mnc'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124.6.1023</td>
<td>P4'/m'c'c</td>
<td>126.5.1048 P4'/nnc'</td>
<td>128.6.1071</td>
<td>P4'/m'n'c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124.7.1024</td>
<td>P4'/mc'c'</td>
<td>126.6.1049 P4'/n'n'c</td>
<td>128.7.1072</td>
<td>P4/m'n'c'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124.8.1025</td>
<td>P4'/m'cc'</td>
<td>126.7.1050 P4/nn'c</td>
<td>128.8.1073</td>
<td>P4'/m'n'c'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124.9.1026</td>
<td>P4/m'c'c'</td>
<td>126.8.1051 P4'/n'n'c'</td>
<td>128.9.1074</td>
<td>P4/m'n'c'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124.10.1027</td>
<td>P_p 4/mcc</td>
<td>126.9.1052 P4/n'n'c'</td>
<td>129.1.1075</td>
<td>P4/nmm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124.11.1028</td>
<td>P_p 4/m'cc</td>
<td>126.9.1053 P4/nm'Bm</td>
<td>129.2.1076</td>
<td>P4/nmm1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124.12.1029</td>
<td>P_p 4'/mcc'</td>
<td>126.9.1054 P4/m'Bm</td>
<td>129.3.1077</td>
<td>P4/n'mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124.13.1030</td>
<td>P_p 4'/m'cc'</td>
<td>126.9.1055 P4/m'bm</td>
<td>129.4.1078</td>
<td>P4'/nm'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.1.1031</td>
<td>P4/nbm</td>
<td>127.3.1055 P4/m'bm</td>
<td>129.5.1079</td>
<td>P4'/nm'm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.2.1032</td>
<td>P4/nbm1'</td>
<td>127.4.1056 P4'/mb'm</td>
<td>129.6.1080</td>
<td>P4'/n'm'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.3.1033</td>
<td>P4/n'bm</td>
<td>127.5.1057 P4'/mb'm'</td>
<td>129.7.1081</td>
<td>P4/nm'm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.4.1034</td>
<td>P4'/nb'm</td>
<td>127.6.1058 P4'/mb'm'</td>
<td>129.8.1082</td>
<td>P4'/n'm'm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.5.1035</td>
<td>P4'/nb'm'</td>
<td>127.7.1059 P4/mb'm'</td>
<td>129.9.1083</td>
<td>P4/n'm'm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.6.1036</td>
<td>P4'/n'b'm</td>
<td>127.8.1060 P4'/mb'm'</td>
<td>129.10.1084</td>
<td>P_{2c} 4/nmm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.7.1037</td>
<td>P4/nb'm'</td>
<td>127.9.1061 P4'/mb'm'</td>
<td>129.11.1085</td>
<td>P_{2c} 4/n'm'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.8.1038</td>
<td>P4'/n'bm'</td>
<td>127.10.1062 P_{2c} 4/mbm</td>
<td>129.12.1086</td>
<td>P_{2c} 4/n'm'm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.9.1039</td>
<td>P4'/n'b'm'</td>
<td>127.11.1063 P_{2c} 4'/mb'm</td>
<td>129.13.1087</td>
<td>P_{2c} 4/n'm'm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.10.1040</td>
<td>P_{2c} 4/nbm</td>
<td>127.12.1064 P_{2c} 4'/mbm'</td>
<td>130.1.1088</td>
<td>P4/ncc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.11.1041</td>
<td>P_{2c} 4'/nb'm</td>
<td>127.13.1065 P_{2c} 4/mb'm'</td>
<td>130.2.1089</td>
<td>P4/ncc1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>130.3.1090</td>
<td>P4/n'cc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130.4.1091</td>
<td>P4'/nc'c</td>
<td>132.7.1116</td>
<td>P4₂/mc'm'</td>
<td>134.10.1141</td>
<td>P₁4₂/nnm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130.5.1092</td>
<td>P4'/ncc'</td>
<td>132.8.1117</td>
<td>P4₂'/m'cm'</td>
<td>134.11.1142</td>
<td>P₁4₂/nn'm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130.6.1093</td>
<td>P4'/n'c'c</td>
<td>132.9.1118</td>
<td>P4₂/m'c'm'</td>
<td>135.1.1143</td>
<td>P4₂/mbc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130.7.1094</td>
<td>P4/nc'c'</td>
<td>132.10.1119</td>
<td>Pₚ₄₂/mcm</td>
<td>135.2.1144</td>
<td>P₄₂/mbc1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130.8.1095</td>
<td>P4'/n'cc'</td>
<td>132.11.1120</td>
<td>Pₚ₄₂/m'cm</td>
<td>135.3.1145</td>
<td>P₄₂/m'bc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130.9.1096</td>
<td>P4/n'c'c'</td>
<td>132.11.1121</td>
<td>Pₚ₄₂/mcm'</td>
<td>135.4.1146</td>
<td>P₄₂/m'bc'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131.1.1097</td>
<td>P₄₂/mmc</td>
<td>132.13.1122</td>
<td>Pₚ₄₂/m'cm'</td>
<td>135.5.1147</td>
<td>P₄₂/mbc'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131.2.1098</td>
<td>P₄₂/mmc1'</td>
<td>133.1.1123</td>
<td>P₄₂/nbc</td>
<td>135.6.1148</td>
<td>P₄₂'/m'b'c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131.3.1099</td>
<td>P₄₂/m'mc</td>
<td>133.2.1124</td>
<td>P₄₂/nbc1'</td>
<td>135.7.1149</td>
<td>P₄₂/mb'c'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131.4.1100</td>
<td>P₄₂'/mm'c</td>
<td>133.3.1125</td>
<td>P₄₂/n'bc</td>
<td>135.8.1150</td>
<td>P₄₂'/m'bc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131.5.1101</td>
<td>P₄₂'/mmc'</td>
<td>133.4.1126</td>
<td>P₄₂'/nb'c</td>
<td>135.9.1151</td>
<td>P₄₂/m'b'c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131.6.1102</td>
<td>P₄₂'/m'm'c</td>
<td>133.5.1127</td>
<td>P₄₂'/nbc</td>
<td>136.1.1152</td>
<td>P₄₂/mnm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131.7.1103</td>
<td>P₄₂/mm'c'</td>
<td>133.6.1128</td>
<td>P₄₂'/n'b'c</td>
<td>136.2.1153</td>
<td>P₄₂/mnm1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131.8.1104</td>
<td>P₄₂'/m'mc'</td>
<td>133.7.1129</td>
<td>P₄₂/nb'c'</td>
<td>136.3.1154</td>
<td>P₄₂/m'n'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131.9.1105</td>
<td>P₄₂/m'm'c'</td>
<td>133.8.1130</td>
<td>P₄₂'/n'bc</td>
<td>136.4.1155</td>
<td>P₄₂'/m'n'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131.10.1106</td>
<td>Pₚ₄₂/mmc</td>
<td>133.9.1131</td>
<td>P₄₂/n'b'c</td>
<td>136.5.1156</td>
<td>P₄₂'/mnm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131.11.1107</td>
<td>Pₚ₄₂/m'mc</td>
<td>134.1.1132</td>
<td>P₄₂/nmm</td>
<td>136.6.1157</td>
<td>P₄₂'/m'n'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131.12.1108</td>
<td>Pₚ₄₂/mm'mc'</td>
<td>134.2.1133</td>
<td>P₄₂/nmm1'</td>
<td>136.7.1158</td>
<td>P₄₂/mn'm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131.13.1109</td>
<td>Pₚ₄₂'/m'm'c'</td>
<td>134.3.1134</td>
<td>P₄₂/n'nm</td>
<td>136.8.1159</td>
<td>P₄₂'/m'n'm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132.1.1110</td>
<td>P₄₂/mcm</td>
<td>134.4.1135</td>
<td>P₄₂'/nn'm</td>
<td>136.9.1160</td>
<td>P₄₂/m'n'm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132.2.1111</td>
<td>P₄₂/mcm1'</td>
<td>134.5.1136</td>
<td>P₄₂'/nn'm'</td>
<td>137.1.1161</td>
<td>P₄₂/nmc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132.3.1112</td>
<td>P₄₂/m'cm</td>
<td>134.6.1137</td>
<td>P₄₂'/n'n'm</td>
<td>137.2.1162</td>
<td>P₄₂/nmc1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132.4.1113</td>
<td>P₄₂'/mc'm</td>
<td>134.7.1138</td>
<td>P₄₂/nn'm'</td>
<td>137.3.1163</td>
<td>P₄₂/n'mc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132.5.1114</td>
<td>P₄₂'/mcm'</td>
<td>134.8.1139</td>
<td>P₄₂'/n'nm'</td>
<td>137.4.1164</td>
<td>P₄₂/n'm'c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132.6.1115</td>
<td>P₄₂'/m'c'm</td>
<td>134.9.1140</td>
<td>P₄₂/n'n'm'</td>
<td>137.5.1165</td>
<td>P₄₂/n'm'c'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Block</td>
<td>Symbol</td>
<td>Cell Parameter</td>
<td>Space Group</td>
<td>Point Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137.5</td>
<td>1165</td>
<td>P4_2/nmc'</td>
<td>l_p, 4'/mm'm</td>
<td>141.3.1215</td>
<td>l_4, /a'md'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137.6</td>
<td>1166</td>
<td>P4_2/n'mc</td>
<td>l_p, 4'/mmm'</td>
<td>141.4.1216</td>
<td>l_4, /am'd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137.7</td>
<td>1167</td>
<td>P4_2/n'mc'</td>
<td>l_p, 4'/m'm'm</td>
<td>141.5.1217</td>
<td>l_4, /'am'd'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137.8</td>
<td>1168</td>
<td>P4_2/n'mc</td>
<td>l_p, 4'/m'm'm</td>
<td>141.6.1218</td>
<td>l_4, /'a'm'd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137.9</td>
<td>1169</td>
<td>P4_2/n'mc'</td>
<td>l_p, 4'/m'm'm</td>
<td>141.7.1219</td>
<td>l_4, /am'd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138.1</td>
<td>1170</td>
<td>P4_2/nmm</td>
<td>l_4/mcm</td>
<td>141.9.1221</td>
<td>l_4, /'a'm'd'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138.2</td>
<td>1171</td>
<td>P4_2/nmm1'</td>
<td>l_4/mcm1'</td>
<td>142.1.1222</td>
<td>l_4, /acd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138.3</td>
<td>1172</td>
<td>P4_2/n'mcm</td>
<td>l_4/m'cm</td>
<td>142.2.1223</td>
<td>l_4, /acd1'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138.4</td>
<td>1173</td>
<td>P4_2/n'mcm</td>
<td>l_4'/mc'm</td>
<td>142.3.1224</td>
<td>l_4, /a'cd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138.5</td>
<td>1174</td>
<td>P4_2/n'mcm'</td>
<td>l_4'/m'cm</td>
<td>142.4.1225</td>
<td>l_4, /'ac'd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138.6</td>
<td>1175</td>
<td>P4_2/n'mcm</td>
<td>l_4'/m'cm</td>
<td>142.5.1226</td>
<td>l_4, /'acd'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138.7</td>
<td>1176</td>
<td>P4_2/n'mcm</td>
<td>l_4'/m'cm</td>
<td>142.6.1227</td>
<td>l_4, /'a'c'd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138.8</td>
<td>1177</td>
<td>P4_2/n'mcm</td>
<td>l_4'/m'cm</td>
<td>142.7.1228</td>
<td>l_4, /ac'd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138.9</td>
<td>1178</td>
<td>P4_2/n'mcm'</td>
<td>l_4'/m'cm</td>
<td>142.8.1229</td>
<td>l_4, /'ac'd'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139.1</td>
<td>1179</td>
<td>l_4/mmm</td>
<td>l_p, 4/mcm</td>
<td>142.9.1230</td>
<td>l_4, /a'c'd'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139.2</td>
<td>1180</td>
<td>l_4/mmm'</td>
<td>l_p, 4/m'cm</td>
<td>140.10.1205</td>
<td>l_4/mcm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139.3</td>
<td>1181</td>
<td>l_4/m'mm</td>
<td>l_p, 4'/mc'm</td>
<td>140.11.1206</td>
<td>l_p, 4/m'cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139.4</td>
<td>1182</td>
<td>l_4'/mm'm</td>
<td>l_p, 4'/mc'm</td>
<td>140.12.1207</td>
<td>l_4'/mc'm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139.5</td>
<td>1183</td>
<td>l_4'/mm'm</td>
<td>l_p, 4'/m'cm</td>
<td>140.13.1208</td>
<td>l_p, 4'/mcm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139.6</td>
<td>1184</td>
<td>l_4'/m'm'm</td>
<td>l_p, 4'/m'cm</td>
<td>140.14.1209</td>
<td>l_p, 4'/m'cm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139.7</td>
<td>1185</td>
<td>l_4/m'm'm</td>
<td>l_p, 4/m'cm</td>
<td>140.15.1210</td>
<td>l_p, 4/m'cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139.8</td>
<td>1186</td>
<td>l_4'/m'm'm</td>
<td>l_p, 4'/m'cm</td>
<td>140.16.1211</td>
<td>l_4'/m'cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139.9</td>
<td>1187</td>
<td>l_4/m'm'm</td>
<td>l_p, 4/m'cm</td>
<td>140.17.1212</td>
<td>l_p, 4/m'cm'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139.10</td>
<td>1188</td>
<td>l_4/mmm</td>
<td>l_4, /ammd</td>
<td>141.1.1213</td>
<td>l_4, /amd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139.11</td>
<td>1189</td>
<td>l_4/m'm'm</td>
<td>l_4, /am'd</td>
<td>141.2.1214</td>
<td>l_4, /am'd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRIGONAL SYSTEM
<table>
<thead>
<tr>
<th>Image Ref.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>162.3.1305</td>
<td>P&'1m</td>
</tr>
<tr>
<td>163.1.1310</td>
<td>P&1c</td>
</tr>
<tr>
<td>164.1.1315</td>
<td>P&m1</td>
</tr>
<tr>
<td>165.1.1322</td>
<td>P&c1</td>
</tr>
<tr>
<td>166.1.1327</td>
<td>R&m</td>
</tr>
<tr>
<td>167.1.1334</td>
<td>R&c</td>
</tr>
<tr>
<td>168.1.1339</td>
<td>P6</td>
</tr>
<tr>
<td>169.1.1344</td>
<td>P6_</td>
</tr>
<tr>
<td>170.1.1347</td>
<td>P6_</td>
</tr>
<tr>
<td>171.1.1350</td>
<td>P6</td>
</tr>
<tr>
<td>172.1.1355</td>
<td>P6_</td>
</tr>
<tr>
<td>173.1.1360</td>
<td>P6_</td>
</tr>
<tr>
<td>174.1.1363</td>
<td>P&</td>
</tr>
<tr>
<td>175.1.1367</td>
<td>P6/m</td>
</tr>
</tbody>
</table>

HEXAGONAL SYSTEM

<table>
<thead>
<tr>
<th>Image Ref.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>162.4.1306</td>
<td>P&'1m'</td>
</tr>
<tr>
<td>163.2.1311</td>
<td>P&1c1'</td>
</tr>
<tr>
<td>164.2.1316</td>
<td>P&m11'</td>
</tr>
<tr>
<td>165.2.1323</td>
<td>P&c11'</td>
</tr>
<tr>
<td>166.2.1328</td>
<td>R&m1'</td>
</tr>
<tr>
<td>166.1.1310</td>
<td>P&1c</td>
</tr>
<tr>
<td>167.2.1335</td>
<td>R&c1'</td>
</tr>
<tr>
<td>168.2.1340</td>
<td>P61'</td>
</tr>
<tr>
<td>169.2.1345</td>
<td>P6_1'</td>
</tr>
<tr>
<td>170.2.1348</td>
<td>P6_5'</td>
</tr>
<tr>
<td>171.2.1351</td>
<td>P6_2'</td>
</tr>
<tr>
<td>172.2.1356</td>
<td>P6_4'</td>
</tr>
<tr>
<td>173.2.1361</td>
<td>P6_3'</td>
</tr>
<tr>
<td>174.2.1364</td>
<td>P&1'</td>
</tr>
<tr>
<td>175.2.1368</td>
<td>P6/m1'</td>
</tr>
<tr>
<td>175.3.1369</td>
<td>P6'/m</td>
</tr>
<tr>
<td>175.4.1370</td>
<td>P6/m'</td>
</tr>
<tr>
<td>175.5.1371</td>
<td>P6'/m'</td>
</tr>
<tr>
<td>175.6.1372</td>
<td>P2_6/m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Image Ref.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>162.5.1307</td>
<td>P&1m'</td>
</tr>
<tr>
<td>163.3.1312</td>
<td>P&'1c</td>
</tr>
<tr>
<td>164.3.1317</td>
<td>P&'m1</td>
</tr>
<tr>
<td>165.3.1324</td>
<td>P&'c1</td>
</tr>
<tr>
<td>166.3.1329</td>
<td>R&'m</td>
</tr>
<tr>
<td>166.4.1330</td>
<td>R&'m'</td>
</tr>
<tr>
<td>166.5.1331</td>
<td>R&m'</td>
</tr>
<tr>
<td>166.6.1332</td>
<td>R&&m</td>
</tr>
<tr>
<td>166.7.1333</td>
<td>R&&m'</td>
</tr>
<tr>
<td>167.3.1336</td>
<td>R&'c</td>
</tr>
<tr>
<td>168.3.1341</td>
<td>P6'</td>
</tr>
<tr>
<td>168.4.1342</td>
<td>P2_6</td>
</tr>
<tr>
<td>168.5.1343</td>
<td>P2_6'</td>
</tr>
<tr>
<td>169.3.1346</td>
<td>P6_1'</td>
</tr>
<tr>
<td>170.3.1349</td>
<td>P6_5'</td>
</tr>
<tr>
<td>171.5.1354</td>
<td>P2_6_2'</td>
</tr>
<tr>
<td>172.4.1358</td>
<td>P2_6_4'</td>
</tr>
<tr>
<td>172.5.1359</td>
<td>P2_6_4'</td>
</tr>
<tr>
<td>173.5.1368</td>
<td>P2_6_3'</td>
</tr>
<tr>
<td>174.3.1365</td>
<td>P2&</td>
</tr>
<tr>
<td>174.4.1366</td>
<td>P2_6&</td>
</tr>
<tr>
<td>175.3.1369</td>
<td>P6'/m</td>
</tr>
<tr>
<td>175.4.1370</td>
<td>P6/m'</td>
</tr>
<tr>
<td>175.6.1372</td>
<td>P2_6/m</td>
</tr>
</tbody>
</table>

Note: The above table lists the various crystallographic space groups and their descriptions with corresponding image references. The notation used includes P (primitive), P\& (primitive with inversion), and the superscript numbers indicating the type of symmetry operations.
176.1.1374	P6$_3$/m	180.3.1398	P6$_2$'2'2	183.8.1422	P$_{2c}$ 6'mm'
176.2.1375	P6$_3$/m1'	180.4.1399	P6$_2$'2'2	183.9.1423	P$_{2c}$ 6m'm'
176.3.1376	P6$_3$/m	180.5.1400	P6$_2$'2'2		
176.4.1377	P6$_3$/m'	180.6.1401	P$_{2c}$ 6$_2$22	184.1.1424	P6cc
176.5.1378	P6$_3$'/m'	180.7.1402	P$_{2c}$ 6$_2$'2'2	184.2.1425	P6cc1'
177.1.1379	P622	181.1.1403	P6,22	184.3.1426	P6'c'c
177.2.1380	P6221'	181.2.1404	P$_6$ 221'	184.4.1427	P6'cc'
177.3.1381	P6'2'2	181.3.1405	P$_6$'2'2	184.5.1428	P6'c'c'
177.4.1382	P6'2'2	181.4.1406	P$_6$'2'2		
177.5.1383	P6'2'2	181.5.1407	P$_6$'2'2	185.1.1429	P6$_3$ cm
177.6.1384	P$_{2c}$ 622	181.6.1408	P$_{2c}$ 6$_4$22	185.2.1430	P6$_3$ cm1'
177.7.1385	P$_{2c}$ 6'2'2	181.7.1409	P$_{2c}$ 6$_4$'2'2	185.3.1431	P6$_3$ c'm
178.1.1386	P6,22	182.1.1410	p6$_3$ 22	185.4.1432	P6$_3$'cm'
178.2.1387	P6,221'	182.2.1411	p6$_3$ 221'	185.5.1433	P6$_3$'c'm'
178.3.1388	P6$_1$'2'2	182.3.1412	p6$_3$'2'2	186.1.1434	P6$_3$ mc
178.4.1389	P6$_1$'2'2	182.4.1413	p6$_3$'2'2	186.2.1435	P6$_3$ mc1'
178.5.1390	P6$_1$'2'2	182.5.1414	p6$_3$'2'2	186.3.1436	P6$_3$'m'c
179.1.1391	P6$_5$ 22	183.1.1415	p6mm	186.4.1437	P6$_3$ mc'
179.2.1392	P6$_5$ 221'	183.2.1416	P6mm1'	186.5.1438	P6$_3$ m'c'
179.3.1393	P6$_5$'2'2	183.3.1417	P6'm'm	187.1.1439	P6&m2
179.4.1394	P6$_5$'2'2	183.4.1418	P6'm'm	187.2.1440	P6&m21'
179.5.1395	P6$_5$ 2'2'	183.5.1419	P6'm'm	187.3.1441	P6&m'2
180.1.1396	P6$_2$ 22	183.6.1420	P$_{2c}$ 6mm	187.4.1442	P6&m'2
180.2.1397	P6$_2$ 221'	183.7.1421	P$_{2c}$ 6'm'm	187.5.1443	P6&m'2
187.6.1444	P$_{2c}$ 6&m2	187.7.1445	P$_{2c}$ 6&m'2		
188.1.1446 P\&c2
188.2.1447 P\&c21'
188.3.1448 P\&'c'2
188.4.1449 P\&'c2'
188.5.1450 P\&c'2'
189.1.1451 P\&2m
189.2.1452 P\&2m1'
189.3.1453 P\&'2'm
189.4.1454 P\&'2'm'
189.5.1455 P\&2'm'
189.6.1456 P$_{2c}$\&2m
189.7.1457 P$_{2c}$\&'2'm'
190.1.1458 P\&2c
190.2.1459 P\&2c1'
190.3.1460 P\&'2'c
190.4.1461 P\&'2'c'
190.5.1462 P\&'2'c'
191.1.1463 P6/mmm
191.2.1464 P6/mmm1'
191.3.1465 P6/m'mm
191.4.1466 P6'/mm'm
191.5.1467 P6'/mmm'
191.6.1468 P6'/m'm'm
191.7.1469 P6'/m'm'm'
192.1.1476 P6/mcc
192.2.1477 P6/mcc1'
192.3.1478 P6/m'cc
192.4.1479 P6'/mc'c
192.5.1480 P6'/mcc'
192.6.1481 P6'/m'c'c
192.7.1482 P6'/m'cc'
192.8.1483 P6'/{mc}'c'
192.9.1484 P6'/m'c'c'
193.1.1485 P6$_3$/mcm
193.2.1486 P6$_3$/mcm1'
193.3.1487 P6$_3$/m'cm
193.4.1488 P6$_3'$/mc'm
193.5.1489 P6$_3'$/mcm'
193.6.1490 P6$_3'$/m'c'm
193.7.1491 P6$_3'$/m'c'm'
193.8.1492 P6$_3$/mc'm'
193.9.1493 P6$_3$/m'c'm'
194.1.1494 P6$_3$/mmc
194.2.1495 P6$_3$/mmc1'
194.3.1496 P6$_3$/m'mc
194.4.1497 P6$_3'$/m'mc
194.5.1498 P6$_3'$/m'mc'
194.6.1499 P6$_3$/m'm'c
194.7.1500 P6$_3'$/m'm'c'
194.8.1501 P6$_3$/m'm'c'
194.9.1502 P6$_3$/m'm'c'
195.1.1503 P23
195.2.1504 P23'1'
195.3.1505 P$_F$23
196.1.1506 F23
196.2.1507 F23'1'
197.1.1508 I23
197.2.1509 I23'1'
197.3.1510 I$_p$23
198.1.1511 P2,3
198.2.1512 P2,3'1'
199.1.1513 I2,3
199.2.1514 I2,3'1'
199.3.1515 I$_p$2,3
<table>
<thead>
<tr>
<th>Page 1538</th>
<th>206.1.1538</th>
<th>la&</th>
<th>212.1.1561</th>
<th>P4₃3₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>200.1.1516</td>
<td>Pm&</td>
<td>206.2.1539</td>
<td>la&1'</td>
<td>212.2.1562</td>
</tr>
<tr>
<td>200.2.1517</td>
<td>Pm&1'</td>
<td>206.3.1540</td>
<td>la&'</td>
<td>212.3.1563</td>
</tr>
<tr>
<td>200.3.1518</td>
<td>Pm&' &</td>
<td>206.4.1541</td>
<td>lₚa&</td>
<td>213.1.1564</td>
</tr>
<tr>
<td>200.4.1519</td>
<td>Pₚm&</td>
<td>207.1.1542</td>
<td>P₄3₂</td>
<td>213.2.1565</td>
</tr>
<tr>
<td>201.1.1520</td>
<td>Pn&</td>
<td>207.2.1543</td>
<td>P₄3₂1'</td>
<td>213.3.1566</td>
</tr>
<tr>
<td>201.2.1521</td>
<td>Pn&1'</td>
<td>207.3.1544</td>
<td>P₄'3₂'</td>
<td>214.1.1567</td>
</tr>
<tr>
<td>201.3.1522</td>
<td>Pn&' &</td>
<td>207.4.1545</td>
<td>Pₚ₄3₂</td>
<td>214.2.1568</td>
</tr>
<tr>
<td>201.4.1523</td>
<td>Pₚₙ&</td>
<td>208.1.1546</td>
<td>P₄₂3₂</td>
<td>214.3.1569</td>
</tr>
<tr>
<td>202.1.1524</td>
<td>Fm&</td>
<td>208.2.1547</td>
<td>P₄₂3₂1'</td>
<td>214.4.1570</td>
</tr>
<tr>
<td>202.2.1525</td>
<td>Fm&1'</td>
<td>208.3.1548</td>
<td>P₄₂'3₂'</td>
<td>214.5.1571</td>
</tr>
<tr>
<td>202.3.1526</td>
<td>Fm&' &</td>
<td>208.4.1549</td>
<td>Pₚ₄₂3₂</td>
<td>215.1.1572</td>
</tr>
<tr>
<td>203.1.1527</td>
<td>Fd&</td>
<td>209.1.1550</td>
<td>F₄3₂</td>
<td>215.2.1573</td>
</tr>
<tr>
<td>203.2.1528</td>
<td>Fd&1'</td>
<td>209.2.1551</td>
<td>F₄3₂1'</td>
<td>215.3.1574</td>
</tr>
<tr>
<td>203.3.1529</td>
<td>Fd&' &</td>
<td>209.3.1552</td>
<td>F₄'3₂'</td>
<td>215.4.1575</td>
</tr>
<tr>
<td>204.1.1530</td>
<td>Im&</td>
<td>210.1.1553</td>
<td>F₄₃₂</td>
<td>215.5.1576</td>
</tr>
<tr>
<td>204.2.1531</td>
<td>Im&1'</td>
<td>210.2.1554</td>
<td>F₄₃₂1'</td>
<td>216.1.1577</td>
</tr>
<tr>
<td>204.3.1532</td>
<td>Im&' &</td>
<td>210.3.1555</td>
<td>F₄₁₃₂'</td>
<td>216.2.1578</td>
</tr>
<tr>
<td>204.4.1533</td>
<td>lₚm&</td>
<td>211.1.1556</td>
<td>l₄₃₂</td>
<td>216.3.1579</td>
</tr>
<tr>
<td>204.5.1534</td>
<td>lₚm&'</td>
<td>211.2.1557</td>
<td>l₄₃₂1'</td>
<td>217.1.1580</td>
</tr>
<tr>
<td>205.1.1535</td>
<td>Pa&</td>
<td>211.3.1558</td>
<td>l₄₃₂'</td>
<td>217.2.1581</td>
</tr>
<tr>
<td>205.2.1536</td>
<td>Pa&</td>
<td>211.4.1559</td>
<td>lₚ₄₃₂</td>
<td>217.3.1582</td>
</tr>
<tr>
<td>205.3.1537</td>
<td>Pa&' &</td>
<td>211.5.1560</td>
<td>lₚ₄₁₃₂'</td>
<td>217.4.1583</td>
</tr>
<tr>
<td>206.1.1538</td>
<td>lₚ₄₃₂</td>
<td>212.1.1561</td>
<td>P₄₃3₂</td>
<td>212.2.1562</td>
</tr>
<tr>
<td>200.1.1516</td>
<td>Pm&</td>
<td>206.2.1539</td>
<td>la&1'</td>
<td>212.2.1562</td>
</tr>
<tr>
<td>200.2.1517</td>
<td>Pm&1'</td>
<td>206.3.1540</td>
<td>la&'</td>
<td>212.3.1563</td>
</tr>
<tr>
<td>200.3.1518</td>
<td>Pm&' &</td>
<td>206.4.1541</td>
<td>lₚa&</td>
<td>213.1.1564</td>
</tr>
<tr>
<td>200.4.1519</td>
<td>Pₚm&</td>
<td>207.1.1542</td>
<td>P₄3₂</td>
<td>213.2.1565</td>
</tr>
<tr>
<td>201.1.1520</td>
<td>Pn&</td>
<td>207.2.1543</td>
<td>P₄3₂1'</td>
<td>213.3.1566</td>
</tr>
<tr>
<td>201.2.1521</td>
<td>Pn&1'</td>
<td>207.3.1544</td>
<td>P₄'3₂'</td>
<td>214.1.1567</td>
</tr>
<tr>
<td>201.3.1522</td>
<td>Pn&' &</td>
<td>207.4.1545</td>
<td>Pₚ₄3₂</td>
<td>214.2.1568</td>
</tr>
<tr>
<td>201.4.1523</td>
<td>Pₚₙ&</td>
<td>208.1.1546</td>
<td>P₄₂3₂</td>
<td>214.3.1569</td>
</tr>
<tr>
<td>202.1.1524</td>
<td>Fm&</td>
<td>208.2.1547</td>
<td>P₄₂3₂1'</td>
<td>214.4.1570</td>
</tr>
<tr>
<td>202.2.1525</td>
<td>Fm&1'</td>
<td>208.3.1548</td>
<td>P₄₂'3₂'</td>
<td>214.5.1571</td>
</tr>
<tr>
<td>202.3.1526</td>
<td>Fm&' &</td>
<td>208.4.1549</td>
<td>Pₚ₄₂3₂</td>
<td>215.1.1572</td>
</tr>
<tr>
<td>203.1.1527</td>
<td>Fd&</td>
<td>209.1.1550</td>
<td>F₄3₂</td>
<td>215.2.1573</td>
</tr>
<tr>
<td>203.2.1528</td>
<td>Fd&1'</td>
<td>209.2.1551</td>
<td>F₄3₂1'</td>
<td>215.3.1574</td>
</tr>
<tr>
<td>203.3.1529</td>
<td>Fd&' &</td>
<td>209.3.1552</td>
<td>F₄'3₂'</td>
<td>215.4.1575</td>
</tr>
<tr>
<td>204.1.1530</td>
<td>Im&</td>
<td>210.1.1553</td>
<td>F₄₃₂</td>
<td>215.5.1576</td>
</tr>
<tr>
<td>204.2.1531</td>
<td>Im&1'</td>
<td>210.2.1554</td>
<td>F₄₃₂1'</td>
<td>216.1.1577</td>
</tr>
<tr>
<td>204.3.1532</td>
<td>Im&' &</td>
<td>210.3.1555</td>
<td>F₄₁₃₂'</td>
<td>216.2.1578</td>
</tr>
<tr>
<td>204.4.1533</td>
<td>lₚm&</td>
<td>211.1.1556</td>
<td>l₄₃₂</td>
<td>216.3.1579</td>
</tr>
<tr>
<td>204.5.1534</td>
<td>lₚm&'</td>
<td>211.2.1557</td>
<td>l₄₃₂1'</td>
<td>217.1.1580</td>
</tr>
<tr>
<td>205.1.1535</td>
<td>Pa&</td>
<td>211.3.1558</td>
<td>l₄₃₂'</td>
<td>217.2.1581</td>
</tr>
<tr>
<td>205.2.1536</td>
<td>Pa&</td>
<td>211.4.1559</td>
<td>lₚ₄₃₂</td>
<td>217.3.1582</td>
</tr>
<tr>
<td>205.3.1537</td>
<td>Pa&' &</td>
<td>211.5.1560</td>
<td>lₚ₄₁₃₂'</td>
<td>217.4.1583</td>
</tr>
<tr>
<td>217.5.1584</td>
<td>P̅4̅3̅m'</td>
<td>223.2.1607</td>
<td>Pm̅3̅n1'</td>
<td>227.3.1630</td>
</tr>
<tr>
<td>218.1.1585</td>
<td>P̅4̅3̅n</td>
<td>223.3.1608</td>
<td>Pm̅3̅'n</td>
<td>227.4.1631</td>
</tr>
<tr>
<td>218.2.1586</td>
<td>P̅4̅3̅n1'</td>
<td>223.4.1609</td>
<td>Pm̅3̅'n</td>
<td>227.5.1632</td>
</tr>
<tr>
<td>218.3.1587</td>
<td>P̅4̅'3̅n</td>
<td>223.5.1610</td>
<td>Pm̅3̅'m'</td>
<td>228.1633</td>
</tr>
<tr>
<td>219.1.1588</td>
<td>F̅4̅3̅c</td>
<td>224.1.1611</td>
<td>Pn̅3̅m</td>
<td>228.2.1634</td>
</tr>
<tr>
<td>219.2.1589</td>
<td>F̅4̅3̅c1'</td>
<td>224.2.1612</td>
<td>Pn̅3̅m1'</td>
<td>228.3.1635</td>
</tr>
<tr>
<td>219.3.1590</td>
<td>F̅4̅'3̅c</td>
<td>224.3.1613</td>
<td>Pn̅3̅m</td>
<td>228.4.1636</td>
</tr>
<tr>
<td>219.4.1591</td>
<td>P̅m̅3̅m</td>
<td>224.5.1615</td>
<td>Pn̅3̅'m'</td>
<td>229.1.1638</td>
</tr>
<tr>
<td>219.5.1592</td>
<td>P̅m̅3̅m1'</td>
<td>224.6.1616</td>
<td>P̅3̅m̅</td>
<td>229.2.1639</td>
</tr>
<tr>
<td>219.6.1593</td>
<td>P̅m̅3̅m</td>
<td>224.7.1617</td>
<td>P̅3̅m̅</td>
<td>229.3.1640</td>
</tr>
<tr>
<td>220.1.1594</td>
<td>P̅m̅3̅m</td>
<td>225.1.1618</td>
<td>Fm̅3̅m</td>
<td>229.4.1641</td>
</tr>
<tr>
<td>220.2.1595</td>
<td>Pm̅3̅m1'</td>
<td>225.2.1619</td>
<td>Fm̅3̅m1'</td>
<td>229.5.1642</td>
</tr>
<tr>
<td>220.3.1596</td>
<td>Pm̅3̅'m</td>
<td>225.3.1620</td>
<td>Fm̅3̅'m</td>
<td>229.6.1643</td>
</tr>
<tr>
<td>220.4.1597</td>
<td>Pm̅3̅m</td>
<td>225.4.1621</td>
<td>Fm̅3̅m</td>
<td>229.7.1644</td>
</tr>
<tr>
<td>220.5.1598</td>
<td>Pm̅3̅'m</td>
<td>225.5.1622</td>
<td>Fm̅3̅'m</td>
<td>229.8.1645</td>
</tr>
<tr>
<td>220.6.1599</td>
<td>P̅m̅ m̅3̅</td>
<td>226.1.1623</td>
<td>Fm̅3̅</td>
<td>229.9.1646</td>
</tr>
<tr>
<td>220.7.1600</td>
<td>P̅m̅ m̅3̅</td>
<td>226.2.1624</td>
<td>Fm̅3̅c</td>
<td>230.1.1647</td>
</tr>
<tr>
<td>220.8.1601</td>
<td>P̅3̅n</td>
<td>226.2.1625</td>
<td>Fm̅3̅'c</td>
<td>230.2.1648</td>
</tr>
<tr>
<td>220.9.1602</td>
<td>P̅3̅n1'</td>
<td>226.3.1626</td>
<td>Fm̅3̅'c</td>
<td>230.3.1649</td>
</tr>
<tr>
<td>220.10.1603</td>
<td>Pn̅3̅'n</td>
<td>226.4.1627</td>
<td>Fm̅3̅c'</td>
<td>230.4.1650</td>
</tr>
<tr>
<td>220.11.1604</td>
<td>Pn̅3̅n'</td>
<td>226.5.1628</td>
<td>Fm̅3̅'c'</td>
<td>230.5.1651</td>
</tr>
<tr>
<td>220.12.1605</td>
<td>Pn̅3̅'n'</td>
<td>227.1.1629</td>
<td>Fd̅3̅m</td>
<td>230.1628</td>
</tr>
<tr>
<td>220.13.1606</td>
<td>Pm̅3̅n</td>
<td>227.2.1629</td>
<td>Fd̅3̅m1'</td>
<td></td>
</tr>
</tbody>
</table>
Origin arbitrary

Asymmetric unit \(0 \leq x \leq 1; \ 0 \leq y \leq 1; \ 0 \leq z \leq 1\)

Symmetry Operations

\[(1) \ 1 \quad (1 \ 0,0,0)\]

Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1).\)

Positions

Multiplicities, Wyckoff letter, Site Symmetry.

\[
\begin{array}{cccc}
1 & a & 1 & (1) x,y,z \ [u,v,w] \\
\end{array}
\]

Symmetry of Special Projections

Along \([0,0,1] \ p1\) \(a^* = a_p \quad b^* = b_p\)
Origin at 0,0,z

Along \([1,0,0] \ p1\) \(a^* = b_p \quad b^* = c_p\)
Origin at x,0,0

Along \([0,1,0] \ p1\) \(a^* = c_p \quad b^* = a_p\)
Origin at 0,y,0
Triclinic

1.2.2

P11'

11'

Origin
arbitrary

Asymmetric unit
0 < x < 1; 0 < y < 1; 0 < z < 1

Symmetry Operations

For 1 + set

(1) 1
 (1 | 0,0,0)

For 1' + set

(1) 1'
 (1 | 0,0,0')

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); 1'.

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

Coordinates

1+ 1'+

1 a 11' (1) x,y,z [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p11' Along [1,0,0] p11' Along [0,1,0] p11'

\[a^* = a_p \quad b^* = b_p \]

Origin at 0,0,z

\[a^* = b_p \quad b^* = c_p \]

Origin at x,0,0

\[a^* = c_p \quad b^* = a_p \]

Origin at 0,y,0
Origin: arbitrary

Asymmetric unit: $0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0) +$ set

(1) 1

(1) $0,0,0$

For $(0,0,1)' +$ set

(1) $t' \ (0,0,1)$

(1) $0,0,1'$

Generators selected: $(1); t(1,0,0); t(0,1,0); t(0,0,1)'$.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

$(0,0,0) + \quad (0,0,1)' +$

2 a 1 \ (1) $x,y,z [u,v,w]$

Symmetry of Special Projections

Along $[0,0,1]$ \ p11' \ \begin{align*}
\mathbf{a}^* &= \mathbf{a}_p \quad \mathbf{b}^* = \mathbf{b}_p \\
\text{Origin at } 0,0,z
\end{align*}$

Along $[1,0,0]$ \ p_{2a}^{-1} \ \begin{align*}
\mathbf{a}^* &= -\mathbf{c}_p \quad \mathbf{b}^* = \mathbf{b}_p \\
\text{Origin at } x,0,0
\end{align*}$

Along $[0,1,0]$ \ p_{2a}^{-1} \ \begin{align*}
\mathbf{a}^* &= \mathbf{c}_p \quad \mathbf{b}^* = \mathbf{a}_p \\
\text{Origin at } 0,y,0
\end{align*}$
2.1.4 - 1 - 4

Triclinic

Origin

```
Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1
```

Symmetry Operations

1. \(\mathbf{1} \)
2. \(\overline{1} 0,0,0 \)
3. \((1 0,0,0) \)
4. \((1 0,0,0) \)

Image Description

- A diagram illustrating a triclinic crystal lattice with symmetry operations and typical unit cells.
- The origin is marked at \(\overline{1} \).
- Asymmetric unit boundaries are shown with inequalities:
 - 0 ≤ x ≤ 1/2
 - 0 ≤ y ≤ 1
 - 0 ≤ z ≤ 1

2.1.4 - 1 - 4
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>1 h 1</td>
<td>1/2,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td>1 g 1</td>
<td>0,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td>1 f 1</td>
<td>1/2,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td>1 e 1</td>
<td>1/2,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>1 d 1</td>
<td>1/2,0,0 [u,v,w]</td>
</tr>
<tr>
<td>1 c 1</td>
<td>0,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>1 b 1</td>
<td>0,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td>1 a 1</td>
<td>0,0,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2'11
 \[a^* = a_p \quad b^* = b_p\]
 Origin at 0,0,z

- Along [1,0,0] p2'11
 \[a^* = b_p \quad b^* = c_p\]
 Origin at x,0,0

- Along [0,1,0] p2'11
 \[a^* = c_p \quad b^* = a_p\]
 Origin at 0,y,0
Triclinic

2.2.5

$P\bar{1}1'$

$\bar{1}1'$

$P\bar{1}1'$

Origin at $\bar{1}1'$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1$

Symmetry Operations

For $1 +$ set

(1) 1

(1) $0,0,0$

(2) $\bar{1}$ $0,0,0$

(1) $0,0,0$

For $1' +$ set

(1) $1'$

(1) $0,0,0'$

(2) $\bar{1}'$ $0,0,0$

(1) $0,0,0'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); 1'.

Positions

Multiplicity, Coordinates
Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>1 h 1'</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 g 1'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 f 1'</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 e 1'</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 d 1'</td>
<td>1/2,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 c 1'</td>
<td>0,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 b 1'</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 a 1'</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2111' Along [1,0,0] p2111' Along [0,1,0] p2111'
\(a^* = a _p \) \(b^* = b _p \) \(a^* = c _p \) \(b^* = a _p \)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Triclinic

Origin at \bar{T}'

Asymmetric unit: $0 \leq x \leq 1/2; 0 \leq y \leq 1; 0 \leq z \leq 1$

Symmetry Operations:

1. \bar{T}', $0,0,0$
2. \bar{T}', $0,0,0'$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2).

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 i 1</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>1 h 1</td>
<td>1/2,1/2,1/2</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>1 g 1</td>
<td>0,1/2,1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>1 f 1</td>
<td>1/2,0,1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>1 e 1</td>
<td>1/2,1/2,0</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>1 d 1</td>
<td>1/2,0,0</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>1 c 1</td>
<td>0,1/2,0</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>1 b 1</td>
<td>0,0,1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>1 a 1</td>
<td>0,0,0</td>
<td>[0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p211
\(a^* = a_p \quad b^* = b_p\)
Origin at 0,0,z

Along [1,0,0] p211
\(a^* = b_p \quad b^* = c_p\)
Origin at x,0,0

Along [0,1,0] p211
\(a^* = c_p \quad b^* = a_p\)
Origin at 0,y,0
Triclinic

2.4.7

P_{2_1}

Origin at $\bar{1}$

Asymmetric unit $0 \leq x \leq 1/2; 0 \leq y \leq 1; 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0) +$ set

(1) 1
(1 $| 0,0,0$)
(2) $\bar{1}$ $0,0,0$
(1 $| 0,0,0$)

For $(0,0,1)' +$ set

(1) t' $(0,0,1)$
(1 $| 0,0,1)'$
(2) $\bar{1}'$ $0,0,1/2$
(1 $| 0,0,1)'$
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1)'; (2). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 i 1</td>
<td>(1) (x,y,z) [u,v,w]</td>
</tr>
<tr>
<td>2 h (\bar{1})</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 g (\bar{1})</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 f (\bar{1})</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 e (\bar{1})</td>
<td>1/2,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>2 d (\bar{1})</td>
<td>1/2,0,0 [u,v,w]</td>
</tr>
<tr>
<td>2 c (\bar{1})</td>
<td>0,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>2 b (\bar{1})</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a (\bar{1})</td>
<td>0,0,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] \(p211' \)
 - \(a^* = a_p \)
 - \(b^* = b_p \)
- Along [1,0,0] \(p_{2a}211 \)
 - \(a^* = -c_p \)
 - \(b^* = b_p \)
- Along [0,1,0] \(p_{2a}211 \)
 - \(a^* = c_p \)
 - \(b^* = a_p \)
Monoclinic

P2

3.1.8

P121

Origin on 2

Asymmetric unit

\[0 < x < 1; \quad 0 < y < 1; \quad 0 < z < \frac{1}{2}\]

Symmetry Operations

\[(1) \quad 1 \quad (2) \quad 0, y, 0\]

\[(1) \quad 0, 0, 0 \quad (2) \quad y, 0, 0\]

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2).

Positions

\[\begin{array}{c|ccc}
\text{Multiplicity,} & \text{Wyckoff letter,} & \text{Site Symmetry.} \\
\hline
2 & e & 1 & x, y, z [u, v, w] \\
1 & d & 2 & 1/2, y, 1/2 [0, v, 0] \\
1 & c & 2 & 1/2, y, 0 [0, v, 0] \\
1 & b & 2 & y, 1/2 [0, v, 0] \\
1 & a & 2 & y, 0 [0, v, 0] \\
\end{array}\]

Symmetry of Special Projections

Along [0,0,1] \quad p1m'1

\[a^* = a, \quad b^* = b\]

Origin at 0,0,z

Along [1,0,0] \quad p1m1

\[a^* = a, \quad b^* = b\]

Origin at x,0,0

Along [0,1,0] \quad p211

\[a^* = c, \quad b^* = a\]

Origin at 0,y,0

3.1.8 - 1 - 12
Origin on 21'

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

For 1 + set

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad 0,0,0
\end{align*}
\]

\[
\begin{align*}
(2) & \quad 0,y,0 \\
(2) & \quad 0,0,0
\end{align*}
\]

For 1' + set

\[
\begin{align*}
(1) & \quad 1' \\
(1) & \quad 0,0,0'
\end{align*}
\]

\[
\begin{align*}
(2) & \quad 0,y,0 \\
(2) & \quad 0,0,0'
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); 1'.

Positions
Multiplicty, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>1+</th>
<th>1' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 e 11'</td>
<td>x,y,z [0,0,0]</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>1 d 21'</td>
<td>1/2,y,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 c 21'</td>
<td>1/2,y,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 b 21'</td>
<td>0,y,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 a 21'</td>
<td>0,y,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections
Along [0,0,1] p1m11' Along [1,0,0] p1m11' Along [0,1,0] p2111'
\(a^* = a \), \(b^* = b \) \(a^* = -c \), \(b^* = b \) \(a^* = c \), \(b^* = a \)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
3.3.10 - 1 - 15

P2' 2' Monoclinic

3.2.10 P12'1

Origin on 2'

Asymmetric unit

0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/2

Symmetry Operations

(1) 1 (2) 2' 0,y,0
(1 0,0,0) (2 0,0,0)'

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 e 1</td>
<td>x,y,z [u,v,w]</td>
<td>(1)</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>1 d 2'</td>
<td>1/2,y,1/2 [u,0,w]</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>1 c 2'</td>
<td>1/2,y,0 [u,0,w]</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>1 b 2'</td>
<td>0,y,1/2 [u,0,w]</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>1 b 2'</td>
<td>0,y,0 [u,0,w]</td>
<td>(2)</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p1m1

a' = a, b' = b

Origin at 0,0,z

Along [1,0,0] p1m1

a' = -c, b' = b

Origin at x,0,0

Along [0,1,0] p2'11

a' = c, b' = a

Origin at 0,y,0

3.3.10 - 1 - 15
3.4.11 - 1 - 16

P\textsubscript{2\textalpha} 2

3.4.11

P\textsubscript{2\textalpha} 121

Monoclinic

Origin: on 2

Asymmetric unit: 0 \leq x \leq 1; 0 \leq y \leq 1; 0 \leq z \leq 1/2

Symmetry Operations:

For (0,0,0) +

(1) 1

(1) | 0,0,0

(2) 2 0,y,0

(2) | 0,0,0

For (1,0,0)'

(1) t' (1,0,0)

(1) | 1,0,0'

(2) 2' 1/2,y,0

(2) | 1,0,0'

3.4.11 - 1 - 16
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 e 1</td>
<td>(1) (x,y,z [u,v,w])</td>
<td>((0,0,0) +) ((1,0,0)' +)</td>
</tr>
<tr>
<td>2 d 2'</td>
<td>1/2, y, 1/2 [u,0,w]</td>
<td>(x,y,z [u,v,w])</td>
</tr>
<tr>
<td>2 c 2'</td>
<td>1/2, y, 0 [u,0,w]</td>
<td>(x,y,z [u,v,w])</td>
</tr>
<tr>
<td>2 b 2</td>
<td>0, y, 1/2 [0,v,0]</td>
<td>(x,y,z [u,v,w])</td>
</tr>
<tr>
<td>2 a 2</td>
<td>0, y, 0 [0,v,0]</td>
<td>(x,y,z [u,v,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>(p_{2a} \cdot 1m1)</th>
<th>Along [1,0,0]</th>
<th>(p_{1m1})</th>
<th>Along [0,1,0]</th>
<th>(p_{2a} \cdot 211)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a_p) (b^* = b)</td>
<td>(a^* = -c_p) (b^* = b)</td>
<td>(a^* = -a) (b^* = c)</td>
<td>(a^* = -a) (b^* = c)</td>
<td>(a^* = -a) (b^* = c)</td>
<td>(a^* = -a) (b^* = c)</td>
</tr>
<tr>
<td>Origin at 1/2, 0, z</td>
<td>Origin at x, 0, 0</td>
<td>Origin at 0, y, 0</td>
</tr>
</tbody>
</table>
Origin on 2

Asymmetric unit \(0 \leq x \leq 1; \ 0 \leq y \leq 1; \ 0 \leq z \leq 1/2 \)

Symmetry Operations

For \((0,0,0)\) +

(1) \(t \) \((0,0,0)\)
(1) \(t' \) \((0,1,0)\)
(1) \(\text{origin} \) on 2

(2) \(t' \) \((0,1,0)\)
(2) \(t \) \((0,0,0)\)
(1) \(\text{origin} \) on 2

For \((0,1,0)'\) +

(1) \(t' \) \((0,1,0)\)'
(2) \(t \) \((0,0,0)\)'
(2) \(t' \) \((0,0,0)\)'
(1) \(t \) \((0,0,0)\)
(1) \(t' \) \((0,1,0)\)
(1) \(\text{origin} \) on 2

For \((0,1,0)'\) +

Symmetry Operations

Origin on 2
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2)\).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 e 1</td>
<td>1</td>
<td>((0,0,0) + (0,1,0))</td>
<td>(x,y,z [u,v,w])</td>
</tr>
<tr>
<td>2 d 2</td>
<td>2</td>
<td>(1/2,y,1/2 [0,v,0])</td>
<td></td>
</tr>
<tr>
<td>2 c 2</td>
<td>2</td>
<td>(1/2,y,0 [0,v,0])</td>
<td></td>
</tr>
<tr>
<td>2 b 2</td>
<td>2</td>
<td>(0,y,1/2 [0,v,0])</td>
<td></td>
</tr>
<tr>
<td>2 a 2</td>
<td>2</td>
<td>(0,y,0 [0,v,0])</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) \(p_{2b}.1\) \(m'1\)
 - \(a^* = a, b^* = b\)
 - Origin at \(0,0,z\)

- Along \([1,0,0]\) \(p_{2b}.1\) \(m1\)
 - \(a^* = -c, b^* = b\)
 - Origin at \(x,1/2,0\)

- Along \([0,1,0]\) \(p_{2111}'\)
 - \(a^* = c, b^* = a\)
 - Origin at \(0,y,0\)
Origin on 2

Asymmetric unit $0 \leq x \leq 1$; $0 \leq y \leq 1$; $0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0)$ +

(1) 1
(1) $0,0,0$

(2) 2 $0,y,0$
(2) $0,0,0$

For $(1,0,0)' +$

(1) t' $(1,0,0)$
(1) $(1,0,0)'$

(2) $2'$ $1/2,y,0$
(2) $1,0,0'$

$P_c 21'$

3.6.13

$P_c 121$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) (\bar{x}, y, \bar{z} [\bar{u}, \bar{v}, \bar{w}])</td>
</tr>
<tr>
<td>2 d 2'</td>
<td>1/2, y, 1/2 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 c 2'</td>
<td>1/2, y, 0 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 b 2</td>
<td>0, y, 1/2 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 2</td>
<td>0, y, 0 [0,v,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] \(p_1m1 \)
 - \(a^* = a \)
 - \(b^* = b \)
 - Origin at 1/2,0,z
- Along [1,0,0] \(p1m1' \)
 - \(a^* = -c \)
 - \(b^* = b \)
 - Origin at x,0,0
- Along [0,1,0] \(p211' \)
 - \(a^* = c \)
 - \(b^* = a \)
 - Origin at 0,y,0
Origin on 2'\n
Asymmetric unit \(0 \leq x \leq 1; \ 0 \leq y \leq 1; \ 0 \leq z \leq 1/2\)

Symmetry Operations

For (0,0,0) +

\(\begin{align*}
1 & \rightarrow 1 \\
0,0,0 & \rightarrow 0,y,0
\end{align*}\)

For (0,1,0)' +

\(\begin{align*}
1' & \rightarrow 1' \\
(0,1,0) & \rightarrow (0,1,0)
\end{align*}\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) + (0,1,0)’ +</td>
</tr>
<tr>
<td>4 e 1</td>
<td>(1) x,y,z [u,v,w] (2) x,z [u,v,w]</td>
</tr>
<tr>
<td>2 d 2’</td>
<td>1/2,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>2 c 2’</td>
<td>1/2,y,0 [u,0,w]</td>
</tr>
<tr>
<td>2 b 2’</td>
<td>0,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>2 a 2’</td>
<td>0,y,0 [u,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p_{2b}1m1</th>
<th>Along [1,0,0] p_{2a}1m1</th>
<th>Along [0,1,0] p_{2111}’</th>
</tr>
</thead>
<tbody>
<tr>
<td>a’ = a b’ = b</td>
<td>a’ = b b’ = c</td>
<td>a’ = c b’ = a</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
4.1.15 P2₁

Monoclinic

Symmetry Operations

(1) 1
(2) 2 (0,1/2,0) 0,y,0

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

2 a 1 (1) x,y,z [u,v,w] (2) x,y+1/2,z [u,v,w]

Symmetry of Special Projections

Along [0,0,1] p1g’1
a* = a, b* = b
Origin at 0,0,z

Along [1,0,0] p1g’1
a* = -c, b* = b
Origin at x,0,0

Along [0,1,0] p211
a* = c, b* = a
Origin at 0,y,0
Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

For 1 +

1. \((1) \ 1 \)
 - \((1|0,0,0) \)
2. \((2) \ 2 \ 0,1/2,0 \)
 - \(0,y,0 \)

For 1' +

1. \((1) \ 1' \)
 - \((1|0,0,0)' \)
2. \((2) \ 2' \ (0,1/2,0) \)
 - \(0,y,0 \)

Generators selected

(1): \((1|0,0,0); \ 1 \)
(2): \((1|0,0,0); \ 1' \)

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

1+ 1'

1. \(a \)
 - \(0 \leq x \leq 1; \ 0 \leq y \leq 1; \ 0 \leq z \leq 1/2 \)
 - \((1) \ x,y,z \ [0,0,0] \)
 - \((2) \ x,y+1/2,z \ [0,0,0] \)

Symmetry of Special Projections

Along [0,0,1] \(p1g11' \)

\(a^* = a \)
\(b^* = b \)

Along [1,0,0] \(p1g11' \)

\(a^* = -c \)
\(b^* = b \)

Along [0,1,0] \(p2111' \)

\(a^* = c \)
\(b^* = a \)
Origin on $2'_1$

Asymmetric unit
$$0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2$$

Symmetry Operations

(1) 1
(2) 2' $(0,1/2,0)$ 0,y,0

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

2 a 1

(1) x,y,z [u,v,w]
(2) $x,y+1/2,z$ [u,\bar{v},w]

Symmetry of Special Projections

Along [0,0,1] p1g1

$a^* = a$, $b^* = b$

Origin at 0,0,z

Along [1,0,0] p1g1

$a^* = -c$, $b^* = b$

Origin at x,0,0

Along [0,1,0] p2'11

$a^* = c$, $b^* = a$

Origin at 0,y,0
4.4.18 - 1 - 27

Origin on 2₁

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

For (0,0,0) +

1. \((1) \quad \begin{pmatrix} 1 \\ 0,0,0 \end{pmatrix} \)
 \((2) \quad \begin{pmatrix} 2 \quad (0,1/2,0) \\ 0,y,0 \end{pmatrix} \)

For \((1,0,0)^*\) +

1. \((1) \quad t(1,0,0) \)
 \((2) \quad t(0,1,0) \)
 \((3) \quad t(0,0,1) \)
 \((4) \quad t(0,1,0) \)

Generators selected

\((1); t(1,0,0)^*; t(0,1,0); t(0,0,1); (2).\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0,0) + (1,0,0)^* +)</td>
<td></td>
</tr>
</tbody>
</table>

\[\begin{align*}
4 & \quad \begin{pmatrix} a \quad 1 \end{pmatrix} \quad \begin{pmatrix} (1) \quad x,y, z [u,v,w] \end{pmatrix} \quad \begin{pmatrix} (2) \quad x,y+1/2, z [u,v,w] \end{pmatrix}
\end{align*} \]

Symmetry of Special Projections

Along \([0,0,1]\) \(p_{2a-1g1}\)

\[a^* = a, \quad b^* = b \]

Origin at \(1/2,0,z\)

Along \([1,0,0]\) \(p1g1\)

\[a^* = -c, \quad b^* = b \]

Origin at \(x,0,0\)

Along \([0,1,0]\) \(p_{2a21}\)

\[a^* = -a, \quad b^* = c \]

Origin at \(0,y,0\)
5.1.19 - 1 - 28

C2

2

Monoclinic

5.1.19 C121

Origin on 2

Asymmetric unit

\[0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < 1 \]

Symmetry Operations

For \((0,0,0) +\) set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 0,y,0 \\
(1^*0,0,0) & \quad (2^*y,0,0) \\
\end{align*}
\]

For \((1/2,1/2,0) +\) set

\[
\begin{align*}
(1) & \quad t(1/2,1/2,0) \\
(2) & \quad (0,1/2,0) 1/4,y,0 \\
(1^*1/2,1/2,0) & \quad (2^*1/2,1/2,0) \\
\end{align*}
\]
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>(0,0,0) + (1/2,1/2,0) +</td>
</tr>
<tr>
<td>b</td>
<td>4 x,y,z [u,v,w] (2) x̄,ȳ,z̄ [ū,v̄,w̄]</td>
</tr>
<tr>
<td>a</td>
<td>2 0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>2 0,y,0 [0,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin</th>
<th>Along [0,0,1] c1m'1</th>
<th>Along [1,0,0] p1m'1</th>
<th>Along [0,1,0] p211</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = -c</td>
<td>a* = c</td>
</tr>
<tr>
<td>b* = b</td>
<td>b* = b/2</td>
<td>b* = b/2</td>
<td>b* = a/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
C21' 21' Monoclinic

5.2.20

C1211'

Origin on 21'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \quad 0,y,0 \\
\text{(1)} & \quad (0,0,0) \\
\text{(2)} & \quad (0,0,0)
\end{align*}
\]

For \((1/2,1/2,0)\) + set

\[
\begin{align*}
(1) & \quad t \\
(2) & \quad 2 \quad 0,1/2,0 \\
\text{(1)} & \quad 1/2,1/2,0 \\
\text{(2)} & \quad 1/2,1/2,0
\end{align*}
\]

For \((0,0,0)\)' + set

\[
\begin{align*}
(1) & \quad 1' \\
(2) & \quad 2' \quad 0,y,0 \\
\text{(1)} & \quad (0,0,0)' \\
\text{(2)} & \quad (0,0,0)'
\end{align*}
\]

For \((1/2,1/2,0)\)' + set

\[
\begin{align*}
(1) & \quad t' \\
(2) & \quad 2' \quad 0,1/2,0 \\
\text{(1)} & \quad 1/2,1/2,0' \\
\text{(2)} & \quad 1/2,1/2,0'
\end{align*}
\]
Continued

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 11'</td>
<td>(1) x, y, z</td>
<td>[0,0,0]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(2) x, y, z</td>
<td></td>
<td>(1/2,1/2,0) +</td>
</tr>
</tbody>
</table>

| 2 b 21' | 0, y, 1/2 | [0,0,0] |
| 2 a 21' | 0, y, 0 | [0,0,0] |

Symmetry of Special Projections

- Along [0,0,1] c1m11'
 - Origin at 0,0,z
 - \(a^* = a, b^* = b \)

- Along [1,0,0] p1m11'
 - Origin at x,0,0
 - \(a^* = -c, b^* = b/2 \)

- Along [0,1,0] p2111'
 - Origin at 0,y,0
 - \(a^* = c, b^* = a/2 \)
C2’ 2’

5.3.21 C12’1

Concrete

Origin on 2’

Asymmetric unit
0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) 2’ 0,y,0
(2,|0,0,0)’

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(1|1/2,1/2,0)

(2) 2’ (0,1/2,0) 1/4,y,0
(2,|1/2,1/2,0)’

5.3.21 - 1 - 32
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) x,y,z</td>
<td>[u,v,w]</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>2 b 2'</td>
<td>0,y,1/2</td>
<td>[u,0,w]</td>
<td>(1/2,1,2,0)</td>
</tr>
<tr>
<td>2 a 2'</td>
<td>0,y,0</td>
<td>[u,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c1m1

a* = a, b* = b

Origin at 0,0,z

Along [1,0,0] p1m1

a* = -c, b* = b/2

Origin at x,0,0

Along [0,1,0] p2'11

a* = c, b* = a/2

Origin at 0,y,0
Origin on 2

Asymmetric unit
\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq 1\]

Symmetry Operations

For \((0,0,0)\) + set

1. \((1)\)
 \((1\ 0,0,0)\)
 \((2)\ 0,y,0\)

2. \((2\ 0,0,0)\)

For \((1/2,1/2,0)\) + set

1. \((1)\ t\ (1/2,1/2,0)\)
 \((1\ 1/2,1/2,0)\)

2. \((2\ 0,1/2,0)\)
 \((2\ 1/4,y,0)\)

 \((2\ 1/2,1/2,0)\)

For \((0,0,1)'\) + set

1. \((1)\ t'\ (0,0,1)\)
 \((1\ 0,0,1)'\)

2. \((2\ 0,y,1/2)\)
 \((2\ 0,0,1)'\)

For \((1/2,1/2,1)'\) + set

1. \((1)\ t'\ (1/2,1/2,1)\)
 \((1\ 1/2,1/2,1)'\)

2. \((2\ 0,1/2,0)\)
 \((2\ 1/4,y,1/2)\)

 \((2\ 1/2,1/2,1)'\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) (\bar{x},y,\bar{z} [u,v,\bar{w}])</td>
</tr>
<tr>
<td>4 b 2'</td>
<td>0,y,1/2 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 a 2</td>
<td>0,y,0 [0,v,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(c1m1\)'
\(a^* = a\)
\(b^* = b\)
Origin at 0,0,z

Along [1,0,0] \(p_{2\alpha}1\text{m}1\)
\(a^* = -c\)
\(b^* = b/2\)
Origin at 0,0,0

Along [0,1,0] \(p_{2\alpha}2\text{11}\)
\(a^* = c\)
\(b^* = a/2\)
Origin at 0,y,0
Symmetry Operations

For \((0,0,0)\) set

(1) \(1\)

\((1|0,0,0)\)

(2) \(2\) \(0,y,0\)

\((2|0,0,0)\)

For \((1/2,1/2,0)\) set

(1) \(t\) \((1/2,1/2,0)\)

\((1|1/2,1/2,0)\)

(2) \(2^t\) \((0,1/2,0)\) \(1/4,y,0\)

\((2,1/2,1/2,0)\)

Asymmetric unit

\(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\)
Generators selected: \((1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0)'; (2)\).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 b 2</td>
<td>0,y,1/2 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 2</td>
<td>0,y,0 [0,v,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) \(c_p1m'1\)
\(a^* = a\), \(b^* = b\)
Origin at 0,0,z

Along \([1,0,0]\) \(p_{2b1m'1}\)
\(a^* = -c\), \(b^* = b/2\)
Origin at x,0,0

Along \([0,1,0]\) \(p_{2a211}\)
\(a^* = c\), \(b^* = a/2\)
Origin at 0,y,0
Origin on 2'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0)\) + set

1. 1
 - \((1|0,0,0)\)
 - \((2|0,0,0)\)

For \((1/2,1/2,0)\)' + set

1. \(t'\) \((1/2,1/2,0)\)
 - \((1|1/2,1/2,0)\)
 - \((2|1/2,1/2,0)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0)'; (2).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>c 1</td>
<td>(0,0,0) + (1/2,1/2,0)' +</td>
</tr>
<tr>
<td>b 2'</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>a 2'</td>
<td>0,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>a 2'</td>
<td>0,y,0 [u,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c, 1m1

Along [1,0,0] p, 1m1

Along [0,1,0] p, 211

Origin at 0,0,z

Origin at x,0,0

Origin at 1/4,y,0
Pm m Monoclinic
6.1.25 P1m1

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1 (2) m x,0,z
(1|0,0,0) (m|0,0,0)

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>a</td>
<td>m</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>m</td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>m</td>
<td>x,0,z [0,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p1m1 Along [1,0,0] p1m1 Along [0,1,0] p11'
a* = -b b* = a a* = b b* = c a* = c b* = a Origin at 0,0,z
Origin at x,0,0 Origin at 0,y,0
6.2.26 - 1 - 41

Monoclinic

Origin on \(m_1' \)

Asymmetric unit

\[
0 < x < 1; \quad 0 < y < 1/2; \quad 0 < z < 1
\]

Symmetry Operations

For 1 + set

1. \((1)|0,0,0\)
2. \((2) m_1 x,0,z (m_1 y,0,0)\)

For 1' + set

1. \((1)'|0,0,0\)
2. \((2) m_1' x,0,z (m_1 y,0,0)'\)
Generators selected \[(1); \tau(1,0,0); \tau(0,1,0); \tau(0,0,1); (2); 1'.\]

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1' +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c 11'</td>
<td>(1) x, y, z [0, 0, 0]</td>
<td></td>
<td>(2) x, \bar{y}, z [0, 0, 0]</td>
</tr>
<tr>
<td>1 b m1'</td>
<td>x, 1/2, z [0, 0, 0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 a m1'</td>
<td>x, 0, z [0, 0, 0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0, 0, 1] \(p1m11'\) \(a^* = -b\) \(b^* = a_p\) Origin at 0, 0, z
Along [1, 0, 0] \(p1m11'\) \(a^* = b\) \(b^* = c_p\) Origin at x, 0, 0
Along [0, 1, 0] \(p11'\) \(a^* = c\) \(b^* = a\) Origin at 0, y, 0
Pm' m' Monoclinic
6.3.27 P1m'1

Origin on m'

Asymmetric unit

0 < x < 1; 0 < y < 1/2; 0 < z < 1

Symmetry Operations

(1) 1 (2) m' x,0,z
(1 | 0,0,0) (m' | 0,0,0)

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>1 b m'</td>
<td>x,1/2,z [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>1 a m'</td>
<td>x,0,z [u,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p1m'1

\(a^* = -b \quad b^* = a_p \)

Origin at 0,0,z

Along [1,0,0] p1m'1

\(a^* = b \quad b^* = c_p \)

Origin at x,0,0

Along [0,1,0] p1

\(a^* = c \quad b^* = a \)

Origin at 0,y,0
Origin on m

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0)\) + set

- \((1)\) 1
- \((1|0,0,0)\)
- \((m|0,0,0)\)

For \((1,0,0)\)' + set

- \((1)\) t' (1,0,0)
- \((1|1,0,0)\)'
- \((m|1,0,0)\)'
- \((a'|1,0,0)\) x,0,z
Continued

6.4.28

P_{2_1}m

Generators selected
(1); t(1,0,0)'; t(0,1,0); t(0,0,1); (2).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 b m</td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>2 a m</td>
<td>x,0,z [0,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p_{2_1}m1</th>
<th>Along [1,0,0]</th>
<th>p1m1'</th>
<th>Along [0,1,0]</th>
<th>p11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -b</td>
<td>a* = b</td>
<td>a* = c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b* = a_p</td>
<td>b* = c_p</td>
<td>b* = a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.5.29

M1'

P2bm m1'

Monoclinic

Origin on m

Asymmetric unit

\[0 < x < 1; \quad 0 < y < 1/2; \quad 0 < z < 1\]

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. \(1\)

 \((0,0,0)\)

 \((m_y 0,0,0)\)

For \((0,1,0)' + \text{set}\)

1. \(t'\)

 \((0,1,0)'\)

 \((m_y 0,1,0)'\)

1. \(m'\)

 \((0,1,0)\)

 \((m_y 0,1,0)\)
Generators selected \((1); \ t(1,0,0'); \ t(0,1,0'); \ t(0,0,1); \ (2). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) (x,y,z \ [u,v,w])</td>
</tr>
<tr>
<td>2 b m'</td>
<td>(2) (x,y,z \ [u,v,w])</td>
</tr>
<tr>
<td>2 a m</td>
<td>(x,1/2,z \ [u,0,w])</td>
</tr>
<tr>
<td></td>
<td>(x,0,z \ [0,v,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>(p_{2a\cdot1m1})</th>
<th>Along [1,0,0]</th>
<th>(p_{2a\cdot1m1})</th>
<th>Along [0,1,0]</th>
<th>(p11')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = -b)</td>
<td>(b^* = a_p)</td>
<td>(a^* = b)</td>
<td>(b^* = c_p)</td>
<td>(a^* = c)</td>
<td>(b^* = a)</td>
</tr>
<tr>
<td>Origin at (0,0,z)</td>
<td>Origin at (x,0,0)</td>
<td>Origin at (0,y,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PCm m1' Monoclinic
6.6.30 Pc1m1

Origin on m

Asymmetric unit
0 \leq x \leq 1; 0 \leq y \leq 1/2; 0 \leq z \leq 1

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1|0,0,0)
 (m_y|0,0,0)

(2) m x,0,z

For (1,0,0)' + set

(1) t' (1,0,0)
 (1|1,0,0)'
 (m_y|1,0,0)'

(2) a' (1,0,0) x,0,z

6.6.30 - 1 - 48
Continued

Generators selected (1); t(1,0,0)'; t(0,1,0)'; t(0,0,1); (2).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

(0,0,0) + (1,0,0)' +

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x, y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>2 b m'</td>
<td>x,1/2,z [u,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a m</td>
<td>x,0,z [0,v,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p₃1m1 Along [1,0,0] p1m11' Along [0,1,0] p11'

\(a^* = -b \quad b^* = a_p \quad a^* = b \quad b^* = c_p \quad a^* = c \quad b^* = a \)

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin on m

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\]

Symmetry Operations

For \((0,0,0)\) + set

\[(1) \ 1 \quad (2) m' \ x,0,z \quad (m' y,0,0)'

For \((0,0,1)\)' + set

\[(1) t' \ (0,0,1) \quad (2) c (0,0,1) \ x,0,z \quad (m' y,0,0,1)\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(0,0,1)' +</td>
<td>x,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 c 1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2)</td>
<td>x,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 b m</th>
<th>x,1/2,z [0,v,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 a m'</td>
<td>x,0,z [u,0,v]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1]
 \(p1m1' \)
 \(a^* = b \) \(b^* = a \)
 Origin at 0,0,z

- Along [1,0,0]
 \(p_{2b}1m'1 \)
 \(a^* = b \) \(b^* = c \)
 Origin at x,0,0

- Along [0,1,0]
 \(p11' \)
 \(a^* = c \) \(b^* = a \)
 Origin at 0,y,0
Pc m Monoclinic
7.1.32 P1c1

Origin on glide plane c

Asymmetric unit $0 \leq x \leq 1; 0 \leq y \leq 1/2; 0 \leq z \leq 1$

Symmetry Operations

(1) 1
(1) 0,0,0
(1 0,0,0)

(2) c $(0,0,1/2)$ $x,0,z$
(2) $m_{1/2}$ $(0,0,1/2)$

Generators selected (1); $t(1,0,0); t(0,1,0); t(0,0,1); (2)$.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 a 1</td>
<td>$x,y,z [u,v,w]$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(2) \bar{x},y,z+1/2 [\bar{u},v,w]$</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along $[0,0,1]$ $p1m1$
$\mathbf{a}^* = -\mathbf{b}$ $\mathbf{b}^* = \mathbf{a}_p$
Origin at $0,0,z$

Along $[1,0,0]$ $p1g1$
$\mathbf{a}^* = \mathbf{b}$ $\mathbf{b}^* = \mathbf{c}_p$
Origin at $x,0,0$

Along $[0,1,0]$ $\mathbf{p}_{2\perp 1}$
$\mathbf{a}^* = \mathbf{c}/2$ $\mathbf{b}^* = \mathbf{a}$
Origin at $0,y,0$
Origin on glide plane \(c1' \)

Asymmetric unit \(0 \leq x \leq 1; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \)

Symmetry Operations

For \(1 + \) set

(1) \(1 \)

(1') \(1' \)

(2) \(c \) \((0,0,1/2) \) \(x,0,z \)

(2') \(c' \) \((0,0,1/2) \) \(x,0,z \)

For \(1' + \) set

(1) \(1' \)

(1') \(1' \)

(2) \(c' \) \((0,0,1/2) \) \(x,0,z \)

(2') \(c \) \((0,0,1/2) \) \(x,0,z \)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); 1'.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>1 + 1' +</td>
</tr>
<tr>
<td>2 a 11'</td>
<td>(1) x,y,z [0,0,0] (2) x, y,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p1m11' Along [1,0,0] p1g11' Along [0,1,0] p11'

\[
\begin{align*}
\mathbf{a}^* &= -\mathbf{b} & \mathbf{b}^* &= \mathbf{a}_p \\
\mathbf{a}^* &= \mathbf{b} & \mathbf{b}^* &= \mathbf{c}_p \\
\mathbf{a}^* &= \mathbf{c}/2 & \mathbf{b}^* &= \mathbf{a}
\end{align*}
\]

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin on glide plane c'

Asymmetric unit

$$0 < x < 1; \quad 0 < y < 1/2; \quad 0 < z < 1$$

Symmetry Operations

(1) 1

(2) $c' \quad (0,0,1/2) \quad x,0,z$

Generators selected

(1); $t(1,0,0); \ t(0,1,0); \ t(0,0,1); \ (2)$.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 a 1 (1) $x,y,z \ [u,v,w]$ (2) x, y, $z+1/2 \ [u$, v, $w]$</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] $p1m'1$
Along [1,0,0] $p1g'1$
Along [0,1,0] $p1$

$a^* = -b$
$b^* = a$

Origin at 0,0,z
 Origin at x,0,0
 Origin at 0,y,0
P2\(\text{ac}m1\)’ Monoclinic

Origin on glide plane \(c\)

Asymmetric unit
\[0 \leq x \leq 1; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\]

Symmetry Operations

For \((0,0,0)\) + set

1. \((1) 1\)
 1. \((1|0,0,0)\)
 2. \((2) c (0,0,1/2) x,0,z\)
 3. \((m_y|0,0,1/2)\)

For \((1,0,0)\)' + set

1. \((1) t' (1,0,0)\)
 1. \((1|1,0,0)\)
 2. \((2) n' (1,0,1/2) x,0,z\)
 3. \((m_y|1,0,1/2)'\)

Generators selected

(1); \(t(1,0,0)\); \(t(0,1,0)\); \(t(0,0,1)\); (2).

Positions

Multiplicities, Wyckoff letters, Site Symmetry.

\[
\begin{align*}
4 & \quad a \quad 1 \\
(0,0,0) + & \quad (1,0,0)' + \\
(1) & \quad x,y,z [u,v,w] \\
(2) & \quad x, y, z+1/2 [u,v,w]
\end{align*}
\]

Symmetry of Special Projections

Along \([0,0,1]\) \(p_{2\text{ac}}.1m1\)

\[
\begin{align*}
a^* &= -b & b^* &= a_p \\
\text{Origin at } 0,0,z
\end{align*}
\]

Along \([1,0,0]\) \(p1g11'\)

\[
\begin{align*}
a^* &= b & b^* &= c_p \\
\text{Origin at } x,0,0
\end{align*}
\]

Along \([0,1,0]\) \(p_{2\text{ac}}.1\)

\[
\begin{align*}
a^* &= -a & b^* &= c/2 \\
\text{Origin at } 0,y,0
\end{align*}
\]
Origin on glide plane c

Asymmetric unit
0 ≤ x ≤ 1; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations
For (0,0,0) + set

(1) 1
(1|0,0,0)
(2) c (0,0,1/2) x,0,z
(m|0,0,1/2)

For (0,1,0)'+ set

(1) t' (0,1,0)
(1|0,1,0)
(2) c' (0,0,1/2) x,1/2,z
(m|0,1,1/2)'

Generators selected
(1); t(1,0,0); t(0,1,0)'; t(0,0,1); (2).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

4 a 1
(1) x,y,z [u,v,w]
(2) x, y,z+1/2 [u,v,w]

Symmetry of Special Projections

Along [0,0,1]

p_{2a}-1m1

a^* = -b \quad b^* = a_p
Origin at 0,0,z

Along [1,0,0]

p_{2a}-1g1

a^* = b \quad b^* = c_o
Origin at x,0,0

Along [0,1,0]

p11'

a^* = c/2 \quad b^* = a
Origin at 0,y,0

7.5.36 - 1 - 57
Origin on glide plane c

Asymmetric unit

$0 \leq x \leq 1$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0)$ + set

1. 1
 - $(1) 1$
 - $(1|0,0,0)$
 - $(0,0,1/2)$ $x,0,z$
 - $(m_y,0,0,1/2)$

For $(1,0,0)' + set$

1. t' $(1,0,0)$
 - $(1|1,0,0)'$
 - $(1,0,1/2)$ $x,0,z$
 - $(m_y,1,0,1/2)'$

Generators selected

(1); $t(1,0,0)'$; $t(0,1,0)'$; $t(0,0,1)$; (2).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 a 1</td>
<td>(1) $x,y,z [u,v,w]$</td>
</tr>
<tr>
<td></td>
<td>(2) $x, y,z+1/2 [\bar{u},v,\bar{w}]$</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p_c1m1
 - $a^* = -b$ $b^* = a_p$
 - Origin at 0,0,z

- Along [1,0,0] $p1g11'$
 - $a^* = b$ $b^* = c_o$
 - Origin at x,0,0

- Along [0,1,0] $p11'$
 - $a^* = a$ $b^* = c/2$
 - Origin at 0,y,0
Cm m Monoclinic

8.1.38 C1m1

Origin on mirror plane m

Asymmetric unit

0 ≤ x ≤ 1;
0 ≤ y ≤ 1/4;
0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) m x,0,z
(m | 0,0,0)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(1 | 1/2,1/2,0)

(2) a (1/2,0,0) x,1/4,z
(m | 1/2,1/2,0)

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2).

Positions

Multiplicaty,
Wyckoff letter,
Site Symmetry.

(0,0,0) +

(1/2,1/2,0) +

4 b 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w]

2 a m x,0,z [0,v,0]

Symmetry of Special Projections

Along [0,0,1] c1m1

a* = -b b* = a_p
Origin at 0,0,z

Along [1,0,0] p1m1

a* = b/2 b* = c_p
Origin at x,0,0

Along [0,1,0] p11'

a* = c b* = a/2
Origin at 0,y,0

8.1.38 - 1 - 59
Origin on mirror plane $m1'$

Asymmetric unit

$0 \leq x \leq 1; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0)$ + set

(1) 1

(1) $t (1/2,1/2,0)$

(1) $t' (1/2,1/2,0)$

(1) $1'$

(1) $t' (1/2,1/2,0)$

(1) 1 (0,0,0)

(1) $1/2,1/2,0)$

(1) $1/2,1/2,0)$

(1) $0,0,0)$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$

(1) $0,0,0)'$
Generators selected
(1): t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2): 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,0) + (0,0,0)' + (1/2,1/2,0)' +</td>
<td>(0,0,0) + (1/2,1/2,0) +</td>
</tr>
<tr>
<td>4 b 11' (1) x,y,z [0,0,0] (2) x,y,z [0,0,0]</td>
<td>(0,0,0)' + (1/2,1/2,0)' +</td>
</tr>
<tr>
<td>2 a m1' x,0,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c1m11'
\(a^* = -b \quad b^* = a_p \)
Origin at 0,0,z

Along [1,0,0] p1m11'
\(a^* = b/2 \quad b^* = c_p \)
Origin at x,0,0

Along [0,1,0] p11'
\(a^* = c \quad b^* = a/2 \)
Origin at 0,y,0
Cm’ m’ Monoclinic

\[8.3.40 \quad C1m’1 \]

Origin on mirror plane \(m’ \)

Asymmetric unit

\[
0 < x < 1; \quad 0 < y < \frac{1}{4}; \quad 0 < z < 1
\]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad \mathbf{1} \\
(1) & \quad (0,0,0) \\
(2) & \quad m’ \quad x,0,z \\
& \quad (m_{\overline{1}} \overline{0},0,0)'
\end{align*}
\]

For \((1/2,1/2,0) + \) set

\[
\begin{align*}
(1) & \quad t \quad (1/2,1/2,0) \\
(1) & \quad (1/2,1/2,0) \\
(2) & \quad a’ \quad (1/2,0,0) \quad x,1/4,z \\
& \quad (m_{\overline{1}} \overline{1/2},1/2,0)'
\end{align*}
\]

Generators selected

\((1); \quad t(1,0,0); \quad t(0,1,0); \quad t(0,0,1); \quad t(1/2,1/2,0); \quad (2).\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4 \quad b' \quad 1)</td>
<td>(x,y,z \ [u,v,w])</td>
<td>(x,0,z \ [u,0,w])</td>
<td>((0,0,0) +)</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1] \quad c1m’1 \)

\(a'^* = -b \quad b'^* = a_p \)

Origin at \(0,0,z \)

Along \([1,0,0] \quad p1m’1 \)

\(a'^* = b/2 \quad b'^* = c_p \)

Origin at \(x,0,0 \)

Along \([0,1,0] \quad p1 \)

\(a'^* = c \quad b'^* = a/2 \)

Origin at \(0,y,0 \)
Origin on mirror plane m

Asymmetric unit
\[0 \leq x \leq 1; \quad 0 \leq y \leq \frac{1}{4}; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0) + set\)

1. \(1\)
 - \((1,0,0,0)\)
 - \((m,0,0,0)\)

2. \(m\) \(x,0,z\)
 - \((m,0,0,0)\)

For \((1/2,1/2,0) + set\)

1. \(t\) \((1/2,1/2,0)\)
 - \((1/2,1/2,0,0)\)
 - \((m,1/2,1/2,0,0)\)

2. \(a\) \((1/2,0,0)\) \(x,1/4,z\)
 - \((m,1/2,0,0)\)

For \((0,0,1)' + set\)

1. \(t'\) \((0,0,1)\)
 - \((0,0,1)'\)
 - \((m,0,0,1)'\)

2. \(c'\) \((0,0,1)\) \(x,0,z\)
 - \((m,0,0,1)'\)

For \((1/2,1/2,1)' + set\)

1. \(t'\) \((1/2,1/2,1)\)
 - \((1/2,1/2,1,0)\)
 - \((m,1/2,1/2,1,0)\)

2. \(n'\) \((1/2,0,1)\) \(x,1/4,z\)
 - \((m,1/2,0,1)'\)
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1'); t(1/2,1/2,0); (2). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>(1) (x,y,z [u,v,w])</td>
</tr>
<tr>
<td>4 a m</td>
<td>(2) (x,y,\bar{z} [\bar{u},v,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = -b)</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>(p_{1b}1m1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = b/2)</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>(p11')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = c)</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
8.5.42 - 1 - 65

CPm m1'

Monoclinic

Origin

on mirror plane m

Asymmetric unit

$0 \leq x \leq 1$; $0 \leq y \leq 1/4$; $0 \leq z \leq 1$

Symmetry Operations

For (0,0,0) + set

(1) 1

(1) $0,0,0$

(2) m $x,0,z$

(2) $m_{y}0,0,0$

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0)

(1) $1/2,1/2,0$

(2) a' (1/2,0,0) $x,1/4,z$

(2) $m_{y}1/2,1/2,0$

Generators selected

(1); $t(1,0,0)$; $t(0,1,0)$; $t(0,0,1)$; $t(1/2,1/2,0)'$; (2).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

(0,0,0) +

(1/2,1/2,0)'

4 b 1

(1) x,y,z [u,v,w]

(2) x,y,z [\bar{u},v,\bar{w}]

2 a m

$x,0,z$ [$0,v,0$]

Symmetry of Special Projections

Along [0,0,1] c_p1m1

$\mathbf{a}^* = -b$ $\mathbf{b}^* = a_p$

Origin at 0,0,0

Along [1,0,0] $p_{2a}1m1$

$\mathbf{a}^* = \mathbf{b}/2$ $\mathbf{b}^* = \mathbf{c}_p$

Origin at x,0,0

Along [0,1,0] $p11'$

$\mathbf{a}^* = \mathbf{c}$ $\mathbf{b}^* = \mathbf{a}/2$

Origin at 0,y,0
C2cm' m1'

8.6.43

Monoclinic

Origin
on mirror plane m'

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y < 1/4; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0) + \) set

1. \((1)\ 1\)\n
 \((1)\ 0,0,0\)

 \((2)\ m'\ x,0,z\)\n
 \((m_y|0,0,0)')\n
For \((1/2,1/2,0) + \) set

1. \((1)\ t\)\n
 \((1)\ 1/2,1/2,0\)

 \((2)\ a'\ (1/2,0,0)\)\n
 \((1/2,0,0)')\n
For \((0,0,1) + \) set

1. \((1)\ t'\)\n
 \((1)\ 0,0,1\)

 \((2)\ c\ (0,0,1)\)\n
 \((0,0,1)')\n
For \((1/2,1/2,1) + \) set

1. \((1)\ t'\)\n
 \((1)\ 1/2,1/2,1\)

 \((2)\ n\ (1/2,0,1)\)\n
 \((1/2,0,1)')\n
8.6.43 - 1 - 66
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 a m'</td>
<td>x,0,z [u,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = -b)</td>
<td>(b^* = a_p)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>(p_{2a'1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = b/2)</td>
<td>(b^* = c_p)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>(p_{2b'1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = c)</td>
<td>(b^* = a/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Origin at 0,0,z</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Origin at x,0,0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Origin at 0,y,0</th>
</tr>
</thead>
</table>
CPm' m'
Monoclinic
8.7.44
C_p1m'1

Origin
on mirror plane m'

Asymmetric unit
0 ≤ x ≤ 1; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>m'</td>
<td>x,0,z</td>
</tr>
<tr>
<td>2</td>
<td>m'</td>
<td>(m_y,0,0)</td>
</tr>
</tbody>
</table>

For (1/2,1/2,0)' + set

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>t(1/2,1/2,0)'</td>
<td>(m_y,1/2,1/2,0)</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>x,1/4,z</td>
</tr>
</tbody>
</table>

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0)'; (2).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 b 1</td>
<td>x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>2 a m'</td>
<td>x,0,z [u,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin</th>
<th>a* = -b b* = a_p</th>
<th>Along [0,0,1] C_p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,0,z</td>
<td>a* = -b/2 b* = c_p</td>
<td>Along [1,0,0] p_{2a'}1m1</td>
</tr>
<tr>
<td>0,y,0</td>
<td>a* = -a/2 b* = c</td>
<td>Along [0,1,0] p_{2a'}1</td>
</tr>
</tbody>
</table>

8.7.44 - 1 - 68
Origin on glide plane c

Asymmetric unit

\[0 < x < 1; \quad 0 < y < 1/4; \quad 0 < z < 1 \]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad c \quad (0,0,1/2) \quad x,0,z \\
(1^*_{0,0,0}) & \quad (m_y,0,0,1/2)
\end{align*}
\]

For \((1/2,1/2,0) + \) set

\[
\begin{align*}
(1) & \quad t \quad (1/2,1/2,0) \quad x,1/4,z \\
(2) & \quad n \quad (1/2,0,1/2) \quad x,1/4,z \\
(1^*_{1/2,1/2,0}) & \quad (m_y,1/2,1/2,1/2)
\end{align*}
\]

Generators selected

\((1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2).\)

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

\[
\begin{align*}
(0,0,0) + & \quad (1/2,1/2,0) + \\
4 \quad a \quad 1 & \quad (1) \quad x,y,z [u,v,w] \\
& \quad (2) \quad x,y,z+1/2 [u,v,w]
\end{align*}
\]

Symmetry of Special Projections

Along \([0,0,1]\) \quad c1m1

\[
a^* = -b \quad b^* = a_p \quad \text{Origin at } 0,0,z
\]

Along \([1,0,0]\) \quad p1g1

\[
a^* = b/2 \quad b^* = c_p \quad \text{Origin at } x,0,0
\]

Along \([0,1,0]\) \quad P_{21}1

\[
a^* = c/2 \quad b^* = a/2 \quad \text{Origin at } 0,y,0
\]

9.1.45 - 1 - 69
Origin on glide plane c1'

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{align*}
(1) & \quad 1 \\
(1') & \quad 1'
\end{align*}
\]

\[
\begin{align*}
(2) & \quad c \quad (0,0,1/2) \\
(m) & \quad (0,0,1/2)
\end{align*}
\]

For \((1/2,1/2,0)\) + set

\[
\begin{align*}
(1) & \quad t \quad (1/2,1/2,0) \\
(1') & \quad t'
\end{align*}
\]

\[
\begin{align*}
(2) & \quad n \quad (1/2,0,1/2) \\
(m) & \quad (1/2,1/2,1/2)
\end{align*}
\]

For \((0,0,0)'\) + set

\[
\begin{align*}
(1) & \quad 1' \\
(1') & \quad 1'
\end{align*}
\]

\[
\begin{align*}
(2) & \quad c' \quad (0,0,1/2) \\
(m) & \quad (0,0,1/2)'
\end{align*}
\]

For \((1/2,1/2,0)'\) + set

\[
\begin{align*}
(1) & \quad t' \quad (1/2,1/2,0) \\
(1') & \quad t'
\end{align*}
\]

\[
\begin{align*}
(2) & \quad n' \quad (1/2,0,1/2) \\
(m) & \quad (1/2,1/2,1/2)'
\end{align*}
\]
Generators selected:

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,0) + (0,0,0)' + (1/2,1/2,0)' +</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 a 11' (1) x,y,z [0,0,0]</td>
<td>x,y,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c1m11'

\[\mathbf{a}^* = -\mathbf{b}, \quad \mathbf{b}^* = \mathbf{a}_p \]

Origin at 0,0,z

Along [1,0,0] p1g11'

\[\mathbf{a}^* = \mathbf{b}/2, \quad \mathbf{b}^* = \mathbf{c}_p \]

Origin at x,0,0

Along [0,1,0] p11'

\[\mathbf{a}^* = \mathbf{c}/2, \quad \mathbf{b}^* = \mathbf{a}/2 \]

Origin at 0,y,0
Cc' m' Monoclinic

9.3.47 C1c'1

Origin on glide plane c'

Asymmetric unit

\[0 < x < 1; \quad 0 < y < \frac{1}{4}; \quad 0 < z < 1 \]

Symmetry Operations

For \((0,0,0) + \) set

1. \(1\)

 \[(1) 1 \]

 \[(1|0,0,0) \]

2. \(c'\)

 \[(2) c' (0,0,1/2) \]

 \[x,0,z \]

 \[(m_y|0,0,1/2)' \]

For \((1/2,1/2,0) + \) set

1. \(t\)

 \[(1) t (1/2,1/2,0) \]

 \[x,1/4,z \]

 \[(1/2,1/2,1/2)' \]

2. \(n'\)

 \[(2) n' (1/2,0,1/2) \]

 \[x,1/4,z \]

 \[(m_y|1/2,1/2,1/2)' \]

Generators selected

1. \((1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2).\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0,0) +)</td>
<td>((1/2,1/2,0) +)</td>
</tr>
</tbody>
</table>

| 4 a 1 | \(x,y,z [u,v,w] \)
| 2 x, y, z+1/2 [u, v, w] |

Symmetry of Special Projections

Along \([0,0,1] \) \(c1m'1 \)

\[a^* = -b \quad b^* = a_p \]

Origin at 0,0,z

Along \([1,0,0] \) \(p1g'1 \)

\[a^* = b/2 \quad b^* = c_p \]

Origin at x,0,0

Along \([0,1,0] \) \(p1 \)

\[a^* = c/2 \quad b^* = a/2 \]

Origin at 0,y,0
CPm1' Monoclinic
9.4.48 C \text{P}1c1

Origin on glide plane c

Asymmetric unit
0 \leq x \leq 1; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1

Symmetry Operations
For (0,0,0) + set

(1) \text{t} (0,0,0) (2) c (0,0,1/2) x,0,z

(m, 0,0,1/2)

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0) (2) n' (1/2,0,1/2) x,1/4,z

(m, 1/2,1/2,1/2)'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0)'; (2).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

4 a 1 (1) x,y,z [u,v,w] (2) x,y,z+1/2 [u,v,w]

Symmetry of Special Projections

Along [0,0,1] \text{c.P}1m1 \quad Along [1,0,0] \ P_{2a11} \quad Along [0,1,0] \ P_{2a1}
\text{a}^* = -b \quad \text{b}^* = a_p \quad \text{a}^* = c/2 \quad \text{b}^* = a/2 + c/2

Origin at 0,0,z \quad \text{Origin at } x,0,0 \quad \text{Origin at } 0,y,0

9.4.48 - 1 - 73
P2/m
10.1.49

2/m
P12/m1

Monoclinic

Origin at center (2/m)

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1
(2) 2 0,y,0
(3) 1 0,0,0
(4) m x,0,z

(1 |0,0,0)
(2 |0,0,0)
(3 |0,0,0)
(4 |0,0,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 n m</td>
<td>x,1/2,z [0,v,0]</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 m m</td>
<td>x,0,z [0,v,0]</td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 l 2</td>
<td>1/2,y,1/2 [0,v,0]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 k 2</td>
<td>0,y,1/2 [0,v,0]</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 j 2</td>
<td>1/2,y,0 [0,v,0]</td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 i 2</td>
<td>0,y,0 [0,v,0]</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections
Along [0,0,1] p2'mm'
Along [1,0,0] p2'mm'
Along [0,1,0] p2111'

\[a^* = -b \quad b^* = a \]

Origin at 0,0;z

Origin at x,0,0

Origin at 0,y,0
Origin at center (2/m1')

Asymmetric unit $0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1$

Symmetry Operations

For 1 + set

1. 1
 $0,0,0$

2. $2,0,y,0$
 $0,0,0$

3. $1$$0,0,0$
 $0,0,0$

4. $m,x,0,z$
 $m,0,0,0$

For 1' + set

1'. $1'$
 $0,0,0$

2'. $2',0,y,0$
 $0,0,0$

3'. $1<0,0,0$
 $0,0,0$

4'. $m',x,0,z$
 $m',0,0,0$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Site Symmetry</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>1'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>2 n</td>
<td>m1'</td>
<td>(2) x,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 m</td>
<td>m1'</td>
<td>(3) x,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 l</td>
<td>21'</td>
<td>(4) x,y,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 k</td>
<td>21'</td>
<td>0,y,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 j</td>
<td>21'</td>
<td>1/2,y,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 i</td>
<td>21'</td>
<td>0,y,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 h</td>
<td>2/m1'</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 g</td>
<td>2/m1'</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 f</td>
<td>2/m1'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 e</td>
<td>2/m1'</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 d</td>
<td>2/m1'</td>
<td>1/2,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 c</td>
<td>2/m1'</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 b</td>
<td>2/m1'</td>
<td>0,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 a</td>
<td>2/m1'</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2mm1' \(a^* = a, \quad b^* = b \)
- Along [1,0,0] p2mm1' \(a^* = b, \quad b^* = c, \quad a^* = c, \quad b^* = a \)

Origin at 0,0,z \(\text{Origin at } x,0,0 \) \(\text{Origin at } 0,y,0 \)
Origin at center (2/m)

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\]

Symmetry Operations

1. \(1\) \(1 \mid 0,0,0\)
2. \(2'\) \(0,0,0\)
3. \(1'\) \(0,0,0\)
4. \(m\) \(x,0,z\)

\(2'/m\) \(2'/m\) Monoclinic

10.3.51 P12'/m1
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positions</td>
<td>Coordinates</td>
</tr>
<tr>
<td>o 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>n m 2</td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>m m 2</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>l 2'</td>
<td>1/2,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>k 2'</td>
<td>0,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>j 2'</td>
<td>1/2,y,0 [u,0,w]</td>
</tr>
<tr>
<td>i 2'</td>
<td>0,y,0 [u,0,w]</td>
</tr>
<tr>
<td>h 2'm</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>g 2'm</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>f 2'/m</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>e 2'/m</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>d 2'/m</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>c 2'/m</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>b 2'/m</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>a 2'/m</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2nm
 - \(a^* = a \)
 - \(b^* = b \)
 - Origin at 0,0,z

- Along [1,0,0] p2mm
 - \(a^* = b \) \(b^* = c \)
 - Origin at x,0,0

- Along [0,1,0] p2111
 - \(a^* = c \) \(b^* = a \)
 - Origin at 0,y,0
Origin at center (2/m')

Asymmetric unit: $0 \leq x < 1/2; \ 0 \leq y < 1/2; \ 0 \leq z \leq 1$

Symmetry Operations:

1. 1
 - $(1, 0, 0, 0)$
2. $2 \ y, 0, 0$
 - $(2, 0, 0, 0)$
3. $T' \ 0, 0, 0$
 - $(3, 0, 0, 0)'$
4. $m' \ x, 0, z$
 - $(4, 0, z, 0)'$
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 o 1</td>
<td>x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 n m'</td>
<td>x,1/2,z [u,0,w]</td>
<td>x,1/2,z [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 m m'</td>
<td>x,0,z [u,0,w]</td>
<td>x,0,z [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 l 2</td>
<td>1/2,y,1/2 [0,v,0]</td>
<td>1/2,y,1/2 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2 k 2</td>
<td>0,y,1/2 [0,v,0]</td>
<td>0,y,1/2 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2 j 2</td>
<td>1/2,y,0 [0,v,0]</td>
<td>1/2,y,0 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2 i 2</td>
<td>0,y,0 [0,v,0]</td>
<td>0,y,0 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>1 h 2/m'</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 g 2/m'</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 f 2/m'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 e 2/m'</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 d 2/m'</td>
<td>1/2,0,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 c 2/m'</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 b 2/m'</td>
<td>0,1/2,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 a 2/m'</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2m'm'
Along [1,0,0] p2m'm'
Along [0,1,0] p211

a* = a b* = b
a* = b b* = c
a* = c b* = a

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin at center (2/m')

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2' 0, y, 0
(2 | 0,0,0)'

(3) 1 0, 0, 0
(1 | 0,0,0)

(4) m' x, 0, z
(m | 0,0,0)'
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Mult.	Wyckoff	Coordinates		Coordinates
-------	---------	----------------------		----------------------
4	o 1	(1) x,y,z [u,v,w]	2	(2) x,y,z [u,v,w]
2	n m'	x,1/2,z [u,0,w]	2	x,1/2,z [u,0,w]
2	m m'	x,0,z [u,0,w]	2	x,0,z [u,0,w]
2	l 2'	1/2,y,1/2 [u,0,w]	2	1/2,y,1/2 [u,0,w]
2	k 2'	0,y,1/2 [u,0,w]	2	0,y,1/2 [u,0,w]
2	j 2'	1/2,y,0 [u,0,w]	2	1/2,y,0 [u,0,w]
2	i 2'	0,y,0 [u,0,w]	2	0,y,0 [u,0,w]
1	h 2'/m'	1/2,1/2,1/2 [u,0,w]	1	1/2,1/2,1/2 [u,0,w]
1	g 2'/m'	1/2,0,1/2 [u,0,w]	1	1/2,0,1/2 [u,0,w]
1	f 2'/m'	0,1/2,1/2 [u,0,w]	1	0,1/2,1/2 [u,0,w]
1	e 2'/m'	1/2,1/2,0 [u,0,w]	1	1/2,1/2,0 [u,0,w]
1	d 2'/m'	1/2,0,0 [u,0,w]	1	1/2,0,0 [u,0,w]
1	c 2'/m'	0,0,1/2 [u,0,w]	1	0,0,1/2 [u,0,w]
1	b 2'/m'	0,1/2,0 [u,0,w]	1	0,1/2,0 [u,0,w]
1	a 2'/m'	0,0,0 [u,0,w]	1	0,0,0 [u,0,w]

Symmetry of Special Projections

Along [0,0,1] p2'm' Along [1,0,0] p2'm' Along [0,1,0] p2'11
\(a^* = a,\ b^* = b\) \(a^* = -c,\ b^* = b\) \(a^* = c,\ b^* = a\)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
P2a 2/m
10.6.54

2/m1′
P2a12/m1

Monoclinic

Origin at center (2/m)

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) 2 0,y,0
(2|0,0,0)

(3) 1 0,0,0
(1|0,0,0)

(4) m x,0,z
(m|0,0,0)

For (1,0,0)′ + set

(1) t′ (1,0,0)
(1|1,0,0)′

(2) 2′ 1/2,y,0
(2|1,0,0)′

(3) 1′ 1/2,0,0
(1|1,0,0)′

(4) a′ (1,0,0) x,0,z
(m|1,0,0)′
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry</td>
<td></td>
</tr>
<tr>
<td>(0,0,0) + (1,0,0)' +</td>
<td></td>
</tr>
<tr>
<td>8 0 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 n m</td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>4 m m</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 l 2'</td>
<td>1/2,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>4 k 2</td>
<td>0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 j 2'</td>
<td>1/2,y,0 [u,0,w]</td>
</tr>
<tr>
<td>4 i 2</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td>2 h 2'/m</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 g 2'/m</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 f 2/m</td>
<td>0,1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td>2 e 2'/m</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 d 2'/m</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 c 2/m</td>
<td>0,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>2 b 2/m</td>
<td>0,1/2,0 [0,v,0]</td>
</tr>
<tr>
<td>2 a 2/m</td>
<td>0,0,0 [0,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_2a,2mm
\[a^* = a, \quad b^* = b \]
Origin at 1/2,0,z

Along [1,0,0] p2mm1'
\[a^* = b, \quad b^* = c \]
Origin at x,0,0

Along [0,1,0] p2111'
\[a^* = c, \quad b^* = a \]
Origin at 0,y,0
Origin at center (2/m)

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) \(\bar{1} \)
(0,0,0)

(2) \(2 \)
0,y,0

(3) \(\bar{1} \)
0,0,0

(4) \(m \)
x,0,z

\((m,0,0) \)

For (0,1,0)' + set

(1) \(t' \)
(0,1,0)

(2) \(2' \)
(0,1,0)'

(3) \(\bar{1}' \)
0,1/2,0

(4) \(m' \)
x,1/2,z

\((m',0,1,0)' \)
Generators selected (1); t(1,0,0); t(0,1,0)'; t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 n m'</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>4 m m</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 l 2</td>
<td>1/2,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 k 2</td>
<td>0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 j 2</td>
<td>1/2,y,0 [0,v,0]</td>
</tr>
<tr>
<td>4 i 2</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td>2 h 2/m'</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 g 2/m</td>
<td>1/2,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>2 f 2/m'</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 e 2/m'</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 d 2/m</td>
<td>1/2,0,0 0,v,0</td>
</tr>
<tr>
<td>2 c 2/m</td>
<td>0,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>2 b 2/m'</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 a 2/m</td>
<td>0,0,0 [0,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin at 0,1/2,z</th>
<th>Origin at x,1/2,0</th>
<th>Origin at 0,y,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = -b)</td>
<td>(b^* = a_p)</td>
<td>(a^* = c)</td>
</tr>
<tr>
<td>(b^* = a_p)</td>
<td>(a^* = b)</td>
<td>(b^* = a)</td>
</tr>
</tbody>
</table>
Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \\
& \quad (1 | 0,0,0)
\end{align*}
\]

\[
\begin{align*}
(2) & \quad 2 \quad 0,y,0 \\
& \quad (0,0,0)
\end{align*}
\]

\[
\begin{align*}
(3) & \quad \overline{1} \quad 0,0,0 \\
& \quad (1 | 0,0,0)
\end{align*}
\]

\[
\begin{align*}
(4) & \quad m \quad x,0,z \\
& \quad (0,0,0)
\end{align*}
\]

For \((1,0,0) + \) set

\[
\begin{align*}
(1) & \quad t' \quad (1,0,0) \\
& \quad (1 | 1,0,0)
\end{align*}
\]

\[
\begin{align*}
(2) & \quad 2' \quad 1/2,y,0 \\
& \quad (0,0,0)
\end{align*}
\]

\[
\begin{align*}
(3) & \quad \overline{1}' \quad 1/2,0,0 \\
& \quad (1 | 0,0,0)
\end{align*}
\]

\[
\begin{align*}
(4) & \quad a' \quad (1,0,0) \quad x,0,z \\
& \quad (0,0,0)
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Coordinates
Wyckoff letter, (0,0,0) + (1,0,0)' +
Site Symmetry.

(0,0,0) + (1,0,0)'
(0,0,0) + (1,0,0)

8 o 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w]
4 n m' x,1/2,z [u,0,w] x,1/2,z [u,0,w]
4 m m x,0,z [0,v,0] x,0,z [0,v,0]
4 l 2' 1/2,y,1/2 [u,0,w] 1/2,y,1/2 [u,0,w]
4 k 2 0,y,1/2 [0,v,0] 0,y,1/2 [0,v,0]
4 j 2' 1/2,y,0 [u,0,w] 1/2,y,0 [u,0,w]
4 i 2 0,y,0 [0,v,0] 0,y,0 [0,v,0]
2 h 2'/m' 1/2,1/2,1/2 [u,0,w]
2 g 2'/m 1/2,0,1/2 [0,0,0]
2 f 2/m' 0,1/2,1/2 [0,0,0]
2 e 2'/m' 1/2,1/2,0 [u,0,w]
2 d 2'/m 1/2,0,0 [0,0,0]
2 c 2/m 0,0,1/2 [0,v,0]
2 b 2'/m' 0,1/2,0 [0,0,0]
2 a 2/m 0,0,0 [0,v,0]

Symmetry of Special Projections

Along [0,0,1] p_2mm Along [1,0,0] p_2mm1' Along [0,1,0] p2_11
\[a^* = a, \quad b^* = b\] \[a^* = b, \quad b^* = c, \quad a = c, \quad b^* = a\]
Origin at 1/2,0,z Origin at x,0,0 Origin at 0,y,0
\[P_{2b}\ 2'/m \]

Origin at center (2'/m)

Asymmetric unit \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1 \)

Symmetry Operations

For \((0,0,0)\) + set

\[(1) \ 1 \quad (2) \ 2' \quad (3) \ \bar{1}' \quad (4) \ m \]
\[(1 \ 0,0,0) \quad (2 \ y,0,0) \quad (3 \ |0,0,0) \bar{1}' \quad (m \ x,0,z) \]

For \((0,1,0)'\) + set

\[(1) \ t' \quad (2) \ 2 \quad (3) \ \bar{1} \quad (4) \ m' \]
\[(1 \ 0,1,0) \quad (2 \ y,0,0) \quad (3 \ |0,0,0) \bar{1} \quad (m' \ x,1/2,z) \]

\[2/m1' \]

\[P_{2b12'/m1} \]

Monoclinic
Generators selected (1); t(1,0,0); t(0,1,0)'; t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>(0,0,0) +</th>
<th>(0,1,0) ' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 n m'</td>
<td>x,1/2,z [u,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 m m</td>
<td>x,0,z [0,v,0]</td>
<td>x,1/2,z [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 l 2'</td>
<td>1/2,y,1/2 [u,0,w]</td>
<td>1/2,y,1/2 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 k 2'</td>
<td>0,y,1/2 [u,0,w]</td>
<td>0,y,1/2 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 j 2'</td>
<td>1/2,y,0 [u,0,w]</td>
<td>1/2,y,0 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 i 2'</td>
<td>0,y,0 [u,0,w]</td>
<td>0,y,0 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 h 2'/m'</td>
<td>1/2,1/2,1/2 [u,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 g 2'/m</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 f 2'/m'</td>
<td>0,1/2,1/2 [u,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 e 2'/m'</td>
<td>1/2,1/2,0 [u,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 d 2'/m</td>
<td>1/2,0,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c 2'/m</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b 2'/m'</td>
<td>0,1/2,0 [u,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a 2'/m</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_{2a}.2mm Along [1,0,0] p_{2a}.2mm Along [0,1,0] p_{2111}'
\(\mathbf{a}^\ast = -\mathbf{b} \quad \mathbf{b}^\ast = \mathbf{a} _p \)
\(\mathbf{a}^\ast = \mathbf{b} \quad \mathbf{b}^\ast = \mathbf{c} _p \)
\(\mathbf{a}^\ast = \mathbf{c} \quad \mathbf{b}^\ast = \mathbf{a} \)
Origin at 0,1/2,z
Origin at x,1/2,0
Origin at 0,y,0
Symmetry Operations

For \((0,0,0) \) + set

1. \(\bar{1} \) \((1|0,0,0) \)
2. \(2 \) \(0,y,0 \)
3. \(\bar{1} \) \(0,0,0 \)
4. \(m' \) \(x,0,z \)

For \((0,0,1)' \) + set

1. \(\bar{1} \) \((0,0,1) \)
2. \(2' \) \(0,y,1/2 \)
3. \(\bar{1} \) \(0,0,1/2 \)
4. \(c \) \((0,0,1) \)

Origin at center (\(2/m' \))

Asymmetric unit

\(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (0,0,1)’ +</td>
</tr>
<tr>
<td>4 n m’</td>
<td>x,1/2,z [u,0,w]</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>4 m’</td>
<td>x,0,z [u,0,w]</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>4 l 2’</td>
<td>1/2,y,1/2 [u,0,w]</td>
<td>1/2,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>4 k 2’</td>
<td>0,y,1/2 [u,0,w]</td>
<td>0,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>4 j 2</td>
<td>1/2,y,0 [0,v,0]</td>
<td>1/2,y,0 [0,v,0]</td>
</tr>
<tr>
<td>4 i 2</td>
<td>0,y,0 [0,v,0]</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td>2 h 2’/m’</td>
<td>1/2,1/2,1/2 [u,0,w]</td>
<td>2 g 2’/m’ 1/2,0,1/2 [u,0,w]</td>
</tr>
<tr>
<td>2 f 2’/m’</td>
<td>0,1/2,1/2 [u,0,w]</td>
<td>2 e 2/m’ 1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 d 2/m’</td>
<td>1/2,0,0 [0,0,0]</td>
<td>2 c 2’/m’ 0,0,1/2 [u,0,w]</td>
</tr>
<tr>
<td>2 b 2/m’</td>
<td>0,1/2,0 [0,0,0]</td>
<td>2 a 2/m’ 0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2mm1’
 \[a^* = a_b \quad b^* = b \]
 Origin at 0,0,z

- Along [1,0,0] p2a-2m’m’
 \[a^* = -c_b \quad b^* = b \]
 Origin at 0,y,0

- Along [0,1,0] p2a-211
 \[a^* = c \quad b^* = a \]
 Origin at x,0,0
Origin at 1 on 2₁

Asymmetric unit

\[0 < x < 1; \quad 0 < y < \frac{1}{4}; \quad 0 < z < 1 \]

Symmetry Operations

(1) 1
(2) \(\bar{2} \quad (0,1/2,0) \quad 0,y,0 \)
(3) \(\bar{1} \quad 0,0,0 \)
(4) \(m \quad x,1/4,z \)
(1) \((0,0,0) \)
(2) \((2_y,0,1/2,0) \)
(3) \((1,0,0,0) \)
(4) \((m,0,1/2,0) \)
Generators selected (1); (1,0,0); (0,1,0); (0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>2 e m</td>
<td>x,1/4,z [0,v,0]</td>
<td>x,3/4,z [0,v,0]</td>
</tr>
<tr>
<td>2 d 1</td>
<td>1/2,0,1/2 [u,v,w]</td>
<td>1/2,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td>2 c 1</td>
<td>0,0,1/2 [u,v,w]</td>
<td>0,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td>2 b 1</td>
<td>1/2,0,0 [u,v,w]</td>
<td>1/2,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>2 a 1</td>
<td>0,0,0 [u,v,w]</td>
<td>0,1/2,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'mg'
\(a^* = -b \quad b^* = a_p \)

Origin at 0,0,z

Along [1,0,0] p2'mg'
\(a^* = b \quad b^* = c_p \)

Origin at x,0,0

Along [0,1,0] p2111'
\(a^* = c \quad b^* = a \)

Origin at 0,y,0
Origin at $1'$ on 2_1'

Asymmetric unit $0 \leq x \leq 1$; $0 \leq y \leq 1/4$; $0 \leq z \leq 1$

Symmetry Operations

For 1 + set

1. 1
 $(1 \mid 0,0,0)$

2. 2
 $(2 \mid 0,1/2,0)$, $0,y,0$
 $(2_g \mid 0,1/2,0)$

3. m
 $(3 \mid 0,0,0)$
 $(m \mid 0,1/2,0)$

For 1' + set

1. $1'$
 $(1 \mid 0,0,0)'$

2. $2'$
 $(2 \mid 0,1/2,0)$, $0,y,0$
 $(2_g \mid 0,1/2,0)'$

3. m'
 $(3 \mid 0,0,0)'$
 $(m \mid 0,1/2,0)'$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1'.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>1 +</td>
</tr>
<tr>
<td>4 f 11' (1) x,y,z [0,0,0]</td>
<td>(2) x,y+1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 e m1' x,1/4,z [0,0,0]</td>
<td>x,3/4,z [0,0,0]</td>
</tr>
<tr>
<td>2 d 1' 1/2,0,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c 1' 0,0,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b 1' 1/2,0,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 a 1' 0,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg1'
Along [1,0,0] p2mg1'
Along [0,1,0] p2111'
\(a^* = -b\) \(b^* = a_p\)
\(a^* = b\) \(b^* = c_p\)
\(a^* = c\) \(b^* = a\)
Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin at 1 on 2

Asymmetric unit
0 ≤ x ≤ 1; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2' (0,1/2,0) 0,y,0
(2_2 | 0,1/2,0)

(3) 1' 0,0,0
(1 | 0,0,0)

(4) m x,1/4,z
(m_2 | 0,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>4 f 1 (1) x,y,z [u,v,w]</td>
<td>(2) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>2 e m x,1/4,z [0,v,0]</td>
<td>x,3/4,z [0,v,0]</td>
</tr>
<tr>
<td>2 d 1/2,0,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c 0,0,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b 1/2,0,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 a 0,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2mg
 \(\mathbf{a}^* = -\mathbf{b} \quad \mathbf{b}^* = \mathbf{a} \)
 Origin at 0,0,z

- Along [1,0,0] p2mg
 \(\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \)
 Origin at x,0,0

- Along [0,1,0] p2111'
 \(\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = \mathbf{a} \)
 Origin at 0,y,0
Origin at \(\overline{1} \) on 2₁

Asymmetric unit
\[0 \leq x \leq 1; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1 \]

Symmetry Operations

1. \(1 \)
 \((1 \mid 0,0,0) \)

2. \(2 \)
 \((2_y \mid 0,1/2,0) \)

3. \(\overline{1} \)
 \((1 \mid 0,0,0)' \)

4. \(m' \)
 \((m_y \mid 0,1/2,0)' \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>(1) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(2) x, y + 1/2, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(3) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(4) x, y + 1/2, z [u, v, w]</td>
</tr>
<tr>
<td>e</td>
<td>m'</td>
</tr>
<tr>
<td></td>
<td>x, 1/4, z [u, 0, w]</td>
</tr>
<tr>
<td>d</td>
<td>t'</td>
</tr>
<tr>
<td></td>
<td>1/2, 0, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>c</td>
<td>t'</td>
</tr>
<tr>
<td></td>
<td>0, 0, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>b</td>
<td>t'</td>
</tr>
<tr>
<td></td>
<td>1/2, 0, 0 [0, 0, 0]</td>
</tr>
<tr>
<td>a</td>
<td>t'</td>
</tr>
<tr>
<td></td>
<td>0, 0, 0 [0, 0, 0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0, 0, 1] p2m'g' Along [1, 0, 0] p2m'g' Along [0, 1, 0] p211'
\[a^* = -b, \quad b^* = a_p \] \[a^* = b, \quad b^* = c_p \] \[a^* = c, \quad b^* = a \]
Origin at 0, 0, z Origin at x, 0, 0 Origin at 0, y, 0
Origin at 1 on 2pr

Asymmetric unit

0 \leq x \leq 1; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2pr (0,1/2,0) 0,y,0
(2y | 0,1/2,0)’

(3) 1 0,0,0
(1 | 0,0,0)

(4) m’ x,1/4,z
(my | 0,1/2,0)’

P21,’/m’

11.5.63

P12, ’/m’1

Monoclinic
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 f 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y+1/2,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>2 e m'</td>
<td>x,1/4,z [u,0,w] x,3/4,z [u,0,w]</td>
</tr>
<tr>
<td>2 d</td>
<td>1/2,0,1/2 [u,v,w] 1/2,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td>2 c</td>
<td>0,0,1/2 [u,v,w] 0,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td>2 b</td>
<td>1/2,0,0 [u,v,w] 1/2,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>2 a</td>
<td>0,0,0 [u,v,w] 0,1/2,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'm'g
Along [1,0,0] p2'm'g
Along [0,1,0] p2'11

\[a^* = -b \quad b^* = a \]

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin at \(\bar{1} \) on \(2_1 \)

Asymmetric unit:
\[0 < x < 1; \quad 0 < y < 1/4; \quad 0 < z < 1 \]

Symmetry Operations

For \((0,0,0)\) + set:

(1) \(\bar{1} \)
(1) \((0,0,0)\)

(2) \(2(0,1/2,0) \)
(2) \((0,1/2,0)\)

(3) \(\bar{1}(0,0,0) \)
(3) \((0,0,0)\)

(4) \(m \)
(4) \((x,1/4,z)\)
\((m_y,0,1/2,0)\)

For \((1,0,0)\)' + set:

(1) \(t' \)
(1) \((1,0,0)\)'

(2) \(2'(0,1/2,0) \)
(2) \((0,1/2,0)\)'

(3) \(\bar{1}' \)
(3) \((1/2,0,0)\)'

(4) \(a' \)
(4) \((x,1/4,z)\)
\((m_y,1,1/2,0)\)'
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 e m</td>
<td>x,1/4,z [0,v,0]</td>
</tr>
<tr>
<td>4 d 1</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c 1</td>
<td>0,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2b.2mg</th>
<th>Along [1,0,0]</th>
<th>p2mg1'</th>
<th>Along [0,1,0]</th>
<th>p2111'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -b</td>
<td>b* = a_p</td>
<td>a* = b</td>
<td>b* = c_p</td>
<td>a* = c</td>
<td>b* = a</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin at \(\overline{1} \) on \(2_1 \)

Asymmetric unit

\(0 \leq x \leq 1; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1 \)

Symmetry Operations

For \((0,0,0) + \) set

1. \(1 \)
 \((1|0,0,0) \)

2. \(1 \)
 \((0,1/2,0) \)
 \((2|0,1/2,0) \)

3. \(\bar{1} \)
 \((0,0,0) \)
 \((0,0,0)' \)

4. \(m' \)
 \(x,1/4,z \)
 \((0,1/2,0)' \)

For \((0,0,1)' + \) set

1. \(t' \)
 \((0,0,1) \)
 \((1|0,0,1)' \)

2. \(2' \)
 \((0,1/2,0) \)
 \((2|0,1/2,1)' \)

3. \(\bar{1} \)
 \((0,0,1/2) \)
 \((0,0,1) \)

4. \(c \)
 \((0,0,1) \)
 \(x,1/4,z \)
 \((0,1/2,1) \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(0,0,0) + (0,0,1) +</td>
</tr>
<tr>
<td>4 e m'</td>
<td></td>
</tr>
<tr>
<td>4 d (\bar{1})</td>
<td></td>
</tr>
<tr>
<td>4 c (\bar{1})</td>
<td></td>
</tr>
<tr>
<td>4 b (\bar{1})</td>
<td></td>
</tr>
<tr>
<td>4 a (\bar{1})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg1'
Along [1,0,0] p2inv2m'g'
Along [0,1,0] p2a*211
\(a^* = -b \) \(b^* = a_p \)
\(a^* = b \) \(b^* = c_p \)
\(a^* = c \) \(b^* = a \)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at center \((2/m)\)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) \ 1 & \quad (2) \ 2 \ 0,y,0 & \quad (3) \ \bar{1} \ 0,0,0 \\
(1,0,0,0) & \quad (2,0,0,0) & \quad (1,0,0,0) \\
(4) \ m \ x,0,z & \quad (m,0,0,0)
\end{align*}
\]

For \((1/2,1/2,0) + \) set

\[
\begin{align*}
(1) \ t & \quad (2) \ 2 \ (0,1/2,0) \ 1/4,y,0 & \quad (3) \ \bar{1} \ 1/4,1/4,0 \\
(1,1/2,1/2,0) & \quad (2,1/2,1/2,0) & \quad (1,1/2,1/2,0) \\
(4) \ a \ (1/2,0,0) \ x,1/4,z & \quad (m,1/2,1/2,0)
\end{align*}
\]
Continued 12.1.66 C2/m

Generators selected (1); t(1,0,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 j 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
<td>(0,0,0) + (1/2,1/2,0) +</td>
</tr>
<tr>
<td>4 i m</td>
<td>x,0,z [0,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 h 2</td>
<td>0,y,1/2 [0,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 g 2</td>
<td>0,y,0 [0,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 f 1</td>
<td>1/4,1/4,1/2 [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 e 1</td>
<td>1/4,1/4,0 [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 d 2/m</td>
<td>0,1/2,1/2 [0,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c 2/m</td>
<td>0,0,1/2 [0,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b 2/m</td>
<td>0,1/2,0 [0,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a 2/m</td>
<td>0,0,0 [0,v,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2' mm'</th>
<th>Along [1,0,0]</th>
<th>p2' mm'</th>
<th>Along [0,1,0]</th>
<th>p2111'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = -b</td>
<td>b' = a_p</td>
<td>a' = b/2</td>
<td>b' = c_p</td>
<td>a' = c</td>
<td>b' = a/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
C2/m1' 2/m1' Monoclinic

12.2.67 C12/m11'

Origin at center (2/m1')

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1 (1|0,0,0) (2) 2' 0,y,0 (2'|0,0,0) (3) 1' 0,0,0 (1'|0,0,0) (4) m x,0,z (m|0,0,0)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0) (1|1/2,1/2,0) (2) 2 (0,1/2,0) 1/4,y,0 (2'|1/2,1/2,0) (3) 1 1/4,1/4,0 (1|1/2,1/2,0) (4) a (1/2,0,0) x,1/4,z (m|1/2,1/2,0)

For (0,0,0)' + set

(1) 1' (1|0,0,0)' (2) 2' 0,y,0 (2'|0,0,0)' (3) 1' 0,0,0 (1'|0,0,0)' (4) m' x,0,z (m|0,0,0)'

For (1/2,1/2,0) + set

(1) t' (1/2,1/2,0) (1|1/2,1/2,0) (2) 2' (0,1/2,0) 1/4,y,0 (2'|1/2,1/2,0) (3) 1' 1/4,1/4,0 (1|1/2,1/2,0) (4) a' (1/2,0,0) x,1/4,z (m|1/2,1/2,0)'

12.2.67 - 1 - 110
Generators selected

(1); t(1,0,0); t(0,0,1); t(1/2,1/2,0); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 j 11' (1) x,y,z [0,0,0]</td>
<td>(0,0,0) + (1/2,1/2,0) + (0,0,0)' + (1/2,1/2,0)' +</td>
</tr>
<tr>
<td>4 i m1' x,0,z [0,0,0]</td>
<td>x,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 h 21' 0,y,1/2 [0,0,0]</td>
<td>0,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 g 21' 0,y,0 [0,0,0]</td>
<td>0,y,0 [0,0,0]</td>
</tr>
<tr>
<td>4 f 11' 1/4,1/4,1/2 [0,0,0]</td>
<td>3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 e 11' 1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>2 d 2/m1' 0,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 c 2/m1' 0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 b 2/m1' 0,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 2/m1' 0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] c2mm1'
 a* = a b* = b

- Along [1,0,0] p2mm1'
 a* = b/2 b* = c

- Along [0,1,0] p2111'
 a* = c b* = a/2

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
C2'/m 2'/m Monoclinic

12.3.68 C12'/m1

Origin at center (2'/m)

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1 (2) 2' 0,y,0 (3) 1 (4) m x,0,z
 (1|0,0,0) (2'|0,0,0) (1|0,0,0)' (m|0,0,0)

For (1/2,1/2,0) + set

(1) t (2) 2' (0,1/2,0) 1/4,y,0 (3) 1' 1/4,1/4,0 (4) a (1/2,0,0) x,1/4,z
 (1|1/2,1/2,0) (2'|1/2,1/2,0) (1'|1/2,1/2,0)' (m|1/2,1/2,0)

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 j 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x̄,y,z [ū,v̄,w]</td>
<td>(3) x̄,y,z [ū,v̄,w]</td>
</tr>
<tr>
<td>4 i m</td>
<td>x,0,z [0,v,0]</td>
<td>x̄,0,z [0̄,v̄,0]</td>
<td></td>
</tr>
<tr>
<td>4 h 2'</td>
<td>0,y,1/2 [u,0,w]</td>
<td>0̄,y,1/2 [ū,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 g 2'</td>
<td>0,y,0 [u,0,w]</td>
<td>0̄,y,0 [ū,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 f 1̊</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
<td>3/4,1/4,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 e 1̊</td>
<td>1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 d 2'/m</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c 2'/m</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b 2'/m</td>
<td>0,1/2,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a 2'/m</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm Along [1,0,0] p2mm Along [0,1,0] p2111'

\(\mathbf{a}^* = \mathbf{a}, \mathbf{b}^* = \mathbf{b} \) \(\mathbf{a}^* = \mathbf{b}/2, \mathbf{b}^* = \mathbf{c}, \mathbf{c}^* = \mathbf{a}/2 \)

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
C2/m' 2/m' Monoclinic

12.4.69 12.4.69 C12/m'1

Origin at center (2/m')

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2 0,y,0
(3) 1' 0,0,0
(4) m' x,0,z

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(2) 2 (0,1/2,0) 1/4,y,0
(3) 1' 1/4,1/4,0
(4) a' (1/2,0,0) x,1/4,z

(1) 1 (0,0,0)
(2) 2 (0,0,0)
(3) 1' (0,0,0)'
(4) m' (0,0,0)'

(1) t (1/2,1/2,0)
(2) 2 (1/2,0,0)
(3) 1' (1/2,1/2,0)'
(4) a' (1/2,1/2,0) x,1/4,z

(m, 1/2, 0, 0)'

(m, 1/2, 1/2, 0)'
Generators selected
(1); t(1,0,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Position

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 j 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 i m'</td>
<td>x,0,z [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 h 2</td>
<td>0,y,1/2 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 g 2</td>
<td>0,y,0 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 f 1/4,1/4,1/2 [0,0,0]</td>
<td>3/4,1/4,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 e 1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 d 0,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c 0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b 0,1/2,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a 0,0,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] c2m' a* = a, b* = b
- Along [1,0,0] p2m' a* = b/2, b* = c
- Along [0,1,0] p211 a* = c, b* = a/2

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
C2′/m′ 2′/m′ Monoclinic

12.5.70
C12′/m′1

Origin at center (2′/m′)

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) \(1\)
\(0,0,0\)

(2) \(2′\) \(y,0,0\)
\(0,0,0′\)

(3) \(\bar{1}\) \(0,0,0\)

(4) \(m′\) \(x,0,z\)
\(m′,0,0′\)

For (1/2,1/2,0) + set

(1) \(t\) \(1/2,1/2,0\)
\(1/2,1/2,0\)

(2) \(2′\) \(0,1/2,0\)
\(1/4,y,0\)

(3) \(\bar{1}\) \(1/4,1/4,0\)

(4) \(a′\) \(1/2,0,0\)
\(x,1/4,z\)
\(m′,1/2,1/2,0′\)

\(1/2,1/2,0′\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions
Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 j 1</td>
<td>(1) x,y,z ([u,v,w])</td>
</tr>
<tr>
<td>4 i m'</td>
<td>x,0,z ([u,0,w])</td>
</tr>
<tr>
<td>4 h 2'</td>
<td>0,y,1/2 ([u,0,w])</td>
</tr>
<tr>
<td>4 g 2'</td>
<td>0,y,0 ([u,0,w])</td>
</tr>
<tr>
<td>4 f 1</td>
<td>1/4,1/4,1/2 ([u,v,w])</td>
</tr>
<tr>
<td>4 e 1</td>
<td>1/4,1/4,0 ([u,v,w])</td>
</tr>
<tr>
<td>2 d 2'/m'</td>
<td>0,1/2,1/2 ([u,0,w])</td>
</tr>
<tr>
<td>2 c 2'/m'</td>
<td>0,0,1/2 ([u,0,w])</td>
</tr>
<tr>
<td>2 b 2'/m'</td>
<td>0,1/2,0 ([u,0,w])</td>
</tr>
<tr>
<td>2 a 2'/m'</td>
<td>0,0,0 ([u,0,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>c2'm'</td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>p2'm'</td>
</tr>
<tr>
<td>Along [0,1,0]</td>
<td>p2'11</td>
</tr>
</tbody>
</table>

\[\mathbf{a}^* = \mathbf{a}_\perp, \quad \mathbf{b}^* = \mathbf{b} \]

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
C\textsubscript{2c}2/m
12.6.71
C\textsubscript{2c}12/m1

Monoclinic

Origin at center (2/m)

Asymmetric unit
0 \leq x \leq 1/2; 0 \leq y \leq 1/4; 0 \leq z \leq 1

Symmetry Operations

For (0,0,0) + set

(1) \text{1}
(1 | 0,0,0)

(2) \text{2} y,0,0
(2 | 0,0,0)

(3) \text{1} 0,0,0
(1 | 0,0,0)

(4) \text{m} x,0,z
(m | 0,0,0)

For (1/2,1/2,0) + set

(1) \text{t} (1/2,1/2,0)
(1 | 1/2,1/2,0)

(2) \text{2} (0,1/2,0) 1/4,y,0
(2 | 1/2,1/2,0)

(3) \text{1} 1/4,1/4,0
(1 | 1/2,1/2,0)

(4) \text{a} (1/2,0,0) x,1/4,z
(m | 1/2,1/2,0)

For (0,0,1) + set

(1) \text{t} (0,0,1)
(1 | 0,0,1)

(2) \text{2} y,1/2
(2 | 0,0,1)

(3) \text{1} 0,0,1/2
(1 | 0,0,1)

(4) \text{c} (0,0,1) x,0,z
(m | 0,0,1)

For (1/2,1/2,1) + set

(1) \text{t} (1/2,1/2,1)
(1 | 1/2,1/2,1)

(2) \text{2} (0,1/2,0) 1/4,y,1/2
(2 | 1/2,1/2,1)

(3) \text{1} 1/4,1/4,1/2
(1 | 1/2,1/2,1)

(4) \text{n} (1/2,0,1) x,1/4,z
(m | 1/2,1/2,1)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v]</td>
</tr>
<tr>
<td>8 i m</td>
<td>0,0,z [0,v,0]</td>
<td>(3) x,y,z [u,v,w]</td>
<td>(4) x,y,z [u,v]</td>
</tr>
<tr>
<td>8 h 2'</td>
<td>0,y,1/2 [u,0,w]</td>
<td>0,y,1/2 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 g 2</td>
<td>0,y,0 [0,v,0]</td>
<td>0,y,0 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 f 1'</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
<td>3/4,1/4,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 e 1</td>
<td>1/4,1/4,0 [u,v,0]</td>
<td>3/4,1/4,0 [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 d 2/m</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 c 2/m</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 b 2/m</td>
<td>0,1/2,0 [0,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 a 2/m</td>
<td>0,0,0 [0,v,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] c2mm1'
 \(a^* = a \quad b^* = b \)
- Along [1,0,0] p2111'
 \(a^* = b/2 \quad b^* = c \)
- Along [0,1,0]
 \(a^* = c \quad b^* = a/2 \)

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin at center (2/m)

Asymmetric unit \(0 \leq x \leq 1/2;\) \(0 \leq y \leq 1/4;\) \(0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0) + \) set

1. \((1) 1 \) \((0,0,0)\)
 \((1) 0,0,0\)

2. \((2) 2 \) \(0,y,0\)
 \((2,0,0,0)\)

3. \((3) \bar{1} \) \(0,0,0\)
 \((1,0,0,0)\)

4. \((4) m \) \(x,0,z\)
 \((m,0,0,0)\)

For \((1/2,1/2,0) + \) set

1. \((1) t' \) \((1/2,1/2,0)\)
 \((1,1/2,1,2,0)\)

2. \((2) 2' \) \((0,1/2,0)\) \(1/4,y,0\)
 \((2,1/4,1/2,0)\)

3. \((3) \bar{1}' \) \(1/4,1/4,0\)
 \((1,1/2,1/2,0)\)

4. \((4) a' \) \((1/2,0,0)\) \(x,1/4,z\)
 \((m,0,0,0)\)

\[
\text{CP2/m} \quad \text{2/m1'} \quad \text{Monoclinic}
\]

\[
12.7.72 \quad \text{C} \quad 12/m1
\]
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 j 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (1/2,1/2,0)’ +</td>
</tr>
<tr>
<td>4 i m</td>
<td>x,0,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 h 2</td>
<td>0,y,1/2 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 g 2</td>
<td>0,y,0 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 f 1/1</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 e 1/1</td>
<td>1/4,1/4,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 d 2/m</td>
<td>0,1/2,1/2 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2 c 2/m</td>
<td>0,0,1/2 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2 b 2/m</td>
<td>0,1/2,0 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 2/m</td>
<td>0,0,0 [0,v,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \[c_p \cdot 2 \cdot \text{mm}^1\] \[a^* = -b, \quad b^* = a_p\] Origin at 0,0,z
Along [1,0,0] \[p2 \cdot \text{mm}^1\] \[a^* = b/2, \quad b^* = c_p\] Origin at x,0,0
Along [0,1,0] \[p2111^*\] \[a^* = c, \quad b^* = a/2\] Origin at 0,y,0
Origin at center \((2/m')\)

Asymmetric unit \(0 \leq x \leq 1/2;\) \(0 \leq y \leq 1/4;\) \(0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0) + \text{ set}\)

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 0, y, 0 \\
(3) & \quad 0, 0, 0 \\
(4) & \quad m', x, 0, z
\end{align*}
\]

For \((1/2,1/2,0) + \text{ set}\)

\[
\begin{align*}
(1) & \quad t \\
(2) & \quad 0, 1/2, 0 \\
(3) & \quad 1/4, 1/4, 0 \\
(4) & \quad a'(1/2, 0, 0)
\end{align*}
\]

For \((0,0,1)' + \text{ set}\)

\[
\begin{align*}
(1) & \quad t' \\
(2) & \quad 0, 0, 1/2 \\
(3) & \quad 0, 0, 1 \\
(4) & \quad c(0, 0, 1)
\end{align*}
\]

For \((1/2,1/2,1)' + \text{ set}\)

\[
\begin{align*}
(1) & \quad t' \\
(2) & \quad 0, 1/2, 0 \\
(3) & \quad 1/4, 1/4, 1/2 \\
(4) & \quad n(1/2, 0, 1)
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>(0,0,1) +</td>
<td>(1/2,1/2,1) +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generators</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1'
\(a^* = a\) \(b^* = b\)
Origin at 0,0,z

Along [1,0,0] p22z2m'm'
\(a^* = -c\) \(b^* = b/2\)
Origin at x,0,0

Along [0,1,0] p2z2.211
\(a^* = c\) \(b^* = a/2\)
Origin at 0,y,0
Origin at center (2'/m)

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

1. 1
 (1 | 0,0,0)
 (2) 2' 0,y,0
 (3) 1' 0,0,0
 (4) m x,0,z

 (1 | 0,0,0)'
 (2 y | 0,0,0)'
 (1 & 0,0,0)'
 (m y | 0,0,0)

For (1/2,1/2,0)' + set

1. t' (1/2,1/2,0)
 (1 | 1/2,1/2,0)'

2. 2 (0,1/2,0) 1/4,y,0
 (2 | 1/2,1/2,0)

3. 1' 1/4,1/4,0
 (1 | 1/2,1/2,0)'

4. a' (1/2,0,0) x,1/4,z
 (m | 1/2,1/2,0)'

C_p2'/m 2m1' Monoclinic
12.9.74 C_p12'/m1
Generators selected \((1); t(1,0,0); t(0,0,1); t(1/2,1/2,0)'; (2); (3).\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 j 1</td>
<td>(x,y,z)</td>
<td>([u,v,w])</td>
</tr>
<tr>
<td>4 i m</td>
<td>(x,0,z)</td>
<td>([0,v,0])</td>
</tr>
<tr>
<td>4 h 2'</td>
<td>0,y,1/2</td>
<td>([u,0,w])</td>
</tr>
<tr>
<td>4 g 2'</td>
<td>0,y,0</td>
<td>([u,0,w])</td>
</tr>
<tr>
<td>4 f 1</td>
<td>1/4,1/4,1/2</td>
<td>([u,v,w])</td>
</tr>
<tr>
<td>4 e 1</td>
<td>1/4,1/4,0</td>
<td>([u,v,w])</td>
</tr>
<tr>
<td>2 d 2'/m</td>
<td>0,1/2,1/2</td>
<td>([0,0,0])</td>
</tr>
<tr>
<td>2 c 2'/m</td>
<td>0,0,1/2</td>
<td>([0,0,0])</td>
</tr>
<tr>
<td>2 b 2'/m</td>
<td>0,1/2,0</td>
<td>([0,0,0])</td>
</tr>
<tr>
<td>2 a 2'/m</td>
<td>0,0,0</td>
<td>([0,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: \(c_{\parallel}2\text{mm}\)
- **Along [1,0,0]**: \(p_{22}\cdot2\text{mm}\)
- **Along [0,1,0]**: \(p2111'\)

\(a^* = a\), \(b^* = b\)
\(a^* = b/2\), \(b^* = c\)
\(a^* = c\), \(b^* = a/2\)
C\textsubscript{p}2/m'

12.10.75

2/m1'

Monoclinic

C\textsubscript{p}12/m1'

Origin at center (2/m')

Asymmetric unit

\[0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{4}; \quad 0 < z < 1 \]

Symmetry Operations

For (0,0,0) + set

(1) \textbf{1} \hspace{1cm} (2) \textbf{2} \hspace{1cm} (3) \textbf{1}' \hspace{1cm} (4) \textbf{m}'

\begin{align*}
(1) \text{ (0,0,0)} \hspace{1cm} (2) \text{ (0,y,0)} \hspace{1cm} (3) \text{ (0,0,0)'} \hspace{1cm} (4) \text{ (x,0,z)}
\end{align*}

(1) \text{ (1/2,1/2,0)} \hspace{1cm} (2) \text{ (0,1/2,0)} \hspace{1cm} (3) \text{ (1/4,1/4,0)} \hspace{1cm} (4) \text{ (1/2,0,0)}

\begin{align*}
(1) \text{ (1/2,1/2,0)'} \hspace{1cm} (2) \text{ (1/2,1/2,0)'} \hspace{1cm} (3) \text{ (1/2,1/2,0)'} \hspace{1cm} (4) \text{ (1/2,1/2,0)'}
\end{align*}

For (1/2,1/2,0) + set

\begin{align*}
(1) \text{ (1/2,1/2,0)} \hspace{1cm} (2) \text{ (0,1/2,0)} \hspace{1cm} (3) \text{ (1/4,1/4,0)} \hspace{1cm} (4) \text{ (1/2,0,0)}
\end{align*}

(1) \text{ (1/2,1/2,0)'} \hspace{1cm} (2) \text{ (1/2,1/2,0)'} \hspace{1cm} (3) \text{ (1/2,1/2,0)'} \hspace{1cm} (4) \text{ (1/2,1/2,0)'}
Generators selected
(1); t(1,0,0); t(0,0,1); t(2,1,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>(1/2,1/2,0)'</td>
<td>(1/2,1/2,0)'</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c<sub>p</sub>2m'm'</th>
<th>Along [1,0,0]</th>
<th>p<sub>2a</sub>2m'm'</th>
<th>Along [0,1,0]</th>
<th>p<sub>2a</sub>211</th>
</tr>
</thead>
<tbody>
<tr>
<td>a<sup></sup> = a, b<sup></sup> = b</td>
<td>a<sup></sup> = b/2, b<sup></sup> = c</td>
<td>a<sup></sup> = -a/2, b<sup></sup> = c</td>
<td>a<sup></sup> = a, b<sup></sup> = b</td>
<td>a<sup></sup> = -a/2, b<sup></sup> = c</td>
<td>a<sup></sup> = a, b<sup></sup> = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
</tr>
</tbody>
</table>
Origin at center (2'/m')

Asymmetric unit: $0 \leq x < 1/2$; $0 \leq y < 1/4$; $0 \leq z \leq 1$

Symmetry Operations:

For (0,0,0) + set:

1. 1

 (1) 1

 (2) $2'$, 0,y,0

 (3) 1, 0,0,0

 (4) m', x,0,z

 (1*) 1

 (2) $2'$, 0,y,0

 (3) 1, 0,0,0

 (4) m', x,0,z

 (m', 0,0,0)

For (1/2,1/2,0)' + set:

1. t', (1/2,1/2,0)

 (1) t', (1/2,1/2,0)

 (2) 2 (0,1/2,0) 1/4,y,0

 (3) t', 1/4,1/4,0

 (4) a (1/2,0,0) x,1/4,z

 (1*) t', (1/2,1/2,0)

 (2) 2 (0,1/2,0) 1/4,y,0

 (3) t', 1/4,1/4,0

 (4) a (1/2,0,0) x,1/4,z

 (m', 1/2,1/2,0)
Generators selected (1); t(1,0,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 j 1</td>
<td>(1) x,y,z [u,v,w] (2) \bar{x},y,z [u,v,w] (3) \bar{x},y,\bar{z} [u,v,w] (4) x,\bar{y},\bar{z} [u,v,w]</td>
</tr>
<tr>
<td>4 i m$'$</td>
<td>x,0,z [u,0,w] $\bar{x},0,\bar{z}$ [u,0,w]</td>
</tr>
<tr>
<td>4 h 2$'$</td>
<td>0,y,1/2 [u,0,w] 0,$\bar{y},1/2$ [u,0,w]</td>
</tr>
<tr>
<td>4 g 2$'$</td>
<td>0,y,0 [u,0,w] 0,$\bar{y},0$ [u,0,w]</td>
</tr>
<tr>
<td>4 f 1$'$</td>
<td>1/4,1/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 e 1$'$</td>
<td>1/4,1/4,0 [0,0,0] 3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>2 d 2'/m$'$</td>
<td>0,1/2,1/2 [u,0,w]</td>
</tr>
<tr>
<td>2 c 2'/m$'$</td>
<td>0,0,1/2 [u,0,w]</td>
</tr>
<tr>
<td>2 b 2'/m$'$</td>
<td>0,1/2,0 [u,0,w]</td>
</tr>
<tr>
<td>2 a 2'/m$'$</td>
<td>0,0,0 [u,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] $c_p2'm'$
\[a^* = a, \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] $p_{2a}2mm$
\[a^* = b/2, \quad b^* = c_p \]
Origin at x,1/4,0

Along [0,1,0] $p_{2a}211$
\[a^* = -a/2, \quad b^* = c \]
Origin at 1/4,y,0
Origin at 1 on glide plane c

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/2

Symmetry Operations

(1) 1
 (1 | 0, 0, 0)
(2) 2 0, y, 1/4
 (2 | 0, 0, 1/2)
(3) 1 0, 0, 0
 (1 | 0, 0, 0)
(4) c (0, 0, 1/2) x, 0, z
 (m | 0, 0, 1/2)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 g 1</td>
<td>x,y,z [u,v,w]</td>
<td>(1)</td>
</tr>
<tr>
<td>2 f 2</td>
<td>1/2,y,1/4 [0,v,0]</td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>2 e 2</td>
<td>0,y,1/4 [0,v,0]</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 d 1</td>
<td>1/2,0,0 [u,v,w]</td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>2 c 1</td>
<td>0,1/2,0 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>2 b 1</td>
<td>1/2,1/2,0 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>2 a 1</td>
<td>0,0,0 [u,v,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2'mm'</th>
<th>Origin at 0,0,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -b</td>
<td>b* = a</td>
<td></td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>p2mg</td>
<td>Origin at x,0,0</td>
</tr>
<tr>
<td>a* = -c</td>
<td>b* = b</td>
<td></td>
</tr>
<tr>
<td>Along [0,1,0]</td>
<td>p_2_a_2_1</td>
<td>Origin at 0,y,1/4</td>
</tr>
<tr>
<td>a* = c/2</td>
<td>b* = a</td>
<td></td>
</tr>
</tbody>
</table>
Origin

at 1' on glide plane c1'

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/2

Symmetry Operations

For 1 + set

1. (1, 0, 0, 0)
2. 2, 0, y, 1/4
3. 1, 0, 0, 0
4. c, (0, 0, 1/2), x, 0, z

For 1' + set

1. (1', 0, 0, 0'1)
2. 2', 0, y, 1/4
3. 1, 0, 0, 0
4. c', (0, 0, 1/2), x, 0, z

13.2.78 - 1 - 132
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1'.

Positions

Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
<td>g</td>
<td>1'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 f</td>
<td>1'</td>
<td></td>
<td>1/2,y,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,y,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 e</td>
<td>1'</td>
<td></td>
<td>0,y,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,y,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 d</td>
<td>1'</td>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c</td>
<td>1'</td>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b</td>
<td>1'</td>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a</td>
<td>1'</td>
<td></td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm1' Along [1,0,0] p2mg1' Along [0,1,0] p2111'
\(a^* = a \) \(b^* = b \) \(a^* = c/2 \) \(b^* = a \)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at \(\overline{1} \) on glide plane \(c \)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2 \)

Symmetry Operations

1. \(1 \)

 \[(1,0,0,0) \]

2. \(2' \)

 \[(2',0,y,1/4) \]

3. \(\overline{1}' \)

 \[(3',0,0,0) \]

4. \(c \)

 \[(4,0,0,1/2) \]

\[(m',0,0,1/2) \]
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>g</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(1) (x,y,z)</td>
<td>([u,v,w])</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>2'</td>
</tr>
<tr>
<td></td>
<td>1/2,(y,1/4)</td>
<td>([u,0,w])</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>2'</td>
</tr>
<tr>
<td></td>
<td>0,(y,1/4)</td>
<td>([u,0,w])</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>(\bar{1})</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0</td>
<td>([0,0,0])</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>(\bar{1})</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0</td>
<td>([0,0,0])</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>(\bar{1})</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0</td>
<td>([0,0,0])</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>(\bar{1})</td>
</tr>
<tr>
<td></td>
<td>0,0,0</td>
<td>([0,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) \(p2mm\)
 \(a^* = a, b^* = b\)
 Origin at 0,0,z

- Along \([1,0,0]\) \(p2mg\)
 \(a^* = -c, b^* = b\)
 Origin at x,0,0

- Along \([0,1,0]\) \(p_{2a211}\)
 \(a^* = c/2, b^* = a\)
 Origin at 0,y,0
Origin at 1 on glide plane c'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/2

Symmetry Operations

(1) 1
 (1 0,0,0)
(2) 2 0,y,1/4
 (2 0,0,1/2)
(3) 1' 0,0,0
 (1 0,0,0)'
(4) c' (0,0,1/2) x,0,z
 (m 0,0,1/2)'

P2/c' 2/m' Monoclinic
13.4.80 P12/c'1
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z +1/2 [u,v,w]</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 f 2</td>
<td>1/2,y,1/4 [0,v,0]</td>
<td>1/2,y,3/4 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2 e 2</td>
<td>0,y,1/4 [0,v,0]</td>
<td>0,y,3/4 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2 d 1/2</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 c 1/2</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 b 1/2</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 0</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2m'm'

a* = a b* = b

Origin at 0,0,z

Along [1,0,0] p2m'g'

a* = -c b* = b

Origin at x,0,0

Along [0,1,0] p211

a* = c/2 b* = a

Origin at 0,y,0
Origin at 1 on glide plane c'

Asymmetric unit
\[0 < x < \frac{1}{2}; \quad 0 < y < 1; \quad 0 < z < \frac{1}{2}\]

Symmetry Operations

1. 1 \[(0,0,0)\]
2. 2' 0, y, 1/4 \[(2,0,0,1/2)\]
3. 1 0, 0, 0 \[(1,0,0,0)\]
4. c' (0,0,1/2) x, 0, z \[(m,0,0,1/2)\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>g 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>2</td>
<td>f 2'</td>
<td>1/2,y,1/4 [u,0,w]</td>
<td>1/2,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>e 2'</td>
<td>0,y,1/4 [u,0,w]</td>
<td>0,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>d 1</td>
<td>1/2,0,0 [u,v,w]</td>
<td>1/2,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td>2</td>
<td>c 1</td>
<td>0,1/2,0 [u,v,w]</td>
<td>0,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td>2</td>
<td>b 1</td>
<td>1/2,1/2,0 [u,v,w]</td>
<td>1/2,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td>2</td>
<td>a 1</td>
<td>0,0,0 [u,v,w]</td>
<td>0,0,1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'mm' Along [1,0,0] p2'mg' Along [0,1,0] p2'11
a* = a, b* = b a* = -c, b* = b a* = c/2 b* = a
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at \(\vec{1} \) on glide plane c

Asymmetric unit \[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq \frac{1}{2} \]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad (0,0,0) \\
(2) & \quad 0,y,\frac{1}{4} \\
(2) & \quad (0,0,\frac{1}{2}) \\
(3) & \quad \vec{1},0,0 \\
(3) & \quad (0,0,0) \\
(4) & \quad c \\
(4) & \quad (0,0,\frac{1}{2}) \\
(4) & \quad x,0,z \\
(4) & \quad \vec{m},0,0,\frac{1}{2} \\
\end{align*}
\]

For \((1,0,0) + \) set

\[
\begin{align*}
(1) & \quad t' \\
(1) & \quad (1,0,0) \\
(1) & \quad (1,0,0)' \\
(1) & \quad (1,0,0)' \\
(2) & \quad 2' \\
(2) & \quad 1/2,y,1/4 \\
(2) & \quad 1/2,0,1/2 \\
(3) & \quad \vec{1},1/2,0,0 \\
(3) & \quad (1,0,0)' \\
(3) & \quad (1,0,0)' \\
(4) & \quad n' \\
(4) & \quad (1,0,1/2) \\
(4) & \quad x,0,z \\
(4) & \quad \vec{m},1,0,1/2 \\
\end{align*}
\]
Continued 13.6.82 P_{2a}2/c

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 f 2'</td>
<td>1/2,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>4 e 2</td>
<td>0,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>4 d 1</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c 1</td>
<td>0,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_{2a}2mm
Along [1,0,0] p2mg1'
Along [0,1,0] p_{2a}211
a^* = -b b^* = a_p
a^* = -c_p b^* = b
a^* = -a b^* = a + c/2
Origin at 1/2,0,z
Origin at x,0,0
Origin at 0,y,1/4
P2\(_b\)2/c

13.7.83

2/m1'

P2\(_b\)12/c1

Monoclinic

Origin at 1 on glide plane c

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2 0,0,1/4
(2 | 0,0,0,1/2)

(3) 1 0,0,0
(1 | 0,0,0)

(4) c 0,0,1/2 x,0,z
(m | 0,0,1/2)

For (0,1,0)' + set

(1) t' (0,1,0)
(1 | 0,1,0)'

(2) 2' (0,1,0) 0,y,1/4
(2 | 0,1,1/2)'

(3) 1' 0,1/2,0
(1 | 0,1,0)'

(4) c' (0,0,1/2) x,1/2,z
(m | 0,1,1/2)'

13.7.83 - 1 - 142
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions
Multiplicity,
Wyckoff letter,
Site Symmetry.
Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (0,1,0)' +</td>
<td></td>
</tr>
<tr>
<td>4 f 2</td>
<td>1/2,y,1/4 [0,v,0]</td>
<td>1/2,y,3/4 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 e 2</td>
<td>0,y,1/4 [0,v,0]</td>
<td>0,y,3/4 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 d 1</td>
<td>1/2,0,0 [u,v,w]</td>
<td>1/2,0,1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 c 1</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 b 1</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [u,v,w]</td>
<td>0,0,1/2 [u,v,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections
Along [0,0,1] \(p_{2a}.2'mm' \) Along [1,0,0] \(p_{2b}.2mg \) Along [0,1,0] \(p_{2111}' \)
\(a^* = -b \quad b^* = a_p \) \quad \(a^* = -c_p \quad b^* = b \) \quad \(a^* = c/2 \quad b^* = a \)
Origin at 1/2,0,z Origin at x,1/2,0 Origin at 0,y,1/4
13.8.84

PC2/c

13.8.84

2/m1’

Monoclinic

- **Origin**: at $\bar{1}$ on glide plane c
- **Asymmetric unit**: $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2$
- **Symmetry Operations**

 For $(0,0,0)$ + set

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
<td>(2) 2</td>
<td>(3) $\bar{1}$</td>
<td>(4) c</td>
</tr>
<tr>
<td>$(1</td>
<td>0,0,0)$</td>
<td>$0,y,1/4$</td>
<td>$0,0,1/2$</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 For $(1,0,0)$ + set

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t'</td>
<td>(2) $2'$</td>
<td>(3) $\bar{1}$</td>
<td>(4) n'</td>
</tr>
<tr>
<td>$(1</td>
<td>0,0,0)$</td>
<td>$1/2,y,1/4$</td>
<td>$1/2,0,0$</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13.8.84 - 1 - 144
Generators selected \((1); t(1,0,0)'; t(0,1,0)'; t(0,0,1); (2); (3). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0,0) + (1,0,0)' +)</td>
<td></td>
</tr>
<tr>
<td>8 g 1 ((1) x,y,z [u,v,w]) ((2) \bar{x},y,z+1/2 [\bar{u},v,w]) ((3) \bar{x},y,z [u,v,w]) ((4) \bar{x},y,z+1/2 [\bar{u},v,w])</td>
<td></td>
</tr>
<tr>
<td>4 f 2' ((1/2,y,1/4 [u,0,w]) (1/2,y,3/4 [u,0,w])</td>
<td></td>
</tr>
<tr>
<td>4 e 2 ((0,y,1/4 [0,v,0]) (0,\bar{y},3/4 [0,v,0])</td>
<td></td>
</tr>
<tr>
<td>4 d 1' ((1/2,0,0 [0,0,0]) (1/2,0,1/2 [0,0,0])</td>
<td></td>
</tr>
<tr>
<td>4 c 1' ((0,1/2,0 [0,0,0]) (0,1/2,1/2 [0,0,0])</td>
<td></td>
</tr>
<tr>
<td>4 b 1 ((1/2,1/2,0 [u,v,w]) (1/2,1/2,1/2 [u,\bar{v},w])</td>
<td></td>
</tr>
<tr>
<td>4 a 1 ((0,0,0 [u,v,w]) (0,0,1/2 [\bar{u},v,w])</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_{c2mm} \) \(a^* = -b \quad b^* = a_p \) \(a^* = -c_p \quad b^* = b \) \(a^* = c/2 \quad b^* = a \)

Origin at 1/2,0,z Origin at x,0,0 Origin at 0,y,0
Origin

at $\overline{1}''$ on glide plane c

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0)$ + set

1. 1
2. $2'$ $0, y, 1/4$
3. $1''$ $0,0,0$
4. c $(0,0,1/2)$ $x,0,z$

For $(0,1,0)''$ + set

1. t' $(0,1,0)$
2. 2 $(0,1,0)$ $0, y, 1/4$
3. $1''$ $0,1/2,0$
4. c' $(0,0,1/2)$ $x,1/2,z$

P2b$2'/c$

2/m1'

Monoclinic

P2b12'/c1

13.9.85
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 f 2'</td>
<td>1/2,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>4 e 2'</td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>4 d 1</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c 1</td>
<td>0,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>1/2,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2a*2mm
Along [1,0,0] p2b*2mg
Along [0,1,0] p2111’

\(a^* = -b \) \(b^* = a_p \)
\(a^* = -c_p \) \(b^* = b \)
\(a^* = c/2 \) \(b^* = a \)

Origin at 1/2,0,z
Origin at x,1/2,0
Origin at 0,y,1/4
Origin at 1

Asymmetric unit $0 \leq x \leq 1; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1$

Symmetry Operations

$(1) \quad 1 \quad (2) \quad (0,1/2,0) \quad 0,y,1/4 \quad (3) \quad \overline{1} \quad 0,0,0 \quad (4) \quad c \quad (0,0,1/2) \quad x,1/4,z$

$(1 \quad 0,0,0) \quad (2 \quad 0,1/2,1/2) \quad (3 \quad 0,0,0) \quad (4 \quad m \quad 0,1/2,1/2)$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 e 1</td>
<td>(1) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>2 d 1/2</td>
<td>1/2,0,0</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>2 c 0</td>
<td>0,1/2,0</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>2 b 1/2</td>
<td>1/2,1/2,0</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>2 a 0</td>
<td>0,0,0</td>
<td>[u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2'mg'</th>
<th>Along [1,0,0] p2'gg'</th>
<th>Along [0,1,0] p2c-211</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{a}^* = -\mathbf{b}) (\mathbf{b}^* = \mathbf{a}_p)</td>
<td>(\mathbf{a}^* = \mathbf{b}) (\mathbf{b}^* = \mathbf{c}_p)</td>
<td>(\mathbf{a}^* = \mathbf{c}/2) (\mathbf{b}^* = \mathbf{a})</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,1/4</td>
</tr>
</tbody>
</table>
Origin at 1'

Asymmetric unit $0 \leq x \leq 1; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1$

Symmetry Operations

For 1 + set

(1) 1

(1) $0,0,0$

(2) $0,1/2,0$ $0,y,1/4$

(2) $x,0,1/2,1/2$

(3) 1 $0,0,0$

(3) $0,0,0$

(4) c $x,1/4,z$

(4) m_{ij} $0,0,1/2,1/2$

For $1'$ + set

(1) 1

(1) $0,0,0$

(2) $0,1/2,0$ $0,y,1/4$

(2) $x,0,1/2,1/2$

(3) 1 $0,0,0$

(3) $0,0,0$

(4) c' $x,1/4,z$

(4) m_{ij} $0,0,1/2,1/2$
Generators selected
(1); t(1,0,0); t(0,0,1); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
<th>1+</th>
<th>1' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 e 11' (1) x,y,z [0,0,0]</td>
<td>(2) x,y+1/2,z+1/2 [0,0,0]</td>
<td>(3) x,y,z [0,0,0]</td>
<td>(4) x,y+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 d 1' 1/2,0,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c 1' 0,1/2,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b 1' 1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a 1' 0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg1'
\[a^* = -b \quad b^* = a_p\]
Origin at 0,0,z

Along [1,0,0] p2gg1'
\[a^* = b \quad b^* = c_p\]
Origin at x,0,0

Along [0,1,0] p2111'
\[a^* = c/2 \quad b^* = a\]
Origin at 0,y,0
Origin at \(\frac{1}{4} \)

Asymmetric unit: \(0 \leq x \leq 1; \quad 0 \leq y \leq \frac{1}{4}; \quad 0 \leq z \leq 1 \)

Symmetry Operations:

1. \(\text{1} \)
 \((0,0,0) \)

2. \(\text{2}' \) \((0,1/2,0)\) \(0;y,1/4\)

3. \(\text{1}' \) \((0,0,0)\)

4. \(c \) \((0,0,1/2)\) \(x,1/4,z\)

\((m) \) \((0,1/2,1/2)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>2 d T'</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c T'</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b T'</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a T'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg
Along [1,0,0] p2gg
Along [0,1,0] p2a'211

a* = -b
b* = a
a* = c/a
b* = a

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin at $1'$

Asymmetric unit $0 \leq x \leq 1; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1$

Symmetry Operations

(1) 1

(2) $2 (0,1/2,0) \quad 0,y,1/4$

(3) $1' \quad 0,0,0$

(4) $c' (0,0,1/2) \quad x,1/4,z$

\[(1 | 0,0,0) \]

\[(2, y | 0,1/2,1/2) \]

\[(3, y' | 0,0,0) \]

\[(m, 0,1/2,1/2) \]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 e 1 (1) x,y,z [u,v,w]</td>
<td>(2) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>2 d 1/2,0,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c 0,1/2,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b 1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2m'g'
- \(\mathbf{a}^* = -\mathbf{b} \)
- \(\mathbf{b}^* = \mathbf{a}_p \)
- Origin at 0,0,z

Along [1,0,0] p2g'g'
- \(\mathbf{a}^* = \mathbf{b} \)
- \(\mathbf{b}^* = \mathbf{c}_p \)
- Origin at x,0,0

Along [0,1,0] p211
- \(\mathbf{a}^* = \mathbf{c}/2 \)
- \(\mathbf{b}^* = \mathbf{a} \)
- Origin at 0,y,0
Origin at \(\bar{1} \)

Asymmetric unit \(0 \leq x \leq 1; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1 \)

Symmetry Operations

\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2' \quad (0,1/2,0) \quad 0,y,1/4 \\
(3) & \quad \bar{1} \quad 0,0,0 \\
(4) & \quad c' \quad (0,0,1/2) \quad x,1/4,z \\
(5) & \quad m \quad (0,1/2,1/2)' \end{align*}
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>2 d</td>
<td>1/2,0,0 [u,v,w]</td>
<td>1/2,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td>2 c</td>
<td>0,1/2,0 [u,v,w]</td>
<td>0,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td>2 b</td>
<td>1/2,1/2,0 [u,v,w]</td>
<td>1/2,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td>2 a</td>
<td>0,0,0 [u,v,w]</td>
<td>0,0,1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'm'g
Along [1,0,0] p2'gg'
Along [0,1,0] p2'11

- \(a^* = a, \quad b^* = b\)
- \(a^* = -c, \quad b^* = b\)
- \(a^* = c/2, \quad b^* = a\)
- Origin at 0,0,z
- Origin at x,0,0
- Origin at 0,y,1/4
Origin at $\bar{1}$

Asymmetric unit $0 \leq x \leq 1; \enspace 0 \leq y \leq 1/4; \enspace 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0) +$ set

$(1) \bar{1} \quad (2) (0,1/2,0) \quad 0,y,1/4 \quad (3) \bar{1} \quad 0,0,0 \quad (4) c \quad (0,0,1/2) \quad x,1/4,z$

$(2) (0,1/2,0) \quad (1/2,y,1/4)$

$(3) \bar{1} \quad 0,0,0 \quad (1 \bar{1},0,0,0)$

$(4) c \quad (0,0,1/2) \quad x,1/4,z \quad (m,0,1/2,1/2)$

For $(1,0,0)' +$ set

$(1) t' \quad (1,0,0) \quad (2) 2' (0,1/2,0) \quad 1/2,y,1/4 \quad (3) \bar{1}' \quad 1/2,0,0 \quad (4) n' \quad (1,0,1/2) \quad x,1/4,z$

$(1 \bar{1},0,0)' \quad (2 \bar{1},1/2,1/2)'$

$(3) \bar{1}' \quad 1/2,0,0 \quad (1 \bar{1},1,0,0)'$

$(4) n' \quad (1,0,1/2) \quad x,1/4,z \quad (m,1,1/2,1/2)'$
Continued 14.6.91 P2a21/c

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicities, Wyckoff letters, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 d 1</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c 1</td>
<td>0,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2g*2mg
 - \(\mathbf{a}^* = -\mathbf{b}, \mathbf{b}^* = \mathbf{a} \)
 - Origin at 1/2,0,z

- Along [1,0,0] p2gg1'
 - \(\mathbf{a}^* = \mathbf{b}, \mathbf{b}^* = \mathbf{c} \)
 - Origin at x,0,0

- Along [0,1,0] p2a211
 - \(\mathbf{a}^* = \mathbf{c}/2, \mathbf{b}^* = \mathbf{a} + \mathbf{c}/2 \)
 - Origin at 0,y,1/4
Origin at 1 on glide plane c

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set
(1) 1
(1 | 0,0,0)
(2) 2 0,y,1/4
(2 | 0,0,1/2)
(3) 1 0,0,0
(1 | 0,0,0)
(4) c (0,0,1/2) x,0,z
(m | 0,0,1/2)

For (1/2,1/2,0) + set
(1) t (1/2,1/2,0)
(1 | 1/2,1/2,0)
(2) 2 (0,1/2,0) 1/4,y,1/4
(2 | 1/2,1/2,1/2)
(3) 1 1/4,1/4,0
(1 | 1/2,1/2,0)
(4) n (1/2,0,1/2) x,1/4,z
(m | 1/2,1/2,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) + (1/2,1/2,0) +</td>
</tr>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z +1/2 [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 e 2</td>
<td>0,y,1/4 [0,v,0] 0,y,3/4 [0,v,0]</td>
</tr>
<tr>
<td>4 d 1</td>
<td>1/4,1/4,1/2[u,v,w] 3/4,1/4,0 [u,v,w]</td>
</tr>
<tr>
<td>4 c 1</td>
<td>1/4,1/4,0 [u,v,w] 3/4,1/4,1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>0,1/2,0 [u,v,w] 0,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [u,v,w] 0,0,1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2'm'm' Along [1,0,0] p2'm'g Along [0,1,0] P2a-211
\[a^* = -b \quad b^* = a_p \]
\[a^* = -c_p \quad b^* = b/2 \]
\[a^* = c/2 \quad b^* = a/2 \]

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
C2/c1' 2/m1' Monoclinic

15.2.93 C12/c11'

Origin at 1' on glide plane c1'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1 0,0,0
(1 0,0,0)

(2) 2 0,y,1/4 (2 0,0,1/2)

(3) 1 0,0,0 (3 0,0,0)

(4) c (0,0,1/2) x,0,z

For (1/2,1/2,0) + set

(1) t 1/2,1/2,0 (1 1/2,1/2,0)

(2) 2 0,1/2,0 1/4,y,1/4 (2 1/2,1/2,1/2)

(3) 1 1/4,1/4,0 (3 1/2,1/2,0)

(4) n (1/2,0,1/2) x,1/4,z

For (0,0,0)' + set

(1) 1' 0,0,0 (1 0,0,0)

(2) 2' 0,y,1/4 (2 0,0,1/2)

(3) 1' 0,0,0 (3 0,0,0)

(4) c' (0,0,1/2) x,0,z

For (1/2,1/2,0)' + set

(1) t' 1/2,1/2,0 (1 1/2,1/2,0)

(2) 2' 0,1/2,0 1/4,y,1/4 (2 1/2,1/2,1/2)

(3) 1' 1/4,1/4,0 (3 1/2,1/2,0)

(4) n' (1/2,0,1/2) x,1/4,z

15.2.93 - 1 - 162
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t (1/2,1/2,0); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,0) +</td>
<td></td>
</tr>
<tr>
<td>8 f 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) (\bar{x},y,z+1/2) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) (\bar{x},y,z) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) (x,y,z+1/2) [0,0,0]</td>
</tr>
<tr>
<td>4 e 21'</td>
<td>0,y,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 d (\bar{1})'</td>
<td>1/4,1/4,1/2[0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c (\bar{1})'</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b (\bar{1})'</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a (\bar{1})'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1' Along [1,0,0] p2mg1' Along [0,1,0] p2111'
\(a^* = a, \quad b^* = b\) \(a^* = -c, \quad b^* = b/2\) \(a^* = c/2, \quad b^* = a/2\)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
C2'/c 2'/m Monoclinic

15.3.94 C12'/c1

Origin at 1' on glide plane c

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2' 0,y,1/4
 (2',0,0,1/2)
(3) 1' 0,0,0
(4) c 0,0,1/2
(1)' 0,0,0
(2)' y 0,0,1/2
(3)' 0,0,0
(4)' m 0,0,1/2

For (1/2,1/2,0) + set

(1) t 1/2,1/2,0
(2) 2' (0,1/2,0) 1/4,y,1/4
 (2',1/2,1/2,1/2)
(3) 1' 1/4,1/4,0
(4) n (1/2,0,1/2) x,1/4,z
(1)' 1/2,1/2,0
(2)' 1/2,1/2,1/2
(3)' 1/4,1/4,0
(4)' m 1/2,1/2,1/2
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,0) +</td>
<td></td>
</tr>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 e '2'</td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>4 d '1)'</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c '1)'</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 b '1)'</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a '1)'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] c2mm
 \(\mathbf{a}^* = \mathbf{a}, \mathbf{b}^* = \mathbf{b} \)
- Along [1,0,0] p2mg
 \(\mathbf{a}^* = -\mathbf{c}, \mathbf{b}^* = \mathbf{b}/2 \)
- Along [0,1,0] \(\mathbf{p}_{\mathbf{2a},21\overline{1}} \)
 \(\mathbf{a}^* = \mathbf{c}/2, \mathbf{b}^* = \mathbf{a}/2 \)

Origin at 0,0,0
Origin at x,0,0
Origin at 0,y,0
Origin at $\overline{1}$ on glide plane c'

Asymmetric unit $\ 0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0)$ + set

$(1) \ 1$
$(1 \ | \ 0,0,0)$

$(2) \ 2 \ 0,y,1/4$
$(2 \ | \ 0,0,1/2)$

$(3) \ \overline{1}^{'} \ 0,0,0$
$(1 \ | 0,0,0)^{'}$

$(4) \ c' \ (0,0,1/2) \ x,0,z$
$(m_{y} | 0,0,1/2)^{'}$

For $(1/2,1/2,0)$ + set

$(1) \ t \ (1/2,1/2,0)$
$(1 \ | 1/2,1/2,0)$

$(2) \ 2 \ (0,1/2,0) \ 1/4,y,1/4$
$(2 \ | 1/2,1/2,1/2)$

$(3) \ \overline{1}^{'} \ 1/4,1/4,0$
$(1 \ | 1/2,1/2,0)^{'}$

$(4) \ n' \ (1/2,0,1/2) \ x,1/4,z$
$(m_{y} | 1/2,1/2,1/2)^{'}$
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>((0,0,0)) + ((1/2,1/2,0)) +</td>
<td>((1)) (</td>
<td>x,y,z</td>
</tr>
<tr>
<td>4 e 2</td>
<td>0, 1/4 [0, v, 0]</td>
<td>((3)) (</td>
<td>x,y,z</td>
</tr>
<tr>
<td>4 d (\bar{1})</td>
<td>1/4, 1/4, 1/2 [0, 0, 0]</td>
<td>3/4, 1/4, 0 [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>4 c (\bar{1})</td>
<td>1/4, 1/4, 0 [0, 0, 0]</td>
<td>3/4, 1/4, 1/2 [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>4 b (\bar{1})</td>
<td>0, 1/2, 0 [0, 0, 0]</td>
<td>0, 1/2, 1/2 [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>4 a (\bar{1})</td>
<td>0, 0, 0 [0, 0, 0]</td>
<td>0, 0, 1/2 [0, 0, 0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) \(c2m'm'\) \(a^* = a, \ b^* = b\) Origin at 0, 0, z
Along \([1,0,0]\) \(p2m'g'\) \(a^* = -c, \ b^* = b/2\) Origin at x, 0, 0
Along \([0,1,0]\) \(p211\) \(a^* = c/2, \ b^* = a/2\) Origin at 0, y, 0
Origin at \(\bar{1} \) on glide plane \(c' \)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

For \((0,0,0) + \text{set}\)

(1) \(\bar{1} \) \((1 \mid 0,0,0) \)
(2) \(2' \) \(0, y, 1/4 \)
(3) \(\bar{1} \) \(0,0,0 \)
(4) \(c' \) \((0,0,1/2) \) \(x,0,z \)

For \((1/2,1/2,0) + \text{set}\)

(1) \(t \) \((1/2,1/2,0) \)
(2) \(2' \) \((0,1/2,0) \) \(1/4,y,1/4 \)
(3) \(\bar{1} \) \(1/2,1/2,0 \)
(4) \(n' \) \((1/2,0,1/2) \) \(x,1/4,z \)

C2'/c'

15.5.96

2'/m'

C12'/c'1

Monoclinic
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t (1/2,1/2,0); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(0,0,0)</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 e 2'</td>
<td>(0,0,0)</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 d 1</td>
<td>(1/4,1/4,0)</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 c 1</td>
<td>(1/4,1/4,0)</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>(0,1/2,0)</td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>(0,0,0)</td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2'mm' Along [1,0,0] p2'mg' Along [0,1,0] p2'11

a' = a b' = b a' = -c b' = b/2 a' = c/2 b' = a/2

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at $\tilde{1}$ on glide plane c

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0) + \text{ set}$

(1) 1
 \((1|0,0,0) \)

(2) 2 $0, y, 1/4$
 \((2|0,0,1/2) \)

(3) $\tilde{1}$ $0,0,0$
 \((\tilde{1}|0,0,0) \)

(4) c $(0,0,1/2)$ $x,0,z$
 \((m,0,0,1/2) \)

For $(1/2,1/2,0)' + \text{ set}$

(1) $\tilde{1}'$ $(1/2,1/2,0)$
 \((1|1/2,1/2,0') \)

(2) $2'$ $(0,1/2,0)$ $1/4, y, 1/4$
 \((2|1/2,1/2,1/2') \)

(3) $\tilde{1}'$ $1/4,1/4,0$
 \((\tilde{1}|1/2,1/2,0') \)

(4) n' $(1/2,0,1/2)$ $x,1/4,z$
 \((m,1/2,1/2,1/2') \)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t (1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) + (1/2,1/2,0)° +</td>
</tr>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 e 2</td>
<td>0,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>4 d 1</td>
<td>1/4,1/4,1/2[0,0,0]</td>
</tr>
<tr>
<td>4 c 1</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>0,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin</th>
<th>a° = -b° b° = a°</th>
<th>a° = -c° b° = b/2</th>
<th>a° = c/2 b° = a/2 + c/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>c° 2'mm'</td>
<td>p° 2b° 2mg</td>
<td>p° 2a° 211</td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Along [0,1,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin at \(\mathbf{1}^\prime \) on glide plane \(c \)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \)

Symmetry Operations

For \((0,0,0) + \) set

(1) \(1\)
(1) \(\mathbf{1} \)
(0,0,0)
(2) \(2^\prime \) \(0,y,1/4\)
(2) \(2^\prime \)
(0,0,1/2)
(3) \(1^\prime \)
(3) \(\mathbf{1}^\prime \)
(0,0,0)
(4) \(c\)
(4) \(c\)
(0,0,1/2)

For \((1/2,1/2,0)^\prime + \) set

(1) \(t^\prime \)
(1) \(t^\prime \)
(1/2,1/2,0)
(1) \(t^\prime \)
(1/2,1/2,0)
(2) \(2 \) \(0,1/2,0\)
(2) \(2 \)
(0,1/2,0)
(3) \(\mathbf{1}^\prime \)
(3) \(\mathbf{1}^\prime \)
(1/4,1/4,0)
(4) \(n^\prime \)
(4) \(n^\prime \)
(1/2,0,1/2)

(1/2,1/2,0)^\prime
(1/2,1/2,0)^\prime
(1/2,1/2,1/2)
(1/2,1/2,1/2)

15.7.98 - 1 - 172
Generators selected \(t(1,0,0); t(0,0,1); t(1/2,1/2,0)^*; (2); (3) \).

<table>
<thead>
<tr>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
</tr>
<tr>
<td>((0,0,0) + (1/2,1/2,0)^* +)</td>
</tr>
<tr>
<td>8 f 1 ((1) x,y,z [u,v,w])</td>
</tr>
<tr>
<td>4 e 2' 0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>4 d 1/4,1/4,1/2[u,v,w]</td>
</tr>
<tr>
<td>4 c 1/4,1/4,0 [u,v,w]</td>
</tr>
<tr>
<td>4 b 0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along ([0,0,1])</th>
<th>(c_p 2\text{mm})</th>
<th>Along ([1,0,0])</th>
<th>(p_{21b} 2\text{mg})</th>
<th>Along ([0,1,0])</th>
<th>(p_{2a} 211)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^=a) (b^=b)</td>
<td>(a^=-c) (b^=b/2)</td>
<td>(a^=c/2) (b^=a/2 + c/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,(z)</td>
<td>Origin at (x,0,0)</td>
<td>Origin at 0,y,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Asymmetric unit: $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1$

Symmetry Operations:

1. 1
 - x, y, z
2. $2x, y, 0$
3. $2x, 0, z$
4. $2x, 0, 0$

Origin at 222

P222

222

Orthorhombic
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>u 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2</td>
<td>t ..2 1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>s ..2 0,1/2,z [0,0,w] 0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>r ..2 1/2,0,z [0,0,w] 1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>q ..2 0,0,z [0,0,w] 0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>p ..2 1/2,y,1/2 [0,v,0] 1/2,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>2</td>
<td>o ..2 1/2,y,0 [0,v,0] 1/2,y,0 [0,v,0]</td>
</tr>
<tr>
<td>2</td>
<td>n ..2 0,y,1/2 [0,v,0] 0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>2</td>
<td>m ..2 0,y,0 [0,v,0] 0,y,0 [0,v,0]</td>
</tr>
<tr>
<td>2</td>
<td>l ..2 x,1/2,1/2 [u,0,0] x,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>k ..2 x,1/2,0 [u,0,0] x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>j ..2 x,0,1/2 [u,0,0] x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>i ..2 x,0,0 [u,0,0] x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>h 222 1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>g 222 0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>f 222 1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>e 222 1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>d 222 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>c 222 0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>b 222 1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>a 222 0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2m'm' Along [1,0,0] p2m'm' Along [0,1,0] p2m'm'

a = **a** **b** = **b** **a** = **b** **b** = **c** **a** = **c** **b** = **a**

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For 1 + set

1. \(1 \)
 (1) \(1 \)
 (2) \(2 \ 0,0,z \)
 (3) \(2 \ 0,y,0 \)
 (4) \(2 \ x,0,0 \)

 (1* \(1 \ 0,0,0 \))
 (2* \(2 \ 0,0,0 \))
 (3* \(2 \ 0,0,0 \))
 (4* \(2 \ 0,0,0 \))

For 1' + set

1'. \(1' \)
 (1') \(1' \)
 (2') \(2' \ 0,0,z \)
 (3') \(2' \ 0,y,0 \)
 (4') \(2' \ x,0,0 \)

 (1* \(0,0,0 \))
 (2* \(0,0,0 \))
 (3* \(0,0,0 \))
 (4* \(0,0,0 \))

Origin at 2221'
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1'.\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 u 11'</td>
<td>x,y,z [0,0,0]</td>
<td>(\bar{x},y,z [0,0,0])</td>
</tr>
<tr>
<td>2 t .21'</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,(\bar{z}) [0,0,0]</td>
</tr>
<tr>
<td>2 s .21'</td>
<td>0,1/2,z [0,0,0]</td>
<td>0,1/2,(\bar{z}) [0,0,0]</td>
</tr>
<tr>
<td>2 r .21'</td>
<td>1/2,0,z [0,0,0]</td>
<td>1/2,0,(\bar{z}) [0,0,0]</td>
</tr>
<tr>
<td>2 q .21'</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,(\bar{z}) [0,0,0]</td>
</tr>
<tr>
<td>2 p .21'</td>
<td>1/2,y,1/2 [0,0,0]</td>
<td>1/2,(\bar{y}),1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 o .21'</td>
<td>1/2,y,0 [0,0,0]</td>
<td>1/2,(\bar{y}),0 [0,0,0]</td>
</tr>
<tr>
<td>2 n .21'</td>
<td>0,y,1/2 [0,0,0]</td>
<td>0,(\bar{y}),1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 m .21'</td>
<td>0,y,0 [0,0,0]</td>
<td>0,(\bar{y}),0 [0,0,0]</td>
</tr>
<tr>
<td>2 l .21'</td>
<td>x,1/2,1/2 [0,0,0]</td>
<td>x,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 k .21'</td>
<td>x,1/2,0 [0,0,0]</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 j .21'</td>
<td>x,0,1/2 [0,0,0]</td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 i .21'</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>1 h 2221'</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>(\bar{x},\bar{y},\bar{z} [0,0,0])</td>
</tr>
<tr>
<td>1 g 2221'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>(\bar{x},y,1/2 [0,0,0])</td>
</tr>
<tr>
<td>1 f 2221'</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>(\bar{x},0,1/2 [0,0,0])</td>
</tr>
<tr>
<td>1 e 2221'</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>(\bar{x},y,\bar{z} [0,0,0])</td>
</tr>
<tr>
<td>1 d 2221'</td>
<td>0,0,1/2 [0,0,0]</td>
<td>(\bar{x},0,1/2 [0,0,0])</td>
</tr>
<tr>
<td>1 c 2221'</td>
<td>0,1/2,0 [0,0,0]</td>
<td>(\bar{x},1/2,0 [0,0,0])</td>
</tr>
<tr>
<td>1 b 2221'</td>
<td>1/2,0,0 [0,0,0]</td>
<td>(\bar{x},1/2,0 [0,0,0])</td>
</tr>
<tr>
<td>1 a 2221'</td>
<td>0,0,0 [0,0,0]</td>
<td>(\bar{x},0,0 [0,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2mm1'</th>
<th>Along [1,0,0]</th>
<th>p2mm1'</th>
<th>Along [0,1,0]</th>
<th>p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b)</td>
<td>(a^* = b)</td>
<td>(b^* = c)</td>
<td>(a^* = c)</td>
<td>(b^* = a)</td>
</tr>
</tbody>
</table>
Origin at 2'2'2

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1
 (1|0,0,0)
(2) 2 0,0,z
 (2|0,0,0)
(3) 2' 0,y,0
 (2'1|0,0,0)
(4) 2' x,0,0
 (2'2|0,0,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 u 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 t ..2</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 s ..2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 r ..2</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 q ..2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 p ..2'</td>
<td>1/2, y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>2 o ..2'</td>
<td>1/2, y,0 [u,0,w]</td>
</tr>
<tr>
<td>2 n ..2'</td>
<td>0,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>2 m ..2'</td>
<td>0,y,0 [u,0,w]</td>
</tr>
<tr>
<td>2 l 2'..</td>
<td>x,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>2 k 2'..</td>
<td>x,1/2,0 [0,v,w]</td>
</tr>
<tr>
<td>2 j 2'..</td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>2 i 2'..</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>1 h 2'2'2</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1 g 2'2'2</td>
<td>0,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1 f 2'2'2</td>
<td>1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1 e 2'2'2</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>1 d 2'2'2</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1 c 2'2'2</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>1 b 2'2'2</td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>1 a 2'2'2</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2mm
 \(a^* = a \quad b^* = b \)
 Origin at 0,0,z

- Along [1,0,0] p2'2'm
 \(a^* = -c \quad b^* = b \)
 Origin at x,0,0

- Along [0,1,0] p2'2'm'
 \(a^* = c \quad b^* = a \)
 Origin at 0,y,0
Orthorhombic

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0) +\) set

1. \((1) \ 1\ 0,0,0\)
2. \((2) \ 2 \ 0,0,z\)
3. \((3) \ 2 \ 0,y,0\)
4. \((4) \ 2 \ x,0,0\)

For \((1,0,0)'+\) set

1. \((1) \ t'(1,0,0)\)
2. \((2) \ 2' \ 1/2,0,z\)
3. \((3) \ 2' \ 1/2,y,0\)
4. \((4) \ 2'(1,0,0) \ x,0,0\)

Origin at 222
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3) \).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8) u 1 ((1)) (x,y,z) [u,v,w]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>(4) t (.2') (1/2,1/2,z) [u,v,0]</td>
<td>(1,0,0)'' +</td>
</tr>
<tr>
<td>(4) s (.2) (0,1/2,z) [0,0,w]</td>
<td>(0,v,w)</td>
</tr>
<tr>
<td>(4) r (.2') (1/2,0,z) [u,v,0]</td>
<td>(u,v,0)</td>
</tr>
<tr>
<td>(4) q (.2) (0,0,z) [0,0,w]</td>
<td>(u,v,0)</td>
</tr>
<tr>
<td>(4) p (.2') (1/2,y,1/2) [u,w]</td>
<td>(u,v,0)</td>
</tr>
<tr>
<td>(4) o (.2') (1/2,y,0) [u,w]</td>
<td>(u,v,0)</td>
</tr>
<tr>
<td>(4) n (.2) (0,y,1/2) [0,v,0]</td>
<td>(u,v,0)</td>
</tr>
<tr>
<td>(4) m (.2) (0,y,0) [0,v,0]</td>
<td>(u,v,0)</td>
</tr>
<tr>
<td>(4) l (2..) (x,1/2,1/2) [u,0,0]</td>
<td>(u,v,0)</td>
</tr>
<tr>
<td>(4) k (2..) (x,1/2,0) [u,0,0]</td>
<td>(u,v,0)</td>
</tr>
<tr>
<td>(4) j (2..) (x,0,1/2) [0,0,0]</td>
<td>(u,v,0)</td>
</tr>
<tr>
<td>(4) i (2..) (x,0,0) [0,0,0]</td>
<td>(u,v,0)</td>
</tr>
<tr>
<td>(2) h (22'2') (1/2,1/2,1/2) [u,0,0]</td>
<td>(u,v,0)</td>
</tr>
<tr>
<td>(2) g (222) (0,1/2,1/2) [0,0,0]</td>
<td>(u,v,0)</td>
</tr>
<tr>
<td>(2) f (22'2') (1/2,0,1/2) [u,0,0]</td>
<td>(u,v,0)</td>
</tr>
<tr>
<td>(2) e (22'2') (1/2,1/2,0) [u,0,0]</td>
<td>(u,v,0)</td>
</tr>
<tr>
<td>(2) d (222) (0,0,1/2) [0,0,0]</td>
<td>(u,v,0)</td>
</tr>
<tr>
<td>(2) c (222) (0,1/2,0) [0,0,0]</td>
<td>(u,v,0)</td>
</tr>
<tr>
<td>(2) b (22'2') (1/2,0,0) [u,0,0]</td>
<td>(u,v,0)</td>
</tr>
<tr>
<td>(2) a (222) (0,0,0) [0,0,0]</td>
<td>(u,v,0)</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: \(p_{2a}2m'm' \)
 - \(a^* = a \) \(b^* = b \)
 - Origin at 0,0,z

- **Along [1,0,0]**: \(p2mm1' \)
 - \(a^* = b \) \(b^* = c \)
 - Origin at x,0,0

- **Along [0,1,0]**: \(p_{2a}2m'm' \)
 - \(a^* = -a \) \(b^* = c \)
 - Origin at 0,y,0
Origin at 222

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0)$ + set

(1) I
(2) $2 \ 0,0,z$
(3) $2 \ 0,y,0$
(4) $2 \ x,0,0$

For $(1,0,0)'$ + set

(1) $t' \ (1,0,0)$
(2) $2' \ 1/2,0,z$
(3) $2' \ 1/2,y,0$
(4) $2' \ (1,0,0) \ x,0,0$

(1) $t' \ (1,0,0)'$
(2) $2' \ 1,0,0')$
(3) $2' \ (1,0,0)'$
(4) $2' \ (1,0,0)'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1,0,0)' +</td>
<td></td>
</tr>
<tr>
<td>8 u 1 (1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 t ..2 1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 s ..2' 0,1/2,z [u,v,0]</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>4 r ..2' 1/2,0,z [u,v,0]</td>
<td>1/2,0,z [u,v,0]</td>
</tr>
<tr>
<td>4 q ..2 0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 p ..2' 1/2,y,1/2 [u,0,0]</td>
<td>1/2,y,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 o ..2' 1/2,y,0 [u,0,0]</td>
<td>1/2,y,0 [u,0,0]</td>
</tr>
<tr>
<td>4 n ..2 0,y,1/2 [0,v,0]</td>
<td>0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 m ..2 0,y,0 [0,v,0]</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td>4 l 2'. x,1/2,1/2 [0,v,w]</td>
<td>x,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 k 2'. x,1/2,0 [0,v,w]</td>
<td>x,1/2,0 [0,v,w]</td>
</tr>
<tr>
<td>4 j 2.. x,0,1/2 [u,0,0]</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 i 2.. x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>2 h 2'2' 1/2,1/2,1/2 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 g 2'2' 0,1/2,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 f 2'2' 1/2,0,1/2 [u,0,0]</td>
<td>1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 e 2'2' 1/2,1/2,0 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 d 222 0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c 2'2' 0,1/2,0 [0,v,0]</td>
<td>0,1/2,0 [0,v,0]</td>
</tr>
<tr>
<td>2 b 22' 1/2,0,0 [u,0,0]</td>
<td>1/2,0,0 [u,0,0]</td>
</tr>
<tr>
<td>2 a 222 0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_c2mm
\[a^* = a \quad b^* = b \]
Origin at 1/2,1/2,z

Along [1,0,0] p2mm1'
\[a^* = b \quad b^* = c \]
Origin at x,0,0

Along [0,1,0] p2mm1'
\[a^* = c \quad b^* = a \]
Origin at 0,y,0
Origin at 222

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2z 0,0,z
(2z | 0,0,0)

(3) 2y 0,y,0
(2y | 0,0,0)

(4) 2x x,0,0
(2x | 0,0,0)

For (1,0,0)’ + set

(1) t’ (1,0,0)
(1 | 1,0,0)’

(2) 2’ 1/2,0,z
(2’ | 1,0,0)’

(3) 2’ 1/2,y,0
(2’ | 1,0,0)’

(4) 2’ (1,0,0) x,0,0
(2’ | 1,0,0)’
Generators selected \(t(1,0,0); t(0,1,0); t(0,0,1); (2); (3). \)

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0) +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 u 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(\bar{x},\bar{y},\bar{z} [\bar{u},\bar{v},\bar{w}])</td>
</tr>
<tr>
<td>4 t .2</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,\bar{z} [0,0,w]</td>
</tr>
<tr>
<td>4 s .2'</td>
<td>0,1/2,z [u,v,0]</td>
<td>0,1/2,\bar{z} [\bar{u},\bar{v},0]</td>
</tr>
<tr>
<td>4 r .2'</td>
<td>1/2,0,z [u,v,0]</td>
<td>1/2,0,\bar{z} [\bar{u},\bar{v},0]</td>
</tr>
<tr>
<td>4 q .2</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,\bar{z} [0,0,\bar{w}]</td>
</tr>
<tr>
<td>4 p .2</td>
<td>1/2,y,1/2 [0,v,0]</td>
<td>1/2,\bar{y},1/2 [0,\bar{v},0]</td>
</tr>
<tr>
<td>4 o .2'</td>
<td>1/2,y,0 [u,0,w]</td>
<td>1/2,\bar{y},0 [u,0,\bar{w}]</td>
</tr>
<tr>
<td>4 n .2'</td>
<td>0,y,1/2 [u,0,w]</td>
<td>0,\bar{y},1/2 [\bar{u},0,w]</td>
</tr>
<tr>
<td>4 m .2</td>
<td>0,y,0 [0,v,0]</td>
<td>0,\bar{y},0 [0,\bar{v},0]</td>
</tr>
<tr>
<td>4 l .2..</td>
<td>x,1/2,1/2 [u,0,0]</td>
<td>x,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 k .2'..</td>
<td>x,1/2,0 [0,v,w]</td>
<td>x,1/2,0 [0,v,\bar{w}]</td>
</tr>
<tr>
<td>4 j .2'..</td>
<td>x,0,1/2 [0,v,w]</td>
<td>x,0,1/2 [0,\bar{v},w]</td>
</tr>
<tr>
<td>4 i .2..</td>
<td>x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>2 h 222</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 g 222'</td>
<td>0,1/2,1/2 [u,0,0]</td>
<td>0,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 f 2'2'</td>
<td>1/2,0,1/2 [0,v,0]</td>
<td>1/2,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>2 e 2'2'</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 d 2'2'</td>
<td>0,0,1/2 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 c 2'2'</td>
<td>0,1/2,0 [0,v,0]</td>
<td>0,1/2,0 [0,v,0]</td>
</tr>
<tr>
<td>2 b 222'</td>
<td>1/2,0,0 [u,0,0]</td>
<td>1/2,0,0 [u,0,0]</td>
</tr>
<tr>
<td>2 a 222</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** \(\text{p}2\text{mm}1' \)
 \(a^* = a \quad b^* = b \)
 Origin at 0,0,z

- **Along [1,0,0]** \(\text{p}2\text{mm}1' \)
 \(a^* = b \quad b^* = c \)
 Origin at x,0,0

- **Along [0,1,0]** \(\text{p}2\text{mm}1' \)
 \(a^* = c \quad b^* = a \)
 Origin at 0,y,0
P_{2c22'2'}

16.7.105

P_{2c22'2'}

Orthorhombic

Origin at 22'2'

Asymmetric unit
0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1

Symmetry Operations

For (0,0,0) + set

(1) \text{1}
(1|0,0,0)

(2) 2' 0,0,z
(2_z|0,0,0)'

(3) 2' 0,y,0
(2_y|0,0,0)'

(4) 2 x,0,0
(2_x|0,0,0)

For (0,0,1)' + set

(1) t' (0,0,1)
(1|0,0,1)'

(2) 2 (0,0,1) 0,0,z
(2_z|0,0,1)

(3) 2 0,y,1/2
(2_y|0,0,1/2)

(4) 2' x,0,1/2
(2_x|0,0,1/2)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) + (0,0,1)′ +</td>
</tr>
<tr>
<td>8 u 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 t .2′</td>
<td>1/2,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>4 s .2′</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>4 r .2′</td>
<td>1/2,0,z [u,v,0]</td>
</tr>
<tr>
<td>4 q .2′</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td>4 p .2′</td>
<td>1/2,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 o .2′</td>
<td>1/2,y,0 [u,0,0]</td>
</tr>
<tr>
<td>4 n .2′</td>
<td>0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 m .2′</td>
<td>0,y,0 [u,0,0]</td>
</tr>
<tr>
<td>4 l 2′..</td>
<td>x,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 k 2′.</td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4 j 2′.</td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 i 2′.</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>2 h 2′2′</td>
<td>1/2,1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td>2 g 2′2′</td>
<td>0,1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td>2 f 2′2′</td>
<td>1/2,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>2 e 2′2′</td>
<td>1/2,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>2 d 2′2′</td>
<td>0,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>2 c 2′2′</td>
<td>0,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>2 b 2′2′</td>
<td>1/2,0,0 [u,0,0]</td>
</tr>
<tr>
<td>2 a 2′2′</td>
<td>0,0,0 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm1′
Along [1,0,0] p2a2mm
Along [0,1,0] p2a2mm

\[a^* = a \quad b^* = b \]

Origin at 0,0,z
Origin at x,0,0
Origin at 1/2,y,0
Origin at 21_2,

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

1. 1

 2. $(0,0,1/2); \quad 0,0,z$

 3. $2 \quad 0,y,1/4$

 4. $x,0,0$

 (Note: The operations are represented by arrows and points in the diagram.)
Generators selected

(1): t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 e 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z+1/2 [u,v,w] (3) x,y,z+1/2 [u,v,w] (4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 d .2.</td>
<td>1/2,y,1/4 [0,v,0] 1/2,y,3/4 [0,v,0]</td>
</tr>
<tr>
<td>2 c .2.</td>
<td>0,y,1/4 [0,v,0] 0,y,3/4 [0,v,0]</td>
</tr>
<tr>
<td>2 b 2..</td>
<td>x,1/2,0 [u,0,0] x,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 a 2..</td>
<td>x,0,0 [u,0,0] x,0,1/2 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2m'p'
\(a^* = a\) \(b^* = b\) \(c^* = c\) \(b^* = b\)
Origin at 0,0,z

Along [1,0,0] p2m'g'
\(a^* = c\) \(b^* = a\)
Origin at x,0,0

Along [0,1,0] p2m'g'
\(a^* = a\) \(b^* = b\)
Origin at 0,y,1/4
Origin at 212,1'

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\)

Symmetry Operations

For 1 + set

1. \((1) \ 1 \quad (1 \ 0,0,0) \)
2. \((2) \ 2 \ 0,0,1/2 \quad 0,0,z \)
 \((2_z \ 0,0,1/2) \)
3. \((3) \ 2 \ 0,y,1/4 \quad (2_y \ 0,0,1/2) \)
4. \((4) \ 2 \ x,0,0 \quad (2_x \ 0,0,0) \)

For 1' + set

1. \((1') \ 1' \quad (1' \ 0,0,0) \)
2. \((2) \ 2' \ 0,0,1/2 \quad 0,0,z \)
 \((2_z' \ 0,0,1/2) \)
3. \((3) \ 2' \ 0,y,1/4 \quad (2_y' \ 0,0,1/2) \)
4. \((4) \ 2' \ x,0,0 \quad (2_x' \ 0,0,0) \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1' +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 e 11'</td>
<td>[0,0,0]</td>
<td>x,y,z</td>
<td></td>
</tr>
<tr>
<td>2 d .2.1'</td>
<td>[0,0,0]</td>
<td>1/2,y,1/4</td>
<td></td>
</tr>
<tr>
<td>2 c .2.1'</td>
<td>[0,0,0]</td>
<td>0,y,1/4</td>
<td></td>
</tr>
<tr>
<td>2 b 2..1'</td>
<td>[0,0,0]</td>
<td>x,1/2,0</td>
<td></td>
</tr>
<tr>
<td>2 a 2..1'</td>
<td>[0,0,0]</td>
<td>x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2mm1'
 \(a^* = a \quad b^* = b\)
- Along [1,0,0] p2mg1'
 \(a^* = -c \quad b^* = b\)
- Along [0,1,0] p2mg1'
 \(a^* = c \quad b^* = a\)

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,1/4
Origin at $2'12_1$

Asymmetric unit: $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations:

1. 1
2. $2 (0,0,1/2) \quad 0,0,z$
3. $2' \quad 0,y,1/4$
4. $2' \quad x,0,0$

1. $2 (0,0,0) \quad 0,0,0$
2. $2 (0,0,1/2) \quad 0,0,1/2$
3. $2' \quad 0,0,1/2'$
4. $2' \quad 0,0,0'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[
\begin{array}{cccc}
4 & e & 1 & (1) x,y,z [u,v,w] \\
2 & d & .2' & 1/2,y,1/4 [u,0,w] \\
2 & c & .2' & 0,y,1/4 [u,0,w] \\
2 & b & 2'.. & x,1/2,0 [0,v,w] \\
2 & a & 2'.. & x,0,0 [0,v,w] \\
\end{array}
\]

Symmetry of Special Projections

Along [0,0,1] p2mm Along [1,0,0] p2'mg' Along [0,1,0] p2'mg'
\[a^* = a \quad b^* = b\] \[a^* = -c \quad b^* = b\] \[a^* = c \quad b^* = a\]
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,1/4
P22'2₁' 17.4.109

22'2' P22'2₁'

Orthorhombic

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations:

1. 1
 (1) 0,0,0
 (2) 0,0,1/2
 (3) 0,x,0
 (4) 0,y,0

17.4.109 - 1 - 194
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>2 d .2'</td>
<td>1/2,y,1/4 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 c .2'</td>
<td>0,y,1/4 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 b 2..</td>
<td>x,1/2,0 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 2..</td>
<td>x,0,0 [u,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p'2'm'm' Along [1,0,0] p'2mg Along [0,1,0] p'2'm'g
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \quad \mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = \mathbf{b} \quad \mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = \mathbf{a} \)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,1/4
Origin at 212,

Asymmetric unit $0 \leq x < 1/2; \ 0 \leq y < 1/2; \ 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0)$ + set

1. I
 (1) $0,0,0$
 (2) $0,0,1/2$
 (3) $0,y,1/4$
 (4) $x,0,0$

For $(1,0,0)$' + set

1. t' $(1,0,0)$
 (1) $1,0,0$
 (2) $0,0,1/2$
 (3) $1/2,y,1/4$
 (4) $1,0,0$

17.5.110 - 1 - 196
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(0,0,0) + (1,0,0) +</td>
</tr>
<tr>
<td>4 d .2'</td>
<td>1/2,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>4 c .2</td>
<td>0,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>4 b 2..</td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4 a 2..</td>
<td>x,0,0 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2a.2m’m’ Along [1,0,0] p2mg1’ Along [0,1,0] p2b.2m’g’
\(\mathbf{a}^* = \mathbf{a} \) \hspace{1cm} \(\mathbf{b}^* = \mathbf{b} \) \hspace{1cm} \(\mathbf{a}^* = \mathbf{c} \) \hspace{1cm} \(\mathbf{b}^* = \mathbf{a} \)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,1/4
Symmetry Operations

For \((0,0,0) +\) set

1. \((1)\, 1\)
2. \((2)\, (0,0,1/2)\, 0,0,z\)
3. \((3)\, 2\, 0,y,1/4\)
4. \((4)\, 2\, x,0,0\)

For \((1,0,0)'+\) set

1. \((1)\, t'\, (1,0,0)\)
2. \((2)\, 2'\, (0,0,1/2)\, 1/2,0,z\)
3. \((3)\, 2'\, 1/2,y,1/4\)
4. \((4)\, 2'\, (1,0,0)\, x,0,0\)

Asymmetric unit

\(0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) (\bar{x}, \bar{y}, \bar{z} + 1/2) [(\bar{u}, \bar{v}, \bar{w})]</td>
</tr>
<tr>
<td></td>
<td>(3) (\bar{x}, \bar{y}, \bar{z} + 1/2) [(\bar{u}, \bar{v}, \bar{w})]</td>
</tr>
<tr>
<td></td>
<td>(4) (\bar{x}, \bar{y}, \bar{z}) [(u, \bar{v}, \bar{w})]</td>
</tr>
<tr>
<td>4 d .2'</td>
<td>1/2,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td>4 c .2</td>
<td>0,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,(\bar{y}, 3/4) [0,(\bar{v}, 0)]</td>
</tr>
<tr>
<td>4 b 2'..</td>
<td>x,1/2,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>(\bar{x}, 1/2, 1/2) [0,(\bar{v}, \bar{w})]</td>
</tr>
<tr>
<td>4 a 2'..</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>(\bar{x}, 0, 1/2) [(u, 0, 0)]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p_{c-2mm}</th>
<th>Along [1,0,0] p_{2mg1'}</th>
<th>Along [0,1,0] p_{2mg1'}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a) b^* = b \</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 1/2,1/2,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,1/4</td>
</tr>
</tbody>
</table>
Orthorhombic

$P_{2a} 2'2'2_1$

17.7.112

$2221'$

$P_{2a} 2'2'2_1$

Origin at $2'12_1$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0)$ + set

1. 1

 2. 2 (0,0,1/2) 0,0,z

 3. $2'$ 0,y,1/4

 4. $2'$ 0,0,0

For $(1,0,0)'$ + set

1. t' (1,0,0)

 2. $2'$ (0,0,1/2) 1/2,0,z

 3. 2 1/2,y,1/4

 4. 2 (1,0,0) x,0,0
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z+1/2 [u,v,w] (3) x,y,z+1/2 [u,v,w] (4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 d .2</td>
<td>1/2,y,1/4 [0,v,0] 1/2,y,3/4 [0,v,0]</td>
</tr>
<tr>
<td>4 c .2'</td>
<td>0,y,1/4 [u,0,w] 0,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td>4 b 2</td>
<td>x,1/2,0 [u,0,0] x,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 a 2</td>
<td>x,0,0 [u,0,0] x,0,1/2 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_{2a}.2mm \) \(a^* = a \) \(b^* = b \) Origin at 0,0,z

Along [1,0,0] \(p2mg1' \) \(a^* = -c \) \(b^* = b \) Origin at x,0,0

Along [0,1,0] \(p_{2b}.2mg \) \(a^* = c \) \(b^* = a \) Origin at 1/2,y,1/4
Origin at intersection of 2 with perpendicular plane containing 2, axes

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

(1) 1
(2) $2 \ 0,0,z$
(3) $2 \ (0,1/2,0) \ 1/4,y,0$
(4) $2 \ (1/2,0,0) \ x,1/4,0$

(1) $0,0,0$
(2) $z,0,0,0$
(3) $y,1/2,1/2,0$
(4) $x,1/2,1/2,0$
Generators selected
(1); \(t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) (x,y,z [u,v,w]) (2) (\bar{x},\bar{y},\bar{z} [\bar{u},\bar{v},\bar{w}]) (3) (x+1/2,y+1/2,z [u,v,w]) (4) (x+1/2,y+1/2,z [u,v,w])</td>
</tr>
<tr>
<td>2 b .2</td>
<td>(0,1/2,z [0,0,w]) (1/2,0,z [0,0,\bar{w}])</td>
</tr>
<tr>
<td>2 a .2</td>
<td>(0,0,z [0,0,w]) (1/2,1/2,z [0,0,\bar{w}])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2g'g' Along [1,0,0] p2m'g' Along [0,1,0] p2m'g'
\(a^* = a \quad b^* = b\) \(a^* = b \quad b^* = c\) \(a^* = -a \quad b^* = c\)
Origin at 0,0,z Origin at x,1/4,0 Origin at 1/4,y,0
Origin: at intersection of 21' with perpendicular plane containing 2,1' axes

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For 1 + set

1. $1 \rightarrow 0,0,z$
2. $2 \rightarrow 0,0,0$
3. $2 \rightarrow (0,1/2,0) \rightarrow 1/4,y,0$
4. $2 \rightarrow (1/2,0,0) \rightarrow x,1/4,0$

For 1' + set

1. $1' \rightarrow 0,0,0'$
2. $2' \rightarrow 0,0,z$
3. $2' \rightarrow (0,1/2,0) \rightarrow 1/4,y,0$
4. $2' \rightarrow (1/2,0,0) \rightarrow x,1/4,0$

Orthorhombic

P2₂₂₁' 18.2.114

P2₂₂₁' 222₁'
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3), 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>1 +</th>
<th>1' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 11'</td>
<td>x,y,z [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b ..21'</td>
<td>0,1/2,z [0,0,0]</td>
<td>1/2,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a ..21'</td>
<td>0,0,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2gg1' Along [1,0,0] p2mg1' Along [0,1,0] p2mg1'

\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \quad \mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \quad \mathbf{a}^* = -\mathbf{a} \quad \mathbf{b}^* = \mathbf{c} \)

Origin at 0,0,z

Origin at x,1/4,0

Origin at 1/4,y,0
Origin at intersection of 2 with perpendicular plane containing 2', axes

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

(1) 1
 (0,0,0)

(2) 2 0,0,z
 (0,0,0)

(3) 2' (0,1/2,0) 1/4,1/2,0
 (0,1/2,0)

(4) 2' (1/2,0,0) x,1/2,0
 (1/2,0,0)
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x, y, z [u, v, w]</td>
<td>(3) x+1/2, y+1/2, z [u, v, w]</td>
</tr>
<tr>
<td>2 b</td>
<td>0,1/2, z [0,0,w]</td>
<td>1/2,0, z [0,0,w]</td>
<td>1/2,1/2, z [0,0,w]</td>
</tr>
<tr>
<td>2 a</td>
<td>0,0, z [0,0,w]</td>
<td>1/2,1/2, z [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2gg Along [1,0,0] p2'm'g Along [0,1,0] p2'm'g
a* = a b* = b a* = b b* = c a* = -a b* = c
Origin at 0,0,z Origin at x,1/4,0 Origin at 1/4,y,0
Origin: at intersection of 2' with perpendicular plane containing 2, and 2', axes

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations:

1. 1
2. 2', 0,0,z
3. 2' (0,1/2,0) 1/4,y,0
4. 2 (1/2,0,0) x,1/4,0
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 b ..2'</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>2 a ..2'</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(3) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(4) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'gg'
Along [1,0,0] p2mg
Along [0,1,0] p2'mg'

a* = a b* = b
a* = b b* = c
a* = -a b* = c

Origin at 0,0,z
Origin at x,1/4,0
Origin at 1/4,y,0

18.4.116 - 2 - 209
Ortinhombic

Origin: at intersection of 2 with perpendicular plane containing 21 axes

Asymmetric unit:

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0) +$ set:

1. 1
2. $2, 0,0,z$
3. $2 (0,1/2,0) 1/4,y,0$
4. $2 (1/2,0,0) x,1/4,0$

For $(0,0,1)' +$ set:

1. $t (0,0,1)$
2. $2' (0,0,1) 0,0,z$
3. $2' (0,1/2,0) 1/4,y,1/2$
4. $2' (1/2,0,0) x,1/4,1/2$

For $(0,0,1)' -$ set:

1. $t (0,0,1)$
2. $2' (0,0,1) 0,0,z$
3. $2' (0,1/2,0) 1/4,y,1/2$
4. $2' (1/2,0,0) x,1/4,1/2$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1'); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 (b)</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 (a)</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2gg1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2b2m'g'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,1/4,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>p2b2m'g'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -a</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 1/4,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Orthorhombic

Origin at intersection of 2' with perpendicular plane containing 2, and 2', axes

Asymmetric unit

\[0 \leq x < \frac{1}{2}; \quad 0 \leq y < \frac{1}{2}; \quad 0 \leq z < 1 \]

Symmetry Operations

For \((0,0,0) + \text{set}\)

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2', 0,0,z \\
(3) & \quad 2' (0,1/2,0) \quad 1/4,y,0 \\
(4) & \quad 2 (1/2,0,0) \quad x,1/4,0
\end{align*}
\]

For \((0,0,1)'+ \text{set}\)

\[
\begin{align*}
(1) & \quad t' (0,0,1) \\
(2) & \quad 2 (0,0,1) \quad 0,0,z \\
(3) & \quad 2 (0,1/2,0) \quad 1/4,y,1/2 \\
(4) & \quad 2' (1/2,0,0) \quad x,1/4,1/2
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(0,0,0) + (0,0,1) +</td>
</tr>
<tr>
<td>4 b .2'</td>
<td>0,1/2,z [u,v,0] 1/2,0,z [u,v,0]</td>
</tr>
<tr>
<td>4 a .2'</td>
<td>0,0,z [u,v,0] 1/2,1/2,z [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2gg1'</th>
<th>Along [1,0,0] p2b*2mg</th>
<th>Along [0,1,0] p2b*2mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = b b* = c</td>
<td>a* = -a b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,1/4,0</td>
<td>Origin at 1/4,y,1/2</td>
</tr>
</tbody>
</table>
Origin at midpoint of three non-intersecting pairs of parallel 2, axes

Asymmetric unit
\[0 \leq x < \frac{1}{2}; \quad 0 \leq y < \frac{1}{2}; \quad 0 \leq z < 1 \]

Symmetry Operations

\begin{align*}
(1) & \quad \textbf{1} \\
(1') & \quad (0,0,0) \\
(2) & \quad 2 \cdot (0,0,1/2) \cdot 1/4,0,z \\
(2_z) & \quad 1/2,0,1/2 \\
(3) & \quad 2 \cdot (0,1/2,0) \cdot 0,y,1/4 \\
(2_y) & \quad 0,1/2,1/2 \\
(4) & \quad 2 \cdot (1/2,0,0) \cdot x,1/4,0 \\
(2_x) & \quad 1/2,1/2,0
\end{align*}
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 a 1</td>
<td>(1) x,y,z [u,v,w] (2) x+1/2,y,z+1/2 [u,v,w] (3) x,y+1/2,z+1/2 [u,v,w] (4) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2g'g' Along [1,0,0] p2g'g' Along [0,1,0] p2g'g'
\(a^* = a \) \(b^* = b \) \(c^* = c \) \(a^* = b \) \(b^* = c \) \(a^* = c \) \(b^* = a \)
Origin at 1/4,0,z Origin at x,1/4,0 Origin at y,1/4,0
Origin at midpoint of three non-intersecting pairs of parallel \(2_1' \) axes

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \)

Symmetry Operations

For \(1 \) + set

(1) \(1 \)
(1 | 0,0,0)

(2) \(2 \) (0,0,1/2) 1/4,0,z
(2 | 1/2,0,1/2)

(3) \(2 \) (0,1/2,0) 0,y,1/4
(2 | 0,1/2,1/2)

(4) \(2 \) (1/2,0,0) x,1/4,0
(2 | 1/2,1/2,0)

For \(1' \) + set

(1) \(1' \)
(1 | 0,0,0')

(2) \(2' \) (0,0,1/2) 1/4,0,z
(2 | 1/2,0,1/2)

(3) \(2' \) (0,1/2,0) 0,y,1/4
(2 | 0,1/2,1/2)

(4) \(2' \) (1/2,0,0) x,1/4,0
(2 | 1/2,1/2,0)
Continued

19.2.120

P2₁,2,2,1’

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1’.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1’ +</td>
<td></td>
</tr>
<tr>
<td>4 a 11’ (1) x,y,z [0,0,0] (2) x+1/2,y,z+1/2 [0,0,0] (3) x,y+1/2,z+1/2 [0,0,0] (4) x+1/2,y+1/2,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2gg1’</th>
<th>Along [1,0,0] p2gg1’</th>
<th>Along [0,1,0] p2gg1’</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = b b* = c</td>
<td>a* = c b* = a</td>
</tr>
<tr>
<td>Origin at 1/4,0,z</td>
<td>Origin at x,1/4,0</td>
<td>Origin at 0,y,1/4</td>
</tr>
</tbody>
</table>
Origin at midpoint of three non-intersecting pairs of parallel 2, and 2,’ axes

Asymmetric unit \(0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq 1\)

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(1 & \quad 0,0,0) \\
(2) & \quad 2 (0,0,1/2) 1/4,0,z \\
(2 & \quad z 1/2,0,1/2) \\
(3) & \quad 2' (0,1/2,0) 0,y,1/4 \\
(2' & \quad y 0,1/2,1/2)' \\
(4) & \quad 2' (1/2,0,0) x,1/4,0 \\
(2' & \quad x 1/2,1/2,0)' \\
\end{align*}
\]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 a 1</td>
<td>(1) x,y,z [u,v,w] (2) x+1/2,y,z+1/2 [u,v,w] (3) x,y+1/2,z+1/2 [u,v,w] (4) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2gg

- $a^* = a$
- $b^* = b$
- Origin at 1/4,0,z

Along [1,0,0] p2'gg'

- $a^* = -c$
- $b^* = b$
- Origin at x,1/4,0

Along [0,1,0] p2'gg'

- $a^* = c$
- $b^* = a$
- Origin at 0,y,1/4
Origin at \(212,1\)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

For \((0,0,0)\) + set

1. \((1,0,0,0)\)
2. \((0,0,1/2,0), 0,0,z\)
3. \((2,0,0,1/2)\)
4. \((2,0,0,0)\)

For \((1/2,1/2,0)\) + set

1. \((1/2,1/2,0)\)
2. \((0,0,1/2,0), 1/4,1/4,z\)
3. \((2,0,1/2,0), 1/4,0,1/4\)
4. \((2,1/2,0,0)\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry. Coefficients, Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 b .2</td>
<td>0,y,1/4 [0,v,0]</td>
<td>0,y,3/4 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 a 2..</td>
<td>x,0,0 [u,0,0]</td>
<td>x,0,1/2 [u,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2m'm' Along [1,0,0] p2m'g' Along [0,1,0] p2m'g'

a* = a b* = b a* = -c b* = b/2 a* = c b* = a/2

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,1/4
Origin at 212,1'

Asymmetric unit

\[0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2} \]

Symmetry Operations

For \((0,0,0)\) + set

1. \((1) \quad 1 \)
2. \((2) \quad 2 (0,0,1/2) \quad 0,0,z \)
 \((2_z) \quad 0,0,1/2 \)
3. \((3) \quad 2 \quad 0,y,1/4 \)
 \((2_y) \quad 0,0,1/2 \)
4. \((4) \quad 2 \quad x,0,0 \)
 \((2_x) \quad 0,0,0 \)

For \((1/2,1/2,0)\) + set

1. \((1) \quad t \)
 \((1) \quad 1/2,1/2,0 \)
2. \((2) \quad 2 (0,0,1/2) \quad 1/4,1/4,z \)
 \((2_z) \quad 1/2,1/2,1/2 \)
3. \((3) \quad 2 (0,1/2,0) \quad 1/4,y,1/4 \)
 \((2_y) \quad 1/2,1/2,1/2 \)
4. \((4) \quad 2 \quad (1/2,0,0) \quad x,1/4,0 \)
 \((2_x) \quad 1/2,1/2,0 \)

For \((0,0,0)'\) + set

1. \((1) \quad 1' \)
 \((1) \quad 0,0,0' \)
2. \((2) \quad 2' (0,0,1/2) \quad 0,0,z \)
 \((2_z') \quad 0,0,1/2' \)
3. \((3) \quad 2' (0,1/2,0) \quad 0,y,1/4 \)
 \((2_y') \quad 0,0,1/2' \)
4. \((4) \quad 2' \quad x,0,0 \)
 \((2_x') \quad 0,0,0' \)

For \((1/2,1/2,0)'\) + set

1. \((1) \quad t' \)
 \((1) \quad 1/2,1/2,0' \)
2. \((2) \quad 2' (0,0,1/2) \quad 1/4,1/4,z \)
 \((2_z') \quad 1/2,1/2,1/2' \)
3. \((3) \quad 2' (0,1/2,0) \quad 1/4,y,1/4 \)
 \((2_y') \quad 1/2,1/2,1/2' \)
4. \((4) \quad 2' (1/2,0,0) \quad x,1/4,0 \)
 \((2_x') \quad 1/2,1/2,0' \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 b .2.1'</td>
<td>0,y,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2..1'</td>
<td>x,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2mg1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -c b* = b/2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>p2mg1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c b* = a/2</td>
<td></td>
</tr>
</tbody>
</table>

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,1/4
Origin at $2'12_1$

Asymmetric unit $0 \leq x < 1/2$; $0 \leq y < 1/2$; $0 \leq z < 1/2$

Symmetry Operations

For $(0,0,0) +$ set

1. 1
2. $(2) (0,0,1/2)$ $0,0,z$
3. $(2') (0,0,1/2)'$
4. $(4) 2' x,0,0$

For $(1/2,1/2,0) +$ set

1. $t (1/2,1/2,0)$
2. $(2) (0,0,1/2) 1/4,1/4,z$
3. $(2') (0,1/2,0) 1/4,y,1/4$
4. $(4) 2' (1/2,0,0) x,1/4,0$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>4 b .2'</td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>4 a 2'..</td>
<td>x,0,0 [v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2mm</th>
<th>Along [1,0,0]</th>
<th>p2'mg'</th>
<th>Along [0,1,0]</th>
<th>p2'mg'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = -c</td>
<td>b* = b/2</td>
<td>a* = c</td>
<td>b* = a/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 0,y,1/4</td>
<td></td>
</tr>
</tbody>
</table>
Origin at 212, 1

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1 (1 | 0,0,0)
(2) 2' (0,0,1/2) 0,0,z
(2 | 0,0,1/2)'
(3) 2' 0,y,1/4
(2 | 0,0,1/2)'
(4) 2 x,0,0
(2 | 0,0,0)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0) (1 | 0,0,0)
(2) 2' (0,0,1/2) 1/4,1/4,z
(2 | 1/2,1/2,1/2)'
(3) 2' (0,1/2,0) 1/4,y,1/4
(2 | 1/2,1/2,1/2)'
(4) 2 (1/2,0,0) x,1/4,0
(2 | 1/2,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 b .2'</td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>4 a 2..</td>
<td>x,0,0 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Axial Direction</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>c2'mm'</td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>p2mg</td>
</tr>
<tr>
<td>Along [0,1,0]</td>
<td>p2m'g</td>
</tr>
</tbody>
</table>

Generators

- (1) = t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0)
- (2) = t(1,0,0); t(0,1,0); t(0,0,1)
- (3) = t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0)
Origin at 212,

Asymmetric unit: $0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0)$ + set:

1. 1
2. $2 (0,0,1/2) 0,0,z$
3. $2 (0,1/2,0) 1/4,y,1/4$
4. $2 x,0,0$

For $(1/2,1/2,0)'$ + set:

1. $t' (1/2,1/2,0)$
2. $2' (0,0,1/2) 1/4,1/4,z$
3. $2' (0,1/2,0) 1/4,y,1/4$
4. $2' (1/2,0,0) x,1/4,0$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0)'; (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(0,0,0) + (1/2,1/2,0) ' +</td>
</tr>
<tr>
<td>4 b .2</td>
<td>0, y, 1/4 [0, v, 0]</td>
</tr>
<tr>
<td>4 a 2</td>
<td>x, 0, 0 [u, 0, 0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0, 0, 1] \(c_{p2m'm'} \)
 - \(a^* = a \) \(b^* = b \)
 - Origin at 0, 0, z

- Along [1, 0, 0] \(p_{2b'2m'g'} \)
 - \(a^* = -c \) \(b^* = b/2 \)
 - Origin at x, 0, 0

- Along [0, 1, 0] \(p_{2v'2m'g'} \)
 - \(a^* = c \) \(b^* = a/2 \)
 - Origin at y, 0, 1/4
Orthorhombic

CP$_2$'2'2$_1$

20.6.127

CP$_2$'2'2$_1$

Origin at 2'12$_1$

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2 (0,0,1/2) 0,0,z
(2$_z$ | 0,0,1/2)

(3) 2' 0,y,1/4
(2$_y$ | 0,0,1/2$_1$)

(4) 2' x,0,0
(2$_x$ | 0,0,0$_1$)

For (1/2,1/2,0)$_1$ + set

(1) t' (1/2,1/2,0) 0,1/2,0
(1 | 1/2,1/2,0)$_1$

(2) 2' (0,0,1/2) 1/4,1/4,z
(2$_z$ | 1/2,1/2,1/2$_1$)

(3) 2 (0,1/2,0) 1/4,y,1/4
(2$_y$ | 1/2,1/2,1/2)

(4) 2 (1/2,0,0) x,1/4,0
(2$_x$ | 1/2,1/2,0)
Generators selected (1); t(1,0,0); t(0,0,1); t(1/2,1/2,0)'; (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>8</th>
<th>c</th>
<th>1</th>
<th>(1) x,y,z [u,v,w]</th>
<th>(0,0,0) + (1/2,1/2,0)' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>b</td>
<td>.2'</td>
<td>0,y,1/4 [u,0,w]</td>
<td>0,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>2'</td>
<td>x,0,0 [0,v,w]</td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(\text{c}_{\text{p}} \text{2mm} \) Along [1,0,0] \(\text{p}_{\text{2b}} \text{2mg} \) Along [0,1,0] \(\text{p}_{\text{2b}} \text{2mg} \)
\(\mathbf{a}^* = \mathbf{a} \) \(\mathbf{b}^* = \mathbf{b} \) \(\mathbf{a}^* = -\mathbf{c} \) \(\mathbf{b}^* = \mathbf{b}/2 \) \(\mathbf{a}^* = \mathbf{c} \) \(\mathbf{b}^* = \mathbf{a}/2 \)
Origin at 0,0,z Origin at x,1/4,0 Origin at 1/4,y,1/4
Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1 | 0,0,0)

(2) 2' (0,0,1/2) 0,0,z
 (2z | 0,0,1/2)'

(3) 2' 0,y,1/4
 (2y | 0,0,1/2)'

(4) 2 x,0,0
 (2x | 0,0,0)

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0)
 (1 | 1/2,1/2,0)'

(2) 2 (0,0,1/2) 1/4,1/4,z
 (2y | 1/2,1/2,1/2)

(3) 2 (0,1/2,0) 1/4,y,1/4
 (2y | 1/2,1/2,1/2)

(4) 2' (1/2,0,0) x,1/4,0
 (2z | 1/2,1/2,0)'

Origin at 212,'
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0)'; (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z+1/2 [u,v,w] (3) x,y,z+1/2 [u,v,w] (4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 b .2'</td>
<td>0,y,1/4 [u,0,w] 0,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td>4 a 2.</td>
<td>x,0,0 [u,0,0] x,0,1/2 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c_p2'2mm'</th>
<th>Along [1,0,0]</th>
<th>p_ab-2mg</th>
<th>Along [0,1,0]</th>
<th>p_2v-2mg'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = -c</td>
<td>b* = b/2</td>
<td>a* = c</td>
<td>b* = a/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 1/4,y,1/4</td>
<td></td>
</tr>
</tbody>
</table>
Orthorhombic

C222 21.1.129 C222

Origin at 222

Asymmetric unit

\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 0,0,z \\
(3) & \quad 2 \quad 0,0,0 \\
(4) & \quad 2 \quad z,0,0
\end{align*}
\]

For \((1/2,1/2,0)\) + set

\[
\begin{align*}
(1) & \quad t \quad 1/2,1/2,0 \\
(2) & \quad 1/4,1/4,z \\
(3) & \quad 2 \quad 0,1/2,0 \\
(4) & \quad 2 \quad 1/2,0,0
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(4) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

8	l	1	(1) x,y,z [u,v,w]	(2) x,y,z [u,v,w]
4	k	.2	1/4,1/4,z [0,0,w]	3/4,1/4,z [0,0,w]
4	j	.2	0,1/2,z [0,0,w]	0,1/2,z [0,0,w]
4	i	.2	0,0,z [0,0,w]	0,0,z [0,0,w]
4	h	.2	0,y,1/2 [0,v,0]	0,y,1/2 [0,v,0]
4	g	.2	0,y,0 [0,v,0]	0,y,0 [0,v,0]
4	f	.2	x,0,1/2 [u,0,0]	x,0,1/2 [u,0,0]
4	e	.2	x,0,0 [u,0,0]	x,0,0 [u,0,0]
2	d	222	0,0,1/2 [0,0,0]	
2	c	222	1/2,0,1/2 [0,0,0]	
2	b	222	0,1/2,0 [0,0,0]	
2	a	222	0,0,0 [0,0,0]	

Symmetry of Special Projections

Along [0,0,1] c2m'm' Along [1,0,0] p2m'm' Along [0,1,0] p2m'm'
\(a^* = a \) \(b^* = b \) \(a^* = b/2 \) \(b^* = c \) \(a^* = c \) \(b^* = a/2 \)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Asymmetric unit $0 \leq x \leq 1/4; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0)$ + set

1. $1 \ (0,0,0)$
2. $2 \ 0,0,z \ (2z|0,0,0)$
3. $2 \ 0,y,0 \ (2y|0,0,0)$
4. $2 \ x,0,0 \ (2x|0,0,0)$

For $(1/2,1/2,0)$ + set

1. $t \ (1/2,1/2,0) \ (1/2,1/2,0)$
2. $2 \ 1/4,1/4,z \ (2z|1/2,1/2,0)$
3. $2 \ (0,1/2,0) \ 1/4,y,0 \ (2y|1/2,1/2,0)$
4. $2 \ (1/2,0,0) \ x,1/4,0 \ (2x|1/2,1/2,0)$

For $(0,0,0)'$ + set

1. $1' \ (0,0,0)'$
2. $2' \ 0,0,z \ (2z|0,0,0)'$
3. $2' \ 0,y,0 \ (2y|0,0,0)'$
4. $2' \ x,0,0 \ (2x|0,0,0)'$

For $(1/2,1/2,0)'$ + set

1. $t' \ (1/2,1/2,0)' \ (1/2,1/2,0)'$
2. $2' \ 1/4,1/4,z \ (2z|1/2,1/2,0)'$
3. $2' \ (0,1/2,0)' \ 1/4,y,0 \ (2y|1/2,1/2,0)'$
4. $2' \ (1/2,0,0)' \ x,1/4,0 \ (2x|1/2,1/2,0)'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,0) + (0,0,0)' + (1/2,1/2,0)' +</td>
<td>(0,0,0) + (1/2,1/2,0) + (0,0,0)' + (1/2,1/2,0)' +</td>
</tr>
<tr>
<td>8 l 11' (1) x,y,z [0,0,0] (2) x,y,z [0,0,0] (3) x,y,z [0,0,0] (4) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 k .21' 1/4,1/4,z [0,0,0] 3/4,1/4,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 j .21' 0,1/2,z [0,0,0] 0,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 i .21' 0,0,z [0,0,0] 0,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 h .21' 0,y,1/2 [0,0,0] 0,y,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 g .21' 0,y,0 [0,0,0] 0,y,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 f .21' x,0,1/2 [0,0,0] x,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 e .21' x,0,0 [0,0,0] x,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 d 2221' 0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 c 2221' 1/2,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 b 2221' 0,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 2221' 0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

| Along [0,0,1] | c2mm1' | | Along [1,0,0] | p2mm1' | | Along [0,1,0] | p2mm1' |
|---------------|--------|---------------------------------|--------|---------------------------------|--------|
| a* = a b* = b | a* = b/2 b* = c | a* = c b* = a/2 |
| Origin at 0,0,z | Origin at x,0,0 | Origin at 0,y,0 |
C2'2'2 21.3.131

Asymmetric unit

0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1) 0,0,0
(2) 2 0,0,z
 (2) 0,0,0
(3) 2' 0,y,0
 (3) 1/2,0,0
(4) 2' x,0,0
 (4) 1/2,0,0

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
 (1) 1/2,1/2,0
(2) 2 1/4,1/4,z
 (2) 1/2,1/2,0
(3) 2' (0,1/2,0) 1/4,y,0
 (3) 1/2,1/2,0
(4) 2' (1/2,0,0) x,1/4,0
 (4) 1/2,1/2,0

Origin at 2'2'2
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) + (1/2,1/2,0) +</td>
</tr>
<tr>
<td>8</td>
<td>l</td>
</tr>
<tr>
<td>4</td>
<td>k</td>
</tr>
<tr>
<td>4</td>
<td>j</td>
</tr>
<tr>
<td>4</td>
<td>i</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm

\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)

Origin at 0,0,z

Along [1,0,0] p2'\text{mm}'

\(\mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = \mathbf{b}/2 \)

Origin at 0,0,0

Along [0,1,0] p2'\text{mm}'

\(\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = \mathbf{a}/2 \)

Origin at 0,y,0
Asymmetric unit: $0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0) +$ set:

1. $(2^* 0,0,0)$
2. $(2^* 0,0,0)'$
3. $(2^* 0,0,0)''$
4. $(2^* 0,0,0)'''$

For $(1/2,1/2,0) +$ set:

1. $(2^* 1/4,1/4,0)$
2. $(2^* 1/4,1/4,0)'$
3. $(2^* 1/4,1/4,0)''$
4. $(2^* 1/4,1/4,0)'''$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 l 1 (1)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 k .2'</td>
<td>1/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td>4 j .2'</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>4 i .2'</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td>4 h .2'</td>
<td>0,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>4 g .2'</td>
<td>0,y,0 [u,0,w]</td>
</tr>
<tr>
<td>4 f .2'</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 e .2'</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>2 d 22'2'</td>
<td>0,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 c 22'2'</td>
<td>1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 b 22'2'</td>
<td>0,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>2 a 22'2'</td>
<td>0,0,0 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] c'2mm'
- Along [1,0,0] p2mm
- Along [0,1,0] p2'2mm'

\[
\begin{align*}
\mathbf{a^*} &= \mathbf{a} & \mathbf{b^*} &= \mathbf{b} \\
\mathbf{a^*} &= \mathbf{b}/2 & \mathbf{b^*} &= \mathbf{c} \\
\mathbf{a^*} &= -\mathbf{a}/2 & \mathbf{b^*} &= \mathbf{c} \\
\text{Origin at 0,0,z} & & \text{Origin at x,0,0} & & \text{Origin at 0,y,0}
\end{align*}
\]
Asymmetric unit

\[0 < x < 1/4; \quad 0 < y < 1/2; \quad 0 < z < 1 \]

Symmetry Operations

For \((0,0,0) + \) set

1. \((1)\) 1
2. \((2)\) 2, \(0,0,z\)
3. \((3)\) 2, \(0,y,0\)
4. \((4)\) 2, \(x,0,0\)

For \((1/2,1/2,0) + \) set

1. \((1)\) 1, \(1/2,1/2,0\)
2. \((2)\) 2, \(1/4,1/4,z\)
3. \((3)\) 2, \(0,1/2,0\)
4. \((4)\) 2, \(1/2,0,0\)

For \((0,0,1) + \) set

1. \((1)\) 1, \(0,0,1\)
2. \((2)\) 2, \(0,0,1\), \(0,0,z\)
3. \((3)\) 2, \(0,1/2,0\)
4. \((4)\) 2, \(1/2,0,0\)

For \((1/2,1/2,1) + \) set

1. \((1)\) 1, \(1/2,1/2,1\)
2. \((2)\) 2, \(0,0,1\), \(1/4,1/4,z\)
3. \((3)\) 2, \(0,1/2,0\)
4. \((4)\) 2, \(1/2,0,0\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 l</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 k</td>
<td>1/4,1/4,z [0,0,w]</td>
</tr>
<tr>
<td>8 j</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 i</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 h</td>
<td>0,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>8 g</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td>8 f</td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 e</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>4 d</td>
<td>0,0,1/2 [0,w]</td>
</tr>
<tr>
<td>4 c</td>
<td>1/2,0,1/2 [0,w]</td>
</tr>
<tr>
<td>4 b</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1' Along [1,0,0] p2mm' Along [0,1,0] p2mm'
\(a^* = a\) \(b^* = b\)
\(a^* = -c\) \(b^* = b/2\)
\(a^* = c\) \(b^* = a/2\)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Asymmetric unit

0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1|0,0,0)

(2) 2 0,0,z
 (2z|0,0,0)

(3) 2 0,y,0
 (2y|0,0,0)

(4) 2 x,0,0
 (2x|0,0,0)

For (1/2,1/2,0)' + set

(1) 1' (1/2,1/2,0)
 (1|1/2,1/2,0)

(2) 2' 1/4,1/4,z
 (2z|1/2,1/2,0)

(3) 2' (0,1/2,0) 1/4,y,0
 (2y|1/2,1/2,0)

(4) 2' (1/2,0,0) x,1/4,0
 (2x|1/2,1/2,0)
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0)'\); \((2); (3)\).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0,0) + (1/2,1/2,0)' +)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 l 1</th>
<th>((1) \bar{x}, \bar{y}, \bar{z} [\bar{u}, \bar{v}, \bar{w}])</th>
<th>((2) \bar{x}, \bar{y}, \bar{z} [u, v, w])</th>
<th>((3) \bar{x}, \bar{y}, \bar{z} [\bar{u}, \bar{v}, \bar{w}])</th>
<th>((4) x, y, z [u, v, w])</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 k 2'</td>
<td>((1/2,1/2,0))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 j 2</td>
<td>((0,1/2,0))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 i 2</td>
<td>((0,0,0))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 h 2</td>
<td>((0,0,0))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 g 2</td>
<td>((0,0,0))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 f 2</td>
<td>((0,0,0))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 e 2</td>
<td>((0,0,0))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 d 222</td>
<td>((0,0,0))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c 222</td>
<td>((1/2,0,1/2))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b 222</td>
<td>((0,1/2,0))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a 222</td>
<td>((0,0,0))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) \(c_{p}2m'm'\)
- Along \([1,0,0]\) \(p_{2a}2m'm'\)
- Along \([0,1,0]\) \(p_{2a}2m'm'\)

\(a^* = a, b^* = b\)
Origin at \(0,0,z\)

\(a^* = b/2, b^* = c\)
Origin at \(x,0,0\)

\(a^* = -a/2, b^* = c\)
Origin at \(0,y,0\)
Asymmetric unit: $0 < x < 1/4; \ 0 < y < 1/2; \ 0 < z < 1$

Symmetry Operations

For (0,0,0) + set

1. $t \ (0,0,0) \\
 (1 \ 0,0,0)
2. $2 \ 0,0,z$ \\
 $(2z \ 0,0,0)$
3. $2 \ 0,y,0$ \\
 $(2y \ 0,0,0)$
4. $2 \ x,0,0$ \\
 $(2x \ 0,0,0)$

For (1/2,1/2,0) + set

1. $t' \ (1/2,1/2,0) \\
 (1 \ 1/2,1/2,0)$
2. $2' \ 1/4,1/4,z$ \\
 $(2z' \ 1/2,1/2,0)$
3. $2' \ (0,1/2,0)$ \\
 $(2y' \ 1/2,1/2,0)$
4. $2' \ (1/2,0,0)$ \\
 $(2x' \ 1/2,1/2,0)$

For (0,0,1) + set

1. $t' \ (0,0,1) \\
 (1 \ 0,0,1)$
2. $2' \ (0,0,1)$ \\
 $(2z' \ 0,0,1)$
3. $2' \ 0,y,1/2$ \\
 $(2y' \ 0,0,1)$
4. $2' \ x,0,1/2$ \\
 $(2x' \ 0,0,1)$

For (1/2,1/2,1) + set

1. $t \ (1/2,1/2,1) \\
 (1 \ 1/2,1/2,1)$
2. $2 \ (0,0,1)$ \\
 $(2z \ 1/2,1/2,1)$
3. $2 \ (0,1/2,0)$ \\
 $(2y \ 1/2,1/2,1)$
4. $2 \ (1/2,0,0)$ \\
 $(2x \ 1/2,1/2,1)$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,0)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(0,0,1) + (1/2,1/2,1)</td>
<td></td>
</tr>
<tr>
<td>(0,0,0) + (1/2,1/2,0)’</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(0,0,1)’ + (1/2,1/2,1)’</td>
<td></td>
</tr>
</tbody>
</table>

16 l 1	(1) x,y,z [u,v,w]
8 k .2’	1/4,1/4,z [u,v,0]
8 j .2	0,1/2,z [0,0,w]
8 i .2	0,0,z [0,0,w]
8 h .2’	0,y,1/2 [u,0,w]
8 g .2	0,y,0 [v,0]
8 f .2’	x,0,1/2 [0,v,w]
8 e .2	x,0,0 [u,0,0]
4 d .2’2	0,0,1/2 [0,0,w]
4 c .2’2	1/2,0,1/2 [0,0,w]
4 b .2’2	0,1/2,0 [0,0,0]
4 a .2’2	0,0,0 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2mm1’</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b/2 b* = c</td>
<td></td>
</tr>
<tr>
<td>Origin at x,1/4,1/2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>p2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c b* = a/2</td>
<td></td>
</tr>
<tr>
<td>Origin at 1/4,y,1/2</td>
<td></td>
</tr>
</tbody>
</table>

21.7.135 - 2 - 247
Asymmetric unit: $0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0) +$ set

(1) 1
(2) $2' \quad 0,0,z$
(3) $2' \quad 0,y,0$
(4) $2 \quad x,0,0$

For $(1/2,1/2,0) +$ set

(1) $t \quad (1/2,1/2,0)$
(2) $2' \quad 1/4,1/4,z$
(3) $2' \quad (0,1/2,0)$
(4) $2 \quad (1/2,0,0)$

For $(0,0,1)' +$ set

(1) $t' \quad (0,0,1)$
(2) $2 \quad (0,0,1) \quad 0,0,z$
(3) $2 \quad 0,y,1/2$
(4) $2' \quad x,0,1/2$

For $(1/2,1/2,1)' +$ set

(1) $t' \quad (1/2,1/2,1)$
(2) $2 \quad (0,0,1) \quad 1/4,1/4,z$
(3) $2 \quad (0,1/2,0) \quad 1/4,y,1/2$
(4) $2' \quad (1/2,0,0) \quad x,1/4,1/2$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>(0,0,1') +</td>
<td>(1/2,1/2,1') +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16 l 1</th>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) (x',y',z [u,v,w])</th>
<th>(3) (x,y,\bar{z} [u,v,w])</th>
<th>(4) (x',y',\bar{z} [u,v,w])</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 k .2'</td>
<td>1/4,1/4,z [u,v,0]</td>
<td>3/4,1/4,(\bar{z}) [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 j .2'</td>
<td>0,1/2,z [u,v,0]</td>
<td>0,1/2,(\bar{z}) [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 i .2'</td>
<td>0,0,z [u,v,0]</td>
<td>0,0,(\bar{z}) [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 h .2'</td>
<td>0,y,1/2 [0,v,0]</td>
<td>0,(\bar{y}),1/2 [0,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 g .2'</td>
<td>0,y,0 [u,0,w]</td>
<td>0,(\bar{y}),0 [u,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 f .2'</td>
<td>x,0,1/2 [0,v,w]</td>
<td>(\bar{x},0,1/2 [0,v,w])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 e .2'</td>
<td>x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 d 2'2'</td>
<td>0,0,1/2 [0,v,o]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 c 2'2'</td>
<td>1/2,0,1/2 [0,v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 b 2'2'</td>
<td>0,1/2,0 [u,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 a 2'2'</td>
<td>0,0,0 [u,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a) (b^* = b)</td>
<td>(a^* = a) (b^* = b/2)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>(p_{2\alpha},2mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = -c) (b^* = b/2)</td>
<td>(a^* = c) (b^* = a/2)</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td>Origin at 1/4,y,0</td>
</tr>
</tbody>
</table>
CP2'2'2
21.9.137
C_{p2'2'2}'

Orthorhombic

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2 0,0,z
(3) 2' 0,y,0
(4) 2' x,0,0
(1*) 0,0,0
(2*) 0,0,0
(2y*) 0,0,0
(2x*) 0,0,0

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0)
(2) 2' 1/4,1/4,z
(3) 2 (0,1/2,0) 1/4,y,0
(4) 2 (1/2,0,0) x,1/4,0
(1*) 1/2,1/2,0
(2*) 1/2,1/2,0
(2y*) 1/2,1/2,0
(2x*) 1/2,1/2,0
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) + (1/2,1/2,0)' +</td>
</tr>
<tr>
<td>8 l 1 (1) x,y,z [u,v,w]</td>
<td>(2) $\bar{x},y,z [u\bar{v},w]$</td>
</tr>
<tr>
<td>4 k .2' 1/4,1/4,z [u,v,0]</td>
<td>3/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td>4 j .2 0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 i .2 0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 h .2' 0,y,1/2 [u,0,w]</td>
<td>0,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>4 g .2' 0,y,0 [u,0,w]</td>
<td>0,y,0 [u,0,w]</td>
</tr>
<tr>
<td>4 f .2' x,0,1/2 [0,v,w]</td>
<td>$\bar{x},0,1/2 [0,v,w]$</td>
</tr>
<tr>
<td>4 e .2' x,0,0 [0,v,w]</td>
<td>$\bar{x},0,0 [0,v,w]$</td>
</tr>
<tr>
<td>2 d 2'2' 0,0,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 c 2'2' 1/2,0,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 b 2'2' 0,1/2,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 a 2'2' 0,0,0 [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c$_p$2mm</th>
<th>Along [1,0,0]</th>
<th>p$_{2a}$2mm</th>
<th>Along [0,1,0]</th>
<th>p$_{2a}$2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b/2</td>
<td>b* = c</td>
<td>a* = -a/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,1/4,0</td>
<td>Origin at 0,y,1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Orthorhombic

Asymmetric unit

0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1

Symmetry Operations

For (0,0,0) + set

(1) 1

(1) t' (1/2,1/2,0)

(2) 2' 0,0,z

(2) 2 1/4,1/4,z

(2) 2 (0,1/2,0) 1/4,y,0

(2) 2' (1/2,0,0) x,1/4,0

(2) |0,0,0)

(2 |0,0,0)'

(2 z |0,0,0)'

(2 y |0,0,0)'

(2 x |0,0,0)'

For (1/2,1/2,0)' + set

(1) 1

(1) t' (1/2,1/2,0)

(2) 2 1/4,1/4,z

(2) 2 (0,1/2,0) 1/4,y,0

(2) 2' (1/2,0,0) x,1/4,0
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>I 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>k ..2</td>
<td>1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>j ..2'</td>
<td>0,1/2,0 [u,v,0]</td>
<td>0,1/2,0 [u,v,0]</td>
</tr>
<tr>
<td>4</td>
<td>i ..2'</td>
<td>0,0,0 [u,v,0]</td>
<td>0,0,0 [u,v,0]</td>
</tr>
<tr>
<td>4</td>
<td>h ..2'</td>
<td>0,0,0 [u,v,0]</td>
<td>0,0,0 [u,v,0]</td>
</tr>
<tr>
<td>4</td>
<td>g ..2'</td>
<td>x,0,1/2 [u,v,0]</td>
<td>x,0,1/2 [u,v,0]</td>
</tr>
<tr>
<td>4</td>
<td>e ..2'</td>
<td>x,0,0 [u,v,0]</td>
<td>x,0,0 [u,v,0]</td>
</tr>
<tr>
<td>2</td>
<td>d 22'2'</td>
<td>0,0,1/2 [u,v,0]</td>
<td>0,0,1/2 [u,v,0]</td>
</tr>
<tr>
<td>2</td>
<td>c 22'2'</td>
<td>1/2,0,1/2 [u,v,0]</td>
<td>1/2,0,1/2 [u,v,0]</td>
</tr>
<tr>
<td>2</td>
<td>b 22'2'</td>
<td>0,1/2,0 [u,v,0]</td>
<td>0,1/2,0 [u,v,0]</td>
</tr>
<tr>
<td>2</td>
<td>a 22'2'</td>
<td>0,0,0 [u,v,0]</td>
<td>0,0,0 [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c_{p2}2'2'm' Along [1,0,0] p_{2a}22'mm Along [0,1,0] p_{2a}22'm'm'

a = a b* = b
Origin at 0,0,z
Origin at x,0,0
Origin at 1/4,y,0
CI 2'22' 2221' Orthorhombic

Origin at 2'22'

Asymmetric unit

\[0 \leq x \leq \frac{1}{4}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0)\) + set

1. \((1,0,0,0)\)
2. \(2'0,0,z\)
3. \(20,y,0\)
4. \(2'x,0,0\)

For \((1/2,1/2,0)\)' + set

1. \((1/2,1/2,0)\)'
2. \(21/4,1/4,z\)
3. \(2'0,1/2,0\)
4. \(2x,1/4,0\)

For \((0,0,1)\)' + set

1. \((0,0,1)\)'
2. \(2(0,0,1)\)
3. \(2'0,y,1/2\)
4. \(2x,0,1/2\)

For \((1/2,1/2,1)\) + set

1. \((1/2,1/2,1)\)
2. \(2'(0,0,1)\) 1/4,1/4,z
3. \(2(0,1/2,0)\) 1/4,y,1/2
4. \(2'(1/2,0,0)\) x,1/4,1/2
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 l 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 k</td>
<td>1/4,1/4,z [0,0,w]</td>
</tr>
<tr>
<td>8 j</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>8 i</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td>8 h</td>
<td>0,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>8 g</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td>8 f</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 e</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>4 d</td>
<td>0,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 c</td>
<td>1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>0,1/2,0 [0,v,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,0 [0,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**
 - c2mm1’

- **Along [1,0,0]**
 - p,2mm

- **Along [0,1,0]**
 - p,2mm

- **Origin at 0,0,z**

- **Origin at x,0,1/2**

- **Origin at 1/4,y,1/2**
Symmetry Operations

For (0,0,0) + set

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
<td>(2) 2 0,0,z</td>
<td>(3) 2 0,y,0</td>
<td>(4) 2 x,0,0</td>
</tr>
<tr>
<td>(1</td>
<td>0,0,0)</td>
<td>(2</td>
<td>0,0,0)</td>
</tr>
</tbody>
</table>

For (0,1/2,1/2) + set

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t (0,1/2,1/2)</td>
<td>(2) 2 (0,0,1/2) 0,1/4,z</td>
<td>(3) 2 (0,1/2,0) 0,y,1/4</td>
<td>(4) 2 x,1/4,1/4</td>
</tr>
<tr>
<td>(1</td>
<td>0,1/2,1/2)</td>
<td>(2</td>
<td>1/2,1/2)</td>
</tr>
</tbody>
</table>

For (1/2,0,1/2) + set

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t (1/2,0,1/2)</td>
<td>(2) 2 (0,0,1/2) 1/4,0,z</td>
<td>(3) 2 1/4,y,1/4</td>
<td>(4) 2 (1/2,0,0) x,0,1/4</td>
</tr>
<tr>
<td>(1</td>
<td>1/2,0,1/2)</td>
<td>(2</td>
<td>1/2,1/2)</td>
</tr>
</tbody>
</table>

For (1/2,1/2,0) + set

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t (1/2,1/2,0)</td>
<td>(2) 2 1/4,1/4,z</td>
<td>(3) 2 (0,1/2,0) 1/4,y,0</td>
<td>(4) 2 (1/2,0,0) x,1/4,0</td>
</tr>
<tr>
<td>(1</td>
<td>1/2,1/2,0)</td>
<td>(2</td>
<td>1/2,1/2)</td>
</tr>
</tbody>
</table>
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +</td>
<td></td>
</tr>
<tr>
<td>16 k 1 (1) x,y,z [u,v,w]</td>
<td>(2) x̅,y̅,z̅ [u̅,v̅,w̅]</td>
</tr>
<tr>
<td>8 j 2. x,1/4,1/4 [u,0,0]</td>
<td>3/4 x̅,1/4 [u̅,0,0]</td>
</tr>
<tr>
<td>8 i .2 1/4,y,1/4 [0,v,0]</td>
<td>3/4 y̅,1/4 [0̅,v̅,0]</td>
</tr>
<tr>
<td>8 h .2 1/4,1/4,z [0,0,w]</td>
<td>3/4,1/4,z̅ [0̅,0̅,w̅]</td>
</tr>
<tr>
<td>8 g .2 0,0,z [0,0,w]</td>
<td>0,0,z̅ [0̅,0̅,w̅]</td>
</tr>
<tr>
<td>8 f .2 0,y,0 [0,v,0]</td>
<td>0̅,y̅,0 [0̅,v̅,0]</td>
</tr>
<tr>
<td>8 e 2. x,0,0 [u,0,0]</td>
<td>x̅,0,0 [u̅,0,0]</td>
</tr>
<tr>
<td>4 d 222 1/4,1/4,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 c 222 1/4,1/4,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 b 222 0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 a 222 0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2m' \(\mathbf{a}^* = \mathbf{a}/2 \) \(\mathbf{b}^* = \mathbf{b}/2 \)
Origin at \(0,0,z \)
Along [1,0,0] p2m' \(\mathbf{a}^* = \mathbf{b}/2 \) \(\mathbf{b}^* = \mathbf{c}/2 \)
Origin at \(x,0,0 \)
Along [0,1,0] p2m' \(\mathbf{a}^* = \mathbf{c}/2 \) \(\mathbf{b}^* = \mathbf{a}/2 \)
Origin at \(0,y,0 \)
Asymmetric unit: \[0 \leq x \leq \frac{1}{4}; \quad 0 \leq y \leq \frac{1}{4}; \quad 0 \leq z \leq 1\]

Symmetry Operations:

For \((0,0,0)\) + set:

1. \(1\) \((0,0,0)\)
2. \(2\) \((0,0,z)\)
3. \(3\) \((0,y,0)\)
4. \(4\) \((x,0,0)\)

For \((0,1/2,1/2)\) + set:

1. \(t\) \((0,1/2,1/2)\)
2. \(2\) \((0,0,1/2)\)
3. \(3\) \((1/2,0,1/2)\)
4. \(4\) \((1/2,0,0)\)

For \((1/2,0,1/2)\) + set:

1. \(t\) \((1/2,0,1/2)\)
2. \(2\) \((1/4,1/2,0)\)
3. \(3\) \((1/2,1/4,y)\)
4. \(4\) \((x,1/4,0)\)

For \((0,0,0)'\) + set:

1. \(1'\) \((0,0,0)\)
2. \(2'\) \((0,0,0)'\)
3. \(3'\) \((0,y,0)'\)
4. \(4'\) \((x,0,0)'\)

For \((0,1/2,1/2)'\) + set:

1. \(t'\) \((0,1/2,1/2)\)
2. \(2'\) \((0,0,1/2)\)
3. \(3'\) \((1/2,0,1/2)\)
4. \(4'\) \((x,1/4,0)\)
Continued

For \((1/2,0,1/2)' +\) set

\begin{align*}
(1) \ t' (1/2,0,1/2) \\
(1/2,0,1/2)' \quad (2) \ 2' (0,0,1/2) & \ 1/4,0,z \\
(2_2|1/2,0,1/2)' \quad (3) \ 2' 1/4,y,1/4 & \ 1/4,y,0 \\
& \ (2_2|1/2,0,1/2)' \quad (4) \ 2' (1/2,0,0) & \ x,0,1/4 \\
& \ (2_2|1/2,0,1/2)' \quad (2_2|1/2,0,1/2)'
\end{align*}

For \((1/2,1/2,0)' +\) set

\begin{align*}
(1) \ t' (1/2,1/2,0) \\
(1/2,1/2,0)' \quad (2) \ 2' 1/4,1/4,z & \ 1/4,1/4,z \\
(2_2|1/2,1/2,0)' \quad (3) \ 2' (0,1/2,0) & \ 1/4,y,0 \\
& \ (2_2|1/2,1/2,0)' \quad (4) \ 2' (1/2,0,0) & \ x,1/4,0 \\
& \ (2_2|1/2,1/2,0)' \quad (2_2|1/2,1/2,0)'
\end{align*}

Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); 1'\).

Positions

\begin{align*}
\text{Multiplicity,} & \quad \text{Coordinates} \\
\text{Wyckoff letter,} & \quad (0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) + \\
\text{Site Symmetry.} & \quad (0,0,0)' + (0,1/2,1/2)' + (1/2,0,1/2)' + (1/2,1/2,0)'
\end{align*}

\begin{align*}
& 16 \ k \ 11' \quad (1) \ x,y,z \ [0,0,0] \\
& 8 \ j \ 2.1' \quad x,1/4,1/4 \ [0,0,0] \\
& 8 \ i \ .2.1' \quad 1/4,y,1/4 \ [0,0,0] \\
& 8 \ h \ .21' \quad 1/4,1/4,z \ [0,0,0] \\
& 8 \ g \ .21' \quad 0,0,z \ [0,0,0] \\
& 8 \ f \ .2.1' \quad 0,y,0 \ [0,0,0] \\
& 8 \ e \ 2..1' \quad x,0,0 \ [0,0,0] \\
& 4 \ d \ 2221' \quad 1/4,1/4,3/4 \ [0,0,0] \\
& 4 \ c \ 2221' \quad 1/4,1/4,1/4 \ [0,0,0] \\
& 4 \ b \ 2221' \quad 0,0,1/2 \ [0,0,0] \\
& 4 \ a \ 2221' \quad 0,0,0 \ [0,0,0]
\end{align*}

Symmetry of Special Projections

Along \([0,0,1]\) p2mm1' \quad Along \([1,0,0]\) p2mm1' \quad Along \([0,1,0]\) p2mm1'
\begin{align*}
a^* & = a/2 \quad b^* = b/2 \\
a^* & = b/2 \quad b^* = c/2 \\
a^* & = c/2 \quad b^* = a/2 \\
\text{Origin at 0,0,z} & \quad \text{Origin at x,0,0} \\
\text{Origin at 0,y,0} &
\end{align*}
Origin at 2'2'2

Asymmetric unit

\[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{4}; \quad 0 < z < 1\]

Symmetry Operations

For (0,0,0) + set

1. \(\mathbf{1}\)
2. \(\mathbf{2}\) \(0,0,z\)
3. \(\mathbf{2}'\) \(0,0,0\)^{'}
4. \(\mathbf{2}'\) \(x,0,0\)

For \((0,1/2,1/2) + set\)

1. \(\mathbf{1}\) \((0,1/2,1/2)\)
2. \(\mathbf{2}\) \(0,0,1/2\)
3. \(\mathbf{2}'\) \(0,1/2,0\)
4. \(\mathbf{2}'\) \(x,1/4,1/4\)

For \((1/2,0,1/2) + set\)

1. \(\mathbf{1}\) \((1/2,0,1/2)\)
2. \(\mathbf{2}\) \(1/4,0,z\)
3. \(\mathbf{2}'\) \(1/4,1/4,0\)
4. \(\mathbf{2}'\) \(x,0,1/4\)

For \((1/2,1/2,0) + set\)

1. \(\mathbf{1}\) \((1/2,1/2,0)\)
2. \(\mathbf{2}\) \(1/4,1/4,z\)
3. \(\mathbf{2}'\) \(1/4,1/4,0\)
4. \(\mathbf{2}'\) \(x,1/4,0\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +</td>
<td></td>
</tr>
<tr>
<td>8 j 2'</td>
<td>x,1/4,1/4 [0,v,w]</td>
<td>x,3/4,1/4 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 i 2'</td>
<td>1/4,y,1/4 [u,0,w]</td>
<td>3/4 y,1/4 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 h .2</td>
<td>1/4,1/4,z [0,0,w]</td>
<td>3/4,1/4, z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 g .2</td>
<td>0,0,z [0,0,w]</td>
<td>0,0, z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 f 2'</td>
<td>0,y,0 [u,0,w]</td>
<td>0, y,0 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 e 2'</td>
<td>x,0,0 [0,v,w]</td>
<td>x,0,0 [0,v,w]</td>
<td></td>
</tr>
</tbody>
</table>
Asymmetric unit \[0 < x < 1/4; \quad 0 < y < 1/4; \quad 0 < z < 1\]

Symmetry Operations

For \((0,0,0)\) + set

1. \((1) 1 \quad (1,0,0,0)\)
2. \((2) 2 \quad 0,0,z \quad (2,0,0,0)\)
3. \((3) 2’ \quad 0,y,0 \quad (2’,0,0,0)\)
4. \((4) 2’ \quad x,0,0 \quad (2’,0,0,0)\)

For \((0,1/2,1/2)’\) + set

1. \((1) t’ \quad (0,1/2,1/2) \quad (1,0,1/2,1/2)’\)
2. \((2) 2’ (0,0,1/2) 0,1/4,z \quad (2,0,1/2,1/2)’\)
3. \((3) 2’ (0,1/2,0) 0,y,1/4 \quad (2’,0,1/2,1/2)’\)
4. \((4) 2’ (1/4,1/4) \quad x,0,1/4 \quad (2’,0,1/2,1/2)’\)

For \((1/2,0,1/2)’\) + set

1. \((1) t’ (1/2,0,1/2) \quad (1,1/2,0,1/2)’\)
2. \((2) 2’ (0,0,1/2) 1/4,0,z \quad (2,1/2,0,1/2)’\)
3. \((3) 2’ (0,1/2,0) 1/4,y,0 \quad (2’,1/2,0,1/2)’\)
4. \((4) 2’ (1/2,0,0) x,0,1/4 \quad (2’,1/2,0,1/2)’\)

For \((1/2,1/2,0)\) + set

1. \((1) t (1/2,1/2,0) \quad (1,1/2,1/2,0)\)
2. \((2) 2’ 1/4,1/4,z \quad (2,1/2,1/2,0)\)
3. \((3) 2 (0,1/2,0) 1/4,y,0 \quad (2,1/2,1/2,0)\)
4. \((4) 2 (1/2,0,0) x,1/4,0 \quad (2,1/2,1/2,0)\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k</td>
<td>(0,0,0) + (0,1/2,1/2)' + (1/2,0,1/2)' + (1/2,1/2,0) +</td>
</tr>
<tr>
<td>8 j</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 i</td>
<td>1/4,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>8 h</td>
<td>1/4,1/4,z [0,0,w]</td>
</tr>
<tr>
<td>8 g</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 f</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td>8 e</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>4 d</td>
<td>1/4,1/4,3/4 [0,0,w]</td>
</tr>
<tr>
<td>4 c</td>
<td>1/4,1/4,1/4 [0,0,w]</td>
</tr>
<tr>
<td>4 b</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p 2mm Along [1,0,0] p 2mm Along [0,1,0] p 2mm
a* = a/2 b* = b/2 a* = c/2 b* = a/2 a* = c/2 b* = a/2
Origin at 1/4,1/4,z Origin at x,0,0 Origin at 0,y,0
Origin at 22'2'

Asymmetric unit $0 \leq x \leq 1/4$; $0 \leq y \leq 1/4$; $0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0) + \text{set}$

1. 1
2. $2' \ 0,0,z$
3. $2' \ 0,y,0$
4. $2 \ x,0,0$

For $(0,1/2,1/2)' + \text{set}$

1. $1' \ (0,1/2,1/2)$
2. $2 \ (0,0,1/2) \ 0,1/4,z$
3. $2 \ (0,1/2,0) \ 0,y,1/4$
4. $2' \ x,1/4,1/4$

For $(1/2,0,1/2)' + \text{set}$

1. $1' \ (1/2,0,1/2)$
2. $2 \ (0,0,1/2) \ 1/4,0,z$
3. $2 \ 1/4,y,1/4$
4. $2' \ (1/2,0,0) \ x,0,1/4$

For $(1/2,1/2,0)' + \text{set}$

1. $1' \ (1/2,1/2,0)$
2. $2' \ 1/4,1/4,z$
3. $2' \ (0,1/2,0) \ 1/4,y,0$
4. $2 \ (1/2,0,0) \ x,1/4,0$
Continued 22.5.144

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,1/2,1/2)’ +</td>
</tr>
<tr>
<td>16k1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8j2’..</td>
<td>x,1/4,1/4 [0,v,w]</td>
</tr>
<tr>
<td>8i.2.</td>
<td>1/4,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>8h.2’</td>
<td>1/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td>8g.2’</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td>8f.2’</td>
<td>0,y,0 [u,0,w]</td>
</tr>
<tr>
<td>8e2’..</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>4d2’2’’</td>
<td>1/4,1/4,3/4 [0,v,0]</td>
</tr>
<tr>
<td>4c2’2’’</td>
<td>1/4,1/4,1/4 [0,v,0]</td>
</tr>
<tr>
<td>4b2’’2’’</td>
<td>0,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4a2’’2’’</td>
<td>0,0,0 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p, 2mm</th>
<th>Along [1,0,0]</th>
<th>p₁₂₂, 2mm</th>
<th>Along [0,1,0]</th>
<th>p₁₂₂, 2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a/2</td>
<td>b* = b/2</td>
<td>a* = a/2</td>
<td>b* = b/2</td>
<td>a* = a/2</td>
<td>b* = a/2</td>
</tr>
<tr>
<td>Origin at 0,1/4,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 0,y,1/4</td>
<td></td>
</tr>
</tbody>
</table>
Orthorhombic
I222 23.1.145

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)
(2) 2 0,0,z
(2_z | 0,0,0)
(3) 2 0,y,0
(2_y | 0,0,0)
(4) 2 x,0,0
(2_x | 0,0,0)

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(1 | 1/2,1/2,1/2)
(2) 2 (0,0,1/2) 1/4,1/4,z
(2_z | 1/2,1/2,1/2)
(3) 2 (0,1/2,0) 1/4,y,1/4
(2_y | 1/2,1/2,1/2)
(4) 2 (1/2,0,0) x,1/4,1/4
(2_x | 1/2,1/2,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 j .2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 i .2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 h .2</td>
<td>1/2,y,0 [0,v,0]</td>
</tr>
<tr>
<td>4 g .2</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td>4 f 2..</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 e 2..</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>2 d 222</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 c 222</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b 222</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 a 222</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>c2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b b* = c</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>c2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c b* = a</td>
<td></td>
</tr>
</tbody>
</table>

Origin at 0,0,z

Origin at x,0,0

Origin at 0,y,0
I2221' 2221' Orthorhombic
23.2.146

Origin at 2221'

Asymmetric unit $0 \leq x \leq 1/2$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1/2$

Symmetry Operations

For (0,0,0) + set

(1) 1 (1 0,0,0)
(2) 2 0,0,z (2z 0,0,0)
(3) $2'$ 0,y,0 ($2z'$ 0,0,0)
(4) $2'$ x,0,0 ($2z'$ 0,0,0)

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(2) 2 (0,0,1/2) 1/4,1/4,z (2z 1/2,1/2,1/2)
(3) 2 (0,1/2,0) 1/4,y,1/4 ($2z$ 1/2,1/2,1/2)
(4) 2 (1/2,0,0) x,1/4,1/4 ($2z$ 1/2,1/2,1/2)

For (0,0,0)'+ set

(1) t' (0,0,0)'
(2) $2'$ 0,0,z ($2z'$ 0,0,0)'
(3) $2'$ 0,y,0 ($2z'$ 0,0,0)'
(4) $2'$ x,0,0 ($2z'$ 0,0,0)'

For (1/2,1/2,1/2)'+ set

(1) t (1/2,1/2,1/2)'
(2) $2'$ (0,0,1/2) 1/4,1/4,z ($2z'$ 1/2,1/2,1/2)'
(3) $2'$ (0,1/2,0) 1/4,y,1/4 ($2z'$ 1/2,1/2,1/2)'
(4) $2'$ (1/2,0,0) x,1/4,1/4 ($2z'$ 1/2,1/2,1/2)'

23.2.146 - 1 - 268
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) + (1/2,1/2,1/2) + (0,0,0)' + (1/2,1/2,1/2)' +</td>
</tr>
</tbody>
</table>

8 k 11' (1) x,y,z [0,0,0] (2) x,y,z [0,0,0] (3) x,y,z [0,0,0] (4) x,y,z [0,0,0]
4 j .21' 0,1/2,z [0,0,0] 0,1/2,z [0,0,0]
4 i .21' 0,0,z [0,0,0] 0,0,z [0,0,0]
4 h .21' 1/2,y,0 [0,0,0] 1/2,y,0 [0,0,0]
4 g .21' 0,y,0 [0,0,0] 0,y,0 [0,0,0]
4 f .21' x,0,1/2 [0,0,0] x,0,1/2 [0,0,0]
4 e .21' x,0,0 [0,0,0] x,0,0 [0,0,0]
2 d 2221' 0,1/2,0 [0,0,0]
2 c 2221' 0,0,1/2 [0,0,0]
2 b 2221' 1/2,0,0 [0,0,0]
2 a 2221' 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] c2mm1' Along [1,0,0] c2mm1' Along [0,1,0] c2mm1'
\(a^* = a\) \(b^* = b\) \(a^* = b\) \(b^* = c\) \(a^* = c\) \(b^* = a\)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
I2'2'2 23.3.147

Asymmetric unit
0 < x < 1/2; 0 < y < 1/2; 0 < z < 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1 0,0,0
(2) 2 0,0,z
(3) 2' 0,y,0
(4) 2' x,0,0

(1*) 0,0,0
(2*) 0,0,0
(2*') 0,0,0'
(2*') x,0,0'

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2) 1/4,1/4,z
(2) 2 (0,0,1/2) 1/4,1/4,1/4
(3) 2' (0,1/2,0) 1/4,1/4,1/4
(4) 2' (1/2,0,0) x,1/4,1/4

(1*) (1/2,1/2,1/2) 1/2,1/2,1/2
(2*) (0,0,1/2) 1/2,1/2,1/2
(3*) (0,1/2,0) 1/2,1/2,1/2
(4*) (1/2,0,0) 1/2,1/2,1/2
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 j .2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 i .2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 h .2'</td>
<td>1/2,y,0 [u,0,w]</td>
</tr>
<tr>
<td>4 g .2'</td>
<td>0,y,0 [u,0,w]</td>
</tr>
<tr>
<td>4 f 2'..</td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 e 2'..</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>2 d 2'2'</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 c 2'2'</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 b 2'2'</td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>2 a 2'2'</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm
Along [1,0,0] c2'mm'
Along [0,1,0] c2'mm'

a* = a b* = b
Origin at 0,0,z

a* = -c b* = b
Origin at x,0,0

a* = c b* = a
Origin at 0,y,0
Origin at 222

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\]

Symmetry Operations

For \((0,0,0) + \) set

1. \((1) \begin{pmatrix} 1 \\ 0,0,0 \end{pmatrix}\)
2. \((2) \begin{pmatrix} 0,0,z \\ 0,0,0 \end{pmatrix}\)
3. \((3) \begin{pmatrix} 0,y,0 \\ 0,0,0 \end{pmatrix}\)
4. \((4) \begin{pmatrix} x,0,0 \\ 0,0,0 \end{pmatrix}\)

For \((1/2,1/2,1/2)' + \) set

1. \((1) \begin{pmatrix} 1/2,1/2,1/2 \\ 1/2,1/2,1/2 \end{pmatrix}\)
2. \((2') \begin{pmatrix} 0,0,1/2 \\ 1/4,1/4,z \end{pmatrix}\)
3. \((3) \begin{pmatrix} 0,1/2,0 \\ 1/4,y,1/4 \end{pmatrix}\)
4. \((4) \begin{pmatrix} 1/2,0,0 \\ x,1/4,1/4 \end{pmatrix}\)
Generators selected
(1); t(1,0,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>k 1 (1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>j .2 0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>i .2 0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>h .2 1/2,y,0 [0,v,0]</td>
<td>1/2,y,0 [0,v,0]</td>
</tr>
<tr>
<td>g .2 0,y,0 [0,v,0]</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td>f 2.. 0,1/2 [u,0,0]</td>
<td>0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>e 2.. 0,0 [u,0,0]</td>
<td>0,0 [u,0,0]</td>
</tr>
<tr>
<td>d 222 0,1/2,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>c 222 0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>b 222 1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>a 222 0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] cₚ₂m'm'
- Along [1,0,0] cₚ₂m'm'
- Along [0,1,0] cₚ₂m'm'

a* = a b* = b
Origin at 0,0,z

a* = b b* = c
Origin at x,0,0

a* = c b* = a
Origin at 0,y,0
Orthorhombic

Asymmetric unit: $0 \leq x < 1/2; \ 0 \leq y < 1/2; \ 0 \leq z < 1/2$

Symmetry Operations

For $(0,0,0) +$ set

1. 1
2. $2, 0,0,z$
3. $2^\prime, 0,y,0$
4. $2^\prime, x,0,0$

For $(1/2,1/2,1/2)' +$ set

1. $t'(1/2,1/2,1/2)$
2. $2'(0,0,1/2), 1/4,1/4,z$
3. $2(0,1/2,0), 1/4,y,1/4$
4. $2'(1/2,0,0), x,1/4,1/4$
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 j .2</td>
<td>0,1/2,z [0,0,w] 0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 i .2</td>
<td>0,0,z [0,0,w] 0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 h .2'</td>
<td>1/2,y,0 [u,0,w] 1/2,y,0 [u,0,w]</td>
</tr>
<tr>
<td>4 g .2'</td>
<td>0,y,0 [u,0,w] 0,y,0 [u,0,w]</td>
</tr>
<tr>
<td>4 f .2'..</td>
<td>x,0,1/2 [0,v,w] x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 e .2'..</td>
<td>x,0,0 [0,v,w] x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>2 d 2'2'</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 c 2'2'</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 b 2'2'</td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>2 a 2'2'</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] cₚ 2mm
- Along [1,0,0] cₚ 2'mm
- Along [0,1,0] cₚ 2'mm

Origin:
- a* = a b* = b
- a* = -c b* = b
- a* = c b* = a
- Origin at 0,0,z
- Origin at x,0,0
- Origin at 0,y,0
24.1.150

Origin at midpoint of three non-intersecting pairs of parallel 2 axes

Asymmetric unit

\[0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2} \]

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. \(1\) \(0,0,0\)
2. \(2\) \((0,0,1/2)\) \(1/4,0,z\)
3. \(2\) \((0,1/2,0)\) \(0,y,1/4\)
4. \(2\) \((1/2,0,0)\) \(x,1/4,0\)

For \((1/2,1/2,1/2) + \text{set}\)

1. \(t\) \((1/2,1/2,1/2)\)
2. \(2\) \((1/2,1/2,1/2)\)
3. \(2\) \((1/2,1/2,1/2)\)
4. \(2\) \((1/2,1/2,1/2)\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 c .2</td>
<td>0,1/4,z [0,0,w]</td>
</tr>
<tr>
<td>4 b .2</td>
<td>1/4,y,0 [0,v,0]</td>
</tr>
<tr>
<td>4 a 2..</td>
<td>x,0,1/4 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2m'm' a* = a b* = b
Origin at 1/4,0,z

Along [1,0,0] c2m'm' a* = b b* = c
Origin at x,1/4,0

Along [0,1,0] c2m'm' a* = c b* = a
Origin at 0,y,1/4
Origin at midpoint of three non-intersecting pairs of parallel 21' axes

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)
 \(1 | 0,0,0\)

2. \(2\) \((0,0,1/2)\)
 \(1/4,0,z\)
 \((2_z|1/2,0,1/2)\)

3. \(2\) \((0,1/2,0)\)
 \(0,y,1/4\)
 \((2_y|0,1/2,1/2)\)

4. \(2\) \((1/2,0,0)\)
 \(x,1/4,0\)
 \((2_x|1/2,1/2,0)\)

For \((1/2,1/2,1/2)\) + set

1. \(t\) \((1/2,1/2,1/2)\)
 \(1/2,1/2,1/2)\)

2. \(2\) \(0,1/4,z\)
 \((2_z|0,1/2,0)\)

3. \(2\) \(1/4,y,0\)
 \((2_y|1/2,0,0)\)

4. \(2\) \(x,0,1/4\)
 \((2_x|0,0,1/2)\)

For \((0,0,0)'\) + set

1. \(1'\)
 \(1 | 0,0,0)'\)

2. \(2'\) \((0,0,1/2)\)
 \(1/4,0,z\)
 \((2_z|1/2,0,1/2)'\)

3. \(2'\) \((0,1/2,0)\)
 \(0,y,1/4\)
 \((2_y|0,1/2,1/2)'\)

4. \(2'\) \((1/2,0,0)\)
 \(x,1/4,0\)
 \((2_x|1/2,1/2,0)'\)

For \((1/2,1/2,1/2)'\) + set

1. \(t'\) \((1/2,1/2,1/2)'\)
 \(1/2,1/2,1/2)'\)

2. \(2'\) \(0,1/4,z\)
 \((2_z|0,1/2,0)'\)

3. \(2'\) \(1/4,y,0\)
 \((2_y|1/2,0,0)'\)

4. \(2'\) \(x,0,1/4\)
 \((2_x|0,0,1/2)'\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td>(0,0,0)' +</td>
<td>(1/2,1/2,1/2)' +</td>
</tr>
</tbody>
</table>

8 d 11' (1) x,y,z [0,0,0] (2) x+1/2,y+1/2,z+1/2 [0,0,0] (3) x,y+1/2,z+1/2 [0,0,0] (4) x+1/2,y+1/2,z+1/2 [0,0,0]
4 c .21' 0,1/4,z [0,0,0] 0,3/4,z+1/2 [0,0,0]
4 b 2..1' 1/4,y,0 [0,0,0] 1/4,y,1/2 [0,0,0]
4 a 2..1' x,0,1/4 [0,0,0] x+1/2,0,3/4 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] c2mm1'</th>
<th>Along [1,0,0] c2mm1'</th>
<th>Along [0,1,0] c2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = b b* = c</td>
<td>a* = c b* = a</td>
</tr>
<tr>
<td>Origin at 1/4,0,z</td>
<td>Origin at x,1/4,0</td>
<td>Origin at 0,y,1/4</td>
</tr>
</tbody>
</table>
Orthorhombic

24.3.152

I2₁'2₁'2₁

Origin at midpoint of three non-intersecting pairs of parallel 2 and 2’ axes

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1 (2) 2 (0,0,1/2) 1/4,0,z (3) 2’ (0,1/2,0) 0,y,1/4 (4) 2’ (1/2,0,0) x,1/4,0

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2) (2) 2 0,1/4,z (3) 2’ 1/4,y,0 (4) 2’ x,0,1/4

(1) 1 (0,0,0) (2) 1/2,0,1/2 (2) 0,1/2,0 (2) 0,1/2,0 (2) 0,1/2,0

24.3.152 - 1 - 280
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 c .2</td>
<td>0,1/4,z [0,0,w]</td>
</tr>
<tr>
<td>4 b .2'</td>
<td>1/4,y,0 [u,0,w]</td>
</tr>
<tr>
<td>4 a 2'</td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] c2mm
 - $a^* = a$, $b^* = b$
- Along [1,0,0] c2'mm'
 - $a^* = -c$, $b^* = b$
- Along [0,1,0] c2'mm'
 - $a^* = c$, $b^* = a$

Origin at 1/4,0,z
Origin at x,1/4,0
Origin at 0,y,1/4
Origin at midpoint of three non-intersecting pairs of parallel 2' axes

Asymmetric unit

\(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

For \((0,0,0) + \) set

1. \((1) 1\)
2. \((2) 2 (0,0,1/2) \quad 1/4,0,z\)
3. \((3) 2 (0,1/2,0) \quad 0,y,1/4\)
4. \((4) 2 (1/2,0,0) \quad x,1/4,0\)

For \((1/2,1/2,1/2)' + \) set

1. \((1) t' (1/2,1/2,1/2)\)
2. \((2) 2' 0,1/4,z\)
3. \((3) 2' 1/4,y,0\)
4. \((4) 2' x,0,1/4\)
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2)^*; (2); (3).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) + (1/2,1/2,1/2)^* +</td>
</tr>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>4 c .2'</td>
<td>0,1/4,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,3/4,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 b .2'</td>
<td>1/4,y,0 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>4 a 2'..</td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,0,3/4 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c_p,2mm
 a* = a b* = b
Origin at 1/4,0,z

Along [1,0,0] c_p,2mm
 a* = b b* = c
Origin at x,1/4,0

Along [0,1,0] c_p,2mm
 a* = c b* = a
Origin at 0,y,1/4
Origin at midpoint of three non-intersecting pairs of parallel 2 and 2' axes

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

For \((0,0,0) + \) set

\[(1) \ 1 \quad (1 | 0,0,0) \]
\[(2) \ 2 \ (0,0,1/2) \ 1/4,0,z \quad (2 | 1/2,0,1/2) \]
\[(3) \ 2' \ (0,1/2,0) \ 0,y,1/4 \quad (2,1/2,1/2)' \]
\[(4) \ 2' \ (1/2,0,0) \ x,1/4,0 \quad (2,1/2,1/2)' \]

For \((1/2,1/2,1/2)' + \) set

\[(1) \ t' \ (1/2,1/2,1/2) \]
\[(1 | 1/2,1/2,1/2)' \]
\[(2) \ 2' \ 0,1/4,z \quad (2 | 0,1/2,0)' \]
\[(3) \ 2 \ 1/4,y,0 \quad (2,1/2,0,0) \]
\[(4) \ 2 \ x,0,1/4 \quad (2,0,0,1/2) \]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>8 d 1 (1) x,y,z [u,v,w]</td>
<td>(2) (x+1/2, y, z+1/2 [u,v,w]) (3) (x, y+1/2, z+1/2 [u,v,w]) (4) (x+1/2, y+1/2, z [u,v,w])</td>
</tr>
<tr>
<td>4 c .2' 0,1/4,z [u,v,0]</td>
<td>0,3/4,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 b .2. 1/4,y,0 [0,v,0]</td>
<td>1/4, y, 1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 a 2.. x,0,1/4 [u,0,0]</td>
<td>(x+1/2,0,3/4 [u,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] c(_{\text{p}})2mm</th>
<th>Along [1,0,0] c(_{\text{p}})2'mm'</th>
<th>Along [0,1,0] c(_{\text{p}})2'mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{a}^* = \mathbf{a}) (\mathbf{b}^* = \mathbf{b})</td>
<td>(\mathbf{b}^* = \mathbf{b}) (\mathbf{b}^* = \mathbf{c})</td>
<td>(\mathbf{a}^* = -\mathbf{a}) (\mathbf{b}^* = \mathbf{c})</td>
</tr>
<tr>
<td>Origin at 1/4,0,z</td>
<td>Origin at x,1/4,0</td>
<td>Origin at 0,y,1/4</td>
</tr>
</tbody>
</table>
Pmm2 mm2 Orthorhombic
25.1.155 Pmm2

Origin on mm2

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

1. 1
 (1) 1
 (1) $0,0,0$

2. $2 \cdot 0,0,z$
 (2) $2 \cdot 0,0,0$

3. $m \cdot x,0,z$
 (3) $m \cdot 0,0,0$

4. $m \cdot 0,y,z$
 (4) $m \cdot 0,0,0$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 i 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 h m..</td>
<td>1/2,y,z [u,0,0]</td>
</tr>
<tr>
<td>2 g m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>2 f .m.</td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>2 e .m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>1 d mm2</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>1 c mm2</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>1 b mm2</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>1 a mm2</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2mm</th>
<th>Along [1,0,0] p1m11'</th>
<th>Along [0,1,0] p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>a* = b</td>
<td>a* = -a</td>
</tr>
<tr>
<td>b* = b</td>
<td>b* = c</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Origin on mm21'

Asymmetric unit

\[
0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < 1
\]

Symmetry Operations

For 1 + set

1. \(\text{Id}(0,0,0) \)
2. \(2 \ 0,0,z \)
3. \(m \ x,0,z \)
4. \(m \ 0,y,z \)

For 1' + set

1. \(1' \ (0,0,0)' \)
2. \(2' \ 0,0,z \)
3. \(m' \ x,0,z \)
4. \(m' \ 0,y,z \)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1' +</td>
<td></td>
</tr>
<tr>
<td>4 i 11' (1) x,y,z [0,0,0]</td>
<td>(2) (\overline{x},y,z) [0,0,0]</td>
</tr>
<tr>
<td>2 h m..1' 1/2,y,z [0,0,0]</td>
<td>1/2,(y,z) [0,0,0]</td>
</tr>
<tr>
<td>2 g m..1' 0,y,z [0,0,0]</td>
<td>0,(y,z) [0,0,0]</td>
</tr>
<tr>
<td>2 f .m.1' x,1/2,z [0,0,0]</td>
<td>(x,1/2,z) [0,0,0]</td>
</tr>
<tr>
<td>2 e .m.1' x,0,z [0,0,0]</td>
<td>(x,0,z) [0,0,0]</td>
</tr>
<tr>
<td>1 d mm21' 1/2,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 c mm21' 1/2,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 b mm21' 0,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 a mm21' 0,0,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2mm1'</th>
<th>Along [1,0,0]</th>
<th>p1m11'</th>
<th>Along [0,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b)</td>
<td>(a^* = b)</td>
<td>(b^* = c)</td>
<td>(a^* = -a)</td>
<td>(b^* = c)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Pm'2'm
m'2'm
Orthorhombic

25.3.157
Pm'2'm

Asymmetric unit
0 < x < 1/2; 0 < y < 1/2; 0 < z < 1

Symmetry Operations

(1) 1
(2) 2' 0,0,z
(3) m x,0,z
(4) m' 0,y,z

(1|0,0,0)
(2|0,0,0)'
(m|0,0,0)
(m'|0,0,0)'
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 i 1</td>
<td>(1) x, y, z [u, v, w]</td>
</tr>
<tr>
<td>2 h m'..</td>
<td>1/2, y, z [0, v, w]</td>
</tr>
<tr>
<td>2 g m'..</td>
<td>0, y, z [0, v, w]</td>
</tr>
<tr>
<td>2 f .m.</td>
<td>x, 1/2, z [0, v, 0]</td>
</tr>
<tr>
<td>2 e .m.</td>
<td>x, 0, z [0, v, 0]</td>
</tr>
<tr>
<td>1 d m'm2'</td>
<td>1/2, 1/2, z [0, v, 0]</td>
</tr>
<tr>
<td>1 c m'm2'</td>
<td>1/2, 0, z [0, v, 0]</td>
</tr>
<tr>
<td>1 b m'm2'</td>
<td>0, 1/2, z [0, v, 0]</td>
</tr>
<tr>
<td>1 a m'm2'</td>
<td>0, 0, z [0, v, 0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2'mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -b</td>
<td>b* = a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b</td>
<td>b* = c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -a</td>
<td>b* = c</td>
</tr>
</tbody>
</table>

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Orthorhombic

25.4.158

Pm'm'2

25.4.158 Pm'm'2

Origin

on m'm'2

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1
(1 0,0,0)

(2) 2 0,0,z
(2z 0,0,0)

(3) m' x,0,z
(m,0,0,0)

(4) m' 0,y,z
(m,0,0,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 h m'..</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td>2 g m'..</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>2 f .m'</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>2 e .m'</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>1 d m'm'2</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>1 c m'm'2</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>1 b m'm'2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>1 a m'm'2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -a</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
P₂c mm²

25.5.159

mm²₁’

Orthorhombic

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) 2 0,0,z
(2|0,0,0)

(3) m x,0,z
(m|0,0,0)

(4) m 0,y,z
(m₂|0,0,0)

For (0,0,1)’ + set

(1) t’ (0,0,1)
(1|0,0,1)’

(2) 2’ (0,0,1) 0,0,z
(2|0,0,1)’

(3) c’ (0,0,1) x,0,z
(m₂|0,0,1)’

(4) c’ (0,0,1) 0,y,z
(m₂|0,0,1)’
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,0,1)' +</td>
<td></td>
</tr>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 h m..</td>
<td>1/2,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 g m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 f .m.</td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>4 e .m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>2 d mm2</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 c mm2</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 b mm2</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 a mm2</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2mm1'
 \(\mathbf{a}^* = \mathbf{a} \) \(\mathbf{b}^* = \mathbf{b} \)
 Origin at 0,0,z

- Along [1,0,0] p1m11'
 \(\mathbf{a}^* = \mathbf{b} \) \(\mathbf{b}^* = \mathbf{c} \)
 Origin at x,0,0

- Along [0,1,0] p1m11'
 \(\mathbf{a}^* = -\mathbf{a} \) \(\mathbf{b}^* = \mathbf{c} \)
 Origin at 0,y,0
Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0)$ + set

1. 1
2. $2 \quad 0,0,z$
3. $m \quad x,0,z$
4. $m \quad 0,y,z$

For $(1,0,0)' + set$

1. $t' (1,0,0)$
2. $2' \quad 1/2,0,z$
3. $a' (1,0,0) \quad x,0,z$
4. $m' \quad 1/2,y,z$

Origin on mm2
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity,</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>Wyckoff letter,</td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>(0,0,0) + (1,0,0)'</td>
<td></td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 i 1 (1) x,y,z [u,v,w]</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 h m'.. 1/2,y,z [0,v,w]</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 g m.. 0,y,z [u,0,0]</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 f m. x,1/2,z [0,v,0]</td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>4 e m. x,0,z [0,v,0]</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>2 d m'm2' 1/2,1/2,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2 c m'm2' 1/2,0,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2 b mm2 0,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a mm2 0,0,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2a 2mm</th>
<th>Along [1,0,0] p1m11'</th>
<th>Along [0,1,0] p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a) (b^* = b)</td>
<td>(a^* = b) (b^* = c)</td>
<td>(a^* = -a) (b^* = c)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Asymmetric unit \(0 \leq x \leq \frac{1}{2};\) \(0 \leq y \leq \frac{1}{2};\) \(0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0) + \text{ set}\)

1. \((1) 1(1,0,0)\)
2. \((2) 2(0,0,z)(2z,0,0)\)
3. \((3) m x,0,z(m,0,0)\)
4. \((4) m 0,y,z(m,0,0)\)

For \((1,0,0)' + \text{ set}\)

1. \((1) t' (1,0,0)(1,0,0)'\)
2. \((2) 2' 1/2,0,z(2z,1,0,0)'\)
3. \((3) a'(1,0,0) x,0,z(m,1,0,0)'\)
4. \((4) m' 1/2,y,z(m,1,0,0)'\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) + (1,0,0) +</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p_c 2mm</th>
<th>Along [1,0,0]</th>
<th>p1m11'</th>
<th>Along [0,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = -a</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Asymmetric unit: $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0)$ + set:

1. 1
2. $2', \ 0,0,z$
3. $m, x,0,z$
4. $m', \ 0,y,z$

For $(0,1,0)' +$ set:

1. $t', (0,1,0)$
2. $2', \ 1/2,1/2,z$
3. $m', x,1/2,z$
4. $b'(0,1,0), \ 0,y,z$

Origin is on mm2.
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 h m..</td>
<td>1/2,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 g m..</td>
<td>0,y,z [0,u,0]</td>
</tr>
<tr>
<td>4 f .m'.</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>4 e .m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>2 d mm2'</td>
<td>1/2,1/2,z [u,0,0]</td>
</tr>
<tr>
<td>2 c mm2</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 b mm2'</td>
<td>0,1/2,z [u,0,0]</td>
</tr>
<tr>
<td>2 a mm2</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [0,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>p2mm1'</td>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = -a</td>
</tr>
<tr>
<td>p1m11'</td>
<td>a* = b</td>
<td>b* = c</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on mm2

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0)$ + set

(1) t $(0,0,0)$
(2) $2 \ 0,0,z$
(3) $m \ x,0,z$
(4) $m \ 0,y,z$

For $(1,0,0)'$ + set

(1) $t' (1,0,0)$
(2) $2' \ 1/2,0,z$
(3) $a' (1,0,0) \ x,0,z$
(4) $m' \ 1/2,y,z$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 h m'..</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 g m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 f .m'</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>4 e .m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>2 d m'm'2</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 c m'm2'</td>
<td>1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td>2 b mm'2'</td>
<td>0,1/2,z [u,0,0]</td>
</tr>
<tr>
<td>2 a mm2</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2mm1'</th>
<th>Along [1,0,0]</th>
<th>p1m11'</th>
<th>Along [0,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = -a</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on mm'2'

Asymmetric unit: $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0)$ + set:

1. 1
2. $2' \ 0,0,z$
3. $m' \ x,0,z$
4. $m \ 0,y,z$

For $(0,0,1)'$ + set:

1. $t' \ (0,0,1)$
2. $2 \ (0,0,1) \ 0,0,z$
3. $c \ (0,0,1) \ x,0,z$
4. $c' \ (0,0,1) \ 0,y,z$

Orthorhombic
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,0,0)' +</td>
</tr>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 h m..</td>
<td>1/2,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 g m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 f .m'</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>4 e .m'</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>2 d mm'2'</td>
<td>1/2,1/2,z [u,0,0]</td>
</tr>
<tr>
<td>2 c mm'2'</td>
<td>1/2,0,z [u,0,0]</td>
</tr>
<tr>
<td>2 b mm'2'</td>
<td>0,1/2,z [u,0,0]</td>
</tr>
<tr>
<td>2 a mm'2'</td>
<td>0,0,z [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2mm1'</th>
<th>Along [1,0,0]</th>
<th>p1m11'</th>
<th>Along [0,1,0]</th>
<th>p2v.1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = -a</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
P2c m'm'2

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1 (2) 2 0,0,z (3) m’ x,0,z (4) m’ 0,y,z
(1|0,0,0) (2z|0,0,0) (m|0,0,0)’ (m|0,0,0)’

For (0,0,1)’ + set

(1) t’ (0,0,1) (2) 2’ (0,0,1) 0,0,z (3) c (0,0,1) x,0,z (4) c (0,0,1) 0,y,z
(1|0,0,1)’ (2z|0,0,1)’ (m|0,0,1) (mz|0,0,1)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,0,1)’ +</td>
</tr>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 h m’</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 g m’</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 f m’ 3/4</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>4 e m’ 3/4</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>2 d m’2</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 c m’2</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 b m’2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 a m’2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm1’
\(\mathbf{a}^* = \mathbf{a} \) \(\mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] p211m1’
\(\mathbf{a}^* = \mathbf{b} \) \(\mathbf{b}^* = \mathbf{c} \)
Origin at x,0,0

Along [0,1,0] p211m1’
\(\mathbf{a}^* = -\mathbf{a} \) \(\mathbf{b}^* = \mathbf{c} \)
Origin at 0,y,0
Origin on m'm'2

Asymmetric unit \(0 \leq x \leq 1/2;\) \(0 \leq y \leq 1/2;\) \(0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)
 - \((1|0,0,0)\)

2. \(2\)
 - \((0,0,z)\)
 - \((2_z|0,0,0)\)

3. \(m'\)
 - \((x,0,z)\)
 - \((m_y|0,0,0)'\)

4. \(m'\)
 - \((0,y,z)\)
 - \((m_x|0,0,0)'\)

For \((1,0,0)'\) + set

1. \(t'\)
 - \((1,0,0)\)
 - \((1|1,0,0)\)

2. \(2'\)
 - \((1/2,0,z)\)
 - \((2_z|1,0,0)'\)

3. \(a\)
 - \((1,0,0)\)
 - \((x,0,z)\)
 - \((m_y|1,0,0)\)

4. \(m\)
 - \((1/2,y,z)\)
 - \((m_x|1,0,0)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1 (1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (1,0,0)' +</td>
</tr>
<tr>
<td>4 h m.. 1/2,y,z [u,0,0]</td>
<td>1/2,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 g m'.. 0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 f .m'. x,1/2,z [u,0,w]</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>4 e .m'. x,0,z [u,0,w]</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>2 d mm'2' 1/2,1/2,z [u,o,0]</td>
<td></td>
</tr>
<tr>
<td>2 c mm'2' 1/2,0,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 b m'm'2 0,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 a m'm'2 0,0,z [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_{2a}.2m'm'
\(a^* = a\) \(b^* = b\)
Origin at 0,0,z

Along [1,0,0] p_{1m11}
\(a^* = b\) \(b^* = c\)
Origin at x,0,0

Along [0,1,0] p_{2a}.1m1
\(a^* = -a\) \(b^* = c\)
Origin at 1/2,y,0
Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. \(1\)

 \(a\) \((0,0,0)\)

2. \((2)\)

 \(b\) \((0,0,0),z\)

3. \((3)\)

 \(c\) \((x,0,z)\)

4. \((4)\)

 \(d\) \((0,y,z)\)

For \((0,1,0)′ + \text{set}\)

1. \((1)\)

 \(a′\) \((0,1,0)\)

2. \((2)′\)

 \(b′\) \((0,1/2,z)\)

3. \((3)′\)

 \(c′\) \((x,1/2,z)\)

4. \((4)′\)

 \(d′\) \((0,y,z)\)
Generators selected \((1); t(1,0,0); t(0,1,0)^*; t(0,0,1)^*; (2); (3) \).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) (\bar{x}, \bar{y}, z [\bar{u}, \bar{v}, \bar{w}])</td>
</tr>
<tr>
<td>4 h m'..</td>
<td>1/2,y,z [0,v,w]</td>
<td>(0,0,0) +</td>
<td>(0,1,0)' +</td>
</tr>
<tr>
<td>4 g m'..</td>
<td>0,y,z [0,v,w]</td>
<td>1/2,(\bar{y}, z [0,\bar{v}, \bar{w}])</td>
<td></td>
</tr>
<tr>
<td>4 f .m.</td>
<td>x,1/2,z [0,v,0]</td>
<td>(x, \bar{1/2}, z [0,v,0])</td>
<td></td>
</tr>
<tr>
<td>4 e .m'</td>
<td>x,0,z [u,0,w]</td>
<td>(x, 0, z [u,0,w])</td>
<td></td>
</tr>
<tr>
<td>2 d m'm2'</td>
<td>1/2,1/2,z [0,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c m'm2'</td>
<td>1/2,0,z [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b m'm2'</td>
<td>0,1/2,z [0,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a m'm2'</td>
<td>0,0,z [0,0,w]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) \(p2mm1' \) \(a^* = a \) \(b^* = b \) \(a^* = b \) \(b^* = c \) \(a^* = -a \) \(b^* = c \)
- Origin at \(0,0,z \) \(Origin \) at \(x,1/2,0 \) \(Origin \) at \(0,y,0 \)
Origin: on mc2₁

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations:

1. 1
 (0,0,0)

2. 2 (0,0,1/2) 0,0,z
 (0,0,1/2)

3. c (0,0,1/2) x,0,z
 (0,0,1/2)

4. m 0,y,z
 (0,0,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>2 b m..</td>
<td>1/2,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,z+1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 a m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z+1/2 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] p1g11'
\(\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \)
Origin at x,0,0

Along [0,1,0] p_{2v}.1m1
\(\mathbf{a}^* = -\mathbf{a} \quad \mathbf{b}^* = \mathbf{c}/2 \)
Origin at 0,y,0
Origin on mc2,1'

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

For 1 + set

(1) 1
 (1) $0,0,0$

(2) 2 (0,0,1/2) 0,0,z
 (2) $0,0,1/2$

(3) c (0,0,1/2) x,0,z
 (m) $0,0,1/2$

(4) m 0,y,z
 (m) $0,0,0$

For 1' + set

(1) $1'$
 (1) $0,0,0'$

(2) $2'$ (0,0,1/2) 0,0,z
 (2) $0,0,1/2'$

(3) c' (0,0,1/2) x,0,z
 (m') $0,0,1/2'$

(4) m' 0,y,z
 (m') $0,0,0'$
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>1 +</th>
<th>1' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) x,y,z+1/2 [0,0,0]</td>
<td>(3) x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b m..1'</td>
<td>1/2,y,z [0,0,0]</td>
<td>1/2,y,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a m..1'</td>
<td>0,y,z [0,0,0]</td>
<td>0,y,z+1/2 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm1' Along [1,0,0] p1g11' Along [0,1,0] p1 m11'
\(a^* = a\) \(b^* = b\) \(a^* = b\) \(b^* = c\) \(a^* = -a\) \(b^* = c/2\)

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin on m'c2′

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2′ (0,0,1/2) 0,0,z
(2 | 0,0,1/2)′

(3) c (0,0,1/2) x,0,z
(m | 0,0,1/2)

(4) m′ 0,y,z
(m | 0,0,0)′
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z+1/2 [u,v,w] (3) x,y,z+1/2 [u,v,w] (4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 b m'</td>
<td>1/2,y,z [0,v,w] 1/2,y,z+1/2 [0,v,w]</td>
</tr>
<tr>
<td>2 a m'</td>
<td>0,y,z [0,v,w] 0,y,z+1/2 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2’mm’
\[a^* = -b\quad b^* = a\]
Origin at 0,0,z

Along [1,0,0] p1g1
\[a^* = b\quad b^* = c\]
Origin at x,0,0

Along [0,1,0] p2v1m’1
\[a^* = -a\quad b^* = c/2\]
Origin at 0,y,0
Origin on mc'2'_1

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1
(1|0,0,0)

(2) 2' (0,0,1/2) 0,0,z
(2|0,0,1/2)'

(3) c' (0,0,1/2) x,0,z
(m|0,0,1/2)'

(4) m 0,y,z
(m|0,0,0)
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3). \)

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) (x,y,z) ([u,v,w])</td>
<td>((2) \overline{x},\overline{y},z+1/2) ([u,v,w])</td>
<td>((3) \overline{x},\overline{y},z+1/2) ([u,v,w])</td>
</tr>
<tr>
<td>2 b m..</td>
<td>1/2,(y,z) ([u,0,0])</td>
<td>1/2,(\overline{y},z+1/2) ([u,0,0])</td>
<td>((3) 0,\overline{y},z+1/2) ([u,0,0])</td>
</tr>
<tr>
<td>2 a m..</td>
<td>0,(y,z) ([u,0,0])</td>
<td>0,(\overline{y},z+1/2) ([u,0,0])</td>
<td>((3) 0,\overline{y},z+1/2) ([u,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) \(p2'\text{mm}' \) \(a^* = a \quad b^* = b \) \(\text{Origin at } 0,0,z \)
Along \([1,0,0]\) \(p1\text{g11}' \) \(a^* = b \quad b^* = c \) \(\text{Origin at } x,0,0 \)
Along \([0,1,0]\) \(p_2\text{v1m1} \) \(a^* = -a \quad b^* = c/2 \) \(\text{Origin at } 0,y,0 \)
Pm'c'2₁

26.5.172

m'm'2

Orthorhombic

Origin on m'c'2₁

Asymmetric unit
0 < x < 1/2; 0 < y < 1/2; 0 < z < 1

Symmetry Operations

(1) 1
(1|0,0,0)

(2) 2
(2|0,0,1/2)

(3) c'
(m,0,0,1/2)

(4) m'
(m,0,0,0)

26.5.172 - 1 - 320
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) \bar{x},\bar{y},z+1/2 [\bar{u},\bar{v},w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,\bar{y},z+1/2 [u,\bar{v},w]</td>
</tr>
<tr>
<td></td>
<td>(4) \bar{x},y,z [\bar{u},v,w]</td>
</tr>
<tr>
<td>2 b m'..</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,\bar{y},z+1/2 [0,v,\bar{w}]</td>
</tr>
<tr>
<td>2 a m'..</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,\bar{y},z+1/2 [0,\bar{v},w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2m'm'
 - Origin at 0,0,z
- Along [1,0,0] p1g'1
 - Origin at \(a^* = a\) \(b^* = b\)
- Along [0,1,0] p2b1m'1
 - Origin at \(x,0,0\)
 - Origin at \(a^* = -a\) \(b^* = c/2\)
Origin on mc₂₁

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0)\) + set

1. \((1)\) 1
 \((1)\) \((0,0,0)\)

2. \((2)\) 2 \((0,0,1/2)\) 0,0,z
 \((2z)\) \((0,0,1/2)\)

3. \((3)\) c \((0,0,1/2)\) \(x,0,z\)
 \((m,y,0,1/2)\)

4. \((4)\) m \(0,y,z\)
 \((m,0,0,0)\)

For \((1,0,0)\)' + set

1. \((1)\) t' \((1,0,0)\)
 \((1)\) \((1,0,0)'\)

2. \((2)\) \(2'\) \((0,0,1/2)\) 1/2,0,z
 \((2z)\) \((1,0,1/2)'\)

3. \((3)\) n' \((1,0,1/2)\) \(x,0,z\)
 \((m,y,1,0,1/2)'\)

4. \((4)\) m' \(1/2,y,z\)
 \((m,1,0,0)'\)
Continued 26.6.173 P₂₃mc2₁

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 b m'</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 a m</td>
<td>0,y,z [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>a* = a b* = b</th>
</tr>
</thead>
<tbody>
<tr>
<td>p₂₃.2mm</td>
<td>Origin at 0,0,z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>a* = b b* = c</th>
</tr>
</thead>
<tbody>
<tr>
<td>p₁g11'</td>
<td>Origin at x,0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>a* = -a b* = c/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>p₂₃.1m1</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Origin on mc₂₁

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \)

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 (0,0,1/2) \quad 0,0,z \\
(3) & \quad c (0,0,1/2) \quad x,0,z \\
(4) & \quad m \quad 0,y,z \\
\end{align*}
\]

\[
\begin{align*}
(1*) & \quad 0,0,0 \\
(2*) & \quad 0,0,1/2 \\
(m) & \quad 0,0,1/2 \\
(m) & \quad 0,0,0 \\
\end{align*}
\]

For \((0,1,0)\)' + set

\[
\begin{align*}
(1) & \quad t' (0,1,0) \\
(1) & \quad (0,1,0)' \\
(2) & \quad 2' (0,0,1/2) \quad 0,1/2,z \\
(3) & \quad c' (0,0,1/2) \quad x,1/2,z \\
(4) & \quad b' (0,1,0) \quad 0,y,z \\
\end{align*}
\]

\[
\begin{align*}
(1) & \quad (0,0,0)' \\
(2) & \quad (0,0,1/2)' \\
(m) & \quad (0,0,1/2)' \\
(m) & \quad (0,0,0)' \\
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>c</td>
<td>1</td>
</tr>
<tr>
<td>(1)</td>
<td>x,y,z [u,v,w]</td>
<td>(2) x̅,y̅,z+1/2 [u̅,v̅,w]</td>
</tr>
<tr>
<td>(2) x̅,y̅,z+1/2 [u̅,v̅,w]</td>
<td>(3) x̅,y̅,z+1/2 [u̅,v̅,w]</td>
<td></td>
</tr>
<tr>
<td>(4) x̅,y̅,z+1/2 [u̅,v̅,w]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 b m..</td>
<td>1/2,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 a m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2₁.2mm Along [1,0,0] p1g11' Along [0,1,0] p1m11'
\(\mathbf{a}^* = -\mathbf{b} \) \(\mathbf{b}^* = \mathbf{a} \) \(\mathbf{a}^* = \mathbf{b} \) \(\mathbf{b}^* = \mathbf{c} \) \(\mathbf{a}^* = -\mathbf{a} \) \(\mathbf{b}^* = \mathbf{c}/2 \)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin on \(mc_2\)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\]

Symmetry Operations

For \((0,0,0)\) + set

1. \[1\]
2. \[2\] \((0,0,1/2)\) \(0,0,z\)
3. \[c\] \((0,0,1/2)\) \(x,0,z\)
4. \[m\] \((0,0,1/2)\) \(0,y,z\)

For \((1,0,0)\)' + set

1. \[t'\] \((1,0,0)\)
2. \[2'\] \((0,0,1/2)\) \(1/2,0,z\)
3. \[n'\] \((1,0,1/2)\) \(x,0,z\)
4. \[m'\] \((1,0,0)\) \(1/2,y,z\)

\[26.8.175\]
Generators selected \((1); t(1,0,0)^{'}; t(0,1,0)^{'}; t(0,0,1); (2); (3). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 (c) 1</td>
<td>((0,0,0) + (1,0,0)^{'} +) (x,y,z [u,v,w])</td>
</tr>
<tr>
<td>4 (b) (m^{..})</td>
<td>(1/2,y,z [0,v,w])</td>
</tr>
<tr>
<td>4 (a) (m^{..})</td>
<td>(0,y,z [u,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) \(p_{c2mm} \)
 \(a^* = a \quad b^* = b \)
 Origin at \(0,0,z\)
- Along \([1,0,0]\) \(p_{1g11^{'}*} \)
 \(a^* = b \quad b^* = c \)
 Origin at \(x,0,0\)
- Along \([0,1,0]\) \(p_{1m11^{'}*} \)
 \(a^* = -a \quad b^* = c/2 \)
 Origin at \(0,y,0\)
Origin on mc'2₁⁻¹

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

1. (1 | 0,0,0)
2. (2 | 0,0,1/2) 0,0,z (2' 0,0,1/2) 0,0,z
3. (3 | 0,0,1/2) x,0,z (c' 0,0,1/2) x,0,z
4. (4 | 0,0,0) m 0,y,z (m 0,0,0)

For (1,0,0)' + set

1. (1 | 1,0,0)
2. (2 | 0,0,1/2) 1/2,0,z (2' 0,0,1/2) 1/2,0,z
3. (3 | 1,0,1/2) x,0,z (n 1,0,1/2) x,0,z
4. (4 | 1,0,0)' m' 1/2,y,z (m' 1/2,0,0)

P₂aec'2₁⁻¹ mm21⁻¹ Orthorhombic
Generators selected \((1); t(1,0,0)'; t(0,1,0); t(0,0,1); (2); (3). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8)</td>
<td>((0,0,0) + (1,0,0)' +)</td>
</tr>
<tr>
<td>(c)</td>
<td>((1) x,y,z [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>((2) x,y,z+1/2 [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>((3) x,y,z+1/2 [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>((4) x,y,z [u,v,w])</td>
</tr>
</tbody>
</table>

\[a^* = a \quad b^* = b \]
Origin at \(1/2,0,z \)
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Projector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along ([0,0,1])</td>
<td>(p_{2a}2m'm')</td>
</tr>
<tr>
<td>Along ([1,0,0])</td>
<td>(p_{1g}11')</td>
</tr>
<tr>
<td>Along ([0,1,0])</td>
<td>(p_{2b}.1m1)</td>
</tr>
</tbody>
</table>

\[a^* = b \quad b^* = c \]
Origin at \(x,0,0 \)

\[a^* = c/2 \quad b^* = a \]
Origin at \(0,y,0 \)
Orthorhombic

P2₁m'c'2₁

mm2₁'

Asymmetric unit

\[0 \le x \le \frac{1}{2}; \quad 0 \le y \le \frac{1}{2}; \quad 0 \le z \le 1 \]

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)
2. \(2 (0,0,1/2), 0,0,z\)
3. \(c' (0,0,1/2), x,0,z\)
4. \(m' 0,y,z\)

For \((0,0,0)'\) + set

1. \(t' (0,1,0), 0,0,0\)
2. \(2' (0,0,1/2), 0,1/2,z\)
3. \(c (0,0,1/2), x,1/2,z\)
4. \(b (0,1,0), 0,y,z\)

For \((0,1,0)'\) + set

1. \(t' (0,1,0), 0,0,0\)
2. \(2' (0,1,1/2), 0,1/2,z\)
3. \(c (0,1,1/2), x,1/2,z\)
4. \(b (0,1,0), 0,y,z\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 b m'</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,z+1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 a m'</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,z+1/2 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p_{2a}.2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -b</td>
<td>b* = a</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p_{2a}.1g1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,1/2,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -a</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on cc2

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1$

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2 $0,0,z$
(2z | 0,0,0)

(3) $c (0,0,1/2) \ x,0,z$
(m, | 0,0,1/2)

(4) $c (0,0,1/2) \ 0,y,z$
(m_\| | 0,0,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 d .2</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 c .2</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 b .2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 a .2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm
Along [1,0,0] p21b1m'1
Along [0,1,0] p21b1m'1

\[a^* = a \quad b^* = b \]
Origin at 0,0,0
\[a^* = a \quad b^* = c/2 \]
Origin at x,0,0
\[a^* = -a \quad b^* = c/2 \]
Origin at 0,y,0
Origin: on cc21’

Asymmetric unit: \(0 < x < 1/2; \ 0 < y < 1/2; \ 0 < z \leq 1\)

Symmetry Operations:

For 1 + set:

1. \((1, 0, 0, 0)\)
2. \((2, 0, 0, z)\)
3. \((c, 0, 0, 1/2)\)
4. \((m, 0, 0, 1/2)\)

For 1’ + set:

1. \((1’, 0, 0, 0)’\)
2. \((2’, 0, 0, z)’\)
3. \((c’, 0, 0, 1/2)’\)
4. \((m’, 0, 0, 1/2)’\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 e 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>2 d ..21'</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c ..21'</td>
<td>1/2,0,z [0,0,0]</td>
<td>1/2,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b ..21'</td>
<td>0,1/2,z [0,0,0]</td>
<td>0,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a ..21'</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm1' Along [1,0,0] p1m11' Along [0,1,0] p1m11'

\[a^* = a \quad b^* = b \]

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Orthorhombic

27.3.180

Pc'c2'

m'm2'

Origin on c'c2'

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

1
(1 | 0,0,0)

2'
(2_ | 0,0,0)^

2c
(3 | 0,0,1/2) x,0,z
(m | 0,0,1/2)

2c'
(4 | 0,0,1/2) 0,y,z
(m_ | 0,0,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>e 1 (1) x,y,z [u,v,w] (2) (\bar{x},\bar{y},z [u,v,w]) (3) (x,\bar{y},z+1/2 [\bar{u},v,w]) (4) (\bar{x},y,z+1/2 [\bar{u},v,w])</td>
</tr>
<tr>
<td>2</td>
<td>d .2' 1/2,1/2,z [u,v,0] 1/2,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>2</td>
<td>c .2' 1/2,0,z [u,v,0] 1/2,0,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>2</td>
<td>b .2' 0,1/2,z [u,v,0] 0,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>2</td>
<td>a .2' 0,0,z [u,v,0] 0,0,z+1/2 [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2' mm'
 - \(a^* = -b \quad b^* = a\)
 - Origin at 0,0,z
- Along [1,0,0] p1m1
 - \(a^* = b \quad b^* = c/2\)
 - Origin at x,0,0
- Along [0,1,0] p\(_{2b}\).1m1
 - \(a^* = -a \quad b^* = c/2\)
 - Origin at 0,y,0
Asymmetric unit

\[0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < 1\]

Symmetry Operations

\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \cdot 0,0,z \\
(3) & \quad c' \cdot (0,0,1/2) \cdot x,0,z \\
(4) & \quad c' \cdot (0,0,1/2) \cdot 0,y,z
\end{align*}

\begin{align*}
(1*) & \quad 0,0,0 \\
(2z) & \quad (0,0,0) \\
(my) & \quad (m, 0, 0, 1/2)' \\
(mx) & \quad (m, 0, 0, 1/2)' \end{align*}
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 d ..2</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 c ..2</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 b ..2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 a ..2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2m'm'
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] p1m'1
\(a^* = b \quad b^* = c/2 \)
Origin at x,0,0

Along [0,1,0] p1m'1
\(a^* = -a \quad b^* = c/2 \)
Origin at 0,y,0
Origin on cc2

Asymmetric unit $0 \leq x \leq 1/2$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0)$ + set

(1) 1
(1) t (1,0,0)

(2) $2 \ 0,0,z$
(2) $2'$ $1/2,0,z$

(3) $c (0,0,1/2) \ x,0,z$
(3) $n' (1,0,1/2) \ x,0,z$

(4) $c (0,0,1/2) \ 0,y,z$
(4) $c' (0,0,1/2) \ 1/2,y,z$

For $(1,0,0)'$ + set

(1) t' (1,0,0)
(1) t' (1,0,0)'

(2) $2' \ 1/2,0,z$
(2) $2' \ 1/2,0,z$

(3) $n' (1,0,1/2) \ x,0,z$
(3) $n' (1,0,1/2) \ x,0,z$

(4) $c' (0,0,1/2) \ 1/2,y,z$
(4) $c' (0,0,1/2) \ 1/2,y,z$
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
<td></td>
</tr>
<tr>
<td>8 e 1</td>
<td>(x,y,z [u,v,w])</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 d ..2'</td>
<td>1/2,1/2,z [u,v,0]</td>
<td>1/2,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 c ..2'</td>
<td>1/2,0,z [u,v,0]</td>
<td>1/2,0,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 b ..2</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 a ..2</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** p_{2a}.2mm

 \[\mathbf{a}^* = \mathbf{a}, \mathbf{b}^* = \mathbf{b} \]

 Origin at 0,0,z

- **Along [1,0,0]** p_{1m11}'

 \[\mathbf{a}^* = \mathbf{b}, \mathbf{b}^* = \mathbf{c}/2, \mathbf{c}^* = \mathbf{a} \]

 Origin at x,0,0

- **Along [0,1,0]** p_{2a}.1m1

 \[\mathbf{a}^* = -\mathbf{a}, \mathbf{b}^* = \mathbf{c}/2 \]

 Origin at 1/2,y,0
Origin on cc2

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \)

Symmetry Operations

For \((0,0,0)\) + set

\begin{align*}
(1) & \quad \text{1} \\
(1|0,0,0) & \\
(2) & \quad 0,0,z \\
(2_x|0,0,0) & \\
(3) & \quad c \ (0,0,1/2) \quad x,0,z \\
(m_y|0,0,1/2) & \\
(4) & \quad c \ (0,0,1/2) \quad 0,y,z \\
(m_z|0,0,1/2) & \\
\end{align*}

For \((1,0,0)\)' + set

\begin{align*}
(1) & \quad t' \ (1,0,0) \\
(1|1,0,0)' & \\
(2) & \quad 2' \\
(2_z|1,0,0)' & \\
(3) & \quad n' \ (1,0,1/2) \quad x,0,z \\
(m_y|1,0,1/2)' & \\
(4) & \quad c' \ (0,0,1/2) \\
(m_z|1,0,1/2)' & \\
\end{align*}
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1 ((1) x,y,z \ [u,v,w]) (2) x,y,z+1/2 \ [u,v,w])</td>
<td>((0,0,0)+) ((1,0,0)'+)</td>
</tr>
<tr>
<td>4 d ..2 (1/2,1/2,z \ [0,0,w])</td>
<td>(1/2,1/2,z+1/2 \ [0,0,w])</td>
</tr>
<tr>
<td>4 c ..2' (1/2,0,z \ [u,v,0])</td>
<td>(1/2,0,z+1/2 \ [u,v,0])</td>
</tr>
<tr>
<td>4 a ..2 (0,0,z \ [0,0,w])</td>
<td>(0,0,z+1/2 \ [0,0,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) \(p_c\)2mm \(a^*=a \ b^*=b\) Origin at 0,0,z
- Along \([1,0,0]\) \(p1m1\) \(a^*=b \ b^*=c/2\) Origin at x,0,0
- Along \([0,1,0]\) \(p1m1\) \(a^*=-a \ b^*=c/2\) Origin at 0,y,0
Origin on \(c'c2'\)

Asymmetric unit: \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)
2. \(2'\): \((0,0,0), (0,0,z)
3. \(c\): \((0,0,1/2), (x,0,z)
4. \(c'\): \((0,0,1/2), (0,y,z)

For \((0,1,0)'\) + set

1. \(t'\): \((0,1,0), (0,1/2,z)
2. \(2\): \((0,1,0), (0,1/2,z)
3. \(c'\): \((0,0,1/2), (x,1/2,z)
4. \(n\): \((0,1,1/2), (0,y,z)

\(P2_c'c2'\) mm21' Orthorhombic
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

| 4 d ..2 | 1/2,1/2,z [0,0,w] |
| | 1/2,1/2,z+1/2 [0,0,w] |

| 4 c ..2' | 1/2,0,z [u,v,0] |
| | 1/2,0,z+1/2 [u,v,0] |

| 4 b ..2 | 0,1/2,z [0,0,w] |
| | 0,1/2,z+1/2 [0,0,w] |

| 4 a ..2' | 0,0,z [u,v,0] |
| | 0,0,z+1/2 [u,v,0] |

Symmetry of Special Projections

Along [0,0,1] p_{2a}.2'mm'
\(a^* = -b \quad b^* = a \)
Origin at 0,0,z

Along [1,0,0] p_{2a}.1m1
\(a^* = b \quad b^* = c/2 \)
Origin at x,0,0

Along [0,1,0] p_{1m11}'
\(a^* = -a \quad b^* = c/2 \)
Origin at 0,y,0
Origin on 1a2

Asymmetric unit $0 \leq x \leq 1/4; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1$

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2 0,0,z
(2z | 0,0,0)

(3) a (1/2,0,0) x,0,z
(m_y | 1/2,0,0)

(4) m 1/4,y,z
(m_x | 1/2,0,0)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicities, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>[u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 c m..</td>
<td>1/4,y,z [u,0,0]</td>
<td>[u,0,0]</td>
<td>3/4,y,z [u,0,0]</td>
</tr>
<tr>
<td>2 b ..2</td>
<td>0,1/2,z [0,0,w]</td>
<td>[0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 a ..2</td>
<td>0,0,z [0,0,w]</td>
<td>[0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg

a* = a b* = b

Origin at 0,0,z

Along [1,0,0] p1m11'

a* = b b* = c

Origin at x,0,0

Along [0,1,0] p2e1m1

a* = -a/2 b* = c

Origin at 1/4,y,0
Origin on 1a21'

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1\)

Symmetry Operations

For 1 + set

1. \((1|0,0,0)\)
2. \((2|0,0,z)\)
3. \((a|1/2,0,0)\) \(x,0,z\)
4. \((m|1/4,y,z)\)

For 1' + set

1. \((1'|0,0,0)\)
2. \((2'|0,0,z)\)
3. \((a'|1/2,0,0)\) \(x,0,z\)
4. \((m'|1/4,y,z)\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 d 11'</td>
<td>1/4,y,z</td>
<td>(0,0,0)</td>
<td>(2) x, y, z</td>
</tr>
<tr>
<td>2 c m..1'</td>
<td>1/2,1/2,z</td>
<td>(0,0,0)</td>
<td>(3) x+1/2, y, z</td>
</tr>
<tr>
<td>2 b ..21'</td>
<td>0,1/2,z</td>
<td>(0,0,0)</td>
<td>(4) x+1/2, y, z</td>
</tr>
<tr>
<td>2 a ..21'</td>
<td>1/2,0,z</td>
<td>(0,0,0)</td>
<td>(4) x+1/2, y, z</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg1'

\(a^{*} = a\) \(b^{*} = b\)

Origin at 0,0,z

Along [1,0,0] p1m11'

\(a^{*} = b\) \(b^{*} = c\)

Origin at x,0,0

Along [0,1,0] p1m11'

\(a^{*} = -a/2\) \(b^{*} = c\)

Origin at 0,y,0
Orthorhombic

Pm'a2'

m'm2'

28.3.187

Pm'a2'

Origin
on 1a2'

Asymmetric unit

0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1

(2) 2' 0,0,z

(3) a (1/2,0,0) x,0,z

(4) m' 1/4,y,z

(1 | 0,0,0)

(2 | 0,0,0)'

(m | 1/2,0,0)'

(1/2,0,0)
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 d 1</td>
<td>x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 c m'..</td>
<td>1/4,y,z [0,v,w]</td>
<td>3/4,y,z [0,v,w]</td>
</tr>
<tr>
<td>2 b ..2'</td>
<td>0,1/2,z [u,v,0]</td>
<td>1/2,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>2 a ..2'</td>
<td>0,0,z [u,v,0]</td>
<td>1/2,0,z [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'm'g Along [1,0,0] p1m11' Along [0,1,0] p2e,1m1
a* = a b* = b a* = b b* = c a* = -a/2 b* = c
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin on 1a'2'

Asymmetric unit

\[0 < x < \frac{1}{4}; \quad 0 < y < 1; \quad 0 < z < 1 \]

Symmetry Operations

1. \(1 \)
 \((1,0,0,0) \)

2. \(2' \) \(0,0,z \)
 \((2',0,0,0) \)

3. \(a' \) \((1/2,0,0) \) \(x,0,z \)
 \((a',1/2,0,0) \)

4. \(m \) \(1/4,y,z \)
 \((m,1/2,0,0) \)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 d 1 (1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 c m.. 1/4,y,z [u,0,0]</td>
</tr>
<tr>
<td>2 b .2' 0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>2 a .2' 0,0,z [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2'mg'</th>
<th>Along [1,0,0] p1m11'</th>
<th>Along [0,1,0] p1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{a}^* = \mathbf{a}) (\mathbf{b}^* = \mathbf{b})</td>
<td>(\mathbf{a}^* = \mathbf{b}) (\mathbf{b}^* = \mathbf{c})</td>
<td>(\mathbf{a}^* = -\mathbf{a}/2) (\mathbf{b}^* = \mathbf{c})</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Origin on 1a'2

Asymmetric unit $0 \leq x \leq 1/4; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1$

Symmetry Operations

(1) 1
 (1 0,0,0)
(2) 2 0,0,z
 (2z 0,0,0)
(3) a' (1/2,0,0) x,0,z
 (m_x 1/2,0,0')
(4) m' 1/4,y,z
 (m_y 1/2,0,0')
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 c m'</td>
<td>1/4,y,z [0,v,w]</td>
</tr>
<tr>
<td>2 b .2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 a .2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2m'g' $a^* = a$ $b^* = b$
- Along [1,0,0] p1m'1 $a^* = b$ $b^* = c$
- Along [0,1,0] p1m'1 $a^* = -a/2$ $b^* = c$

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Orthorhombic

Asymmetric unit: $0 < x < 1/4; \ 0 < y < 1; \ 0 < z < 1$

Symmetry Operations

For $(0,0,0)$ + set:

1. (1) 1
2. (2) 2 \[0,0,z\]
3. (3) $a (1/2,0,0) \ x,0,z$
4. (4) $m \ 1/4,y,z$

For $(0,1,0)' + set$:

1. (1) $t' (0,1,0)$
2. (2) $2' \ 0,1/2,z$
3. (3) $a' (1/2,0,0) \ x,1/2,z$
4. (4) $b' (0,1,0) \ 1/4,y,z$

Origin on 1a2
Generators selected \((1); t(1,0,0); t(0,1,0)'; t(0,0,1); (2); (3). \)

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>((0,0,0) + (0,1,0)' +)</td>
</tr>
<tr>
<td>4 c m..</td>
<td>(1/4,y,z [u,0,0])</td>
</tr>
<tr>
<td>4 b ..2'</td>
<td>(0,1/2,z [u,v,0])</td>
</tr>
<tr>
<td>4 a ..2</td>
<td>(0,0,z [0,0,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along \([0,0,1]\) p_{2b-2mg}**
 - \(a^* = a \)
 - \(b^* = b\)
- **Along \([1,0,0]\) p1m11'**
 - \(a^* = b \)
 - \(b^* = c\)
- **Along \([0,1,0]\) p1m11'**
 - \(a^* = -a/2 \)
 - \(b^* = c\)
Origin on 1a2

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1 \)

Symmetry Operations

For \((0,0,0)\) + set

1. \(I\)

2. \(2\) \(0,0,z\)

3. \(a\) \((1/2,0,0)\) \(x,0,z\)

4. \(m\) \(1/4,y,z\)

For \((0,0,1)\) + set

1. \(t'\) \(0,0,1\)

2. \(2'\) \((0,0,1)\) \(0,0,z\)

3. \(n'\) \((1/2,0,1)\) \(x,0,z\)

4. \(c'\) \((0,0,1)\) \(1/4,y,z\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,0,1)' +</td>
</tr>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 c m..</td>
<td>1/4,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 b ..2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 a ..2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg1' Along [1,0,0] p1m11' Along [0,1,0] p_c1m1
a* = a b* = b a* = b b* = c a* = -a/2 b* = c
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin on 1a2

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1 \)

Symmetry Operations

For \((0,0,0) + \) set

1. \(1 \)
 \((1 | 0,0,0)\)

2. \((2) \) 0,0,z
 \((2_z | 0,0,0)\)

3. \((3) a (1/2,0,0) \) x,0,z
 \((m_y | 1/2,0,0)\)

4. \((4) m \) 1/4,y,z
 \((m_x | 1/2,0,0)\)

For \((0,1,0)’ + \) set

1. \((1) t’ (0,1,0) \)
 \((1 | 0,1,0)’\)

2. \((2) \) 0,1/2,z
 \((2_z | 0,1,0)’\)

3. \((3) a’ (1/2,0,0) \) x,1/2,z
 \((m_y | 1/2,1,0)’\)

4. \((4) b’ (0,1,0) \) 1/4,y,z
 \((m_x | 1/2,1,0)’\)
Generators selected
(1); t(1,0,0); t(0,1,0)'; t(0,0,1)'; (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1,0)' + (1) x,y,z [u,v,w]</td>
<td>(2) \bar{x},\bar{y},\bar{z} [u,\bar{v},\bar{w}]</td>
</tr>
<tr>
<td>8 c m.. 1/4,y,z [u,0,0]</td>
<td>3/4,\bar{y},z [u,0,0]</td>
</tr>
<tr>
<td>4 b ..2' 0,1/2,z [u,v,0]</td>
<td>1/2,1/2,z [u,\bar{v},0]</td>
</tr>
<tr>
<td>4 a ..2 0,0,z [0,0,0]</td>
<td>1/2,0,z [0,0,\bar{w}]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2mg1'</th>
<th>Along [1,0,0] p1m11'</th>
<th>Along [0,1,0] p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbf{a}^* = \mathbf{a}$ $\mathbf{b}^* = \mathbf{b}$</td>
<td>$\mathbf{a}^* = \mathbf{b}$ $\mathbf{b}^* = \mathbf{c}$</td>
<td>$\mathbf{a}^* = -\mathbf{a}/2$ $\mathbf{b}^* = \mathbf{c}$</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Orthorhombic

28.9.193

Origin on 1a2'

Asymmetric unit

\[0 \leq x \leq \frac{1}{4}; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. \(1\)

 \((1|0,0,0)\)

2. \(2'\)

 \((2'z|0,0,0)^{'}\)

3. \(a\)

 \((m_y|1/2,0,0)\)

4. \(m'\)

 \((m_x|1/2,0,0)^{'}\)

For \((0,1,0)^{'} + \text{set}\)

1. \(t'\)

 \((1|0,1,0)^{'}\)

2. \(2\)

 \((2z|0,1,0)\)

3. \(a'\)

 \((m_y|1/2,1,0)^{'}\)

4. \(b\)

 \((m_x|1/2,1,0)\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>4</td>
<td>(0,1,0)′ +</td>
</tr>
</tbody>
</table>

Site Symmetry:

- 8 d 1: x,y,z [u,v,w]
- (2) x, y, z [u,v,w]
- (3) x+1/2, y, z [u,v,w]
- (4) x+1/2, y, z [u,v,w]

- 4 c m′: 1/4, y, z [0,v,w]
- 3/4, y, z [0,v,w]

- 4 b .2: 0,1/2, z [0,0,w]
- 1/2, 1/2, z [0,0,w]

- 4 a .2: 0,0, z [u,v,0]
- 1/2, 0, z [u,v,0]

Symmetry of Special Projections

Along [0,0,1] p_{2b}.2m′g′

- a* = a b* = b
- Origin at 0,1/2,z

Along [1,0,0] p_{2a}.1m1

- a* = b b* = c
- Origin at x,0,0

Along [0,1,0] p1m11′

- a* = -a/2 b* = c
- Origin at 0,y,0
Orthorhombic

28.10.194

P₂c m'a₂'

mm21'

Origin on 1a₂'

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) 2' 0,0,z
(2|0,0,0)'

(3) a (1/2,0,0) x,0,z
(m_y|1/2,0,0)

(4) m' 1/4,y,z
(m_x|1/2,0,0)'

For (0,0,1)' + set

(1) t' (0,0,1)
(1|0,0,1)'

(2) 2 (0,0,1) 0,0,z
(2|0,0,1)

(3) n' (1/2,0,1) x,0,z
(m_y|1/2,0,1)'

(4) c (0,0,1) 1/4,y,z
(m_x|1/2,0,1)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) + (0,0,1) +</td>
</tr>
<tr>
<td>8 d 1 (1) x,y,z [u,v,w]</td>
<td>(2) (\bar{x},y,z [u,v,w]) (3) (x+1/2,y,z [u,v,w]) (4) (x+1/2,y,z [\bar{u},v,w])</td>
</tr>
<tr>
<td>4 c m' 1/4,y,z [0,v,w]</td>
<td>3/4,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 b ..2' 0,1/2,z [u,v,0]</td>
<td>1/2,1/2,z [\bar{u},v,0]</td>
</tr>
<tr>
<td>4 a ..2' 0,0,z [u,v,0]</td>
<td>1/2,0,z [\bar{u},v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) p2mg1'
Along \([1,0,0]\) p2\(\text{b}^*\)1m1
Along \([0,1,0]\) p\(\text{c}^*\)1m1

\(\mathbf{a}^* = \mathbf{a}\) \(\mathbf{b}^* = \mathbf{b}\)
\(\mathbf{a}^* = \mathbf{b}\) \(\mathbf{b}^* = \mathbf{c}\)
\(\mathbf{a}^* = -\mathbf{a}/2\) \(\mathbf{b}^* = \mathbf{c}\)

Origin at \(0,0,z\)
Origin at \(x,0,0\)
Origin at \(0,y,0\)
Origin on $1a'2'$

Asymmetric unit $0 \leq x \leq 1/4; \ 0 \leq y \leq 1; \ 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0)$ + set

(1) 1
(1) 1
(1) 0,0,0)

(2) 2' 0,0,z
(2) $0,0,0'$
(2) 0,0,0)

(3) $a' (1/2,0,0) \ x,0,z$
(3) $a' (1/2,0,0)'$
(3) $a' (1/2,0,0)'$

(4) m 1/4,y,z
(4) m 1/4,y,z
(4) m 1/4,y,z

For $(0,0,1)'$ + set

(1) t' (0,0,1)
(1) t' (0,0,1)'
(1) 0,0,1)

(2) 2 (0,0,1) 0,0,z
(2) $0,0,1$)
(2) $0,0,1$)

(3) n (1/2,0,1) x,0,z
(3) n (1/2,0,1)
(3) n (1/2,0,1)

(4) c' (0,0,1) 1/4,y,z
(4) c' (0,0,1)'
(4) c' (0,0,1)'

28.11.195 - 1 - 366
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td>8 d 1 (1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 c m.. 1/4,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 b ..2' 0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>4 a ..2' 0,0,z [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg1'
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] p1m11'
\(a^* = b \quad b^* = c \)
Origin at x,0,0

Along [0,1,0] p2v,1m1
\(a^* = -a/2 \quad b^* = c \)
Origin at 0,y,0
Origin on 1a'2

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0) +\) set

\[
\begin{align*}
(1) & \quad 1 \\
(1') & \quad (0,0,0) \\
(2) & \quad 0,0,z \\
(2') & \quad (0,0,0)
\end{align*}
\]

\[
\begin{align*}
(3) & \quad a'(1/2,0,0) \quad x,0,z \\
(3') & \quad (1/2,0,0)'
\end{align*}
\]

\[
\begin{align*}
(4) & \quad m' \quad 1/4,y,z \\
(4') & \quad (1/2,0,0)'
\end{align*}
\]

For \((0,0,1) +\) set

\[
\begin{align*}
(1) & \quad t' \quad (0,0,1) \\
(1') & \quad (0,0,1)'
\end{align*}
\]

\[
\begin{align*}
(2) & \quad 2' \quad (0,0,1) \quad 0,0,z \\
(2') & \quad (0,0,1)'
\end{align*}
\]

\[
\begin{align*}
(3) & \quad n \quad (1/2,0,1) \quad x,0,z \\
(3') & \quad (1/2,0,1)
\end{align*}
\]

\[
\begin{align*}
(4) & \quad c \quad (0,0,1) \quad 1/4,y,z \\
(4') & \quad (1/2,0,1)
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Coordinates
Wyckoff letter, (0,0,0) + (0,0,1)' +
Site Symmetry.

<table>
<thead>
<tr>
<th>d</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
<td>x+1/2,y,z [u,v,w]</td>
<td>x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>1/4,y,z [0,v,w]</td>
<td>3/4,y,z [0,v,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg1' Along [1,0,0] p2v,1m1' Along [0,1,0] p2v,1m1
a* = a b* = b a* = b b* = c a* = -a/2 b* = c
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin on 1a'2

Asymmetric unit

\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0)\) + set

1. \((1, 0, 0, 0)\)
2. \((2, 0, 0, z)\)
3. \(a'(1/2, 0, 0)\) \(x, 0, z\)
4. \(m'1/4, y, z\)

For \((0,1,0)'\) + set

1. \((1', 0, 1, 0)\)
2. \((2', 0, 1/2, z)\)
3. \(a(1/2, 0, 0)\) \(x, 1/2, z\)
4. \(b(0, 1, 0)\) \(1/4, y, z\)
Generators selected
(1); t(1,0,0); t(0,1,0)'; t(0,0,1)'; (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 c m'..</td>
<td>1/4,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 b ..2'</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>4 a ..2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg1'
\[\mathbf{a}^* = \mathbf{a}, \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along [1,0,0] p_{1}^{1}m1
\[\mathbf{a}^* = \mathbf{b}, \mathbf{b}^* = \mathbf{c} \]
Origin at x,1/2,0

Along [0,1,0] p1m11'
\[\mathbf{a}^* = -\mathbf{a}/2, \mathbf{b}^* = \mathbf{c} \]
Origin at 0,y,0
Origin on 1a2₁

Asymmetric unit: 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1

Symmetry Operations:

1. 1
 (1 | 0,0,0)
2. x,0,z
 (m | 1/2,0,0)
3. 0,0,z
 (0,0,1/2)
4. 1/4,y,z
 (m | 1/2,0,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 a 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg
a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p2b*-1m1
a* = b b* = c/2
Origin at x,0,0

Along [0,1,0] p2a*-1g1
a* = -a/2 b* = c
Origin at 1/4,y,0
Origin on 1a₁₂₁'

Asymmetric unit $0 \leq x \leq 1/4; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1$

Symmetry Operations

For 1 + set

1

(1) 1
(1) 0,0,0)

(2) 2 (0,0,1/2) 0,0,z
(2) 0,0,1/2)

(3) a (1/2,0,0) x,0,z
(3) m y,1/2,0,0)

(4) c (0,0,1/2) 1/4,y,z
(4) m z,1/2,0,1/2)

For 1' + set

1'

(1) 1'
(1) 0,0,0)

(2) 2' (0,0,1/2) 0,0,z
(2) 0,0,1/2)

(3) a' (1/2,0,0) x,0,z
(3) m y,1/2,0,0)

(4) c' (0,0,1/2) 1/4,y,z
(4) m z,1/2,0,1/2)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1'.

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a 1'</td>
</tr>
<tr>
<td>1'</td>
<td>(1) x, y, z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) x, y, z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2, y, z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2, y, z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg1'
\(\mathbf{a}^* = \mathbf{a} \) \(\mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] p1m11'
\(\mathbf{a}^* = \mathbf{b} \) \(\mathbf{b}^* = \mathbf{c}/2 \)
Origin at x,0,0

Along [0,1,0] p1g11'
\(\mathbf{a}^* = -\mathbf{a}/2 \) \(\mathbf{b}^* = \mathbf{c} \)
Origin at 0,y,0
Pc'a2',

29.3.200

m'm2'

Pc'a2',

Orthorhombic

Origin on 1a2',

Asymmetric unit

0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1
(1|0,0,0)

(2) 2' (0,0,1/2) 0,0,z
(2z|0,0,1/2')

(3) a (1/2,0,0) x,0,z
(m|1/2,0,0)

(4) c' (0,0,1/2) 1/4,y,z
(m|1/2,0,1/2')
Generators selected \((1)\); \(t(1,0,0); t(0,1,0); t(0,0,1)\); \((2)\); \((3)\).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 a 1</td>
<td>(1) (x,y,z) ([u,v,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) p2m'g'
\(a^* = a\) \(\quad b^* = b\)
Origin at 0,0,z

Along \([1,0,0]\) p1m1
\(a^* = b\) \(\quad b^* = c/2\)
Origin at x,0,0

Along \([0,1,0]\) p2a*1g1
\(a^* = -a/2\) \(\quad b^* = c\)
Origin at 0,y,0
Origin on 1a'2,'

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1
 (1 0,0,0)
 (1 |0,0,0)

(2) 2' (0,0,1/2) 0,0,z
 (2 0,0,1/2')

(3) a' (1/2,0,0) x,0,z
 (m 1/2,0,0')

(4) c (0,0,1/2) 1/4,y,z
 (m 1/2,0,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 a 1 (1)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x̄,ȳ,z+1/2 [u,v̅,w̅]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,y,z [u,v̅,w̅]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y,z+1/2 [u,v̅,w̅]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'mg'
\(a^* = a \) \(b^* = b \)
Origin at 0,0,z

Along [1,0,0] p2b*1m'1
\(a^* = b \) \(b^* = c/2 \)
Origin at x,0,0

Along [0,1,0] p1g'1
\(a^* = -a/2 \) \(b^* = c \)
Origin at 0,y,0
Origin on $1a'2_1$

Asymmetric unit $0 \leq x \leq 1/4; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1$

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2 (0,0,1/2) 0,0,z
(2z | 0,0,1/2)

(3) a' (1/2,0,0) x,0,z
(m_y | 1/2,0,0)'

(4) c' (0,0,1/2) 1/4,y,z
(m_x | 1/2,0,1/2)'
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

4 a 1

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(3) x+1/2,y,z [u,v,w]</td>
<td>(4) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2m'g'
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] p1m'1
\(a^* = b \quad b^* = c/2 \)
Origin at x,0,0

Along [0,1,0] p1g'1
\(a^* = -a/2 \quad b^* = c \)
Origin at 0,y,0
Origin on 1a2₁

Asymmetric unit

0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1|0,0,0)

(2) 2 (0,0,1/2) 0,0,z
 (2|0,0,1/2)

(3) a (1/2,0,0) x,0,z
 (mₚ|1/2,0,0)

(4) c (0,0,1/2) 1/4,y,z
 (mₚ|1/2,0,1/2)

For (0,1,0)’ + set

(1) t’ (0,1,0)
 (1|0,1,0)’

(2) 2’ (0,0,1/2) 0,1/2,z
 (2|₀,0,1/2)’

(3) a’ (1/2,0,0) x,1/2,z
 (mₚ|1/2,1,0)’

(4) n’ (0,1,1/2) 1/4,y,z
 (mₚ|1/2,1,1/2)’
Generators selected (1); t(1,0,0); t(0,1,0)'; t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[
\begin{align*}
(0,0,0) &+ (0,1,0)'+ \quad (0,0,0) &+ (0,1,0)' + \\
8 \quad a \quad 1 &\quad (1) x,y,z [u,v,w] &\quad (2) \bar{x},\bar{y},z+1/2 [\bar{u},\bar{v},w] &\quad (3) x+1/2,y,z [u,v,\bar{w}] &\quad (4) \bar{x}+1/2,y,z+1/2 [u,\bar{v},\bar{w}]
\end{align*}
\]

Symmetry of Special Projections

Along [0,0,1] p2₁ca₂₁ Along [1,0,0] p₁c₁m₁ Along [0,1,0] p₁g₁₁'

\[
\begin{align*}
a^* &= a & b^* &= b & a^* &= a/2 & b^* &= c & a^* &= -a/2 & b^* &= c
\end{align*}
\]

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin on 1a’2₁

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1 \)

Symmetry Operations

For \((0,0,0) + \text{ set}\)

1. \((1)\) 1
2. \((2)\) \(2 (0,0,1/2) \quad 0,0,z \quad (2_1) (0,0,1/2)
3. \((3)\) a’ \((1/2,0,0) \quad 1/2,x,z \quad (m_y | 1/2,0,0)’
4. \((4)\) c’ \((0,0,1/2) \quad 1/4,y,z \quad (m_z | 1/2,0,1/2)’

For \((0,1,0)^+ \text{ set}\)

1. \((1)\) t’ \((0,1,0) \quad (1) | 0,1,0)’
2. \((2)\) \(2’ (0,0,1/2) \quad 0,1/2,z \quad (2_1) (0,1,1/2)’
3. \((3)\) a \((1/2,0,0) \quad 1/2,x,z \quad (m_y | 1/2,1,0)
4. \((4)\) n \((0,1,1/2) \quad 1/4,y,z \quad (m_z | 1/2,1,1/2)’

\(P_{2b} c'a'2_1\) mm21' Orthorhombic

29.7.204

\(P_{2b} c'a'2_1\)
Generators selected: (1); t(1,0,0); t(0,1,0)'; t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[(0,0,0) + (0,1,0)' + \]

| 8 | a | 1 | \((1) x, y, z \) \([u,v,w]\) | \((2) x, y, z+1/2 \) \([u,v,w]\) | \((3) x+1/2, y, z \) \([u,v,w]\) | \((4) x+1/2, y+1/2, z \) \([u,v,w]\) |

Symmetry of Special Projections

Along \([0,0,1]\) \(p_{2b}-2m'g' \)
\(a^* = a \) \(b^* = b \)
Origin at 0,0,z

Along \([1,0,0]\) \(p_{2a}.1m1 \)
\(a^* = b \) \(b^* = c/2 \)
Origin at x,1/2,0

Along \([0,1,0]\) \(p1g11' \)
\(a^* = -a/2 \) \(b^* = c \)
Origin at 0,y,0
Origin on n12

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/2

Symmetry Operations

(1) 1
 (1 | 0,0,0)
(2) 2 0,0,z
 (2z | 0,0,0)
(3) c (0,0,1/2) x,1/4,z
 (m,0,1/2,1/2)
(4) n (0,1/2,1/2) 0,y,z
 (m,0,1/2,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 b .2</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 a .2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg

Origin at 0,0,z

a* = -b b* = a
Origin on n121'

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For 1 + set

1. 1
2. $2 \quad 0,0,z$
3. $c \quad (0,0,1/2) \quad x,1/4,z$
4. $n \quad (0,1/2,1/2) \quad 0,y,z$

For 1' + set

1'. $1'$
2'. $2' \quad 0,0,z$
3'. $c' \quad (0,0,1/2) \quad x,1/4,z$
4'. $n' \quad (0,1/2,1/2) \quad 0,y,z$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
<td>1' +</td>
</tr>
<tr>
<td>4 c 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) (\bar{x},\bar{y},z) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) (x,\bar{y}+1/2,z+1/2) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) (\bar{x},y+1/2,z+1/2) [0,0,0]</td>
</tr>
<tr>
<td>2 b .21'</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a .21'</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2mg1'</th>
<th>Along [1,0,0]</th>
<th>c1m11'</th>
<th>Along [0,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = -b)</td>
<td>(b^* = a)</td>
<td>(a^* = b)</td>
<td>(b^* = c)</td>
<td>(a^* = -a)</td>
<td>(b^* = c/2)</td>
</tr>
</tbody>
</table>
Origin on n'12'

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2$

Symmetry Operations

1. 1
 \[(1) (0,0,0) \]
2. $2'$
 \[(2) 0,0,z \quad (2_z) 0,0,0' \]
3. c
 \[(3) (0,0,1/2) \quad x,1/4,z \quad (m_y) 0,1/2,1/2 \]
4. n'
 \[(4) (n') (0,1/2,1/2) \quad 0,y,z \quad (m_x) 0,1/2,1/2' \]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>c 1</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>2</td>
<td>b 2'</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>2</td>
<td>a 2'</td>
</tr>
<tr>
<td></td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2'mg'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -b</td>
<td>b* = a</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>c1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>p_{2v,1m1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -a</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on n12'

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2$

Symmetry Operations

(1) 1
(2) 2' 0,0,z
(3) c' (0,0,1/2) x,1/4,z
(4) n (0,1/2,1/2) 0,y,z

(1*) 0,0,0
(2*) 0,0,0)
(3*) (0,0,1/2)*
(4*) (0,1/2,1/2)*
Generators selected: \(t(1,0,0); t(0,1,0); t(0,0,1); (2); (3) \).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) (x,y,z [u,v,w])</td>
</tr>
<tr>
<td>2 b ..2'</td>
<td>1/2,0,(z [u,v,0])</td>
</tr>
<tr>
<td>2 a ..2'</td>
<td>0,0,(z [u,v,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2'm'g</th>
<th>Along [1,0,0]</th>
<th>c(_p),1m1</th>
<th>Along [0,1,0]</th>
<th>p1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{a} = -\mathbf{b} \quad \mathbf{b} = \mathbf{a})</td>
<td>(\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c})</td>
<td>(\mathbf{a}^* = -\mathbf{a} \quad \mathbf{b}^* = \mathbf{c}/2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,(z)</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin on n’12

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2 \)

Symmetry Operations

\[
\begin{align*}
(1) & \quad \begin{cases} 1 \quad (1,0,0) \\ z \quad (0,0,0) \end{cases} \\
(2) & \quad 0,0,z \\
(3) & \quad c’ (0,0,1/2) \\
(4) & \quad n’ (0,1/2,1/2) \\
\end{align*}
\]
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3). \)

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) (x,y,z [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(2) (x,y,z [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(3) (x,y+1/2,z+1/2 [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(4) (x,y+1/2,z+1/2 [u,v,w])</td>
</tr>
<tr>
<td>2 b ..2</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a ..2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2m'g'
 - \(a^* = -b \quad b^* = a \)
 - Origin at 0,0,z

- Along [1,0,0] c1m'1
 - \(a^* = b \quad b^* = c \)
 - Origin at x,0,0

- Along [0,1,0] p1m1
 - \(a^* = -a \quad b^* = c/2 \)
 - Origin at 0,y,0
Orthorhombic

Asymmetric unit

\[0 < x < 1/2; \quad 0 < y < 1; \quad 0 < z < 1/2\]

Symmetry Operations

For \((0,0,0) + \) set

(1) \(1\) \hspace{1cm} (2) \(2\) \hspace{1cm} (3) \(c\) \hspace{1cm} (4) \(n\)

\[
\begin{align*}
(1) & \ (0,0,0) \\
(2) & \ (0,0,z) \\
(3) & \ (0,0,1/2) \\
(4) & \ (0,1/2,1/2)
\end{align*}
\]

(1*) \(0,0,0\) \hspace{1cm} (2*) \(0,0,0\) \hspace{1cm} (m*) \(0,1/2,1/2\) \hspace{1cm} (m*) \(0,1/2,1/2\)

For \((1,0,0) + \) set

(1) \(t'\) \hspace{1cm} (2) \(2'\) \hspace{1cm} (3) \(n'\) \hspace{1cm} (4) \(n'\)

\[
\begin{align*}
(1) & \ (1,0,0) \\
(2) & \ (1/2,0,z) \\
(3) & \ (1,0,1/2) \\
(4) & \ (0,1/2,1/2)
\end{align*}
\]

(1*) \(1,0,0\) \hspace{1cm} (2*) \(1,0,0\) \hspace{1cm} (m*) \(1,1/2,1/2\) \hspace{1cm} (m*) \(1,1/2,1/2\)

For \((1,0,0)' + \) set

(1) \(t'\) \hspace{1cm} (2) \(2'\) \hspace{1cm} (3) \(n'\) \hspace{1cm} (4) \(n'\)

\[
\begin{align*}
(1) & \ (1,0,0)' \\
(2) & \ (1/2,0,z) \\
(3) & \ (1,0,1/2) \\
(4) & \ (0,1/2,1/2)
\end{align*}
\]

(1*) \(1,0,0\)' \hspace{1cm} (2*) \(1,0,0\)' \hspace{1cm} (m*) \(1,1/2,1/2\) \hspace{1cm} (m*) \(1,1/2,1/2\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 b .2'</td>
<td>1/2,0,z [u,v,0]</td>
</tr>
<tr>
<td>4 a .2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p21-2mg
a* = -b b* = a
Origin at 0,0,z

Along [1,0,0] c1m11'
a* = b b* = c
Origin at x,0,0

Along [0,1,0] p_c1m1
a* = -a b* = c/2
Origin at 1/2,y,0
Origin
on n12'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. (1) 1
 (1 0,0,0)

2. (2') 0,0,z
 (2'z 0,0,0)'

3. (3) c' (0,0,1/2)
 x,1/4,z
 (m_y 0,1/2,1/2)'

4. (4) n (0,1/2,1/2)
 y,z
 (m_x 0,1/2,1/2)

For (1,0,0)' + set

1. (1) t' (1,0,0)
 (1 1,0,0)'

2. (2) 1/2,0,z
 (2z 1,0,0)

3. (3) n (1,0,1/2)
 x,1/4,z
 (m_y 1,1/2,1/2)'

4. (4) n' (0,1/2,1/2)
 1/2,y,z
 (m_x 1,1/2,1/2)'
Generators selected
\[(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).\]

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) (\bar{x}, \bar{y}, z [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(3) (x, y+1/2, z+1/2 [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(4) (\bar{x}, y+1/2, z+1/2 [u,v,w])</td>
</tr>
<tr>
<td>4 b ..2</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 a ..2'</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>(p_{2a}.2m'g')</th>
<th>Along [1,0,0]</th>
<th>(c1m11')</th>
<th>Along [0,1,0]</th>
<th>(p_{2a}.1m1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = -b)</td>
<td>(b^* = a)</td>
<td>(a^* = b)</td>
<td>(b^* = c)</td>
<td>(a^* = -a)</td>
<td>(b^* = c/2)</td>
</tr>
<tr>
<td>Origin at 1/2,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Pmn$_2_1$

31.1.212

mm2

Pmn$_2_1$

Orthorhombic

Origin on mn1

Asymmetric unit

$0 \leq x \leq 1/2;$ $0 \leq y \leq 1/2;$ $0 \leq z \leq 1$

Symmetry Operations

(1) 1

(1 | 0,0,0)

(2) 2 (0,0,1/2) 1/4,0,z

(2z | 1/2,0,1/2)

(3) n (1/2,0,1/2) x,0,z

(m | 1/2,0,1/2)

(4) m 0,y,z

(m,0,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 a m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2, y,z+1/2 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2mg</th>
<th>Along [1,0,0]</th>
<th>p1g11'</th>
<th>Along [0,1,0]</th>
<th>c_{p1}1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a) (b^* = b)</td>
<td>(a^* = b) (b^* = c)</td>
<td>(a^* = -a) (b^* = c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 1/4,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin on mn11'

Asymmetric unit 0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1

Symmetry Operations

For 1 + set

\begin{align*}
(1) & \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\
(2) & \begin{pmatrix} 2 \end{pmatrix} (0,0,1/2) 1/4,0,z \\
& \text{(2) } (2z | 1/2,0,1/2) \\
\end{align*}

\begin{align*}
(3) & \begin{pmatrix} n \end{pmatrix} (1/2,0,1/2) x,0,z \\
& \text{(3) } (m_{y} | 1/2,0,1/2) \\
\end{align*}

\begin{align*}
(4) & \begin{pmatrix} m \end{pmatrix} 0,y,z \\
& \text{(4) } (m_{x} | 0,0,0) \\
\end{align*}

For 1’ + set

\begin{align*}
(1) & \begin{pmatrix} 1 \end{pmatrix} \\
(1) & \begin{pmatrix} 1' \end{pmatrix} \\
\end{align*}

\begin{align*}
\begin{pmatrix} 2' \end{pmatrix} (0,0,1/2) 1/4,0,z \\
& \text{(2) } (2z | 1/2,0,1/2) \\
\end{align*}

\begin{align*}
\begin{pmatrix} n' \end{pmatrix} (1/2,0,1/2) x,0,z \\
& \text{(3) } (m_{y} | 1/2,0,1/2) \\
\end{align*}

\begin{align*}
\begin{pmatrix} m' \end{pmatrix} 0,y,z \\
& \text{(4) } (m_{x} | 0,0,0) \\
\end{align*}
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1'. \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 + 1' +)</td>
<td></td>
</tr>
<tr>
<td>(4 \quad b \quad 11')</td>
<td>((1) \ x,y,z \ [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>((2) \ x+1/2, y,z+1/2 \ [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>((3) x+1/2, y,z+1/2 \ [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>((4) x,y,z \ [0,0,0])</td>
</tr>
<tr>
<td>(2 \quad a \quad m..1')</td>
<td>(0,y,z \ [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(1/2, y,z+1/2 \ [0,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) \(\text{p2mg}1' \)
 \(\mathbf{a}^* = a \quad \mathbf{b}^* = b \)
- Along \([1,0,0]\) \(\text{p1g}11' \)
 \(\mathbf{a}^* = b \quad \mathbf{b}^* = c \)
- Along \([0,1,0]\) \(\text{c1m}11' \)
 \(\mathbf{a}^* = -a \quad \mathbf{b}^* = c \)
Origin on \(m'n1 \)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \]

Symmetry Operations

\(Pm'n2_1' \)

\(m'm2' \)

Orthorhombic

\[31.3.214 \]

\[Pm'n2_1' \]

\[31.3.214 \]

\[Pm'n2_1' \]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2, y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>2 a m'</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2, y,z+1/2 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'mg' Along [1,0,0] p1g1 Along [0,1,0] c_p-1m`1
a* = a b* = b a* = b b* = c a* = -a b* = c
Origin at 1/4,0,z Origin at x,0,0 Origin at 0,y,0
Pmn'2_1'

mm'2'

Orthorhombic

31.4.215
Pmn'2_1'

Origin on mn'1

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2' (0,0,1/2) 1/4,0,z
(2_z | 1/2,0,1/2)

(3) n' (1/2,0,1/2) x,0,z
(m_y | 1/2,0,1/2)

(4) m 0,y,z
(m_x | 0,0,0)
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+1/2, y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>2 a m..</td>
<td>0,y,z [u,0,0]</td>
<td>1/2, y,z+1/2 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'mg' Along [1,0,0] p1g11' Along [0,1,0] c1m1

\(a^* = a \quad b^* = b \)

Origin at 1/4,0,z

\(a^* = b \quad b^* = c \)

Origin at x,0,0

\(a^* = -a \quad b^* = c \)

Origin at 0,y,0
Origin on m'\n'1

Asymmetric unit $0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq 1$

Symmetry Operations

(1) 1

(2) $2 (0,0,1/2) \quad 1/4,0,z$

(3) $n' (1/2,0,1/2) \quad x,0,z$

(4) $m' \quad 0,y,z$

$\left(m,1/2,0,1/2\right)'$

$\left(m,0,0,0\right)'$
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 a m'3</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,z+1/2 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2m'g'
Along [1,0,0] p1g'1
Along [0,1,0] c1m1

<table>
<thead>
<tr>
<th>a' = a</th>
<th>b' = b</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = b</td>
<td>b' = c</td>
</tr>
<tr>
<td>a' = -a</td>
<td>b' = c</td>
</tr>
</tbody>
</table>

Origin at 1/4,0,z
Origin at x,0,0
Origin at 0,y,0
Orthorhombic

31.6.217

Symmetry Operations

For (0,0,0) + set

(1) 1
(1) 1
(1) t'
(1) t'

(2) 2 (0,0,1/2) 1/4,0,z
(2') (0,0,1/2) 1/4,1/2,z
(2) 2' (0,0,1/2) 1/4,1/2,z
(2' (0,0,1/2) 1/2,1/2,z

(3) n (1/2,0,1/2) x,0,z
(3) n' (1/2,0,1/2) x,1/2,z
(3) n' (1/2,0,1/2) x,1/2,z
(3) n' (1/2,0,1/2) x,1/2,z

(4) m 0,y,z
(4) m 0,y,z
(4) m 0,y,z
(4) m 0,y,z

For (0,1,0)' + set

(1) 0,1,0)
(1) 0,1,0)
(1) 0,1,0)
(1) 0,1,0)

(2) 2 (0,0,1/2) 1/4,0,z
(2') (0,0,1/2) 1/4,1/2,z
(2) 2' (0,0,1/2) 1/4,1/2,z
(2' (0,0,1/2) 1/2,1/2,z

(3) n (1/2,0,1/2) x,0,z
(3) n' (1/2,0,1/2) x,1/2,z
(3) n' (1/2,0,1/2) x,1/2,z
(3) n' (1/2,0,1/2) x,1/2,z

(4) m 0,y,z
(4) m 0,y,z
(4) m 0,y,z
(4) m 0,y,z
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>(0,0,0) + (0,1,0) +</td>
</tr>
<tr>
<td>4 a m.. 0,y,z [u,0,0]</td>
<td>1/2, y,z+1/2 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p$_{21}$.mg
- Along [1,0,0] p1g11'
- Along [0,1,0] c1m11'

- a* = a b* = b
- a* = b b* = c
- a* = -a b* = c
Orthorhombic

P₂ｂｍ'n2₁¹

mm2¹

31.7.218

P₂ｂｍ'n2₁¹

Origin on m'n1

Asymmetric unit
0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 0,0,0)

(2) 2' (0,0,1/2) 1/4,0,z
(2_z 1/2,0,1/2)'

(3) n (1/2,0,1/2) x,0,z
(m_y 1/2,0,1/2)

(4) m' 0,y,z
(m_x 0,0,0)'

For (0,1,0)' + set

(1) t' (0,1,0)
(1 0,1,0)'

(2) 2 (0,0,1/2) 1/4,1/2,z
(2_z 1/2,1,1/2)

(3) n' (1/2,0,1/2) x,1/2,z
(m_y 1/2,1,1/2)'

(4) b (0,1,0) 0,y,z
(m_x 0,1,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 a m'</td>
<td>0,y,z [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_{2a}.2m'g'
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 1/4,1/2,z

Along [1,0,0] p_{2a}'1g1
\(\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \)
Origin at x,0,0

Along [0,1,0] c_{1m11}'
\(\mathbf{a}^* = -\mathbf{a} \quad \mathbf{b}^* = \mathbf{c} \)
Origin at 0,y,0
Pba2 mm2 Orthorhombic

32.1.219 Pba2

Origin on 112

Asymmetric unit \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1\)

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(1 \| 0,0,0) & \\
(2) & \quad 0,0,z \\
(2 \| 0,0,0) & \\
(3) & \quad a (1/2,0,0) \quad x,1/4,z \\
(m \| 1/2,0,0) & \\
(4) & \quad b (0,1/2,0) \quad 1/4,y,z \\
(m \| 1/2,1/2,0) &
\end{align*}
\]
Generators selected
(1); \(t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplcity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) (x,y,z [u,v,w])</td>
</tr>
<tr>
<td>2 b ..2</td>
<td>0,1/2,(z [0,0,w])</td>
</tr>
<tr>
<td>2 a ..2</td>
<td>0,0,(z [0,0,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) \(p2gg\)
 \(a^* = a\) \(b^* = b\)
 Origin at 0,0,\(z\)

- Along \([1,0,0]\) \(p_{2a^*1m1}\)
 \(a^* = b/2\) \(b^* = c\)
 Origin at x,1/4,0

- Along \([0,1,0]\) \(p_{2a^*1m1}\)
 \(a^* = c/2\) \(b^* = c\)
 Origin at 1/4,y,0
Origin on 1121'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For 1 + set

(1) 1
 (1|0,0,0)

(2) 2 0,0,z
 (2|0,0,0)

(3) a (1/2,0,0) x,1/4,z
 (m|1/2,1/2,0)

(4) b (0,1/2,0) 1/4,y,z
 (m|1/2,1/2,0)

For 1' + set

(1) 1'
 (1|0,0,0)'

(2) 2' 0,0,z
 (2|0,0,0)'

(3) a' (1/2,0,0) x,1/4,z
 (m|1/2,1/2,0)'

(4) b' (0,1/2,0) 1/4,y,z
 (m|1/2,1/2,0)'

Pba21' mm21' Orthorhombic
32.2.220 Pba21'
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1'</td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>4</th>
<th>1'</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) x,y,z [0,0,0]</td>
<td>(3) x+1/2, y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1/2, 1/2, z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>1/2, 1/2, z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2gg1' Along [1,0,0] p1m11' Along [0,1,0] p1m11'
\(a^* = a\) \(b^* = b\) \(a^* = b/2\) \(b^* = c\) \(a^* = -a/2\) \(b^* = c\)

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Pb'a2' m'm2' Orthorhombic
32.3.221 Pb'a2'

Origin on 112'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1
 (1|0,0,0)

(2) 2' 0,0,z
 (2|0,0,0)'

(3) a (1/2,0,0) x,1/4,z
 (m,|1/2,1/2,0)

(4) b' (0,1/2,0) 1/4,y,z
 (m,|1/2,1/2,0)'

32.3.221 - 1 - 418
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (c)</td>
<td>((1) \ x, y, z \ [u, v, w])</td>
</tr>
<tr>
<td>2 (b)</td>
<td>(0,1/2, z \ [u, v, 0])</td>
</tr>
<tr>
<td>2 (a)</td>
<td>(0,0, z \ [u, v, 0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) \(p2'gg' \)
- \(a^* = -b \quad b^* = a \)
- Origin at \(0,0,z\)

- Along \([1,0,0]\) \(p1m1 \)
- \(a^* = b/2 \quad b^* = c \)
- Origin at \(x,0,0\)

- Along \([0,1,0]\) \(p_{2a',1m1} \)
- \(a^* = -a/2 \quad b^* = c \)
- Origin at \(0,y,0\)
Origin on 112

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq 1 \]

Symmetry Operations

(1) 1
(2) 2 0,0,z
(3) a' (1/2,0,0) x,1/4,z
(4) b' (0,1/2,0) 1/4,y,z

\((m_y|1/2,1/2,0) \quad (m_x|1/2,1/2,0) \)
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2, y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2, y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>2 b ..2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 a ..2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2g'g'
Along [1,0,0] p_{2a'1m1}
Along [0,1,0] p_{2a'1m1}

\(a^* = a \quad b^* = b \)
\(a^* = b/2 \quad b^* = c \)
\(a^* = -a/2 \quad b^* = c \)

Origin at 0,0,z
Origin at x,0,0
Origin at 1/4,y,0
Asymmetric unit: $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0) +$ set

1. 1
 $(1|0,0,0)$

2. 2 $0,0,z$
 $(2|0,0,0)$

3. a $(1/2,0,0)$ $x,1/4,z$
 $(m_y|1/2,1/2,0)$

4. b $(0,1/2,0)$ $1/4,y,z$
 $(m_x|1/2,1/2,0)$

For $(0,0,1)' +$ set

1. t' $(0,0,1)$
 $(1|0,0,1)'$

2. $2'$ $(0,0,1)$ $0,0,z$
 $(2|0,0,1)'$

3. n' $(1/2,0,1)$ $x,1/4,z$
 $(m_y|1/2,1/2,1)'$

4. n' $(0,1/2,1)$ $1/4,y,z$
 $(m_x|1/2,1/2,1)'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1)'; (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[
\begin{array}{cccccc}
\text{Multiplicity} & \text{Wyckoff letter} & \text{Site Symmetry} \\
8 & c & 1 & (1) x, y, z [u, v, w] & (2) \bar{x}, y, z [\bar{u}, v, w] & (3) x+1/2, y+1/2, z [u, v, w] & (4) \bar{x}+1/2, \bar{y}+1/2, z [u, v, w] \\
4 & b & .2 & 0, 1/2, z [0, 0, w] & 1/2, z [0, 0, w] \\
4 & a & .2 & 0, 0, z [0, 0, w] & 1/2, 1/2, z [0, 0, w] \\
\end{array}
\]

Symmetry of Special Projections

Along [0,0,1] \(p2gg' \) Along [1,0,0] \(p_{c1} \) Along [0,1,0] \(p_{c1} \)
\(a^* = a \quad b^* = b \) \(a^* = b/2 \quad b^* = c \) \(a^* = -a/2 \quad b^* = c \)
Origin at 0,0,z Origin at x,1/4,0 Origin at 1/4,y,0
P$_{2c}$ b'a2' mm21' Orthorhombic 32.6.224 P$_{2c}$ b'a2'

Origin on 112'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2' 0,0,z
(3) a (1/2,0,0) x,1/4,z
(4) b' (0,1/2,0) 1/4,y,z

For (0,0,1)' + set

(1) t' (0,0,1)
(2) 2 (0,0,1) 0,0,z
(3) n' (1/2,0,1) x,1/4,z
(4) n (0,1/2,1) 1/4,y,z
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) x, y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2, y+1/2, z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2, y+1/2, z [u,v,w]</td>
<td></td>
</tr>
</tbody>
</table>

| 4 b ..2' | 0,1/2, z [u,v,0] |
| | 1/2,0, z [u,v,0] |

| 4 a ..2' | 0,0, z [u,v,0] |
| | 1/2,1/2, z [u,v,0] |

Symmetry of Special Projections

Along [0,0,1] p2gg1' Along [1,0,0] pab1m1 Along [0,1,0] pc1m1

<table>
<thead>
<tr>
<th>a* = a</th>
<th>b* = b</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>a* = -a/2</td>
<td>b* = c</td>
</tr>
</tbody>
</table>

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
P_2c b'a'2
32.7.225
Orthorhombic

mm21'
P_2c b'a'2

Origin on 112

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2 0,0,z
(3) a' (1/2,0,0) x,1/4,z
(4) b' (0,1/2,0) 1/4,y,z

For (0,0,1)' + set

(1) t' (0,0,1)
(2) 2' (0,0,1) 0,0,z
(3) n (1/2,0,1) x,1/4,z
(4) n (0,1/2,1) 1/4,y,z

(1') (0,0,0)
(2') (0,0,0)
(3') (1/2,1/2,0)
(4') (1/2,1/2,0)
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td></td>
<td>(0,0,1)’ +</td>
<td></td>
</tr>
<tr>
<td>8 c 1</td>
<td>x,y,z [u,v,w]</td>
<td>x+1/2, y+1/2,z [u,v,w]</td>
<td>p2gg1’</td>
</tr>
<tr>
<td>4 b .2</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
<td>p 2b1m1</td>
</tr>
<tr>
<td>4 a .2</td>
<td>0,0,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>p 2b1m1</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2gg1’</th>
<th>Along [1,0,0]</th>
<th>p 2b1m1</th>
<th>Along [0,1,0]</th>
<th>p 2b1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b)</td>
<td>(a^* = b/2)</td>
<td>(b^* = c)</td>
<td>(a^* = -a/2)</td>
<td>(b^* = c)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,0,0</td>
<td>Origin at x,0,0</td>
<td>Origin at x,0,0</td>
<td>Origin at x,0,0</td>
</tr>
</tbody>
</table>
Origin on 112₁

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\)

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2 (0,0,1/2) 0,0,z

(2₂ | 0,0,1/2)

(3) a (1/2,0,0) x,1/4,z

(4) n (0,1/2,1/2) 1/4,y,z

(m₁ | 1/2,1/2,1/2)
Continued

Generators selected (1); \(t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).\)

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 a 1</td>
<td>(1) x,y,z [u,v,w] (2) (\bar{x},\bar{y},z+1/2 [\bar{u},\bar{v},w]) (3) (x+1/2, y+1/2, z [u,v,w]) (4) (\bar{x}+1/2, y+1/2, z+1/2 [u,v,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2gg Along [1,0,0] c\(_1\)m1 Along [0,1,0] p\(_2\)g1
\(a^* = a\) \(b^* = b\) \(a^* = b\) \(b^* = c\) \(a^* = -a/2\) \(b^* = c\)
Origin at 0,0,z Origin at x,1/4,0 Origin at 1/4,y,0
Origin on 112,1′

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

For $1 +$ set

(1) 1
(1′ | 0,0,0)

(2) 2 (0,0,1/2) 0,0,z
(2′x | 0,0,1/2)

(3) a (1/2,0,0) x,1/4,z
(my | 1/2,1/2,0)

(4) n (0,1/2,1/2) 1/4,y,z
(mz | 1/2,1/2,1/2)

For $1′ +$ set

(1) 1′
(1′ | 0,0,0)′

(2) 2′ (0,0,1/2) 0,0,z
(2′x | 0,0,1/2)′

(3) a′ (1/2,0,0) x,1/4,z
(my′ | 1/2,1/2,0)′

(4) n′ (0,1/2,1/2) 1/4,y,z
(mz′ | 1/2,1/2,1/2)′

Pna2,1′

33.2.227

mm21′

Pna2,1′

Orthorhombic
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1'. \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>1' +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 a 11'</td>
<td>(1) x,y,z [0,0,0] (2) (\bar{x}, \bar{y}, z+1/2) [0,0,0] (3) (x+1/2, \bar{y}+1/2, z) [0,0,0] (4) (\bar{x}+1/2, y+1/2, z+1/2) [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [0,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a) (b^* = b)</td>
<td>p2gg1'</td>
<td>c1m11'</td>
<td>p1g11'</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,1/4,0</td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 112,$\bar{1}$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

(1) 1

(2') $(0,0,1/2) \quad 0,0,z$

(2) $2' \quad (0,0,1/2)'$

(3) $a \quad (1/2,0,0) \quad x,1/4,z$

(4) $n' \quad (0,1/2,1/2) \quad 1/4,y,z$

(3) $a \quad (1/2,0,0) \quad x,1/4,z$

(4) $m \quad (1/2,1/2,0)$

(4') $m' \quad (1/2,1/2,1/2)'$
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 a 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2'gg'
 - a* = -b
 - b* = a
- Along [1,0,0] c1m1
 - a* = b
 - b* = c
- Along [0,1,0] p2a.1g1
 - a* = -a/2
 - b* = c

Origin at 0,0,z
Origin at x,1/4,0
Origin at 0,y,0
Origin on 112₁⁺

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \]

Symmetry Operations

1. \(1 \)
 - \((1, 0, 0, 0)\)

2. \(2' \)
 - \((0, 0, 1/2, 0, 0, z)\)
 - \((0, 0, 1/2, 0, 0, z)\)'

3. \(a' \)
 - \((1/2, 0, 0, x, 1/4, z)\)
 - \((1/2, 0, 0, x, 1/4, z)\)'

4. \(n \)
 - \((0, 1/2, 1/2, 1/4, y, z)\)
 - \((0, 1/2, 1/2, 1/4, y, z)\)'

\[33.4.229 \]

Pna'2₁⁺ mm'2⁺ Orthorhombic
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

4 a 1 (1) x,y,z [u,v,w] (2) x,y,z+1/2 [u,v,w] (3) x+1/2,y+1/2,z [u,v,w] (4) x+1/2,y+1/2,z+1/2 [u,v,w]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Special Projection</th>
<th>a*</th>
<th>b*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p2'gg'</td>
<td>a = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>c,1m1</td>
<td>a* = b</td>
<td>b* = c</td>
</tr>
<tr>
<td>Along [0,1,0]</td>
<td>p1g1</td>
<td>a* = -a/2</td>
<td>b* = c</td>
</tr>
</tbody>
</table>

Origin at 0,0,z Origin at x,1/4,0 Origin at 0,y,0
Origin on 112₁

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1
(2) 2 (0,0,1/2) 0,0,z
(3) a’ (1/2,0,0) x,1/4,z
(4) n’ (0,1/2,1/2) 1/4,y,z

(1₁ 0,0,0)
(2₂ 0,0,1/2)
(mₙ 1/2,1/2,0)'
(mₘ 1/2,1/2,1/2)'
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>a 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x, y, z+1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+1/2, y+1/2, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x+1/2, y+1/2, z+1/2 [u, v, w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2g'g'
Along [1,0,0] c1m'1
Along [0,1,0] p1g'1

a* = a b* = b
a* = b b* = c
a* = -a/2 b* = c

Origin at 0,0,z
Origin at x,1/4,0
Origin at 0,y,0
Origin on 112

Asymmetric unit: $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1$

Symmetry Operations:

1. 1
 - $(1 \ 0,0,0)$
2. 2
 - $(0,0,z)$
 - $(z,0,0)$
3. n
 - $(1/2,0,1/2) x,1/4,z$
 - $(m_y,1/2,1/2,1/2)$
4. n
 - $(0,1/2,1/2) 1/4,y,z$
 - $(m_z,1/2,1/2,1/2)$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x+1/2,y+1/2,z+1/2 [u,v,w] (4) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>2 b ..2</td>
<td>0,1/2,z [0,0,w] 1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a ..2</td>
<td>0,0,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2gg</th>
<th>Along [1,0,0]</th>
<th>c_p1m1</th>
<th>Along [0,1,0]</th>
<th>c_p1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = a</td>
<td>b^* = b</td>
<td>a^* = b</td>
<td>b^* = c</td>
<td>a^* = -a</td>
<td>b^* = c</td>
</tr>
</tbody>
</table>

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin on 1121'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \(1\) + set

1. \((1)\) 0,0,0
2. \((2)\) 0,0,z
3. \((3)\) (1/2,0,1/2) x,1/4,z
4. \((4)\) (0,1/2,1/2) 1/4,y,z

For \(1'\) + set

1. \((1')\) 0,0,0
2. \((2')\) 0,0,z
3. \((3')\) (1/2,0,1/2) x,1/4,z
4. \((4')\) (0,1/2,1/2) 1/4,y,z
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>1' +</td>
</tr>
<tr>
<td>4 c 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>2 b .21'</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 a .21'</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2gg1'</th>
<th>Along [1,0,0]</th>
<th>c1m11'</th>
<th>Along [0,1,0]</th>
<th>c1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = b b* = c</td>
<td>a* = -a b* = c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin on 112'

Asymmetric unit $0 \leq x < 1/2; \quad 0 \leq y < 1/2; \quad 0 \leq z < 1$

Symmetry Operations

(1) 1
(1) 0,0,0

(2) $2'$ 0,0,z
(2) $2'_{x}$ 0,0,0'

(3) $n (1/2,0,1/2)$ $x,1/4,z$
(3) $m_{y} (1/2,1/2,1/2)$

(4) $n' (0,1/2,1/2)$ 1/4,y,z
(4) $m_{x} (1/2,1/2,1/2)'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>2</td>
<td>0,0,z [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2'gg'</th>
<th>Along [1,0,0]</th>
<th>c1m1</th>
<th>Along [0,1,0]</th>
<th>c_p,1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -b b* = a</td>
<td>a* = b b* = c</td>
<td>a* = -a b* = c</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0

Origin on 112

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \]

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2 0,0,z
(2 | 0,0,0)

(3) \(n'\ (1/2,0,1/2)\) \(x,1/4,z\)
(m_\perp | 1/2,1/2,1/2)'

(4) \(n'\ (0,1/2,1/2)\) \(1/4,y,z\)
(m_\perp | 1/2,1/2,1/2)'
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x+1/2,y+1/2,z+1/2 [u,v,w] (4) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>2 b .2</td>
<td>0,1/2,z [0,0,w] 1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a .2</td>
<td>0,0,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2g'g' Along [1,0,0] c,p,1m'1 Along [0,1,0] c1m'1
a* = a b* = b a* = b b* = c a* = -a b* = c
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin on 112

Asymmetric unit:

- $0 \leq x \leq 1/2$;
- $0 \leq y \leq 1/2$;
- $0 \leq z \leq 1$

Symmetry Operations:

For $(0,0,0)$ + set:

1. t $(0,0,0)$
2. $2^1 (0,0,0)$
3. $d (1/2,0,1/2) x,1/4,z$
4. $d (0,1/2,1/2) 1/4,y,z$

For $(1,0,0)' + set$:

1. $t' (1,0,0)$
2. $2' (1/2,0,1/2) x,1/4,z$
3. $d' (3/2,0,1/2) x,1/4,z$
4. $d' (0,1/2,1/2) 3/4,y,z$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(0,0,0) + (1,0,0) +</td>
</tr>
<tr>
<td>4 b ..2</td>
<td>0,1/2,z [0,0,w] 1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 a ..2</td>
<td>0,0,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2gg1'
 \(a^* = a \quad b^* = b \)
- Along [1,0,0] c1m11'
 \(a^* = b \quad b^* = c \)
- Along [0,1,0] c1m11'
 \(a^* = -a \quad b^* = c \)
- Origin at 0,0,z
 Origin at x,0,0
 Origin at 0,y,0
Asymmetric unit: \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0) +\) set

1. \(t\) \((0,0,0)\)
2. \(2 \quad 0,0,z\)
3. \(m \quad x,0,z\)
4. \(m \quad 0,y,z\)

For \((1/2,1/2,0) +\) set

1. \(t\) \((1/2,1/2,0)\)
2. \(2 \quad 1/4,1/4,z\)
3. \(a \quad (1/2,0,0) \quad x,1/4,z\)
4. \(b \quad (0,1/2,0) \quad 1/4,y,z\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,0) +</td>
<td></td>
</tr>
<tr>
<td>8 f 1 (1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 e m.. 0,y,z [u,0,0]</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 d .m. x,0,z [0,v,0]</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 c ..2 1/4,1/4,z [0,0,w]</td>
<td>1/4,3/4,z [0,0,w]</td>
</tr>
<tr>
<td>2 b mm2 0,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a mm2 0,0,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along 0,0,1</th>
<th>c2mm</th>
<th>Along [1,0,0]</th>
<th>p1m11'</th>
<th>Along [0,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b/2</td>
<td>b* = c</td>
<td>a* = -a/2</td>
<td>b* = c</td>
</tr>
</tbody>
</table>

Origin at 0,0,z

Origin at x,0,0

Origin at 0,y,0
Asymmetric unit \(0 \leq x \leq \frac{1}{4}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad (0,0,0) \\
(2) & \quad 2 \quad 0,0,z \\
(2_z) & \quad 0,0,0 \\
(3) & \quad m \quad x,0,z \\
(3_m) & \quad (m_y,0,0) \\
(4) & \quad m \quad 0,y,z \\
(4_m) & \quad (m_y,0,0) \\
\end{align*}
\]

For \((1/2,1/2,0)\) + set

\[
\begin{align*}
(1) & \quad t \quad 1/2,1/2,0 \\
(1) & \quad (1/2,1/2,0) \\
(2) & \quad 2 \quad 1/4,1/4,z \\
(2_z) & \quad 1/2,1/2,0 \\
(3) & \quad a \quad (1/2,0,0) \quad x,1/4,z \\
(3_m) & \quad (m_y,1/2,1/2,0) \\
(4) & \quad b \quad (0,1/2,0) \quad 1/4,y,z \\
(4_m) & \quad (m_y,1/2,1/2,0) \\
\end{align*}
\]

For \((0,0,0)\)' + set

\[
\begin{align*}
(1) & \quad 1' \\
(1) & \quad (0,0,0)' \\
(2) & \quad 2' \quad 0,0,z \\
(2_z) & \quad 0,0,0)' \\
(3) & \quad m' \quad x,0,z \\
(3_m) & \quad (m_y,0,0)' \\
(4) & \quad m' \quad 0,y,z \\
(4_m) & \quad (m_y,0,0)' \\
\end{align*}
\]

For \((1/2,1/2,0)\)' + set

\[
\begin{align*}
(1) & \quad t' \quad 1/2,1/2,0 \\
(1) & \quad (1/2,1/2,0)' \\
(2) & \quad 2' \quad 1/4,1/4,z \\
(2_z) & \quad 1/2,1/2,0)' \\
(3) & \quad a' \quad (1/2,0,0) \quad x,1/4,z \\
(3_m) & \quad (m_y,1/2,1/2,0)' \\
(4) & \quad b' \quad (0,1/2,0) \quad 1/4,y,z \\
(4_m) & \quad (m_y,1/2,1/2,0)' \\
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

(0,0,0) + (1/2,1/2,0) + (0,0,0)' + (1/2,1/2,0)' + (0,0,0)'

8 f 11' (1) x,y,z [0,0,0] (2) x',y,z [0,0,0] (3) x',y,z [0,0,0] (4) x',y,z [0,0,0]

4 e m.,1' 0,y,z [0,0,0] 0,y,z [0,0,0]

4 d m.,1' x,0,z [0,0,0] x,0,z [0,0,0]

4 c ..21' 1/4,1/4,z [0,0,0] 1/4,3/4,z [0,0,0]

2 b mm1' 0,1/2,z [0,0,0] 0,1/2,z [0,0,0]

2 a mm1' 0,0,z [0,0,0]

Symmetry of Special Projections

Along [0,0,1] c2mm1' Along [1,0,0] p1m11' Along [0,1,0] p1m11'

\[a^* = a \quad b^* = b \] \[a^* = b/2 \quad b^* = c \] \[a^* = -a/2 \quad b^* = c \]

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Asymmetric unit

\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0) + \text{set}\):

- (1) 1
- (2) \(2'\) 0,0,z
- (3) \(m\) x,0,z
- (4) \(m'\) 0,y,z

For \((1/2,1/2,0) + \text{set}\):

- (1) \(t\) (1/2,1/2,0)
- (2) \(2'\) 1/4,1/4,z
- (3) \(a\) (1/2,0,0) x,1/4,z
- (4) \(b'\) (0,1/2,0) 1/4,y,z
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions
Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 e m'..</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 d .m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 c ..2'</td>
<td>1/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td>2 b m'm2'</td>
<td>0,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>2 a m'm2'</td>
<td>0,0,z [0,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] c2mm'
 - \(a^* = -b\) \(b^* = a\)
 - Origin at 0,0,z

- Along [1,0,0] p1m1
 - \(a^* = b/2\) \(b^* = c\)
 - Origin at x,0,0

- Along [0,1,0] p1m11'
 - \(a^* = -a/2\) \(b^* = c\)
 - Origin at 0,y,0
Asymmetric unit

\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0) + \) set

1. \((1|0,0,0)\)
2. \((2|0,0,z)\)
3. \((m'|x,0,z)\)
4. \((m'|0,y,z)\)

For \((1/2,1/2,0) + \) set

1. \((t|1/2,1/2,0)\)
2. \((2|1/4,1/4,z)\)
3. \((a'|1/2,0,0)\)
4. \((b'|0,1/2,0)\)

\((1|1/2,1/2,0)\)
\((2|1/2,1/2,0)\)
\((m|1/2,1/2,0)'\)
\((m_s|1/2,1/2,0)'\)
Generators selected \((1) \ t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3). \)

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

\[
\begin{array}{cccc}
\text{Positions} & \text{Coordinates} & \text{Multiplicity} & \text{Wyckoff letter} \\
& \text{Site Symmetry} & \text{(0,0,0)} & \text{(1/2,1/2,0)} \\
(0,0,0) + (1/2,1/2,0) + & \text{(2)} x,y,z [u,v,w] & 8 & f \\
& \text{(3)} x,y,z [u,v,w] & 4 & e \text{m'} \cdot \\
& \text{(4)} x,y,z [u,v,w] & 4 & d \text{.m'} \\
& \text{(5)} x,y,z [u,v,w] & 4 & c \text{.2} \\
& \text{(6)} x,y,z [u,v,w] & 2 & b \text{m'} m' \cdot \\
& \text{(7)} x,y,z [u,v,w] & 2 & a \text{m'} m' \cdot \\
\end{array}
\]

Symmetry of Special Projections

\[
\begin{array}{ccc}
\text{Along [0,0,1]} & \text{c2m'} & \text{Along [1,0,0]} & \text{p1m'} & \text{Along [0,1,0]} & \text{p1m'} \\
\text{a}^* = a & \text{b}^* = b & \text{a}^* = b/2 & \text{b}^* = c & \text{a}^* = -a/2 & \text{b}^* = c \\
\text{Origin at 0,0,z} & \text{Origin at x,0,0} & \text{Origin at 0,y,0} \\
\end{array}
\]

35.4.239 - 2 - 455
Origin on mm2

Asymmetric unit: $0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0)$ + set

(1) $t\quad (0,0,0)$
(2) $2\quad 0,0,z$
(3) $m\quad x,0,z$
(4) $m\quad 0,y,z$

For $(1/2,1/2,0)$ + set

(1) $t\quad (1/2,1/2,0)$
(2) $2\quad 1/4,1/4,z$
(3) $a\quad (1/2,0,0)\quad x,1/4,z$
(4) $b\quad (0,1/2,0)\quad 1/4,y,z$

For $(0,0,1)'$ + set

(1) $t'\quad (0,0,1)'$
(2) $2'\quad (0,0,1)\quad 0,0,z$
(3) $c'\quad (0,0,1)\quad x,0,z$
(4) $c'\quad (0,0,1)'\quad 0,y,z$

For $(1/2,1/2,1)'$ + set

(1) $t'\quad (1/2,1/2,1)'$
(2) $2'\quad (0,0,1)\quad 1/4,1/4,z$
(3) $n'\quad (1/2,0,1)\quad x,1/4,z$
(4) $n'\quad (0,1/2,1)\quad 1/4,y,z$
Generators selected
(1); t(1,0,0); t(0,0,1); t(0,0,1)'; t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 e m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 d .m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>8 c ..2</td>
<td>1/4,1/4,z [0,0,w]</td>
</tr>
<tr>
<td>4 b mm2</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 a mm2</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1]
 c2mm1'
 \(\mathbf{a}^* = \mathbf{a} \), \(\mathbf{b}^* = \mathbf{b} \)
 Origin at 0,0,z

- Along [1,0,0]
 p1m11'
 \(\mathbf{a}^* = \mathbf{b}/2 \), \(\mathbf{b}^* = \mathbf{c} \)
 Origin at x,0,0

- Along [0,1,0]
 p1m11'
 \(\mathbf{a}^* = -\mathbf{a}/2 \), \(\mathbf{b}^* = \mathbf{c} \)
 Origin at 0,y,0
Asymmetric unit: $0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0) + \text{ set}$

1. 1

 $$(1) \begin{cases} 1 & (0,0,0) \\ (1) & (0,0,0) \end{cases}$$

2. 2

 $$(2) \begin{cases} 2 & 0,0,z \\ (2_z) & 0,0,0 \end{cases}$$

3. m

 $$(3) \begin{cases} m & x,0,z \\ (m_y) & 0,0,0 \end{cases}$$

4. m

 $$(4) \begin{cases} m & 0,y,z \\ (m_z) & 0,0,0 \end{cases}$$

For $(1/2,1/2,0)' + \text{ set}$

1. t'

 $$(1) \begin{cases} t' & (1/2,1/2,0) \\ (1') & (1/2,1/2,0) \end{cases}$$

2. $2'$

 $$(2) \begin{cases} 2' & 1/4,1/4,z \\ (2_{z'}) & 1/2,1/2,0' \end{cases}$$

3. a'

 $$(3) \begin{cases} a' & (1/2,0,0) \\ (a_y) & x,1/4,z \end{cases}$$

4. b'

 $$(4) \begin{cases} b' & (0,1/2,0) \\ (b_y) & 1/4,y,z \end{cases}$$
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry. Coordinates

(0,0,0) + (1/2,1/2,0)'

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 e m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 d .m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 c .2'</td>
<td>1/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td>2 b mm2</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 a mm2</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c_p mm2
a^* = a b^* = b
Origin at 0,0,z

Along [1,0,0] p1m11'
a^* = b/2 b^* = c
Origin at x,0,0

Along [0,1,0] p1m11'
a^* = -a/2 b^* = c
Origin at 0,y,0
Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) \quad & 1 \\
(2) \quad & 2 \quad 0,0,z \\
(3) \quad & m \quad x,0,z \\
(4) \quad & m \quad 0,y,z
\end{align*}
\]

\[
\begin{align*}
(1) \quad & 0,0,0 \\
(2) \quad & 0,0,0 \\
(3) \quad & 0,0,0 \\
(4) \quad & 0,0,0
\end{align*}
\]

For \((1/2,1/2,0) + \) set

\[
\begin{align*}
(1) \quad & t' \quad (1/2,1/2,0) \\
(2) \quad & 2' \quad 1/4,1/4,z \\
(3) \quad & a' \quad (1/2,0,0) \\
(4) \quad & b' \quad (0,1/2,0)
\end{align*}
\]

\[
\begin{align*}
(1) \quad & (1/2,1/2,0) \\
(2) \quad & (1/2,1/2,0) \\
(3) \quad & (1/2,1/2,0) \\
(4) \quad & (1/2,1/2,0)
\end{align*}
\]

For \((0,0,1) + \) set

\[
\begin{align*}
(1) \quad & t' \quad (0,0,1) \\
(2) \quad & 2' \quad (0,0,1) \\
(3) \quad & c' \quad (0,0,1) \\
(4) \quad & c' \quad (0,0,1)
\end{align*}
\]

\[
\begin{align*}
(1) \quad & (0,0,1) \\
(2) \quad & (0,0,1) \\
(3) \quad & (0,0,1) \\
(4) \quad & (0,0,1)
\end{align*}
\]

For \((1/2,1/2,1) + \) set

\[
\begin{align*}
(1) \quad & t \quad (1/2,1/2,1) \\
(2) \quad & 2 \quad (0,0,1) \\
(3) \quad & n \quad (1/2,0,1) \\
(4) \quad & n \quad (0,1/2,1)
\end{align*}
\]

\[
\begin{align*}
(1) \quad & (1/2,1/2,1) \\
(2) \quad & (1/2,1/2,1) \\
(3) \quad & (1/2,1/2,1) \\
(4) \quad & (1/2,1/2,1)
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f</td>
<td>1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 e</td>
<td>m..</td>
<td>0,y,z [u,0,0] 0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 d</td>
<td>.m.</td>
<td>x,0,z [0,v,0] 0,v,0 [0,v,0]</td>
</tr>
<tr>
<td>8 c</td>
<td>.2'</td>
<td>1/4,1/4,z [u,v,0] 1/4,3/4,z [u,v,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>mm2</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>mm2</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1' Along [1,0,0] p1m11' Along [0,1,0] p1m11'

a* = a b* = b a* = b/2 b* = c a* = -a/2 b* = c
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Asymmetric unit $0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0) + \text{set}$

(1) 1
(2) $2' \quad 0,0,z$
(3) $m \quad x,0,z$
(4) $m' \quad 0,y,z$

For $(1/2,1/2,0) + \text{set}$

(1) $t \quad (1/2,1/2,0)$
(2) $2' \quad 1/4,1/4,z$
(3) $a \quad (1/2,0,0) \quad x,1/4,z$
(4) $b' \quad (0,1/2,0) \quad 1/4,y,z$

For $(0,0,1)' + \text{set}$

(1) $t' \quad (0,0,1)$
(2) $2 \quad (0,0,1) \quad 0,0,z$
(3) $c' \quad (0,0,1) \quad x,0,z$
(4) $c \quad (0,0,1) \quad 0,y,z$

For $(1/2,1/2,1)' + \text{set}$

(1) $t' \quad (1/2,1/2,1)$
(2) $2 \quad (0,0,1) \quad 1/4,1/4,z$
(3) $n' \quad (1/2,0,1) \quad x,1/4,z$
(4) $n \quad (0,1/2,1) \quad 1/4,y,z$
Continued

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f</td>
<td>1</td>
<td>(1) x, y, z [u, v, w]</td>
</tr>
<tr>
<td>8 e</td>
<td>m'</td>
<td>0, y, z [0, v, w]</td>
</tr>
<tr>
<td>8 d</td>
<td>.m</td>
<td>x, 0, z [0, v, 0]</td>
</tr>
<tr>
<td>8 c</td>
<td>.2'</td>
<td>1/4, 1/4, z [u, v, 0]</td>
</tr>
<tr>
<td>4 b</td>
<td>m'm2'</td>
<td>0, 1/2, z [0, v, 0]</td>
</tr>
<tr>
<td>4 a</td>
<td>m'm2'</td>
<td>0, 0, z [0, v, 0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] c2mm1'
 - $a^* = a$, $b^* = b$
 - Origin at 0,0,z

- Along [1,0,0] p2b*1m1
 - $a^* = b/2$, $b^* = c$
 - Origin at x,0,0

- Along [0,1,0] p1m11'
 - $a^* = -a/2$, $b^* = c$
 - Origin at 0,y,0
Origin on mm'2

Asymmetric unit \(0 < x < 1/4; \quad 0 < y < 1/2; \quad 0 < z < 1\)

Symmetry Operations

For \((0,0,0) + \) set

1. \((0,0,0)\)
2. \(0,0,z\)
3. \(m'x,0,z\)
4. \(m'y,0,0)'^{'}\)

For \((1/2,1/2,0) + \) set

1. \(1/2,1/2,0)\)
2. \(1/2,1/4,1/4,z\)
3. \(a'(1/2,0,0)x,1/4,z\)
4. \(b'(0,1/2,0)1/4,y,z\)

For \((0,0,1)'+ \) set

1. \(0,0,1)\)
2. \(0,0,1)'\)
3. \(c(0,0,1)x,0,z\)
4. \(c(0,0,1)0,y,z\)

For \((1/2,1/2,1)'+ \) set

1. \(1/2,1/2,1)\)
2. \(1/2,1/4,1/4,z\)
3. \(n(1/2,0,1)x,1/4,z\)
4. \(n(0,1/2,1)1/4,y,z\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1'); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,0) + (0,0,1') + (1/2,1/2,1')</td>
<td>(0,0,0) + (1/2,1/2,0) + (0,0,1') + (1/2,1/2,1')</td>
</tr>
<tr>
<td>16 f 1 (1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 e m'.. 0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 d .m' x,0,z [u,0,w]</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>8 c ..2 1/4,1/4,z [0,0,w]</td>
<td>1/4,3/4,z [0,0,w]</td>
</tr>
<tr>
<td>4 b m'm'2 0,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 a m'm'2 0,0,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2mm1'</th>
<th>Along [1,0,0]</th>
<th>p2b1m'1</th>
<th>Along [0,1,0]</th>
<th>p2b1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td></td>
<td>a* = b/2</td>
<td></td>
<td>a* = -a/2</td>
<td></td>
</tr>
<tr>
<td>b* = b</td>
<td></td>
<td>b* = c</td>
<td></td>
<td>b* = c</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on m'm2'

Asymmetric unit
\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For (0,0,0) + set

1. \(\begin{align*} (1) \quad & \begin{cases} 1 \\ (1) 0,0,0 \end{cases} \\ (2') \quad & \begin{cases} 0,0,z \\ (2_z) 0,0,0' \end{cases} \\ (3) \quad & \begin{cases} m \quad & x,0,z \\ (m_y) \quad & 0,y,z \end{cases} \\ (4') \quad & \begin{cases} m' \quad & 0,y,z \\ (m_x) \quad & 0,0,0' \end{cases} \end{cases} \end{align*} \]

For \((1/2,1/2,0)\)' + set

1. \(\begin{align*} (1') \quad & \begin{cases} t' \quad & (1/2,1/2,0) \\ (1) \quad & (1/2,1/2,0)' \end{cases} \\ (2) \quad & \begin{cases} 2 \quad & 1/4,1/4,z \\ (2_z) \quad & 1/2,1/2,0 \end{cases} \\ (3) \quad & \begin{cases} a' \quad & (1/2,0,0) \\ (m_y) \quad & 1/2,1/2,0' \end{cases} \\ (4) \quad & \begin{cases} b \quad & 0,1/2,0 \\ (m_x) \quad & 1/2,1/2,0 \end{cases} \end{cases} \end{align*} \]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0)*; (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 e m'</td>
<td>0</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 d m'</td>
<td>x,0,z [0,v,0]</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 c m'2'</td>
<td>1/4,1/4,z [0,0,w]</td>
<td>1/4,3/4,z [0,0,w]</td>
</tr>
<tr>
<td>2 b m'2'</td>
<td>0,1/2,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2 a m'2'</td>
<td>0,0,z [0,v,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [0,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -b</td>
<td>c_p*2'mm'</td>
<td>p_2a*1m1</td>
<td>p1m11'</td>
</tr>
<tr>
<td>b* = a</td>
<td>a* = b/2</td>
<td>a* = -a/2</td>
<td>a* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on m'm'2

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0) + \) set

1. \(1\) \((0,0,0)\)
2. \(2\) \((0,0,z)\)
3. \(m'\) \((x,0,z)\)
4. \(m'\) \((0,y,z)\)

For \((1/2,1/2,0)' + \) set

1. \(t'\) \((1/2,1/2,0)\)
2. \(2'\) \((1/4,1/4,z)\)
3. \(a\) \((1/2,0,0)\)
4. \(b\) \((0,1/2,0)\)

\((0,0,0)'\)
\((1/2,1/2,0)'\)
\((1/2,1/2,0)'\)
\((1/2,1/2,0)'\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,0)' +</td>
<td></td>
</tr>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 e m'0</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 d m'1</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>4 c m'1</td>
<td>1/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td>2 b m'12</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 a m'12</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c_p2m'2m'</th>
<th>Along [1,0,0]</th>
<th>p_{2a1}m'1</th>
<th>Along [0,1,0]</th>
<th>p_{2a1}m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = a b' = b</td>
<td>a' = b/2 b' = c</td>
<td>a' = -a/2 b' = c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,1/4,0</td>
<td>Origin at 1/4,y,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Asymmetric unit \[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < 1 \]

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)
2. \(2': 0,0,z\)
3. \(m\): \(x,0,z\)
4. \(m': 0,y,z\)

For \((1/2,1/2,0)'\) + set

1. \(t'\): \((1/2,1/2,0)\)
2. \(2: 1/4,1/4,z\)
3. \(a'(1/2,0,0): x,1/4,z\)
4. \(b: (0,1/2,0): 1/4,y,z\)

For \((0,0,1)\) + set

1. \(t'\): \((0,0,1)\)
2. \(2: 0,0,1\)
3. \(c'(0,0,1): x,0,z\)
4. \(c: (0,0,1): 0,y,z\)

For \((1/2,1/2,1)\) + set

1. \(t\): \((1/2,1/2,1)\)
2. \(2': (0,0,1)\)
3. \(n(1/2,0,1): x,1/4,z\)
4. \(n': (0,1/2,1): 1/4,y,z\)
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 e m</td>
<td>0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 d m</td>
<td>x,0,z [0,v,0]</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>8 c m</td>
<td>1/4,1/4,z [0,0,w]</td>
<td>1/4,3/4,z [0,0,w]</td>
</tr>
<tr>
<td>4 b m</td>
<td>0,1/2,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 a m</td>
<td>0,0,z [0,v,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] c2mm1'</th>
<th>Along [1,0,0] p1m1'</th>
<th>Along [0,1,0] p1m1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = a b' = b</td>
<td>a' = b/2 b' = c</td>
<td>a' = -a/2 b' = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
CI m’m'2
35.13.248
C m’m'2

Origin on m’m'2

Asymmetric unit

0 < x < 1/4; 0 < y < 1/2; 0 < z < 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2 0,0,z
(3) m' x,0,z
(4) m' 0,y,z

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0)
(2) 2' 1/4,1/4,z
(3) a (1/2,0,0) x,1/4,z
(4) b (0,1/2,0) 1/4,y,z

For (0,0,1)' + set

(1) t' (0,0,1)
(2) 2' (0,0,1) 0,0,z
(3) c (0,0,1) x,0,z
(4) c (0,0,1) 0,y,z

For (1/2,1/2,1) + set

(1) t (1/2,1/2,1)
(2) 2 (0,0,1) 1/4,1/4,z
(3) n' (1/2,0,1) x,1/4,z
(4) n' (0,1/2,1) 1/4,y,z

35.13.248 - 1 - 472
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity,</td>
<td></td>
</tr>
<tr>
<td>Wyckoff letter,</td>
<td></td>
</tr>
<tr>
<td>Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>(0,0,0) + (1/2,1/2,0) +</td>
<td>(1/2,1/2,1) + (1/2,1/2,0) +</td>
</tr>
<tr>
<td>(0,0,1) + (1/2,1/2,1) +</td>
<td></td>
</tr>
<tr>
<td>16 f 1 (1) x,y,z [u,v,w]</td>
<td>(2) x̅,y̅,z [u̅,v̅,w] (3) x̅,y̅,z [u̅,v̅,w] (4) x̅,y̅,z [u̅,v̅,w]</td>
</tr>
<tr>
<td>8 e m'.. 0,y,z [0,v,w]</td>
<td>0,y,z [0,v̅,w]</td>
</tr>
<tr>
<td>8 d .m'.. x,0,z [u,0,w]</td>
<td>x̅,0,z [u̅,0,w]</td>
</tr>
<tr>
<td>8 c .2' 1/4,1/4,z [u,v,0]</td>
<td>1/4,3/4,z [u̅,v̅,0]</td>
</tr>
<tr>
<td>4 b m'm'2 0,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 a m'm'2 0,0,z [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] c2mm1'</th>
<th>Along [1,0,0] p_c1m1</th>
<th>Along [0,1,0] p_c1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = b/2 b* = c</td>
<td>a* = -a/2 b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,1/4,0</td>
<td>Origin at 1/4,y,0</td>
</tr>
</tbody>
</table>
36.1.249 - Cmc2₁ Orthorhombic

Origin on mc2₁

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For (0,0,0) + set

1. 1
2. $0,0,0$
3. $0,0,1/2$
4. $x,0,z$
5. $c (0,0,1/2)$
6. $0,y,z$

For (1/2,1/2,0) + set

1. $t (1/2,1/2,0)$
2. $0,0,1/2$
3. $1/4,1/4,z$
4. $x,1/4,z$
5. $n (1/2,0,1/2)$
6. $1/4,y,z$
7. $x,1/4,z$
8. $m (0,0,0)$
9. $0,y,z$
10. $x,1/4,z$
11. $m (0,0,1/2)$
12. $1/4,y,z$
13. $x,1/4,z$
14. $m (0,1/2,0)$
15. $1/4,y,z$
16. $x,1/4,z$
17. $m (1/2,1/2,0)$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>8 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 a m..</td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm
a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p1g11*
a* = b/2 b* = c
Origin at x,0,0

Along [0,1,0] p2v,1m1
a* = -a/2 b* = c/2
Origin at 0,y,0
Cmc2\textsubscript{1}'

36.2.250

\begin{align*}
\text{Origin} & \quad \text{on mc2,1}' \\
\text{Asymmetric unit} & \quad 0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2
\end{align*}

Symmetry Operations

\begin{align*}
\text{For } (0,0,0) + \text{ set} & \\
(1) & \quad 1 \\
(2) & \quad \begin{array}{c} (0,0,1/2) \\
(2_x,0,0,1/2) \end{array} \\
(3) & \quad \begin{array}{c} c (0,0,1/2) \\
(m_y,0,0,1/2) \end{array} \\
(4) & \quad \begin{array}{c} m \quad 0,y,z \\
(m_x,0,0,0) \end{array}
\end{align*}

\begin{align*}
\text{For } (1/2,1/2,0) + \text{ set} & \\
(1) & \quad t (1/2,1/2,0) \\
(2) & \quad \begin{array}{c} (0,0,1/2) \\
(2_x,1/2,1/2,1/2) \end{array} \\
(3) & \quad \begin{array}{c} n (1/2,0,1/2) \\
(m_y,1/2,1/2,1/2) \end{array} \\
(4) & \quad \begin{array}{c} b (0,1/2,0) \\
(m_x,1/2,1/2,0) \end{array}
\end{align*}

\begin{align*}
\text{For } (0,0,0)' + \text{ set} & \\
(1) & \quad 1' \\
(2) & \quad \begin{array}{c} (0,0,1/2) \\
(2_x,0,0,1/2') \end{array} \\
(3) & \quad \begin{array}{c} c' (0,0,1/2) \\
(m_y,0,0,1/2') \end{array} \\
(4) & \quad \begin{array}{c} m' \quad 0,y,z \\
(m_x,0,0,0)' \end{array}
\end{align*}

\begin{align*}
\text{For } (1/2,1/2,0)' + \text{ set} & \\
(1) & \quad t' (1/2,1/2,0) \\
(2) & \quad \begin{array}{c} (0,0,1/2) \\
(2_x,1/2,1/2,1/2') \end{array} \\
(3) & \quad \begin{array}{c} n' (1/2,0,1/2) \\
(m_y,1/2,1/2,1/2') \end{array} \\
(4) & \quad \begin{array}{c} b' (0,1/2,0) \\
(m_x,1/2,1/2,0)' \end{array}
\end{align*}
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a m..1'</td>
<td>0,y,z [0,0,0]</td>
<td>0,y,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>(0,0,0) + (1/2,1/2,0) + (0,0,0)' + (1/2,1/2,0)' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1' Along [1,0,0] p1g11' Along [0,1,0] p1m11'

\(a^* = a\) \(b^* = b\) \(a^* = b/2\) \(b^* = c\) \(a^* = -a/2\) \(b^* = c/2\)

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Orthorhombic

36.3.251

Cm'c2ι

m'm2'

Origin on m'c2ι

Asymmetric unit

\[0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/2\]

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. \(1\)
2. \(2' (0,0,1/2) \quad 0,0,z\)
3. \(c (0,0,1/2) \quad x,0,z\)
4. \(m' \quad 0,y,z\)

\(\text{For } (1/2,1/2,0) + \text{set}\)

1. \(t (1/2,1/2,0) \quad 1/2,1/2,1/2'\)
2. \(2' (0,0,1/2) \quad 1/4,1/4,z\)
3. \(n (1/2,0,1/2) \quad x,1/4,z\)
4. \(b' (0,1/2,0) \quad 1/4,y,z\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>(1) x,y,z [u,v,w] (2) x̅,y,z+1/2 [u,v,w] (3) x̅,y,z+1/2 [u,v,w] (4) x̅,y,z [u̅,v,w]</td>
</tr>
<tr>
<td>4 a m'..</td>
<td>0,y,z [0,v,w] 0,y̅,z+1/2 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm' Along [1,0,0] p1g1 Along [0,1,0] p21m1

a* = -b b* = a a* = b/2 b* = c a* = -a/2 b* = c/2

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin on mc’2₁⁺

Asymmetric unit

\[0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/2 \]

Symmetry Operations

For (0,0,0) + set

(1) \(\mathbf{i} \) \hspace{1cm} (2) \(\mathbf{2'} \) \hspace{1cm} (3) \(\mathbf{c'} \) \hspace{1cm} (4) \(\mathbf{m} \)

\[(1|0,0,0) \rightarrow (2|0,0,1/2) \rightarrow (3|0,0,1/2) \rightarrow (4|0,0,0) \]

For (1/2,1/2,0) + set

(1) \(\mathbf{t} \) \hspace{1cm} (2) \(\mathbf{2'} \) \hspace{1cm} (3) \(\mathbf{n'} \) \hspace{1cm} (4) \(\mathbf{b} \)

\[(1|1/2,1/2,0) \rightarrow (2|0,0,1/2) \rightarrow (3|1/2,0,1/2) \rightarrow (4|0,1/2,0) \]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 a m..</td>
<td>0,y,z [u,0,0]</td>
<td>0,y,z [u,0,0]</td>
<td>0,y,z [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm$'$
Along [1,0,0] p1g11$'$
Along [0,1,0] p1m1

\[a^* = a \quad b^* = b\]
\[a^* = b/2 \quad b^* = c\]
\[a^* = -a/2 \quad b^* = c/2\]

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Symmetry Operations

For $(0,0,0) + \text{ set}$

(1) 1
(2) $2 (0,0,1/2) \quad 0,0,z$
(3) $c' (0,0,1/2) \quad x,0,z$
(4) $m' \quad 0,y,z$

For $(1/2,1/2,0) + \text{ set}$

(1) $t (1/2,1/2,0)$
(2) $2 (0,0,1/2) \quad 1/4,1/4,z$
(3) $n' (1/2,0,1/2) \quad x,1/4,z$
(4) $b' (0,1/2,0) \quad 1/4,y,z$

Origin on $m'c'2_1$

Asymmetric unit: $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,0) +</td>
<td>(0,0,0) + (1/2,1/2,0) +</td>
</tr>
<tr>
<td>8 b 1 (1) x,y,z [u,v,w]</td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 a m' 0,y,z [0,v,w]</td>
<td>0,y,z+1/2 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2m'm'
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] p1g'1
\(\mathbf{a}^* = \mathbf{b}/2 \quad \mathbf{b}^* = \mathbf{c} \)
Origin at x,0,0

Along [0,1,0] p1m'1
\(\mathbf{a}^* = -\mathbf{a}/2 \quad \mathbf{b}^* = \mathbf{c}/2 \)
Origin at 0,y,0
Origin on mc$_2_1$

Asymmetric unit
$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For (0,0,0) + set

1. 1
2. (2) (0,0,1/2) 0,0,z
3. c (0,0,1/2) x,0,z
4. m 0,y,z
5. $(m_1,0,0,0)$

For (1/2,1/2,0) + set

1. t' (1/2,1/2,0) 0,0,1/4
2. $(2')$ (0,0,1/2) 1/4,1/4,z
3. n' (1/2,0,1/2) x,1/4,z
4. b' (0,1/2,0) 1/4,y,z
5. $(m_1,0,0,0)$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0)'; (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 a m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c_p,2mm

a* = a b* = b

Origin at 0,0,z
Origin on m'c2₁⁺

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) 2' (0,0,1/2) 0,0,z
(2|0,0,1/2)⁺

(3) c (0,0,1/2) x,0,z
(m₁|0,0,1/2)

(4) m' 0,y,z
(m₂|0,0,0)⁺

For (1/2,1/2,0)⁺ + set

(1) t' (1/2,1/2,0)
(1|1/2,1/2,0)⁺

(2) 2 (0,0,1/2) 1/4,1/4,z
(2|1/2,1/2,1/2)

(3) n' (1/2,0,1/2) x,1/4,z
(m₃|1/2,1/2,1/2)⁺

(4) b (0,1/2,0) 1/4,y,z
(m₄|1/2,1/2,0)⁺
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0)'; (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x',y',z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y',z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 d' m'</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,y',z+1/2 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(\text{c}_p\cdot 2\text{mm}' \) Along [1,0,0] \(\text{p}_{2a}\cdot 1\text{g1} \) Along [0,1,0] \(\text{p}_c\cdot 1\text{m1} \)

\(\mathbf{a}^* = -\mathbf{b} \quad \mathbf{b}^* = \mathbf{a} \) \quad \mathbf{a}^* = \mathbf{b}/2 \quad \mathbf{b}^* = \mathbf{c} \) \quad \mathbf{a}^* = -\mathbf{a}/2 \quad \mathbf{b}^* = \mathbf{c}/2

Origin at 0,0,z \quad \text{Origin at } x,0,0 \quad \text{Origin at } 1/4,y,0
C\textsubscript{p}mc'2\textsubscript{1},'
mm21'
Orthorhombic
36.8.256
C\textsubscript{p}mc'2\textsubscript{1},'

Origin on mc'2\textsubscript{1},'

Asymmetric unit
0 \leq x \leq 1/2;
0 \leq y \leq 1/2;
0 \leq z \leq 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2' (0,0,1/2) 0,0,z
(3) c' (0,0,1/2) x,0,z
(4) m 0,y,z

(1*) 0,0,0
(2* 0,0,1/2)
(3* m,0,0,1/2')
(4* m,0,0,0)

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0)
(2) 2 (0,0,1/2) 1/4,1/4,z
(3) n (1/2,0,1/2) x,1/4,z
(4) b' (0,1/2,0) 1/4,y,z

(1') 1/2,1/2,0
(2' 1/2,1/2,1/2)
(3' m,1/2,1/2,1/2)
(4' m,1/2,1/2,0)'

36.8.256 - 1 - 488
Continued

Generators selected

(1) t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[(0,0,0) + \frac{1}{2}(1,1,0)\]

8 b 1 (1) x,y,z [u,v,w] (2) x,y,z+1/2 [u,v,w] (3) x,y,z+1/2 [u,v,w] (4) x,y,z [u,v,w]

4 a m. 0,y,z [u,0,0] 0,y,z+1/2 [u,0,0]

Symmetry of Special Projections

\[\begin{align*}
\text{Along } [0,0,1] & \quad c_{p,2'mm}' \\
\text{Along } [1,0,0] & \quad p1g11' \\
\text{Along } [0,1,0] & \quad p_{2z,1m1}
\end{align*}\]

\[\begin{align*}
\mathbf{a}^* = \mathbf{a} & \quad \mathbf{b}^* = \mathbf{b} \\
\mathbf{a}^* = \mathbf{b}/2 & \quad \mathbf{b}^* = \mathbf{c} \\
\mathbf{a}^* = -\mathbf{a}/2 & \quad \mathbf{b}^* = \mathbf{c}/2
\end{align*}\]

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin on m’c’2₁

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) ₂ (0,0,1/2) 0,0,z
(3) c’ (0,0,1/2) x,0,z
(4) m’ 0,y,z

For (1/2,1/2,0)’ + set

(1) t’ (1/2,1/2,0)
(2) ₂’ (0,0,1/2) 1/4,1/4,z
(3) n (1/2,0,1/2) x,1/4,z
(4) b (0,1/2,0) 1/4,y,z

\[C_p m’c’2₁ \quad mm2₁’ \quad Orthorhombic \]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[
\begin{align*}
(0,0,0) &\quad + & (1/2,1/2,0)' &\quad + \\
8 &\quad b &\quad 1 &\quad (1) \ x,y,z \ [u,v,w] &\quad (2) \ \bar{x},\bar{y},z+1/2 \ [\bar{u},\bar{v},w] &\quad (3) \ x,\bar{y},z+1/2 \ [u,\bar{v},w] &\quad (4) \ \bar{x},y,z \ [\bar{u},v,w] \\
4 &\quad a &\quad m' &\quad 0,y,z \ [0,v,w] &\quad 0,\bar{y},z+1/2 \ [0,\bar{v},w]
\end{align*}
\]

Symmetry of Special Projections

Along [0,0,1] \ {c_p, 2m'm'} \quad Along [1,0,0] \ p_{2a'1g1} \quad Along [0,1,0] \ p_{2a'1m1}

\[
\begin{align*}
a^* &= a &\quad b^* &= b \\
a^* &= b/2 &\quad b^* &= c &\quad a^* &= -a/2 &\quad b^* &= c/2
\end{align*}
\]

Origin at 0,0,z \quad Origin at x,1/4,0 \quad Origin at 1/4,y,0
Origin on cc2

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

1 (0,0,0) (2) 0,0,z (3) c (0,0,1/2) x,0,z (4) c (0,0,1/2) 0,y,z
(1) (2,0,0) (2,1/4,0,0) (m,0,0,1/2) (m,0,0,1/2)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0) (2) 1/4,1/4,z (3) n (1/2,0,1/2) x,1/4,z (4) n (0,1/2,1/2) 1/4,y,z
(1) (2,1/2,1/2,0) (2,1/2,1/2,0) (m,1/2,1/2,1/2) (m,1/2,1/2,1/2)
Generators selected (1); t(1,0,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>8 d 1</td>
<td>(1) (x, y, z \ [u, v, w])</td>
</tr>
<tr>
<td></td>
<td>(2) (\bar{x}, \bar{y}, \bar{z} \ [\bar{u}, \bar{v}, \bar{w}])</td>
</tr>
<tr>
<td></td>
<td>(3) (x, y, z+1/2 \ [u, v, w])</td>
</tr>
<tr>
<td></td>
<td>(4) (\bar{x}, \bar{y}, \bar{z}+1/2 \ [\bar{u}, \bar{v}, \bar{w}])</td>
</tr>
<tr>
<td>4 c .2</td>
<td>1/4,1/4,0 (0,0,0)</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,z+1/2 (0,0,0)</td>
</tr>
<tr>
<td>4 b .2</td>
<td>0,1/2,z (0,0,0)</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 (0,0,0)</td>
</tr>
<tr>
<td>4 a .2</td>
<td>0,0,0 (0,0,0)</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 (0,0,0)</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) c2mm
 - \(\mathbf{a}^* = \mathbf{b}\)
 - \(\mathbf{b}^* = \mathbf{b}\)
- Along \([1,0,0]\) \(p2_1m'1\)
 - \(\mathbf{a}^* = \mathbf{b}/2\)
 - \(\mathbf{b}^* = \mathbf{c}/2\)
- Along \([0,1,0]\) \(p2_1m'1\)
 - \(\mathbf{a}^* = -\mathbf{a}/2\)
 - \(\mathbf{b}^* = \mathbf{c}/2\)

Origin at 0,0,0
Origin at \(x,0,0\)
Origin at 0,y,0
Origin on cc21'

Asymmetric unit
\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0)\) + set

1. \(1 (0,0,0)\)
2. \(2 \quad 0,0,z\)
3. \(c (0,0,1/2)\)
4. \(c (0,0,1/2)\)

For \((1/2,1/2,0)\) + set

1. \(t (1/2,1/2,0)\)
2. \(2 \quad 1/4,1/4,z\)
3. \(n (1/2,0,1/2)\)
4. \(n (0,1/2,1/2)\)

For \((0,0,0)\)' + set

1. \(1' (0,0,0)\)
2. \(2' \quad 0,0,z\)
3. \(c' (0,0,1/2)\)
4. \(c' (0,0,1/2)\)

For \((1/2,1/2,0)\)' + set

1. \(t' (1/2,1/2,0)\)
2. \(2' \quad 1/4,1/4,z\)
3. \(n' (1/2,0,1/2)\)
4. \(n' (0,1/2,1/2)\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(0,0,0) + (1/2,1/2,0) + (0,0,0)' + (1/2,1/2,0)' +</td>
</tr>
<tr>
<td>4</td>
<td>x,y,z [0,0,0] (2) x,y,z+1/2 [0,0,0] (3) x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>1/4,1/4,z [0,0,0] 1/4,3/4,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>0,1/2,z [0,0,0] 0,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>0,0,z [0,0,0] 0,0,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1' Along [1,0,0] p1m11' Along [0,1,0] p1m11'

a* = a b* = b a* = b/2 b* = c/2 a* = -a/2 b* = c/2
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin on $c'c2'$

Asymmetric unit $0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0) + \text{ set}$

1. 1

2. $2' \quad 0,0,z$

3. $c \quad (0,0,1/2) \quad x,0,z$

4. $c' \quad (0,0,1/2) \quad 0,y,z$

For $(1/2,1/2,0) + \text{ set}$

1. $t \quad (1/2,1/2,0)$

2. $2' \quad 1/4,1/4,z$

3. $n \quad (1/2,0,1/2) \quad x,1/4,z$

4. $n' \quad (0,1/2,1/2) \quad 1/4,y,z$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>(1/2,1/2,0)</td>
</tr>
</tbody>
</table>

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,0) +</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>d</th>
<th>1</th>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) x,y,z [u,v,w]</th>
<th>(3) x,y,z+1/2 [u,v,w]</th>
<th>(4) x,y,z+1/2 [u,v,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>c</td>
<td>.2'</td>
<td>1/4,1/4,z [u,v,0]</td>
<td>1/4,3/4,z+1/2 [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>.2'</td>
<td>0,1/2,z [u,v,0]</td>
<td>0,1/2,z+1/2 [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>.2'</td>
<td>0,0,z [u,v,0]</td>
<td>0,0,z+1/2 [u,v,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2mm'</th>
<th>Along [1,0,0]</th>
<th>p1m1</th>
<th>Along [0,1,0]</th>
<th>p2v,1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -b</td>
<td>b* = a</td>
<td>a* = b/2</td>
<td>b* = c/2</td>
<td>a* = -a/2</td>
<td>b* = c/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Asymmetric unit \[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\]

Symmetry Operations

For \((0,0,0) + \text{ set}\)

1. \((1)\) 1
2. \((2)\) 2, 0,0, z
3. \((3)\) c' (0,0,1/2), x,0,z
4. \((4)\) c' (0,0,1/2), 0,y,z

\((m_y, 0, 0, 1/2)' \)

\((m_z, 0, 0, 1/2)' \)

For \((1/2,1/2,0) + \text{ set}\)

1. \((1)\) t (1/2,1/2,0)
2. \((2)\) 2, 1/4,1/4, z
3. \((3)\) n' (1/2,0,1/2), x,1/4,z
4. \((4)\) n' (0,1/2,1/2), 1/4,y,z

\((m_y, 1/2, 1/2, 1/2)' \)

\((m_z, 1/2, 1/2, 1/2)' \)
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) (x, y, z [\bar{u},\bar{v},w])</td>
</tr>
<tr>
<td>4 c .2</td>
<td>1/4,1/4,z [0,0,w]</td>
<td>1/4,3/4,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 b .2</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 a .2</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) \(\text{c2m' m'} \)
 - \(a^* = a \) \(b^* = b \)
 - Origin at 0,0,z

- Along \([1,0,0]\) \(\text{p1m'1} \)
 - \(a^* = b/2 \) \(b^* = c/2 \)
 - Origin at x,0,0

- Along \([0,1,0]\) \(\text{p1m'1} \)
 - \(a^* = -a/2 \) \(b^* = c/2 \)
 - Origin at 0,y,0
CPcc2 mm21' Orthorhombic

37.5.262 C_Pcc2

Origin on cc2

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)
(2) 2 0,0,z
(2z | 0,0,0)
(3) c (0,0,1/2) x,0,z
(my | 0,0,1/2)
(4) c (0,0,1/2) 0,y,z
(mx | 0,0,1/2)

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0)
(1 | 1/2,1/2,0)' (2) 2' 1/4,1/4,z
(2z | 1/2,1/2,0)'
(3) n' (1/2,0,1/2) x,1/4,z
(my | 1/2,1/2,1/2)'
(4) n' (0,1/2,1/2) 1/4,y,z
(mx | 1/2,1/2,1/2)'
Generators selected

(1): t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0)'; (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 c .2'</td>
<td>1/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td>4 b .2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 a .2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] cₚ₂mm
Along [1,0,0] pₐ₁m₁
Along [0,1,0] pₚ₁m₁

a* = a b* = b
a* = b/2 b* = c/2
a* = -a/2 b* = c/2

Origin at 0,0,z
Origin at x,1/4,0
Origin at 1/4,y,0
Origin on c'c2'

Asymmetric unit \(0 \leq x \leq 1/4;\) \(0 \leq y \leq 1/2;\) \(0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0)+\) set

1. \(1\)
2. \((2') (0,0,0)\) \((2,0,0)\) \((1,0,0)\)
3. \((c) (0,0,1/2) x,0,z\) \((m,0,0,1/2)\)
4. \((c') (0,0,1/2) 0,y,z\) \((m,0,0,1/2)\)

For \((1/2,1/2,0)^{+}\) set

1. \(t' (1/2,1/2,0)\)
2. \((2) 1/4,1/4,z\) \((2,1/2,0)\) \((1,1/2,0)\)
3. \((n') (1/2,0,1/2) x,1/4,z\) \((m,1/2,1/2,0)\)
4. \((n) (0,1/2,1/2) 1/4,y,z\) \((m,1/2,1/2,0)\)
Generators selected (1); t(1,0,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) (\overline{x},\overline{y},\overline{z} [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(3) x,(\overline{y},\overline{z}+1/2 [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(4) (\overline{x},y,z+1/2 [u,v,w])</td>
</tr>
<tr>
<td>4 c ..2</td>
<td>1/4,1/4,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 b ..2'</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 a ..2'</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(c_p2'\text{mm}'\) \(a^* = -b\quad b^* = a\) \(\text{Origin at } 0,0,z\)
Along [1,0,0] \(p_{2a1m1}\) \(a^* = b/2\quad b^* = c/2\) \(\text{Origin at } x,0,0\)
Along [0,1,0] \(p_{2a1m1}\) \(a^* = -a/2\quad b^* = c/2\) \(\text{Origin at } 0,y,0\)
Asymmetric unit: $0 \leq x \leq 1/4$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0)$ + set:

(1) 1
(2) 2, $0,0,z$
(3) c' $(0,0,1/2)$, $x,0,z$
(4) c' $(0,0,1/2)$, $0,y,z$

(1*) $(1/2,1/2,0)$
(2*) $1/4,1/4,z$
(3*) n $(1/2,0,1/2)$, $x,1/4,z$
(4*) n $(0,1/2,1/2)$, $1/4,y,z$

For $(1/2,1/2,0)'$ + set:

(1) t' $(1/2,1/2,0)$
(2) $2'$ $1/4,1/4,z$
(3) n $(1/2,0,1/2)$, $x,1/4,z$
(4) n $(0,1/2,1/2)$, $1/4,y,z$

(1*) $(1/2,1/2,0)'$
(2*) $1/2,1/2,0'$
(3*) $(1/2,0,1/2)'$
(4*) $(0,1/2,1/2)'$

Symmetry Operations:

- $(1)\ 1$
- $(2)\ 2, 0,0,z$
- $(3)\ c' (0,0,1/2), x,0,z$
- $(4)\ c' (0,0,1/2), 0,y,z$

- $(1*)\ (1/2,1/2,0)$
- $(2*)\ 1/4,1/4,z$
- $(3*)\ n (1/2,0,1/2), x,1/4,z$
- $(4*)\ n (0,1/2,1/2), 1/4,y,z$

Origin: on $c'c'2$
Continued

Generators selected
(1); t(1,0,0); t(0,0,0); t(0,0,1); t(1/2,1/2,0); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>x, y, z [u, v, w]</td>
<td>(0,0,0) + (1/2, 1/2, 0)' + (0,0,0) + (1/2, 1/2, 0)' +</td>
<td>(2) x, y, z [u, v, w] (3) x, y, z+1/2 [u, v, w] (4) x, y, z+1/2 [u, v, w]</td>
</tr>
<tr>
<td>4 c 2'</td>
<td>1/4, 1/4, z [u, v, 0]</td>
<td>1/4, 3/4, z+1/2 [u, v, w]</td>
<td>1/4, 1/4, z [u, v, 0]</td>
</tr>
<tr>
<td>4 b 2</td>
<td>1/2, z [0, 0, w]</td>
<td>0, 1/2, z+1/2 [0, 0, w]</td>
<td>0, 1/2, z [0, 0, w]</td>
</tr>
<tr>
<td>4 a 2</td>
<td>0, 0, z [0, 0, w]</td>
<td>0, 0, z+1/2 [0, 0, w]</td>
<td>0, 0, z [0, 0, w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0, 0, 1] c_p 2m’m’ Origin at 0, 0, z
a* = a b* = b

Along [1, 0, 0] p_2a 1m’1 Origin at x, 0, 0
a* = b/2 b* = c/2

Along [0, 1, 0] p_2a 1m’1 Origin at 0, y, 0
a* = -a/2 b* = c/2
Amm2 in mm2

Origin on mm2

Asymmetric unit

\[
0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2}
\]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 0,0,z \\
(3) & \quad m,0,0 \\
(4) & \quad 0,y,z
\end{align*}
\]

For \((0,1/2,1/2) + \) set

\[
\begin{align*}
(1) & \quad t,0,1/2 \\
(2) & \quad 2,0,1/2 \\
(3) & \quad c,0,1/2 \\
(4) & \quad n,0,1/2
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

Coordinates

(0,0,0) + (0,1/2,1/2) +

8 f 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w]
4 e m.. 1/2,y,z [u,0,0] 1/2,y,z [u,0,0]
4 d m.. 0,y,z [u,0,0] 0,y,z [u,0,0]
4 c .m. x,0,z [0,v,0] x,0,z [0,v,0]
2 b mm2 1/2,0,z [0,0,0]
2 a mm2 0,0,z [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p2mm Along [1,0,0] c1m11' Along [0,1,0] p1m11'
\(a^* = a \) \(b^* = b/2 \) \(a^* = b \) \(b^* = c \) \(a^* = -a \) \(b^* = c/2 \)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin on mm21'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. $t (0,0,0) \rightarrow (1|0,0,0)$
 (2) $2 (0,0,0) \rightarrow (0,0,z) \rightarrow (2|0,0,0)$
 (3) $m (0,0,0) \rightarrow (x,0,z) \rightarrow (m|0,0,0)$
 (4) $m (0,0,0) \rightarrow (0,y,z) \rightarrow (m|0,0,0)$

For (0,1/2,1/2) + set

1. $t (0,1/2,1/2) \rightarrow (1|0,1/2,1/2)$
 (2) $2 (0,0,1/2) \rightarrow (0,0,z) \rightarrow (2|0,1/2,1/2)$
 (3) $c (0,0,1/2) \rightarrow (0,0,z) \rightarrow (m|0,0,1/2)$
 (4) $n (0,1/2,1/2) \rightarrow (0,0,z) \rightarrow (m|0,0,1/2)$

For (0,0,0)’ + set

1. $t (0,1/2,1/2) \rightarrow (1|0,1/2,1/2)$
 (2) $2 (0,0,1/2) \rightarrow (0,0,z) \rightarrow (2|0,1/2,1/2)$
 (3) $m (0,0,0) \rightarrow (0,0,z) \rightarrow (m|0,0,0)$
 (4) $m (0,0,0) \rightarrow (0,y,z) \rightarrow (m|0,0,0)$

For (0,1/2,1/2)’ + set

1. $t (0,0,0) \rightarrow (1|0,1/2,1/2)$
 (2) $2 (0,0,1/2) \rightarrow (0,0,z) \rightarrow (2|0,1/2,1/2)$
 (3) $c (0,0,1/2) \rightarrow (0,0,z) \rightarrow (m|0,0,1/2)$
 (4) $n (0,1/2,1/2) \rightarrow (0,0,z) \rightarrow (m|0,0,1/2)$
Generators selected (1); t(1,0,0); t(0,0,1); t(0,1,0); t(0,1/2,1/2); (2); (3); 1'.

<table>
<thead>
<tr>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2) +</td>
</tr>
<tr>
<td>(0,0,0)' + (0,1/2,1/2)' +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 11'</td>
<td>1) x,y,z [0,0,0]</td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3) x,y,z [0,0,0]</td>
<td>(4) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 e m..1'</td>
<td>1/2,y,z [0,0,0]</td>
<td>1/2,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 d m..1'</td>
<td>0,y,z [0,0,0]</td>
<td>0,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 c .m.1'</td>
<td>x,0,z [0,0,0]</td>
<td>x,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 b mm21'</td>
<td>1/2,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a mm21'</td>
<td>0,0,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2mm1'</th>
<th>Along [1,0,0] c1m11'</th>
<th>Along [0,1,0] p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b/2</td>
<td>a* = b b* = c</td>
<td>a* = -a b* = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Am'm2' m'm2' Orthorhombic

38.3.267 Am'm2'

Origin on m'm2'

Asymmetric unit \(0 < x < \frac{1}{2}; 0 < y < \frac{1}{2}; 0 < z < \frac{1}{2}\)

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. \((1) \quad 1\)

 \((1|0,0,0)\)

2. \((2) \quad 2' \quad 0,0,z\)

 \((2|0,0,0)\)

3. \((3) \quad m \quad x,0,z\)

 \((m|0,0,0)\)

4. \((4) \quad m' \quad 0,y,z\)

 \((m'|0,0,0)\)

For \((0,1/2,1/2) + \text{set}\)

1. \((1) \quad t\)

 \((1|0,1/2,1/2)\)

2. \((2) \quad 2' \quad (0,0,1/2) \quad 0,1/4,z\)

 \((2|0,1/2,1/2)\)

3. \((3) \quad c \quad (0,0,1/2) \quad x,1/4,z\)

 \((m|0,1/2,1/2)\)

4. \((4) \quad n' \quad (0,1/2,1/2) \quad 0,y,z\)

 \((m'_z,0,1/2,1/2)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 e m'..</td>
<td>1/2,y,z [0,v,w] 1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 d m'..</td>
<td>0,y,z [0,v,w] 0,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 c .m.</td>
<td>x,0,z [0,v,0] x,0,z [0,v,0]</td>
</tr>
<tr>
<td>2 b m'm2'</td>
<td>1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td>2 a m'm2'</td>
<td>0,0,z [0,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [0,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>p2'mmm'</td>
<td>c1m1</td>
<td>p1m11'</td>
</tr>
<tr>
<td>a* = -b/2</td>
<td>a* = b</td>
<td>a* = -a</td>
</tr>
<tr>
<td>b* = a</td>
<td>b* = c</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Origin on mm’2’

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2’ 0,0,z
(3) m’ x,0,z
(4) m 0,y,z

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2)
(2) 2’ (0,0,1/2) 0,1/4,z
(3) c’ (0,0,1/2) x,1/4,z
(4) n (0,1/2,1/2) 0,y,z
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Coordinates</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) x,y,z [u,v,w]</td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 e m..</td>
<td>1/2,y,z [u,0,0]</td>
<td>1/2,y,z [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 d m..</td>
<td>0,y,z [u,0,0]</td>
<td>0,y,z [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 c m'..</td>
<td>x,0,z [u,0,w]</td>
<td>x,0,z [u,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b mm'2'</td>
<td>1/2,0,z [u,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a mm'2'</td>
<td>0,0,z [u,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'nm'
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b}/2 \)

Along [1,0,0] c1m11'
\(\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \)

Along [0,1,0] p1m1
\(\mathbf{a}^* = -\mathbf{a} \quad \mathbf{b}^* = \mathbf{c}/2 \)

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Am'm'2
38.5.269
Orthorhombic
m'm'2
Am'm'2

Origin: on m'm'2

Asymmetric unit: $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0) + \text{set}$

1. 1
 (1) $0,0,0$
 (2) $0,0,z$
 (3) $m', x,0,z$
 (4) $m'_{0,y,z}$
 (m$|0,0,0')$

For $(0,1/2,1/2) + \text{set}$

1. $t (0,1/2,1/2)$
 (1) $0,1/2,1/2$
 (2) $0,0,1/2$
 (3) $c' (0,0,1/2)$
 (4) $n' (0,1/2,1/2)$
 (m$|0,1/2,1/2')$

 (2z$|0,0,0$)
 (2z$|0,1/2,1/2$)
 (m$|y,0,0$)
 (m$|0,1/2,1/2')$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2) +</td>
<td></td>
</tr>
<tr>
<td>8 f 1 (1) x,y,z [u,v,w]</td>
<td>(2) x̅,y̅,z [u̅,v̅,w]</td>
</tr>
<tr>
<td>4 e m'.. 1/2,y,z [0,v,w]</td>
<td>1/2,y̅,z [0,v̅,w]</td>
</tr>
<tr>
<td>4 d m'.. 0,y,z [0,v,w]</td>
<td>0,y̅,z [0,v̅,w]</td>
</tr>
<tr>
<td>4 c m'.. x,0,z [u,0,w]</td>
<td>x̅,0,z [u̅,0,w]</td>
</tr>
<tr>
<td>2 b m'm'2 1/2,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 a m'm'2 0,0,z [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2m'm'</th>
<th>Along [1,0,0] c1m'1</th>
<th>Along [0,1,0] p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = a b' = b/2</td>
<td>a' = b b' = c</td>
<td>a' = -a b' = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Origin on mm2

Asymmetric unit $0 \leq x \leq 1/2;\quad 0 \leq y \leq 1/2;\quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0)$ + set

1. $I (0,0,0)$

2. $2 (0,0,z)$

3. $m (x,0,z)$

4. $m (0,y,z)$

For $(0,1/2,1/2)$ + set

1. $t (0,1/2,1/2)$

2. $2 (0,0,1/2)\quad 0,1/4,z$

3. $c (0,0,1/2)\quad x,1/4,z$

4. $n (0,1/2,1/2)\quad 0,y,z$

For $(1,0,0')$ + set

1. $t (1,0,0)$

2. $2' (1/2,0,z)$

3. $a' (1,0,0)\quad x,0,z$

4. $m' (1/2,y,z)$

For $(1,1/2,1/2)$ + set

1. $t' (1,1/2,1/2)$

2. $2' (0,0,1/2)\quad 1/2,1/4,z$

3. $n' (1,0,1/2)\quad x,1/4,z$

4. $n' (0,1/2,1/2)\quad 1/2,y,z$

For $(0,1/2,1/2)$ + set

1. $t (0,1/2,1/2)$

2. $2 (0,0,1/2)\quad 0,1/4,z$

3. $c (0,0,1/2)\quad x,1/4,z$

4. $n (0,1/2,1/2)\quad 0,y,z$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 e m'</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 d m</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 c .m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 b m'm2'</td>
<td>1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 a mm2</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p_{2a}.2mm</th>
<th>Along [1,0,0]</th>
<th>c1m11'</th>
<th>Along [0,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b/2</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = -a</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on mm2

Asymmetric unit: $0 \leq x < 1/2; \quad 0 \leq y < 1/2; \quad 0 \leq z < 1/2$

Symmetry Operations

For $(0,0,0)$ + set:

1. $1\ (0,0,0)$
2. $2\ 0,0,z\ (0,0,0)$
3. $m\ x,0,z\ (m,0,0)$
4. $m\ 0,y,z\ (m,0,0)$

For $(0,1/2,1/2)' + set:

1. $t'\ (0,1/2,1/2)$
2. $2'\ 0,0,1/2\ 0,1/4,z\ (0,0,0)$
3. $c'\ (0,0,1/2)\ x,1/4,z\ (m,0,0)$
4. $n'\ (0,1/2,1/2)\ 0,y,z\ (m,0,0)$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 e m..</td>
<td>1/2,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 d m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 c .m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>2 b mm2</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 a mm2</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_{2a}2mm
a* = -b/2 b* = a
Origin at 0,0,z

Along [1,0,0] c1m11'
a* = b b* = c
Origin at x,0,0

Along [0,1,0] p1m11'
a* = -a b* = c/2
Origin at 0,y,0
Origin on mm2

Asymmetric unit

$$0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/2$$

Symmetry Operations

For (0,0,0) + set

1. $$t \ (0,0,0)$$
 1'. $$t' \ (0,0,0')$$

2. $$2 \ (0,0,z)$$
 2'. $$2' \ (0,0,1/2)$$

3. $$m \ (x,0,z)$$
 3'. $$c' \ (0,0,1/2)$$

4. $$m \ (0,y,z)$$
 4'. $$n' \ (0,1/2,1/2)$$

For (0,1/2,1/2)' + set

1. $$t' \ (0,1/2,1/2)$$
 1'. $$t' \ (1,0,0')$$

2. $$2' \ (0,0,1/2)$$
 2'. $$2' \ (0,1/2,1/2)$$

3. $$c' \ (0,0,1/2)$$
 3'. $$a' \ (1,0,0)$$

4. $$n' \ (0,1/2,1/2)$$
 4'. $$m' \ (1/2,y,z)$$

For (1,0,0)' + set

1. $$t' \ (1,0,0)$$
 1'. $$t' \ (1,1/2,1/2)$$

2. $$2' \ (1/2,0,z)$$
 2'. $$2' \ (1,0,0')$$

3. $$a' \ (1,0,0)$$
 3'. $$n \ (1,0,1/2)$$

4. $$m' \ (1/2,y,z)$$
 4'. $$n \ (0,1/2,1/2)$$

For (1,1/2,1/2) + set

1. $$t \ (1,1/2,1/2)$$
 1'. $$t \ (1,1/2,1/2)$$

2. $$2 \ (0,0,1/2)$$
 2'. $$2 \ (1,1/2,1/2)$$

3. $$n \ (1,0,1/2)$$
 3'. $$n \ (1,1/2,1/2)$$

4. $$n \ (0,1/2,1/2)$$
 4'. $$n \ (0,1/2,1/2)$$
Generators selected (1); t(1,0,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2)’ + (1,0,0)’ + (1,1/2,1/2)’ +</td>
<td></td>
</tr>
<tr>
<td>(0,0,0) + (0,1/2,1/2)’ + (1,0,0)’ + (1,1/2,1/2)’ +</td>
<td></td>
</tr>
<tr>
<td>16 f 1 (1) x,y,z [u,v,w] (2) x̅,y,z [u̅,v̅,w̅] (3) x̅,y,z [u̅,v̅,w̅] (4) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 e m’.. 1/2,y,z [0,v,w] 1/2,y,z [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 d m.. 0,y,z [u,0,0] 0,y,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 c .m. x,0,z [0,v,0] x,0,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 b m’m2’ 1/2,0,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 a mm2 0,0,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections
Along [0,0,1] p_c2mm Along [1,0,0] c1m11’ Along [0,1,0] p1m11’

\[
\begin{align*}
a^* &= \mathbf{a} & b^* &= \mathbf{b}/2 & a^* &= \mathbf{b} & b^* &= \mathbf{c} & a^* &= -\mathbf{a} & b^* &= \mathbf{c}/2 \\
\text{Origin at } 0,0,z & & \text{Origin at } x,0,0 & & \text{Origin at } 0,y,0
\end{align*}
\]
Origin on mm'2'

Asymmetric unit
0 < x < 1/2; 0 < y < 1/2; 0 < z < 1/2

Symmetry Operations
For (0,0,0) + set
(1) 1
(2) 2', 0,0,z
(3) m', x,0,z
(4) m 0,y,z

For (0,1/2,1/2) + set
(1) t (0,1/2,1/2)
(2) 2' (0,0,1/2) 0,1/4,z
(3) c' (0,0,1/2) x,1/4,z
(4) n (0,1/2,1/2) 0,y,z

For (1,0,0)' + set
(1) t' (1,0,0)
(2) 2 1/2,0,z
(3) a (1,0,0) x,0,z
(4) m' 1/2,y,z

For (1,1/2,1/2)' + set
(1) t' (1,1/2,1/2)
(2) 2 (0,0,1/2) 1/2,1/4,z
(3) n (1,0,1/2) x,1/4,z
(4) n' (0,1/2,1/2) 1/2,y,z
Generators selected (1): t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 e m'</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 d m'</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 c m'</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>4 b m'm'2</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 a mm'2'</td>
<td>0,0,z [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2m'm'
Along [1,0,0] c1m11'
Along [0,1,0] p221,1m1

<table>
<thead>
<tr>
<th>a'* = a</th>
<th>b'* = b/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a'* = b</td>
<td>b'* = c</td>
</tr>
<tr>
<td>a' = -a</td>
<td>b' = c/2</td>
</tr>
</tbody>
</table>

Origin at 1/2,0,z
Origin at x,0,0
Origin at 0,y,0
Origin on m'm2'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1) 0,0,0)

(2) 2' 0,0,z
(2) 2 | 0,0,0)

(3) m x,0,z
(m y | 0,0,0)

(4) m' 0,y,z
(m x | 0,0,0)

For (0,1/2,1/2) + set

(1) t' (0,1/2,1/2)
(1) 0,1/2,1/2)

(2) 2 (0,0,1/2) 0,1/4,z
(2) 2 | 0,1/2,1/2)

(3) c' (0,0,1/2) x,1/4,z
(m y | 0,1/2,1/2)

(4) n (0,1/2,1/2) 0,y,z
(m x | 0,1/2,1/2)
Continued 38.10.274

Generators selected (1); t(1,0,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 e m'..</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 d m'..</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 c ..m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>2 b m'm2'</td>
<td>1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td>2 a m'm2'</td>
<td>0,0,z [0,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2a,2m'm'</th>
<th>Along [1,0,0]</th>
<th>c_p,1m1</th>
<th>Along [0,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = -b/2</td>
<td>b^* = a</td>
<td>a^* = b</td>
<td>b^* = c</td>
<td>a^* = -a</td>
<td>b^* = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,0,0</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td>Origin at x,0,0</td>
</tr>
</tbody>
</table>
Origin on mm'2'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1 1 (0,0,0)
 (1 | 0,0,0)

2' 0,0,z (0,0,0)'
 (2z | 0,0,0)'

m' x,0,z (m | 0,0,0)'

m 0,y,z (m | 0,0,0)

For (0,1/2,1/2) + set

1 t' (0,1/2,1/2)
 (1 | 0,1/2,1/2)'

2 (0,0,1/2) 0,1/4,z (0,1/2,1/2)
 (2z | 0,1/2,1/2)

3 c (0,0,1/2) x,1/4,z (m | 0,1/2,1/2)

4 n' (0,1/2,1/2) 0,y,z (m | 0,1/2,1/2)'

Orthorhombic
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,1/2,1/2) +</td>
</tr>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 e m..</td>
<td>1/2,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 d m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 c m'..</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>2 b mm'2'</td>
<td>1/2,0,z [u,0,0]</td>
</tr>
<tr>
<td>2 a mm'2'</td>
<td>0,0,z [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2a,2mm Along [1,0,0] c1m11' Along [0,1,0] p2b,1m1
\(a^* = -\frac{b}{2}\) \(b^* = a\) \(a^* = b\) \(b^* = c\)
Origin at 0,1/4,z Origin at x,0,0 Origin at 0,y,0

38.11.275 - 2 - 527
Origin on m'm'2

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0)$ + set

1. 1
2. $2 \ 0,0,z$
3. $m' \ x,0,z$
4. $m' \ 0,y,z$

For $(0,1/2,1/2)'$ + set

1. $t' \ (0,1/2,1/2)$
2. $2' \ (0,0,1/2) \ 0,1/4,z$
3. $c \ (0,0,1/2) \ x,1/4,z$
4. $n \ (0,1/2,1/2) \ 0,y,z$
Generators selected (1); t(1,0,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>(0,0,0) +</th>
<th>(0,1/2,1/2) +</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 e m'..</td>
<td>1/2,y,z [0,v,w]</td>
<td>1/2,y,z [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 d m'..</td>
<td>0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 c m'..</td>
<td>x,0,z [u,0,w]</td>
<td>x,0,z [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 b m'm'2</td>
<td>1/2,0,z [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a m'm'2</td>
<td>0,0,z [0,0,w]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p_{2a}.2m'm'</th>
<th>Along [1,0,0]</th>
<th>c_p.1m'1</th>
<th>Along [0,1,0]</th>
<th>p_{2b}.1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -b/2</td>
<td>b* = a</td>
<td>a* = b b* = c</td>
<td>a* = -a</td>
<td>b* = c/2</td>
<td>a* = b b* = c/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin on m'2

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1 (0,0,0)
(2) 2 0,0,z (m',0,0,0)
(3) m' x,0,z (m',0,0,0)
(4) m' 0,y,z (m',0,0,0)

For (0,1/2,1/2)' + set

(1) t' (0,1/2,1/2) (0,0,1/2)
(2) 2' (0,0,1/2) 0,1/4,z
(3) c (0,0,1/2) x,1/4,z
(4) n (0,1/2,1/2) 0,y,z

For (1,0,0)' + set

(1) t' (1,0,0) (1,0,0)
(2) 2' 1/2,0,z (m',1,0,0)
(3) a (1,0,0) x,0,z
(4) m 1/2,y,z

For (1,1/2,1/2) + set

(1) t (1,1/2,1/2) (1,1/2,1/2)
(2) 2 (0,0,1/2) 1/2,1/4,z (m',1,1/2,1/2)
(3) h (1,0,1/2) x,1/4,z (m',1,1/2,1/2)
(4) n' (0,1/2,1/2) 1/2,y,z (m',1,1/2,1/2)
Continued 38.13.277 A kind m'm'2

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 e m..</td>
<td>(2) x',y',z [u',v',w]</td>
</tr>
<tr>
<td>8 d m'..</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 c .m'</td>
<td>(4) x',y',z [u',v',w]</td>
</tr>
<tr>
<td>4 b mm'2'</td>
<td>1/2,0,z [u,0,0]</td>
</tr>
<tr>
<td>4 a m'm'2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_c,2mm
Along [1,0,0] c1m11'
Along [0,1,0] p_c,1m1

\(a^* = a \quad b^* = b/2 \)
\(a^* = b \quad b^* = c \)
\(a^* = -a \quad b^* = c/2 \)

Origin at 1/2,1/4,z
Origin at x,0,0
Origin at 1/2,y,0
Abm2 mm2 Orthorhombic
39.1.278 Abm2

Origin on bc2

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2 0,0,z
(3) m x,1/4,z
(4) b (0,1/2,0) 0,y,z

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2)
(2) 2 0,0,1/2 0,1/4,z
(3) c (0,0,1/2) x,0,z
(4) c (0,0,1/2) 0,y,z

(1) 0,1/2,1/2
(2) 2 (0,0,1/2) 0,1/4,z
(3) c (0,0,1/2) x,0,z
(4) c (0,0,1/2) 0,y,z

(1) 0,1/2,1/2
(2) 2 (0,0,1/2) 0,1/4,z
(3) c (0,0,1/2) x,0,z
(4) c (0,0,1/2) 0,y,z
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,1/2,1/2) +</td>
<td></td>
</tr>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 c .m.</td>
<td>x,1/4,z [0,v,0]</td>
<td>x,3/4,z [0,v,0]</td>
</tr>
<tr>
<td>4 b ..2</td>
<td>1/2,0,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 a ..2</td>
<td>0,0,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm Along [1,0,0] p2a*1m1 Along [0,1,0] p1m11'
\(a^* = a\) \(b^* = b/2\) \(c^* = c/2\)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Abm21' mm21' Orthorhombic
39.2.279 Abm21'

Origin on bc21'

Asymmetric unit
0 < x < 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(1') 1'

(2) 2 0,0,z
(2') 2' 0,0,z'

(2) 2 0,0,1/2 0,1/4,z
(2') 2' 0,0,1/2' 0,1/4,z'

(2) 2 0,0,1/2 0,1/4,z
(2') 2' 0,0,1/2' 0,1/4,z'

(3) m x,1/4,z
(3') m' x,1/4,z'

(3) m x,1/4,z
(3') m' x,1/4,z'

(3) m x,1/4,z
(3') m' x,1/4,z'

(4) b (0,1/2,0) 0,y,z
(4) b' (0,1/2,0) 0,y,z'

(4) b (0,1/2,0) 0,y,z
(4) b' (0,1/2,0) 0,y,z'

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2)
(1') t' (0,1/2,1/2)

(2) 2 0,0,1/2 0,1/4,z
(2') 2' 0,0,1/2' 0,1/4,z'

(2) 2 0,0,1/2 0,1/4,z
(2') 2' 0,0,1/2' 0,1/4,z'

(2) 2 0,0,1/2 0,1/4,z
(2') 2' 0,0,1/2' 0,1/4,z'

(3) c (0,0,1/2) x,0,z
(3') c' (0,0,1/2) x,0,z'

(3) c (0,0,1/2) x,0,z
(3') c' (0,0,1/2) x,0,z'

(3) c (0,0,1/2) x,0,z
(3') c' (0,0,1/2) x,0,z'

(4) c (0,0,1/2) 0,y,z
(4') c' (0,0,1/2) 0,y,z'

(4) c (0,0,1/2) 0,y,z
(4') c' (0,0,1/2) 0,y,z'

For (0,0,0)' + set

(1) t' (0,1/2,1/2)'
(1') t (0,1/2,1/2)

(2) 2' 0,0,z'
(2) 2 0,0,z

(2) 2' 0,0,z'
(2) 2 0,0,z

(2) 2' 0,0,z'
(2) 2 0,0,z

(3) m' x,1/4,z'
(3) m x,1/4,z

(3) m' x,1/4,z'
(3) m x,1/4,z

(3) m' x,1/4,z'
(3) m x,1/4,z

(4) b' (0,1/2,0) 0,y,z'
(4) b (0,1/2,0) 0,y,z

(4) b' (0,1/2,0) 0,y,z'
(4) b (0,1/2,0) 0,y,z

(4) b' (0,1/2,0) 0,y,z'
(4) b (0,1/2,0) 0,y,z

For (0,1/2,1/2)' + set

(1) t' (0,1/2,1/2)
(1') t (0,1/2,1/2)

(2) 2' 0,0,1/2' 0,1/4,z'
(2) 2 0,0,1/2 0,1/4,z

(2) 2' 0,0,1/2' 0,1/4,z'
(2) 2 0,0,1/2 0,1/4,z

(2) 2' 0,0,1/2' 0,1/4,z'
(2) 2 0,0,1/2 0,1/4,z

(3) c' (0,0,1/2) x,0,z
(3') c (0,0,1/2) x,0,z'

(3) c' (0,0,1/2) x,0,z
(3') c (0,0,1/2) x,0,z'

(3) c' (0,0,1/2) x,0,z
(3') c (0,0,1/2) x,0,z'

(4) c' (0,0,1/2) 0,y,z
(4) c (0,0,1/2) 0,y,z'

(4) c' (0,0,1/2) 0,y,z
(4) c (0,0,1/2) 0,y,z'

(4) c' (0,0,1/2) 0,y,z
(4) c (0,0,1/2) 0,y,z'

39.2.279 - 1 - 534
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2) + (0,0,0)’ + (0,1/2,1/2)’ +</td>
<td>(0,0,0) + (0,1/2,1/2) + (0,0,0)’ + (0,1/2,1/2)’ +</td>
</tr>
<tr>
<td>8 d 11’ (1) x,y,z [0,0,0] (2) x,y,z [0,0,0] (3) x,y+1/2,z [0,0,0] (4) x,y+1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 c .m.1’ x,1/4,z [0,0,0]</td>
<td>x,3/4,z [0,0,0]</td>
</tr>
<tr>
<td>4 b .21’ 1/2,0,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 a .21’ 0,0,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2mm1’</th>
<th>Along [1,0,0] p1m11’</th>
<th>Along [0,1,0] p1m11’</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b/2</td>
<td>a* = b/2 b* = c/2</td>
<td>a* = -a b* = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Origin on b'c2'

Asymmetric unit

\[
0 < x < 1/2; \quad 0 < y < 1/4; \quad 0 < z < 1
\]

Symmetry Operations

For (0,0,0) + set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2', 0,0,z \\
(3) & \quad m, x,1/4,z \\
(4) & \quad b', (0,1/2,0), 0,y,z
\end{align*}
\]

For (0,1/2,1/2) + set

\[
\begin{align*}
(1) & \quad t, (0,1/2,1/2) \\
(2) & \quad 2', (0,0,1/2), 0,1/4,z \\
(3) & \quad c, (0,0,1/2), x,0,z \\
(4) & \quad c', (0,0,1/2), 0,y,z
\end{align*}
\]
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,1/2,1/2) +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>c m.</td>
<td>x,1/4,z [0,v,0]</td>
</tr>
<tr>
<td>4</td>
<td>b m.</td>
<td>1/2,0,z [u,v,0]</td>
</tr>
<tr>
<td>4</td>
<td>a m.</td>
<td>0,0,z [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1]
p2'mm'

- \(\mathbf{a}^* = -b/2 \)
- \(\mathbf{b}^* = a \)
- Origin at 0,0,z

Along [1,0,0]
p1m1

- \(\mathbf{a}^* = b/2 \)
- \(\mathbf{b}^* = c/2 \)
- Origin at 0,0,z

Along [0,1,0]
p1m11'

- \(\mathbf{a}^* = -a \)
- \(\mathbf{b}^* = c/2 \)
- Origin at 0,y,0
Abm'2' mm'2' Orthorhombic

39.4.281 Abm'2'

Origin on bc'2'

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0) +\) set

1. \(1\)\((1|0,0,0) \)
2. \(2'\) \(0,0,z\) \((2_z|0,0,0)' \)
3. \(m'\) \(x,1/4,z\) \((m_y|0,1/2,0)' \)
4. \(b\) \((0,1/2,0)\) \(0,y,z\) \((m_z|0,1/2,0) \)

For \((0,1/2,1/2) +\) set

1. \(t\) \((0,1/2,1/2)\) \((1|0,1/2,1/2) \)
2. \(2'\) \((0,0,1/2)\) \(0,1/4,z\) \((2_z|0,1/2,1/2)' \)
3. \(c'\) \((0,0,1/2)\) \(x,0,z\) \((m_y|0,0,1/2)' \)
4. \(c\) \((0,0,1/2)\) \(0,y,z\) \((m_z|0,0,1/2) \)
Generators selected

(1); t(1,0,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td></td>
</tr>
<tr>
<td>(0,1/2,1/2) +</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>d 1</th>
<th>(1) x,y,z [u,v,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y+1/2,z [u,v,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>c .m'</th>
<th>x,1/4,z [u,0,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x,1/4,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z [u,v,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>b ..2'</th>
<th>0,0,z [u,v,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2'2mm'</th>
<th>Along [1,0,0]</th>
<th>p_2a.1m1</th>
<th>Along [0,1,0]</th>
<th>p1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b/2</td>
<td>a* = b/2</td>
<td>b* = c/2</td>
<td>a* = -a</td>
<td>b* = c/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z |

Origin at x,0,0 |

Origin at 0,y,0 |
Ab’m’2 Orthorhombic

39.5.282

Origin on b’c’2

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2 0,0,z
 (2z 0,0,0)
(3) m’ x,1/4,z
 (m,0,1/2,0)'
(4) b’ (0,1/2,0) 0,y,z
 (m,0,1/2,0)'

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2)
 (1 0,1/2,1/2)
(2) 2 (0,0,1/2) 0,1/4,z
 (2z 0,1/2,1/2)
(3) c’ (0,0,1/2) x,0,z
 (m,0,0,1/2)'
(4) c’ (0,0,1/2) 0,y,z
 (m,0,0,1/2)’
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w] (2) (\bar{x}, \bar{y}, z [\bar{u}, \bar{v}, \bar{w}]) (3) (x, y+1/2, z [u,v,w]) (4) (\bar{x}, y+1/2, z [\bar{u}, \bar{v}, \bar{w}])</td>
</tr>
<tr>
<td>4 c .m'</td>
<td>x,1/4,z [u,0,w] (\bar{x}, 3/4,z [\bar{u},0,w])</td>
</tr>
<tr>
<td>4 b ..2</td>
<td>1/2,0,z [0,0,w] 1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 a ..2</td>
<td>0,0,z [0,0,w] 0,1/2,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2m'm'
\(a^* = a \ b^* = b/2 \)
Origin at 0,0,z

Along [1,0,0] p1m'1
\(a^* = b/2 \ b^* = c/2 \)
Origin at x,0,0

Along [0,1,0] p1m'1
\(a^* = -a \ b^* = c/2 \)
Origin at 0,y,0
Origin on bc2

Asymmetric unit
\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{4}; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0) + \) set

(1) \(I\)
(1) \((0,0,0)\)
(1) \((1,0,0)\)
(1) \((1,0,0)\)'

(2) \(2\)
(2) \(0,0,z\)
(2) \(0,0,1/2\)
(2) \(0,0,1/2\)' \\
\((2z|0,0,0)\)
\((2z|0,0,1/2)\)
\((2z|1,0,0)\)'
\((2z|1,0,0)\)''

(3) \(m\)
(3) \(x,1/4,z\)
(3) \(c,0,0,1/2\)
(3) \(a',1,0,0\)

\((m|0,1/2,0)\)
\((m|0,0,1/2)\)
\((m|1,1/2,0)\)'
\((m|1,1/2,0)\)''

(4) \(b\)
(4) \((0,1/2,0)\)
(4) \((0,0,1/2)\)
(4) \((0,0,1/2)\)'

\((m|0,1/2,0)\)
\((m|0,0,1/2)\)
\((m|1,1/2,0)\)'
\((m|1,1/2,0)\)''

For \((0,1/2,1/2) + \) set

(1) \(t\)
(1) \((0,1/2,1/2)\)
(1) \((0,1/2,1/2)\)'

(2) \(2\) \(0,0,1/2\) \(0,1/4,z\)
(2) \(0,0,1/2\) \(0,1/4,z\)
(2) \(0,0,1/2\) \(0,1/4,z\)

\((2z|0,0,1/2)\)
\((2z|0,1/2,1/2)\)
\((2z|1,0,0)\)'

(3) \(c\)
(3) \((0,0,1/2)\) \(x,0,z\)
(3) \((0,0,1/2)\) \(x,0,z\)

\((m|0,0,1/2)\)
\((m|0,0,1/2)\)
\((m|0,0,1/2)\)

(4) \(c\)
(4) \((0,0,1/2)\) \(0,y,z\)
(4) \((0,0,1/2)\) \(0,y,z\)

\((m|0,0,1/2)\)
\((m|0,0,1/2)\)
\((m|0,0,1/2)\)

For \((1,0,0)'+ \) set

(1) \(t'\)
(1) \((1,0,0)\)
(1) \((1,0,0)\)'

(2) \(2'\)
(2) \((1/2,0)\) \(0,z\)
(2) \((1/2,0)\) \(0,z\)

\((2z|1,0,0)\)'
\((2z|1,0,0)\)''
\((2z|1,0,0)\)''

(3) \(a'\)
(3) \((1,0,0)\) \(x,1/4,z\)
(3) \((1,0,0)\) \(x,1/4,z\)

\((m|1,1/2,0)\)'
\((m|1,1/2,0)\)''
\((m|1,1/2,0)\)''

(4) \(b'\)
(4) \((0,1/2,0)\) \(1/2,y,z\)
(4) \((0,1/2,0)\) \(1/2,y,z\)

\((m|1,1/2,0)\)'
\((m|1,1/2,0)\)''
\((m|1,1/2,0)\)''

For \((1,1/2,1/2)'+ \) set

(1) \(t'\)
(1) \((1/2,1/2)\)
(1) \((1/2,1/2)\)'

(2) \(2'\)
(2) \((1/2,1/2)\) \(0,1/4,z\)
(2) \((1/2,1/2)\) \(0,1/4,z\)

\((2z|1,1/2,1/2)\)'
\((2z|1,1/2,1/2)\)''
\((2z|1,1/2,1/2)\)''

(3) \(n'\)
(3) \((1,1/2,1/2)\) \(x,0,z\)
(3) \((1,1/2,1/2)\) \(x,0,z\)

\((m|1,0,1/2)\)'
\((m|1,0,1/2)\)''
\((m|1,0,1/2)\)''

(4) \(c'\)
(4) \((0,0,1/2)\) \(1/2,y,z\)
(4) \((0,0,1/2)\) \(1/2,y,z\)

\((m|1,0,1/2)\)'
\((m|1,0,1/2)\)''
\((m|1,0,1/2)\)''

39.6.283 - 1 - 542
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 c .m.</td>
<td>x,1/4,z [0,v,0]</td>
</tr>
<tr>
<td>8 b ..2'</td>
<td>1/2,0,z [u,v,0]</td>
</tr>
<tr>
<td>8 a ..2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along</th>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>p2a 2mm</td>
<td>0,0,z</td>
</tr>
<tr>
<td>[1,0,0]</td>
<td>p1m11'</td>
<td>x,0,0</td>
</tr>
<tr>
<td>[0,1,0]</td>
<td>p1m11'</td>
<td>0,y,0</td>
</tr>
</tbody>
</table>
Origin on bc'2

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(1) 0,0,0

(2) 2 0,0,z
(2) 0,0,0

(3) m x,1/4,z
(m) 0,1/2,0

(4) b (0,1/2,0) 0,y,z
(m) 0,1/2,0

For (0,1/2,1/2)' + set

(1) t' (0,0,1/2)
(1) 0,1/2,1/2)'

(2) 2' (0,0,1/2) 0,1/4,z
(2) 0,1/2,1/2)' (m) 0,1/2,0

(3) c' (0,0,1/2) x,0,z
(m) 0,0,1/2)' (m) 0,0,1/2)

(4) c' (0,0,1/2) 0,y,z
(m) 0,0,1/2)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2)'; (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

(0,0,0) + (0,1/2,1/2)' +

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(0,0,0) + (0,1/2,1/2)' +</td>
</tr>
<tr>
<td>4 c .m.</td>
<td>x,1/4,z [0,v,0]</td>
<td>x,3/4,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 b ..2</td>
<td>1/2,0,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 a ..2</td>
<td>0,0,z [0,0,w]</td>
<td>0,1/2,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_{2a*}2mm
Origin at 0,0,z
\(a^* = -b/2, b^* = a\)

Along [1,0,0] p_{2a*}1m1
Origin at x,1/4,0
\(a^* = b/2, b^* = c/2\)

Along [0,1,0] p_{1m11'}
Origin at 0,y,0
\(a^* = -a, b^* = c/2\)
Origin on bc'2

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1$

Symmetry Operations

For (0,0,0) + set

1. $t (0,0,0)$
2. $0,0,z$
3. $m x,1/4,z$
4. $b (0,1/2,0) 0,y,z$

For (0,1/2,1/2)' + set

1. $t' (0,1/2,1/2)$
2. $0,0,1/2$ 0,1/4,z
3. $c' (0,0,1/2) x,0,z$
4. $c' (0,0,1/2) 0,y,z$

For (1,0,0)' + set

1. $t' (1,0,0)$
2. $1/2,0,z$
3. $a' (1,0,0) x,1/4,z$
4. $b' (0,1/2,0) 1/2,y,z$

For (1,1/2,1/2) + set

1. $t (1,1/2,1/2)$
2. $0,0,1/2$ 1/2,1/4,z
3. $n (1,0,1/2) x,0,z$
4. $c (0,0,1/2) 1/2,y,z$
Generators selected \((1); \ t(1,0,0); \ t(0,1,0); \ t(0,0,1); \ t(0,1/2,1/2); \ (2); \ (3). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1,0,0)' + (0,1,0)' + (1,1/2,1/2) +</td>
<td>(0,1/2,1/2)' + (1,1/2,1/2) +</td>
</tr>
<tr>
<td>16 d 1 (1) x,y,z [u,v,w] (2) x,y+1/2,z [u,v,w] (3) x,y+1/2,z [u,v,w] (4) x,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 c .m. x,1/4,z [0,v,0] 1/2,1/2,1/2 [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 b .2' 1/2,0,z [u,v,0] 1/2,1/2,2 [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 a .2 0,0,z [0,0,w] 0,1/2,2 [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** \(p_{c2}mm \) \(a^* = a \ b^* = b/2 \) Origin at 1/2,1/4,z
- **Along [1,0,0]** \(p1m11' \) \(a^* = b/2 \ b^* = c/2 \) Origin at x,0,0
- **Along [0,1,0]** \(p1m11' \) \(a^* = -a \ b^* = c/2 \) Origin at 0,y,0
Orthorhombic

$A_{2a} b'm'2$

$mm21'$

39.9.286

$A_{2a} b'm'2$

Origin on $b'c'2$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0) +$ set

1. $t (1,0,0)$
 2. $t' (1,1/2,1/2)$
 3. $t' (1,1/2,1/2)$

For $(0,1/2,1/2) +$ set

1. $t (0,0,1/2)$
 2. $t (0,0,1/2)$
 3. $t (0,0,1/2)$

For $(1,0,0)' +$ set

1. $t (1,0,0)$
 2. $t (1,0,0)$
 3. $t (1,0,0)$

For $(1,1/2,1/2)' +$ set

1. $t (0,0,1/2)$
 2. $t (0,0,1/2)$
 3. $t (0,0,1/2)$

For $(0,0,0)' +$ set

1. $t (1,0,0)$
 2. $t (1,0,0)$
 3. $t (1,0,0)$

For $(0,1/2,1/2)' +$ set

1. $t (0,0,1/2)$
 2. $t (0,0,1/2)$
 3. $t (0,0,1/2)$

For $(1,0,0)' +$ set

1. $t (1,0,0)$
 2. $t (1,0,0)$
 3. $t (1,0,0)$

For $(1,1/2,1/2)' +$ set

1. $t (0,0,1/2)$
 2. $t (0,0,1/2)$
 3. $t (0,0,1/2)$
Continued

Generators selected (1); t(1,0,0)'; t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

| Multiplicity, Wyckoff letter, Site Symmetry. |
|-----------------|------------------|
| 16 d 1 | (1) x,y,z [u,v,w] (2) \(\bar{x}, y, z [\bar{u}, \bar{v}, \bar{w}] \) (3) \(x, y^+1/2, z [u, \bar{v}, \bar{w}] \) (4) \(x, y+1/2, z [\bar{u}, v, \bar{w}] \) |
| 8 c .m' | x,1/4,z [u,0,w] \(\bar{x}, 3/4, z [\bar{u}, 0, w] \) |
| 8 b ..2' | 1/2,0,z [u,v,0] 1/2,1/2,z [\bar{u}, \bar{v}, 0] |
| 8 a ..2 | 0,0,z [0,0,w] 0,1/2,z [0,0,w] |

Symmetry of Special Projections

Along [0,0,1] p2m'm' \(a^* = a \ b^* = b/2 \) Origin at 0,0,z
Along [1,0,0] p1m11' \(a^* = b/2 \ b^* = c/2 \) Origin at x,0,0
Along [0,1,0] p2\(2_{\text{v}}.1m1 \) \(a^* = -a \ b^* = c/2 \) Origin at 1/2,y,0
Origin
on b’c’2’

Asymmetric unit
0 ≤ x ≤ 1/2;
0 ≤ y ≤ 1/4;
0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

1. \(1\) \(0,0,0\)

2. \(2'\) \(0,0,z\)
\(2_z\) \(0,0,0'\)

3. \(m\) \(x,1/4,z\)
\(m_y\) \(0,1/2,0\)

4. \(b'\) \(0,1/2,0\)
\(m_x\) \(0,1/2,0'\)

For (0,1/2,1/2)’ + set

1. \(t'\) \(0,1/2,1/2\)
\(t'\) \(0,1/2,1/2'\)

2. \(2\) \(0,0,1/2\)
\(2_z\) \(0,1/2,1/2\)

3. \(c'\) \(0,0,1/2\)
\(m_y\) \(0,0,1/2'\)

4. \(c\) \(0,0,1/2\)
\(m_x\) \(0,0,1/2\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2)'; (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2)' +</td>
<td></td>
</tr>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 c m.</td>
<td>x,1/4,z [0,v,0]</td>
</tr>
<tr>
<td>4 b 2'</td>
<td>1/2,0,z [u,v,0]</td>
</tr>
<tr>
<td>4 a 2'</td>
<td>0,0,z [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2a2mm
a* = -b/2 b* = a
Origin at 0,1/4,z

Along [1,0,0] p1m1
a* = b/2 b* = c/2
Origin at x,0,0

Along [0,1,0] p1m11'
a* = -a b* = c/2
Origin at 0,y,0
Origin on bc2'

Asymmetric unit
\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{4}; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)
2. \(2' 0,0,z\)
3. \(m' x,\frac{1}{4},z\)
4. \(b (0,1/2,0) 0,y,z\)

\(\text{For } (0,1/2,1/2)' + \text{ set}\)

1. \(t' (0,1/2,1/2)\)
2. \(2 (0,0,1/2) 0,1/4,z\)
3. \(c (0,0,1/2) x,0,z\)
4. \(c' (0,0,1/2) 0,y,z\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

Multiplicity, Coordinates
Wyckoff letter, (0,0,0) + (0,1/2,1/2)'
Site Symmetry. +

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x̅,y̅,z [u,v̅,w]</td>
</tr>
<tr>
<td>4 c m'</td>
<td>x,1/4,z [u,0,w]</td>
<td>x̅,3/4,z [u,0,w̅]</td>
</tr>
<tr>
<td>4 b .2'</td>
<td>1/2,0,z [u,v,0]</td>
<td>1/2,1/2,z [u,v̅,0]</td>
</tr>
<tr>
<td>4 a .2'</td>
<td>0,0,z [u,v,0]</td>
<td>0,1/2,z [u,v̅,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_{2a-2m'm'}
\(\mathbf{a}^* = -b/2 \) \(\mathbf{b}^* = a \)
Origin at 0,1/4,z

Along [1,0,0] p_{2a-1m1}
\(\mathbf{a}^* = b/2 \) \(\mathbf{b}^* = c/2 \)
Origin at x,0,0

Along [0,1,0] p_{2v-1m1}
\(\mathbf{a}^* = -a \) \(\mathbf{b}^* = c/2 \)
Origin at 0,y,0
Origin on b'c2

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

1) 1
 (1 0,0,0)
2) 2 0,0,z
 (2 0,0,0)
3) m' x,1/4,z
 (m 0,1/2,0)
4) b' (0,1/2,0) 0,y,z
 (m 0,1/2,0)

For (0,1/2,1/2)' + set

1) t' (0,1/2,1/2)
 (1 0,1/2,1/2)
 (1 0,1/2,1/2)
2) 2' (0,0,1/2) 0,1/4,z
 (2 0,1/2,1/2)
 (2 0,1/2,1/2)
3) c (0,0,1/2) x,0,z
 (m 0,0,1/2)
4) c (0,0,1/2) 0,y,z
 (m 0,0,1/2)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 c .m'</td>
<td>x,1/4,z [u,0,w]</td>
</tr>
<tr>
<td>4 b .2</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 a .2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_{2v}2mm

a* = -b/2 b* = a
Origin at 0,0,z

Along [1,0,0] p_{1m'1}

a* = b/2 b* = c/2
Origin at x,0,0

Along [0,1,0] p_{2v}1m'1

a* = -a b* = c/2
Origin at 0,y,0
Origin on b’c2

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1 0,0,0)
(2) 2 0,0,z
 (2z 0,0,0)
(3) m’ x,1/4,z
 (mz 0,1/2,0)'
(4) b’ (0,1/2,0) 0,y,z
 (mz 0,1/2,0)'

For (0,1/2,1/2)’ + set

(1) t’ (0,1/2,1/2)
 (1 0,1/2,1/2)’
(2) 2’ (0,0,1/2) 0,1/4,z
 (2z 0,1/2,1/2)’
(3) c (0,0,1/2) x,0,z
 (mz 0,0,1/2)
(4) c (0,0,1/2) 0,y,z
 (mz 0,0,1/2)

For (1,0,0)’ + set

(1) t’ (1,0,0)
 (1 1,0,0)’
(2) 2’ 1/2,0,z
 (2z 1,0,0)’
(3) a (1,0,0) x,1/4,z
 (mz 1,1/2,0)
(4) b (0,1/2,0) 1/2,y,z
 (mz 1,1/2,0)

For (1,1/2,1/2) + set

(1) t (1,1/2,1/2)
 (1 1,1/2,1/2)
(2) 2 (0,0,1/2) 1/2,1/4,z
 (2z 1,1/2,1/2)
(3) n’ (1,0,1/2) x,0,z
 (mz 1,0,1/2)’
(4) c’ (0,0,1/2) 1/2,y,z
 (mz 1,0,1/2)’
Generators selected \((1); t(1,0,0)'; t(0,1,0); t(0,0,1); t(0,1/2,1/2)'; (2); (3). \)

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 d 1</td>
<td>((0,0,0) + (0,1/2,1/2)' + (1,0,0)' + (1,1/2,1/2) +)</td>
</tr>
<tr>
<td>8 c .m'</td>
<td>((0,1,0,0) +)</td>
</tr>
<tr>
<td>8 b ..2'</td>
<td>((1,0,0,0) +)</td>
</tr>
<tr>
<td>8 a ..2</td>
<td>((0,0,0,0) +)</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) \(p_{\text{c}}2\text{mm}\) \(a^* = a b^* = b/2\) Origin at 0,0,z

Along \([1,0,0]\) \(p_{\text{1m}11}'\) \(a^* = b/2 b^* = c/2\) Origin at x,0,0

Along \([0,1,0]\) \(p_{\text{c}}1\text{m1}\) \(a^* = -a b^* = c/2\) Origin at 1/2,y,0
Origin on 1a2

Asymmetric unit

\[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < 1\]

Symmetry Operations

For \((0,0,0) + \) set

(1) \(1\)

(2) \(2, 0,0,z\)

(3) \(a (1/2,0,0) x,0,z\)

(4) \(m 1/4,y,z\)

\((m_x) 1/2,0,0)\)

For \((0,1/2,1/2) + \) set

(1) \(t (0,1/2,1/2)\)

(2) \(2 (0,0,1/2) 0,1/4,z\)

(3) \(n (1/2,0,1/2) x,1/4,z\)

(4) \(n (0,1/2,1/2) 1/4,y,z\)

\((m_x) 1/2,1/2,1/2)\)
Generators selected (1); t(1,0,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x+1/2,y,z [u,v,w] (4) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>1/4,y,z [u,0,0] 3/4,y,z [u,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>0,0,z [0,0,w] 1/2,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2mg</th>
<th>Along [1,0,0]</th>
<th>c1m11'</th>
<th>Along [0,1,0]</th>
<th>p2a1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b/2)</td>
<td>(a^* = b) (b^* = c)</td>
<td>(a^* = -a/2) (b^* = c/2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 1/4,y,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The document contains information about the crystal structure of a material with the space group Ama21'. The diagram and text provide details about the origin, asymmetric unit, and symmetry operations for this structure.

Origin: on 1a21'

Asymmetric unit: $0 \leq x \leq 1/4; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0)$ + set:

1. 1
2. $2 \ 0,0,z$
3. $a \ (1/2,0,0) \ x,0,z$
4. $m \ 1/4,y,z$

For $(0,1/2,1/2)$ + set:

1. $t \ (0,1/2,1/2)$
2. $2 \ (0,0,1/2) \ 0,1/4,z$
3. $n \ (1/2,0,1/2) \ x,1/4,z$
4. $n' \ (0,1/2,1/2) \ 1/4,y,z$

For $(0,0,0)'$ + set:

1. $1'$
2. $2' \ 0,0,z$
3. $a' \ (1/2,0,0) \ x,0,z$
4. $m' \ 1/4,y,z$

For $(0,1/2,1/2)'$ + set:

1. $t' \ (0,1/2,1/2)$
2. $2' \ (0,0,1/2) \ 0,1/4,z$
3. $n' \ (1/2,0,1/2) \ x,1/4,z$
4. $n' \ (0,1/2,1/2) \ 1/4,y,z$
Generators selected (1); t(1,0,0); t(0,0,0); t(0,0,1); t(0,1/2,1/2); (2); (3); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c</td>
<td>11' (1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>m..1' 1/4,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>..21' 0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg1' Along [1,0,0] c1m11' Along [0,1,0] p1m11'

\[a^* = a \quad b^* = b/2 \]
\[a^* = b \quad b^* = c \]
\[a^* = -a/2 \quad b^* = c/2 \]

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Am'a2' m'm2' Orthorhombic

40.3.293 Am'a2'

Origin on 1a2'

Asymmetric unit

\[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < 1 \]

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)

 \((1|0,0,0)\)

2. \(2'\)

 \((2_z|0,0,0)\)

3. \(a\)

 \((1/2,0,0)\)

4. \(m'\)

 \((1/4,y,z)\)

For \((0,1/2,1/2)\) + set

1. \(t\)

 \((0,1/2,1/2)\)

2. \(2'\)

 \((0,0,1/2)\)

3. \(n\)

 \((1/2,0,1/2)\)

4. \(n'\)

 \((0,1/2,1/2)\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) +</td>
<td></td>
</tr>
<tr>
<td>4 b m'..</td>
<td>1/4,y,z [0,v,w]</td>
<td>(0,1/2,1/2) +</td>
<td></td>
</tr>
<tr>
<td>4 a ..2'</td>
<td>0,0,z [u,v,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'm'g
\(a^* = a \quad b^* = b/2 \)
Origin at 0,0,z

Along [1,0,0] c1m1
\(a^* = b \quad b^* = c \)
Origin at x,0,0

Along [0,1,0] p_{2a}.1m1
\(a^* = -a/2 \quad b^* = c/2 \)
Origin at 0,y,0
Origin on 1a'2'

Asymmetric unit
0 ≤ x < 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z < 1

Symmetry Operations

For (0,0,0) + set

1. \(l (1,0,0,0) \)
2. \(2' (0,0,z) \)
3. \(a' (1/2,0,0) x,0,z \)
4. \(m 1/4,y,z \)

For (0,1/2,1/2) + set

1. \(t (0,1/2,1/2) \)
2. \(2' (0,0,1/2) 0,1/4,z \)
3. \(n' (1/2,0,1/2) x,1/4,z \)
4. \(n (0,1/2,1/2) 1/4,y,z \)

40.4.294 - 1 - 564
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

Coordinates

(0,0,0) + (0,1/2,1/2) +

<table>
<thead>
<tr>
<th>8</th>
<th>c</th>
<th>1</th>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) x,y,z [u,v,w]</th>
<th>(3) x+1/2,y,z [u,v,w]</th>
<th>(4) x+1/2,y,z [u,v,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>b</td>
<td>m., 1/4,y,z [u,0,0]</td>
<td>3/4, y,z [u,0,0]</td>
<td>1/2,0,z [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>..2', 0,0,z [u,v,0]</td>
<td>1/2,0,z [u,v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'mg' Along [1,0,0] c1m11' Along [0,1,0] p1m1

a* = a b* = b/2 a* = b b* = c a* = -a/2 b* = c/2

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin on \(1\alpha'2\)

Asymmetric unit \(0 \leq x \leq 1/4; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \ \ 1 & (2) & \ (0,0,z) & (3) & \ (1/2,0,0) & (4) & \ m' \\
(1) & \ (0,0,0) & (2) & \ (0,0,0) & (3) & \ (1/2,0,0)' & (4) & \ m' \\
\end{align*}
\]

For \((0,1/2,1/2) + \) set

\[
\begin{align*}
(1) & \ t (0,1/2,1/2) & (2) & \ (0,1/2,1/2) & (3) & \ (1/2,0,1/2) & (4) & \ n' \\
(1) & \ (0,1/2,1/2) & (2) & \ (0,1/2,1/2) & (3) & \ (1/2,1/2,1/2)' & (4) & \ n' \\
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>1 x,y,z [u,v,w]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>4 b m'..</td>
<td>1/4,y,z [0,v,w]</td>
<td>(0,1/2,1/2) +</td>
</tr>
<tr>
<td>4 a ..2</td>
<td>0,0,z [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x+1/2,y,z [u,v,w] (4) x+1/2,y,z [u,v,w]

Symmetry of Special Projections

Along [0,0,1] p2m'g' a* = a b* = b/2 Origin at 0,0,z
Along [1,0,0] c1m'1 a* = b b* = c Origin at x,0,0
Along [0,1,0] p1m'1 a* = -a/2 b* = c/2 Origin at 0,y,0
Origin on 1a2

Asymmetric unit $0 \leq x \leq 1/4$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0) +$ set

(1) 1
(1) $0,0,0$
(1) $0,0,0$

(2) 2 0,0,z
(2) $0,0,0$
(2) $0,0,0$

(3) a $(1/2,0,0)$ x,0,z
(3) $(m_y|1/2,0,0)$
(3) $(m_y|1/2,0,0)$

(4) m 1/4,y,z
(4) $(m_y|1/2,0,0)$
(4) $(m_y|1/2,0,0)$

For $(0,1/2,1/2)^{+}$ set

(1) t^\prime $(0,1/2,1/2)$
(1) $(0,1/2,1/2)$
(1) $(0,1/2,1/2)$

(2) 2^\prime $(0,0,1/2)$ 0,1/4,z
(2) $(0,1/2,1/2)^\prime$
(2) $(0,1/2,1/2)^\prime$

(3) n^\prime $(1/2,0,1/2)$ x,1/4,z
(3) $(m_y|1/2,1/2)^\prime$
(3) $(m_y|1/2,1/2)^\prime$

(4) n^\prime $(0,1/2,1/2)$ 1/4,y,z
(4) $(m_y|1/2,1/2)^\prime$
(4) $(m_y|1/2,1/2)^\prime$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 b m..</td>
<td>1/4,y,z [u,0,0]</td>
<td>3/4,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 a ..2</td>
<td>0,0,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_{2\alpha} \cdot 2mg \) Along [1,0,0] \(c1m11' \) Along [0,1,0] \(p_{c} \cdot 1m1 \)
\(a^* = a \quad b^* = b/2 \) \(a^* = b \quad b^* = c \) \(a^* = -a/2 \quad b^* = c/2 \)
Origin at 0,0,z Origin at x,0,0 Origin at 1/4,y,0
Origin on 1a2'

Asymmetric unit:

0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations:

For (0,0,0) + set:

1. [0,0,0]
2. 2', 0,0,z
3. a (1/2,0,0) x,0,z
4. m' 1/4,y,z

For (0,1/2,1/2)' + set:

1. t' (0,1/2,1/2)
2. 2 (0,0,1/2) 0,1/4,z
3. n' (1/2,0,1/2) x,1/4,z
4. n (0,1/2,1/2) 1/4,y,z
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8) c 1</td>
<td>((1) x,y,z [u,v,w])</td>
</tr>
<tr>
<td>(4) b m'</td>
<td>(1/4,y,z [0,v,w])</td>
</tr>
<tr>
<td>(4) a ..2'</td>
<td>(0,0,z [u,v,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) \(p_{2vb}'2m'g' \)
- Along \([1,0,0]\) \(c_{p,1}m1 \)
- Along \([0,1,0]\) \(p_{c,1}m1 \)

<table>
<thead>
<tr>
<th>Origin at (0,1/4,z)</th>
<th>(a^* = a) (b^* = b/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin at (x,0,0)</td>
<td>(a^* = b) (b^* = c)</td>
</tr>
<tr>
<td>Origin at (1/4,y,0)</td>
<td>(a^* = -a/2) (b^* = c/2)</td>
</tr>
</tbody>
</table>
Origin on 1a'2'

Asymmetric unit

\[0 < x < 1/4; \quad 0 < y < 1/2; \quad 0 < z < 1 \]

Symmetry Operations

For \((0,0,0) + \text{ set}\)

\[
(1) \quad t \quad (0,0,0)
\]

\[
(2) \quad 2' \quad 0,0,z

(2)_{z} \quad 0,0,0')
\]

\[
(3) \quad a' (1/2,0,0) \quad x,0,z

(m_{y})_{1/2,0,0')}
\]

\[
(4) \quad m \quad 1/4,y,z

(m_{x})_{1/2,0,0'}
\]

For \((0,1/2,1/2') + \text{ set}\)

\[
(1) \quad t' (0,1/2,1/2)

(1)_{z} (0,1/2,1/2')
\]

\[
(2) \quad 2 (0,0,1/2) \quad 0,1/4,z

(2)_{z} (0,1/2,1/2')
\]

\[
(3) \quad n (1/2,0,1/2) \quad x,1/4,z

(m_{y})_{1/2,1/2,1/2}
\]

\[
(4) \quad n' (0,1/2,1/2) \quad 1/4,y,z

(m_{x})_{1/2,1/2,1/2'}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2)'; (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>4 b m..</td>
<td>1/4,y,z [u,0,0]</td>
<td>3/4,y,z [u,0,0]</td>
<td>(0,1/2,1/2)'+</td>
</tr>
<tr>
<td>4 a .2'</td>
<td>0,0,z [u,v,0]</td>
<td>1/2,0,z [u,v,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2,v.2mg
Along [1,0,0] c1m11'
Along [0,1,0] p2,v.1m1

\(\mathbf{a}^* = \mathbf{a} \) \(\mathbf{b}^* = \mathbf{b}/2 \)
\(\mathbf{a}^* = \mathbf{b} \) \(\mathbf{b}^* = \mathbf{c} \)

Origin at 0,1/2,z
Origin at x,0,0
Origin at 0,y,0
Origin on 1a'2

Asymmetric unit $0 \leq x \leq 1/4$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1$

Symmetry Operations

For (0,0,0) + set

(1) 1
(1) t' (0,1/2,1/2)
(1) $0,0,0$
(1) $0,0,0$
(1) $0,0,0$
(1) t' (0,1/2,1/2)

(2) $0,0,z$
(2) $0,0,0$ (m)$\frac{1}{2},0,0$
(2) $0,0,0$ (m)$\frac{1}{2},0,0$
(2) $0,0,0$ (m)$\frac{1}{2},0,0$
(2) $0,0,0$ (m)$\frac{1}{2},0,0$

(3) a' (1/2,0,0) x,0,z
(3) n (1/2,0,1/2) x,1/4,z
(3) n (1/2,0,1/2) x,1/4,z
(3) n (1/2,0,1/2) x,1/4,z

(4) m' 1/4,y,z
(4) m' 1/4,y,z
(4) m' 1/4,y,z
(4) m' 1/4,y,z
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Number</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>c 1</td>
<td>(1) x, y, z [u, v, w]</td>
</tr>
<tr>
<td>4</td>
<td>b m'..</td>
<td>1/4, y, z [0, v, w]</td>
</tr>
<tr>
<td>4</td>
<td>a ..2</td>
<td>0, 0, z [0, 0, w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] $p_{2v}.2m'g'$ \[a^* = a \quad b^* = b/2 \]
Origin at 0,0,z

Along [1,0,0] $c_{1}m'1$ \[a^* = b \quad b^* = c \]
Origin at x,0,0

Along [0,1,0] $p_{2v}.1m'1$ \[a^* = -a/2 \quad b^* = c/2 \]
Origin at 0,y,0
Origin on 1n2

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0)$ + set

1. 1
 1 | $0,0,0$
2. 2
 z | $0,0,0$
3. a | $(1/2,0,0)$ $x,1/4,z$
 (m) | $1/2,1/2,0$
4. b | $(0,1/2,0)$ $1/4,y,z$
 (m) | $1/2,1/2,0$

For $(0,1/2,1/2)$ + set

1. t | $(0,1/2,1/2)$
 1 | $0,1/2,1/2$
2. 2
 z | $(0,0,1/2)$ $0,1/4,z$
 (m$,$) | $1/2,1/2,1/2$
3. n | $(1/2,0,1/2)$ $x,0,z$
 (m$,$) | $1/2,0,1/2$
4. c | $(0,0,1/2)$ $1/4,y,z$
 (m$,$) | $1/2,0,1/2$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,0,0) +</td>
<td>(0,1/2,1/2) +</td>
<td></td>
</tr>
<tr>
<td>8 b 1</td>
<td>(1) x,y,z</td>
<td>[u,v,w]</td>
<td>(2) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>4 a ..2</td>
<td>0,0,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg
\[\mathbf{a}^* = \mathbf{a}, \mathbf{b}^* = \mathbf{b}/2 \]
Origin at 0,0,z

Along [1,0,0] p_{2a.m'}1
\[\mathbf{a}^* = \mathbf{b}/2, \mathbf{b}^* = \mathbf{c}/2 \]
Origin at x,0,0

Along [0,1,0] p_{2a.1m'}1
\[\mathbf{a}^* = -\mathbf{a}/2, \mathbf{b}^* = \mathbf{c}/2 \]
Origin at 0,y,0
Aba21' mm21' Orthorhombic
41.2.301 Aba21'

Origin on 11n21'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2 0,0,z
(3) a (1/2,0,0) x,1/4,z
(4) b (0,1/2,0) 1/4,y,z

(1* 0,0,0)
(2* 0,0,0)
(3* 1/2,1/2,0)
(4* 1/2,1/2,0)

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2)
(2) 2 (0,0,1/2) 0,1/4,z
(3) n (1/2,0,1/2) x,0,z
(4) c (0,0,1/2) 1/4,y,z

(1* 0,1/2,1/2)
(2* 0,1/2,1/2)
(3* 1/2,0,1/2)
(4* 1/2,0,1/2)

For (0,0,0)' + set

(1) 1'
(2) 2' 0,0,z
(3) a' (1/2,0,0) x,1/4,z
(4) b' (0,1/2,0) 1/4,y,z

(1* 0,0,0)'
(2* 0,0,0)'
(3* 1/2,1/2,0)'
(4* 1/2,1/2,0)'

For (0,1/2,1/2) + set

(1) t' (0,1/2,1/2)
(2) 2' (0,0,1/2) 0,1/4,z
(3) n' (1/2,0,1/2) x,0,z
(4) c' (0,0,1/2) 1/4,y,z

(1* 0,1/2,1/2)
(2* 0,1/2,1/2)'
(3* 1/2,0,1/2)
(4* 1/2,0,1/2)'

41.2.301 - 1 - 578
Generators selected (1): t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,0,0)' +</td>
</tr>
<tr>
<td>(0,1/2,1/2) +</td>
<td>(0,1/2,1/2)' +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 a .21'</td>
<td>(3) x+1/2,y+1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y+1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 a .21'</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg1'
\[a^* = a \quad b^* = b/2 \]
Origin at 0,0,z

Along [1,0,0] p1m11'
\[a^* = b/2 \quad b^* = c/2 \]
Origin at x,0,0

Along [0,1,0] p1m11'
\[a^* = -a/2 \quad b^* = c/2 \]
Origin at 0,y,0
Orthorhombic

Ab’a2' m’m2'

41.3.302 Ab’a2'

Origin on 1n2'

Asymmetric unit

\[0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2} \]

Symmetry Operations

For (0,0,0) + set

1. \((1) 1 \)

 \[(1 | 0,0,0) \]

2. \((2) 2' \quad 0,0,z \)

 \[(2 | 0,0,0)' \]

3. \((3) a \quad (1/2,0,0) \)

 \[x,1/4,z \quad (m | 1/2,1/2,0) \]

4. \((4) b' \quad (0,1/2,0) \)

 \[1/4,y,z \quad (m | 1/2,1/2,0)' \]

For (0,1/2,1/2) + set

1. \((1) t \quad (0,1/2,1/2) \)

 \[(1 | 0,1/2,1/2) \]

2. \((2) 2' \quad (0,0,1/2) \)

 \[0,1/4,z \quad (2 | 0,1/2,1/2)' \]

3. \((3) n \quad (1/2,0,1/2) \)

 \[x,0,z \quad (m | 1/2,0,1/2) \]

4. \((4) c' \quad (0,0,1/2) \)

 \[1/4,y,z \quad (m | 1/2,0,1/2)' \]
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2) +</td>
<td></td>
</tr>
<tr>
<td>8 b 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 a ..2' 0,0,z [u,v,0] 1/2,1/2,z [u,v,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2'm'g
 - \(a^* = a \quad b^* = b/2 \)
 - Origin at 0,0,z

- Along [1,0,0] p1m1
 - \(a^* = b/2 \quad b^* = c/2 \)
 - Origin at x,0,0

- Along [0,1,0] p2a1m1
 - \(a^* = -a/2 \quad b^* = c/2 \)
 - Origin at 0,y,0
Origin on 1n'2'

Asymmetric unit \(0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2}\)

Symmetry Operations

For \((0,0,0) + \) set

(1) 1
 (1 | 0,0,0)

(2) 2' 0,0,z
 \((2_z | 0,0,0)\)‘

(3) a' (1/2,0,0) x,1/4,z
 \((m_y | 1/2,1/2,0)\)‘

(4) b (0,1/2,0) 1/4,y,z
 \((m_x | 1/2,1/2,0)\)

For \((0,1/2,1/2) + \) set

(1) t (0,1/2,1/2)
 \((1 | 0,1/2,1/2)\)

(2) 2' (0,0,1/2) 0,1/4,z
 \((2_z | 0,1/2,1/2)\)‘

(3) n' (1/2,0,1/2) x,0,z
 \((m_y | 1/2,0,1/2)\)‘

(4) c (0,0,1/2) 1/4,y,z
 \((m_x | 1/2,0,1/2)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>x,y,z [u,v,w]</td>
<td>(1)</td>
</tr>
<tr>
<td>4 a .2'</td>
<td>0,0,z [u,v,0]</td>
<td>(2)</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2'mg'
 - $a^* = a$, $b^* = b/2$
 - Origin at 0,0,z
- Along [1,0,0] p$_{2a*}$1m1
 - $a^* = b/2$, $b^* = c/2$
 - Origin at x,0,0
- Along [0,1,0] p1m1
 - $a^* = -a/2$, $b^* = c/2$
 - Origin at 0,y,0
Ab'a'2
41.5.304

m'm'2
Ab'a'2

Orthorhombic

Origin on 1n'2

Asymmetric unit:
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set:

(1) 1
 (1) 0,0,0

(2) 2 0,0,z
(2) x,1/4,z
(2) 0,0,0)
(2) x,0,z

(3) a' (1/2,0,0) x,1/4,z
(3) a (1/2,0,0) x,1/4,z
(3) (m_y|1/2,1/2,0)

(4) b' (0,1/2,0) 1/4,y,z
(4) b (0,1/2,0) 1/4,y,z
(4) (m_x|1/2,1/2,0)

For (0,1/2,1/2) + set:

(1) t (0,1/2,1/2)
(1) 0,1/2,1/2

(2) 2 0,0,1/2 0,1/4,z
(2) x,0,1/2 0,1/4,z
(2) (m_y|1/2,1/2,0)

(3) n' (1/2,0,1/2) x,0,z
(3) n (1/2,0,1/2) x,0,z
(3) (m_x|1/2,1/2,0)

(4) c' (0,0,1/2) 1/4,y,z
(4) c (0,0,1/2) 1/4,y,z
(4) (m_x|1/2,1/2,0)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 a 2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2m'g'
Along [1,0,0] p1m'1
Along [0,1,0] p1m'1

\(a^* = a \quad b^* = b/2 \)
\(a^* = b/2 \quad b^* = c/2 \)
\(a^* = -a/2 \quad b^* = c/2 \)

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
41.6.305 - 1 - 586

Origin on 1n'2

Asymmetric unit

\[0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/2 \]

Symmetry Operations

For (0,0,0) + set

1. \(1\)

 \((1) \begin{cases} 1 \\ (1|0,0,0) \end{cases}\)

2. \(2\)

 \((2) \begin{cases} 2 \quad 0,0,z \\ (2|0,0,0) \end{cases}\)

3. \(a\)

 \((3) \begin{cases} a \quad (1/2,0,0) \quad x,1/4,z \\ (m,|1/2,1/2,0) \end{cases}\)

4. \(b\)

 \((4) \begin{cases} b \quad (0,1/2,0) \quad 1/4,y,z \\ (m,|1/2,1/2,0) \end{cases}\)

For (0,1/2,1/2)' + set

1. \(t'\)

 \((1) t' \begin{cases} (0,1/2,1/2) \\ (1|0,1/2,1/2)' \end{cases}\)

2. \(2'\)

 \((2) 2' \begin{cases} (0,0,1/2) \quad 0,1/4,z \\ (2|0,1/2,1/2)' \end{cases}\)

3. \(n'\)

 \((3) n' \begin{cases} (1/2,0,1/2) \quad x,0,z \\ (m,|1/2,0,1/2)' \end{cases}\)

4. \(c'\)

 \((4) c' \begin{cases} (0,0,1/2) \quad 1/4,y,z \\ (m,|1/2,0,1/2)' \end{cases}\)
Generators selected (1); \(t(1,0,0); t(0,1,0); t(0,0,1); t'(0,1/2,1/2); (2); (3). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>(1) (x,y,z \ [u,v,w]) ((0,0,0)) + ((0,1/2,1/2)') + ((0,1/2,1/2))</td>
</tr>
<tr>
<td>4 a .2</td>
<td>0,0,z [0,0,w] (1/2,1/2,z \ [u,v,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] (p_{2a}.2m'g')</th>
<th>Along [1,0,0] (p_{2a}.1m1)</th>
<th>Along [0,1,0] (p_{c}.1m1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a) (b^* = b/2)</td>
<td>(a^* = b/2) (b^* = c/2)</td>
<td>(a^* = -a/2) (b^* = c/2)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Origin on 1n'2'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set
(1) 1
 (1 | 0,0,0)
(2) 2' 0,0,z
 (2 | 0,0,0)'
(3) a (1/2,0,0) x,1/4,z
 (m | 1/2,1/2,0)
(4) b' (0,1/2,0) 1/4,y,z
 (m | 1/2,1/2,0)'

For (0,1/2,1/2)' + set
(1) t' (0,1/2,1/2)
 (1 | 0,1/2,1/2)'
(2) 2 (0,0,1/2) 0,1/4,z
 (2 | 0,1/2,1/2)
(3) n' (1/2,0,1/2) x,0,z
 (m | 1/2,0,1/2)'
(4) c (0,0,1/2) 1/4,y,z
 (m | 1/2,0,1/2)
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x, y, z [u,v,w]</td>
</tr>
<tr>
<td>4 a .2'</td>
<td>0,0,z [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_{2a} \cdot 2mg \)
Along [1,0,0] \(p_{2a} \cdot 1m1 \)
Along [0,1,0] \(p_c \cdot 1m1 \)

\(a^* = a \) \(b^* = b/2 \)
Origin at 0,1/4,z
\(a^* = b/2 \) \(b^* = c/2 \)
Origin at x,0,0
\(a^* = -a/2 \) \(b^* = c/2 \)
Origin at 0,y,0
Origin on 1n2'

Asymmetric unit
$0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0) +$ set

(1) 1 \hspace{1cm} (2) 2' 0,0,z \hspace{1cm} (3) a' (1/2,0,0) x,1/4,z \hspace{1cm} (4) b (0,1/2,0) 1/4,y,z

(1*) 0,0,0 \hspace{1cm} (2*) 0,0,0' \hspace{1cm} (3*) (1/2,1/2,0)' \hspace{1cm} (4*) (1/2,1/2,0)

For $(0,1/2,1/2)' +$ set

(1) t' (0,1/2,1/2) \hspace{1cm} (2) 2 (0,1/2,1/2) 0,1/4,z \hspace{1cm} (3) n (1/2,0,1/2) x,0,z \hspace{1cm} (4) c' (0,0,1/2) 1/4,y,z

(1*) (0,1/2,1/2)' \hspace{1cm} (2*) (0,1/2,1/2) \hspace{1cm} (3*) (1/2,0,1/2) \hspace{1cm} (4*) (1/2,0,1/2)'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(0,1/2,1/2); (2); (3).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,1/2,1/2)' +</td>
</tr>
<tr>
<td>8 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x' y',z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2, y+1/2, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2, y+1/2, z' [u,v,w]</td>
</tr>
<tr>
<td>4 a ..2'</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2, z' [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2a.2m'g' a* = a b* = b/2 Origin at 0,1/4,z
Along [1,0,0] p2a.1m1 a* = b/2 b* = c/2 Origin at x,0,0
Along [0,1,0] p2a.1m1 a* = -a/2 b* = c/2 Origin at 0,y,0
Origin on 1n2

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0) +$ set

1. $1 (0,0,0)$
2. $2 (0,0,z)$
3. $a' (1/2,0,0) x,1/4,z$
4. $b' (0,1/2,0) 1/4,y,z$

For $(0,1/2,1/2)' +$ set

1. $t' (0,1/2,1/2)$
2. $2' (0,0,1/2) 0,1/4,z$
3. $n (1/2,0,1/2) x,0,z$
4. $c (0,0,1/2) 1/4,y,z$

$A_p b'a'2 \quad mm21' \quad Orthorhombic$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(0,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2)’ +</td>
<td></td>
</tr>
<tr>
<td>8 b 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x+1/2,y+1/2,z [u,v,w] (4) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 a ..2 0,0,z [0,0,w] 1/2,1/2,z [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2g-2mg</th>
<th>Along [1,0,0] p2g-1m1</th>
<th>Along [0,1,0] p2g-1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b/2</td>
<td>a* = b/2 b* = c/2</td>
<td>a* = -a/2 b* = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Fmm2 mm2 Orthorhombic
42.1.309 Fmm2

Origin on mm2

Asymmetric unit

\[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{4}; \quad 0 < z < 1\]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 0,0,z \\
(3) & \quad m \ x,0,z \\
(4) & \quad m \ 0,y,z
\end{align*}
\]

\[
\begin{align*}
(1^*) & \quad 0,0,0 \\
(2^*) & \quad 0,0,0 \\
(3^*) & \quad 0,0,0 \\
(4^*) & \quad 0,0,0
\end{align*}
\]

For \((0,1/2,1/2) + \) set

\[
\begin{align*}
(1) & \quad t \ (0,1/2,1/2) \\
(2) & \quad 2 \ (0,0,1/2) \ 0,1/4,z \\
(3) & \quad c \ (0,0,1/2) \ x,1/4,z \\
(4) & \quad n \ (0,1/2,1/2) \ 0,y,z
\end{align*}
\]

\[
\begin{align*}
(1^*) & \quad 0,1/2,1/2 \\
(2^*) & \quad 0,1/2,1/2 \\
(3^*) & \quad 0,1/2,1/2 \\
(4^*) & \quad 0,1/2,1/2
\end{align*}
\]

For \((1/2,0,1/2) + \) set

\[
\begin{align*}
(1) & \quad t \ (1/2,0,1/2) \\
(2) & \quad 2 \ (0,0,1/2) \ 1/4,0,z \\
(3) & \quad n \ (1/2,0,1/2) \ x,0,z \\
(4) & \quad c \ (0,0,1/2) \ 1/4,y,z
\end{align*}
\]

\[
\begin{align*}
(1^*) & \quad 1/2,0,1/2 \\
(2^*) & \quad 1/2,0,1/2 \\
(3^*) & \quad 1/2,0,1/2 \\
(4^*) & \quad 1/2,0,1/2
\end{align*}
\]

For \((1/2,1/2,0) + \) set

\[
\begin{align*}
(1) & \quad t \ (1/2,1/2,0) \\
(2) & \quad 2 \ 1/4,1/4,z \\
(3) & \quad a \ (1/2,1/2,0) \ x,1/4,z \\
(4) & \quad b \ (0,1/2,0) \ 1/4,y,z
\end{align*}
\]

\[
\begin{align*}
(1^*) & \quad 1/2,1/2,0 \\
(2^*) & \quad 1/2,1/2,0 \\
(3^*) & \quad 1/2,1/2,0 \\
(4^*) & \quad 1/2,1/2,0
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>16 e</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(0,1/2,1/2)</td>
<td>8 d.m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>(1/2,0,1/2)</td>
<td>8 c.m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>(1/2,1/2,0)</td>
<td>8 b..2</td>
<td>1/4,1/4,z [0,0,w]</td>
</tr>
<tr>
<td>(0,0,0)</td>
<td>4 a mm2</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm

<table>
<thead>
<tr>
<th>a* = a/2</th>
<th>b* = b/2</th>
</tr>
</thead>
</table>

Origin at 0,0,z

Along [1,0,0] p1m11'

<table>
<thead>
<tr>
<th>a* = b/2</th>
<th>b* = c/2</th>
</tr>
</thead>
</table>

Origin at x,0,0

Along [0,1,0] p1m11'

<table>
<thead>
<tr>
<th>a* = -a/2</th>
<th>b* = c/2</th>
</tr>
</thead>
</table>

Origin at 0,y,0
Origin on mm21'
Asymmetric unit
\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1\]

Symmetry Operations

For (0,0,0) + set

1. \(1\)
2. \(2\) \(0,0,z\)
3. \(m\) \(x,0,z\)
4. \(m\) \(0,y,z\)

For (0,1/2,1/2) + set

1. \(t\) \((0,1/2,1/2)\)
2. \(2\) \(0,1/2,1/2\) \(0,1/4,z\)
3. \(c\) \((0,0,1/2)\) \(x,1/4,z\)
4. \(n\) \((0,1/2,1/2)\) \(0,y,z\)

For (1,2,1/2) + set

1. \(t\) \((1/2,0,1/2)\)
2. \(2\) \((0,0,1/2)\) \(1/4,0,z\)
3. \(n\) \((1/2,0,1/2)\) \(x,0,z\)
4. \(c\) \((0,0,1/2)\) \(1/4,y,z\)

For (0,0,0)' + set

1. \(1'\)
2. \(2'\) \(0,0,z\)
3. \(m'\) \(x,0,z\)
4. \(m'\) \(0,y,z\)

For (0,1/2,1/2)' + set

1. \(t'\) \((0,1/2,1/2)\)
2. \(2'\) \((0,0,1/2)\) \(0,1/4,z\)
3. \(c'\) \((0,0,1/2)\) \(x,1/4,z\)
4. \(n'\) \((0,1/2,1/2)\) \(0,y,z\)
Continued

For $(1/2,0,1/2)' + \text{set}$

$(1) \ t' (1/2,0,1/2)$
$(1) |(1/2,0,1/2)'$

$(2) \ 2' (0,0,1/2) \ 1/4,0,z$
$(2) |(1/2,0,1/2)'$

$(3) \ n' (1/2,0,1/2) \ x,0,z$
$(m, |1/2,0,1/2)'$

$(4) \ c' (0,0,1/2) \ 1/4,y,z$
$(m, |1/2,0,1/2)'$

For $(1/2,1/2,0)' + \text{set}$

$(1) \ t' (1/2,1/2,0)$
$(1) |(1/2,1/2,0)'$

$(2) \ 2' 1/4,1/4,z$
$(2) |(1/2,1/2,0)'$

$(3) \ a' (1/2,0,0) \ x,1/4,z$
$(m, |1/2,1/2,0)'$

$(4) \ b' (0,1/2,0) \ 1/4,y,z$
$(m, |1/2,1/2,0)'$

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

$(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +$

$(0,0,0)' + (0,1/2,1/2)' + (1/2,0,1/2)' + (1/2,1/2,0)' +$

16 e 11' (1) x,y,z [0,0,0] (2) x,y,z [0,0,0] (3) x,y,z [0,0,0] (4) x,y,z [0,0,0]

8 d .m.1' x,0,z [0,0,0] x,0,z [0,0,0]

8 c m..1' 0,y,z [0,0,0] 0,y,z [0,0,0]

8 b ..21' 1/4,1/4,z [0,0,0] 1/4,3/4,z [0,0,0]

4 a mm21' 0,0,z [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p2mm1' Along [1,0,0] p1m11' Along [0,1,0] p1m11'

$a^* = a/2$ $b^* = b/2$ $a^* = b/2$ $b^* = c/2$

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0

42.2.310 - 2 - 597
Fm'\text{m}2' \quad \text{m}'\text{m}2' \quad \text{Orthorhombic}

42.3.311

Origin on m'\text{m}2'

Asymmetric unit $0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1$

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 $|0,0,0)$

(2) $2'$ $0,0,z$
(2 $|0,0,0)'$

(3) m $x,0,z$
(m $|0,0,0)$

(4) m' $0,y,z$
(m $|0,0,0)'$

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2)$
(1 $|1/2,0,1/2)$

(2) $2'$ (0,0,1/2) $1/4,0,z$
(2 $|0,1/2,0,1/2)'$

(3) c (0,0,1/2) $x,1/4,z$
(m $|0,1/2,1/2)$

(4) n' (0,1/2,1/2) $0,y,z$
(m $|0,1/2,1/2)'$

For (1/2,0,1/2) + set

(1) t (1/2,0,1/2)$
(1 $|1/2,0,0,1/2)$

(2) $2'$ (0,0,1/2) $1/4,0,z$
(2 $|1/2,0,0,1/2)'$

(3) n (1/2,0,1/2) $x,0,z$
(m $|1/2,0,1/2)$

(4) c' (0,0,1/2) $1/4,y,z$
(m $|1/2,0,1/2)'$

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)$
(1 $|1/2,1/2,0)$

(2) $2'$ $1/4,1/4,z$
(2 $|1/2,1/2,0)'$

(3) a (1/2,0,0) $x,1/4,z$
(m $|1/2,1/2,0)$

(4) b' (0,1/2,0) $1/4,y,z$
(m $|1/2,1/2,0)'$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +</td>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +</td>
</tr>
<tr>
<td>16 e 1 x,y,z[u,v,w] (2) x,y,z[u,v,w] (3) x,y,z[ū,v,w] (4) x,y,z[ū,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 d m. x,0,z[0,v,0] x,0,z[0,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 c m'. 0,y,z[0,v,w] 0,y,z[0,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 b .2' 1/4,1/4,z[u,v,0] 1/4,3/4,z[ū,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 a m'2' 0,0,z[0,v,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'mmm'
\(\mathbf{a}^* = -\mathbf{b}/2 \quad \mathbf{b}^* = \mathbf{a}/2 \)
Origin at 0,0,z

Along [1,0,0] p1m1
\(\mathbf{a}^* = \mathbf{b}/2 \quad \mathbf{b}^* = \mathbf{c}/2 \)
Origin at x,0,0

Along [0,1,0] p1m11'
\(\mathbf{a}^* = -\mathbf{a}/2 \quad \mathbf{b}^* = \mathbf{c}/2 \)
Origin at 0,y,0
Orthorhombic

Asymmetric unit

\[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{4}; \quad 0 < z < 1 \]

Symmetry Operations

For \((0,0,0)\) + set

1. \(E\) \((0,0,0)\)
2. \((2)\) \((0,0,z)\)
3. \((3)\) \(x,0,z\)
4. \((4)\) \(0,y,z\)

For \((0,1/2,1/2)\) + set

1. \(t\) \((0,1/2,1/2)\)
2. \((2)\) \((0,0,1/2)\)
3. \((3)\) \(0,1/4,z\)
4. \((4)\) \(0,1/4,z\)

For \((1/2,0,1/2)\) + set

1. \(t\) \((1/2,0,1/2)\)
2. \((2)\) \((0,1/2,0)\)
3. \((3)\) \(1/4,0,z\)
4. \((4)\) \(1/4,0,z\)

For \((1/2,1/2,0)\) + set

1. \(t\) \((1/2,1/2,0)\)
2. \((2)\) \((1/4,1/4,z)\)
3. \((3)\) \(1/4,1/4,z\)
4. \((4)\) \(1/4,1/4,z\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity,</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +</td>
</tr>
<tr>
<td>16 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 d .m'</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>8 c m'..</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 b .2</td>
<td>1/4,1/4,z [0,0,w]</td>
</tr>
<tr>
<td>4 a m'm'2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2m'm'
a = a/2 **b** = b/2
Origin at 0,0,z

Along [1,0,0] p1m'1
a = b/2 **b** = c/2
Origin at x,0,0

Along [0,1,0] p1m'1
a = -a/2 **b** = c/2
Origin at 0,y,0
Symmetry Operations

For (0,0,0) + set

1. 1
2. 2 \(0,0,z\)
3. \(m\) \(x,0,z\)
4. \(m\) \(0,y,z\)

For (0,1/2,1/2)' + set

1. \(t\) \((0,1/2,1/2)\)
2. \(2'\) \((0,0,1/2)\)
3. \(c'\) \((0,0,1/2)\)
4. \(n'\) \((0,1/2,1/2)\)

For (1/2,0,1/2)' + set

1. \(t\) \((1/2,0,1/2)\)
2. \(2'\) \((0,0,1/2)\)
3. \(n'\) \((1/2,0,1/2)\)
4. \(c'\) \((0,0,1/2)\)

For (1/2,1/2,0) + set

1. \(t\) \((1/2,1/2,0)\)
2. \(2\) \(1/4,1/4,z\)
3. \(a\) \((1/2,0,0)\)
4. \(b\) \((0,1/2,0)\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(0,1/2,1/2); t'(1/2,0,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,1/2,1/2)' +</td>
<td>(1/2,0,1/2)' +</td>
</tr>
<tr>
<td>16 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 d .m.</td>
<td>x,0,z [0,v,0]</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>8 c m..</td>
<td>0,y,z [0,v,0]</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 a mm2</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p-2mm Along [1,0,0] p1m11' Along [0,1,0] p1m11'
\(\mathbf{a}^* = \mathbf{a}/2 \) \(\mathbf{b}^* = \mathbf{b}/2 \) \(\mathbf{a}^* = -\mathbf{a}/2 \) \(\mathbf{b}^* = \mathbf{c}/2 \)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin on mm2

Asymmetric unit $0 \leq x \leq 1/4$; $0 \leq y \leq 1/4$; $0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0) +$ set

1. 1

 (1) 1
 (2) 2 0,0,0
 (3) m x,0,0
 (4) m 0,y,z

 For $(0,1/2,1/2) +$ set

1. t (0,1/2,1/2)

 (1) t (0,1/2,1/2)
 (2) 2 (0,0,1/2) 0,1/4,0
 (3) c (0,0,1/2) x,1/4,0
 (4) n (0,1/2,1/2) 0,y,z

 For $(1/2,0,1/2)' +$ set

1. t' (1/2,0,1/2)

 (1) t' (1/2,0,1/2)
 (2) 2' (0,0,1/2) 1/4,0,0
 (3) n' (1/2,0,1/2) x,0,0
 (4) c' (0,0,1/2) 1/4,y,z

 For $(1/2,1/2,0)' +$ set

1. b' (1/2,1/2,0)

 (1) b' (1/2,1/2,0)
 (2) 2' 1/4,1/4,0
 (3) a' (1/2,0,0) x,1/4,0
 (4) b' (0,1/2,0) 1/4,y,z
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t'(1/2,0,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(x,y,z) [u,v,w]</td>
</tr>
<tr>
<td>(0,1/2,1/2) +</td>
<td>(\bar{x},0,z) [0,v,0]</td>
</tr>
<tr>
<td>(1/2,0,1/2)' +</td>
<td>(x,y,z) [(\bar{u},v,\bar{w})]</td>
</tr>
<tr>
<td>(1/2,1/2,0)' +</td>
<td>(x,y,z) [u,v,(\bar{w})]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) \(p_{2a}2mm\) \(p_{2a}2mm\) \(p_{2a}2mm\)
\(a^*=a/2\) \(b^*=b/2\) \(a^*=a/2\) \(b^*=b/2\)
Origin at \(0,0,z\) Origin at \(x,0,0\) Origin at \(0,y,0\) Origin at \(0,y,0\)
42.7.315 - 1 - 606

Orthorhombic

- **Origin**: on mm'2'
- **Asymmetric unit**: $0 < x < 1/4; 0 < y < 1/4; 0 < z < 1$

Symmetry Operations

For $(0,0,0) +$ set

1. 1

2. $2' \ (0,0,z)$

3. $m' \ x,0,z$

4. $m \ 0,y,z$

For $(0,1/2,1/2)' +$ set

1. $t' \ (0,1/2,1/2)$

2. $2 \ (0,0,1/2) \ 0,1/4,z$

3. $c \ (0,0,1/2) \ x,1/4,z$

4. $n' \ (0,1/2,1/2) \ 0,y,z$

For $(1/2,0,1/2)' +$ set

1. $t' \ (1/2,0,1/2)$

2. $2 \ (0,0,1/2) \ 1/4,0,z$

3. $n \ (1/2,0,1/2) \ x,0,z$

4. $c' \ (0,0,1/2) \ 1/4,y,z$

For $(1/2,1/2,0) +$ set

1. $t \ (1/2,1/2,0)$

2. $2' \ 1/4,1/4,z$

3. $a' \ (1/2,0,0) \ x,1/4,z$

4. $b \ (0,1/2,0) \ 1/4,y,z$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(0,1/2,1/2); t'(1/2,0,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2)' + (1/2,0,1/2)' + (1/2,1/2,0) +</td>
<td></td>
</tr>
<tr>
<td>16 e 1 (1) x,y,z [u,v,w]</td>
<td>(2) \overline{x},y,z [u,v,w]</td>
</tr>
<tr>
<td>8 d .m'. x,0,z [u,0,w]</td>
<td>\overline{x},0,z [u,0,w]</td>
</tr>
<tr>
<td>8 c m.. 0,y,z [u,0,0]</td>
<td>0,\overline{y},z [u,0,0]</td>
</tr>
<tr>
<td>8 b ..2' 1/4,1/4,z [u,v,0]</td>
<td>1/4,3/4,z [u,\overline{v},0]</td>
</tr>
<tr>
<td>4 a mm'2' 0,0,z [u,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm
\(a^* = a/2\) \(b^* = b/2\)
Origin at 0,1/4,z

Along [1,0,0] p1m11'
\(a^* = b/2\) \(b^* = c/2\)
Origin at 0,0,0

Along [0,1,0] p2\(1\overline{m}1\)
\(a^* = -a/2\) \(b^* = c/2\)
Origin at 0,y,0
Origin on \(m'm2 \)

Asymmetric unit \(0 \leq x \leq \frac{1}{4}; \quad 0 \leq y \leq \frac{1}{4}; \quad 0 \leq z \leq 1 \)

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 0,0,z \\
(3) & \quad m', x,0,z \\
(4) & \quad m', 0,y,z \\
(1') & \quad 0,0,0 \\
(2') & \quad 0,0,0' \\
(3') & \quad m', 0,0,0' \\
(4') & \quad m', 0,0,0'
\end{align*}
\]

For \((0,1/2,1/2) + \) set

\[
\begin{align*}
(1) & \quad t' (0,1/2,1/2) \\
(2) & \quad 2', 0,0,1/2,1/2 \\
(3) & \quad c, 0,0,1/2 \\
(4) & \quad n, 0,1/2,1/2,1/2 \\
(1') & \quad 0,1/2,1/2 \\
(2') & \quad 0,0,0 \\
(3') & \quad m, 0,0,1/2,1/2 \\
(4') & \quad m, 0,1/2,1/2,1/2
\end{align*}
\]

For \((1/2,0,1/2) + \) set

\[
\begin{align*}
(1) & \quad t' (1/2,0,1/2) \\
(2) & \quad 2', 0,0,1/2,1/2 \\
(3) & \quad n, 1/2,0,1/2,1/2 \\
(4) & \quad c, 0,0,1/2 \\
(1') & \quad 1/2,0,1/2 \\
(2') & \quad 0,0,0 \\
(3') & \quad m, 0,0,1/2,1/2 \\
(4') & \quad m, 0,1/2,1/2,1/2
\end{align*}
\]

For \((1/2,1/2,0) + \) set

\[
\begin{align*}
(1) & \quad t (1/2,1/2,0) \\
(2) & \quad 2, 1/4,1/4,z \\
(3) & \quad a', 1/2,0,0 \\
(4) & \quad b', 0,1/2,0 \\
(1') & \quad 1/2,1/2,0 \\
(2') & \quad 1/2,1/2,0 \\
(3') & \quad m, 1/2,1/2,0 \\
(4') & \quad m, 1/2,1/2,0'
\end{align*}
\]
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t'(0,1/2,1/2); t'(1/2,0,1/2); (2); (3). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 e 1</td>
<td>(1) (x,y,z) [(u,v,w)]</td>
</tr>
<tr>
<td>8 d m'</td>
<td>(2) (\bar{x},y,z) [(\bar{u},v,w)]</td>
</tr>
<tr>
<td>8 c m'</td>
<td>(3) (x,\bar{y},z) [(u,\bar{v},w)]</td>
</tr>
<tr>
<td>8 b ..2</td>
<td>(4) (\bar{x},y,z) [(\bar{u},v,w)]</td>
</tr>
<tr>
<td>4 a m'm'2</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) \(\text{p}_{\text{c}2\text{mm}}\)
\(a^*=\frac{a}{2} \quad b^*=\frac{b}{2}\)
Origin at 1/4,1/4,z

Along [1,0,0] \(\text{p}_{2\text{b}1\text{m}1}\)
\(a^*=\frac{b}{2} \quad b^*=\frac{c}{2}\)
Origin at \(x,0,0\)

Along [0,1,0] \(\text{p}_{2\text{b}1\text{m}1}\)
\(a^*=\frac{-a}{2} \quad b^*=\frac{c}{2}\)
Origin at 0,y,0
Origin on m'm2'

Asymmetric unit \(0 < x < 1/4; \quad 0 < y < 1/4; \quad 0 < z < 1\)

Symmetry Operations

For \((0,0,0) + \) set

(1) \(1\)
(2) \(2' \quad 0,0,z\)
(3) \(m \quad x,0,z\)
(4) \(m' \quad 0,y,z\)

For \((0,1/2,1/2) + \) set

(1) \(t \quad (0,1/2,1/2)\)
(2) \(2' \quad (0,0,1/2) \quad 0,1/4,z\)
(3) \(c \quad (0,0,1/2) \quad x,1/4,z\)
(4) \(n' \quad (0,1/2,1/2) \quad 0,y,z\)

For \((1/2,0,1/2) + \) set

(1) \(t' \quad (1/2,0,1/2)\)
(2) \(2 \quad (0,0,1/2) \quad 1/4,0,z\)
(3) \(n' \quad (1/2,0,1/2) \quad x,0,z\)
(4) \(c \quad (0,0,1/2) \quad 1/4,y,z\)

For \((1/2,1/2,0) + \) set

(1) \(t' \quad (1/2,1/2,0)\)
(2) \(2 \quad 1/4,1/4,z\)
(3) \(a' \quad (1/2,0,0) \quad x,1/4,z\)
(4) \(b \quad (0,1/2,0) \quad 1/4,y,z\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t'(1/2,0,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2)' + (1/2,1/2,0)' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 d m..</td>
<td>x,0,z [0,v,0]</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>8 c m'..</td>
<td>0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 b ..2'</td>
<td>1/4,1/4,z [u,v,0]</td>
<td>1/4,3/4,z [u,v,0]</td>
</tr>
<tr>
<td>4 a m'm2'</td>
<td>0,0,z [0,v,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,1,0] p2a*2mm
\[a^* = a/2 \quad b^* = b/2 \]
Origin at 0,1/4,z

Along [1,0,0] p..1m1
\[a^* = b/2 \quad b^* = c/2 \]
Origin at x,0,0

Along [0,1,0] p1m11'
\[a^* = -a/2 \quad b^* = c/2 \]
Origin at 0,y,0
Origin on mm'2'

Asymmetric unit \(0 < x < 1/4; \quad 0 < y < 1/4; \quad 0 < z < 1 \)

Symmetry Operations

For \((0,0,0) + \) set

1. \((0,0,0)\)
2. \((0,0,0)', \quad (0,0,0)\)
3. \((0,0,0)', \quad (0,0,0)\)
4. \((0,0,0)', \quad (0,0,0)\)

For \((0,1/2,1/2) + \) set

1. \((0,1/2,1/2)\)
2. \((0,1/2,1/2)', \quad (0,1/2,1/2)\)
3. \((0,1/2,1/2)', \quad (0,1/2,1/2)\)
4. \((0,1/2,1/2)', \quad (0,1/2,1/2)\)

For \((1/2,0,1/2) + \) set

1. \((1/2,0,1/2)\)
2. \((1/2,0,1/2)', \quad (1/2,0,1/2)\)
3. \((1/2,0,1/2)', \quad (1/2,0,1/2)\)
4. \((1/2,0,1/2)', \quad (1/2,0,1/2)\)

For \((1/2,1/2,0) + \) set

1. \((1/2,1/2,0)\)
2. \((1/2,1/2,0)', \quad (1/2,1/2,0)\)
3. \((1/2,1/2,0)', \quad (1/2,1/2,0)\)
4. \((1/2,1/2,0)', \quad (1/2,1/2,0)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t'(1/2,0,1/2); (2); (3).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>16 e</td>
</tr>
<tr>
<td>(0,1/2,1/2)</td>
<td>8 d</td>
</tr>
<tr>
<td>(1/2,0,1/2)'</td>
<td>8 c</td>
</tr>
<tr>
<td>(1/2,1/2,0)'</td>
<td>8 b</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_{2a'}2m'm'
\[a^* = a/2 \quad b^* = b/2 \]
Origin at 1/4,0,z

Along [1,0,0] p_{1m11'}
\[a^* = b/2 \quad b^* = c/2 \]
Origin at x,0,0

Along [0,1,0] p_{2a',1m1}
\[a^* = -a/2 \quad b^* = c/2 \]
Origin at 0,y,0
Origin on \(m'm'2 \)

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1 \)

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{align*}
&\text{(1) } \begin{pmatrix} 1 \end{pmatrix} \\
&\text{(2) } \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 0,0,0 \end{pmatrix} \\
&\text{(3) } \begin{pmatrix} m' \end{pmatrix} \begin{pmatrix} x,0,z \end{pmatrix} \\
&\text{(4) } \begin{pmatrix} m' \end{pmatrix} \begin{pmatrix} 0,y,z \end{pmatrix}
\end{align*}
\]

For \((0,1/2,1/2)\) + set

\[
\begin{align*}
&\text{(1) } \begin{pmatrix} t \end{pmatrix} \begin{pmatrix} 0,1/2,1/2 \end{pmatrix} \\
&\text{(2) } \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 0,0,1/2 \end{pmatrix} \begin{pmatrix} 0,1/4,z \end{pmatrix} \\
&\text{(3) } \begin{pmatrix} c' \end{pmatrix} \begin{pmatrix} 0,0,1/2 \end{pmatrix} \begin{pmatrix} x,1/4,z \end{pmatrix} \\
&\text{(4) } \begin{pmatrix} n' \end{pmatrix} \begin{pmatrix} 0,1/2,1/2 \end{pmatrix} \begin{pmatrix} 0,y,z \end{pmatrix} \\
&\text{(5) } \begin{pmatrix} m' \end{pmatrix} \begin{pmatrix} 0,0,0 \end{pmatrix}' \begin{pmatrix} m_x \end{pmatrix} \begin{pmatrix} 0,0,0 \end{pmatrix}'
\end{align*}
\]

For \((1/2,0,1/2)'\) + set

\[
\begin{align*}
&\text{(1) } \begin{pmatrix} t' \end{pmatrix} \begin{pmatrix} 1/2,0,1/2 \end{pmatrix} \\
&\text{(2) } \begin{pmatrix} 2' \end{pmatrix} \begin{pmatrix} 0,0,1/2 \end{pmatrix} \begin{pmatrix} 1/4,0,z \end{pmatrix} \\
&\text{(3) } \begin{pmatrix} n \end{pmatrix} \begin{pmatrix} 1/2,0,1/2 \end{pmatrix} \begin{pmatrix} x,0,z \end{pmatrix} \\
&\text{(4) } \begin{pmatrix} c \end{pmatrix} \begin{pmatrix} 0,0,1/2 \end{pmatrix} \begin{pmatrix} 1/4,y,z \end{pmatrix} \\
&\text{(5) } \begin{pmatrix} m \end{pmatrix} \begin{pmatrix} 1/2,0,1/2 \end{pmatrix} \begin{pmatrix} m_x \end{pmatrix} \begin{pmatrix} 1/2,0,1/2 \end{pmatrix}
\end{align*}
\]

For \((1/2,1/2,0)' + set\)

\[
\begin{align*}
&\text{(1) } \begin{pmatrix} t' \end{pmatrix} \begin{pmatrix} 1/2,1/2,0 \end{pmatrix} \\
&\text{(2) } \begin{pmatrix} 2' \end{pmatrix} \begin{pmatrix} 1/4,1/4,0 \end{pmatrix} \begin{pmatrix} 1/4,z \end{pmatrix} \\
&\text{(3) } \begin{pmatrix} a \end{pmatrix} \begin{pmatrix} 1/2,0,0 \end{pmatrix} \begin{pmatrix} x,1/4,z \end{pmatrix} \\
&\text{(4) } \begin{pmatrix} b \end{pmatrix} \begin{pmatrix} 0,1/2,0 \end{pmatrix} \begin{pmatrix} 1/4,y,z \end{pmatrix} \\
&\text{(5) } \begin{pmatrix} m \end{pmatrix} \begin{pmatrix} 1/2,1/2,0 \end{pmatrix} \begin{pmatrix} m_x \end{pmatrix} \begin{pmatrix} 1/2,1/2,0 \end{pmatrix}
\end{align*}
\]
Generators selected

(1); t/(1,0,0); t(0,0,1); t(0,1,0); t(0,1/2,1/2); t'(1/2,0,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2)’ + (1/2,1/2,0)’ +</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 e 1</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 d m’</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 c m’</td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 b m’2</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>4 a m’2</td>
<td>0,y,z [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2a2m’m’

a* = a/2 b* = b/2
Origin at 0,0,z

Along [1,0,0] p,,1m1

a* = b/2 b* = c/2
Origin at x,1/4,0

Along [0,1,0] p2a1m1

a* = -a/2 b* = c/2
Origin at 1/4,y,0
Origin on 112

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2 0,0,z
(3) d (1/4,0,1/4) x,1/8,z
(4) d (0,1/4,1/4) 1/8,y,z

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2)
(2) 2 (0,0,1/2) 0,1/4,z
(3) d (1/4,0,3/4) x,3/8,z
(4) d (0,3/4,3/4) 1/8,y,z

For (1/2,0,1/2) + set

(1) t (1/2,0,1/2)
(2) 2 (0,0,1/2) 1/4,0,z
(3) d (3/4,0,3/4) x,1/8,z
(4) d (0,1/4,3/4) 3/8,y,z

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(2) 2 1/4,1/4,z
(3) d (3/4,0,1/4) x,3/8,z
(4) d (0,3/4,1/4) 3/8,y,z
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +</td>
<td>16 b 1 (1) x,y,z [u,v,w] (2) x+1/4,y+1/4,z+1/4 [u,v,w] (4) x+1/4,y+1/4,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td>8 a .2 0,0,z [0,0,w] 1/4,1/4,z+1/4 [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2gg
Along [1,0,0] c_p^-1m'1
Along [0,1,0] c_p^-1m'1

a* = a/2 b* = b/2
a* = b/2 b* = c/2
a* = -a/2 b* = c/2

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin
on 112'

Asymmetric unit

\[0 < x < \frac{1}{4};\quad 0 < y < \frac{1}{4};\quad 0 < z < 1\]

Symmetry Operations

| For (0,0,0) + set |
|-------------------|---------------------------------|---------------------------------|
| (1) t (0,0,0) | (2) 2 (0,0,0) z | (3) d (1/4,0,1/4) x, 1/8, z |
| | (2z | 0,0,0) | (m, | 1/4,1/4,1/4) |
| | | | (m, | 1/4,1/4,1/4) |
| | | | For (0,1/2,1/2) + set |
| (1) t (0,1/2,1/2) | (2) 2 (0,0,1/2) z | (3) d (1/4,0,3/4) x, 3/8, z |
| | (2z | 0,1/2,1/2) | (m, | 1/4,3/4,3/4) |
| | | | (m, | 1/4,3/4,3/4) |
| | | | For (1/2,0,1/2) + set |
| (1) t (1/2,0,1/2) | (2) 2 (0,0,1/2) z | (3) d (3/4,0,3/4) x, 1/8, z |
| | (2z | 1/2,0,1/2) | (m, | 3/4,1/4,3/4) |
| | | | (m, | 3/4,1/4,3/4) |
| | | | For (1/2,1/2,0) + set |
| (1) t (1/2,1/2,0) | (2) 2 (1/4,1,4, z | (3) d (3/4,0,1/4) x, 3/8, z |
| | (2z | 1/2,1/2,0) | (m, | 3/4,3/4,1/4) |
| | | | (m, | 3/4,3/4,1/4) |
| | | | For (0,0,0)' + set |
| (1) t' (0,0,0)' | (2) 2' (0,0,0) z | (3) d' (1/4,0,1/4) x, 1/8, z |
| | (2z | 0,0,0)' | (m, | 1/4,1/4,1/4)' |
| | | | (m, | 1/4,1/4,1/4)' |
| | | | For (0,1/2,1/2)' + set |
| (1) t' (0,1/2,1/2) | (2) 2' (0,0,1/2) z | (3) d' (1/4,0,3/4) x, 3/8, z |
| | (2z | 0,1/2,1/2)' | (m, | 1/4,3/4,3/4)' |
| | | | (m, | 1/4,3/4,3/4)' |
Continued

43.2.321

Fdd21'

For (1/2,0,1/2)' + set

(1) t' (1/2,0,1/2)
(1) t' (1/2,0,1/2)'

(2) 2' 0,0,1/2 1/4,0,z
(2) 2' 1/2,0,1/2)

(3) d' (3/4,0,3/4) x,1/8,z
(3) d' (3/4,1/4,3/4)'

(4) d' (0,1/4,3/4) 3/8,y,z
(4) d' (3/4,1/4,3/4)'

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0)
(1) t' (1/2,1/2,0)'

(2) 2' 1/4,1/4,z
(2) 2' 1/2,1/2,0')

(3) d' (3/4,0/1,4) x,3/8,z
(3) d' (3/4,3/4,1/4)'

(4) d' (0,3/4,1/4) 3/8,y,z
(4) d' (3/4,3/4,1/4)'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +
(0,0,0)' + (0,1/2,1/2)' + (1/2,0,1/2)' + (1/2,1/2,0)' +

16 b 11' (1) x,y,z [0,0,0] (2) x, y, z [0,0,0] (3) x+1/4, y+1/4, z+1/4 [0,0,0] (4) x+1/4, y+1/4, z+1/4 [0,0,0]

8 a ..21' 0,0,z [0,0,0] 1/4,1/4,z+1/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p2gg1'
Along [1,0,0] c1m11'
Along [0,1,0] c1m11'

\(a^* = a/2 \) \(b^* = b/2 \)
\(a^* = b/2 \) \(b^* = c/2 \)
\(a^* = -a/2 \) \(b^* = c/2 \)

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Fd'd2'

Origin on 112'

Asymmetric unit
0 ≤ x ≤ 1/4;
0 ≤ y ≤ 1/4;
0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) t (0,0,0)
(1 | 0,0,0)
(2) 2' 0,0,z
(2z | 0,0,0')
(3) d (1/4,0,1/4) x,1/8,z
(my | 1/4,1/4,1/4)
(4) d' (0,1/4,1/4) 1/8,y,z
(mx | 1/4,1/4,1/4')

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2)
(1 | 0,1/2,1/2)
(2) 2' (0,0,1/2) 0,1/4,z
(2z | 0,1/2,1/2')
(3) d (1/4,0,3/4) x,3/8,z
(my | 1/4,3/4,3/4)
(4) d' (0,3/4,3/4) 1/8,y,z
(mx | 1/4,3/4,3/4')

For (1/2,0,1/2) + set

(1) t (1/2,0,1/2)
(1 | 1/2,0,1/2)
(2) 2' (0,0,1/2) 1/4,0,z
(2z | 1/2,0,1/2')
(3) d (3/4,0,3/4) x,1/8,z
(my | 3/4,1/4,3/4)
(4) d' (0,1/4,3/4) 3/8,y,z
(mx | 3/4,1/4,3/4')

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(1 | 1/2,1/2,0)
(2) 2' 1/4,1/4,z
(2z | 1/2,1/2,0')
(3) d (3/4,0,1/4) x,3/8,z
(my | 3/4,3/4,1/4)
(4) d' (0,3/4,1/4) 3/8,y,z
(mx | 3/4,3/4,1/4')
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[
\begin{align*}
(0,0,0) + & (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) + \\
16 & b \\ & 1 \\
&(1) x,y,z [u,v,w] \\
&(2) x+1/4,y,z+1/4 [u,v,w] \\
&(3) x+1/4,y+1/4,z+1/4 [u,v,w] \\
&(4) x,y+1/4,z+1/4 [u,v,w]
\end{align*}
\]

\[
\begin{align*}
8 & a \\ & .2' \\
&(0,0,z [u,v,0] \\
&1/4,1/4,z+1/4 [u,v,0]
\end{align*}
\]

Symmetry of Special Projections

Along [0,0,1] \(p2'gg' \) \quad Along [1,0,0] \(c1m1 \) \quad Along [0,1,0] \(c_{p}1m1 \)
\[
\begin{align*}
a^* &= -b/2 & b^* &= a/2 \\
a^* &= b/2 & b^* &= c/2 \\
a^* &= -a/2 & b^* &= c/2 \\
\text{Origin at 0,0,z} & & \text{Origin at x,0,0} & & \text{Origin at 0,y,0}
\end{align*}
\]
Fd'd'2 Orthorhombic

43.4.323

m'm'2

Fd'd'2

Origin on 112

Asymmetric unit

\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1\]

Symmetry Operations

For \((0,0,0)\) + set

\[
(1) \quad 1 \\
(2) \quad 2 \quad 0,0,z \\
(3) \quad d' \quad (1/4,0,1/4) \quad x,1/8,z \\
(4) \quad d' \quad (0,1/4,1/4) \quad 1/8,y,z
\]

\[
(1') \quad 0,0,0 \\
(2') \quad 0,0,0 \\
(3') \quad (m_y \cdot 1/4,1/4,1/4)' \\
(4') \quad (m_y \cdot 1/4,1/4,1/4)'
\]

For \((0,1/2,1/2)\) + set

\[
(1) \quad t (0,1/2,1/2) \\
(2) \quad 2 \quad 0,1/2,1/2 \quad 0,1/4,z \\
(3) \quad d' \quad (1/4,0,3/4) \quad x,3/8,z \\
(4) \quad d' \quad (0,3/4,3/4) \quad 1/8,y,z
\]

\[
(1') \quad 0,1/2,1/2 \\
(2') \quad 0,1/2,1/2 \\
(3') \quad (m_y \cdot 1/4,3/4,3/4)' \\
(4') \quad (m_y \cdot 1/4,3/4,3/4)'
\]

For \((1/2,0,1/2)\) + set

\[
(1) \quad t (1/2,0,1/2) \\
(2) \quad 2 \quad 0,1/2,0 \quad 1/4,0,z \\
(3) \quad d' \quad (3/4,0,3/4) \quad x,1/8,z \\
(4) \quad d' \quad (0,1/4,3/4) \quad 3/8,y,z
\]

\[
(1') \quad 1/2,0,1/2 \\
(2') \quad 1/2,0,1/2 \\
(3') \quad (m_y \cdot 3/4,1/4,3/4)' \\
(4') \quad (m_y \cdot 3/4,1/4,3/4)'
\]

For \((1/2,1/2,0)\) + set

\[
(1) \quad t (1/2,1/2,0) \\
(2) \quad 2 \quad 1/4,1/4,z \\
(3) \quad d' \quad (3/4,0,1/4) \quad x,3/8,z \\
(4) \quad d' \quad (0,3/4,1/4) \quad 3/8,y,z
\]

\[
(1') \quad 1/2,1/2,0 \\
(2') \quad 1/2,1/2,0 \\
(3') \quad (m_y \cdot 3/4,3/4,1/4)' \\
(4') \quad (m_y \cdot 3/4,3/4,1/4)'
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +

16 b 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x+1/4,y+1/4,z+1/4 [u,v,w] (4) x+1/4,y+1/4,z+1/4 [u,v,w]

8 a .2 0,0,z [0,0,w] 1/4,1/4,z+1/4 [0,0,w]

Symmetry of Special Projections

Along [0,0,1] p2g'g' Along [1,0,0] c1m'1 Along [0,1,0] c1m'1
a* = a/2 b* = b/2 a* = b/2 b* = c/2 a* = -a/2 b* = c/2
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin on mm2

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\]

Symmetry Operations

For \((0,0,0) + \text{ set}\)

1. \(1\)
2. \(2 \ 0,0,z\)
3. \(m \ x,0,z\)
4. \(m \ 0,y,z\)

\[
\begin{align*}
(1) & \ (1,0,0,0) \\
(2) & \ (2_z,0,0,0) \\
(3) & \ (m,0,0,0) \\
(4) & \ (m,0,0,0)
\end{align*}
\]

For \((1/2,1/2,1/2) + \text{ set}\)

1. \(t\) \((1/2,1/2,1/2)\)
2. \(2 \ (0,0,1/2) \ 1/4,1/4,z\)
3. \(n \ (1/2,0,1/2) \ x,1/4,z\)
4. \(n \ (0,1/2,1/2) \ 1/4,y,z\)

\[
\begin{align*}
(1) & \ (1/2,1/2,1/2) \\
(2) & \ (2_z,1/2,1/2,1/2) \\
(3) & \ (m,1/2,1/2,1/2) \\
(4) & \ (m,1/2,1/2,1/2)
\end{align*}
\]
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

Multiplicities,
Wyckoff letter,
Site Symmetry.

Coordinates

(0,0,0) + (1/2,1/2,1/2) +

8 e 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w]

4 d m.. 0,y,z [u,0,0] 0,y,z [u,0,0]

4 c .m. x,0,z [0,v,0] x,0,z [0,v,0]

2 b mm2 0,1/2,z [0,0,0]
2 a mm2 0,0,z [0,0,0]

Symmetry of Special Projections

Along [0,0,1] c2mm Along [1,0,0] c1m11' Along [0,1,0] c1m11'

a* = a b* = b
Origin at 0,0,z

a* = b b* = c
Origin at x,0,0

a* = -a b* = c
Origin at 0,y,0
Origin on mm21'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. 1
 (1) 1
 (2) 2 0,0,z
 (3) m x,0,z
 (4) m 0,y,z
 (1*) 0,0,0
 (2*) 0,0,0
 (3*) m* 0,0,0
 (4*) m* 0,0,0

For (1/2,1/2,1/2) + set

1. t (1/2,1/2,1/2)
 (2) 2 0,0,1/2
 (3) n 1/2,0,1/2
 (4) n 1/2,1/2,1/2
 (1*) 1/2,1/2,1/2
 (2*) 1/2,1/2,1/2
 (3*) n* 1/2,1/2,1/2
 (4*) n* 1/2,1/2,1/2

For (0,0,0)' + set

1. 1'
 (1) 1'
 (2) 2' 0,0,z
 (3) m' x,0,z
 (4) m' 0,y,z
 (1*) 0,0,0'
 (2*) 0,0,0'
 (3*) m* 0,0,0'
 (4*) m* 0,0,0'

For (1/2,1/2,1/2)' + set

1. t' (1/2,1/2,1/2)
 (2) 2' 0,0,1/2
 (3) n' 1/2,0,1/2
 (4) n' 1/2,1/2,1/2
 (1*) 1/2,1/2,1/2'
 (2*) 1/2,1/2,1/2'
 (3*) n* 1/2,1/2,1/2'
 (4*) n* 1/2,1/2,1/2'
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2) + (0,0,0)′ + (1/2,1/2,1/2)′ +</td>
<td>(0,0,0) + (1/2,1/2,1/2) + (0,0,0)′ + (1/2,1/2,1/2)′ +</td>
</tr>
<tr>
<td>8 e 11' (1) x,y,z [0,0,0] (2) x,y,z [0,0,0] (3) x,y,z [0,0,0] (4) x,y,z [0,0,0]</td>
<td>8 e 11' (1) x,y,z [0,0,0] (2) x,y,z [0,0,0] (3) x,y,z [0,0,0] (4) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 d m..1' 0,y,z [0,0,0] 0,y,z [0,0,0]</td>
<td>4 d m..1' 0,y,z [0,0,0] 0,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 c .m.1' x,0,z [0,0,0] x,0,z [0,0,0]</td>
<td>4 c .m.1' x,0,z [0,0,0] x,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 b mm21' 0,1/2,z [0,0,0]</td>
<td>2 b mm21' 0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 a mm21' 0,0,z [0,0,0]</td>
<td>2 a mm21' 0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] c2mm1'</th>
<th>Along [1,0,0] c1m11'</th>
<th>Along [0,1,0] c1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a′ = a b′ = b</td>
<td>a′ = b b′ = c</td>
<td>a′ = -a b′ = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Origin on m'm2'

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0) +$ set

1. 1

2. $2', \quad 0,0,z$
 $\left(2', \quad 0,0,0\right)'$

3. $m, \quad x,0,z$
 $\left(m, \quad 0,0,0\right)'$

4. $m', \quad 0,y,z$
 $\left(m, \quad 0,0,0\right)'$

For $(1/2,1/2,1/2) +$ set

1. $t (1/2,1/2,1/2)$
 $\left(1/2,1/2,1/2\right)$

2. $2' (0,0,1/2) \quad 1/4,1/4,z$
 $\left(2, \quad 1/2,1/2,1/2\right)'$

3. $n (1/2,0,1/2) \quad x,1/4,z$
 $\left(m, \quad 1/2,1/2,1/2\right)'$

4. $n' (0,1/2,1/2) \quad 1/4,y,z$
 $\left(m, \quad 1/2,1/2,1/2\right)'$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 d m'..</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 c .m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>2 b m'm2'</td>
<td>0,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>2 a m'm2'</td>
<td>0,0,z [0,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(c2\)'mm' \(a^* = -b \) \(b^* = a \) \(a^* = -a \) \(b^* = c \)
Along [1,0,0] \(c1m1 \) \(a^* = b \) \(b^* = c \) \(a^* = b \) \(b^* = c \)
Along [0,1,0] \(c1m11' \) \(a^* = b \) \(b^* = c \) \(a^* = b \) \(b^* = c \)
Im'm'2 m'm'2 Orthorhombic

44.4.327

Origin on m'm'2

Asymmetric unit $0 < x < 1/2; \ 0 < y < 1/2; \ 0 < z < 1/2$

Symmetry Operations

For $(0,0,0) +$ set

(1) 1
 (1 | 0,0,0)

(2) 2 0,0,z
(2z | 0,0,0)

(3) m' x,0,z
(mz | 0,0,0)'

(4) m' 0,y,z
(mz | 0,0,0)'

For $(1/2,1/2,1/2) +$ set

(1) t (1/2,1/2,1/2)
 (1 | 1/2,1/2,1/2)

(2) 2 (0,0,1/2) 1/4,1/4,z
(2z | 1/2,1/2,1/2)

(3) n' (1/2,0,1/2) x,1/4,z
(mz | 1/2,1/2,1/2)'

(4) n' (0,1/2,1/2) 1/4,y,z
(mz | 1/2,1/2,1/2)'
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
<td></td>
</tr>
<tr>
<td>8 e 1 (1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 d m'.. 0,y,z [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 c m'.. 0,y,z [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>2 b m'.. 0,y,z [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>2 a m'.. 0,y,z [0,v,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] c2m'm'</th>
<th>Along [1,0,0] c1m'1</th>
<th>Along [0,1,0] c1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a) (b^* = b)</td>
<td>(a^* = b) (b^* = c)</td>
<td>(a^* = -a) (b^* = c)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Origin on mm2

Asymmetric unit

\[0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2} \]

Symmetry Operations

For \((0,0,0) + \) set

\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \quad 0,0,z \\
(3) & \quad m \quad x,0,z \\
(4) & \quad m \quad 0,y,z
\end{align*}

\begin{align*}
(1^* & \quad 0,0,0) \\
(2^* & \quad 0,0,0) \\
(3^* & \quad 0,0,0) \\
(4^* & \quad 0,0,0)
\end{align*}

For \((\frac{1}{2},\frac{1}{2},\frac{1}{2})' + \) set

\begin{align*}
(1) & \quad t' \quad (1/2,1/2,1/2) \\
(2) & \quad 2' \quad (0,0,1/2) \quad 1/4,1/4,z \\
(3) & \quad n' \quad (1/2,0,1/2) \quad x,1/4,z \\
(4) & \quad n' \quad (0,1/2,1/2) \quad 1/4,y,z
\end{align*}

\begin{align*}
(1^* & \quad 1/2,1/2,1/2) \\
(2^* & \quad 1/2,1/2,1/2) \\
(3^* & \quad 1/2,1/2,1/2) \\
(4^* & \quad 1/2,1/2,1/2)
\end{align*}
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
<td></td>
</tr>
<tr>
<td>8 e 1 (1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 d m.. 0,y,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 c .m. x,0,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2 b mm2 0,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a mm2 0,0,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c\textsubscript{p}-2mm

\(a^* = a\quad b^* = b\)

Origin at 0,0,z

Along [1,0,0] c1m11'

\(a^* = b\quad b^* = c\)

Origin at x,0,0

Along [0,1,0] c1m11'

\(a^* = -a\quad b^* = c\)

Origin at 0,y,0
Origin on mm'2'

Asymmetric unit

\[0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/2 \]

Symmetry Operations

For (0,0,0) + set

1. \(\text{1} \)
 \((1|0,0,0) \)

2. \(2' \)
 \(0,0,z \)
 \((2|0,0,0)' \)

3. \(m' \)
 \(x,0,z \)
 \((m|0,0,0)' \)

4. \(m \)
 \(0,y,z \)
 \((m|0,0,0) \)

For (1/2,1/2,1/2)' + set

1. \(t' \)
 \((1|1/2,1/2,1/2) \)
 \((1|1/2,1/2,1/2)' \)

2. \(2 \)
 \((0,0,1/2) \)
 \(1/4,1/4,z \)
 \((2|1/2,1/2,1/2) \)

3. \(n \)
 \((1/2,0,1/2) \)
 \(x,1/4,z \)
 \((m|1/2,1/2,1/2) \)

4. \(n' \)
 \((0,1/2,1/2) \)
 \(1/4,y,z \)
 \((m|1/2,1/2,1/2)' \)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>8 e 1 (1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 d m.. 0,y,z [u,0,0]</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 c m'. x,0,z [u,0,w]</td>
<td>x,0,z [u,0,\bar{w}]</td>
</tr>
<tr>
<td>2 b mm'2' 0,1/2,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a mm'2' 0,0,z [u,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] c_p 2'mm'</th>
<th>Along [1,0,0] c1m11'</th>
<th>Along [0,1,0] c_p 1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = b b* = c</td>
<td>a* = -a b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Origin on \(m'm'2 \)

Asymmetric unit

\[0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2} \]

Symmetry Operations

For \((0,0,0) + \text{ set}\)

1. \(1 \quad (0,0,0)\)
2. \(2 \quad 0,0,z \quad (1/2,0,0,0)\)
3. \(m' \quad x,0,z\quad (m_x,0,0)\)
4. \(m' \quad 0,y,z\quad (m_x,0,0)\)

For \((1/2,1/2,1/2)' + \text{ set}\)

1. \(t' \quad (1/2,1/2,1/2)\)
2. \(2' \quad 0,0,1/2 \quad 1/4,1/4,z\)
3. \(n \quad (1/2,0,1/2) \quad x,1/4,z\)
4. \(n \quad (0,1/2,1/2) \quad 1/4,y,z\)

\[\text{44.7.330 - 1 - 636} \]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>f e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>f d m'</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>f c m'</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>g b m'm'2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>g a m'm'2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c_p.2m'm'
Along [1,0,0] c_p.1m'1
Along [0,1,0] c_p.1m'1

a* = a b* = b
a* = b b* = c
a* = -a b* = c

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin on cc2

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

For \((0,0,0) + \text{ set}\)

1. \((1)\) 1
 \(1)\) 0,0,0
2. \((2)\) 0,0,z
 \(2)\) 0,0,0
3. \((3)\) c (0,0,1/2) x,0,z
 \(3)\) c (0,0,1/2) 0,0,0
4. \((4)\) c (0,0,1/2) 0,y,z
 \(4)\) c (0,0,1/2) 0,0,0

For \((1/2,1/2,1/2) + \text{ set}\)

1. \((1)\) t (1/2,1/2,1/2)
 \(1)\) t (1/2,1/2,1/2)
2. \((2)\) 2 (0,0,1/2) 1/4,1/4,z
 \(2)\) 2 (0,0,1/2) 1/2,1/2,1/2
3. \((3)\) a (1/2,0,0) x,1/4,z
 \(3)\) a (1/2,0,0) 1/2,1/2,0
4. \((4)\) b (0,1/2,0) 1/4,y,z
 \(4)\) b (0,1/2,0) 1/2,1/2,0
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>8 c 1 (1) x,y,z [u,v,w]</th>
<th>4 b ..2 0,1/2,z [0,0,w]</th>
<th>4 a ..2 0,0,z [0,0,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm
\[\mathbf{a}^* = \mathbf{a}, \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along [1,0,0] \(p_{2a} \cdot 1 m'1 \)
\[\mathbf{a}^* = \mathbf{b}/2, \mathbf{b}^* = \mathbf{c}/2 \]
Origin at x,0,0

Along [0,1,0] \(p_{2b} \cdot 1 m'1 \)
\[\mathbf{a}^* = -\mathbf{a}/2, \mathbf{b}^* = \mathbf{c}/2 \]
Origin at 0,y,0
Origin on cc21'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1) t (1/2,1/2,1/2)
(1) t' (1/2,1/2,1/2)

(2) 2 0,0,z
(2) 2 (0,0,1/2) 1/4,1/4,z
(2) 2' (0,0,1/2) 1/4,1/4,z

(3) c (0,0,1/2) x,0,z
(3) a (1/2,0,0) x,1/4,z
(3) c' (0,0,1/2) x,0,z
(3) a' (1/2,0,0) x,1/4,z

(4) c (0,0,1/2) 0,y,z
(4) b (0,1/2,0) 1/4,y,z
(4) c' (0,0,1/2) 0,y,z
(4) b' (0,1/2,0) 1/4,y,z

For (1/2,1/2,1/2) + set

(1) 1
(1) t (1/2,1/2,1/2)
(1) t' (1/2,1/2,1/2)

(2) 2 (0,0,1/2) 1/4,1/4,z
(2) 2 (0,0,1/2) 1/4,1/4,z

(3) a (1/2,0,0) x,1/4,z
(3) a' (1/2,0,0) x,1/4,z

(4) b (0,1/2,0) 1/4,y,z
(4) b' (0,1/2,0) 1/4,y,z

For (0,0,0)′ + set

(1) 1′
(1) t' (1/2,1/2,1/2)
(1) t′ (1/2,1/2,1/2)

(2) 2′ 0,0,z
(2) 2′ (0,0,1/2) 1/4,1/4,z

(3) c′ (0,0,1/2) x,0,z
(3) a (1/2,0,0) x,1/4,z

(4) c′ (0,0,1/2) 0,y,z
(4) b (0,1/2,0) 1/4,y,z

For (1/2,1/2,1/2)′ + set

(1) 1′
(1) t′ (1/2,1/2,1/2)
(1) t′ (1/2,1/2,1/2)

(2) 2′ (0,0,1/2) 1/4,1/4,z
(2) 2′ (0,0,1/2) 1/4,1/4,z

(3) a′ (1/2,0,0) x,1/4,z
(3) a' (1/2,0,0) x,1/4,z

(4) b′ (0,1/2,0) 1/4,y,z
(4) b' (0,1/2,0) 1/4,y,z
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 11'</td>
<td>(1) x,y,z [0,0,0] (2) x,\bar{y},z+1/2 [0,0,0] (3) x,\bar{y},z+1/2 [0,0,0] (4) x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b ..21'</td>
<td>0,1/2,z [0,0,0] 0,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a ..21'</td>
<td>0,0,z [0,0,0] 0,0,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along $[0,0,1]$ c2mm1' Along $[1,0,0]$ p1m11' Along $[0,1,0]$ p1m11'

$\mathbf{a}^* = \mathbf{a}$ $\mathbf{b}^* = \mathbf{b}$ $\mathbf{a}^* = \mathbf{b}/2$ $\mathbf{b}^* = \mathbf{c}/2$ $\mathbf{a}^* = -\mathbf{a}/2$ $\mathbf{b}^* = \mathbf{c}/2$

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Ib'a2' m'm2' Orthorhombic
45.3.333 Ib'a2'

Origin on c'c2'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2' 0,0,z
(3) c (0,0,1/2) x,0,z
(4) c' (0,0,1/2) 0,y,z

(1*) 0,0,0
(2*) 0,0,0'
(3*) (0,0,1/2) (m,0,0,1/2)
(4*) (0,0,1/2') (m,0,0,1/2')

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(2) 2' (0,0,1/2) 1/4,1/4,z
(3) a (1/2,0,0) x,1/4,z
(4) b' (0,1/2,0) 1/4,y,z

(1*) 1/2,1/2,1/2
(2*) 1/2,1/2,1/2'
(3*) (1/2,0,0) (m,1/2,1/2,0)
(4*) (0,1/2,0) (m,1/2,1/2,0)'

45.3.333 - 1 - 642
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
<td></td>
</tr>
<tr>
<td>8 c 1 (1) x,y,z [u,v,w]</td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 b .2' 0,1/2,z [u,v,0]</td>
<td>0,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 a .2' 0,0,z [u,v,0]</td>
<td>0,0,z+1/2 [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] c2'mm'
 \(\mathbf{a^*} = -\mathbf{b} \quad \mathbf{b^*} = \mathbf{a} \)
 Origin at 0,0,z

- Along [1,0,0] p1m1
 \(\mathbf{a^*} = \mathbf{b} / 2 \quad \mathbf{b^*} = \mathbf{c} / 2 \)
 Origin at x,0,0

- Along [0,1,0] p̄21m1
 \(\mathbf{a^*} = -\mathbf{a} / 2 \quad \mathbf{b^*} = \mathbf{c} / 2 \)
 Origin at 0,y,0
Origin on c'c'2

Asymmetric unit
\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2} \]

Symmetry Operations

For \((0,0,0) + \) set

1. \((1,0,0,0)\)
2. \(0,0,z\)
3. \(c'(0,0,1/2), x,0,z\)
4. \(c'(0,0,1/2), 0,y,z\)

For \((1/2,1/2,1/2) + \) set

1. \(t(1/2,1/2,1/2)\)
2. \((0,0,1/2), 1/4,1/4,z\)
3. \(a'(1/2,0,0), x,1/4,z\)
4. \(b'(0,1/2,0), 1/4,y,z\)

\[45.4.334 \quad \text{lb'a'2} \quad \text{Orthorhombic} \]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 b 2</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 a 2</td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 a 2</td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] c2m'</th>
<th>Along [1,0,0] p1m'1</th>
<th>Along [0,1,0] p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a) (b^* = b)</td>
<td>(a^* = b/2) (b^* = c/2)</td>
<td>(a^* = -a/2) (b^* = c/2)</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin on cc2

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For (0,0,0) + set

- $(1) \ 1$
- $(2) \ 2 \quad 0,0,z$
- $(3) \ c \quad (0,0,1/2) \quad x,0,z$
- $(4) \ c \quad (0,0,1/2) \quad 0,y,z$

For (1/2,1/2,1/2)' + set

- $(1) \ t' \quad (1/2,1/2,1/2)'$
- $(2) \ 2' \quad (0,0,1/2) \quad 1/4,1/4,z$
- $(3) \ a' \quad (1/2,0,0) \quad x,1/4,z$
- $(4) \ b' \quad (0,1/2,0) \quad 1/4,y,z$

$(m, 0,0,1/2)$

$(m, 1/2,1/2,0)'$

$(m, 1/2,1/2,0)'$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 b .2</td>
<td>0,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 a .2</td>
<td>0,0,z [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

(0,0,0) + (1/2,1/2,1/2)' +

(2) x,y,z [u,v,w] (3) x,y,z+1/2 [u,v,w] (4) x,y,z+1/2 [u,v,w]

Symmetry of Special Projections

Along [0,0,1] c_p,2mm
a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p_2b,1m'1
a* = b/2 b* = c/2
Origin at x,0,0

Along [0,1,0] p_2b,1m'1
a* = -a/2 b* = c/2
Origin at 0,y,0
I\textsubscript{h}ba'2'
mm21'
Orthorhombic
45.6.336
I\textsubscript{h}ba'2'

Origin on cc'2'

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2} \]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2' \quad 0,0,z \\
(3) & \quad c' \quad (0,0,1/2) \quad x,0,z \\
(4) & \quad c \quad (0,0,1/2) \quad 0,y,z \\
(1^* & \quad 0,0,0) \\
(2^* & \quad 0,0,0)' \\
(3^* & \quad 0,0,1/2)' \\
(4^* & \quad 0,0,1/2)'
\end{align*}
\]

For \((1/2,1/2,1/2)' + \) set

\[
\begin{align*}
(1) & \quad t' \quad (1/2,1/2,1/2) \\
(2) & \quad 2 \quad (0,0,1/2) \quad 1/4,1/4,z \\
(3) & \quad a \quad (1/2,0,0) \quad x,1/4,z \\
(4) & \quad b' \quad (0,1/2,0) \quad 1/4,y,z \\
(1^* & \quad 1/2,1/2,1/2) \\
(2^* & \quad 1/2,1/2,1/2) \\
(3^* & \quad 1/2,0,0) \\
(4^* & \quad 1/2,1/2,0)'
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
<td></td>
</tr>
</tbody>
</table>

8 c 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z+1/2 [u,v,w] (4) x,y,z+1/2 [u,v,w]
4 b ..2' 0,1/2,z [u,v,0] 0,1/2,z+1/2 [u,v,0]
4 a ..2' 0,0,z [u,v,0] 0,0,z+1/2 [u,v,0]

Symmetry of Special Projections

Along [0,0,1] c_p,2'mm' Along [1,0,0] p_{2a}.1m1 Along [0,1,0] p_{2a}.1m1
\textbf{a}^{*} = \textbf{a} \quad \textbf{b}^{*} = \mathbf{b} \quad \textbf{a}^{*} = \mathbf{b}/2 \quad \textbf{b}^{*} = \mathbf{c}/2 \quad \textbf{a}^{*} = -\mathbf{a}/2 \quad \textbf{b}^{*} = \mathbf{c}/2
Origin at 0,0,z \quad \text{Origin at } x,0,0 \quad \text{Origin at } 0,y,0
Origin on c’c’2

Asymmetric unit
0 < x < 1/2;
0 < y < 1/2;
0 < z < 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1 | 0,0,0)

(2) 2 0,0,z
 (2 | 0,0,0)

(3) c’ (0,0,1/2) x,0,z
 (m | 0,0,1/2)’

(4) c’ (0,0,1/2) 0,y,z
 (m | 0,0,1/2)’

For (1/2,1/2,1/2)’ + set

(1) t’ (1/2,1/2,1/2)’
 (1 | 1/2,1/2,1/2)’

(2) 2’ (0,0,1/2) 1/4,1/4,z
 (2 | 1/2,1/2,1/2)’

(3) a (1/2,0,0) x,1/4,z
 (m | 1/2,1/2,0)

(4) b (0,1/2,0) 1/4,y,z
 (m | 1/2,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 b .2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 a .2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] \(c_{a}^{p}2m'm' \)
 \(a^* = a \) \(b^* = b \)
 Origin at 0,0,z

- Along [1,0,0] \(p_{2b}1m1 \)
 \(a^* = b/2 \) \(b^* = c/2 \)
 Origin at x,0,0

- Along [0,1,0] \(p_{2a}1m1 \)
 \(a^* = -a/2 \) \(b^* = c/2 \)
 Origin at 1/4,y,0
Origin on na2

Asymmetric unit

\[0 < x < \frac{1}{4}; \quad 0 < y < 1; \quad 0 < z < \frac{1}{2} \]

Symmetry Operations

For \((0,0,0)\) + set

1. \(T\)
2. \(2 \ 0,0,z\)
3. \(a \ (1/2,0,0) \ x,0,z\)
4. \(m \ 1/4,y,z\)

\(n_{0,0,0}\)
\(n_{1/2,0,0}\)
\(n_{0,1/2,0}\)
\(n_{1/2,1/2,0}\)

For \((1/2,1/2,1/2)\) + set

1. \(t \ (1/2,1/2,1/2)\)
2. \(2 \ (0,1/2) \ 1/4,1/4,z\)
3. \(c \ (0,0,1/2) \ x,1/4,z\)
4. \(n \ (0,1/2,1/2) \ 0,y,z\)

\(n_{1/2,1/2,1/2}\)
\(n_{1/2,1/2,1/2}\)
\(n_{0,1/2,1/2}\)
\(n_{0,1/2,1/2}\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
<td></td>
</tr>
<tr>
<td>4 b m..</td>
<td>1/4,y,z [u,0,0]</td>
<td>3/4,y,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 a ..2</td>
<td>0,0,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm Along [1,0,0] c1m11' Along [0,1,0] p2 règle 1m1

a* = a b* = b a* = b b* = c a* = -a/2 b* = c/2

Origin at 1/4,1/4,z Origin at x,0,0 Origin at 0,y,0
Origin on na21'

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. 1
 (1) (0,0,0)
 (2) (0,0,z)
 (3) a (1/2,0,0) x,0,z
 (4) m 1/4,y,z

For (1/2,1/2,1/2) + set

1. t (1/2,1/2,1/2)
 (1) (1/2,1/2,1/2)
 (2) (0,0,1/2) 1/4,1/4,z
 (3) c (0,0,1/2) x,1/4,z
 (4) n (0,1/2,1/2) 0,y,z

For (0,0,0)' + set

1. t' (1/2,1/2,1/2)
 (1) (1/2,1/2,1/2)
 (2) (0,0,1/2) 1/4,1/4,z
 (3) a' (1/2,0,0) x,0,z
 (4) m' 1/4,y,z

For (1/2,1/2,1/2)' + set

1. t' (1/2,1/2,1/2)
 (1) (1/2,1/2,1/2)
 (2) (0,0,1/2) 1/4,1/4,z
 (3) c' (0,0,1/2) x,1/4,z
 (4) n' (0,1/2,1/2) 0,y,z

46.1.338 - 3 - 654
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2) + (0,0,0)' + (1/2,1/2,1/2)' +</td>
<td></td>
</tr>
</tbody>
</table>

8 c 11' (1) x,y,z [0,0,0] (2) x,y,3/2 [0,0,0] (3) x+1/2,y,1/2 [0,0,0] (4) x+1/2,y,3/2 [0,0,0]

4 b m..1' 1/4,y,z [0,0,0] 3/4,y,1/2 [0,0,0]

4 a ..21' 0,0,z [0,0,0] 1/2,0,z [0,0,0]

Symmetry of Special Projections

Along [0,0,1] c2mm1' Along [1,0,0] c1m11' Along [0,1,0] p1m11'

a* = a b* = b a* = -a/2 b* = c/2

Origin at 1/4,1/4,0 Origin at x,0,0 Origin at 0,y,0
Origin on n'a2'

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

For \((0,0,0) + \) set

1. \(1\)
2. \(2'\) 0,0,z
3. \(a\) (1/2,0,0) 0,x,z
4. \(m'\) 1/4,y,z

For \((1/2,1/2,1/2) + \) set

1. \(t\) (1/2,1/2,1/2)
2. \(2'\) (0,0,1/2) 1/4,1/4,z
3. \(c\) (0,0,1/2) 0,1/4,z
4. \(n'\) (0,1/2,1/2) 0,y,z

\[46.3.340 - 1 - 656\]
Generators selected (1); t(1,0,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 b m'..</td>
<td>1/4,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 a ..2'</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm' Along [1,0,0] c1m1 Along [0,1,0] p2a,1m1
a* = -b b* = a a* = b b* = c a* = -a/2 b* = c/2
Origin at 1/4,1/4,z Origin at x,0,0 Origin at 0,y,0
Origin on na'2'

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1|0,0,0)
(2) 2' 0,0,z
 (2|0,0,0)'
(3) a' (1/2,0,0) x,0,z
 (m,|1/2,0,0)'
(4) m 1/4,y,z
 (m,|1/2,0,0)

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
 (1|1/2,1/2,1/2)
(2) 2' (0,0,1/2) 1/4,1/4,z
 (2|1/2,1/2,1/2)'
(3) c' (0,0,1/2) x,1/4,z
 (m,|0,1/2,1/2)'
(4) n (0,1/2,1/2) 0,y,z
 (m,|0,1/2,1/2)
Generators selected
(1): t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>4</td>
<td>b m</td>
<td>1/4,y,z [u,0,0]</td>
<td>3/4,y,z [u,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>a .2'</td>
<td>0,0,z [u,v,0]</td>
<td>1/2,0,z [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2"mm' Along [1,0,0] c1"m1' Along [0,1,0] p1m1
\(a^* = a \quad b^* = b \) \(a^* = b \quad b^* = c \) \(a^* = -\frac{a}{2} \quad b^* = \frac{c}{2} \)
Origin at 1/4,1/4,z Origin at x,0,0 Origin at 0,y,0
Im'a'2 m'm'2 Orthorhombic
46.5.342 Im'a'2

Origin on n'a'2

Asymmetric unit

\[0 < x < \frac{1}{4}; \quad 0 < y < 1; \quad 0 < z < \frac{1}{2} \]

Symmetry Operations

For \((0,0,0)\) + set:

1. \(1\)
2. \(2 \quad 0,0,z\)
3. \(a' (1/2,0,0) \quad x,0,z\)
4. \(m' (1/4,y,z)\)

For \((1/2,1/2,1/2)\) + set:

1. \(t (1/2,1/2,1/2)\)
2. \(2 (0,0,1/2) \quad 1/4,1/4,z\)
3. \(c' (0,0,1/2) \quad x,1/4,z\)
4. \(n' (0,1/2,1/2) \quad 0,y,z\)

\((1) 0,0,0\) \quad \((2) z\) \quad \((3) y\) \quad \((4) x\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>(1/2,1/2,1/2) +</td>
<td></td>
</tr>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 b m'..</td>
<td>1/4,y,z [0,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4,y,z [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 a ..2</td>
<td>0,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2m'm'
\(a^* = a \) \(b^* = b \)
Origin at 1/4,1/4,z

Along [1,0,0] c1m'1
\(a^* = b \) \(b^* = c \)
Origin at x,0,0

Along [0,1,0] p1m'1
\(a^* = -a/2 \) \(b^* = c/2 \)
Origin at 0,y,0
Origin on n'a2

Asymmetric unit $0 \leq x \leq 1/4$; $0 \leq y \leq 1$; $0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0) + \text{ set}$

(1) 1

(2) 2 0,0,z

(3) a $(1/2,0,0)$ x,0,z

(4) m 1/4,y,z

For $(1/2,1/2,1/2)' + \text{ set}$

(1) t' $(1/2,1/2,1/2)$

(2) $2'$ $(0,0,1/2)$ 1/4,1/4,z

(3) c' $(0,0,1/2)$ x,1/4,z

(4) n' $(0,1/2,1/2)$ 0,y,z
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x, y, z [u, v, w]</td>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>4 b m..</td>
<td>1/4, y, z [u, 0, 0]</td>
<td>3/4, y, z [u, 0, 0]</td>
</tr>
<tr>
<td>4 a ..2</td>
<td>0, 0, z [0, 0, w]</td>
<td>1/2, 0, z [0, 0, w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c_p, 2'nm'
Along [1,0,0] c1m11'
Along [0,1,0] p_{2a}.1m1

a* = a b* = b
Origin at 1/4, 1/4, z

a* = b b* = c
Origin at x, 0, 0

a* = -a/2 b* = c/2
Origin at 1/4, y, 0
Origin on na’2

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2’ 0,0,z
(3) a (1/2,0,0) x,0,z
(4) m’ 1/4,y,z
(m_y | 1/2,0,0)

For (1/2,1/2,1/2)’ + set

(1) t’ (1/2,1/2,1/2)
(2) 2 (0,0,1/2) 1/4,1/4,z
(3) c’ (0,0,1/2) x,1/4,z
(4) n (0,1/2,1/2) 0,y,z
(m_x | 0,1/2,1/2)

46.7.344 - 1 - 664
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>(1/2,1/2,1/2) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 b m'</td>
<td>1/4,x,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 a .2'</td>
<td>0,0,z [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c_p 2m'm'
Along [1,0,0] c_p'1m1
Along [0,1,0] p_2a1m1

a* = a b* = b
a* = b b* = c
a* = -a/2 b* = c/2

Origin at 1/4,1/4,z
Origin at x,0,0
Origin at 0,y,0
Origin on n'a'2'

Asymmetric unit \(0 \leq x \leq 1/4\); \(0 \leq y \leq 1\); \(0 \leq z \leq 1/2\)

Symmetry Operations

For \((0,0,0) + \) set

1. \(1\)
2. \(2'\) \(0,0,z\)
3. \(a'(1/2,0,0)\) \(x,0,z\)
4. \(m\) \(1/4,y,z\)

For \((1/2,1/2,1/2)' + \) set

1. \(t'(1/2,1/2,1/2)\)
2. \(2\) \(0,0,1/2\) \(1/4,1/4,z\)
3. \(c\) \((0,0,1/2)\) \(x,1/4,z\)
4. \(n'(0,1/2,1/2)\) \(0,y,z\)
Generators selected

(1): t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
<th>SiteSymmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(1)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 b m..</td>
<td>1/4,y,z [u,0,0]</td>
<td>(2)</td>
<td>3/4,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 a ..2'</td>
<td>0,0,z [u,v,0]</td>
<td>(3)</td>
<td>1/2,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] cₚ,2mm
Along [1,0,0] c₁m11'
Along [0,1,0] p₂ᵥ,1m1

a* = a b* = b
a* = b b* = c
a* = -a/2 b* = c/2

Origin at 1/4,1/4,z
Origin at x,0,0
Origin at 0,y,0
Iₚm'a'2

mm21'

Origin on na'2

Asymmetric unit

\begin{align*}
0 \leq x & \leq 1/4; \\
0 \leq y & \leq 1; \\
0 \leq z & \leq 1/2
\end{align*}

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)
(2) 2' 0,0,z
(2|0,0,0)
(3) a' (1/2,0,0) x,0,z
(mₐ|1/2,0,0)'
(4) m' 1/4,y,z
(mₐ|1/2,0,0)'

For (1/2,1/2,1/2)' + set

(1) t' (1/2,1/2,1/2)
(1|1/2,1/2,1/2)'
(2) 2' (0,0,1/2) 1/4,1/4,z
(2|1/2,1/2,1/2)'
(3) c (0,0,1/2) x,1/4,z
(mₐ|1/2,1/2)
(4) n (0,1/2,1/2) 0,y,z
(mₐ|0,1/2,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 b m'..</td>
<td>1/4,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 a ..2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c_p 2'mm'
\(\mathbf{a}^* = \mathbf{-b}/2 \quad \mathbf{b}^* = \mathbf{a}/2 \)
Origin at 1/4,1/4,z

Along [1,0,0] c_p 1m'1
\(\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \)
Origin at x,0,0

Along [0,1,0] p_{21} 1m'1
\(\mathbf{a}^* = -\mathbf{a}/2 \quad \mathbf{b}^* = \mathbf{c}/2 \)
Origin at 0,y,0
Orthorhombic

Pmmm

47.1.347

Ormm

P2/m2/m2/m

Origin at center (mmm)

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

1. \(1\)

2. \(2 \ 0,0,z\)

3. \(2 \ 0,y,0\)

4. \(2 \ x,0,0\)

5. \(1\)

6. \(m \ x,y,0\)

7. \(m \ x,0,z\)

8. \(m \ 0,y,z\)

9. \(m \ 0,0,0\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 α 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 z .m</td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 y .m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>4 x .m</td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>4 w .m</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 v m..</td>
<td>1/2,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 u m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>2 t mm2</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 s mm2</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 r mm2</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 q mm2</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 p m2m</td>
<td>1/2,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 o m2m</td>
<td>1/2,y,0 [0,0,0]</td>
</tr>
<tr>
<td>2 n m2m</td>
<td>0,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 m m2m</td>
<td>0,y,0 [0,0,0]</td>
</tr>
<tr>
<td>2 l 2mm</td>
<td>x,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 k 2mm</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 j 2mm</td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 i 2mm</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>1 h mmm</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 g mmm</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 f mmm</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>1 e mmm</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>
Continued

1 d mmm 1/2,0,1/2 [0,0,0]
1 c mmm 0,0,1/2 [0,0,0]
1 b mmm 1/2,0,0 [0,0,0]
1 a mmm 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p2mm1’
\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along [1,0,0] p2mm1’
\[\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,0,0

Along [0,1,0] p2mm1’
\[\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = \mathbf{a} \]
Origin at 0,y,0
Origin at center (mmm1')

Asymmetric unit: $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For 1 + set:

1. $1 \quad [0,0,0]$
2. $2 \quad 0,0,z \quad [0,0,0]$
3. $2 \quad 0,y,0 \quad [0,0,0]$
4. $2 \quad x,0,0 \quad [0,0,0]$

For 1' + set:

1. $1' \quad [0,0,0]'$
2. $2' \quad 0,0,z \quad [0,0,0]'$
3. $2' \quad 0,y,0 \quad [0,0,0]'$
4. $2' \quad x,0,0 \quad [0,0,0]'$

5. $m \quad x,y,0 \quad [0,0,0]$
6. $m \quad x,0,z \quad [0,0,0]$
7. $m \quad x,0,z \quad [0,0,0]$
8. $m \quad 0,y,0 \quad [0,0,0]$

5. $m' \quad x,y,0 \quad [0,0,0]'$
6. $m' \quad x,0,z \quad [0,0,0]'$
7. $m' \quad x,0,z \quad [0,0,0]'$
8. $m' \quad 0,y,0 \quad [0,0,0]'$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>1 + 1' +</td>
</tr>
<tr>
<td>8 α 11' (1) x,y,z [0,0,0]</td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 z ..m1' x,y,1/2 [0,0,0]</td>
<td>x,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 y ..m1' x,y,0 [0,0,0]</td>
<td>x,y,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [0,0,0]</td>
</tr>
<tr>
<td>4 x .m1' x,1/2,z [0,0,0]</td>
<td>x,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 w .m1' x,0,z [0,0,0]</td>
<td>x,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 v m..1' 1/2,y,z [0,0,0]</td>
<td>1/2,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 u m..1' 0,y,z [0,0,0]</td>
<td>0,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,0,0]</td>
</tr>
<tr>
<td>2 t mm21' 1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 s mm21' 1/2,0,z [0,0,0]</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 r mm21' 0,1/2,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 q mm21' 0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 p m2m1' 1/2,y,1/2 [0,0,0]</td>
<td>1/2,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 o m2m1' 1/2,y,0 [0,0,0]</td>
<td>1/2,y,0 [0,0,0]</td>
</tr>
<tr>
<td>2 n m2m1' 0,y,1/2 [0,0,0]</td>
<td>0,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 m m2m1' 0,y,0 [0,0,0]</td>
<td>0,y,0 [0,0,0]</td>
</tr>
<tr>
<td>2 l 2mm1' x,1/2,1/2 [0,0,0]</td>
<td>x,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 k 2mm1' x,1/2,0 [0,0,0]</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 j 2mm1' x,0,1/2 [0,0,0]</td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 i 2mm1' x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>1 h mmm1' 1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 g mmm1' 0,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 f mmm1' 1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 e mmm1' 0,1/2,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>
Continued

1. d. mmm1' 1/2,0,1/2 [0,0,0]
1. c. mmm1' 0,0,1/2 [0,0,0]
1. b. mmm1' 1/2,0,0 [0,0,0]
1. a. mmm1' 0,0,0 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [0,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>p2mm1'</td>
<td>p2mm1'</td>
<td>p2mm1'</td>
</tr>
<tr>
<td>(a^* = a)</td>
<td>(a^* = b)</td>
<td>(a^* = c)</td>
</tr>
<tr>
<td>(b^* = b)</td>
<td>(b^* = c)</td>
<td>(b^* = a)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Origin \(\text{at center (m'\text{mm})}\)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

\[
\begin{align*}
(1) \quad & 1 \\
(1) & (0,0,0) \\
(5) \quad & 1' \\
(1) & (0,0,0)' \\
(2) \quad & 2' \\
(2) & (0,0,z) \\
(2) & (0,0,0)' \\
(2) & (0,y,0) \\
(2) & (0,0,0)' \\
(3) \quad & 2' \\
(3) & (0,y,0) \\
(3) & (0,0,0)' \\
(4) \quad & 2 \\
(4) & (x,0,0) \\
(4) & (2_x,0,0) \\
(6) \quad & m \\
(6) & (x,y,0) \\
(6) & (m_z,0,0,0) \\
(7) \quad & m \\
(7) & (x,0,z) \\
(7) & (m_y,0,0,0) \\
(8) \quad & m' \\
(8) & (0,y,z) \\
(8) & (m_z,0,0,0)' \\
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>a</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>z</td>
<td>.m</td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>y</td>
<td>.m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td>.m</td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>w</td>
<td>.m</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>v</td>
<td>m'..</td>
<td>1/2,y,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,y,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,y,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>u</td>
<td>m'..</td>
<td>0,y,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,y,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,y,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>t</td>
<td>m'2'</td>
<td>1/2,1/2,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>s</td>
<td>m'2'</td>
<td>1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>r</td>
<td>m'2'</td>
<td>0,1/2,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>q</td>
<td>m'2'</td>
<td>0,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>p</td>
<td>m'2'</td>
<td>1/2,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,y,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,y,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>o</td>
<td>m'2'</td>
<td>1/2,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,y,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,y,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>n</td>
<td>m'2'</td>
<td>0,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,y,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,y,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>m</td>
<td>m'2'</td>
<td>0,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,y,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,y,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>l</td>
<td>2mm</td>
<td>x,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>k</td>
<td>2mm</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>j</td>
<td>2mm</td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>i</td>
<td>2mm</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>h</td>
<td>m'2m</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>g</td>
<td>m'2m</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>f</td>
<td>m'2m</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>m'2m</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p2mm1’
\(a^* = a \) \(b^* = b \)
Origin at 0,0,z

Along [1,0,0] p2mm
\(a^* = b \) \(b^* = c \)
Origin at x,0,0

Along [0,1,0] p2mm1’
\(a^* = c \) \(b^* = a \)
Origin at 0,y,0
Origin at center (m'm'm)

Asymmetric unit \[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\]

Symmetry Operations

(1) 1 \hspace{1cm} (2) 2 0,0,z \hspace{1cm} (3) 2' 0,y,0 \hspace{1cm} (4) 2' x,0,0 \\
 (1|0,0,0) \hspace{1cm} (2_z|0,0,0) \hspace{1cm} (2_y|0,0,0)' \hspace{1cm} (2_x|0,0,0)'

(5) 1' \hspace{1cm} (6) m x,y,0 \hspace{1cm} (7) m' x,0,z \hspace{1cm} (8) m' 0,y,z \\
 (1'|0,0,0) \hspace{1cm} (m_z|0,0,0) \hspace{1cm} (m_y|0,0,0)' \hspace{1cm} (m_x|0,0,0)'

Orthorhombic

Pm'm'm

m'm'm

47.4.350

P2'/m'2'/m'2'/m
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 α 1</td>
<td>x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 z ..m</td>
<td>x,y,1/2 [0,0,w]</td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 y ..m</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>4 x ..m'</td>
<td>x,1/2,z [u,0,w]</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>4 w ..m'</td>
<td>x,0,z [u,0,w]</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>4 v ..m'</td>
<td>1/2,y,z [0,v,w]</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 u ..m'</td>
<td>0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>2 t m'm'2</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 s m'm'2</td>
<td>1/2,0,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 r m'm'2</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 q m'm'2</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 p m'2'm</td>
<td>1/2,y,1/2 [0,0,w]</td>
<td>1/2,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 o m'2'm</td>
<td>1/2,y,0 [0,0,w]</td>
<td>1/2,y,0 [0,0,w]</td>
</tr>
<tr>
<td>2 n m'2'm</td>
<td>0,y,1/2 [0,0,w]</td>
<td>0,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 m m'2'm</td>
<td>0,y,0 [0,0,w]</td>
<td>0,y,0 [0,0,w]</td>
</tr>
<tr>
<td>2 l 2'm'm</td>
<td>x,1/2,1/2 [0,0,w]</td>
<td>x,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 k 2'm'm</td>
<td>x,1/2,0 [0,0,w]</td>
<td>x,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 j 2'm'm</td>
<td>x,0,1/2 [0,0,w]</td>
<td>x,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 i 2'm'm</td>
<td>x,0,0 [0,0,w]</td>
<td>x,0,0 [0,0,w]</td>
</tr>
<tr>
<td>1 h m'm'm</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1 g m'm'm</td>
<td>0,1/2,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>1 f m'm'm</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>1 e m'm'm</td>
<td>0,1/2,0 [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2m'm'</th>
<th>Along [1,0,0] p2'mm'</th>
<th>Along [0,1,0] p2'mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbf{a}^* = \mathbf{a}$</td>
<td>$\mathbf{b}^* = \mathbf{b}$</td>
<td>$\mathbf{a}^* = \mathbf{c}$</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at 1,0,0</td>
<td>Origin at 0,1,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,0,1] p2m'm'</th>
<th>Along [1,0,0] p2'mm'</th>
<th>Along [0,1,0] p2'mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbf{a}^* = \mathbf{a}$</td>
<td>$\mathbf{b}^* = \mathbf{b}$</td>
<td>$\mathbf{a}^* = \mathbf{a}$</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at 1,0,0</td>
<td>Origin at 0,1,0</td>
</tr>
</tbody>
</table>
Origin at center (m'm'm')

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

1. $\begin{pmatrix} 1 \\ 0,0,0 \end{pmatrix}$
2. $\begin{pmatrix} 2 \\ 0,0,z \end{pmatrix}$
3. $\begin{pmatrix} 2 \\ 0,y,0 \end{pmatrix}$
4. $\begin{pmatrix} 2 \\ x,0,0 \end{pmatrix}$
5. $\begin{pmatrix} 1' \\ 0,0,0' \end{pmatrix}$
6. $\begin{pmatrix} m' \\ x,y,0 \end{pmatrix}$
7. $\begin{pmatrix} m' \\ x,0,z \end{pmatrix}$
8. $\begin{pmatrix} m' \\ 0,y,z \end{pmatrix}$

Orthorhombic

- **Pm'm'm'**
 - 47.5.351

- **m'm'm'**
 - P2/m'2/m'/2/m'
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 α 1</td>
<td>(1) $x,y,z [u,v,w]$</td>
</tr>
<tr>
<td></td>
<td>(2) $x,y,z [u,v,w]$</td>
</tr>
<tr>
<td></td>
<td>(3) $x,y,z [u,v,w]$</td>
</tr>
<tr>
<td></td>
<td>(4) $x,y,z [u,v,w]$</td>
</tr>
<tr>
<td>4 z m'</td>
<td>$x,y,1/2 [u,v,0]$</td>
</tr>
<tr>
<td></td>
<td>$x,y,1/2 [u,v,0]$</td>
</tr>
<tr>
<td></td>
<td>$x,y,1/2 [u,v,0]$</td>
</tr>
<tr>
<td>4 y m'</td>
<td>$x,y,0 [u,v,0]$</td>
</tr>
<tr>
<td></td>
<td>$x,y,0 [u,v,0]$</td>
</tr>
<tr>
<td></td>
<td>$x,y,0 [u,v,0]$</td>
</tr>
<tr>
<td>4 x m'</td>
<td>$x,1/2,z [u,0,w]$</td>
</tr>
<tr>
<td></td>
<td>$x,1/2,z [u,0,w]$</td>
</tr>
<tr>
<td></td>
<td>$x,1/2,z [u,0,w]$</td>
</tr>
<tr>
<td>4 w m'</td>
<td>$x,0,z [u,0,w]$</td>
</tr>
<tr>
<td></td>
<td>$x,0,z [u,0,w]$</td>
</tr>
<tr>
<td></td>
<td>$x,0,z [u,0,w]$</td>
</tr>
<tr>
<td>4 v m'</td>
<td>$1/2,y,z [0,v,w]$</td>
</tr>
<tr>
<td></td>
<td>$1/2,y,z [0,v,w]$</td>
</tr>
<tr>
<td></td>
<td>$1/2,y,z [0,v,w]$</td>
</tr>
<tr>
<td>4 u m'</td>
<td>$0,y,z [0,v,w]$</td>
</tr>
<tr>
<td></td>
<td>$0,y,z [0,v,w]$</td>
</tr>
<tr>
<td></td>
<td>$0,y,z [0,v,w]$</td>
</tr>
<tr>
<td>2 t m'</td>
<td>$1/2,1/2,z [0,0,w]$</td>
</tr>
<tr>
<td></td>
<td>$1/2,1/2,z [0,0,w]$</td>
</tr>
<tr>
<td>2 s m'</td>
<td>$1/2,0,z [0,0,w]$</td>
</tr>
<tr>
<td></td>
<td>$1/2,0,z [0,0,w]$</td>
</tr>
<tr>
<td>2 r m'</td>
<td>$0,1/2,z [0,0,w]$</td>
</tr>
<tr>
<td></td>
<td>$0,1/2,z [0,0,w]$</td>
</tr>
<tr>
<td>2 q m'</td>
<td>$0,0,z [0,0,w]$</td>
</tr>
<tr>
<td></td>
<td>$0,0,z [0,0,w]$</td>
</tr>
<tr>
<td>2 p m'</td>
<td>$1/2,y,1/2 [0,v,0]$</td>
</tr>
<tr>
<td></td>
<td>$1/2,y,1/2 [0,v,0]$</td>
</tr>
<tr>
<td>2 o m'</td>
<td>$1/2,y,0 [0,v,0]$</td>
</tr>
<tr>
<td></td>
<td>$1/2,y,0 [0,v,0]$</td>
</tr>
<tr>
<td>2 n m'</td>
<td>$0,y,1/2 [0,v,0]$</td>
</tr>
<tr>
<td></td>
<td>$0,y,1/2 [0,v,0]$</td>
</tr>
<tr>
<td>2 m m'</td>
<td>$0,y,0 [0,v,0]$</td>
</tr>
<tr>
<td></td>
<td>$0,y,0 [0,v,0]$</td>
</tr>
<tr>
<td>2 l m'</td>
<td>$x,1/2,1/2 [u,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$x,1/2,1/2 [u,0,0]$</td>
</tr>
<tr>
<td>2 k m'</td>
<td>$x,1/2,0 [u,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$x,1/2,0 [u,0,0]$</td>
</tr>
<tr>
<td>2 j m'</td>
<td>$x,0,1/2 [u,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$x,0,1/2 [u,0,0]$</td>
</tr>
<tr>
<td>2 i m'</td>
<td>$x,0,0 [u,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$x,0,0 [u,0,0]$</td>
</tr>
<tr>
<td>1 h m'</td>
<td>$1/2,1/2,1/2 [0,0,0]$</td>
</tr>
<tr>
<td>1 g m'</td>
<td>$0,1/2,1/2 [0,0,0]$</td>
</tr>
<tr>
<td>1 f m'</td>
<td>$1/2,1/2,0 [0,0,0]$</td>
</tr>
<tr>
<td>1 e m'</td>
<td>$0,1/2,0 [0,0,0]$</td>
</tr>
</tbody>
</table>
Continued

1 d m'm'm' 1/2,0,1/2 [0,0,0]
1 c m'm'm' 0,0,1/2 [0,0,0]
1 b m'm'm' 1/2,0,0 [0,0,0]
1 a m'm'm' 0,0,0 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2m'm'</th>
<th>Along [1,0,0]</th>
<th>p2m'm'</th>
<th>Along [0,1,0]</th>
<th>p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = c</td>
<td>b* = a</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry Operations

For (0,0,0) + set

1. $T (0,0,0)$
 - $(1) T (0,0,0)$
 - $(2) 2 0,0,z$
 - $(2_x 0,0,0)$
 - $(3) 2 0,y,0$
 - $(2_y 0,0,0)$
 - $(4) 2 x,0,0$
 - $(2_z 0,0,0)$

2. $T (0,0,0)'$
 - $(5) T (0,0,0)'$
 - $(6) m x,y,0$
 - $(m_x 0,0,0)$
 - $(7) m x,0,z$
 - $(m_y 0,0,0)$
 - $(8) m 0,y,z$
 - $(m_z 0,0,0)$

For (1,0,0)' + set

1. $T' (1,0,0)$
 - $(1) T' (1,0,0)$
 - $(2) 2' 1/2,0,z$
 - $(2_x 1/2,0,0)'$
 - $(3) 2' 1/2,y,0$
 - $(2_y 1/2,0,0)'$
 - $(4) 2' (1,0,0) x,0,0$
 - $(2_z 1/2,0,0)'$

2. $T' (1/2,0,0)$
 - $(5) T' (1/2,0,0)$
 - $(6) a' (1,0,0) x,y,0$
 - $(a'_x 1,0,0)'$
 - $(7) a' (1,0,0) x,0,z$
 - $(a'_y 1,0,0)'$
 - $(8) m' 1/2,y,z$
 - $(m'_z 1,0,0)'$

Origin at center (mmm)

Asymmetric unit
$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2
Generators selected (1); t'(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 α 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 z ..m</td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 y ..m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 x ..m</td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>8 w ..m</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>8 v m'..</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 u m'..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 t m'2'</td>
<td>1/2,1/2,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>4 s m'2'</td>
<td>1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 r mm2</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 q mm2</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 p m'2'm</td>
<td>1/2,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 o m'2'm</td>
<td>1/2,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,0 [0,0,w]</td>
</tr>
<tr>
<td>4 n m2m</td>
<td>0,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 m m2m</td>
<td>0,y,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,0 [0,0,0]</td>
</tr>
<tr>
<td>4 l 2mm</td>
<td>x,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 k 2mm</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 j 2mm</td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 i 2mm</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 h m'2mm</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 g 2mm</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 f m'2mm</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 e 2mm</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>
Continued

47.6.352

2 d m'mm 1/2,0,1/2 [0,0,0]
2 c mmm 0,0,1/2 [0,0,0]
2 b m'mm 1/2,0,0 [0,0,0]
2 a mmm 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p2mm1'
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] p2mm1'
\(\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \)
Origin at x,0,0

Along [0,1,0] p2mm1'
\(\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = \mathbf{a} \)
Origin at 0,y,0
Origin at center (mmm)

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0) +$ set

(1) 1 $(0,0,0)$
(2) $2 \cdot 0,0,z$ $(2z,0,0,0)$
(3) $2 \cdot 0,y,0$ $(2y,0,0,0)$
(4) $2 \cdot x,0,0$ $(2x,0,0,0)$
(5) $m \cdot x,y,0$ $(m_z,0,0,0)$
(6) $m \cdot x,0,z$ $(m_y,0,0,0)$
(7) $m \cdot 0,y,z$ $(m_x,0,0,0)$
(8) $m \cdot 0,y,z$ $(m_x,0,0,0)$

For $(1,0,0)' +$ set

(1) $t' (1,0,0)$ $(1,0,0)'$
(2) $2' \cdot 1/2,0,z$ $(2z,1,0,0)'$
(3) $2' \cdot 1/2,y,0$ $(2y,1,0,0)'$
(4) $2' \cdot (1,0,0)$ $(2x,1,0,0)'$
(5) $a' (1,0,0)$ $x,y,0$ $(m_z,1,0,0)'$
(6) $a' (1,0,0)$ $x,y,0$ $(m_z,1,0,0)'$
(7) $a' (1,0,0)$ $x,0,z$ $(m_z,1,0,0)'$
(8) $m' \cdot 1/2,y,z$ $(m_x,1,0,0)'$
Generators selected
(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>16 α 1</td>
<td></td>
</tr>
<tr>
<td>8 z ·m</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 y ·m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 x ·m'</td>
<td>x,1/2,z [u,v,w]</td>
</tr>
<tr>
<td>8 w ·m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>8 v ·m'..</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 u ·m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 t m'm'2</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 s m'm'2</td>
<td>1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 r mm'2'</td>
<td>0,1/2,z [u,0,0]</td>
</tr>
<tr>
<td>4 q mm2</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 p m'2'm</td>
<td>1/2,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 o m'2'm</td>
<td>1/2,y,0 [0,0,w]</td>
</tr>
<tr>
<td>4 n m2m</td>
<td>0,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 m m2m</td>
<td>0,y,0 [0,0,0]</td>
</tr>
<tr>
<td>4 l 2'm'm</td>
<td>x,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 k 2'm'm</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 j 2mm</td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 i 2mm</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 h m'm'm</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 g mm'm</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 f m'm'm</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 e mm'm</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>
Continued

47.7.353

P \text{ cmmm}

2 d' m'\text{mm} \ 1/2,0,1/2 [0,0,0]
2 c \ \text{mmm} \ 0,0,1/2 [0,0,0]
2 b' m'\text{mm} \ 1/2,0,0 [0,0,0]
2 a \ \text{mmm} \ 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] \ p\text{c'} 2\text{mm} \quad \text{Along [1,0,0]} \quad \text{p2}\text{mm1'}
\text{a} = \text{a} \quad \text{b} = \text{b}
\text{Origin at 0,0,z}
\text{Origin at x,0,0}

\text{Along [0,1,0]} \quad \text{p2}\text{mm1'}
\text{a} = \text{c} \quad \text{b} = \text{a}
Origin at center (mmm)

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$
Symmetry Operations

For \((0,0,0) +\)

\[
\begin{array}{cccc}
(1) & 1 & (2) & 2 \ 0,0,z \\
 & (1,0,0) & (2_z,0,0,0) & (2,0,0,0) \\
(5) & \bar{T} & (6) & m \ x,y,0 \\
 & (0,0,0) & (m_z,0,0,0) & (m,0,0,0) \\
(1) & t & (2) & 2' 1/2,0,z \\
 & (1,0,0) & (2_z',1,0,0) & (2,0,0,0) \\
(5) & \bar{T}' & (6) & a' (1,0,0) x,y,0 \\
 & (1,0,0)' & (m_z',1,0,0) & (m,0,0,0) \\
\end{array}
\]

For \((1,0,0)' + \)

\[
\begin{array}{cccc}
(1) & t' & (2) & 2' 1/2,0,z \\
 & (1,0,0) & (2_z',1,0,0) & (2,0,0,0) \\
(5) & \bar{T}' & (6) & a' (1,0,0) x,y,0 \\
 & (1,0,0)' & (m_z',1,0,0) & (m,0,0,0) \\
\end{array}
\]

Generators selected

\((1); t'(1,0,0); t'(0,1,0); t'(0,0,1); (2); (3); (5).\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0,0) +)</td>
<td>((1,0,0)' +)</td>
</tr>
<tr>
<td>(\alpha 16)</td>
<td>(\alpha 16)</td>
</tr>
<tr>
<td>(1) (x,y,z [u,v,w])</td>
<td>(x,y,z [u,v,w])</td>
</tr>
<tr>
<td>(5) (x,y,z [u,v,w])</td>
<td>(x,y,z [u,v,w])</td>
</tr>
<tr>
<td>(z \ .m') (x,y,1/2 [u,v,0])</td>
<td>(x,y,1/2 [u,v,0])</td>
</tr>
<tr>
<td>(z \ .m) (x,y,0 [0,0,w])</td>
<td>(x,y,0 [0,0,w])</td>
</tr>
<tr>
<td>(x \ .m') (x,1/2,z [u,0,w])</td>
<td>(x,1/2,z [u,0,w])</td>
</tr>
<tr>
<td>(w \ .m) (x,0,z [0,v,0])</td>
<td>(x,0,z [0,v,0])</td>
</tr>
<tr>
<td>(v \ .m') (1/2,y,z [0,v,w])</td>
<td>(1/2,y,z [0,v,w])</td>
</tr>
<tr>
<td>(u \ .m) (0,y,z [0,0,u])</td>
<td>(0,y,z [0,0,u])</td>
</tr>
<tr>
<td>(t \ .m') (2/1,2,z [0,0,w])</td>
<td>(2/1,2,z [0,0,w])</td>
</tr>
<tr>
<td>(s \ .m') (2/1,0,z [0,v,0])</td>
<td>(2/1,0,z [0,v,0])</td>
</tr>
<tr>
<td>(r \ .m') (0/1,2,z [u,0,0])</td>
<td>(0/1,2,z [u,0,0])</td>
</tr>
<tr>
<td>(q \ .m') (0,0,z [0,0,0])</td>
<td>(0,0,z [0,0,0])</td>
</tr>
<tr>
<td>(p \ .m') (1/2,y,1/2 [0,v,0])</td>
<td>(1/2,y,1/2 [0,v,0])</td>
</tr>
<tr>
<td>(o \ .m') (1/2,y,0 [0,0,0])</td>
<td>(1/2,y,0 [0,0,0])</td>
</tr>
<tr>
<td>(n \ .m') (0,y,1/2 [u,0,0])</td>
<td>(0,y,1/2 [u,0,0])</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p2mm1'
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p2mm1'
\[a^* = b \quad b^* = c \]
Origin at x,0,0

Along [0,1,0] p2mm1'
\[a^* = c \quad b^* = a \]
Origin at 0,y,0
Orthorhombic

Origin at center (mmm')

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set:

1. \(\{1 \mid 0,0,0 \} \)
2. \(\{2 \mid 0,0,z \} \)
3. \(\{3' \mid 0,y,0 \} \)
4. \(\{4' \mid x,0,0 \} \)
5. \(\{5 \mid 0,0,0 \} \)
6. \(\{6 \mid m',0,0 \} \)
7. \(\{7 \mid m,0,z \} \)
8. \(\{8 \mid m,0,0 \} \)

For (1,0,0)' + set:

1. \(\{1' \mid 1,0,0 \} \)
2. \(\{2' \mid 1/2,0,z \} \)
3. \(\{3 \mid 1/2,y,0 \} \)
4. \(\{4 \mid 2(1,0,0) \} \)
5. \(\{5 \mid 1/2,0,0 \} \)
6. \(\{6 \mid a(1,0,0) \} \)
7. \(\{7 \mid a'(1,0,0) \} \)
8. \(\{8 \mid m',1/2,y,z \} \)

\(\{1 \mid 0,0,0 \} \)
\(\{2 \mid 0,0,0 \} \)
\(\{3 \mid 0,0,0 \} \)
\(\{4 \mid 0,0,0 \} \)
\(\{5 \mid 0,0,0 \} \)
\(\{6 \mid 0,0,0 \} \)
\(\{7 \mid 0,0,0 \} \)
\(\{8 \mid 0,0,0 \} \)
Continued

Generators selected \((1); t'(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5). \)

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(16 \alpha 1) x,y,z[0,v,w]</td>
<td>(x,y,z[0,v,w])</td>
</tr>
<tr>
<td>(8 z \ldots m') x,y,1/2[0,v,0]</td>
<td>(x,y,1/2[0,v,0])</td>
</tr>
<tr>
<td>(8 y \ldots m') x,y,0[0,v,0]</td>
<td>(x,y,0[0,v,0])</td>
</tr>
<tr>
<td>(8 x \ldots m) x,1/2,z[0,v,0]</td>
<td>(x,1/2,z[0,v,0])</td>
</tr>
<tr>
<td>(8 w \ldots m) x,0,z[0,v,0]</td>
<td>(x,0,z[0,v,0])</td>
</tr>
<tr>
<td>(8 v \ldots m) 1/2,y,z[0,v,0]</td>
<td>(1/2,y,z[0,v,0])</td>
</tr>
<tr>
<td>(8 u \ldots m) 0,y,z[0,0,0]</td>
<td>(0,y,z[0,0,0])</td>
</tr>
<tr>
<td>(4 t \ldots m) 1/2,1/2,z[0,v,0]</td>
<td>(1/2,1/2,z[0,v,0])</td>
</tr>
<tr>
<td>(4 s \ldots m) 1/2,0,z[0,v,0]</td>
<td>(1/2,0,z[0,v,0])</td>
</tr>
<tr>
<td>(4 r \ldots m) 0,1/2,z[0,0,0]</td>
<td>(0,1/2,z[0,0,0])</td>
</tr>
<tr>
<td>(4 q \ldots m) 0,0,z[0,0,0]</td>
<td>(0,0,z[0,0,0])</td>
</tr>
<tr>
<td>(4 p \ldots m) 1/2,y,1/2[0,v,0]</td>
<td>(1/2,y,1/2[0,v,0])</td>
</tr>
<tr>
<td>(4 o \ldots m) 1/2,y,0[0,v,0]</td>
<td>(1/2,y,0[0,v,0])</td>
</tr>
<tr>
<td>(4 n \ldots m) 0,y,1/2[0,0,0]</td>
<td>(0,y,1/2[0,0,0])</td>
</tr>
<tr>
<td>(4 m \ldots m) 0,y,0[0,0,0]</td>
<td>(0,y,0[0,0,0])</td>
</tr>
<tr>
<td>(4 l \ldots m) x,1/2,1/2[0,v,0]</td>
<td>(x,1/2,1/2[0,v,0])</td>
</tr>
<tr>
<td>(4 k \ldots m) x,1/2,0[0,v,0]</td>
<td>(x,1/2,0[0,v,0])</td>
</tr>
<tr>
<td>(4 j \ldots m) x,0,1/2[0,v,0]</td>
<td>(x,0,1/2[0,v,0])</td>
</tr>
<tr>
<td>(4 i \ldots m) x,0,0[0,v,0]</td>
<td>(x,0,0[0,v,0])</td>
</tr>
<tr>
<td>(2 h \ldots m) 1/2,1/2,1/2[0,v,0]</td>
<td>(1/2,1/2,1/2[0,v,0])</td>
</tr>
<tr>
<td>(2 g \ldots m) 0,1/2,1/2[0,0,0]</td>
<td>(0,1/2,1/2[0,0,0])</td>
</tr>
<tr>
<td>(2 f \ldots m) 1/2,1/2,0[0,v,0]</td>
<td>(1/2,1/2,0[0,v,0])</td>
</tr>
<tr>
<td>(2 e \ldots m) 0,1/2,0[0,0,0]</td>
<td>(0,1/2,0[0,0,0])</td>
</tr>
</tbody>
</table>
Continued

47.9.355

P$_2$ mmm'

2 d m'nm' 1/2,0,1/2 [0,v,0]
2 c mmm' 0,0,1/2 [0,0,0]
2 b m'nm' 1/2,0,0 [0,v,0]
2 a mmm' 0,0,0 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p$_{2a}$ 2mm</th>
<th>Along [1,0,0]</th>
<th>p2mm1'</th>
<th>Along [0,1,0]</th>
<th>p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = c</td>
<td>b* = a</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

47.9.355 - 3 - 696
Orthorhombic

47.10.356

mmm1'

P2c 2'/m'2'/m'2/m

Origin at center (mm'm')

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1 (1|0,0,0)

(5) 1 (1|0,0,0)

(6) m x,y,0 (mz|0,0,0)

(7) m' x,0,z (mz|0,0,0)' (7) c (0,0,1) x,0,z (mz|0,0,1)

(8) m' 0,y,z (mz|0,0,0)'

For (0,0,1)' + set

(1) t' (0,0,1) (1|0,0,1)'

(5) T 0,0,1/2 (1|0,0,1)'

(6) m' x,y,1/2 (mz|0,0,1)'

(7) c (0,0,1) x,0,z (mz|0,0,1)

(8) c (0,0,1) 0,y,z (mz|0,0,1)
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(0,0,1)' +</td>
</tr>
<tr>
<td>16 α 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 z ..m'</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 y ..m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 x ..m'.</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>8 w ..m'.</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>8 v m'..</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 u m'..</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 t m''</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 s m''</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 r m''</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 q m''</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 p m'2</td>
<td>1/2,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 o m'2</td>
<td>1/2,y,0 [0,0,w]</td>
</tr>
<tr>
<td>4 n m'2</td>
<td>0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 m m'2</td>
<td>0,y,0 [0,0,w]</td>
</tr>
<tr>
<td>4 l 2m'</td>
<td>x,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 k 2m'</td>
<td>x,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>4 j 2m'</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 i 2m'</td>
<td>x,0,0 [0,0,w]</td>
</tr>
<tr>
<td>2 h m''</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 g m''</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 f m''</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 e m''</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
</tbody>
</table>
Continued

2 \(d \) \(m'm'm' \) 1/2,0,1/2 [0,0,0]
2 \(c \) \(m'm'm' \) 0,0,1/2 [0,0,0]
2 \(b \) \(m'm'm \) 1/2,0,0 [0,0,w]
2 \(a \) \(m'm'm \) 0,0,0 [0,0,w]

Symmetry of Special Projections

Along [0,0,1] \(p2mm1' \)
\(a^* = a \) \(b^* = b \)
Origin at 0,0,z

Along [1,0,0] \(p_{2a'}2m'm' \)
\(a^* = -c \) \(b^* = b \)
Origin at x,0,1/2

Along [0,1,0] \(p_{2a'}2m'm' \)
\(a^* = c \) \(b^* = a \)
Origin at 0,y,1/2
Origin at center (mmm')

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For (0,0,0) + set

1. $1 \quad (1 \mid 0,0,0)$
2. $2 \quad 0,0,z \quad (2z \mid 0,0,0)$
3. $2' \quad 0,y,0 \quad (2z \mid 0,0,0)'$
4. $2' \quad x,0,0 \quad (2z \mid 0,0,0)'$
5. $\overline{1} \quad (1,0,0)$
6. $m' \quad x,y,0 \quad (mz \mid 0,0,0)$
7. $m \quad x,0,z \quad (mz \mid 0,0,0)$
8. $m' \quad 0,y,z \quad (mz \mid 0,0,0)$

For (1,0,0)' + set

1. $t' \quad (1,0,0)$
2. $2' \quad 1/2,0,z \quad (2z \mid 1,0,0)'$
3. $2 \quad 1/2,y,0 \quad (2z \mid 1,0,0)$
4. $2 \quad (1,0,0) \quad x,0,0 \quad (2z \mid 1,0,0)$
5. $\overline{1} \quad (1/2,0,0)$
6. $a \quad (1,0,0) \quad x,y,0 \quad (mz \mid 1,0,0)$
7. $a' \quad (1,0,0) \quad x,0,z \quad (mz \mid 1,0,0)'$
8. $m' \quad 1/2,y,z \quad (mz \mid 1,0,0)'$
Generators selected
(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>16 α 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 z m'</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 y m'</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>8 x m'</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>8 w m'</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>8 v m'</td>
<td>1/2,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 u m'</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 t m'2'</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 s m'2'</td>
<td>1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 r m'2'</td>
<td>0,1/2,z [u,0,0]</td>
</tr>
<tr>
<td>4 q m'2</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 p m'2'</td>
<td>1/2,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 o m'2'</td>
<td>1/2,y,0 [0,v,0]</td>
</tr>
<tr>
<td>4 n m'2'</td>
<td>0,y,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 m m'2'</td>
<td>0,y,0 [u,0,0]</td>
</tr>
<tr>
<td>4 l m'2'</td>
<td>x,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 k m'2'</td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4 j m'2'</td>
<td>x,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 i m'2'</td>
<td>x,0,0 [0,v,0]</td>
</tr>
<tr>
<td>2 h m'2m'</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 g m'2m'</td>
<td>0,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 f m'2m'</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 e m'2m'</td>
<td>0,1/2,0 [u,0,0]</td>
</tr>
</tbody>
</table>
Continued

<table>
<thead>
<tr>
<th>2</th>
<th>d</th>
<th>m' mm'</th>
<th>1/2, 0, 1/2</th>
<th>[0, v, 0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>c</td>
<td>mmm'</td>
<td>0, 0, 1/2</td>
<td>[0, 0, 0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>m' mm'</td>
<td>1/2, 0, 0</td>
<td>[0, v, 0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>mmm'</td>
<td>0, 0, 0</td>
<td>[0, 0, 0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0, 0, 1]</th>
<th>p_c 2mm</th>
<th>Along [1, 0, 0]</th>
<th>p2mm1'</th>
<th>Along [0, 1, 0]</th>
<th>p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = a</td>
<td>b' = b</td>
<td>a' = b</td>
<td>b' = c</td>
<td>a' = c</td>
<td>b' = a</td>
</tr>
<tr>
<td>Origin at 0, 0, z</td>
<td></td>
<td>Origin at x, 0, 0</td>
<td></td>
<td>Origin at 0, y, 0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at 222, at 1/4,1/4,1/4 from \(\bar{1} \)

Asymmetric unit

\(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \)

Symmetry Operations

1. \(\bar{1} \)

 \begin{align*}
 (1,0,0,0) \\
 (1,0,0,0)
 \end{align*}

2. \(\bar{2} \)

 \begin{align*}
 (0,0,z) \\
 (2z,0,0,0)
 \end{align*}

3. \(\bar{2} \)

 \begin{align*}
 (0,y,0) \\
 (2y,0,0,0)
 \end{align*}

4. \(\bar{2} \)

 \begin{align*}
 (x,0,0) \\
 (2x,0,0,0)
 \end{align*}

5. \(\bar{1} \)

 \begin{align*}
 (1/4,1/4,1/4) \\
 (1/2,1/2,1/2)
 \end{align*}

6. \(\bar{n} \)

 \begin{align*}
 (1/2,1/2,0) \\
 (m_x,1/2,1/2,1/2)
 \end{align*}

7. \(\bar{n} \)

 \begin{align*}
 (1/2,0,1/2) \\
 (m_y,1/2,1/2,1/2)
 \end{align*}

8. \(\bar{n} \)

 \begin{align*}
 (0,1/2,1/2) \\
 (m_z,1/2,1/2,1/2)
 \end{align*}
Generators selected:
(1) t(1,0,0); t(0,1,0); t(0,0,1); (2) (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 m 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 l 1/2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 k 1/2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 j 1/2</td>
<td>1/2,y,0 [0,v,0]</td>
</tr>
<tr>
<td>4 i 1/2</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td>4 h 1/2</td>
<td>X,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 g 1/2</td>
<td>X,0,0 [u,0,0]</td>
</tr>
<tr>
<td>4 f 1/2</td>
<td>3/4,3/4,3/4 [u,v,w]</td>
</tr>
<tr>
<td>4 e 1/2</td>
<td>1/4,1/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td>2 d 1/2</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 c 1/2</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b 1/2</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 a 1/2</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c_p 2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = a</td>
<td>b^* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>c_p 2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = b</td>
<td>b^* = c</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>c_p 2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = c</td>
<td>b^* = a</td>
</tr>
<tr>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Orthorhombic

Pnnn1'

48.2.359

mmm1'

P2/n2/n2/n1'

1'

Origin: at 2221', at 1/4,1/4,1/4 from 1

Asymmetric unit: 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For 1 + set

1. \(T\) \((0,0,0)
2. \(2\) \((0,0,z)\)
3. \(2\) \((0,y,0)\)
4. \(2\) \((x,0,0)\)
5. \(1\) \((1/4,1/4,1/4)\)
6. \(n\) \((1/2,1/2,0)\)
7. \(n\) \((1/2,0,1/2)\)
8. \(n\) \((0,1/2,1/2)\)

For 1' + set

1. \(T\) \((0,0,0)'\)
2. \(2\) \((0,0,z)\)
3. \(2\) \((0,y,0)\)
4. \(2\) \((x,0,0)\)
5. \(1\) \((1/4,1/4,1/4)\)
6. \(n\) \((1/2,1/2,0)\)
7. \(n\) \((1/2,0,1/2)\)
8. \(n\) \((0,1/2,1/2)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5), 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 m 11' (1) x,y,z [0,0,0]</td>
<td>(2) x̅,y̅,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) x̅,y̅,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) x̅,y̅,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2,y+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y+1/2,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

4 l .21' 0,1/2,z [0,0,0] 0,1/2,z [0,0,0] 1/2,0,z+1/2 [0,0,0] 1/2,0,z+1/2 [0,0,0]
4 k .21' 0,0,z [0,0,0] 0,0,z [0,0,0] 1/2,1/2,z+1/2 [0,0,0] 1/2,1/2,z+1/2 [0,0,0]
4 j .21' 1/2,y,0 [0,0,0] 1/2,y,0 [0,0,0] 0,y+1/2,1/2 [0,0,0] 0,y+1/2,1/2 [0,0,0]
4 i .21' 0,y,0 [0,0,0] 0,y,0 [0,0,0] 1/2,y+1/2,1/2 [0,0,0] 1/2,y+1/2,1/2 [0,0,0]
4 h .21' x,0,1/2 [0,0,0] x̅,0,1/2 [0,0,0] x+1/2,1/2,0 [0,0,0] x+1/2,1/2,0 [0,0,0]
4 g .21' x,0,0 [0,0,0] x̅,0,0 [0,0,0] x+1/2,1/2,1/2 [0,0,0] x+1/2,1/2,1/2 [0,0,0]
4 f .1' 3/4,3/4,3/4 [0,0,0] 1/4,1/4,3/4 [0,0,0] 1/4,3/4,1/4 [0,0,0] 3/4,1/4,1/4 [0,0,0]
4 e .1' 1/4,1/4,1/4 [0,0,0] 3/4,3/4,1/4 [0,0,0] 3/4,1/4,3/4 [0,0,0] 1/4,3/4,3/4 [0,0,0]
2 d 2221' 0,1/2,0 [0,0,0] 1/2,0,1/2 [0,0,0]
2 c 2221' 0,0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0]
2 b 2221' 1/2,0,0 [0,0,0] 0,1/2,1/2 [0,0,0]
2 a 2221' 0,0,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] c 2mm1'</th>
<th>Along [1,0,0] c 2mm1'</th>
<th>Along [0,1,0] c 2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = b b* = c</td>
<td>a* = c b* = a</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Origin at \(22'2', 1/4,1/4,1/4\) from \(\overline{1}\)

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\)

Symmetry Operations

(1) \(1 \quad (1' | 0,0,0)\)

(2) \(2' \quad 0,0,z \quad (2z' | 0,0,0)\)

(3) \(2' \quad 0,y,0 \quad (2y' | 0,0,0)\)

(4) \(2 \quad x,0,0 \quad (2x' | 0,0,0)\)

(5) \(\overline{1'} \quad 1/4,1/4,1/4 \quad (\overline{1'} | 1/2,1/2,1/2)\)

(6) \(n \quad (1/2,1/2,0) \quad x,y,1/4 \quad (mz | 1/2,1/2,1/2)\)

(7) \(n \quad (1/2,0,1/2) \quad x,1/4,z \quad (mx | 1/2,1/2,1/2)\)

(8) \(n' \quad (0,1/2,1/2) \quad 1/4,y,z \quad (mz' | 1/2,1/2,1/2)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 m 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 l .2'</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 k .2'</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 j .2'</td>
<td>1/2,y,0 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y+1/2,1/2 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y+1/2,1/2 [u,0,w]</td>
</tr>
<tr>
<td>4 i .1'</td>
<td>0,y,0 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y+1/2,1/2 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y+1/2,1/2 [u,0,w]</td>
</tr>
<tr>
<td>4 h 2..</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4 g 2..</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 f 1..</td>
<td>3/4,3/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 e 1..</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 d 22'2'</td>
<td>0,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 c 22'2'</td>
<td>0,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>2 b 22'2'</td>
<td>1/2,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>2 a 22'2'</td>
<td>0,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c p 2mm' c p 2mm' c p 2mm'
\(a^* = a \) \(b^* = b \) \(a^* = b \) \(b^* = c \) \(a^* = -a \) \(b^* = c \)
Origin at 0,0,0 Origin at x,0,0 Origin at 0,0,0

48.3.360 - 2 - 708
Origin at $2'2'2'$, at $1/4,1/4,1/4$ from $\overline{1}$

Asymmetric unit $0 \leq x \leq 1/4; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1$

Symmetry Operations

(1) 1
(1 0,0,0)

(2) $2\ 0,0,z$
($2_z\ 0,0,0$)

(3) $2'\ 0,y,0$
($2'_{x,0,0}$)

(4) $2'\ x,0,0$
($2'_{x,0,0}$)

(5) $\overline{1}\ 1/4,1/4,1/4$
($\overline{1}\ 1/2,1/2,1/2$)

(6) $n\ (1/2,1/2,0)\ x,y,1/4$
($m_{z}\ 1/2,1/2,1/2$)

(7) $n'\ (1/2,0,1/2)\ x,1/4,z$
($m_{y}\ 1/2,1/2,1/2'$)

(8) $n'\ (0,1/2,1/2)\ 1/4,y,z$
($m_{x}\ 1/2,1/2,1/2'$)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 m 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

4 l .2	0,1/2,z [0,0,w] 0,1/2,z [0,0,w] 1/2,0,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w]
4 k ..2	0,0,z [0,0,w] 0,0,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 1/2,1/2,z+1/2 [0,0,w]
4 j .2'	1/2,y,0 [u,0,w] 1/2,y,0 [u,0,w] 0,y+1/2,1/2 [u,0,w] 0,y+1/2,1/2 [u,0,w]
4 i .2'	0,y,0 [u,0,w] 0,y,0 [u,0,w] 1/2,y+1/2,1/2 [u,0,w] 1/2,y+1/2,1/2 [u,0,w]
4 h 2'..	X,0,1/2 [0,v,w] X,0,1/2 [0,v,w] x+1/2,1/2,0 [0,v,w] x+1/2,1/2,0 [0,v,w]
4 g 2'..	X,0,0 [0,v,w] X,0,0 [0,v,w] x+1/2,1/2,1/2 [0,v,w] x+1/2,1/2,1/2 [0,v,w]
4 e 1	1/4,1/4,1/4 [u,v,w] 3/4,1/4,1/4 [u,v,w] 3/4,1/4,1/4 [u,v,w] 1/4,3/4,3/4 [u,v,w]
2 d 2'2'	0,1/2,0 [0,0,w] 1/2,0,1/2 [0,0,w]
2 c 2'2'	0,0,1/2 [0,0,w] 1/2,1/2,0 [0,0,w]
2 b 2'2'	1/2,0,0 [0,0,w] 0,1/2,1/2 [0,0,w]
2 a 2'2'	0,0,0 [0,0,w] 1/2,1/2,1/2 [0,0,w]

Symmetry of Special Projections

Along [0,0,1] c2m'm' Along [1,0,0] c 2'mm' Along [0,1,0] c 2'mm'

a'^* = a b'^* = b a'^* = -c b'^* = b a'^* = c b'^* = a

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Orthorhombic

Pn'n'n' 48.5.362

m'm'm' P2/n'2/n'2/n'

Origin at 222, at 1/4,1/4,1/4 from \(\overline{1} \)

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(1 & \quad 0,0,0) \\
(2) & \quad 2 \quad 0,0,z \\
(2 & \quad z,0,0) \\
(3) & \quad 2 \quad 0,y,0 \\
(2 & \quad y,0,0) \\
(4) & \quad 2 \quad x,0,0 \\
(2 & \quad x,0,0) \\
(5) & \quad \overline{1} \quad 1/4,1/4,1/4 \\
(\overline{1} & \quad 1/2,1/2,1/2) \\
(6) & \quad n' \quad (1/2,1/2,0) \quad x,y,1/4 \\
(m_z & \quad 1/2,1/2,1/2) \\
(7) & \quad n' \quad (1/2,0,1/2) \quad x,1/4,z \\
(m_y & \quad 1/2,1/2,1/2) \\
(8) & \quad n' \quad (0,1/2,1/2) \quad 1/4,y,z \\
(m_z & \quad 1/2,1/2,1/2) \\
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) m 1</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2) m 1</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) m 1</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(4) m 1</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) m 1</td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(6) m 1</td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(7) m 1</td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(8) m 1</td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c 2m'm'
Along [0,1,0] c 2m'm'
Along [1,0,0] c 2m'm'

a* = a b* = b
a* = b b* = c
a* = c b* = a

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin at 222, at 1/4,1/4,1/4 from 1
Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

48.6.363 - 1 - 713
Continued

Symmetry Operations

<table>
<thead>
<tr>
<th></th>
<th>For (0,0,0) + set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2 (\end{equation}^{0,0,0})</td>
</tr>
<tr>
<td>3</td>
<td>2 (\end{equation}^{0,0,0})</td>
</tr>
<tr>
<td>4</td>
<td>2 (\end{equation}^{x,0,0})</td>
</tr>
<tr>
<td>5</td>
<td>(\setminus) (1/4,1,1/4) (\setminus) (1,1/2,1/2)</td>
</tr>
<tr>
<td>6</td>
<td>(n) ((1/2,1/2,0)) (x,y,1/4)</td>
</tr>
<tr>
<td>7</td>
<td>(n) ((1/2,0,1/2)) (x,1/4,z)</td>
</tr>
<tr>
<td>8</td>
<td>(n) ((0,1,2/1)) (1/4,y,z)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>For (1,0,0)′ + set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(t) ((1,0,0))</td>
</tr>
<tr>
<td>2</td>
<td>(t) ((0,1,0))</td>
</tr>
<tr>
<td>3</td>
<td>(t) ((0,0,1))</td>
</tr>
<tr>
<td>4</td>
<td>(t) ((1,1,0))</td>
</tr>
<tr>
<td>5</td>
<td>(n) ((1/2,1/2,0)) (x,y,1/4)</td>
</tr>
<tr>
<td>6</td>
<td>(n) ((1/2,0,1/2)) (x,1/4,z)</td>
</tr>
<tr>
<td>7</td>
<td>(n) ((0,1,2/1)) (3/4,y,z)</td>
</tr>
</tbody>
</table>

Generators selected
(1); \(t \)′(1,0,0); \(t \)′(0,1,0); \(t \)′(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th></th>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16 m 1</td>
<td>((0,0,0) +) (1,0,0)′ +</td>
</tr>
<tr>
<td></td>
<td>(x,y,z [u,v,w])</td>
<td>(x,y,z [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(x,y,z [u,v,w])</td>
<td>(x,y,z [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(x+1/2,y+1/2,z+1/2 [u,v,w])</td>
<td>(x+1/2,y+1/2,z+1/2 [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(x+1/2,y+1/2,z+1/2 [u,v,w])</td>
<td>(x+1/2,y+1/2,z+1/2 [u,v,w])</td>
</tr>
<tr>
<td>8</td>
<td>l (..2) 0,1/2,2 [0,0,w]</td>
<td>0,1/2,2 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>k (..2) 0,0,2 [0,0,w]</td>
<td>0,0,2 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>j (..2) 1/2,1/2 [0,0,w]</td>
<td>1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>i (..2) 0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>h (..2) 1/2,1/2 [0,0,0]</td>
<td>1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>g (..2) 0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>f (\bar{1}) 3/4,3/4,3/4 [u,v,w]</td>
<td>3/4,3/4,3/4 [u,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>e (\bar{1}) 1/4,1/4,1/4 [u,v,w]</td>
<td>1/4,1/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>d (222) 0,1/2,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>c (222) 0,1/2,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>b (222) 0,1/2,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>
4 a 222 0,0,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] c2mm1'
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] c2mm1'
\(\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \)
Origin at x,0,0

Along [0,1,0] c2mm1'
\(\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = \mathbf{a} \)
Origin at 0,y,0
Orthorhombic

49.1.364

Pccm

Origin at center (2/m) at cc2/m

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

1. 1 (1 | 0, 0, 0)
2. 2 | 0, 0, z
 (2 | 0, 0, 0)
3. 2 | 0, y, 1/4
 (2 | 0, 0, 1/2)
4. 2 | x, 0, 1/4
 (2 | 0, 0, 1/2)
5. m (1 | 0, 0, 0)
6. m | x, y, 0
 (m | 0, 0, 0)
7. c (0, 0, 1/2) | x, 0, z
 (m | 0, 0, 1/2)
8. c (0, 0, 1/2) | 0, y, z
 (m | 0, 0, 1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 r 1 (1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
<td>(7) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(8) x,y,z+1/2 [u,v,w]</td>
<td>(9) x,y,z [u,v,w]</td>
<td>(10) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 q ..m x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 p ..2 1/2,0,0 [0,0,w]</td>
<td>1/2,0,0 [0,0,w]</td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>4 o ..2 0,1/2,0 [0,0,w]</td>
<td>0,1/2,0 [0,0,w]</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>4 n ..2 1/2,1/2,0 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>4 m ..2 0,0,0 [0,0,w]</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,0 [0,0,w]</td>
</tr>
<tr>
<td>4 l 1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 k 2 ... x,1/2,1/4 [u,0,0]</td>
<td>x,1/2,1/4 [u,0,0]</td>
<td>x,1/2,1/4 [u,0,0]</td>
</tr>
<tr>
<td>4 j 2 ... x,0,1/4 [u,0,0]</td>
<td>x,0,1/4 [u,0,0]</td>
<td>x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td>2 h 222 1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 g 222 0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 f 222 1/2,0,1/4 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 e 222 0,0,1/4 [0,0,0]</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 d ..2/m 1/2,0,0 [0,0,w]</td>
<td>1/2,0,0 [0,0,w]</td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>2 c ..2/m 0,1/2,0 [0,0,w]</td>
<td>0,1/2,0 [0,0,w]</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 b ..2/m 1/2,1/2,0 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 a ..2/m 0,0,0 [0,0,w]</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin at 0,0,z</th>
<th>Along [0,0,1]</th>
<th>p2mm1'</th>
<th>Along [1,0,0]</th>
<th>p_{2\alpha} 2m'm'</th>
<th>Along [0,1,0]</th>
<th>p_{2\alpha} 2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = c/2</td>
<td>b* = b</td>
<td>a* = c/2</td>
<td>b* = a</td>
<td>a* = c/2</td>
<td>b* = a</td>
</tr>
</tbody>
</table>

Origin at 0,0,z | Origin at x,0,0 | Origin at 0,y,0
Origin at center (2/m1') at cc2/m1'

Asymmetric unit
0 < x < 1/2; 0 < y < 1/2; 0 < z < 1/2

Symmetry Operations

For 1 + set
(1) 1
 (1' | 0,0,0)
 (1 | 0,0,0)
(2) 2 0,0,z
 (2_ | 0,0,0)
 (2_ | 0,0,0)
(3) 2 y,1/4
 (2_y | 0,0,1/2)
 (2_y | 0,0,1/2)
(4) 2 x,0,1/4
 (2_x | 0,0,1/2)
 (2_x | 0,0,1/2)

For 1' + set
(5) 1'
 (5' | 0,0,0)
 (1' | 0,0,0)
(6) m x,y,0
 (6' | m_0,0,0)
 (6' | m_0,0,0)
(7) c (0,0,1/2) x,0,z
 (7' | c_0,0,1/2') x,0,z
 (7' | c_0,0,1/2') x,0,z
(8) c (0,0,1/2) 0,y,z
 (8' | c_0,0,1/2') 0,y,z
 (8' | c_0,0,1/2') 0,y,z
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinates</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>8 r 11'</td>
</tr>
<tr>
<td>(5) x, y, z [0, 0, 0]</td>
</tr>
<tr>
<td>4 q ..m1'</td>
</tr>
<tr>
<td>4 p ..21'</td>
</tr>
<tr>
<td>4 o ..21'</td>
</tr>
<tr>
<td>4 n ..21'</td>
</tr>
<tr>
<td>4 m ..21'</td>
</tr>
<tr>
<td>4 l ..2.1'</td>
</tr>
<tr>
<td>4 k ..2.1'</td>
</tr>
<tr>
<td>4 j ..2.1'</td>
</tr>
<tr>
<td>4 i ..2.1'</td>
</tr>
<tr>
<td>2 h 2221'</td>
</tr>
<tr>
<td>2 g 2221'</td>
</tr>
<tr>
<td>2 f 2221'</td>
</tr>
<tr>
<td>2 e 2221'</td>
</tr>
<tr>
<td>2 d ..2/m1'</td>
</tr>
<tr>
<td>2 c ..2/m1'</td>
</tr>
<tr>
<td>2 b ..2/m1'</td>
</tr>
<tr>
<td>2 a ..2/m1'</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm1' Along [1,0,0] p2mm1' Along [0,1,0] p2mm1'

\[a^* = a \quad b^* = b \]
\[a^* = b \quad b^* = c/2 \]
\[a^* = c/2 \quad b^* = a \]
Origin
at center (2'/m) at c'c2'/m

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

- (1) 1
 (1 | 0,0,0)

- (2) 2'
 (2' | 0,0,0)
 (2' | 0,0,1/2)

- (3) 2'
 (2' | 0,0,1/2)
 (2' | 0,0,1/2)

- (4) 2
 (2 | 0,0,1/2)
 (2 | 0,0,1/2)

- (5) T'
 (T | 0,0,0)

- (6) m
 (m | x,y,0)
 (m | 0,0,0)

- (7) c
 (c | 0,0,1/2)
 (m | 0,0,1/2)

- (8) c'
 (c' | 0,0,1/2)
 (m | 0,0,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicities, Wyckoff Letters, Site Symmetries

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>8</td>
<td>r</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z+1/2 [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z+1/2 [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 q .m</td>
<td>x,y,0 [0,0,w]</td>
<td>4</td>
<td>q</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 p .2'</td>
<td>1/2,0,z [u,v,0]</td>
<td>4</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 o .2'</td>
<td>0,1/2,z [u,v,0]</td>
<td>4</td>
<td>o</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 n .2'</td>
<td>1/2,1/2,z [u,v,0]</td>
<td>4</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 m .2'</td>
<td>0,0,z [u,v,0]</td>
<td>4</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>0,0,z [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 l .2'</td>
<td>1/2,0,1/4 [u,0,w]</td>
<td>4</td>
<td>l</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/4 [u,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,0,3/4 [u,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,0,3/4 [u,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 k .2'</td>
<td>0,y,1/4 [u,0,w]</td>
<td>4</td>
<td>k</td>
</tr>
<tr>
<td></td>
<td>0,y,1/4 [u,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,y,3/4 [u,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,y,3/4 [u,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 j 2.</td>
<td>x,1/2,1/4 [u,0,0]</td>
<td>4</td>
<td>j</td>
</tr>
<tr>
<td></td>
<td>x,1/2,1/4 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,1/2,3/4 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,1/2,3/4 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 i 2.</td>
<td>x,0,1/4 [u,0,0]</td>
<td>4</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>x,0,1/4 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,0,3/4 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,0,3/4 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 h 22'</td>
<td>1/2,1/2,1/4 [u,0,0]</td>
<td>2</td>
<td>h</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/4 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,3/4 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,3/4 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 g 22'</td>
<td>0,1/2,1/4 [u,0,0]</td>
<td>2</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/4 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1/2,3/4 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1/2,3/4 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 f 22'</td>
<td>1/2,0,1/4 [u,0,0]</td>
<td>2</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/4 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,0,3/4 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,0,3/4 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 e 22'</td>
<td>0,0,1/4 [u,0,0]</td>
<td>2</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>0,0,1/4 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0,3/4 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0,3/4 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 d 2'</td>
<td>0,1/2,0 [0,0,0]</td>
<td>2</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c 2'</td>
<td>0,1/2,0 [0,0,0]</td>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b 2'</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a 2'</td>
<td>0,0,0 [0,0,0]</td>
<td>2</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>0,0,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm1'
Along [1,0,0] p 2mm
Along [0,1,0] p 2mm'
\(\mathbf{a}^* = \mathbf{a} \)
\(\mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z
Origin at x,0,0

\(\mathbf{a}^* = \mathbf{b} \)
\(\mathbf{b}^* = c/2 \)
Origin at 0,0,z
Origin at x,0,0

\(\mathbf{a}^* = c/2 \)
\(\mathbf{b}^* = \mathbf{a} \)
Origin at 0,y,0
Origin at 0,0,z
Origin at center (2/m') at cc2/m'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

(1) 1 (1|0,0,0)
(2) 2 0,0,0 (2_z|0,0,0)
(3) 2' 0,y,1/4 (2|0,0,1/2)'
(4) 2' x,0,1/4 (2_z|0,0,1/2)'

(5) \(\bar{1} \) (0|0,0,0)'
(6) m' x,y,0 (m_z|0,0,0)'
(7) c (0,0,1/2) x,0,z (m|0,0,1/2)
(8) c (0,0,1/2) 0,y,z (m_z|0,0,1/2)
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Continued

Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 q .m'</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 p .2</td>
<td>1/2,0,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 o .2</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 n .2</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 m .2</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 l .2'</td>
<td>1/2,y,1/4 [u,0,w]</td>
<td>1/2,y,1/4 [u,0,w]</td>
<td>1/2,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>4 k .2'</td>
<td>0,y,1/4 [u,0,w]</td>
<td>0,y,1/4 [u,0,w]</td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>4 j 2'..</td>
<td>x,1/2,1/4 [0,v,w]</td>
<td>x,1/2,1/4 [0,v,w]</td>
<td>x,1/2,1/4 [0,v,w]</td>
</tr>
<tr>
<td>4 i 2'..</td>
<td>x,0,1/4 [0,v,w]</td>
<td>x,0,1/4 [0,v,w]</td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td>2 h 2'2'</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>2 g 2'2'</td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>2 f 2'2'</td>
<td>1/2,0,1/4 [0,0,w]</td>
<td>1/2,0,1/4 [0,0,w]</td>
<td>1/2,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td>2 e 2'2'</td>
<td>0,0,1/4 [0,0,w]</td>
<td>0,0,1/4 [0,0,w]</td>
<td>0,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td>2 d .2/m'</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c .2/m'</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b .2/m'</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 a .2/m'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2mm</th>
<th>Along [1,0,0]</th>
<th>p2e' 2'mm'</th>
<th>Along [0,1,0]</th>
<th>p2e' 2'mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td></td>
<td>a* = -c/2</td>
<td>b* = b</td>
<td>a* = c/2</td>
<td>b* = a</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Pc’c’m
49.5.368

m’m’m
P2’/c’2’/c’2/m

Orthorhombic

Origin at center (2/m) at c’c’2/m

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

(1) 1
 (1 | 0,0,0)

(2) 2 0,0,z
 (2 | 0,0,0)

(3) 2’ 0,y,1/4
 (2 | 0,0,1/2)’

(4) 2’ x,0,1/4
 (2 | 0,0,1/2)’

(5) 1
 (1 | 0,0,0)

(6) m x,y,0
 (m | 0,0,0)

(7) c’ (0,0,1/2) x,0,z
 (m | 0,0,1/2)’

(8) c’ (0,0,1/2) 0,y,z
 (m | 0,0,1/2)’
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions Coordinates
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>8</th>
<th>r</th>
<th>1 (1)</th>
<th>x,y,z [u,v,w]</th>
<th>(2) x,y,z [u,v,w]</th>
<th>(3) x,y,z+1/2 [u,v,w]</th>
<th>(4) x,y,z+1/2 [u,v,w]</th>
<th>(5) x,y,z [u,v,w]</th>
<th>(6) x,y,z [u,v,w]</th>
<th>(7) x,y,z+1/2 [u,v,w]</th>
<th>(8) x,y,z+1/2 [u,v,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 q</td>
<td>..m</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,1/2 [0,0,w]</td>
<td>x,y,1/2 [0,0,w]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 p</td>
<td>..2</td>
<td>1/2,0,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 o</td>
<td>..2</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 n</td>
<td>..2</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 m</td>
<td>..2</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 l</td>
<td>.2'</td>
<td>1/2,y,1/4 [0,0,w]</td>
<td>1/2,y,1/4 [0,0,w]</td>
<td>1/2,y,3/4 [0,0,w]</td>
<td>1/2,y,3/4 [0,0,w]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 k</td>
<td>.2'</td>
<td>0,y,1/4 [0,0,w]</td>
<td>0,y,1/4 [0,0,w]</td>
<td>0,y,3/4 [0,0,w]</td>
<td>0,y,3/4 [0,0,w]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 j</td>
<td>2'..</td>
<td>x,1/2,1/4 [0,v,w]</td>
<td>x,1/2,1/4 [0,v,w]</td>
<td>x,1/2,3/4 [0,v,w]</td>
<td>x,1/2,3/4 [0,v,w]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 i</td>
<td>2'..</td>
<td>x,0,1/4 [0,v,w]</td>
<td>x,0,1/4 [0,v,w]</td>
<td>x,0,3/4 [0,v,w]</td>
<td>x,0,3/4 [0,v,w]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections
Along [0,0,1] p2mm1' Along [1,0,0] p2mm Along [0,1,0] p 2m'm'
\(a^* = a \) \(b^* = b \) \(a^* = c/2 \) \(b^* = a \)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Symmetry Operations

1. $I \quad (1; 0,0,0)$
2. $2' \quad 0,0,z \quad (2_z; 0,0,0)'$
3. $2 \quad 0,y,1/4 \quad (2_z; 0,0,1/2)$
4. $2' \quad x,0,1/4 \quad (2_z; 0,0,1/2)'$
5. $I' \quad (1; 0,0,0)$
6. $m' \quad x,y,0 \quad (m_z; 0,0,0)'$
7. $c \quad (0,0,1/2) \quad x,0,z \quad (m_y; 0,0,1/2)$
8. $c' \quad (0,0,1/2) \quad 0,y,z \quad (m_z; 0,0,1/2)'$

Asymmetric Unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$
Generators selected (1); (1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 q ..m'</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>4 p ..2'</td>
<td>1/2,0,z [u,v,0]</td>
<td>1/2,0,z [u,v,0]</td>
</tr>
<tr>
<td>4 o ..2'</td>
<td>0,1/2,z [u,v,0]</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>4 n ..2'</td>
<td>1/2,1/2,z [u,v,0]</td>
<td>1/2,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>4 m ..2'</td>
<td>0,0,z [u,v,0]</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td>4 l ..2.</td>
<td>1/2,1/4 [0,v,0]</td>
<td>1/2,1/4 [0,v,0]</td>
</tr>
<tr>
<td>4 k ..2.</td>
<td>0,y,1/4 [0,v,0]</td>
<td>0,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>4 j ..2'</td>
<td>x,1/2,1/4 [0,v,w]</td>
<td>x,1/2,1/4 [0,v,w]</td>
</tr>
<tr>
<td>4 i ..2'</td>
<td>x,0,1/4 [0,v,w]</td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td>2 h 2'22'</td>
<td>1/2,1/2,1/4 [0,v,0]</td>
<td>1/2,1/2,1/4 [0,v,0]</td>
</tr>
<tr>
<td>2 g 2'22'</td>
<td>0,1/2,1/4 [0,v,0]</td>
<td>0,1/2,1/4 [0,v,0]</td>
</tr>
<tr>
<td>2 f 2'22'</td>
<td>1/2,0,1/4 [0,v,0]</td>
<td>1/2,0,1/4 [0,v,0]</td>
</tr>
<tr>
<td>2 e 2'22'</td>
<td>0,0,1/4 [0,v,0]</td>
<td>0,0,1/4 [0,v,0]</td>
</tr>
<tr>
<td>2 d ..2'm'</td>
<td>1/2,0,0 [u,v,0]</td>
<td>1/2,0,1/2 [u,v,0]</td>
</tr>
<tr>
<td>2 c ..2'm'</td>
<td>0,1/2,0 [u,v,0]</td>
<td>0,1/2,1/2 [u,v,0]</td>
</tr>
<tr>
<td>2 b ..2'm'</td>
<td>1/2,1/2,0 [u,v,0]</td>
<td>1/2,1/2,1/2 [u,v,0]</td>
</tr>
<tr>
<td>2 a ..2'm'</td>
<td>0,0,0 [u,v,0]</td>
<td>0,0,1/2 [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2'2mm'</th>
<th>Along [1,0,0]</th>
<th>p2'2mm'</th>
<th>Along [0,1,0]</th>
<th>p2z 2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -b b* = a</td>
<td>a* = b b* = -c/2</td>
<td>a* = c/2 b* = a</td>
<td>a* = c/2 b* = a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Origin at 0,0,z

Origin at x,0,0

Origin at 0,y,0
Pc'c'm'
49.7.370

m'm'm'
P2/c'2/c'2/m'

Orthorhombic

Origin
at center (2/m') at c'c'2/m'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

1. 1
(1|0,0,0)

2. 2 0,0,z
(2z|0,0,0)

3. 2 0,y,1/4
(2y|0,0,1/2)

4. 2 x,0,1/4
(2x|0,0,1/2)

5. 1'
(1|0,0,0)'

6. m' x,y,0
(mz|0,0,0)'

7. c' (0,0,1/2) x,0,z
(m|0,0,1/2)'

8. c' (0,0,1/2) 0,y,z
(m|0,0,1/2)'
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 r 1 (1) x,y,z [u,v,w]</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>x,1/2,3/4 [u,0,0]</td>
</tr>
<tr>
<td>4 q ..m' x,y,0 [u,v,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 p ..2 1/2,0,z [0,0,w]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 o ..2 0,1/2,z [0,0,w]</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 n ..2 1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 m ..2 0,0,z [0,0,w]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2m'm'</th>
<th>Along [1,0,0]</th>
<th>p2m'm'</th>
<th>Along [0,1,0]</th>
<th>p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c/2</td>
<td>a* = c/2</td>
<td>b* = a</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,0,0</td>
<td>Origin at 0,x,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (2/m) at cc2/m

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) 2 0,0,z
(2|0,0,0)

(3) 2 0,y,1/4
(2|0,0,1/2)

(4) 2 x,0,1/4
(2|0,0,1/2)

(5) m x,y,0
(m|0,0,0)

(6) m z 1/2,0,z
(m|0,0,1/2)

(7) c (0,0,1/2) x,0,z
(m|0,0,1/2)

(8) c (0,0,1/2) 0,y,z
(m|0,0,1/2)

For (1,0,0)’ + set

(1) t’ (1,0,0)
(1|1,0,0)’

(2) 2’ 1/2,0,z
(2|1,0,0)’

(3) 2’ 1/2,y,1/4
(2|1,0,1/2)’

(4) 2’ x,0,1/4
(2|1,0,1/2)’

(5) t’ 1/2,0,0
(1|1,0,0)’

(6) a’ (1,0,0) x,y,0
(a|1,0,0)’

(7) n’ (1,0,1/2) x,0,z
(n|1,0,1/2)’

(8) c’ (0,0,1/2) 1/2,y,z
(c|1,0,1/2)’
Generators selected
(1); t'(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16 r 1</th>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) x,y,z [u,v,w]</th>
<th>(3) x,y,z+1/2 [u,v,w]</th>
<th>(4) x,y,z+1/2 [u,v,w]</th>
<th>(5) x,y,z [u,v,w]</th>
<th>(6) x,y,z [u,v,w]</th>
<th>(7) x,y,z+1/2 [u,v,w]</th>
<th>(8) x,y,z+1/2 [u,v,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 q ...m</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,1/2 [0,0,w]</td>
<td>x,y,1/2 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,1/2 [0,0,w]</td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 p ...2'</td>
<td>1/2,0,z [u,v,0]</td>
<td>1/2,0,z+1/2 [u,v,0]</td>
<td>1/2,0,z+1/2 [u,v,0]</td>
<td>1/2,0,z+1/2 [u,v,0]</td>
<td>1/2,0,z [u,v,0]</td>
<td>1/2,0,z [u,v,0]</td>
<td>1/2,0,z+1/2 [u,v,0]</td>
<td>1/2,0,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 o ...2</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 n ...2'</td>
<td>1/2,1/2,z [u,v,0]</td>
<td>1/2,1/2,z+1/2 [u,v,0]</td>
<td>1/2,1/2,z+1/2 [u,v,0]</td>
<td>1/2,1/2,z+1/2 [u,v,0]</td>
<td>1/2,1/2,z [u,v,0]</td>
<td>1/2,1/2,z [u,v,0]</td>
<td>1/2,1/2,z+1/2 [u,v,0]</td>
<td>1/2,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 m ...2</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 l ...2'</td>
<td>1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>8 k ...2</td>
<td>0,y,1/4 [0,v,0]</td>
<td>0,y,3/4 [0,v,0]</td>
<td>0,y,3/4 [0,v,0]</td>
<td>0,y,3/4 [0,v,0]</td>
<td>0,y,1/4 [0,v,0]</td>
<td>0,y,1/4 [0,v,0]</td>
<td>0,y,3/4 [0,v,0]</td>
<td>0,y,3/4 [0,v,0]</td>
</tr>
<tr>
<td>8 j ...2</td>
<td>x,1/2,1/4 [u,0,0]</td>
<td>x,1/2,3/4 [u,0,0]</td>
<td>x,1/2,3/4 [u,0,0]</td>
<td>x,1/2,3/4 [u,0,0]</td>
<td>x,1/2,1/4 [u,0,0]</td>
<td>x,1/2,1/4 [u,0,0]</td>
<td>x,1/2,3/4 [u,0,0]</td>
<td>x,1/2,3/4 [u,0,0]</td>
</tr>
<tr>
<td>8 i ...2</td>
<td>x,0,1/4 [u,0,0]</td>
<td>x,0,3/4 [u,0,0]</td>
<td>x,0,3/4 [u,0,0]</td>
<td>x,0,3/4 [u,0,0]</td>
<td>x,0,1/4 [u,0,0]</td>
<td>x,0,1/4 [u,0,0]</td>
<td>x,0,3/4 [u,0,0]</td>
<td>x,0,3/4 [u,0,0]</td>
</tr>
<tr>
<td>4 h 222</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 g 222</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 f 222</td>
<td>1/2,0,1/4 [0,0,0]</td>
<td>1/2,0,3/4 [0,0,0]</td>
<td>1/2,0,3/4 [0,0,0]</td>
<td>1/2,0,3/4 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
<td>1/2,0,3/4 [0,0,0]</td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 e 222</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 d ...2'm</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c ...2'm</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b ...2'm</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a ...2'm</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p 2mm1'
Along [0,1,0] p 2mm1'
Along [0,1,0] p 2mm1'

\(a^* = a\) \(b^* = b\)
\(a^* = b\) \(b^* = c/2\)
\(a^* = -a\) \(b^* = c/2\)

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0

49.8.371 - 2 - 731
Origin at center (2/m) at cc2/m

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) \(\bar{1} \) (0,0,0)
(2) \(2 \) 0,0,z
(3) \(2 \) 0,y,1/4
(4) \(2 \) x,0,1/4

For (1,0,0)' + set

(5) \(\bar{1} \) (1,0,0)
(6) m x,y,0
(7) c (0,0,1/2) x,0,z
(8) c (0,0,1/2) 0,y,z

49.9.372 - 1 - 732
Generators selected (1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0) +</td>
<td>(1,0,0)* +</td>
</tr>
<tr>
<td>16 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 q .m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 p .2'</td>
<td>1/2,0,z [u,v,0]</td>
</tr>
<tr>
<td>8 o .2'</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>8 n .2</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 m .2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 l .2'.</td>
<td>1/2,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>8 k .2.</td>
<td>0,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>8 j .2'.</td>
<td>x,1/2,1/4 [0,v,w]</td>
</tr>
<tr>
<td>8 i .2.</td>
<td>x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td>4 h 2'2'</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>4 g 2'2'</td>
<td>0,1/2,1/4 [0,v,0]</td>
</tr>
<tr>
<td>4 f 2'2'</td>
<td>1/2,0,1/4 [0,u,0]</td>
</tr>
<tr>
<td>4 e 22'</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 d .2'2'm</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c .2'2'm</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 b .2'm</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>4 a .2'm</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm1'
 Along [1,0,0] p2mm1'
 Along [0,1,0] p2mm1'

\[a^* = a \quad b^* = b \]

Origin at 0,0,z

\[a^* = b \quad b^* = c/2 \]

Origin at x,0,0

\[a^* = c/2 \quad b^* = a \]

Origin at 0,y,0
$P_2a\ ccm'$

$mmm1'$

Orthorhombic

$49.10.373$

$P_{2a}\ 2'/c2'/c2/m'$

Origin at center (2/m') at cc2/m'

Asymmetric unit

$0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/2$

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) 2 0,0,z
(2|0,0,0)

(3) 2' 0,y,1/4
(2'|0,0,1/2)

(4) 2' x,0,1/4
(2'|0,0,1/2)

(5) m' x,y,0
(m|0,0,0)

(1*0,0,0)

(6) m' x,y,0
(m|0,0,0)

(1*0,0,0)

(7) c (0,0,1/2) x,0,z
(c|0,0,1/2)

(8) c (0,0,1/2) 0,y,z
(c|0,0,1/2)

For (1,0,0)' + set

(1) t' (1,0,0)
(1|1,0,0)

(2) 2' 1/2,0,z
(2'|1,0,0)

(3) 2 1/2,y,1/4
(2|1,0,1/2)

(4) 2 (1,0,0) x,0,1/4
(2|1,0,1/2)

(5) 1/2,2,0,0
(1|1,0,0)

(6) a (1,0,0) x,y,0
(m|1,0,0)

(7) n' (1,0,1/2) x,0,z
(m|1,0,1/2)

(8) c' (0,0,1/2) 1/2,y,z
(m|1,0,1/2)
Generators selected

\((1); t'(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5). \)

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

\[
\begin{array}{cccc}
\text{Position} & \text{Multiplicity} & \text{Wyckoff Letter} & \text{Site Symmetry} \\
(0,0,0) + & (1,0,0)' + & \\
16 & r & 1 & (1) x,y,z [u,v,w] \\
& & & (2) \bar{x},\bar{y},\bar{z} [\bar{u},\bar{v},\bar{w}] \\
& & & (3) x,\bar{y},\bar{z}+1/2 [u,v,w] \\
& & & (4) x,\bar{y},\bar{z}+1/2 [u,v,w] \\
& & & (5) \bar{x},\bar{y},\bar{z} [\bar{u},\bar{v},\bar{w}] \\
8 & q & .m' & x,y,0 [u,v,0] \\
& & & \bar{x},\bar{y},0 [\bar{u},\bar{v},0] \\
& & & \bar{x},y,1/2 [\bar{u},v,0] \\
& & & x,y,1/2 [u,v,0] \\
8 & p & .2' & 1/2,0,z [u,v,0] \\
& & & 1/2,0,\bar{z}+1/2 [u,v,0] \\
& & & 1/2,0,\bar{z}+1/2 [u,v,0] \\
8 & o & .2 & 0,1/2,z [0,0,w] \\
& & & 0,1/2,\bar{z}+1/2 [0,0,w] \\
& & & 0,1/2,\bar{z}+1/2 [0,0,w] \\
8 & n & .2' & 1/2,1/2,z [u,v,0] \\
& & & 1/2,1/2,\bar{z}+1/2 [\bar{u},\bar{v},0] \\
& & & 1/2,1/2,\bar{z}+1/2 [\bar{u},\bar{v},0] \\
8 & m & .2 & 0,0,z [0,0,w] \\
& & & 0,0,\bar{z}+1/2 [0,0,\bar{w}] \\
& & & 0,0,\bar{z}+1/2 [0,0,\bar{w}] \\
8 & l & .2 & 1/2,y,1/4 [u,v,0] \\
& & & 1/2,\bar{y},1/4 [0,v,0] \\
& & & 1/2,\bar{y},3/4 [0,v,0] \\
& & & 1/2,y,3/4 [0,v,0] \\
8 & k & .2' & 0,y,1/4 [u,0,w] \\
& & & 0,\bar{y},1/4 [u,0,\bar{w}] \\
& & & 0,\bar{y},3/4 [u,0,\bar{w}] \\
& & & 0,y,3/4 [u,0,w] \\
8 & j & .2' & x,1/2,1/4 [0,v,w] \\
& & & \bar{x},1/2,1/4 [\bar{u},\bar{v},0] \\
& & & \bar{x},1/2,3/4 [\bar{u},\bar{v},0] \\
& & & x,1/2,3/4 [0,v,w] \\
8 & i & .2' & x,0,1/4 [0,v,w] \\
& & & \bar{x},0,1/4 [\bar{u},\bar{v},0] \\
& & & \bar{x},0,3/4 [\bar{u},\bar{v},0] \\
& & & x,0,3/4 [0,v,w] \\
4 & h & 2'2' & 1/2,1/2,1/4 [0,v,0] \\
& & & 1/2,1/2,3/4 [0,v,0] \\
4 & g & 2'2' & 0,1/2,1/4 [0,0,w] \\
& & & 0,1/2,3/4 [0,0,\bar{w}] \\
4 & f & 2'2' & 1/2,0,1/4 [0,v,0] \\
& & & 1/2,0,3/4 [0,v,0] \\
4 & e & 2'2' & 0,0,1/4 [0,0,w] \\
& & & 0,0,3/4 [0,0,\bar{w}] \\
4 & d & .2'm' & 1/2,0,0 [u,v,0] \\
& & & 1/2,0,1/2 [\bar{u},\bar{v},0] \\
4 & c & .2'm' & 0,1/2,0 [0,0,0] \\
& & & 0,1/2,1/2 [0,0,0] \\
4 & b & .2'm' & 1/2,1/2,0 [u,v,0] \\
& & & 1/2,1/2,1/2 [\bar{u},\bar{v},0] \\
4 & a & .2'm' & 0,0,0 [0,0,0] \\
& & & 0,0,1/2 [0,0,0] \\
\end{array}
\]

Symmetry of Special Projections

Along [0,0,1] \(p_{2a} \) 2mm
Along [1,0,0] \(p2mm1' \)
Along [0,1,0] \(p_c \) 2mm

\(a^* = a \quad b^* = b \)

Origin at 0,0,z

Origin at x,0,0

Origin at 1/2,y,0
Symmetry Operations

For (0,0,0) + set

1. 1
 - $(1|0,0,0)$
2. 2
 - $0,0,z$
 - $(2|0,0,0)$
3. $2'$
 - $0,y,1/4$
 - $(2|0,0,1/2)'$
4. $2'$
 - $x,0,1/4$
 - $(2|0,0,1/2)'$

For (1,0,0)' + set

1. $t'(1,0,0)$
 - $(1|1,0,0)'$
2. $2'$
 - $1/2,0,z$
 - $(2|1,0,0)'$
3. 2
 - $1/2,y,1/4$
 - $(2|1,0,1/2)$
4. 2(1,0,0)
 - $x,0,1/4$
 - $(2|1,0,1/2)$

Origin

At center (2/m) at c'c'2/m

Asymmetric unit

$0 \leq x \leq 1/2$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1/2$
Generators selected (1); t'(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(0,0,0) + (1,0,0)' +</td>
</tr>
<tr>
<td>8 q ..m</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 p ..2'</td>
<td>1/2,0,z [u,v,0]</td>
<td>1/2,0,z [u,v,0]</td>
<td>1/2,0,z [u,v,0]</td>
</tr>
<tr>
<td>8 o ..2</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 n ..2'</td>
<td>1/2,1/2,z [u,v,0]</td>
<td>1/2,1/2,z [u,v,0]</td>
<td>1/2,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>8 m ..2</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 l ..2</td>
<td>1/2,y,1/4 [0,v,0]</td>
<td>1/2,y,1/4 [0,v,0]</td>
<td>1/2,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>8 k ..2'</td>
<td>0,y,1/4 [u,0,w]</td>
<td>0,y,1/4 [u,0,w]</td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>8 j ..2'</td>
<td>x,1/2,1/4 [0,v,w]</td>
<td>x,1/2,1/4 [0,v,w]</td>
<td>x,1/2,1/4 [0,v,w]</td>
</tr>
<tr>
<td>8 i ..2'</td>
<td>x,0,1/4 [0,v,w]</td>
<td>x,0,1/4 [0,v,w]</td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td>4 h 2'2'</td>
<td>1/2,1/2,1/4 [0,v,0]</td>
<td>1/2,1/2,1/4 [0,v,0]</td>
<td>1/2,1/2,1/4 [0,v,0]</td>
</tr>
<tr>
<td>4 g 2'2</td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>4 f 2'2'</td>
<td>1/2,0,1/4 [0,v,0]</td>
<td>1/2,0,1/4 [0,v,0]</td>
<td>1/2,0,1/4 [0,v,0]</td>
</tr>
<tr>
<td>4 e 2'2'</td>
<td>0,0,1/4 [0,0,w]</td>
<td>0,0,1/4 [0,0,w]</td>
<td>0,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td>4 d ..2'm</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c ..2/m</td>
<td>0,1/2,0 [0,0,w]</td>
<td>0,1/2,0 [0,0,w]</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>4 b ..2'm</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a ..2/m</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2mm1'
 - a* = a b* = b
 - Origin at 0,0,z
- Along [1,0,0] p2mm1'
 - a* = b b* = c/2
 - Origin at x,0,0
- Along [0,1,0] p2v, 2mm
 - a* = -a b* = c/2
 - Origin at 0,y,0
Symmetry Operations

For \((0,0,0) + \text{ set}\):

1. \((1,0,0)\)
2. \((2',1/2,0,z)\)
3. \((3,1/2,y,1/4)\)
4. \((4,2,0,1/4)\)
5. \((5,0,1/2)\)
6. \((6,1,0,0)\)
7. \((7,1,0,1/2)\)
8. \((8,0,1/2)\)

For \((1,0,0)' + \text{ set}\):

1. \((1,0,0)'\)
2. \((2,1,0,0)'\)
3. \((3,1,0,0)'\)
4. \((4,2,1,0,0)'\)
5. \((5,0,0,0)'\)
6. \((6,0,0,0)'\)
7. \((7,0,0,0)'\)
8. \((8,0,0,0)'\)
Generators selected (1); t'(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 q .m'</td>
<td>x,y,0 [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 p .2'</td>
<td>1/2,0,z [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 o .2</td>
<td>0,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 n .2'</td>
<td>1/2,1/2,z [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 m .2</td>
<td>0,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 l .2'</td>
<td>1/2,y,1/4 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 k .2</td>
<td>0,y,1/4 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 j .2</td>
<td>x,1/2,1/4 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 i .2</td>
<td>x,0,1/4 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 h 22'2'</td>
<td>1/2,1/2,1/4 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 g 222</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 f 22'2'</td>
<td>1/2,0,1/4 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 e 222</td>
<td>0,0,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 d .2'm'</td>
<td>1/2,0,0 [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 c .2'm'</td>
<td>0,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 b .2'm'</td>
<td>1/2,1/2,0 [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 a .2'm'</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] $p_{2\alpha} 2m'm'$
- Along [1,0,0] $p2mm1'$
- Along [0,1,0] $p_{2\alpha} 2m'm'$

Origin at 0,0,z

$\mathbf{a}^* = \mathbf{a}$ $\mathbf{b}^* = \mathbf{b}$

Origin at $x,0,0$

$\mathbf{a}^* = -\mathbf{a}$ $\mathbf{b}^* = c/2$

Origin at 0,0,0
Origin at center (2/m') at cc2/m'

Asymmetric unit $0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1/2$

Symmetry Operations

For (0,0,0) + set

1. $T' (1|0,0,0)$
2. $T' (1|0,0,0')$
3. $T' (1|2,0,0)$

For (1,0,0) + set

1. $T' (0,1,0)$
2. $T' (0,1,0)$
3. $T' (0,1,0)$

4. $1 (0,0,0)$
5. $2 (0,0,0)$
6. $2 (0,0,0)$

7. $2 (0,0,0)$
8. $2 (0,0,0)$
9. $2 (0,0,0)$

10. $2 (0,0,0)$
11. $2 (0,0,0)$
12. $2 (0,0,0)$

13. $2 (0,0,0)$
14. $2 (0,0,0)$
15. $2 (0,0,0)$

16. $2 (0,0,0)$
17. $2 (0,0,0)$
18. $2 (0,0,0)$

19. $2 (0,0,0)$
20. $2 (0,0,0)$
21. $2 (0,0,0)$

22. $2 (0,0,0)$
23. $2 (0,0,0)$
24. $2 (0,0,0)$

25. $2 (0,0,0)$
26. $2 (0,0,0)$
27. $2 (0,0,0)$

28. $2 (0,0,0)$
29. $2 (0,0,0)$
30. $2 (0,0,0)$

31. $2 (0,0,0)$
32. $2 (0,0,0)$
33. $2 (0,0,0)$

34. $2 (0,0,0)$
35. $2 (0,0,0)$
36. $2 (0,0,0)$

37. $2 (0,0,0)$
38. $2 (0,0,0)$
39. $2 (0,0,0)$

40. $2 (0,0,0)$
41. $2 (0,0,0)$
42. $2 (0,0,0)$

43. $2 (0,0,0)$
44. $2 (0,0,0)$
45. $2 (0,0,0)$

46. $2 (0,0,0)$
47. $2 (0,0,0)$
48. $2 (0,0,0)$

49. $2 (0,0,0)$
50. $2 (0,0,0)$
51. $2 (0,0,0)$

52. $2 (0,0,0)$
53. $2 (0,0,0)$
54. $2 (0,0,0)$

55. $2 (0,0,0)$
56. $2 (0,0,0)$
57. $2 (0,0,0)$

58. $2 (0,0,0)$
59. $2 (0,0,0)$
60. $2 (0,0,0)$

61. $2 (0,0,0)$
62. $2 (0,0,0)$
63. $2 (0,0,0)$

64. $2 (0,0,0)$
65. $2 (0,0,0)$
66. $2 (0,0,0)$

67. $2 (0,0,0)$
68. $2 (0,0,0)$
69. $2 (0,0,0)$

70. $2 (0,0,0)$
71. $2 (0,0,0)$
72. $2 (0,0,0)$

73. $2 (0,0,0)$
74. $2 (0,0,0)$
75. $2 (0,0,0)$

76. $2 (0,0,0)$
77. $2 (0,0,0)$
78. $2 (0,0,0)$

79. $2 (0,0,0)$
80. $2 (0,0,0)$
81. $2 (0,0,0)$

82. $2 (0,0,0)$
83. $2 (0,0,0)$
84. $2 (0,0,0)$

85. $2 (0,0,0)$
86. $2 (0,0,0)$
87. $2 (0,0,0)$

88. $2 (0,0,0)$
89. $2 (0,0,0)$
90. $2 (0,0,0)
Continued

Generators selected
(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 r..m'</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 q..m'</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>8 p..2'</td>
<td>1/2,0,z [u,v,0]</td>
<td>1/2,0,z [u,v,0]</td>
</tr>
<tr>
<td>8 o..2'</td>
<td>0,1/2,z [u,v,0]</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>8 n..2</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 m..2</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 l..2</td>
<td>1/2,y,1/4 [0,v,0]</td>
<td>1/2,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>8 k..2'</td>
<td>0,y,1/4 [u,0,w]</td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>8 j..2</td>
<td>x,1/2,1/4 [u,0,0]</td>
<td>x,1/2,1/4 [u,0,0]</td>
</tr>
<tr>
<td>8 i..2'</td>
<td>x,0,1/4 [0,v,w]</td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td>4 h 222</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 g 22' 2'</td>
<td>0,1/2,1/4 [u,0,0]</td>
<td>0,1/2,1/4 [u,0,0]</td>
</tr>
<tr>
<td>4 f 2' 2'</td>
<td>1/2,0,1/4 [0,v,0]</td>
<td>1/2,0,1/4 [0,v,0]</td>
</tr>
<tr>
<td>4 e 2' 2'</td>
<td>0,0,1/4 [0,0,w]</td>
<td>0,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td>4 d ..2'/m'</td>
<td>1/2,0,0 [u,v,0]</td>
<td>1/2,0,1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 c ..2'/m'</td>
<td>0,1/2,0 [u,v,0]</td>
<td>0,1/2,1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 b ..2'/m'</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a ..2'/m'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_c 2mm

a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p2mm1'

a* = b b* = c/2
Origin at x,0,0

Along [0,1,0] p2mm1'

a* = c/2 b* = a
Origin at 0,y,0
Origin: at 222/n, at 1/4,1/4,0 from \(\bar{1} \)

Asymmetric unit:

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations:

\begin{align*}
(1) \ \bar{1} & \quad (1) \ 0,0,0 \\
(2) \ \bar{2} & \quad (2) \ 0,0,z & (3) \ \bar{2} & \quad (3) \ 0,y,0 & (4) \ \bar{2} & \quad (4) \ x,0,0 \\
(5) \ \bar{1} & \quad (5) \ 1/4,1/4,0 & (6) \ n & \quad (6) \ (1/2,1/2,0) \ x,y,0 & (7) \ a & \quad (7) \ (1/2,0,0) \ x,1/4,z & (8) \ b & \quad (8) \ (0,1/2,0) \ 1/4,y,z \\
(1) & \quad (1) \ \bar{1}/2,1/2,0 & (2) & \quad (2) z \ \bar{1}/2,1/2,0 & (3) & \quad (3) y \ \bar{1}/2,1/2,0 & (4) & \quad (4) x \ \bar{1}/2,1/2,0 & (5) & \quad (5) \ \bar{1}/2,1/2,0
\end{align*}
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>8 m 1</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) x, y, z [u, v, w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) x, y, z [u, v, w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) x, y, z [u, v, w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) x, y, z [u, v, w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x + 1/2, y + 1/2, z [u, v, w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x + 1/2, y + 1/2, z [u, v, w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) x + 1/2, y + 1/2, z [u, v, w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) x + 1/2, y + 1/2, z [u, v, w]</td>
<td></td>
</tr>
</tbody>
</table>

4 l .2 0, 1/2, z [0, 0, w] 0, 1/2, z [0, 0, w] 1/2, 0, z [0, 0, w] 1/2, 0, z [0, 0, w]
4 k .2 0, 0, z [0, 0, w] 0, 0, z [0, 0, w] 1/2, 1/2, z [0, 0, w] 1/2, 1/2, z [0, 0, w]
4 j .2 0, y, 1/2 [0, v, 0] 0, y, 1/2 [0, v, 0] 1/2, y + 1/2, 1/2 [0, v, 0] 1/2, y + 1/2, 1/2 [0, v, 0]
4 i .2 0, y, 0 [0, v, 0] 0, y, 0 [0, v, 0] 1/2, y + 1/2, 0 [0, v, 0] 1/2, y + 1/2, 0 [0, v, 0]
4 h 2.. x, 0, 1/2 [u, 0, 0] x, 0, 1/2 [u, 0, 0] x + 1/2, 1/2, 1/2 [u, 0, 0] x + 1/2, 1/2, 1/2 [u, 0, 0]
4 g 2.. x, 0, 0 [u, 0, 0] x, 0, 0 [u, 0, 0] x + 1/2, 1/2, 0 [u, 0, 0] x + 1/2, 1/2, 0 [u, 0, 0]
4 f 1.. 1/4, 1/4, 1/2 [u, v, w] 3/4, 3/4, 1/2 [u, v, w] 3/4, 1/4, 1/2 [u, v, w] 1/4, 3/4, 1/2 [u, v, w]
4 e 1.. 1/4, 1/4, 0 [u, v, w] 3/4, 3/4, 0 [u, v, w] 3/4, 1/4, 0 [u, v, w] 1/4, 3/4, 0 [u, v, w]
2 d 222 0, 0, 1/2 [0, 0, 0] 1/2, 1/2, 1/2 [0, 0, 0]
2 c 222 1/2, 0, 1/2 [0, 0, 0] 1/2, 1/2 [0, 0, 0]
2 b 222 1/2, 0, 0 [0, 0, 0] 0, 1/2, 0 [0, 0, 0]
2 a 222 0, 0, 0 [0, 0, 0] 1/2, 1/2, 0 [0, 0, 0]

Symmetry of Special Projections

Along [0, 0, 1] c_p, 2m' m'
Along [1, 0, 0] p_{2a}, 2m' m'
Along [0, 1, 0] p_{2a}, 2m' m'

a^* = a b^* = b
a^* = b/2 b^* = c
a^* = -a/2 b^* = c

Origin at 0, 0, z
Origin at x, 0, 0
Origin at 0, y, 0
Orthorhombic

50.2.378

Pban1’

mmm1’

1’

Origin at 222/n1’, at 1/4,1/4,0 from 1’

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For 1 + set

(1) 1
(1|0,0,0)

(5) 1’/4,1/4,0
(1|2,1/2,0)

(2) 2 0,0,z
(2|0,0,0)

(6) n (1/2,1/2,0) x,y,0
(mz|1/2,1/2,0)

(3) 2 0,y,0
(2|0,0,0)

(7) a (1/2,0,0) x,1/4,z
(my|1/2,1/2,0)

(4) 2 x,0,0
(2z|0,0,0)

For 1’ + set

(1) 1’
(1|0,0,0)’

(5) 1’/4,1/4,0
(1|2,1/2,0)’

(2) 2’ 0,0,z
(2z|0,0,0)’

(6) n’ (1/2,1/2,0) x,y,0
(mz|1/2,1/2,0)’

(3) 2’ 0,y,0
(2|0,0,0)’

(7) a’ (1/2,0,0) x,1/4,z
(my|1/2,1/2,0)’

(4) 2’ x,0,0
(2z|0,0,0)’

(8) b’ (0,1/2,0) 1/4,y,z
(mz|1/2,1/2,0)’
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 m 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2,y+1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y+1/2,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2mm1'</th>
<th>Along [1,0,0]</th>
<th>p2mm1'</th>
<th>Along [0,1,0]</th>
<th>p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b/2</td>
<td>b* = c</td>
<td>a* = c</td>
<td>b* = a/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin: at 22'2'/n, at 1/4,1/4,0 from \(\bar{1} \)

Asymmetric unit: \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \)

Symmetry Operations:

1. \(\bar{1} \)
 - \(1 \ | \ 0,0,0 \)
 - \(\bar{1} \ | \ 1/2,1/2,0 \)

2. \(2' \)
 - \(0,0,z \ | \ 0,0,0' \)
 - \(0,y,0 \ | \ 0,0,0' \)
 - \(x,0,0 \ | \ 0,0,0 \)

3. \(\bar{1}' \)
 - \(1/4,1/4,0 \ | \ 1/4,1/4,0' \)
 - \(x,y,0 \ | \ 1/2,1/2,0 \)
 - \(1/4,z \ | \ 1/2,1/2,0 \)
 - \(1/4,y,z \ | \ 1/2,1/2,0 \)

4. \(a \)
 - \(1/2,0,0 \ | \ 0,0,0 \)
 - \(1/2,1/2,0 \ | \ 1/2,1/2,0 \)

5. \(b' \)
 - \(0,1/2,0 \ | \ 1/4,0,0' \)
 - \(1/2,1/2,0 \ | \ 1/2,1/2,0' \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 m 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w] (4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w] (6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2,y+1/2,z [u,v,w] (8) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c_p, 2mm'</th>
<th>Along [1,0,0]</th>
<th>p 2mm</th>
<th>Along [0,1,0]</th>
<th>p_{2a}, 2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a, b* = b</td>
<td>a* = b/2, b* = c</td>
<td>a* = c, b* = a/2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Origin at 0,0,0
Origin at 2'2'2/n', at 1/4,1/4,0 from 1'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

(1) 1
 (1 | 0,0,0)

(2) 2 0,0,z
 (2_z | 0,0,0)

(3) 2' 0,y,0
 (2_y | 0,0,0')

(4) 2' x,0,0
 (2_x | 0,0,0')

(5) 1
 (1 | 1/2,1/2,0)

(6) n' (1/2,1/2,0) x,y,0
 (m_z | 1/2,1/2,0')

(7) a (1/2,0,0) x,1/4,z
 (m_y | 1/2,1/2,0)

(8) b (0,1/2,0) 1/4,y,z
 (m_z | 1/2,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

8 m 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w]
(3) x,y,z [u,v,w] (4) x,y,z [u,v,w]
(5) x+1/2,y+1/2,z [u,v,w] (6) x+1/2,y+1/2,z [u,v,w]
(7) x+1/2,y+1/2,z [u,v,w] (8) x+1/2,y+1/2,z [u,v,w]

Coordinates

4 l 0.1/2,z [0.0,w] 0.1/2,z [0.0,w] 1/2.0,z [0.0,w] 1/2.0,z [0.0,w]
4 k 0.0,z [0.0,w] 0.0,z [0.0,w] 1/2.0,z [0.0,w] 1/2.0,z [0.0,w]
4 j 0.0,1/2 [u,0,w] 0.0,1/2 [u,0,w] 1/2.0,1/2 [u,0,w] 1/2.0,1/2 [u,0,w]
4 i 0.0,0 [u,0,w] 0.0,0 [u,0,w] 1/2.0,1/2 [u,0,w] 1/2.0,1/2 [u,0,w]
4 h x,0,1/2 [0,v,w] x,0,1/2 [0,v,w] x+1/2,1/2,1/2 [0,v,w] x+1/2,1/2,1/2 [0,v,w]
4 g x,0,0 [0,v,w] x,0,0 [0,v,w] x+1/2,1/2,2 [0,v,w] x+1/2,1/2,2 [0,v,w]
4 f 1/4,1/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 1/4,3/4,1/2 [0,0,0]
4 e 1/4,1/4,0 [0,0,0] 3/4,3/4,0 [0,0,0] 3/4,3/4,0 [0,0,0] 1/4,3/4,0 [0,0,0]
2 d 0.0,1/2 [0,0,w] 1/2.1,2.1,2 [0,0,w]
2 c 1/2.0,1/2 [0,0,w] 0.1,2.1,2 [0,0,w]
2 b 1/2.0,0 [0,0,w] 0.1,2.0 [0,0,w]
2 a 0.0,0 [0,0,w] 1/2.1,2.0 [0,0,w]

Symmetry of Special Projections

Along [0,0,1] c2mm
Along [1,0,0] p2a-2mm
Along [0,1,0] p2a-2mm

\[a^* = a \quad b^* = b \]
Origin at 0,0,z

\[a^* = b/2 \quad b^* = c \]
Origin at x,1/4,0

\[a^* = -a/2 \quad b^* = c \]
Origin at 1/4,y,0
Pb'a'n
50.5.381
Origin at 2'2'2/n, at 1/4,1/4,0 from $\bar{1}$

Asymmetric unit
$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

(1) 1
(1 0,0,0)

(2) 2 0,0,z
(2 0,0,0)

(3) $2'$ 0,y,0
(2,0,0,0)'

(4) $2'$ x,0,0
(2,0,0,0)'

(5) $\bar{1}$ 1/4,1/4,0
($\bar{1}$ 1/2,1/2,0)

(6) n (1/2,1/2,0) x,y,0
(m_z 1/2,1/2,0)

(7) a' (1/2,0,0) x,1/4,z
(m_y 1/2,1/2,0)'

(8) b' (0,1/2,0) 1/4,y,z
(m_x 1/2,1/2,0)'
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>8</th>
<th>m</th>
<th>1</th>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) (\bar{x}, \bar{y}, z) [(\bar{u}, \bar{v}, w)]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) (\bar{x}, y, z) [(u, \bar{v}, w)]</td>
<td>(4) x,y,(\bar{z}) [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) x+1/2, (\bar{y}), 1/2, z [u,v,w]</td>
<td>(6) x+1/2, y+1/2, (\bar{z}) [u,(\bar{v}, w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) x+1/2, (\bar{y}), 1/2, z [u,(\bar{v}, w)]</td>
<td>(8) x+1/2, y+1/2, (\bar{z}) [u,(\bar{v}, w)]</td>
</tr>
</tbody>
</table>

4 l .2 0,1/2, z [0,0,w] 0,1/2, z [0,0,w] 1/2,0, z [0,0,w] 1/2,0, z [0,0,w]
4 k .2 0,0, z [0,0,w] 0,0, z [0,0,w] 1/2,1/2, z [0,0,w] 1/2,1/2, z [0,0,w]
4 j .2' 0,y,1/2 [u,0,w] 0,\(\bar{y} \), 1/2 [u,0,w] 1/2,\(\bar{y} \), 1/2,1/2 [u,0,w] 1/2,\(\bar{y} \), 1/2,1/2 [u,0,w]
4 i .2' 0,y,0 [u,0,w] 0,\(\bar{y} \), 0 [u,0,w] 1/2,\(\bar{y} \), 1/2,0 [u,0,w] 1/2,\(\bar{y} \), 1/2,0 [u,0,w]
4 h 2'.. x,0,1/2 [0,v,w] \(\bar{x} \), 0,1/2 [0,\(\bar{v}, w \)] \(\bar{x} \), +1/2,1/2,1/2 [0,\(\bar{v}, w \)] \(\bar{x} \), +1/2,1/2,1/2 [0,\(\bar{v}, w \)]
4 g 2'.. x,0,0 [0,v,w] \(\bar{x} \), 0,0 [0,\(\bar{v}, w \)] \(\bar{x} \), +1/2,1/2,0 [0,\(\bar{v}, w \)] \(\bar{x} \), +1/2,1/2,0 [0,\(\bar{v}, w \)]
4 f 1/4,1/4,1/2 [u,v,w] 3/4,3/4,1/2 [u,\(\bar{v}, w \)] 3/4,1/4,1/2 [u,\(\bar{v}, w \)] 1/4,3/4,1/2 [u,v,w]
4 e 1/4,1/4,0 [u,v,w] 3/4,3/4,0 [u,\(\bar{v}, w \)] 3/4,1/4,0 [u,\(\bar{v}, w \)] 1/4,3/4,0 [u,v,w]
2 d 2'2' 0,0,1/2 [0,0,w] 1/2,1/2,1/2 [0,0,w]
2 c 2'2' 1/2,0,1/2 [0,0,w] 0,1/2,1/2 [0,0,w]
2 b 2'2' 1/2,0,0 [0,0,w] 0,1/2,0 [0,0,w]
2 a 2'2' 0,0,0 [0,0,w] 1/2,1/2,0 [0,0,w]

Symmetry of Special Projections

- Along [0,0,1] \(c_p \), 2mm
- Along [1,0,0] p2'mm'
- Along [0,1,0] p2'mm'

\(a^* = a \) \(b^* = b \) \(a^* = -c \) \(b^* = -b/2 \) \(a^* = c \) \(b^* = a/2 \)

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at 2'22'/n', at 1/4,1/4,0 from $\bar{1}$

Asymmetric unit
$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Matrix</th>
<th>Site</th>
<th>Site'</th>
<th>Site''</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,0,0</td>
<td>0,0,0</td>
<td>0,0,0</td>
</tr>
<tr>
<td>2</td>
<td>2'</td>
<td>$2' \ 0,0,z$</td>
<td>$(2_2,0,0,0)'$</td>
<td>0,0,0</td>
<td>0,0,0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0,y,0</td>
<td>0,0,0</td>
<td>0,0,0</td>
</tr>
<tr>
<td>4</td>
<td>2'</td>
<td>$2' x,0,0$</td>
<td>$(2_2,0,0,0)'$</td>
<td>0,0,0</td>
<td>0,0,0</td>
</tr>
<tr>
<td>5</td>
<td>$\bar{1}$</td>
<td>$1/4,1/4,0$</td>
<td>$(\bar{1} \ 1/2,1/2,0)$</td>
<td>0,0,0</td>
<td>0,0,0</td>
</tr>
<tr>
<td>6</td>
<td>n'</td>
<td>$n' (1/2,1/2,0)$</td>
<td>$(m_2,1/2,1/2,0)'$</td>
<td>1/4,0</td>
<td>0,0,0</td>
</tr>
<tr>
<td>7</td>
<td>a</td>
<td>$a (1/2,0,0)$</td>
<td>$(m_2,1/2,1/2,0)$</td>
<td>1/4,0</td>
<td>0,0,0</td>
</tr>
<tr>
<td>8</td>
<td>b'</td>
<td>$b' (0,1/2,0)$</td>
<td>$(m_2,1/2,1/2,0)'$</td>
<td>1/4,0</td>
<td>0,0,0</td>
</tr>
</tbody>
</table>
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 m 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
<td>(5) x+1/2, y+1/2, z [u,v,w]</td>
<td>(6) x+1/2, y+1/2, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2, y+1/2, z [u,v,w]</td>
<td>(8) x+1/2, y+1/2, z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 l .2'</td>
<td>0,1/2,z [u,v,0] 0,1/2,z [u,v,0] 1/2,0,z [u,v,0] 1/2,0,z [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 k .2'</td>
<td>0,0,z [u,v,0] 0,0,z [u,v,0] 1/2,1/2,z [u,v,0] 1/2,1/2,z [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 j .2</td>
<td>0,y,1/2 [0,v,0] 0,y,1/2 [0,v,0] 1/2,y+1/2,1/2 [0,v,0] 1/2,y+1/2,1/2 [0,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 i .2</td>
<td>0,y,0 [0,v,0] 0,y,0 [0,v,0] 1/2,y+1/2,0 [0,v,0] 1/2,y+1/2,0 [0,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 h .2</td>
<td>x,0,1/2 [0,v,w] x,0,1/2 [0,v,w] x+1/2,1/2,1/2 [0,v,w] x+1/2,1/2,1/2 [0,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 g .2</td>
<td>x,0,0 [0,v,w] x,0,0 [0,v,w] x+1/2,1/2,0 [0,v,w] x+1/2,1/2,0 [0,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 f .1</td>
<td>1/4,1/4,1/2 [u,v,w] 3/4,3/4,1/2 [u,v,w] 3/4,1,4,1/2 [u,v,w] 1/4,3/4,1/2 [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 e .1</td>
<td>1/4,1/4,0 [u,v,w] 3/4,3/4,0 [u,v,w] 3/4,1/4,0 [u,v,w] 1/4,3/4,0 [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 d 2'2'</td>
<td>0,0,1/2 [0,v,0] 1/2,1,2,1/2 [0,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c 2'2'</td>
<td>1/2,0,1/2 [0,v,0] 1/2,1,2,1/2 [0,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b 2'2'</td>
<td>1/2,0,0 [0,v,0] 0,1,2,0 [0,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a 2'2'</td>
<td>0,0,0 [0,v,0] 1/2,1,2,0 [0,v,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2'mm'
Along [1,0,0] p2'mm'
Along [0,1,0] p2a', 2mm

a* = -b b* = a
a* = b/2 b* = c
a* = -a/2 b* = c
Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin at 222/n', at 1/4,1/4,0 from \(\overline{1} \)

Asymmetric unit

\[
0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2
\]

Symmetry Operations

1. \(1 \)
2. \(2 \quad 0,0,z \)
3. \(2 \quad 0,y,0 \)
4. \(2 \quad x,0,0 \)
5. \(\overline{1} \quad 1/4,1/4,0 \)
6. \(\overline{1} \quad 1/2,1/2,0 \)
7. \(a' \quad 1/2,0,0 \quad x,1/4,z \)
8. \(b' \quad 0,1/2,0 \quad 1/4,y,z \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 m 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>4 l .2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 k .2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 j .2</td>
<td>0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y+1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y+1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 i .2</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y+1/2,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y+1/2,0 [0,v,0]</td>
</tr>
<tr>
<td>4 h 2..</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 g 2..</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4 f 1`</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 e 1`</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,0 [0,0,0]</td>
</tr>
<tr>
<td>2 d 222</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c 222</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b 222</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 a 222</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Along [0,0,1]</th>
<th>c2m'm'</th>
<th>Along [1,0,0]</th>
<th>p2m'm'</th>
<th>Along [0,1,0]</th>
<th>p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b/2</td>
<td>b* = c</td>
<td>a* = c</td>
<td>b* = a/2</td>
<td></td>
</tr>
</tbody>
</table>

Origin at 0,0,z | Origin at x,0,0 | Origin at 0,y,0
Origin at 222/n, at 1/4,1/4,0 from \(\overline{1} \)

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) 2 0,0,z
(2|0,0,0)

(3) 2 0,y,0
(2|0,0,0)

(4) 2 x,0,0
(2|0,0,0)

(5) \(\overline{1} \) 1/4,1/4,0
(\(\overline{1} \)|1/2,1/2,0)

(6) n (1/2,1/2,0) x,y,0
(m\(_{z} \)|1/2,1/2,0)

(7) a (1/2,0,0) x,1/4,z
(m\(_{y} \)|1/2,1/2,0)

(8) b (0,1/2,0) 1/4,y,z
(m\(_{x} \)|1/2,1/2,0)

For (0,0,1)’ + set

(1) t’ (0,0,1)
(1|0,0,1)’

(2) 2’ (0,0,1) 0,0,z
(2|0,0,1)’

(3) 2’ 0,y,1/2
(2|0,0,1)’

(4) 2’ x,0,1/2
(2|0,0,1)’

(5) \(\overline{1} \)’ 1/4,1/4,1/2
(\(\overline{1} \)|1/2,1/2,1)’

(6) n’ (1/2,1/2,0) x,y,1/2
(m\(_{z} \)|1/2,1/2,1)’

(7) n’ (1/2,0,1) x,1/4,z
(m\(_{y} \)|1/2,1/2,1)’

(8) n’ (0,1/2,1) 1/4,y,z
(m\(_{x} \)|1/2,1/2,1)’
Generators selected: (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 m 1</td>
<td>(0,0,0) + (0,0,1)′ +</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) x,y,z [u,v,w]</td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td>(6) x+y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(7) x+1/2,y+1/2,z [u,v,w]</td>
<td>(8) x+y+1/2,z [u,v,w]</td>
</tr>
</tbody>
</table>

Coordinates

l	0.1/2,z [0,0,w]	0.1/2,z [0,0,w]	0.1/2,z [0,0,w]	1/2,0,z [0,0,w]
k	0.0,z [0,0,w]	0.0,z [0,0,w]	1/2,1/2,z [0,0,w]	1/2,1/2,z [0,0,w]
j	0.0,y,1/2 [u,0,w]	0.0,y,1/2 [u,0,w]	1/2,0,y+1/2,1/2 [u,0,w]	1/2,0,y+1/2,1/2 [u,0,w]
i	0.0,y,0 [0,v,0]	0.0,y,0 [0,v,0]	1/2,0,y+1/2,0 [0,v,0]	1/2,0,y+1/2,0 [0,v,0]
h	x,0,1/2 [0,v,w]	x,0,1/2 [0,v,w]	x+1/2,1/2,1/2 [0,v,w]	x+1/2,1/2,1/2 [0,v,w]
g	x,0,0 [u,0,0]	x,0,0 [u,0,0]	x+1/2,1/2,0 [u,0,0]	x+1/2,1/2,0 [u,0,0]
f	1/4,1/4,1/2 [0,0,0]	3/4,3/4,1/2 [0,0,0]	3/4,1/4,1/2 [0,0,0]	1/4,3/4,1/2 [0,0,0]
e	1/4,1/4,0 [u,v,w]	3/4,3/4,0 [u,v,w]	3/4,1/4,0 [u,v,w]	1/4,3/4,0 [u,v,w]
d	0.0,1/2 [0,0,w]	1/2,1/2,1/2 [0,0,w]	1/2,1/2,1/2 [0,0,w]	1/2,1/2,1/2 [0,0,w]
c	1/2,0,1/2 [0,0,w]	1/2,0,1/2 [0,0,w]	1/2,0,1/2 [0,0,w]	1/2,0,1/2 [0,0,w]
b	1/2,0,0 [0,0,0]	1/2,0,0 [0,0,0]	1/2,0,0 [0,0,0]	1/2,0,0 [0,0,0]
a	0.0,0 [0,0,0]	1/2,1/2,0 [0,0,0]	1/2,1/2,0 [0,0,0]	1/2,1/2,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] c2mm1′
Along [1,0,0] p2c 2mm
Along [0,1,0] p2c 2mm

\[
a^* = a \quad b^* = b
\]
Origin at 0,0,z

\[
a^* = b/2 \quad b^* = c
\]
Origin at x,1/4,1/2

\[
a^* = c \quad b^* = a/2
\]
Origin at 1/4,y,1/2
Origin at 222/n, at 1/4,1/4,0 from T

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. T (1|0,0,0)

2. T' 0,0,z (2|0,0,0)'

3. T' 0,y,0 (2|0,0,0)'

4. T' x,0,0 (2|0,0,0)'

5. T 1/4,1/4,0 (1|1/2,1/2,0)'

6. n (1/2,1/2,0) x,y,0 (m|1/2,1/2,0)

7. a (1/2,0,0) x,1/4,z (m|1/2,1/2,0)

8. b' (0,1/2,0) 1/4,y,z (m|1/2,1/2,0)'

For (0,0,1) + set

1. T' (0,0,1) (1|0,0,1)'

2. T 0,0,1 (2|0,0,1)'

3. T 0,y,1/2 (2|0,0,1)'

4. T' x,0,1/2 (2|0,0,1)'

5. T 1/4,1/4,1/2 (1|1/2,1/2,1)'

6. n' (1/2,1/2,0) x,y,1/2 (m|1/2,1/2,1)'

7. n' (1/2,0,1) x,1/4,z (m|1/2,1/2,1)'

8. n (0,1/2,1) 1/4,y,z (m|1/2,1/2,1)'
Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 m 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>8 l .2'</td>
<td>0,1/2,z [u,v,0] 0,1/2,z [u,v,0] 1/2,0,z [u,v,0] 1/2,0,z [u,v,0]</td>
</tr>
<tr>
<td>8 k .2'</td>
<td>0,0,z [u,v,0] 0,0,z [u,v,0] 1/2,1/2,z [u,v,0] 1/2,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>8 j .2.</td>
<td>0,y,1/2 [0,v,0] 0,y,1/2 [0,v,0] 1/2,y+1/2,1/2 [0,v,0] 1/2,y+1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td>8 i .2'.</td>
<td>0,y,0 [u,0,w] 0,y,0 [u,0,w] 1/2,y+1/2,0 [u,0,w] 1/2,y+1/2,0 [u,0,w]</td>
</tr>
<tr>
<td>8 h 2'.</td>
<td>x,0,1/2 [0,v,w] x,0,1/2 [0,v,w] x+1/2,1/2,1/2 [0,v,w] x+1/2,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 g 2..</td>
<td>x,0,0 [u,0,0] x,0,0 [u,0,0] x+1/2,1/2,0 [u,0,0] x+1/2,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>8 f 1 1/4,1/4,1/2 [u,v,w] 3/4,3/4,1/2 [u,v,w] 3/4,3/4,1/2 [u,v,w] 1/4,3/4,1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 e 1 1/4,1/4,0 [0,0,0] 3/4,3/4,0 [0,0,0] 3/4,1/4,0 [0,0,0] 1/4,3/4,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 d 2'2'</td>
<td>0,0,1/2 [0,v,0] 1/2,1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 c 2'2'</td>
<td>1/2,0,1/2 [0,v,0] 1/2,1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 b 22'</td>
<td>1/2,0,0 [u,0,0] 0,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4 a 22'</td>
<td>0,0,0 [u,0,0] 1/2,1/2,0 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1'
Along [1,0,0] p2a-2mm
Along [0,1,0] p_c-2mm
\(a^* = a \) \(b^* = b \)
\(a^* = -c \) \(b^* = b/2 \)
\(a^* = c \) \(b^* = a/2 \)
Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,1/2
Origin at \(2'2'2'/n\), at \(1/4,1/4,0\) from \(\overline{1}\)

Asymmetric unit \(0 < x < 1/2;\) \(0 < y < 1/2;\) \(0 < z < 1/2\)

Symmetry Operations

For \((0,0,0) + \) set

1. \(1 \quad (1|0,0,0)\)
2. \(2 \quad 0,0,z\) \((2_z|0,0,0)\)
3. \(2' \quad 0,y,0\) \((2_y|0,0,0)'\)
4. \(2' \quad x,0,0\) \((2_x|0,0,0)'\)
5. \(\overline{1} \quad 1/4,1/4,0\) \((\overline{1}|1/2,1/2,0)\)
6. \(n \quad (1/2,1/2,0) \quad x,y,0\) \((m_z|1/2,1/2,0)\)
7. \(a' \quad (1/2,0,0) \quad x,1/4,z\) \((m_y|1/2,1/2,0)'\)
8. \(b' \quad (0,1/2,0) \quad 1/4,y,z\) \((m_x|1/2,1/2,0)'\)

For \((0,0,1)' + \) set

1. \(t' \quad (0,0,1)\)
2. \(2' \quad (0,0,1) \quad 0,0,z\) \((2_z|0,0,1)'\)
3. \(2 \quad 0,y,1/2\) \((2_y|0,0,1)\)
4. \(2 \quad x,0,1/2\) \((2_x|0,0,1)\)
5. \(\overline{1} \quad 1/4,1/4,1/2\) \((\overline{1}|1/2,1/2,1)\)
6. \(n' \quad (1/2,1/2,0) \quad x,y,1/2\) \((m_z|1/2,1/2,1)'\)
7. \(n \quad (1/2,0,1) \quad x,1/4,z\) \((m_y|1/2,1/2,1)'\)
8. \(n \quad (0,1/2,1) \quad 1/4,y,z\) \((m_x|1/2,1/2,1)'\)
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 m</td>
<td>(0,0,0) + (0,0,1) +</td>
</tr>
<tr>
<td>8 l</td>
<td>0,1/2,z [0,0,w] 0,1/2,z [0,0,w] 1/2,0,z [0,0,w] 1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 k</td>
<td>0,0,0 [0,0,w] 0,0,0 [0,0,w] 1/2,1/2,0 [0,0,w] 1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>8 j</td>
<td>0,1/2 [0,v,0] 0,1/2 [0,v,0] 1/2,1/2 [0,v,0] 1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td>8 i</td>
<td>0,0,0 [u,0,w] 0,0,0 [u,0,w] 1/2,0 [u,0,w] 1/2,0 [u,0,w]</td>
</tr>
<tr>
<td>8 h</td>
<td>x,0,1/2 [u,0,0] x,0,1/2 [u,0,0] x+1/2,1/2 [u,0,0] x+1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 g</td>
<td>x,0,0 [u,0,0] x,0,0 [u,0,0] x+1/2,1/2 [u,0,0] x+1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 f</td>
<td>1/4,1/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 1/4,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 e</td>
<td>1/4,1/4,1/2 [u,v,w] 3/4,3/4,1/2 [u,v,w] 3/4,3/4,1/2 [u,v,w] 1/4,3/4,1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 d</td>
<td>0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c</td>
<td>1/2,0,1/2 [0,0,0] 0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>1/2,0,0 [0,0,w] 0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,0 [0,0,w] 1/2,1/2,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1]: c2mm1'
- Along [1,0,0]: p2a, 2m1m'
- Along [0,1,0]: p2a, 2m1m'

\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \quad \mathbf{c}^* = \mathbf{c} \)

Origin at 0,0,1/2

\(\mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = \mathbf{b}/2 \)

Origin at x,0,1/2

\(\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = \mathbf{a}/2 \)

Origin at 0,y,0
Origin: at center (2/m) at 2,2/ma

Asymmetric unit: 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations:

1. 1 (1 0 0 0)
2. 2 1/4,0,z (2 1/2,0,0)
3. 2 0,y,0 (2 0,0,0)
4. 2 (1/2,0,0) x,0,0 (2,1/2,0,0)
5. 1 (1 0 0 0)
6. a (1/2,0,0) x,y,0 (m 1/2,0,0)
7. m x,0,z (m 0,0,0)
8. m 1/4,y,z (m 1/2,0,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 l 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 k m..</td>
<td>1/4,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 j .m.</td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>4 i .m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 h .2.</td>
<td>0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 g .2.</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,0 [0,v,0]</td>
</tr>
<tr>
<td>2 f mm2</td>
<td>1/4,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 e mm2</td>
<td>1/4,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 d .2/m.</td>
<td>0,1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td>2 c .2/m.</td>
<td>0,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>2 b .2/m.</td>
<td>0,1/2,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,v,0]</td>
</tr>
<tr>
<td>2 a .2/m.</td>
<td>0,0,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p$_{2a}$ 2mm

| a* = a/2 b* = b |
| Origina at 1/4,0,z |

Along [1,0,0] p2mm1'

| a* = b b* = c |
| Origina at x,0,0 |

Along [0,1,0] p2mg1'

| a* = -a b* = c |
| Origina at 0,y,0 |
Origin at center (2/m1') at 2, 2/ma1'

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For 1 + set

(1) 1 (1) |0,0,0)
(2) 2 1/4,0,z (2z|1/2,0,0)
(3) 2 y,0 (2z|0,0,0)
(4) 2 (1/2,0,0) x,0,0 (2z|1/2,0,0)
(5) 1 (1) |0,0,0)
(6) a (1/2,0,0) x,y,0 (mz|1/2,0,0)
(7) m x,0,z (my|0,0,0)
(8) m 1/4,y,z (my|1/2,0,0)

For 1' + set

(1) 1' (1) |0,0,0')
(2) 2' 1/4,0,z (2z|1/2,0,0')
(3) 2' y,0 (2z|0,0,0')
(4) 2' (1/2,0,0) x,0,0 (2z|1/2,0,0')
(5) 1' (1) |0,0,0')
(6) a' (1/2,0,0) x,y,0 (mz|1/2,0,0')
(7) m' x,0,z (my|0,0,0')
(8) m' 1/4,y,z (my|1/2,0,0')
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 l 11' (1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(2) $x+1/2,y,z$ [0,0,0]</td>
</tr>
<tr>
<td>(3) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(4) $x+1/2,y,z$ [0,0,0]</td>
</tr>
<tr>
<td>(5) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 k m..1' 1/4,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 j .m.1' x,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 i .m.1' x,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 h .2.1' 0,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 g .2.1' 0,y,0 [0,0,0]</td>
</tr>
<tr>
<td>2 f mm21' 1/4,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 e mm21' 1/4,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 d .2/m.1' 0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c .2/m.1' 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b .2/m.1' 0,1,2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 a .2/m.1' 0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2mm1'</th>
<th>Along [1,0,0] p2mm1'</th>
<th>Along [0,1,0] p2mg1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^* = a/2$</td>
<td>$a^* = b$</td>
<td>$a^* = -a$</td>
</tr>
<tr>
<td>$b^* = b$</td>
<td>$b^* = c$</td>
<td>$b^* = c$</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Pm'\text{ma}
\begin{align*}
51.3.389 &
\end{align*}

m'\text{mm}
\begin{align*}
P2_1/m'2'/m2'/a &
\end{align*}

Orthorhombic

\begin{align*}
\text{Origin at center (}2'/\text{m}) \text{ at } 2,2'/\text{ma}
\end{align*}

\begin{align*}
\text{Asymmetric unit} &
\begin{align*}
0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1
\end{align*}
\end{align*}

\begin{align*}
\text{Symmetry Operations} &
\begin{align*}
(1) \text{ 1} &
(1 | 0,0,0) \\
\text{ (1 | 0,0,0)' } & \\
(2) \text{ 2' \ 1/4,0,z} &
(2_z | 1/2,0,0)' \\
(3) \text{ 2' \ 0,y,0} &
(2_y | 0,0,0)' \\
(4) \text{ 2 \ (1/2,0,0) \ x,0,0} &
(2_z | 1/2,0,0) \\
(5) \text{ T'} &
(1 | 0,0,0)' \\
(6) \text{ a \ (1/2,0,0) \ x,y,0} &
(m_z | 1/2,0,0) \\
(7) \text{ m \ x,0,z} &
(m_y | 0,0,0) \\
(8) \text{ m' \ 1/4,y,z} &
(m_z | 1/2,0,0)' \\
\end{align*}
\end{align*}
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>8</th>
<th>l</th>
<th>1</th>
<th>(1) x,y,z [u,v,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(2)</td>
<td>x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4)</td>
<td>x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6)</td>
<td>x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8)</td>
<td>x+1/2,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

4 k m' 1/4, y, z [0,v,w]
4 j .m. x, 1/2, z [0,v,0]
4 i .m. x, 0, z [0,v,0]
4 h .2' 0, y, 1/2 u, 0, w
4 g .2' 0, y, 0 [u,0,w]
2 f m'm 2' 1/4, 1/2, z [0,v,0]
2 e m'm 2' 1/4, 0, z [0,v,0]
2 d .2'/m 0, 1/2, 1/2 [0,0,0]
2 c .2'/m 0, 0, 1/2 [0,0,0]
2 b .2'/m 0, 1/2, 0 [0,0,0]
2 a .2'/m 0, 0, 0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p2a, 2mm
Along [1,0,0] p2mm
Along [0,1,0] p2mg1'

\[a^* = \frac{a}{2} \quad b^* = b \]

Origin at 1/4,0,z
Origin at x,0,0

\[a^* = -a \quad b^* = c \]

Origin at 0,y,0
Origin at 0,y,0

51.3.389 - 2 - 767
Orthorhombic

Origin
- at center (2/m') at 2', 2/m'a

Asymmetric Unit
- $0 \leq x \leq 1/4$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1$

Symmetry Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
<td>(1 0,0,0)</td>
</tr>
<tr>
<td>(2) $2'$</td>
<td>1/4,0,z</td>
</tr>
<tr>
<td></td>
<td>(2z 1/2,0,0)</td>
</tr>
<tr>
<td>(3) $2'$</td>
<td>0,y,0</td>
</tr>
<tr>
<td></td>
<td>(2, 0,0,0)</td>
</tr>
<tr>
<td>(4) $2'$</td>
<td>(1/2,0,0) x,0,0</td>
</tr>
<tr>
<td></td>
<td>(2z 1/2,0,0)</td>
</tr>
<tr>
<td>(5) 1</td>
<td>(1 0,0,0)'</td>
</tr>
<tr>
<td>(6) a 1/2</td>
<td>x,y,0</td>
</tr>
<tr>
<td></td>
<td>(mz 1/2,0,0)</td>
</tr>
<tr>
<td>(7) m'</td>
<td>x,0,z</td>
</tr>
<tr>
<td></td>
<td>(my 0,0,0)'</td>
</tr>
<tr>
<td>(8) m</td>
<td>1/4,y,z</td>
</tr>
<tr>
<td></td>
<td>(mz 1/2,0,0)</td>
</tr>
</tbody>
</table>

Pmm'a

51.4.390

mm'm

P2, /m2/m'2'/a
Generators selected
$(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5)$.

Positions

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 l 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>8</td>
<td>l</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y,z [u,v,w]</td>
<td>8</td>
<td>l</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
<td>8</td>
<td>l</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y,z [u,v,w]</td>
<td>8</td>
<td>l</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>8</td>
<td>l</td>
</tr>
<tr>
<td>4 k m..</td>
<td>1/4,y,z [u,0,0]</td>
<td>4</td>
<td>k</td>
</tr>
<tr>
<td>4 j .m'.</td>
<td>x,1/2,z [u,0,w]</td>
<td>4</td>
<td>j</td>
</tr>
<tr>
<td>4 i .m'.</td>
<td>x,0,z [u,0,w]</td>
<td>4</td>
<td>i</td>
</tr>
<tr>
<td>4 h .2.</td>
<td>0,y,1/2 [0,v,0]</td>
<td>4</td>
<td>h</td>
</tr>
<tr>
<td>4 g .2.</td>
<td>0,y,0 [0,v,0]</td>
<td>4</td>
<td>g</td>
</tr>
<tr>
<td>2 f mm'</td>
<td>1/4,1/2,z [u,0,0]</td>
<td>2</td>
<td>f</td>
</tr>
<tr>
<td>2 e mm'</td>
<td>1/4,0,z [u,0,0]</td>
<td>2</td>
<td>e</td>
</tr>
<tr>
<td>2 d .2/m'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>2</td>
<td>d</td>
</tr>
<tr>
<td>2 c .2/m'</td>
<td>0,0,1/2 [0,0,0]</td>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td>2 b .2/m'</td>
<td>0,1/2,0 [0,0,0]</td>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>2 a .2/m'</td>
<td>0,0,0 [0,0,0]</td>
<td>2</td>
<td>a</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** $p_{2a}, 2m'm'$
 $a^* = a/2$ \ $b^* = b$
 Origin at 0,0,z

- **Along [1,0,0]** $p2mm1'$
 $a^* = b$ \ $b^* = c$
 Origin at x,0,0

- **Along [0,1,0]** $p2mg$
 $a^* = -a$ \ $b^* = c$
 Origin at 0,y,0
Pmna' mmm' Orthorhombic

51.5.391 P2₁/m/m2/m/a'

Origin at center (2/m) at 2', 2'/ma'

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1
(1 0,0,0)

(2) 2
1/4,0,z
(2z 1/2,0,0)

(3) 2'
0,y,0
(2',0,0,0')

(4) 2'
(1/2,0,0)
x,0,0
(2,1/2,0,0)'

(5) T
(1 0,0,0)'

(6) a'
(1/2,0,0)
x,y,0
(m,1/2,0,0)'

(7) m
x,0,z
(m,0,0,0)

(8) m
1/4,y,z
(m,1/2,0,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 l 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+1/2, y, z [u,v,w]</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x+1/2, y, z [u,v,w]</td>
<td>(7) x,y,z [u,v,w]</td>
<td>(8) x+1/2, y, z [u,v,w]</td>
</tr>
<tr>
<td>4 k m..</td>
<td>1/4,y,z [u,0,0]</td>
<td>1/4, y,z [u,0,0]</td>
<td>3/4, y,z [u,0,0]</td>
</tr>
<tr>
<td>4 j .m.</td>
<td>x,1/2,z [0,v,0]</td>
<td>x+1/2,1/2,z [0,v,0]</td>
<td>x+1/2,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>4 i .m.</td>
<td>x,0,z [0,v,0]</td>
<td>x+1/2,0,z [0,v,0]</td>
<td>x+1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 h .2'.</td>
<td>0,y,1/2 [u,0,w]</td>
<td>1/2,y,1/2 [u,0,w]</td>
<td>1/2,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>4 g .2'.</td>
<td>0,y,0 [u,0,w]</td>
<td>1/2,y,0 [u,0,w]</td>
<td>1/2,y,0 [u,0,w]</td>
</tr>
<tr>
<td>2 f mm2</td>
<td>1/4,1/2,z [0,0,0]</td>
<td>3/4,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 e mm2</td>
<td>1/4,0,z [0,0,0]</td>
<td>3/4,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 d .2'/m.</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 c .2'/m.</td>
<td>0,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 b .2'/m.</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a .2'/m.</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** p2mm
 - $a^* = a/2$
 - $b^* = b$
 - Origin at 0,0,z

- **Along [1,0,0]** p2mm1’
 - $a^* = b$
 - $b^* = c$
 - Origin at x,0,0

- **Along [0,1,0]** p2mg1’
 - $a^* = -a$
 - $b^* = c$
 - Origin at 0,y,0
Origin at center (2'/m’) at 2’, 2'/m’a

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1 (1 | 0,0,0) (5) (1 | 0,0,0)
(6) a (1/2,0,0) x,y,0 (m_z | 1/2,0,0)

(2) 2 1/4,0,z (2) 2’ 0,y,0 (7) m’ x,0,z (8) m’ 1/4,y,z (m_z | 1/2,0,0)
(2_z | 1/2,0,0) (2_z | 0,0,0)’ (m_y | 0,0,0)’ (m_y | 1/2,0,0)’
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 l 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 k m'..</td>
<td>1/4,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 j m'..</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>4 i m'..</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>4 h .2'..</td>
<td>0,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>4 g .2'..</td>
<td>0,y,0 [u,0,w]</td>
</tr>
<tr>
<td>2 f m'm'2</td>
<td>1/4,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 e m'm'2</td>
<td>1/4,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 d .2'/m'</td>
<td>0,1/2,1/2 [u,0,w]</td>
</tr>
<tr>
<td>2 c .2'/m'</td>
<td>0,0,1/2 [u,0,w]</td>
</tr>
<tr>
<td>2 b .2'/m'</td>
<td>0,1/2,0 [u,0,w]</td>
</tr>
<tr>
<td>2 a .2'/m'</td>
<td>0,0,0 [u,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_{2a} 2m'm'
\(a^* = a/2\) \(b^* = b\)
Origin at 1/4,0,z

Along [1,0,0] p2'm'm'
\(a^* = a\) \(b^* = a\)
Origin at x,0,0

Along [0,1,0] p2'm'g
\(a^* = -a\) \(b^* = -b\)
Origin at 0,y,0
Pmm'a'

mm'm'

Orthorhombic

51.7.393

P2₁/m2'/m'2'/a'

Origin at center (2'/m') at 2; 2'/m'a'

Asymmetric unit

0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1
(1 0,0,0)

(2) 2' 1/4,0,z
(2z 1/2,0,0)

(3) 2' 0,y,0
(2y 0,0,0)

(4) 2 (1/2,0,0) x,0,0
(2 (1/2,0,0)

(5) 1
(1 0,0,0)

(6) a' (1/2,0,0) x,y,0
(m 1/2,0,0)

(7) m' x,0,z
(m 0,0,0)

(8) m 1/4,y,z
(m 1/2,0,0)

51.7.393 - 1 - 774
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 l 1 (1)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2) x+1/2,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(3) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(4) x+1/2,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(6) x+1/2,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(7) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(8) x+1/2,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 k m..</td>
<td>1/4,y,z [u,0,0]</td>
</tr>
<tr>
<td>1/4,y,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>3/4,y,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>3/4,y,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 j .m'.</td>
<td>x,1/2,z [u,0,0]</td>
</tr>
<tr>
<td>x+1/2,1/2,z [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>x,1/2,z [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>x+1/2,1/2,z [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 i .m'.</td>
<td>x,0,z [u,0,0]</td>
</tr>
<tr>
<td>x+1/2,0,z [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>x,0,z [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>x+1/2,0,z [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 h .2'.</td>
<td>0,y,1/2 [u,0,0]</td>
</tr>
<tr>
<td>1/2,y,1/2 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>0,y,1/2 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>1/2,y,1/2 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 g .2'.</td>
<td>0,y,0 [u,0,0]</td>
</tr>
<tr>
<td>1/2,y,0 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>0,y,0 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>1/2,y,0 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 f mm'2'</td>
<td>1/4,1/2,z [u,0,0]</td>
</tr>
<tr>
<td>3/4,1/2,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 e mm'2'</td>
<td>1/4,0,z [u,0,0]</td>
</tr>
<tr>
<td>3/4,0,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 d .2'/m'.</td>
<td>0,1/2,1/2 [u,0,w]</td>
</tr>
<tr>
<td>1/2,1/2,1/2 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>1/2,1/2,1/2 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 c .2'/m'.</td>
<td>0,0,1/2 [u,0,w]</td>
</tr>
<tr>
<td>1/2,0,1/2 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>1/2,0,1/2 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 b .2'/m'.</td>
<td>0,1/2,0 [u,0,w]</td>
</tr>
<tr>
<td>1/2,1/2,0 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>1/2,1/2,0 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 a .2'/m'.</td>
<td>0,0,0 [u,0,w]</td>
</tr>
<tr>
<td>1/2,0,0 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>1/2,0,0 [u,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'mm' a* = a/2 b* = b
Origin at 0,0,z

Along [1,0,0] p2mm1' a* = b b* = c
Origin at x,0,0

Along [0,1,0] p2'mg' a* = -a b* = c
Origin at 0,y,0
Origin at center (2/m) at 2,‘2/ma’

Asymmetric unit: 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

1. (1 | 0,0,0)
2. (2' | 1/4,0,z)
3. (3 | 0,y,0)
4. (4' | 1/2,0,0)

5. (5' | 0,0,0)
6. (6a' | 1/2,0,0)
7. (7 | x,0,z)
8. (8 | 1/4,y,z)

Orthorhombic

Pm’ma’
m’mm’

51.8.394 P2_1/m’2/m2’/a’
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 l 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>8</td>
<td>l</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y,z [u,v,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y,z [u,v,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 k m'..</td>
<td>1/4,y,z [0,v,w]</td>
<td>4</td>
<td>k</td>
<td>m'</td>
</tr>
<tr>
<td></td>
<td>1/4,y,z [0,v,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4,y,z [0,v,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4,y,z [0,v,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 j .m.</td>
<td>x,1/2,z [0,v,0]</td>
<td>4</td>
<td>j</td>
<td>.m.</td>
</tr>
<tr>
<td></td>
<td>x,1/2,z [0,v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,z [0,v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 i .m.</td>
<td>x,0,z [0,v,0]</td>
<td>4</td>
<td>i</td>
<td>.m.</td>
</tr>
<tr>
<td></td>
<td>x,0,z [0,v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,0,z [0,v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 h .2.</td>
<td>0,y,1/2 [0,v,0]</td>
<td>4</td>
<td>h</td>
<td>.2.</td>
</tr>
<tr>
<td></td>
<td>1/2,y,1/2 [0,v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,y,1/2 [0,v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,y,1/2 [0,v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 g .2.</td>
<td>0,y,0 [0,v,0]</td>
<td>4</td>
<td>g</td>
<td>.2.</td>
</tr>
<tr>
<td></td>
<td>1/2,y,0 [0,v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,y,0 [0,v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,y,0 [0,v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 f m'm2'</td>
<td>1/4,1/2,z [0,v,0]</td>
<td>2</td>
<td>f</td>
<td>m'm2'</td>
</tr>
<tr>
<td></td>
<td>3/4,1/2,z [0,v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 e m'm2'</td>
<td>1/4,0,z [0,v,0]</td>
<td>2</td>
<td>e</td>
<td>m'm2'</td>
</tr>
<tr>
<td></td>
<td>3/4,0,z [0,v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 d .2/m.</td>
<td>0,1/2,1/2 [0,v,0]</td>
<td>2</td>
<td>d</td>
<td>.2/m.</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c .2/m.</td>
<td>0,0,1/2 [0,v,0]</td>
<td>2</td>
<td>c</td>
<td>.2/m.</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b .2/m.</td>
<td>0,1/2,0 [0,v,0]</td>
<td>2</td>
<td>b</td>
<td>.2/m.</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a .2/m.</td>
<td>0,0,0 [0,v,0]</td>
<td>2</td>
<td>a</td>
<td>.2/m.</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm
\(a^* = a/2\) \(b^* = b\)
Origin at 0,0,z

Along [1,0,0] p2'1'm'
\(a^* = b\) \(b^* = c\)
Origin at x,0,0

Along [0,1,0] p21gm
\(a^* = -a\) \(b^* = c\)
Origin at 0,y,0
Origin at center (2/m') at 2, 2/m'a'

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1
\[(1 | 0,0,0) \]

(2) 2
\[1/4,0,z \]
\[(2z | 1/2,0,0) \]

(3) 2
\[0,y,0 \]
\[(2y | 0,0,0) \]

(4) 2
\[(1/2,0,0) \]
\[x,0,0 \]
\[(2,1/2,0,0) \]

(5) $\overline{1}$
\[(1 | 0,0,0)'^{'} \]

(6) a'
\[(1/2,0,0) \]
\[x,y,0 \]
\[(mz | 1/2,0,0)'^{'} \]

(7) m'
\[x,0,z \]
\[(my | 0,0,0)'^{'} \]

(8) m'
\[1/4,y,z \]
\[(mz | 1/2,0,0)'^{'} \]
Continued

Generators selected (1); t(1,0,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 l 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 k m'..</td>
<td>1/4,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 j .m':</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>4 i .m':</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,0,z [u,0,w]</td>
</tr>
<tr>
<td>4 h .2.</td>
<td>0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 g .2.</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,0 [0,v,0]</td>
</tr>
<tr>
<td>2 f m'm2</td>
<td>1/4,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 e m'm2</td>
<td>1/4,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 d .2/m':</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c .2/m':</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b .2/m':</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 a .2/m':</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2m'm'
\(a^* = a/2\) \(b^* = b\)
Origin at 0,0,z

Along [1,0,0] p2m'm'
\(a^* = b\) \(b^* = c\)
Origin at x,0,0

Along [0,1,0] p2m'g'
\(a^* = -a\) \(b^* = c\)
Origin at 0,y,0
Origin at center (2/m) at 2,2/ma

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

1. 1 (1 0,0,0)
2. 2 1/4,0,z (2,1/2,0,0)
3. 3 0,y,0 (2 0,0,0)
4. 4 (1/2,0,0) x,0,0 (2,1/2,0,0)

5. (5 0,0,0)
6. a (1/2,0,0) x,y,0 (m z 1/2,0,0)
7. m x,0,z (m 0,0,0)
8. m 1/4,y,z (m 1/2,0,0)

For (0,1,0)' + set

1. t' (0,1,0) (1 0,1,0)
2. 2' 1/4,1/2,z (2 1/2,1,0)
3. 3' (0,1,0) 0,y,0 (2 0,1,0)
4. 4' (1/2,0,0) x,1/2,0 (2 1/2,1,0)

5. (5 0,1/2,0)
6. n' (1/2,1,0) x,y,0 (m 1/2,1,0)
7. m' x,1/2,z (m 0,1,0)
8. b' (0,1,0) 1/4,y,z (m 1/2,1,0)
Generators selected
(1); t(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th></th>
<th>Coordinates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16 l 1</td>
<td>(0,0,0) +</td>
<td>(0,1,0)' +</td>
</tr>
<tr>
<td>16 l 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 k m.</td>
<td>1/4,y,z [u,0,0]</td>
<td>1/4,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 j m'</td>
<td>x,1/2,z [u,0,0]</td>
<td>x+1/2,1/2,z [u,0,0]</td>
</tr>
<tr>
<td>8 i m.</td>
<td>x,0,z [0,v,0]</td>
<td>x+1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td>8 h 2.</td>
<td>0,y,1/2 [0,v,0]</td>
<td>1/2,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>8 g 2.</td>
<td>0,y,0 [0,v,0]</td>
<td>1/2,y,0 [0,v,0]</td>
</tr>
<tr>
<td>4 f mm'2</td>
<td>1/4,1/2,z [u,0,0]</td>
<td>3/4,1/2,z [u,0,0]</td>
</tr>
<tr>
<td>4 e mm2</td>
<td>1/4,0,z [0,0,0]</td>
<td>3/4,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 d 2/m'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c 2/m</td>
<td>0,0,1/2 [0,v,0]</td>
<td>1/2,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 b 2/m'</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2/m</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2a, 2'2mm'
\(a^* = -b \) \(b^* = a/2 \)
Origin at 0,0,z

Along [1,0,0] p2mm1'
\(a^* = b \) \(b^* = c \)
Origin at x,0,0

Along [0,1,0] p2mg1'
\(a^* = -a \) \(b^* = c \)
Origin at 0,y,0
Orthorhombic

Origin: at center (2/m) at 2, 2/mma

Asymmetric unit:

\[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < 1\]

Symmetry Operations

For \((0,0,0) + \) set

1. \(I \quad (1|0,0,0)\)
2. \(2 \quad \frac{1}{4},0,z\)
 \((2_{z}|1/2,0,0)\)
3. \(2 \quad 0,y,0\)
 \((2_{y}|0,0,0)\)
4. \(2 \quad (1/2,0,0) \times 0,0\)
 \((2_{x}|1/2,0,0)\)
5. \(\bar{1} \quad (1|0,0,0)\)
6. \(a \quad (1/2,0,0)\)
 \((m_{x}|1/2,0,0)\)
7. \(m \quad x,0,z\)
 \((m_{y}|0,0,0)\)
8. \(m \quad 1/4,y,z\)
 \((m_{z}|1/2,0,0)\)

For \((0,0,1)') + \) set

1. \(t' \quad (0,0,1)\)
 \((1|0,0,1)\)
2. \(2' \quad (0,0,1) \times \frac{1}{4},0,z\)
 \((2_{z}|1/2,0,1)'\)
3. \(2' \quad 0,y,1/2\)
 \((2_{y}|0,0,1)'\)
4. \(2' \quad (1/2,0,0) \times 0,1/2\)
 \((2_{x}|1/2,0,1)'\)
5. \(\bar{1}' \quad 0,0,1/2\)
 \((1|0,0,1)'\)
6. \(a' \quad (1/2,0,0)\)
 \((m_{x}|1/2,0,1)'\)
7. \(c' \quad (0,0,1) \times 0,z\)
 \((m_{y}|0,0,1)'\)
8. \(c' \quad (0,0,1) \times 1/4,y,z\)
 \((m_{z}|1/2,0,1)'\)
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td>16 l</td>
<td>(1) x,y,z [u,v,w] (2) x+1/2,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w] (6) x+1/2,y,z [u,v,w] (7) x,y,z [u,v,w] (8) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 k m..</td>
<td>1/4,y,z [u,0,0] 3/4,y,z [u,0,0] 3/4,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 j m.</td>
<td>x,1/2,z [0,v,0] x+1/2,1/2,z [0,v,0] x+1/2,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>8 i m.</td>
<td>x,0,z [0,v,0] x+1/2,0,z [0,v,0] x+1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td>8 h .2'</td>
<td>0,y,1/2 [u,0,w] 1/2,y,1/2 [u,0,w] 1/2,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>8 g .2.</td>
<td>0,y,0 [0,v,0] 1/2,y,0 [0,v,0] 1/2,y,0 [0,v,0]</td>
</tr>
<tr>
<td>4 f mm2</td>
<td>1/4,1/2,z [0,0,0] 3/4,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 e mm2</td>
<td>1/4,0,z [0,0,0] 3/4,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 d .2'/m.</td>
<td>0,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c .2'/m.</td>
<td>0,0,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b .2'/m.</td>
<td>0,1/2,0 [0,v,0] 1/2,1/2,0 [0,v,0]</td>
</tr>
<tr>
<td>4 a .2'/m.</td>
<td>0,0,0 [0,v,0] 1/2,0,0 [0,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm1' Along [1,0,0] p2mm1' Along [0,1,0] p2mm1'
\(\mathbf{a}^* = \mathbf{a}/2 \) \(\mathbf{b}^* = \mathbf{b} \) \(\mathbf{a}^* = \mathbf{a} \) \(\mathbf{b}^* = \mathbf{c} \)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at center (2/m) at 2, 2/ma

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1
Symmetry Operations

For (0,0,0) + set

(1) \(T \) (0,0,0)
(2) \(2 \) \(\frac{1}{4}, 0, z \)
(3) \(2 \) 0,0,0
(4) \(2 \left(\frac{1}{2}, 0, 0 \right) \) \(x, 0, 0 \)

(5) \(\bar{T} \) (1/0,0,0)
(6) \(a \left(\frac{1}{2}, 0, 0 \right) \) \(x, y, 0 \)
(7) \(m \) \(x, 0, z \)
(8) \(m \left(\frac{1}{4}, y, z \right) \)

For (0,1,0)' + set

(1) \(t' \) (0,1,0)
(2) \(2' \) \(\frac{1}{4}, 0, z \)
(3) \(2' \) (0,0,0)
(4) \(2' \left(\frac{1}{2}, 0, 0 \right) \) \(x, 0, 0 \)

(5) \(\bar{T} \) (0,1,0)'
(6) \(n' \left(\frac{1}{2}, 0, 0 \right) \) \(x, y, 0 \)
(7) \(m' \) \(x, 0, z \)
(8) \(b' \) (0,0,0)

Generators selected (1); (0,1,0); (1,0,0); (0,0,1); (2); (3); (5).

Positions

Multiplicty, Wyckoff letter, Site Symmetry.

Coorinates

(0,0,0) + (0,1,0)'

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 l 1</td>
<td>(0,0,0) + (0,1,0)' +</td>
<td></td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>x+1/2, y, z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2) (x+1/2, y, z \ [u,v,w])</td>
<td>(x+1/2, y, z \ [u,v,w])</td>
<td>(x+1/2, y, z \ [u,v,w])</td>
</tr>
<tr>
<td>(5) (x, y, z \ [u,v,w])</td>
<td>(x, y, z \ [u,v,w])</td>
<td>(x, y, z \ [u,v,w])</td>
</tr>
<tr>
<td>8 k m..</td>
<td>(1/4, y, z \ [u,0,0])</td>
<td>(1/4, y, z \ [u,0,0])</td>
</tr>
<tr>
<td>8 j m'.</td>
<td>(x, 1/2, z \ [u,0,0])</td>
<td>(x, 1/2, z \ [u,0,0])</td>
</tr>
<tr>
<td>8 i .m.</td>
<td>(x, 0, z \ [0,v,0])</td>
<td>(x, 0, z \ [0,v,0])</td>
</tr>
<tr>
<td>8 h .2'</td>
<td>(0, y, 1/2 \ [u,0,0])</td>
<td>(1/2, y, 1/2 \ [u,0,0])</td>
</tr>
<tr>
<td>8 g .2.</td>
<td>(0, y, 0 \ [0,v,0])</td>
<td>(1/2, y, 0 \ [0,v,0])</td>
</tr>
<tr>
<td>4 f mm'2'</td>
<td>(1/4, 1/2, z \ [u,0,0])</td>
<td>(3/4, 1/2, z \ [u,0,0])</td>
</tr>
<tr>
<td>4 e mm2</td>
<td>(1/4, 0, z \ [0,0,0])</td>
<td>(3/4, 0, z \ [0,0,0])</td>
</tr>
<tr>
<td>4 d .2'/m'.</td>
<td>(0, 1/2, 1/2 \ [u,0,0])</td>
<td>(1/2, 1/2, 1/2 \ [u,0,0])</td>
</tr>
<tr>
<td>4 c .2'/m</td>
<td>(0, 0, 1/2 \ [0,0,0])</td>
<td>(1/2, 0, 1/2 \ [0,0,0])</td>
</tr>
<tr>
<td>4 b .2/m'</td>
<td>(0, 1/2, 0 \ [0,0,0])</td>
<td>(1/2, 1/2, 0 \ [0,0,0])</td>
</tr>
<tr>
<td>4 a .2/m</td>
<td>(0, 0, 0 \ [0,0,0])</td>
<td>(1/2, 0, 0 \ [0,0,0])</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p2mm1'
\(\mathbf{a}^* = \frac{\mathbf{a}}{2} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] p2mm1'
\(\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \)
Origin at x,0,0

Along [0,1,0] p2mg1'
\(\mathbf{a}^* = -\mathbf{a} \quad \mathbf{b}^* = \mathbf{c} \)
Origin at 0,y,0
Origin at center (2/m) at 2, 2/m, ma

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

1. \(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \)
2. \(\begin{pmatrix} 2' \\ 1/4,0,z \end{pmatrix} \)
3. \(\begin{pmatrix} 2' \\ 0,y,0 \end{pmatrix} \)
4. \(\begin{pmatrix} 2 \end{pmatrix} \)

For (0,1,0)' + set

1. \(\begin{pmatrix} t' \\ 0,1,0 \end{pmatrix} \)
2. \(\begin{pmatrix} 2 \end{pmatrix} \)
3. \(\begin{pmatrix} 2 \end{pmatrix} \)
4. \(\begin{pmatrix} 2' \end{pmatrix} \)

For (0,0,0)' + set

1. \(\begin{pmatrix} 5 \end{pmatrix} \)
2. \(\begin{pmatrix} 6 \end{pmatrix} \)
3. \(\begin{pmatrix} 7 \end{pmatrix} \)
4. \(\begin{pmatrix} 8 \end{pmatrix} \)

1. \(\begin{pmatrix} 1 \end{pmatrix} \)
2. \(\begin{pmatrix} 2 \end{pmatrix} \)
3. \(\begin{pmatrix} 2 \end{pmatrix} \)
4. \(\begin{pmatrix} 2 \end{pmatrix} \)

1. \(\begin{pmatrix} 5 \end{pmatrix} \)
2. \(\begin{pmatrix} 6 \end{pmatrix} \)
3. \(\begin{pmatrix} 7 \end{pmatrix} \)
4. \(\begin{pmatrix} 8 \end{pmatrix} \)
Generators selected

(1); t(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>u,v,w</td>
<td>16 l 1</td>
</tr>
<tr>
<td>(0,1,0)</td>
<td>u,v,w</td>
<td>4 f m'm'2</td>
</tr>
<tr>
<td>(0,2,0)</td>
<td>u,v,w</td>
<td>4 e m'm'2</td>
</tr>
<tr>
<td>(1,0,0)</td>
<td>u,v,w</td>
<td>4 d .2'/m'</td>
</tr>
<tr>
<td>(1,1,0)</td>
<td>u,v,w</td>
<td>4 c .2'/m'</td>
</tr>
<tr>
<td>(1,2,0)</td>
<td>u,v,w</td>
<td>4 b .2'/m'</td>
</tr>
<tr>
<td>(2,0,0)</td>
<td>u,v,w</td>
<td>4 a .2'/m'</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_2 mm
\(a^* = -a/2 \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] p_{2a} 2 mm
\(a^* = b \quad b^* = c \)
Origin at x,0,0

Along [0,1,0] p_{2mg} 1'
\(a^* = -a \quad b^* = c \)
Origin at 0,y,0
Origin at center (2'/m) at 2', 2'/ma'

Asymmetric unit

0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

1. $\text{I} (0,0,0)$
2. $\text{I} 1/4,0,z (2_z 1/2,0,0)$
3. $2' 0,y,0 (2_y 0,0,0)$
4. $2' (1/2,0,0) x,0,0 (2_x 1/2,0,0)$
5. $\text{a'} (1/2,0,0) x,y,0 (m_z 1/2,0,0)$
6. $m 0,z (m_z 0,0,0)$
7. $m' x,0,z (m_z 0,0,0)$
8. $b' (0,1,0) 1/4,y,z (m_z 1/2,1,0)$

For (0,1,0) + set

1. $t' (0,1,0) (1,0,0)$
2. $t' 1/4,1/2,z (2_z 1/2,1,0)$
3. $2 (0,1,0) 0,y,0 (2_x 0,1,0)$
4. $2 (1/2,0,0) x,1/2,0 (2_x 1/2,1,0)$
5. $\text{n} (1/2,1,0) x,y,0 (m_z 1/2,1,0)$
6. $m' x,1/2,z (m_y 0,1,0)$
7. $b' (0,1,0) 1/4,y,z (m_x 1/2,1,0)$
8. $b' (0,1,0) 1/4,y,z (m_x 1/2,1,0)$
Generators selected (1); t(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 l 1</td>
<td>16</td>
<td>(0,0,0) + (0,1,0)' +</td>
</tr>
<tr>
<td>8 k m..</td>
<td>8</td>
<td>1/4,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 j .m'.</td>
<td>8</td>
<td>x+1/2,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>8 i .m.</td>
<td>8</td>
<td>x+1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td>8 h .2'</td>
<td>8</td>
<td>0,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>8 g .2'</td>
<td>8</td>
<td>0,y,0 [u,0,w]</td>
</tr>
<tr>
<td>4 f mm'2'</td>
<td>4</td>
<td>1/4,1/2,z [u,0,0]</td>
</tr>
<tr>
<td>4 e mm2</td>
<td>4</td>
<td>1/4,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 d .2'/m'</td>
<td>4</td>
<td>0,1/2,1/2 [u,0,w]</td>
</tr>
<tr>
<td>4 c .2'/m</td>
<td>4</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b .2'/m'</td>
<td>4</td>
<td>0,1/2,0 [u,0,w]</td>
</tr>
<tr>
<td>4 a .2'/m'</td>
<td>4</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_{2a},2mm
Along [1,0,0] p 2mm1'
Along [0,1,0] p2mg1'

\(\mathbf{a}^* = -b \quad \mathbf{b}^* = a/2 \quad \mathbf{c}^* = c \)

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin at center \((2/m)\) at \(2'2/ma'\)

Asymmetric unit \(0 < x < 1/4; \ 0 < y < 1/2; \ 0 < z < 1\)

Symmetry Operations

For \((0,0,0)\) + set

1. \(T\) \((1|0,0,0)\)
2. \(2'\) \(1/4,0,z\) \((2_z|1/2,0,0)\)
3. \(T\) \(0,y,0\) \((2_y|0,0,0)\)
4. \(2'\) \(1/2,0,0\) \(x,0,0\) \((2_x|1/2,0,0)\)

5. \(\bar{T}\) \((1|0,0,0)\)
6. \(a'\) \((1/2,0,0)\) \(x,y,0\) \((m_z|1/2,0,0)\)
7. \(m\) \(x,0,z\) \((m_y|0,0,0)\)
8. \(m'\) \(1/4,y,z\) \((m_x|1/2,0,0)\)

For \((0,1,0)'\) + set

1. \(t'\) \((0,1,0)\)
2. \(2\) \(1/4,1/2,z\) \((2_z|1/2,1,0)\)
3. \(2'\) \((0,1,0)\) \(0,y,0\) \((2_y|0,1,0)\)
4. \(2\) \((1/2,0,0)\) \(x,1/2,0\) \((2_x|1/2,1,0)\)

5. \(\bar{T}\) \(0,1/2,0\)
6. \(n\) \((1/2,1,0)\) \(x,y,0\) \((m_z|1/2,1,0)\)
7. \(m'\) \(x,1/2,z\) \((m_y|0,1,0)\)
8. \(b\) \((0,1,0)\) \(1/4,y,z\) \((m_x|1/2,1,0)\)
Generators selected
(1); t(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicities,
Wyckoff letters,
Site Symmetry.

 Coordinates

(0,0,0) + (0,1,0)' +

| 16 | l | 1 | (1) x,y,z [u,v,w] | (2) x+1/2,y,z [u,v,w] | (3) x,y,z [u,v,w] | (4) x+1/2,y,z [u,v,w] |
|---|---|---|---|---|---|---|---|
| 8 | k | m' | 1/4, y,z [0,v,w] | 1/4, y,z [0,v,w] | 3/4, y,z [0,v,w] | 3/4, y,z [0,v,w] |
| 8 | j | m' | x,1/2,z [u,0,w] | x+1/2,1/2,z [u,0,w] | x,1/2,z [u,0,w] | x+1/2,1/2,z [u,0,w] |
| 8 | i | m | x,0,z [0,v,0] | x+1/2,0,z [0,v,0] | x,0,z [0,v,0] | x+1/2,0,z [0,v,0] |
| 8 | h | .2. | 0,y,1/2 [0,v,0] | 1/2, y,1/2 [0,v,0] | 0,y,1/2 [0,v,0] | 1/2, y,1/2 [0,v,0] |
| 8 | g | .2. | 0,y,0 [0,v,0] | 1/2, y,0 [0,v,0] | 0,y,0 [0,v,0] | 1/2, y,0 [0,v,0] |
| 4 | f | m' m' | 1/4,1/2,z [0,0,w] | 3/4,1/2,z [0,0,w] | 3/4,1/2,z [0,0,w] | 3/4,1/2,z [0,0,w] |
| 4 | e | m' m' | 1/4,0,z [0,v,0] | 3/4,0,z [0,v,0] | 3/4,0,z [0,v,0] | 3/4,0,z [0,v,0] |
| 4 | d | .2/m' | 0,1/2,1/2 [0,0,0] | 1/2,1/2,1/2 [0,0,0] | 1/2,1/2,1/2 [0,0,0] | 1/2,1/2,1/2 [0,0,0] |
| 4 | c | .2/m | 0,0,1/2 [0,v,0] | 1/2,0,1/2 [0,v,0] | 1/2,0,1/2 [0,v,0] | 1/2,0,1/2 [0,v,0] |
| 4 | b | .2/m' | 0,1/2,0 [0,0,0] | 1/2,1/2,0 [0,0,0] | 1/2,1/2,0 [0,0,0] | 1/2,1/2,0 [0,0,0] |
| 4 | a | .2/m | 0,0,0 [0,v,0] | 1/2,0,0 [0,v,0] | 1/2,0,0 [0,v,0] | 1/2,0,0 [0,v,0] |

Symmetry of Special Projections

Along [0,0,1] p2a 2'm' Along [1,0,0] p2a 2'm' Along [0,1,0] p2mg1'
\[a^* = -b \quad b^* = a/2 \] \[a^* = b \quad b^* = c \] \[a^* = -a \quad b^* = c \]

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin: at center (\(2'/m\)) at \(2',2'/ma'\)

Asymmetric unit:
\[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < 1\]

Symmetry Operations:

For \((0,0,0)\) + set:

1. \(1\) \[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}\]
2. \(2'\) \[\begin{pmatrix} 0 & 0 & 0 \\ \frac{1}{4} & 0 & z \end{pmatrix}\]
3. \(2'\) \[\begin{pmatrix} 0 & y & 0 \\ \frac{1}{4} & 0 & z \end{pmatrix}\]
4. \(2\) \[\begin{pmatrix} \frac{1}{2} & 0 & 0 \\ z & 0 & 0 \end{pmatrix}\]

For \((0,0,1)\) + set:

1. \(t'\) \[\begin{pmatrix} 0 & 0 & 0 \\ \frac{1}{4} & 0 & z \end{pmatrix}\]
2. \(a\) \[\begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}\]
3. \(m\) \[\begin{pmatrix} 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}\]
4. \(m'\) \[\begin{pmatrix} 1/4 & y & z \\ 0 & 0 & 0 \end{pmatrix}\]

For \((0,0,0)\)' + set:

1. \(t'\) \[\begin{pmatrix} 0 & 0 & 0 \\ \frac{1}{4} & 0 & z \end{pmatrix}\]
2. \(a\) \[\begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}\]
3. \(m\) \[\begin{pmatrix} 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix}\]
4. \(m'\) \[\begin{pmatrix} 1/4 & y & z \\ 0 & 0 & 0 \end{pmatrix}\]
Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>16 l</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 k</td>
<td>1/4,y,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,y,z [u,v,0]</td>
</tr>
<tr>
<td>8 j</td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>8 i</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>8 h</td>
<td>0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>8 g</td>
<td>0,y,0 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,0 [u,0,w]</td>
</tr>
<tr>
<td>4 f</td>
<td>1/4,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>4 e</td>
<td>1/4,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 d</td>
<td>0,1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 c</td>
<td>0,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>0,1/2,0 [0,v,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: p2mm1'
 - \(a^* = a/2 \)
 - \(b^* = b \)
 - Origin at 0,0,z

- **Along [1,0,0]**: p2a'2mm
 - \(a^* = -c \)
 - \(b^* = b \)
 - Origin at x,0,0

- **Along [0,1,0]**: p2mg1'
 - \(a^* = -a \)
 - \(b^* = c \)
 - Origin at 0,y,0

51.16.402 - 2 - 794
Orthorhombic

P2c mm'a

51.17.403

<table>
<thead>
<tr>
<th>Origin</th>
<th>at center (2/m') at 2, 2/m'a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetric unit</td>
<td>0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1</td>
</tr>
</tbody>
</table>

Symmetry Operations

For (0,0,0) + set

1. **1 (0,0,0)**
 - (1) 1
 - (2) 2' 1/4,0,z
 - (3) 2 0,y,0
 - (4) 2' (1/2,0,0) x,0,0
 - (5) 1 x,0,0
 - (6) a (1/2,0,0) x,y,0
 - (7) m' x,0,z
 - (8) m 1/4,y,z

For (0,0,1)' + set

1. **1 (0,0,1)**
 - (1) t' (0,0,1)
 - (2) 2 (0,0,1) 1/4,0,z
 - (3) 2' 0,y,1/2
 - (4) 2 (1/2,0,0) x,0,1/2
 - (5) 0,0,1/2
 - (6) a' (1/2,0,0) x,y,1/2
 - (7) c (0,0,1) x,0,z
 - (8) c' (0,0,1) 1/4,y,z

For (0,0,1) + set

1. **1 (0,0,1)**
 - (1) t (0,0,1)
 - (2) 2 (0,0,1) 1/4,0,z
 - (3) 2' 0,y,1/2
 - (4) 2 (1/2,0,0) x,0,1/2
 - (5) 0,0,1/2
 - (6) a' (1/2,0,0) x,y,1/2
 - (7) c (0,0,1) x,0,z
 - (8) c' (0,0,1) 1/4,y,z

51.17.403 - 1 - 795
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,0,1)' +</td>
<td></td>
</tr>
<tr>
<td>16 l 1 (1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 k m.. 1/4,y,z [u,0,0]</td>
<td>1/4,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 j .m'. x,1/2,z [u,0,w]</td>
<td>x+1/2,1/2,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>8 i .m'. x,0,z [u,0,w]</td>
<td>x+1/2,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,0,z [u,0,w]</td>
</tr>
<tr>
<td>8 h .2'. 0,y,1/2 [u,0,w]</td>
<td>1/2,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>8 g .2. 0,y,0 [0,v,0]</td>
<td>1/2,y,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,0 [0,v,0]</td>
</tr>
<tr>
<td>4 f mm'2' 1/4,1/2,z [u,0,0]</td>
<td>3/4,1/2,z [u,0,0]</td>
</tr>
<tr>
<td>4 e mm'2' 1/4,0,z [u,0,0]</td>
<td>3/4,0,z [u,0,0]</td>
</tr>
<tr>
<td>4 d .2'/m' 0,1/2,1/2 [u,0,w]</td>
<td>1/2,1/2,1/2 [u,0,w]</td>
</tr>
<tr>
<td>4 c .2'/m' 0,0,1/2 [u,0,w]</td>
<td>1/2,0,1/2 [u,0,w]</td>
</tr>
<tr>
<td>4 b .2'/m' 0,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a .2/m'. 0,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2mm1`
 \[a^* = a/2 \quad b^* = b\]
 Origin at 0,0,z

- Along [1,0,0] p2mm1`
 \[a^* = b \quad b^* = c\]
 Origin at x,0,0

- Along [0,1,0] p2m'2mg
 \[a^* = -a \quad b^* = c\]
 Origin at 0,y,0
Origin at center (2/m'') at 2'1'2/m'a

Asymmetric unit 0 < x < 1/4; 0 < y < 1/2; 0 < z < 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2 1/4,0,z
(2 | 1/2,0,0)

(3) 2' 0,y,0
(2' | 0,0,0)

(4) 2' (1/2,0,0) x,0,0
(2' | 1/2,0,0)

(5) 1
(1 | 0,0,0)

(6) a (1/2,0,0) x,y,0
(mz | 1/2,0,0)

(7) m' x,0,z
(m | 0,0,0)

(8) m' 1/4,y,z
(m | 1/2,0,0)

For (0,0,1) + set

(1) t' (0,0,1)
(1 | 0,0,1)

(2) 2' (0,0,1) 1/4,0,z
(2' | 1/2,0,1)

(3) 2 0,y,1/2
(2 | 0,0,1)

(4) 2 (1/2,0,0) x,0,1/2
(2 | 1/2,0,1)

(5) 1
(1 | 0,0,0)

(6) a' (1/2,0,0) x,y,1/2
(mz | 1/2,0,1)

(7) c (0,0,1) x,0,z
(m | 0,0,1)

(8) c (0,0,1) 1/4,y,z
(m | 1/2,0,1)
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,0,1) ' +</td>
</tr>
<tr>
<td>16 l 1 (1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 k m'. 1/4,y,z [0,v,w]</td>
<td>1/4,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 j .m'. x,1/2,z [u,0,w]</td>
<td>x+1/2,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>8 i .m'. x,0,z [u,0,w]</td>
<td>x+1/2,0,z [u,0,w]</td>
</tr>
<tr>
<td>8 h .2. 0,y,1/2 [0,v,0]</td>
<td>1/2,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>8 g .2'. 0,y,0 [u,0,w]</td>
<td>1/2,y,0 [u,0,w]</td>
</tr>
<tr>
<td>4 f m'm'2 1/4,1/2,z [0,0,w]</td>
<td>3/4,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 e m'm'2 1/4,0,z [0,0,w]</td>
<td>3/4,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 d .2/m'. 0,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c .2/m'. 0,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b .2'/m'. 0,1/2,0 [u,0,w]</td>
<td>1/2,1/2,0 [u,0,w]</td>
</tr>
<tr>
<td>4 a .2'/m'. 0,0,0 [u,0,w]</td>
<td>1/2,0,0 [u,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm1'
\[a^* = a/2 \quad b^* = b \]
Origin at 0,0,0
Along [1,0,0] p2a* 2'mm'
\[a^* = -c \quad b^* = b \]
Origin at x,0,0
Along [0,1,0] p2a* 2'm'g'
\[a^* = -a \quad b^* = c \]
Origin at 0,y,1/2
Origin at center \((2'/m\) at 2, 2'/ma\)

Asymmetric unit \(0 \leq x \leq 1/4;\quad 0 \leq y \leq 1/2;\quad 0 \leq z \leq 1\)
Symmetry Operations

For \((0,0,0) + \text{ set}\)

\[
\begin{align*}
(1) & \quad 1 & (2) & \quad 2' \quad 1/4,0,z & (3) & \quad 2' \quad 0,y,0 & (4) & \quad 2 \quad (1/2,0,0) \quad x,0,0 \\
& \quad (1|0,0,0) & & (2|1/2,0,0)' & & (2|0,0,0)' & & (2|1/2,0,0) \\
(5) & \quad \overline{T} \quad \overline{1} & (6) & \quad a \quad (1/2,0,0) \quad x,y,0 & (7) & \quad m \quad x,0,z & (8) & \quad m' \quad 1/4,y,z \\
& \quad (\overline{T} \quad 0,0,0)' & & (m|1/2,0,0) & & (m|0,0,0) & & (m|1/2,0,0)' \\
\end{align*}
\]

For \((0,1,0)' + \text{ set}\)

\[
\begin{align*}
(1) & \quad t' \quad (0,1,0) & (2) & \quad 2 \quad 1/4,1/2,z & (3) & \quad 2 \quad (0,1,0) \quad 0,y,0 & (4) & \quad 2' \quad (1/2,0,0) \quad x,1/2,0 \\
& \quad (1|0,1,0)' & & (2|1/2,1,0) & & (2|0,1,0) & & (2|1/2,1,0)' \\
(5) & \quad \overline{T} \quad 0,1/2,0 & (6) & \quad n' \quad (1/2,1,0) \quad x,y,0 & (7) & \quad m' \quad x,1/2,z & (8) & \quad b \quad (0,1,0) \quad 1/4,y,z \\
& \quad (\overline{T} \quad 0,1,0)' & & (m|1/2,1,0)' & & (m|0,1,0)' & & (m|1/2,1,0) \\
\end{align*}
\]

Generators selected \((1); \; t(1,0,0); \; t'(0,1,0); \; t'(0,0,1); \; (2); \; (3); \; (5).\)

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[
\begin{align*}
16 & \quad l \quad 1 \quad (1) & \quad x,y,z \quad [u,v,w] & (2) & \quad x+1/2,y,z \quad [u,v,w] & (3) & \quad x,y,z \quad [u,v,w] & (4) & \quad x+1/2,y,z \quad [u,v,w] \\
& \quad (5) & \quad x,y,z \quad [u,v,w] & (6) & \quad x+1/2,y,z \quad [u,v,w] & (7) & \quad x,y,z \quad [u,v,w] & (8) & \quad x+1/2,y,z \quad [u,v,w] \\
8 & \quad k \quad m'.. \quad 1/4,y,z \quad [0,v,w] & 1/4,y,z \quad [0,v,w] & 3/4,y,z \quad [0,v,w] & 3/4,y,z \quad [0,v,w] \\
8 & \quad j \quad .m'. \quad x,1/2,z \quad [u,0,w] & x+1/2,1/2,z \quad [u,0,w] & x,1/2,z \quad [u,0,w] & x+1/2,1/2,z \quad [u,0,w] \\
8 & \quad i \quad .m. \quad x,0,z \quad [0,v,0] & x+1/2,0,z \quad [0,v,0] & x,0,z \quad [0,v,0] & x+1/2,0,z \quad [0,v,0] \\
8 & \quad h \quad .2. \quad 0,y,1/2 \quad [0,v,0] & 1/2,y,1/2 \quad [0,v,0] & 0,y,1/2 \quad [0,v,0] & 1/2,y,1/2 \quad [0,v,0] \\
8 & \quad g \quad .2'. \quad 0,y,0 \quad [u,0,w] & 1/2,y,0 \quad [u,0,w] & 0,y,0 \quad [u,0,w] & 1/2,y,0 \quad [u,0,w] \\
4 & \quad f \quad m'm'2 \quad 1/4,1/2,z \quad [0,0,w] & 3/4,1/2,z \quad [0,0,w] \\
4 & \quad e \quad m'm'2 \quad 1/4,0,z \quad [0,v,0] & 3/4,0,z \quad [0,v,0] \\
4 & \quad d \quad .2/m'. \quad 0,1/2,1/2 \quad [0,0,0] & 1/2,1/2,1/2 \quad [0,0,0] \\
4 & \quad c \quad .2/m. \quad 0,0,1/2 \quad [0,v,0] & 1/2,0,1/2 \quad [0,v,0] \\
4 & \quad b \quad .2'/m'. \quad 0,1/2,0 \quad [u,0,w] & 1/2,1/2,0 \quad [u,0,w] \\
4 & \quad a \quad .2'/m. \quad 0,0,0 \quad [0,0,0] & 1/2,0,0 \quad [0,0,0] \\
\end{align*}
\]
Symmetry of Special Projections

Along $[0,0,1]$ p2mm1'
\[a^* = a/2 \quad b^* = b \]
Origin at 0,0,z

Along $[1,0,0]$ p\{1\} 2mm
\[a^* = b \quad b^* = c \]
Origin at x,0,0

Along $[0,1,0]$ p2mg1'
\[a^* = -a \quad b^* = c \]
Origin at 0,y,0
Origin at $\overline{1}$ on n1a

Asymmetric unit $0 \leq x \leq 1; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/2$

Symmetry Operations

(1) \(\mathbf{1} \)
(2) \(2 \quad 1/4,0,z \quad (2z\mid1/2,0,0) \)
(3) \(2 \quad (0,1/2,0) \quad 1/4,y,1/4 \quad (2z\mid1/2,1/2,1/2) \)
(4) \(2 \quad x,1/4,1/4 \quad (2z\mid0,1/2,1/2) \)

(5) \(\overline{1} \quad 0,0,0 \quad (1\mid0,0,0) \)
(6) \(a \quad (1/2,0,0) \quad x,y,0 \quad (m_{\parallel}1/2,0,0) \)
(7) \(n \quad (1/2,0,1/2) \quad x,1/4,z \quad (m_{\parallel}1/2,1/2,1/2) \)
(8) \(n \quad (0,1/2,1/2) \quad 0,y,z \quad (m_{\parallel}0,1/2,1/2) \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

<table>
<thead>
<tr>
<th>Positions</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 d 2..</td>
<td>x,1/4,1/4 [u,0,0]</td>
<td>x+1/2,3/4,1/4 [u,0,0]</td>
</tr>
<tr>
<td>4 c ..2</td>
<td>1/4,0,z [0,0,w]</td>
<td>1/4,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>0,0,1/2 [u,v,w]</td>
<td>1/2,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [u,v,w]</td>
<td>1/2,0,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,1,0] c_2,2'm'm'
Along [1,0,0] c_2,2'm'm'
Along [0,0,1] c_2,2'm'm'

\(a^* = -\mathbf{b} \quad \mathbf{b}^* = \mathbf{a}/2 \)

Origin at 1/4,0,z

Origin at x,0,0

Origin at 1/4,y,1/4
Origin at $\overline{1}1'$ on n1a1'

Asymmetric unit $0 \leq x \leq 1; \quad 0 \leq y < 1/4; \quad 0 \leq z < 1/2$

Symmetry Operations

For 1 + set

1. $1 (0,0,0)$
2. $2 \frac{1}{4},0,0$ to $2 \frac{1}{2},0,0$
3. $2 (0,1/2,0) \frac{1}{4},y,1/4$
4. $2x,1/4,1/4$

5. $0,0,0$
6. $a (1/2,0,0) x,y,0$
7. $n (1/2,0,1/2) x,1/4,z$
8. $n (0,1/2,1/2) 0,y,z$

For 1' + set

1. $1' (0,0,0)$
2. $2' \frac{1}{4},0,0$ to $2' \frac{1}{2},0,0$
3. $2' (0,1/2,0) \frac{1}{4},y,1/4$
4. $2' x,1/4,1/4$

5. $0,0,0'$
6. $a' (1/2,0,0) x,y,0$
7. $n' (1/2,0,1/2) x,1/4,z$
8. $n' (0,1/2,1/2) 0,y,z$
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>1' +</td>
</tr>
<tr>
<td>8 e 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,y+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y+1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2,y+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 d 2..1'</td>
<td>x,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,3/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 c ..21'</td>
<td>1/4,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b ~1'</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a ~1'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2mg1'
 \(a^* = -b\) \(b^* = a/2\)
 Origin at 1/4,0,z

- Along [1,0,0] c2mm1'
 \(a^* = b\) \(b^* = c\)
 Origin at x,0,0

- Along [0,1,0] c2mm1'
 \(a^* = c\) \(b^* = a\)
 Origin at 1/4,y,1/4

Page Dimensions: 612.0x792.0

52.2.407 Pnna1'
Origin at $\bar{1}$ on n'1a

Asymmetric unit: $0 \leq x \leq 1; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/2$

Symmetry Operations

(1) 1
 \hspace{1cm} (2) $2' \quad (1/4,0,z)$
 \hspace{1cm} (3) $2' \quad (0,1/2,0) \quad (1/4,y,1/4)$
 \hspace{1cm} (4) $2 \quad (x,1/4,1/4)$
 \hspace{1cm} (5) $\bar{1} \quad (0,0,0)$
 \hspace{1cm} (2' \quad (1/2,0,0))$
 \hspace{1cm} (2' \quad (1/2,1/2,1/2))$
 \hspace{1cm} (2' \quad (0,1/2,1/2))$
 \hspace{1cm} (6) $a \quad (1/2,0,0) \quad x,y,0$
 \hspace{1cm} (7) $n \quad (1/2,0,1/2) \quad x,1/4,z$
 \hspace{1cm} (8) $n' \quad (0,1/2,1/2) \quad 0,y,z$
 \hspace{1cm} (m_\parallel \quad 1/2,0,0)$
 \hspace{1cm} (m_\parallel \quad 1/2,1/2,1/2)$
 \hspace{1cm} (m_\parallel \quad 0,1/2,1/2)$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1 (1) x,y,z [u,v,w]</td>
<td>(2) x +1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) x +1/2,y +1/2,z +1/2 [u,v,w]</td>
<td>(4) x,y +1/2,z +1/2 [u,v,w]</td>
</tr>
<tr>
<td>(5) x +1/2,y,z [u,v,w]</td>
<td>(6) x +1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td>(7) x +1/2,y +1/2,z +1/2 [u,v,w]</td>
<td>(8) x,y +1/2,z +1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 d 2.. x,1/4,1/4 [u,0,0]</td>
<td>(3) x +1/2,3/4,1/4 [u,0,0]</td>
</tr>
<tr>
<td>(4) x +1/2,3/4,1/4 [u,0,0]</td>
<td>(5) x +1/2,1/4,3/4 [u,0,0]</td>
</tr>
<tr>
<td>4 c .2' 1/4,0,z [u,v,0]</td>
<td>(6) 1/4,1/2,z +1/2 [u,v,0]</td>
</tr>
<tr>
<td>(7) 1/4,1/2,z +1/2 [u,v,0]</td>
<td>(8) 3/4,0,z [u,v,0]</td>
</tr>
<tr>
<td>4 b 1' 0,0,1/2 [0,0,0]</td>
<td>(9) 1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>(10) 1/2,0,1/2 [0,0,0]</td>
<td>(11) 0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 1' 0,0,0 [0,0,0]</td>
<td>(12) 1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>(13) 1/2,1/2,1/2 [0,0,0]</td>
<td>(14) 0,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p_{2b}.2m'g'</th>
<th>Along [1,0,0] c 2mm</th>
<th>Along [0,1,0] c_{p'} 2'mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = -b b^* = a/2</td>
<td>a^* = b b^* = c</td>
<td>a^* = -a b^* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 1/4,y,1/4</td>
</tr>
</tbody>
</table>
Origin at \(\overline{1}\) on \(n1\)

Asymmetric unit \(0 \leq x \leq 1; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

1. \(T\) \(1,0,0\)
2. \(2'\) \(1/4,0,z\)
3. \(2\) \((0,1/2,0) \quad 1/4,y,1/4\)
4. \(2'\) \(0,x,1/4,1/4\)
5. \(T'\) \(0,0,0\)
6. \(a\) \((1/2,0,0) \quad x,y,0\)
7. \(n'\) \((1/2,0,1/2) \quad x,1/4,z\)
8. \(n\) \((0,1/2,1/2) \quad 0,y,z\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1 (1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 d 2'.</td>
<td>x,1/4,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,3/4,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,3/4,3/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/4,3/4 [0,v,w]</td>
</tr>
<tr>
<td>4 c 2'.</td>
<td>1/4,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 b 1'</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 1'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p_{2b.2mg}</th>
<th>Along [1,0,0] c_{p,2mm}</th>
<th>Along [0,1,0] c_{2mm}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = -b b' = a/2</td>
<td>a' = b b' = c</td>
<td>a' = c b' = a</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 1/4,y,1/4</td>
</tr>
</tbody>
</table>
Pnna'

52.5.410

mmm'

P2'/n2, '/n2/a'

Orthorhombic

Origin at \(\vec{1} \) on \(n1a' \)

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/2\]

Symmetry Operations

1. \(\mathbf{1} \)
 - \((1 | 0,0,0) \)
2. \(\mathbf{2} \)
 - \(1/4,0,z \)
 - \(2 | 1/2,0,0 \)
3. \(\mathbf{2}' \)
 - \((0,1/2,0) \)
 - \(1/4,y,1/4 \)
 - \(2 | 1/2,1/2,1/2 \)‘
4. \(\mathbf{2}' \)
 - \(x,1/4,1/4 \)
 - \(2 | 0,1/2,1/2 \)‘
5. \(\mathbf{1}' \)
 - \(0,0,0 \)
 - \((1 | 0,0,0) \)‘
6. \(\mathbf{a}' \)
 - \((1/2,0,0) \)
 - \(x,y,0 \)
 - \((m_z | 1/2,0,0) \)‘
7. \(\mathbf{n} \)
 - \((1/2,0,1/2) \)
 - \(x,1/4,z \)
 - \((m_y | 1/2,1/2,1/2) \)
8. \(\mathbf{n} \)
 - \((0,1/2,1/2) \)
 - \(0,y,z \)
 - \((m_z | 0,1/2,1/2) \)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 d 2'.</td>
<td>x,1/4,1/4 [0,v,w]</td>
</tr>
<tr>
<td>4 c .2</td>
<td>1/4,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 b 1'</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a 1'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg
Along [1,0,0] c_p 2m'm'
Along [0,1,0] c_p' 2'm'm'

a^* = -b b^* = a/2
a^* = b b^* = c
a^* = c b^* = a

Origin at 0,0,z
Origin at x,0,0
Origin at 1/4,y,1/4
Origin at \(\bar{1} \) on \(n'1a \)

Asymmetric unit

\[
0 < x < 1; \quad 0 < y < \frac{1}{4}; \quad 0 < z < \frac{1}{2}
\]

Symmetry Operations

1. \((1) \ 1 \quad (0,0,0) \)
2. \((2) \ 2 \quad \frac{1}{4},0,z \quad (\frac{1}{2},1/2,0,0) \)
3. \((3) \ 2' \quad (0,1/2,0) \quad \frac{1}{4},y,1/2 \quad (\frac{1}{2},1/2,1/2)' \)
4. \((4) \ 2' \quad x,1/4,1/4 \quad (\frac{1}{2},0,1/2,1/2)' \)
5. \((5) \ \bar{1} \quad 0,0,0 \quad (0,0,0) \)
6. \((6) \ a \quad (1/2,0,0) \quad x,y,0 \quad (1/2,1/2,0,0) \)
7. \((7) \ n' \quad (1/2,0,1/2) \quad x,1/4,z \quad (1/2,1/2,1/2)' \)
8. \((8) \ n' \quad (0,1/2,1/2) \quad 0,y,z \quad (0,1/2,1/2)' \)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) (x + 1/2, y + 1/2, z + 1/2) [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) (x + 1/2, y + 1/2, z + 1/2) [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y + 1/2, z + 1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x + 1/2, y + 1/2, z + 1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x + 1/2, y + 1/2, z + 1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x + 1/2, y + 1/2, z + 1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x + 1/2, y + 1/2, z + 1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 d 2'..</td>
<td>x,1/4,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>(x + 1/2,3/4,1/4) [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>(x + 3/4,3/4) [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/4,3/4 [0,v,w]</td>
</tr>
<tr>
<td>4 c ..2</td>
<td>1/4,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/2, z + 1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>0,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_{2z} 2mg\)
\(a^* = -b\) \(b^* = a/2\)
Origin at 1/4,0,z

Along [1,0,0] \(c 2' mm'\)
\(a^* = -c\) \(b^* = b\)
Origin at x,0,0

Along [0,1,0] \(c 2' mm'\)
\(a^* = -a\) \(b^* = c\)
Origin at 1/4,y,1/4
Origin at $\overline{1}$ on $n1a'$

Asymmetric unit

$0 \leq x \leq 1$; $0 \leq y \leq 1/4$; $0 \leq z \leq 1/2$

Symmetry Operations

1. $\overline{1}$ $(0,0,0)$
2. $2'$ $1/4,0,z$ $(2z,1/2,0,0)'$
3. $2'$ $(0,1/2,0)$ $1/4,y,1/4$ $(2y,1/2,1/2,1/2)'$
4. 2 $x,1/4,1/4$ $(2x,0,1/2,1/2)$
5. $\overline{1}$ $0,0,0$ $(1/2,0,0)$
6. a' $(1/2,0,0)$ $x,y,0$ $(m_z,1/2,0,0)'$
7. n' $(1/2,0,1/2)$ $x,1/4,z$ $(m_y,1/2,1/2,1/2)'$
8. n $(0,1/2,1/2)$ $0,y,z$ $(m_z,0,1/2,1/2)$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1 (1) x,y,z [u,v,w]</td>
<td>(2) x+1/2, y+1/2, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 d 2. x,1/4,1/4 [u,0,0]</td>
<td>x+1/2,3/4,1/4 [u,0,0]</td>
</tr>
<tr>
<td>4 c 2'. 1/4,0,z [u,v,0]</td>
<td>1/4,1/2, z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 b 1 0,0,1/2 [u,v,w]</td>
<td>1/2,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 a 1 0,0,0 [u,v,w]</td>
<td>1/2,0,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'm'g Along [1,0,0] c_p 2' mm' Along [0,1,0] c 2' mm'
\(a^* = -b\) \(b^* = a/2\) \(a^* = b\) \(b^* = c\) \(a^* = -a\) \(b^* = c\)
Origin at 0,0,z Origin at x,0,0 Origin at 1/4,y,1/4
Origin at $\overline{1}$ on $n'1a'$

Asymmetric unit

$0 \leq x \leq 1; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/2$

Symmetry Operations

(1) I

(2) $2' \cdot 1/4,0,z$

(3) $2 (0,1/2,0) \cdot 1/4,y,1/4$

(4) $2' \cdot x,1/4,1/4$

(5) $\overline{1} \cdot 0,0,0$

(6) $a' (1/2,0,0) \times y,0$

(7) $n (1/2,0,1/2) \times 1/4,z$

(8) $n' (0,1/2,1/2) \cdot 0,y,z$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

<table>
<thead>
<tr>
<th>Number</th>
<th>Symmetry</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>e</td>
<td>1</td>
<td>x,y,z [u,v,w]</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(2) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(3) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(4) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>2'</td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(6) x+1/2,y,3/4,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(7) x+1/2,y,3/4,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/2,y,3/4,1/4 [0,v,w]</td>
<td>(8) x+1/2,y,3/4,1/4 [0,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>.2'</td>
<td>x+1/2,y,3/4,1/4 [0,v,w]</td>
<td>(9) x+1/2,y,3/4,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/2,y,3/4,1/4 [0,v,w]</td>
<td>(10) x+1/2,y,3/4,1/4 [0,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>1</td>
<td>x+1/2,y,3/4,1/4 [0,v,w]</td>
<td>(11) x+1/2,y,3/4,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/2,y,3/4,1/4 [0,v,w]</td>
<td>(12) x+1/2,y,3/4,1/4 [0,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>1</td>
<td>x+1/2,y,3/4,1/4 [0,v,w]</td>
<td>(13) x+1/2,y,3/4,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/2,y,3/4,1/4 [0,v,w]</td>
<td>(14) x+1/2,y,3/4,1/4 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'mg'
\(a^* = -b \quad b^* = a/2 \)
Origin at 0,0,z
Along [1,0,0] c 2'mm'
\(a^* = b \quad b^* = c \)
Origin at x,0,0
Along [0,1,0] c_p 2mm
\(a^* = c \quad b^* = a \)
Origin at 1/4,y,1/4
Origin at $\overline{1}^\prime$ on n'1a'

Asymmetric unit $0 \leq x \leq 1; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/2$

Symmetry Operations

(1) 1
 (1|0,0,0)
(2) 2 1/4,0,z
 (2|z|1/2,0,0)
(3) 2 (0,1/2,0) 1/4,y,1/4
 (2|z|1/2,1/2,1/2)
(4) 2 x,1/4,1/4
 (2|x|0,1/2,1/2)
(5) $\overline{1}$ 0,0,0
 (\overline{1}|0,0,0)'
(6) a' (1/2,0,0) x,y,0
 (m_z|1/2,0,0)'
(7) n' (1/2,0,1/2) x,1/4,z
 (m_y|1/2,1/2,1/2)'
(8) n' (0,1/2,1/2) 0,y,z
 (m_x|0,1/2,1/2)'

Pn'n'a' m'm'm'
52.9.414 P2/n21/n2/a'
Orthorhombic
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 e 5</td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x+1/2,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

4 d 2..	x,1/4,1/4 [u,0,0]	x+1/2,1/4,3/4 [u,0,0]	x+3/4,3/4 [u,0,0]	x+1/2,1/4,3/4 [u,0,0]
4 c .2	1/4,0,0 [0,0,w]	3/4,0,0 [0,0,w]	3/4,1/2,0 [0,0,w]	
4 b 1'	0,0,1/2 [0,0,0]	1/2,0,1/2 [0,0,0]	1/2,1/2,0 [0,0,0]	0,1/2,0 [0,0,0]
4 a 1'	0,0,0 [0,0,0]	1/2,0,0 [0,0,0]	1/2,1/2,1/2 [0,0,0]	0,1/2,1/2 [0,0,0]

Symmetry of Special Projections

- **Along [0,0,1]** p2m'g'
 \(a^* = -b \quad b^* = a/2 \)
- **Along [1,0,0]** c2'mm'
 \(a^* = -c \quad b^* = b \)
- **Along [0,1,0]** c2m'm'
 \(a^* = c \quad b^* = a \)

Origin at 0,0,z
Origin at x,0,0
Origin at 1/4,y,1/4
Origin at center (2/m) at 2/m1

Asymmetric unit: $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4$

Symmetry Operations:

1. $1_{(1,0,0,0)}$
2. $2_{(0,0,1/2)} \cdot 1/4,0,z$
3. $2_{(1/2,0,1/2)} \cdot x,0,z$
4. $2_{x,0,0}$
5. $\overline{1}_{(0,0,0)}$
6. $a_{(1/2,0,0)} \cdot x,y,1/4$
7. $m_{(1/2,0,1/2)} \cdot x,0,z$
8. $m_{0,y,z}$

Pmna: $53.1.415$

mmm: $P2/m2/n2_1/a$

Orthorhombic
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1</td>
<td>x,y,z [u,v,w]</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 h m..</td>
<td>0,y,z [u,0,0]</td>
<td>(6) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 g .2.</td>
<td>1/4,y,1/4 [0,v,0]</td>
<td>(9) x+1/2,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x+1/2,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 f 2..</td>
<td>x,1/2,0 [u,0,0]</td>
<td>(11) x+1/2,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) x+1/2,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 e 2..</td>
<td>x,0,0 [u,0,0]</td>
<td>(13) x+1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14) x+1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 d 2/m..</td>
<td>0,1/2,0 [u,0,0]</td>
<td>(15) x+1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16) x+1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 c 2/m..</td>
<td>1/2,1,2,0 [u,0,0]</td>
<td>(17) x+1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(18) x+1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 b 2/m..</td>
<td>1/2,0,0 [u,0,0]</td>
<td>(19) x+1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(20) x+1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 a 2/m..</td>
<td>0,0,0 [u,0,0]</td>
<td>(21) x+1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(22) x+1/2,0,1/2 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p_{2a}2m'm'
 \(a^* = a/2 \) \(b^* = b \)
- Along [1,0,0] p 2mg1'
 \(a^* = -c \) \(b^* = b \)
- Along [0,1,0] c_p 2mm'
 \(a^* = -a \) \(b^* = c \)

Origin at 1/4,0,z
Origin at x,0,0
Origin at 0,y,0
Pmna1' mmm1' Orthorhombic
53.2.416 P2/m2/n21/a1'

Origin at center (2/m1') at 2/mn11'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Symmetry Operations

For 1 + set

(1) 1
 (1 | 0,0,0)
 (1 | 0,0,0)

(2) 2 (0,0,1/2) 1/4,0,z
 (2z | 1/2,0,1/2)

(3) 2' 1/4,y,1/4
 (2z | 1/2,0,1/2)

(4) 2 x,0,0
 (2s | 0,0,0)

(1*) 0,0,0
 (1* | 0,0,0)

(2z* 1/2,0,1/2)
 (2z* 1/2,0,1/2)

(3) 2 1/4,y,1/4
 (2y | 1/2,0,1/2)

(4) 2' x,0,0
 (2s | 0,0,0)

(5) 1 0,0,0
 (1 | 0,0,0)

(6) a (1/2,0,0) x,y,1/4
 (mz | 1/2,0,1/2)

(7) n (1/2,0,1/2) x,0,z
 (my | 1/2,0,1/2)

(8) m 0,y,z
 (mz | 0,0,0)

(5*) 1 0,0,0
 (1* | 0,0,0)

(6*) a' (1/2,0,0) x,y,1/4
 (mz | 1/2,0,1/2)

(7) n' (1/2,0,1/2) x,0,z
 (mz | 1/2,0,1/2)

(8) m' 0,y,z
 (mz | 0,0,0)

For 1' + set

(1) 1'
 (1* | 0,0,0)
 (1* | 0,0,0)

(2) 2' (0,0,1/2) 1/4,0,z
 (2z | 1/2,0,1/2)

(3) 2' 1/4,y,1/4
 (2y | 1/2,0,1/2)

(4) 2' x,0,0
 (2s | 0,0,0)

(1*) 0,0,0'
 (1* | 0,0,0')

(2z* 1/2,0,1/2)
 (2z* 1/2,0,1/2')

(3) 2' 1/4,y,1/4
 (2y' | 1/2,0,1/2')

(4) 2' x,0,0
 (2s | 0,0,0)

(5) 1' 0,0,0
 (1* | 0,0,0)

(6) a' (1/2,0,0) x,y,1/4
 (mz | 1/2,0,1/2)

(7) n' (1/2,0,1/2) x,0,z
 (mz' | 1/2,0,1/2')

(8) m' 0,y,z
 (mz | 0,0,0)

(5*) 1' 0,0,0
 (1* | 0,0,0)

(6*) a' (1/2,0,0) x,y,1/4
 (mz | 1/2,0,1/2)

(7) n' (1/2,0,1/2) x,0,z
 (mz | 1/2,0,1/2')

(8) m' 0,y,z
 (mz | 0,0,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>i 11'</td>
<td>(1) x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x+1/2,y,z+1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+1/2,y,z+1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x+1/2,y,z+1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) x+1/2,y,z+1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>h m..1'</td>
<td>0,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,y,z+1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,y,z+1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>g .2.1'</td>
<td>1/4,y,1/4</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4,y,3/4</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4,y,3/4</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4,y,1/4</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>f 2..1'</td>
<td>x,1/2,0</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,1/2,1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,0</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,1/2,1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>e 2..1'</td>
<td>x,0,0</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,0,1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,0</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,0,1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>d 2/m..1'</td>
<td>0,1/2,0</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>c 2/m..1'</td>
<td>1/2,1/2,0</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b 2/m..1'</td>
<td>1/2,0,0</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a 2/m..1'</td>
<td>0,0,0</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,1/2</td>
<td>[0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm1' Along [1,0,0] p 2mg1' Along [0,1,0] c 2mm1'

\[a^* = a/2\] \[b^* = b\] \[a^* = -c\] \[b^* = b\] \[a^* = c\] \[b^* = a\]

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Orthorhombic

<table>
<thead>
<tr>
<th>Pm'na</th>
<th>m'mm</th>
<th>P2/m'2'/n2, 'a</th>
</tr>
</thead>
<tbody>
<tr>
<td>53.3.417</td>
<td>53.3.417</td>
<td>P2/m'2'/n2, 'a</td>
</tr>
</tbody>
</table>

Origin at center (2/m) at 2/m'n1

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

1. \(1 \)
 \((1 | 0,0,0) \)
2. \(2' \)
 \((0,0,1/2) \rightarrow 1/4,0,z \)
 \((2_1 | 1/2,0,1/2)' \)
3. \(2' \)
 \((1/4,y,1/4) \)
 \((2_1 | 1/2,0,1/2)' \)
4. \(2 \)
 \(x,0,0 \)
 \((2_1 | 0,0,0) \)
5. \(\bar{1} \)
 \(0,0,0 \)
6. \(a \)
 \((1/2,0,0) \rightarrow x,y,1/4 \)
 \((m_z | 1/2,0,1/2) \)
7. \(n \)
 \((1/2,0,1/2) \rightarrow x,0,z \)
 \((m_y | 1/2,0,1/2) \)
8. \(m' \)
 \(0,y,z \)
 \((m_z | 0,0,0)' \)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w] (2) x+1/2,y,z+1/2 [u,v,w] (3) x+1/2,y,z+1/2 [u,v,w] (4) x,y,z [u,v,w] (5) x,y,z [u,v,w] (6) x+1/2,y,z+1/2 [u,v,w] (7) x+1/2,y,z+1/2 [u,v,w] (8) x,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

4 h m'..	0,y,z [0,v,w] 1/2,y,z+1/2 [0,v,w] 1/2,y,z+1/2 [0,v,w] 0,y,z [0,v,w]
4 g .2'..	1/4,y,1/4 [u,0,w] 1/4,y,3/4 [u,0,w] 3/4,y,3/4 [u,0,w] 3/4,y,1/4 [u,0,w]
4 f 2..	x,1/2,0 [u,0,0] x+1/2,1/2,1/2 [u,0,0] x+1/2,1/2,1/2 [u,0,0] x+1/2,1/2,1/2 [u,0,0]
4 e 2..	x,0,0 [u,0,0] x+1/2,0,1/2 [u,0,0] x+1/2,0,1/2 [u,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p_{2a}.2m'</th>
<th>Along [1,0,0]</th>
<th>p 2mg</th>
<th>Along [0,1,0]</th>
<th>c_{p}.2m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a/2</td>
<td>b* = b</td>
<td>a* = c</td>
<td>b* = a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Orthorhombic

Pmn'a

mm'm

Orthonormic

53.4.418

P2'/m2 /n'2'/a

Origin at center (2/m) at 2'/mn'1

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2' (0,0,1/2) 1/4,0,z
(2' | 1/2,0,1/2)

(3) 2 1/4,y,1/4
(2 | 1/2,0,1/2)

(4) 2' x,0,0
(2' | 0,0,0)

(5) 1
(1 | 0,0,0)

(6) a (1/2,0,0) x,y,1/4
(m | 1/2,0,1/2)

(7) n' (1/2,0,1/2) x,0,z
(m | 1/2,0,1/2)

(8) m 0,y,z
(m | 0,0,0)
Generators selected
(1) t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1 (1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 h m.. 0,y,z [u,0,0]</td>
<td>1/2,y,z+1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,z+1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 g .2. 1/4,y,1/4 [0,v,0]</td>
<td>1/4,y,3/4 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,y,3/4 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>4 f 2'.. x,1/2,0 [0,v,w]</td>
<td>x+1/2,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 e 2'.. x,0,0 [0,v,w]</td>
<td>x+1/2,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>2 d 2'/m.. 0,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c 2'/m.. 1/2,1/2,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b 2'/m.. 1/2,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 2'/m.. 0,0,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1], p2a-2mm
 \[a^* = \frac{a}{2}, \quad b^* = b \]
- Along [1,0,0], p2mg1'
 \[a^* = -c, \quad b^* = b, \quad c^* = b \]
- Along [0,1,0], c2mm
 \[a^* = c, \quad b^* = a \]
Pmna' Orthorhombic 53.5.419

mmm' P2'/m2'/n21/a'

Origin at center (2'/m) at 2'/mn1

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Symmetry Operations

(1) 1 (1 | 0,0,0)
(2) 2 (0,0,1/2) 1/4,0,z (2 | 1/2,0,1/2)
(3) 2' 1/4,y,1/4 (2 | 1/2,0,1/2)'
(4) 2' x,0,0 (2 | 0,0,0)'
(5) 1' 0,0,0 (1 | 0,0,0)'
(6) a' (1/2,0,0) x,y,1/4 (m | 1/2,0,1/2)'
(7) n (1/2,0,1/2) x,0,z (m | 1/2,0,1/2)
(8) m 0,y,z (m | 0,0,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 h m..</td>
<td>0,y,z [u,0,0]</td>
<td>1/2,y,z+1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 g ..2'.</td>
<td>1/4,y,1/4 [u,0,w]</td>
<td>1/4,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td>4 f 2'.</td>
<td>x,1/2,0 [0,v,w]</td>
<td>x+1/2,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 e 2'.</td>
<td>x,0,0 [0,v,w]</td>
<td>x+1/2,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>2 d 2'/m..</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c 2'/m..</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b 2'/m..</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 2'/m..</td>
<td>0,0,0 [0,0,0]</td>
<td>2/0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [0,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>p2mm</td>
<td>a* = a/2</td>
<td>p 2mg1'</td>
<td>c_p 2mm</td>
</tr>
<tr>
<td>b* = b</td>
<td>a* = -c</td>
<td>a* = c</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (2'/m') at 2'/m'n'1

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Symmetry Operations:

1. (1) 1
 (1) 0,0,0

2. (2) 2 (0,0,1/2) 1/4,0,z
 (2) 1/2,0,1/2)

3. (3) 2' 1/4,y,1/4
 (2') 1/2,0,1/2)

4. (4) 2' x,0,0
 (2') 0,0,0)

5. (5) (0,0,0)
 (1) 0,0,0

6. (6) a (1/2,0,0) x,y,1/4
 (m_x 1/2,0,1/2)

7. (7) n' (1/2,0,1/2) x,0,z
 (m_y 1/2,0,1/2)

8. (8) m' 0,y,z
 (m_z 0,0,0)
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1 (1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 h m'.. 0,y,z [0,v,w]</td>
<td>1/2,y,z+1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 g .2'.. 1/4,y,1/4 [u,0,w]</td>
<td>1/4,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td>4 f 2'.. x,1/2,0 [0,v,w]</td>
<td>x+1/2,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 e 2'.. x,0,0 [0,v,w]</td>
<td>x+1/2,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>2 d 2/m'.. 0,1/2,0 [0,v,w]</td>
<td>1/2,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>2 c 2/m'.. 1/2,1/2,0 [0,v,w]</td>
<td>0,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>2 b 2/m'.. 1/2,0,0 [0,v,w]</td>
<td>0,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>2 a 2/m'.. 0,0,0 [0,v,w]</td>
<td>1/2,0,1/2 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2m'2m'
 a* = a/2 b* = b
 Origin at 0,0,z
- Along [1,0,0] p 2'mg'
 a* = -c b* = b
 Origin at x,0,0
- Along [0,1,0] c2' 2mm'
 a* = c b* = a
 Origin at 0,y,0
Origin at center \((2/m)\) at \(2/mn'1\)

Asymmetric unit \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1; \ 0 \leq z \leq 1/4\)

Symmetry Operations

(1) \(\overline{1}\ (1\ |0,0,0)\)

(2) \(2' (0,0,1/2) \ 1/4,0,z\)

(3) \(2' 1/4,y,1/4\)

(4) \(2 \ x,0,0\)

(5) \(\overline{1} \ 0,0,0\)

(6) \(a' (1/2,0,0) \ x,y,1/4\)

(7) \(n' (1/2,0,1/2) \ x,0,z\)

(8) \(m \ 0,y,z\)

Pmn'a'\ 53.7.421

mm'm'\ P2/m2' /n'2, /a'

Orthorhombic
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y,z+1/2 [u,v,w] (3) x+1/2,y,z+1/2 [u,v,w] (4) x,y,z [u,v,w] (5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 h m..</td>
<td>0,y,z [u,0,0]</td>
<td>1/2,y,z+1/2 [u,0,0] 1/2,y,z+1/2 [u,0,0] 0,y,z [u,0,0]</td>
</tr>
<tr>
<td>4 g .2'</td>
<td>1/4,y,1/4 [u,0,w]</td>
<td>1/4,y,3/4 [u,0,w] 3/4,y,3/4 [u,0,w] 3/4,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>4 f 2..</td>
<td>x,1/2,0 [u,0,0]</td>
<td>x+1/2,1/2,1/2 [u,0,0] x+1/2,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 e 2..</td>
<td>x,0,0 [u,0,0]</td>
<td>x+1/2,0,1/2 [u,0,0] x+1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 d 2/m..</td>
<td>0,1/2,0 [u,0,0]</td>
<td>1/2,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 c 2/m..</td>
<td>1/2,1/2,0 [u,0,0]</td>
<td>0,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 b 2/m..</td>
<td>1/2,0,0 [u,0,0]</td>
<td>0,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 a 2/m..</td>
<td>0,0,0 [u,0,0]</td>
<td>1/2,0,1/2 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2mm'
 \[a'^* = a/2 \quad b'^* = b \]
- Along [1,0,0] p 2mg1'
 \[a'^* = -c \quad b'^* = b \]
- Along [0,1,0] c 2mm'
 \[a'^* = -a \quad b'^* = c \]

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin at center (2'/m') at 2'/m'n1

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Symmetry Operations

(1) 1 (1 0 0 0)
(2) 2' (0,0,1/2) 1/4,0,z
 (2' 1/2,0,1/2)
(5) 1 -0,0,0 (1 0 0 0)
(6) a' (1/2,0,0) x,y,1/4
 (m_z 1/2,0,1/2)
(7) n (1/2,0,1/2) x,0,z
 (m_y 1/2,0,1/2)
(8) m' 0,y,z (m_z 0,0,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 h m'..</td>
<td>0,y,z [0,v,w]</td>
<td>1/2,y,z+1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 g .2.</td>
<td>1/4,y,1/4 [0,v,0]</td>
<td>1/4,y,3/4 [0,v,0]</td>
</tr>
<tr>
<td>4 f .2'..</td>
<td>x,1/2,0 [0,v,w]</td>
<td>x+1/2,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 e .2'..</td>
<td>x,0,0 [0,v,w]</td>
<td>x+1/2,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>2 d .2'/m'..</td>
<td>0,1/2,0 [0,v,w]</td>
<td>1/2,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>2 c .2'/m'..</td>
<td>1/2,1/2,0 [0,v,w]</td>
<td>0,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>2 b .2'/m'..</td>
<td>1/2,0,0 [0,v,w]</td>
<td>0,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>2 a .2'/m'..</td>
<td>0,0,0 [0,v,w]</td>
<td>1/2,0,1/2 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin</th>
<th>Along [0,0,1] p2mm'</th>
<th>Along [1,0,0] p 2'm'g</th>
<th>Along [0,1,0] c_p 2'2mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = -b b^* = a/2</td>
<td>a^* = -c b^* = b</td>
<td>a^* = c b^* = a</td>
<td>Origin at 0,0,z</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (2/m') at 2/m'n'1

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

<table>
<thead>
<tr>
<th>Symmetry Operations</th>
<th>((1,0,0))</th>
<th>((0,0,1/2))</th>
<th>(1/4,0,z)</th>
<th>(x,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symmetry Operations</th>
<th>((1/2,0,0))</th>
<th>(x,y,1/4)</th>
<th>(x,0,z)</th>
<th>(0,y,z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(6')</td>
<td>(7')</td>
</tr>
<tr>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(6')</td>
<td>(7')</td>
</tr>
<tr>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(6')</td>
<td>(7')</td>
</tr>
<tr>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(6')</td>
<td>(7')</td>
</tr>
</tbody>
</table>
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Coordinates
Wyckoff letter, Site Symmetry.

8 i 1 (1) x,y,z [u,v,w] (2) x+1/2,y,z+1/2 [u,v,w] (3) x+1/2,y,z+1/2 [u,v,w] (4) x,y,z [u,v,w] (5) x,y,z [u,v,w] (6) x+1/2,y,z+1/2 [u,v,w] (7) x+1/2,y,z+1/2 [u,v,w] (8) x,y,z [u,v,w]

4 h m'.. 0,y,z [0,v,w] 1/2,y,z+1/2 [0,v,w] 1/2,y,z+1/2 [0,v,w] 0,y,z [0,v,w]

4 g .2. 1/4,y,1/4 [0,v,0] 1/4,y,3/4 [0,v,0] 3/4,y,3/4 [0,v,0] 3/4,y,1/4 [0,v,0]

4 f 2.. x,1/2,0 [u,0,0] x+1/2,1/2,1/2 [u,0,0] x,1/2,0 [u,0,0] x+1/2,1/2,1/2 [u,0,0]

4 e 2.. x,0,0 [u,0,0] x+1/2,0,1/2 [u,0,0] x,0,0 [u,0,0] x+1/2,0,1/2 [u,0,0]

2 d 2/m'.. 0,1/2,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]

2 c 2/m'.. 1/2,1/2,0 [0,0,0] 0,1/2,1/2 [0,0,0]

2 b 2/m'.. 1/2,0,0 [0,0,0] 0,0,1/2 [0,0,0]

2 a 2/m'.. 0,0,0 [0,0,0] 1/2,0,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p2m'm' Along [1,0,0] p 2m'g' Along [0,1,0] c 2m'm'

\(a^* = a/2 \) \(b^* = b \) \(a^* = -c \) \(b^* = b \)

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at center (2/m) at 2/mn1

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

1. 1
 0,0,0

2. 2 (0,0,1/2) 1/4,0,z
 2 | 1/2,0,1/2

3. 2 1/4,y,1/4
 2 | 1/2,0,1/2

4. 2 x,0,0
 2 | 0,0,0

5. m 0,0,0
 m | 1/2,0,1/2

6. a (1/2,0,0) x,y,1/4
 m | 1/2,0,1/2

7. n (1/2,0,1/2) x,0,z
 n | 1/2,0,1/2

8. m 0,y,z
 m | 0,0,0

For (0,1,0)' + set

1. t' (0,1,0)
 0,1,0'

2. 2' (0,0,1/2) 1/4,1/2,z
 2 | 1/2,1,1/2'

3. 2' (0,1,0) 1/4,y,1/4
 2 | 1/2,1,1/2'

4. 2' x,1/2,0
 2 | 0,1,0'

5. t' 0,1/2,0
 0,1,0'

6. n' (1/2,1,0) x,y,1/4
 m | 1/2,1,1/2'

7. n' (1/2,0,1/2) x,1/2,z
 m | 1/2,1,1/2'

8. b' (0,1,0) 0,y,z
 m | 0,1,0'

Orthonormic

P₂b mna
53.10.424

mmm1'
P₂b 2/m2/n21/a
Generators selected (1); t(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>(0,0,0) +</td>
<td>(0,1,0)</td>
<td>(0,1,0) +</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>1</td>
<td>h</td>
<td>m..</td>
</tr>
<tr>
<td>x,y,z [u,v,w]</td>
<td>(1) x,y,z [u,v,w]</td>
<td>0,y,z [u,0,0]</td>
<td>1/2,y,z+1/2 [u,0,0]</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>g</td>
<td>.2.</td>
</tr>
<tr>
<td>x,1/2,0 [0,v,w]</td>
<td>(2) x+1/2,y,z+1/2 [u,v,w]</td>
<td>1/4,y,1/4 [0,v,0]</td>
<td>1/4,y,3/4 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f</td>
<td>2'.</td>
</tr>
<tr>
<td>x,0,0 [u,0,0]</td>
<td>(3) x+1/2,y,z+1/2 [u,v,w]</td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e</td>
<td>2..</td>
</tr>
<tr>
<td>x,0,0 [u,0,0]</td>
<td>(4) x,y,z [u,v,w]</td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>c</td>
<td>2/m.</td>
</tr>
<tr>
<td>0,1/2,0 [0,0,0]</td>
<td>(8) x+1/2,y,z+1/2 [u,v,w]</td>
<td>(8) x+1/2,y,z+1/2 [u,v,w]</td>
<td>(8) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>b</td>
<td>2/m.</td>
</tr>
<tr>
<td>0,0,0 [u,0,0]</td>
<td>(9) x+1/2,y,z+1/2 [u,v,w]</td>
<td>(9) x+1/2,y,z+1/2 [u,v,w]</td>
<td>(9) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>a</td>
<td>2/m.</td>
</tr>
<tr>
<td>0,0,0 [u,0,0]</td>
<td>(10) x+1/2,y,z+1/2 [u,v,w]</td>
<td>(10) x+1/2,y,z+1/2 [u,v,w]</td>
<td>(10) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p c 2mm
Along [1,0,0] p 2mg 1'
Along [0,1,0] c 2mm 1'

a' = a/2
b' = b
a' = -c
b' = b
a' = c
b' = a
Origin at 0,1/2,z
Origin at x,0,0
Origin at 0,y,0
Orthorhombic

Origin at center (2/m') at 2/m'n1

Asymmetric unit

0 < x < 1/2; 0 < y < 1; 0 < z < 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1 | 0,0,0)

(5) T' 0,0,0
 (1 | 0,0,0)

(2) 2' (0,0,1/2) 1/4,0,z
 (2_ | 1/2,0,1/2)

(6) a (1/2,0,0) x,y,1/4
 (m_ | 1/2,0,1/2)

(7) n (1/2,0,1/2) x,0,z
 (m_ | 1/2,0,1/2)

(8) m' 0,y,z
 (m_ | 0,0,0)

For (0,1,0) + set

(1) t' (0,1,0)
 (1 | 0,1,0)

(5) T 0,1/2,0
 (1 | 0,1,0)

(2) 2 (0,0,1/2) 1/4,1/2,z
 (2_ | 1/2,1,1/2)

(6) n' (1/2,1,0) x,y,1/4
 (m_ | 1/2,1,1/2)

(7) n' (1/2,0,1/2) x,1/2,z
 (m_ | 1/2,1,1/2)

(8) b (0,1,0) 0,y,z
 (m_ | 0,1,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(0,1,0)'+</td>
</tr>
<tr>
<td>16 i</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 i</td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 h m'..</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,z+1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 g .2.</td>
<td>1/4,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,z+1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 f 2'..</td>
<td>x,1/2,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 e 2'..</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 d 2'/m'..</td>
<td>0,1/2,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 c 2'/m'..</td>
<td>1/2,1/2,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 b 2/m'..</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2/m'..</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p c2mm Along [1,0,0] p 2bc 2mg Along [0,1,0] c2mm1'
a* = a/2 b* = b a* = -c b* = b a* = c b* = a
Origin at 1/4,1/2,z Origin at x,0,0 Origin at 0,y,0
Origin at center (2/m) at 2/mn1

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2 (0,0,1/2) 1/4,0,z
(2z | 1/2,0,1/2)

(3) 2′ 1/4,y,1/4
(2z | 1/2,0,1/2)′

(4) 2′ x,0,0
(2z | 0,0,0)′

(5) 1′ 0,0,0
(1 | 0,0,0)′

(6) a′ (1/2,0,0) x,y,1/4
(m2 | 1/2,0,1/2)′

(7) n (1/2,0,1/2) x,0,z
(m2 | 1/2,0,1/2)

(8) m 0,y,z
(m2 | 0,0,0)

For (0,1,0)′ + set

(1) t′ (0,1,0)
(1 | 0,1,0)′

(2) 2′ (0,0,1/2) 1/4,1/2,z
(2z | 1/2,1,1/2)′

(3) 2 (0,1,0) 1/4,y,1/4
(2z | 1/2,1,1/2)

(4) 2 x,1/2,0
(2z | 0,1,0)

(5) 1′ 0,1/2,0
(1 | 0,1,0)

(6) n (1/2,1,0) x,y,1/4
(m2 | 1/2,1,1/2)

(7) n′ (1/2,0,1/2) x,1/2,z
(m2 | 1/2,1,1/2)′

(8) b′ (0,1,0) 0,y,z
(m2 | 0,1,0)′
Generators selected (1); t(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>1</td>
<td>(0,1,0)' +</td>
</tr>
<tr>
<td>16 i</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2, y, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x, y, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2, y, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2, y, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x, y, z [u,v,w]</td>
</tr>
<tr>
<td>8 h</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 g</td>
<td>1/4,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>8 f</td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>8 e</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>4 d</td>
<td>0,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4 c</td>
<td>1/2,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] P_{2b}2mm Along [1,0,0] p 2mg1' Along [0,1,0] c 2mm1'

\(a^* = -b \) \(b^* = a/2 \)

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at center (2'/m') at 2'/m'n1

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

1. 1 (0,0,0)
2. 2' (0,0,1/2) 1/4,0,z
3. 2 1/4,1/2,z
4. 2' x,0,0

For (0,1,0)' + set

1. t' (1,0,0)
2. 2 (1,0,1/2) 1/4,1/2,z
3. 2' (0,1,0) 1/4,y,1/4
4. 2 x,1/2,0

For (0,0,1) + set

1. t' (1,0,0)
2. 2 (0,0,1/2) 1/4,1/2,z
3. 2' (0,0,1/2) 1/4,y,1/4
4. 2 x,1/2,0

For (0,1,0)' + set

1. t' (1,0,0)
2. 2 (1,0,1/2) 1/4,1/2,z
3. 2' (0,1,0) 1/4,y,1/4
4. 2 x,1/2,0

For (0,1,0) + set

1. t' (1,0,0)
2. 2 (0,0,1/2) 1/4,1/2,z
3. 2' (0,1,0) 1/4,y,1/4
4. 2 x,1/2,0

53.13.427 - 1 - 844
Generators selected (1); t(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,1,0)’ +</td>
</tr>
<tr>
<td>16 i 1 (1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y,z+1/2 [u,v,w] (3) x+1/2,y,z+1/2 [u,v,w] (4) x,y,z [u,v,w] (5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 h m’ .. 0,y,z [0,v,w]</td>
<td>1/2,y,z+1/2 [0,v,w] 1/2,y,z+1/2 [0,v,w] 0,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 g .2. 1/4,y,1/4 [0,v,0]</td>
<td>1/4,y,3/4 [0,v,0] 3/4,y,3/4 [0,v,0] 3/4,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>8 f 2.. x,1/2,0 [u,0,0]</td>
<td>x+1/2,1/2,1/2 [u,0,0] x+1/2,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 e 2’.. x,0,0 [0,v,w]</td>
<td>x+1/2,0,1/2 [0,v,w] x+1/2,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 d 2/m’ .. 0,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c 2/m’ .. 1/2,1/2,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b 2/m’ .. 1/2,0,0 [0,v,w]</td>
<td>0,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 a 2/m’ .. 0,0,0 [0,v,w]</td>
<td>1/2,0,1/2 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2a-2m’m’ Along [1,0,0] p2a-2m’g’ Along [0,1,0] c2mm1’
a* = -b b* = a/2 a* = -c b* = b a* = c b* = a
Origin at 0,1/2,z Origin at x,1/4,0 Origin at 0,y,0
Pcca
54.1.428
Orthorhombic

mmm
P2₁/c2/c2/a

Origin at 1 on 1ca

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2
1/4,0,z
(2 | 1/2,0,0)

(3) 2
0,y,1/4
(2 | 0,0,1/2)

(4) 2
(1/2,0,0)
x,0,1/4
(2 | 1/2,0,1/2)

(5) 1
0,0,0
(1 | 0,0,0)

(6) a
(1/2,0,0)
x,y,0
(m₂ | 1/2,0,0)

(7) c
(0,0,1/2)
x,0,z
(m_y | 0,0,1/2)

(8) c
(0,0,1/2)
1/4,y,z
(m_z | 1/2,0,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2, y,v [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2, y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,v, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2, y,v [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2, y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 e ..2</td>
<td>3/4,1/2, z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/2, z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 d ..2</td>
<td>3/4,0, z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,0, z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 c ..2</td>
<td>0,y,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,3/4 [0,v,w]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>0,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1] p2a.2mm</td>
<td>a^* = a/2 b^* = b</td>
</tr>
<tr>
<td></td>
<td>Origin at 1/4,0,z</td>
</tr>
<tr>
<td>Along [1,0,0] p2a.2m'm'</td>
<td>a^* = -c/2 b^* = b</td>
</tr>
<tr>
<td></td>
<td>Origin at x,1/2,0</td>
</tr>
<tr>
<td>Along [0,1,0] p2b.2m'g'</td>
<td>a^* = -a b^* = c/2</td>
</tr>
<tr>
<td></td>
<td>Origin at 0,y,1/4</td>
</tr>
</tbody>
</table>
Origin at \(\bar{1}' \) on 1ca1'

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \)

Symmetry Operations

For 1 + set

1. \(1 \) 0,0,0
 (1) 1
 (2) \(2 \) 1/4,0,z
 (3) \(2' \) 0,y,1/4
 (4) \(2' (1/2,0,0) \) x,0,1/4

2. \(0,0,0 \)
 (5) \(\bar{1} \) 0,0,0
 (6) a (1/2,0,0) x,y,0
 (7) c (0,0,1/2) x,0,z
 (8) c (0,0,1/2) 1/4,y,z

3. \(\bar{1} \) 0,0,0
 (5) \(\bar{1} \) 0,0,0
 (6) a' (1/2,0,0) x,y,0
 (7) c' (0,0,1/2) x,0,z
 (8) c' (0,0,1/2) 1/4,y,z

For 1' + set

1. \(1' \) 0,0,0
 (1) 1' 0,0,0
 (2) \(2' \) 1/4,0,z
 (3) \(2' \) 0,y,1/4
 (4) \(2' (1/2,0,0) \) x,0,1/4

2. \(0,0,0 \)
 (5) \(\bar{1} \) 0,0,0
 (6) a (1/2,0,0) x,y,0
 (7) c (0,0,1/2) x,0,z
 (8) c (0,0,1/2) 1/4,y,z

3. \(\bar{1} \) 0,0,0'
 (5) \(\bar{1} \) 0,0,0'
 (6) a' (1/2,0,0) x,y,0
 (7) c' (0,0,1/2) x,0,z
 (8) c' (0,0,1/2) 1/4,y,z
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 +</td>
</tr>
<tr>
<td>8 f 11' (1) x,y,z [0,0,0]</td>
<td>(2) (\bar{x}+1/2,\bar{y},z) [0,0,0]</td>
</tr>
<tr>
<td>(5) (x,y,\bar{z}) [0,0,0]</td>
<td>(6) (x+1/2,y,z) [0,0,0]</td>
</tr>
<tr>
<td>4 e ..21' 1/4,1/2,z [0,0,0]</td>
<td>3/4,1/2,(\bar{z}+1/2) [0,0,0]</td>
</tr>
<tr>
<td>4 d ..21' 1/4,0,z [0,0,0]</td>
<td>3/4,0,(\bar{z}+1/2) [0,0,0]</td>
</tr>
<tr>
<td>4 c .2.1' 0,y,1/4 [0,0,0]</td>
<td>1/2,(\bar{y},1/4) [0,0,0]</td>
</tr>
<tr>
<td>4 b (\bar{1}) 1' 0,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a (\bar{1}) 1' 0,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2mm1'</th>
<th>Along [1,0,0] p2mm1'</th>
<th>Along [0,1,0] p2mg1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a/2) b* = b</td>
<td>(a^* = b) b* = c/2</td>
<td>(a^* = -a) b* = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
54.3.430 - 1 - 850

Pc'ca

54.3.430

m'mm

P2_1/c'2'/c2'/a

Orthorhombic

Origin at \(\bar{1} \) on 1ca

Asymmetric unit

\(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \)

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) \(2' \)
\(1/4,0,z \)
\(\bar{2}_z \bar{1}/2,0,0' \)

(3) \(2' \)
\(0,y,1/4 \)
\(\bar{2}_y 0,0,1/2' \)

(4) \(2 \)
\((1/2,0,0) \)
\(x,y,0 \)

(5) \(1 \)
\(0,0,0 \)
\((1 | 0,0,0)' \)

(6) \(a \)
\((1/2,0,0) \)
\(x,y,0 \)
\(\bar{m}_z 1/2,0,0 \)

(7) \(c \)
\((0,0,1/2) \)
\(x,0,z \)
\(\bar{m}_y 0,0,1/2 \)

(8) \(c' \)
\((0,0,1/2) \)
\(1/4,y,z \)
\(\bar{m}_z 1/2,0,1/2' \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x +1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 e .2'</td>
<td>1/4,1/2,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/2,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 d .2'</td>
<td>1/4,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,0,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,0,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 c .2'</td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td>4 b .1'</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a .1'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'mm'

<table>
<thead>
<tr>
<th>a'</th>
<th>b'</th>
</tr>
</thead>
<tbody>
<tr>
<td>-b</td>
<td>a/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z

Along [1,0,0] p 2mm

<table>
<thead>
<tr>
<th>a'</th>
<th>b'</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>c/2</td>
</tr>
</tbody>
</table>

Origin at x,0,0

Along [0,1,0] p2b, 2mg

<table>
<thead>
<tr>
<th>a'</th>
<th>b'</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>c/2</td>
</tr>
</tbody>
</table>

Origin at 0,y,0
Pcc'a

54.4.431

Orthorhombic

mm'm

P2₁/c2/c'2'/a

Origin at 1 on 1c'a

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

1. \((1) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \)

2. \((2) \begin{pmatrix} 1/4 \\ 0 \\ z \end{pmatrix} \)

3. \((3) \begin{pmatrix} 0 \\ y, 1/4 \end{pmatrix} \)

4. \((4) \begin{pmatrix} 1/2, 0, 0 \end{pmatrix} \)

5. \((5) \begin{pmatrix} 0, 0, 0 \end{pmatrix} \)

6. \((6) \begin{pmatrix} 1/2, 0, 0 \end{pmatrix} \)

7. \((7) \begin{pmatrix} 0, 0, 1/2 \end{pmatrix} \)

8. \((8) \begin{pmatrix} 0, 0, 1/2 \end{pmatrix} \)

Diagram:

- **Pcc'a**
- **mm'm**
- Orthorhombic structure with symmetry elements indicated.
Continued

Generators selected
(1): t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

Positions

Coordinates

8 f 1 (1) x,y,z [u,v,w] (2) x+1/2,y,z [u,v,w] (3) x,y,z+1/2 [u,v,w] (4) x+1/2,y,z+1/2 [u,v,w] (5) x,y,z [u,v,w] (6) x+1/2,y,z [u,v,w] (7) x,y,z+1/2 [u,v,w] (8) x+1/2,y,z+1/2 [u,v,w]

4 e .2' 1/4,1/2,z [u,v,0] 3/4,1/2,z [u,v,0] 3/4,1/2,z [u,v,0] 1/4,1/2,z+1/2 [u,v,0]

4 d .2' 1/4,0,z [u,v,0] 3/4,0,z [u,v,0] 3/4,0,z [u,v,0] 1/4,0,z+1/2 [u,v,0]

4 c .2 0,y,1/4 [0,v,0] 1/2,y,1/4 [0,v,0] 0,y,3/4 [0,v,0] 1/2,y,3/4 [0,v,0]

4 b .1' 0,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 0,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]

4 a .1' 0,0,0 [0,0,0] 1/2,0,0 [0,0,0] 0,0,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] $p_{2a'2m'm'}$

Along [1,0,0] $p_{2a'2mm}$

Along [0,1,0] $p_{2b'2m'g'}$

$a^* = a/2$ $b^* = b$

$a^* = -c/2$ $b^* = b$

$a^* = -a$ $b^* = c/2$

Origin at 0,0,z

Origin at x,0,0

Origin at 0,y,0
Orthorhombic

Pcca'

- **Symmetry Operations**

1. 1

 $[1 | 0,0,0]$

2. 2

 $1/4,0,z$

 $[2 | 1/2,0,0]$

3. $2'$

 $0,y,1/4$

 $[2 | 0,0,1/2]'$

4. $2'(1/2,0,0)$

 $x,0,1/4$

 $[2 | 1/2,0,1/2]'$

5. $1'$

 $0,0,0$

6. $a'(1/2,0,0)$

 $x,y,0$

 $[m | 1/2,0,0]'$

7. $c(0,0,1/2)$

 $x,0,z$

 $[m | 0,0,1/2]$

8. $c(0,0,1/2)$

 $1/4,y,z$

 $[m | 1/2,0,1/2]$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Origin at $1'$ on 1ca'

mmm'

- **Symmetry Operations**

P₂₁'/c₂'/c₂/a'

1. 1

 $[1 | 0,0,0]$

2. 2

 $1/4,0,z$

 $[2 | 1/2,0,0]$

3. $2'$

 $0,y,1/4$

 $[2 | 0,0,1/2]'$

4. $2'(1/2,0,0)$

 $x,0,1/4$

 $[2 | 1/2,0,1/2]'$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Origin at $1'$ on 1ca'
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1 (1) x,y,z [u,v,w] (2) x+1/2,y,z [u,v,w] (3) x,y,z+1/2 [u,v,w] (4) x+1/2,y,z+1/2 [u,v,w] (5) x,y,z [u,v,w] (6) x+1/2,y,z [u,v,w] (7) x,y,z+1/2 [u,v,w] (8) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 e .2 1/4,1/2,z [0,0,w] 3/4,1/2,z+1/2 [0,0,w] 3/4,1/2,z [0,0,w] 1/4,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 d .2 1/4,0,z [0,0,w] 3/4,0,z+1/2 [0,0,w] 3/4,0,z [0,0,w] 1/4,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 c .2' 0,y,1/4 [u,0,w] 1/2,y,1/4 [u,0,w] 0,y,3/4 [u,0,w] 1/2,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td>4 b 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 1/2,0,0 [0,0,0] 1/2,0,0 [0,0,0] 1/2,0,0 [0,0,0] 1/2,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** p2mm

 - **Along [1,0,0]** p2a' 2m'm'
 - a^* = a/2 b^* = b
 - a^* = -c/2 b^* = b

 - **Along [0,1,0]** p2b' 2m'g'
 - a^* = -a b^* = c/2
 - Origin at x,0,0
 - Origin at 0,0,z
 - Origin at 0,y,0
Origin at $\overline{1}$ on 1c'a

Asymmetric unit

\[0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2}\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad T' \quad 0,0,0 \\
(2) & \quad 2 \quad \frac{1}{4},0,z \\
(3) & \quad 2' \quad 0,y,1/4 \\
(4) & \quad 2' \quad \frac{1}{2},0,0 \\
(5) & \quad \overline{1} \quad 0,0,0 \\
(6) & \quad a \quad \frac{1}{2},0,0 \\
(7) & \quad c' \quad 0,0,1/2 \\
(8) & \quad c' \quad 0,0,1/2 \\
\end{align*}
\]

Pc"c'a

<table>
<thead>
<tr>
<th>Symmetry Type</th>
<th>Space Group</th>
<th>Number</th>
<th>Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthorhombic</td>
<td>P2, 2/c'2/c'2/a</td>
<td>54.6.433</td>
<td>Pc"c'a</td>
</tr>
</tbody>
</table>

m'\text{m}'m
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) (\bar{x} + 1/2, \bar{y}, z) [u,v,w]</td>
<td>(3) (\bar{x}, \bar{y}, \bar{z} + 1/2) [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) (x + 1/2, \bar{y}, \bar{z} + 1/2) [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) (\bar{x}, \bar{y}, \bar{z}) [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 e ..2</td>
<td>1/4,1/2,z [0,0,w]</td>
<td>3/4,1/2,(z + 1/2) [0,0,w]</td>
<td>3/4,1/2,(\bar{z}) [0,0,w]</td>
</tr>
<tr>
<td>4 d ..2</td>
<td>1/4,0,z [0,0,w]</td>
<td>3/4,0,(\bar{z} + 1/2) [0,0,w]</td>
<td>3/4,0,(z) [0,0,w]</td>
</tr>
<tr>
<td>4 c .2'</td>
<td>0,y,1/4 [u,0,w]</td>
<td>1/2,(\bar{y}, 1/4) [u,0,w]</td>
<td>0,(\bar{y}, 3/4) [u,0,w]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>1/2,1/2,0 [u,v,w]</td>
<td>1/2,1/2,(\bar{u}, \bar{v}, w)</td>
<td>0,(\bar{u}, \bar{v}, w)</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [u,v,w]</td>
<td>1/2,0,0 [(u, v),w]</td>
<td>0,0,1/2 [(u, v),w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,0,1/2 [(u, v),w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p 2(m)m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a/2) (b^* = b)</td>
<td>(a^* = -c/2) (b^* = b)</td>
</tr>
<tr>
<td>Origin at 1/4,0,z</td>
<td>Origin at x,0,0</td>
</tr>
</tbody>
</table>

54.6.433 - 2 - 857
Pcc'a'
54.7.434

mm'm'
P2_1/c2'/c'2'/a'

Orthorhombic

Origin at 1 on 1c'a'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

(1) 1
(1|0,0,0)
(5) 1
(1|0,0,0)

(2) 2' 1/4,0,z
(2_z|1/2,0,0)'
(6) a' (1/2,0,0)
(m_z|1/2,0,0)'

(3) 2' 0,y,1/4
(2|0,0,1/2)'
(7) c' (0,0,1/2)
(m_y|0,0,1/2)'

(4) 2 (1/2,0,0)
x,0,1/4
(2|1/2,0,1/2)

54.7.434 - 1 - 858
Continued

54.7.434 Pcc'a'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x, y, z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>4 e .2'</td>
<td>1/4,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>4 d .2'</td>
<td>1/4,0,z [u,v,0]</td>
</tr>
<tr>
<td>4 c .2'</td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>0,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'mm' Along [1,0,0] p2a*2mm Along [0,1,0] p 2'mg'
\(a^* = a/2\) \(b^* = b\) \(a^* = -a\) \(b^* = c/2\)
Origin at 1 on 1ca'

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

1. (1) 1 (0,0,0,0)
 (1,0,0,0)
2. (2) 2' 1/4,0,z (2,1/2,0,0)
 (2,1/2,0,0)
3. (3) 2 0,y,1/4 (2,0,0,1/2)
 (2,0,0,1/2)
4. (4) 2' (1/2,0,0) x,0,1/4 (2,1/2,0,1/2)
 (2,1/2,0,1/2)
5. (5) 1 0,0,0 (1,0,0,0)
 (1,0,0,0)
6. (6) a' (1/2,0,0) x,y,0 (m_z,1/2,0,0)
 (m_z,1/2,0,0)
7. (7) c (0,0,1/2) x,0,z (m_y,0,1/2)
 (m_y,0,1/2)
8. (8) c' (0,0,1/2) 1/4,y,z (m_z,1/2,0,1/2)
 (m_z,1/2,0,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) (x+1/2, y, z) [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) (x, y, z+1/2) [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) (x+1/2, y, z+1/2) [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) (x, y, z) [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) (x+1/2, y, z) [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) (x, y, z+1/2) [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) (x+1/2, y, z+1/2) [u,v,w]</td>
</tr>
<tr>
<td>4 e .2'</td>
<td>1/4,1/2,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/2,(z+1/2) [u,v,0]</td>
</tr>
<tr>
<td>4 d .2'</td>
<td>1/4,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,0,(z+1/2) [u,v,0]</td>
</tr>
<tr>
<td>4 c .2</td>
<td>0,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>(1/2, y ,1/4) [0,v,0]</td>
</tr>
<tr>
<td>4 b (\bar{1})</td>
<td>0,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(1/2, 1/2, 0) [u,v,w]</td>
</tr>
<tr>
<td>4 a (\bar{1})</td>
<td>0,0,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(1/2,0,0) [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'mm' Along [1,0,0] p 2'mm' Along [0,1,0] p_{21v} 2m'g'

\(a^* = -b \) \(b^* = a/2 \) \(a^* = b \) \(b^* = c/2 \) \(a^* = -a \) \(b^* = c/2 \)

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at \(\bar{1} \) on 1c'a'

Asymmetric unit
\[
0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2
\]

Symmetry Operations

1. \(1 \) (1) 1
 - (1) (0,0,0)
2. \(2 \) (2) \(1/4,0,z \)
 - (2) (0,0,1/4)
3. \(2 \) (3) \(0,y,1/4 \)
 - (3) (0,0,1/2)
4. \(2 \) (4) \((1/2,0,0) x,0,1/4 \)
 - (4) \((1/2,0,1/2) \)
5. \(\bar{1} \) (5) \(0,0,0 \)
 - (5) (0,0,0)'
6. \(a' \) (6) \((1/2,0,0) x,y,0 \)
 - (6) \((1/2,0,0) \)
7. \(c' \) (7) \((0,0,1/2) x,0,z \)
 - (7) \((0,0,1/2) \)
8. \(c' \) (8) \((0,0,1/2) 1/4,y,z \)
 - (8) \((0,0,1/2) \)
Continued

54.9.436

Pc'c'a'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 e ..2</td>
<td>1/4,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 d ..2</td>
<td>1/4,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 c .2</td>
<td>0,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2m'm' Along [1,0,0] p 2'm'm' Along [0,1,0] p 2m'g'

a* = a/2 b* = b a* = -c/2 b* = b a* = -a b* = c/2
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at \(\bar{1} \) on 1ca

Asymmetric unit: \(0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/2 \)

Symmetry Operations

For \((0,0,0)\) + set

1. \((1) \quad 1 \quad (1 | 0,0,0) \)
2. \((2) \quad 2' \quad 1/4,0,z \quad (2_z | 1/2,0,0) \)
3. \((3) \quad 2'' \quad 0,y,1/4 \quad (2_z | 0,0,1/2) \)
4. \((4) \quad 2'(1/2,0,0) \quad x,0,1/4 \quad (2_z | 1/2,0,1/2) \)

5. \((5) \quad 0,0,0 \quad (1 | 0,0,0) \)
6. \((6) \quad a \quad (1/2,0,0) \quad x,y,0 \quad (m_z | 1/2,0,0) \)
7. \((7) \quad c \quad (0,0,1/2) \quad x,0,z \quad (m_y | 0,0,1/2) \)
8. \((8) \quad c' \quad (0,0,1/2) \quad 1/4,y,z \quad (m_z | 1/2,0,1/2) \)

For \((0,1,0)\)' + set

1. \((1) \quad t' \quad (0,1,0) \quad (1 | 0,1,0) \)
2. \((2) \quad 2' \quad 1/4,1/2,z \quad (2_z | 1/2,1/2) \)
3. \((3) \quad 2' \quad (0,1,0) \quad 0,y,1/4 \quad (2_z | 0,1,1/2) \)
4. \((4) \quad 2'(1/2,0,0) \quad x,1/2,1/4 \quad (2_z | 1/2,1,1/2) \)

5. \((5) \quad 0,1/2,0 \quad (1 | 0,1,0) \)
6. \((6) \quad n' \quad (1/2,1,0) \quad x,y,0 \quad (m_z | 1/2,1,0) \)
7. \((7) \quad c' \quad (0,0,1/2) \quad x,1/2,z \quad (m_y | 0,1,1/2) \)
8. \((8) \quad n' \quad (0,1,1/2) \quad 1/4,y,z \quad (m_z | 1/2,1,1/2) \)
Generators selected (1); t(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Coordinates
Wyckoff letter, Site Symmetry.

(0,0,0) + (0,1,0)' +

16 f 1 (1) x,y,z [u,v,w] (2) x + 1/2,y,0 [u,v,0] (3) x,y,z + 1/2 [u,v,w] (4) x + 1/2,y,z + 1/2 [u,v,w]
(5) x,y,z [u,v,w] (6) x + 1/2,y,z [u,v,w] (7) x,y,z + 1/2 [u,v,w] (8) x + 1/2,y,z + 1/2 [u,v,w]
8 e .2' 1/4,1/2,z [u,v,0] 3/4,1/2,z + 1/2 [u,v,0] 3/4,1/2,z [u,v,0] 1/4,1/2,z + 1/2 [u,v,0]
8 d .2 1/4,0,z [0,0,w] 3/4,0,z + 1/2 [0,0,w] 3/4,0,z [0,0,w] 1/4,0,z + 1/2 [0,0,w]
8 c .2 0,y,1/4 [0,v,0] 1/2,y,1/4 [0,v,0] 0,y,3/4 [0,v,0] 1/2,y,3/4 [0,v,0]
8 b .1 0,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 0,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]
8 a .1 0,0,0 [u,v,w] 1/2,0,0 [u,v,w] 0,1/2 [u,v,w] 1/2,0,1/2 [u,v,w]

Symmetry of Special Projections

Along [0,0,1] p c 2mm
Along [1,0,0] p c 2mm
Along [0,1,0] p 2mg 1'

a' = a/2 b' = b
a' = b b' = c/2
a' = -a b' = c/2
Origin at 1/4,0,z
Origin at x,1/2,0
Origin at 0,y,0

54.10.437 - 2 - 865
Ortorhombic

$P_{2b} \text{ c'}ca$

54.11.438

$mmm1'$

$P_{2b} 2_1/c'2'/c2'/a$

Origin at $\bar{1}$ on 1ca

Asymmetric unit

$0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/2$

Symmetry Operations

For $(0,0,0)$ + set

(1) 1
 $(1 | 0,0,0)$

(2) $2'$ 1/4,0,z
 $(2_x | 1/2,0,0)'$

(3) $2'$ 0,y,1/4
 $(2_x | 0,0,1/2)'$

(4) $2' (1/2,0,0) \times,0,1/4$
 $(2_x | 1/2,0,1/2)$

(5) $\bar{1}$ 0,0,0
 $(\bar{1} | 0,0,0)'$

(6) a (1/2,0,0) x,y,0
 $(m_x | 1/2,0,0)$

(7) c (0,0,1/2) x,0,z
 $(m_y | 0,0,1/2)$

(8) c' (0,0,1/2) 1/4,y,z
 $(m_z | 1/2,0,1/2)'$

For $(0,1,0)'$ + set

(1) t' (0,1,0)
 $(1 | 0,1,0)'$

(2) 2 1/4,1/2,z
 $(2_x | 1/2,1,0)$

(3) 2 (0,1,0) 0,y,1/4
 $(2_x | 0,1,1/2)$

(4) $2' (1/2,0,0) \times,1/2,1/4$
 $(2_x | 1/2,1,1/2)'$

(5) $\bar{1}$ 0,1/2,0
 $(\bar{1} | 0,1,0)$

(6) n' (1/2,1,0) x,y,0
 $(m_x | 1/2,1,0)'$

(7) $c' (0,0,1/2) x,1/2,z$
 $(m_y | 0,1,1/2)'$

(8) n (0,1,1/2) 1/4,y,z
 $(m_z | 1/2,1,1/2)$
Generators selected
(1); t(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f 1</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(0,1,0)' +</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) x,y,z+1/2 [u,v,w]</td>
<td>(4) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8 e .2</td>
<td>3/4,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 d .2'</td>
<td>3/4,0,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 c .2'</td>
<td>3/4,0,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 b 1</td>
<td>1/2,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>8 a 1</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** p₁c₂mm
 \(a^* = a/2 \quad b^* = b \)
 Origin at 0,0,z

- **Along [1,0,0]** p₂₂₁
 \(a^* = b \quad b^* = c/2 \)
 Origin at x,0,0

- **Along [0,1,0]** p 2mg
 \(a^* = -a \quad b^* = c/2 \)
 Origin at 0,y,0
Origin at \(\mathbf{1}^\dagger \) on 1ca'

Asymmetric unit

\[0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2} \]

Symmetry Operations

For \((0,0,0)\) + set

1. \((1|0,0,0) \)
2. \(\mathbf{2} \quad \frac{1}{4},0,z \)
 \(\left(2_z \mid 1/2,0,0\right) \)
3. \(\mathbf{2}' \quad 0,y,1/4 \)
 \(\left(2_y,0,1/2\right)' \)
4. \(\mathbf{2}' \quad (1/2,0,0) \quad x,0,1/4 \)
 \(\left(2_x,1/2,0,1/2\right)' \)
5. \(\mathbf{1}^\dagger \quad 0,0,0 \)
6. \(\mathbf{a}' \quad (1/2,0,0) \quad x,y,0 \)
 \(\left(m_z,1/2,0,0\right)' \)
7. \(\mathbf{c} \quad (0,0,1/2) \quad x,0,z \)
 \(\left(m_y,0,0,1/2\right) \)
8. \(\mathbf{c} \quad (0,0,1/2) \quad 1/4,y,z \)
 \(\left(m_y,1/2,0,1/2\right) \)

For \((0,1,0)'\) + set

1. \(\mathbf{t}' \quad (0,1,0) \)
 \(\left(\mathbf{1},1/2,0,0\right)' \)
2. \(\mathbf{2}' \quad 1/4,1/2,z \)
 \(\left(2_z,1/2,1,0\right)' \)
3. \(\mathbf{2} \quad (0,1,0) \quad 0,y,1/4 \)
 \(\left(2_y,0,1,1/2\right) \)
4. \(\mathbf{2} \quad (1/2,0,0) \quad x,1/2,1/4 \)
 \(\left(2_x,1/2,1,1/2\right) \)
5. \(\mathbf{1}^\dagger \quad 0,1/2,0 \)
 \(\left(\mathbf{1},1,0\right) \)
6. \(\mathbf{n} \quad (1/2,1,0) \quad x,y,0 \)
 \(\left(m_z,1/2,1,0\right) \)
7. \(\mathbf{c}' \quad (0,0,1/2) \quad x,1/2,z \)
 \(\left(m_y,0,1,1/2\right)' \)
8. \(\mathbf{n}' \quad (0,1,1/2) \quad 1/4,y,z \)
 \(\left(m_y,1/2,1,1/2\right)' \)
Generators selected (1); t(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>16 f 1</th>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) x+1/2,y,z [u,v,w]</th>
<th>(3) x,y,z+1/2 [u,v,w]</th>
<th>(4) x+1/2,y,z+1/2 [u,v,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x+1/2,y,z [u,v,w]</td>
<td>(7) x,y,z+1/2 [u,v,w]</td>
<td>(8) x+1/2,y,z+1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 e ..2'</td>
<td>1/4,1/2,z [u,v,0]</td>
<td>3/4,1/2,z+1/2 [u,v,0]</td>
<td>3/4,1/2,z [u,v,0]</td>
<td>1/4,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>8 d ..2</td>
<td>1/4,0,z [0,0,w]</td>
<td>3/4,0,z+1/2 [0,0,w]</td>
<td>3/4,0,z [0,0,w]</td>
<td>1/4,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>8 c ..2'</td>
<td>0,y,1/4 [u,0,w]</td>
<td>1/2,y,1/4 [u,0,w]</td>
<td>0,y,3/4 [u,0,w]</td>
<td>1/2,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>8 b 1</td>
<td>0,1/2,0 [u,v,w]</td>
<td>1/2,1/2,0 [u,v,0]</td>
<td>0,1/2,1/2 [u,v,0]</td>
<td>1/2,1/2,1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>8 a 1'</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2a2mm
ah^* = -b b^* = a/2
Origin at 0,0,z

Along [1,0,0] p2b2mm
a^* = b b^* = c/2
Origin at x,1/2,1/4

Along [0,1,0] p 2mg1'
a^* = -a b^* = c/2
Origin at 0,y,0
P2b c’ca’

- Origin at 1 on 1ca’
- Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. \(T \) (0,0,0)
2. \(T' \) (1/2,0,0)
3. \(T \) (0,0,0) (1)
4. \(T' \) (1/2,0,0) (2)
5. \(T \) (0,0,0) (3)
6. \(T' \) (1/2,0,0) (4)

For (0,1,0)’ + set

1. \(T' \) (0,1,0)
2. \(T' \) (1/2,0,0)
3. \(T' \) (0,1,0)
4. \(T' \) (0,1,0)
5. \(T' \) (1/2,0,0)
6. \(T' \) (1/2,0,0)
7. \(T' \) (0,0,0)
8. \(T' \) (0,0,0)
Generators selected (1); t(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions
Multiplicty, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
<th>(0,0,0) +</th>
<th>(0,1,0') +</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 e</td>
<td>.2</td>
<td>1/4,1/2,z [0,0,w]</td>
<td>3/4,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 d</td>
<td>.2'</td>
<td>1/4,0,z [u,v,0]</td>
<td>3/4,0,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 c</td>
<td>.2</td>
<td>0,y,1/4 [0,v,0]</td>
<td>1/2,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>8 b</td>
<td>1</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>8 a</td>
<td>1</td>
<td>0,0,0 [u,v,w]</td>
<td>1/2,0,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections
Along [0,0,1] p_{2a}2m'm'
Along [1,0,0] p_{2a}2'-m'm'
Along [0,1,0] p 2mg1'

Origin at 0,0,z
Origin at x,1/2,0
Origin at 0,y,0
Origin at center (2/m)

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations:

1. 1 (1|0,0,0)
2. 2 0,0,z (2|0,0,0)
3. 2 (0,1/2,0) 1/4,y,0 (2|1/2,1/2,0)
4. 2 (1/2,0,0) x,1/4,0 (2|1/2,1/2,0)
5. T 0,0,0 (1|0,0,0)
6. m x,y,0 (m|0,0,0)
7. a (1/2,0,0) x,1/4,z (m|1/2,1/2,0)
8. b (0,1/2,0) 1/4,y,z (m|1/2,1/2,0)
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x',y',z [u,v,w]</td>
</tr>
<tr>
<td>4 h ..m</td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 g ..m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>4 f ..2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 e ..2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 d ..2/m</td>
<td>0,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 c ..2/m</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 b ..2/m</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a ..2/m</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2gg1' Along [1,0,0] p2a2mm Along [0,1,0] p2a2mm

$a^* = a$ $b^* = b$ $a^* = b/2$ $b^* = c$

Origin at 0,0,z Origin at x,1/4,0 Origin at 1/4,y,0
Origin at center (2/m1’)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

For 1 + set

1. \(1\)
 \((1|0,0,0)\)
2. \(2\)
 \((2|0,0,z)\)
3. \(2\) \((0,1/2,0)\)
 \(1/4,y,0\)
 \((2|1/2,1/2,0)\)
4. \(2\) \((1/2,0,0)\)
 \(x,1/4,0\)
 \((2|1/2,1/2,0)\)
5. \(T\) \((0,0,0)\)
6. \(m\)
 \((x,y,0)\)
 \((m,z|0,0,0)\)
7. \(a\) \((1/2,0,0)\)
 \(x,1/4,z\)
 \((m,z|1/2,1/2,0)\)
8. \(b\) \((0,1/2,0)\)
 \(1/4,y,z\)
 \((m,z|1/2,1/2,0)\)

For 1’ + set

1. \(1’\)
 \((1|0,0,0)’\)
2. \(2’\)
 \((2|0,0,z)’\)
3. \(2’\) \((0,1/2,0)’\)
 \(1/4,y,0\)
 \((2|1/2,1/2,0)’\)
4. \(2’\) \((1/2,0,0)’\)
 \(x,1/4,0\)
 \((2|1/2,1/2,0)’\)
5. \(T’\) \((0,0,0)’\)
6. \(m’\)
 \((x,y,0)’\)
 \((m,z|0,0,0)’\)
7. \(a’\) \((1/2,0,0)’\)
 \(x,1/4,z\)
 \((m,z|1/2,1/2,0)’\)
8. \(b’\) \((0,1/2,0)’\)
 \(1/4,y,z\)
 \((m,z|1/2,1/2,0)’\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) \bar{x}, \bar{y}, z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 h .m1'</td>
<td>x,y,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 g .m1'</td>
<td>x,y,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 f .21'</td>
<td>0,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 e .21'</td>
<td>0,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 d .2/m1'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 c .2/m1'</td>
<td>0,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 b .2/m1'</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a .2/m1'</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2gg1' Along [1,0,0] p 2mm1' Along [0,1,0] p 2mm1'
$a^* = a$ $b^* = b$ $a^* = b/2$ $b^* = c$
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at center (2'/m)

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

1. 1
 (1 0,0,0)

2. 2'
 (2' 0,0,z)
 (2' 0,0,0)

3. 2'
 (2' 0,1/2,0)
 (2' 1/2,1/2,0)

4. 2
 (2 1/2,0,0)
 (x,1/4,0)
 (2 1/2,1/2,0)

5. 1'
 (1 0,0,0)
 (1 0,0,0)'

6. m
 (m x,y,0)
 (m' 0,0,0)
 (m' 0,0,0)

7. a
 (a 1/2,0,0)
 (x,1/4,0)
 (m 1/2,1/2,0)

8. b'
 (b' 0,1/2,0)
 (1/4,y,z)
 (m' 1/2,1/2,0)
Continued 55.3.443 Pb'am

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positions</td>
<td>Coordinates</td>
</tr>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x+1/2,y+1/2,z [u,v,w] (4) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w] (6) x,y,z [u,v,w] (7) x+1/2,y+1/2,z [u,v,w] (8) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>4 h .m</td>
<td>x,y,1/2 [0,0,w] x,y,1/2 [0,0,w] x+1/2,y+1/2,1/2 [0,0,w] x+1/2,y+1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 g .m</td>
<td>x,y,0 [0,0,w] x,y,0 [0,0,w] x+1/2,y+1/2,0 [0,0,w] x+1/2,y+1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>4 f .2'</td>
<td>0,1/2,z [u,v,0] 1/2,0,z [u,v,0] 0,1/2,z [u,v,0] 1/2,0,z [u,v,0]</td>
</tr>
<tr>
<td>4 e .2'</td>
<td>0,0,z [u,v,0] 1/2,1/2,z [u,v,0] 0,0,z [u,v,0] 1/2,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>2 d .2'/m</td>
<td>0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c .2'/m</td>
<td>0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0] 1/2,0,0 [0,0,0] 1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b .2'/m</td>
<td>0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a .2'/m</td>
<td>0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [0,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p2gg1'</td>
<td>p 2mm</td>
<td>p2a, 2mm</td>
</tr>
<tr>
<td>a* = a</td>
<td></td>
<td>a* = b/2</td>
<td>a* = -a/2</td>
</tr>
<tr>
<td>b* = b</td>
<td></td>
<td>b* = c</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,0</td>
<td></td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Origin at center (2/m')

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2, 0,0,z \\
(3) & \quad 2', (0,1/2,0), 1/4,y,0 \\
(4) & \quad 2', (1/2,0,0), x,1/4,0 \\
(5) & \quad \bar{1}, 0,0,0 \\
(6) & \quad m', x,y,0 \\
(7) & \quad a, (1/2,0,0), x,1/4,z \\
(8) & \quad b, (0,1/2,0), 1/4,y,z \\
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x+1/2,y+1/2,z [u,v,w] (4) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w] (6) x,y,z [u,v,w] (7) x+1/2,y+1/2,z [u,v,w] (8) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>4 h ..m'</td>
<td>x,y,1/2 [u,v,0] x,y,1/2 [u,v,0] x+1/2,y+1/2,1/2 [u,v,0] x+1/2,y+1/2,1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 g ..m'</td>
<td>x,y,0 [u,v,0] x,y,0 [u,v,0] x+1/2,y+1/2,0 [u,v,0] x+1/2,y+1/2,0 [u,v,0]</td>
</tr>
<tr>
<td>4 f ..2</td>
<td>0,1/2,z [0,0,w] 1/2,0,z [0,0,w] 0,1/2,z [0,0,w] 1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 e ..2</td>
<td>0,0,z [0,0,w] 1/2,1/2,z [0,0,w] 0,0,z [0,0,w] 1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 d ..2/m'</td>
<td>0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c ..2/m'</td>
<td>0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b ..2/m'</td>
<td>0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a ..2/m'</td>
<td>0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2gg Along [1,0,0] p2a 2m'm' Along [0,1,0] p2a 2m'm'
\(a^* = a\) \(b^* = b\) \(a^* = b/2\) \(b^* = c\) \(a^* = -a/2\) \(b^* = c\)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at center (2/m)

Asymmetric unit
\(0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2}\)

Symmetry Operations

\begin{align*}
(1) \, & \, 1 \\
(1\, 0,0,0) \\
(2) \, & \, 2 \quad 0,0,z \\
(2\, z\, 0,0,0) \\
(3) \, & \, 2' \quad (0,1/2,0) \quad 1/4,y,0 \\
(2\, 1/2,1/2,0)' \\
(4) \, & \, 2' \quad (1/2,0,0) \quad x,1/4,0 \\
(2\, 1/2,1/2,0)' \\
(5) \, & \, T \\
(1\, 0,0,0) \\
(6) \, & \, m \quad x,y,0 \\
(m\, z\, 0,0,0) \\
(7) \, & \, a' \quad (1/2,0,0) \quad x,1/4,z \\
(m\, 1/2,1/2,0)' \\
(8) \, & \, b' \quad (0,1/2,0) \quad 1/4,y,z \\
(m\, 1/2,1/2,0)'
\end{align*}
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z [u, v, w]</td>
</tr>
<tr>
<td>4 h ..m</td>
<td>x, y, 1/2 [0, 0, w]</td>
</tr>
<tr>
<td>4 g ..m</td>
<td>x, y, 0 [0, 0, w]</td>
</tr>
<tr>
<td>4 f ..2</td>
<td>0, 1/2, z [0, 0, w]</td>
</tr>
<tr>
<td>4 e ..2</td>
<td>0, 0, z [0, 0, w]</td>
</tr>
<tr>
<td>2 d ..2/m</td>
<td>0, 1/2, 1/2 [0, 0, w]</td>
</tr>
<tr>
<td>2 c ..2/m</td>
<td>0, 1/2, 0 [0, 0, w]</td>
</tr>
<tr>
<td>2 b ..2/m</td>
<td>0, 0, 1/2 [0, 0, w]</td>
</tr>
<tr>
<td>2 a ..2/m</td>
<td>0, 0, 0 [0, 0, w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2gg1'</th>
<th>Along [1,0,0]</th>
<th>p 2'mm'</th>
<th>Along [0,1,0]</th>
<th>p 2'mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>b* = a/2</td>
<td>a* = -c</td>
<td>b* = b/2</td>
<td>a* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (2'/m')

Asymmetric unit \[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations:

1. \(\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \)
2. \(\begin{pmatrix} 2' \\ 0 \\ 0 \\ z \end{pmatrix} \)
3. \(\begin{pmatrix} 2 \\ (0,1/2,0) \\ 1/4, y, 0 \end{pmatrix} \)
4. \(\begin{pmatrix} 2' \\ (1/2,0,0) \\ x, 1/4, 0 \end{pmatrix} \)
5. \(\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \)
6. \(\begin{pmatrix} m' \\ x, y, 0 \end{pmatrix} \)
7. \(\begin{pmatrix} a \\ (1/2,0,0) \\ x, 1/4, z \end{pmatrix} \)
8. \(\begin{pmatrix} b' \\ (0,1/2,0) \\ 1/4, y, z \end{pmatrix} \)

\(\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1 (1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>4 h ..m' x,y,1/2 [u,v,0]</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,y+1/2,1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,y+1/2,1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 g ..m' x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,y+1/2,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,y+1/2,0 [u,v,0]</td>
</tr>
<tr>
<td>4 f ..2' 0,1/2,z [u,v,0]</td>
<td>1/2,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [u,v,0]</td>
</tr>
<tr>
<td>4 e ..2' 0,0,z [u,v,0]</td>
<td>1/2,1/2,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>2 d ..2'/m' 0,1/2,1/2 [u,v,0]</td>
<td>1/2,0,1/2 [u,v,0]</td>
</tr>
<tr>
<td>2 c ..2'/m' 0,1/2,0 [u,v,0]</td>
<td>1/2,0,0 [u,v,0]</td>
</tr>
<tr>
<td>2 b ..2'/m' 0,0,1/2 [u,v,0]</td>
<td>1/2,1/2,1/2 [u,v,0]</td>
</tr>
<tr>
<td>2 a ..2'/m' 0,0,0 [u,v,0]</td>
<td>1/2,1/2,0 [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2'gg'</th>
<th>Along [1,0,0] p 2'mm'</th>
<th>Along [0,1,0] p2x 2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -b b* = a</td>
<td>a* = b/2 b* = c</td>
<td>a* = -a/2 b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,1/4,0</td>
<td>Origin at 1/4,y,0</td>
</tr>
</tbody>
</table>
Origin at center (2/m')

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

1. \(\begin{align*} 1 \\ (1 | 0,0,0) \end{align*} \)
2. \(\begin{align*} 2 & 0,0,z \\ (2_z | 0,0,0) \end{align*} \)
3. \(\begin{align*} 2 & (0,1/2,0) 1/4,y,0 \\ (2_{y} | 1/2,1/2,0) \end{align*} \)
4. \(\begin{align*} 2 & (1/2,0,0) x,1/4,0 \\ (2_{x} | 1/2,1/2,0) \end{align*} \)
5. \(\begin{align*} \bar{1} & 0,0,0 \\ (\bar{1} | 0,0,0)' \end{align*} \)
6. \(\begin{align*} m' & x,y,0 \\ (m_{z} | 0,0,0)' \end{align*} \)
7. \(\begin{align*} a' & (1/2,0,0) x,1/4,z \\ (m_{y} | 1/2,1/2,0)' \end{align*} \)
8. \(\begin{align*} b' & (0,1/2,0) 1/4,y,z \\ (m_{x} | 1/2,1/2,0)' \end{align*} \)
Continued

55.7.447

Pb'a'm'

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>4 h .m'</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,y+1/2,1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,y+1/2,1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 g .m'</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,y+1/2,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,y+1/2,0 [u,v,0]</td>
</tr>
<tr>
<td>4 f .2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1 [0,0,w]</td>
</tr>
<tr>
<td>4 e .2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 d .2/m'</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c .2/m'</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b .2/m'</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a .2/m'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2g'g'</th>
<th>Along [1,0,0]</th>
<th>p 2m'm'</th>
<th>Along [0,1,0]</th>
<th>p 2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = a</td>
<td></td>
<td>b' = b</td>
<td></td>
<td>a' = c</td>
<td></td>
</tr>
<tr>
<td>b' = b</td>
<td></td>
<td>c' = c</td>
<td></td>
<td>a' = c</td>
<td></td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin at center (2/m)

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1) 1
 (1|0,0,0)

2) 2 0,0,z
 (Z|0,0,0)

3) 2 (0,1/2,0) 1/4,y,0
 (Z|1/2,1/2,0)

4) 2 (1/2,0,0) x,1/4,0
 (Z|1/2,1/2,0)

5) 1
 (0,0,0)

6) m x,y,0
 (m|0,0,0)

7) a (1/2,0,0) x,1/4,z
 (m|1/2,1/2,0)

8) b (0,1/2,0) 1/4,y,z
 (m|1/2,1/2,0)

For (0,0,1)’ + set

1) t’ (0,0,1)
 (1|0,0,1)’

2) 2’ (0,0,1) 0,0,z
 (Z|0,0,1)’

3) 2’ (0,1/2,0) 1/4,y,1/2
 (Z|1/2,1/2,1)’

4) 2’ (1/2,0,0) x,1/4,1/2
 (Z|1/2,1/2,1)’

5) 1’ 0,0,1/2
 (1|0,0,1)’

6) m’ x,y,1/2
 (m|0,0,1)’

7) n’ (1/2,0,1) x,1/4,z
 (m|1/2,1/2,1)’

8) n’ (0,1/2,1) 1/4,y,z
 (m|1/2,1/2,1)’
Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) + (0,0,1)’ +</td>
</tr>
<tr>
<td>16 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 h m’n</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 g m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 f 2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 e 2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 d 2/m’</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c 2/m</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>4 b 2/m’</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2/m</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2gg1’
 - $a^* = a$
 - $b^* = b$
- Along [1,0,0] p_ce 2mm
 - $a^* = b/2$
 - $b^* = c$
- Along [0,1,0] p_ce 2mm
 - $a^* = c$
 - $b^* = a/2$

Origin
- Origin at 0,0,z
- Origin at x,1/4,0
- Origin at 1/4,y,0
Orthorhombic

Origin at center \((2/m)\)

Asymmetric unit

\[0 \leq x < 1/2; \quad 0 \leq y < 1/2; \quad 0 \leq z < 1/2 \]

Symmetry Operations

For \((0,0,0) + set\)

1. \(1\) \((0,0,0)\)

2. \(2'\) \((0,0,z)\)
\((2_z,0,0,0)'\)

3. \(2'\) \((0,1/2,0)\) \((1/4,y,0)\)
\((2_y,1/2,1/2,0)'\)

4. \(2\) \((1/2,0,0)\) \((x,1/4,0)\)
\((2_x,1/2,1/2,0)'\)

5. \(1'\) \((0,0,0)\)

6. \(m\) \((x,y,0)\)
\((m_y,1/2,1/2,0)'\)

7. \(a\) \((1/2,0,0)\) \((x,1/4,z)\)
\((m_x,1/2,1/2,0)'\)

8. \(b'\) \((0,1/2,0)\) \((1/4,y,z)\)
\((m_x,1/2,1/2,0)'\)

For \((0,0,1) + set\)

1. \(t'\) \((0,0,1)\)
\((1,0,0,1)'\)

2. \(2\) \((0,0,1)\) \((0,0,z)\)
\((2_z,0,0,1)'\)

3. \(2\) \((0,1/2,0)\) \((1/4,y,1/2)\)
\((2_y,1/2,1/2,1)'\)

4. \(2'\) \((1/2,0,0)\) \((x,1/4,1/2)\)
\((2_x,1/2,1/2,1)'\)

5. \(1\) \((0,0,1/2)\)
\((1,0,0,1)'\)

6. \(m'\) \((x,y,1/2)\)
\((m_y,1/2,1/2,1)'\)

7. \(n'\) \((1/2,0,1)\) \((1/4,z)\)
\((m_y,1/2,1/2,1)'\)

8. \(n\) \((0,1/2,1)\) \((1/4,y,z)\)
\((m_x,1/2,1/2,1)'\)
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

Coordinates

(0,0,0) + (0,0,1)'

16 i 1 (1) x,y,z [u,v,w] (2) x',y',z [u,v,w] (3) x+1/2,y+1/2,z' [u,v,w] (4) x+1/2,y+1/2,z [u,v,w]

8 h .m' x,y,1/2 [u,v,0] x',y,1/2 [u,v,0] x+1/2,y+1/2,1/2 [u,v,0] x+1/2,y+1/2,1/2 [u,v,0]

8 g .m x,y,0 [0,0,w] x',y,0 [0,0,w] x+1/2,y+1/2,0 [0,0,w] x+1/2,y+1/2,0 [0,0,w]

8 f ..2' 0,1/2,z [u,v,0] 1/2,0,z [u,v,0] 0,1/2,z [u,v,0] 1/2,0,z [u,v,0]

8 e ..2' 0,0,z [u,v,0] 1/2,1/2,z [u,v,0] 0,0,z [u,v,0] 1/2,1/2,z [u,v,0]

4 d ..2/m' 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]

4 c ..2/m 0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0]

4 b ..2/m' 0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]

4 a ..2/m' 0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p2gg1' Along [1,0,0] p_{2c} 2mm Along [0,1,0] p_{2c} 2mm

a* = a b* = b a* = -c b* = b/2 a* = c b* = a/2

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Orthorhombic

\[55.10.450 \]

\[P_{\text{2c} b' a'm} \]

\[mmm1' \]

\[P_{2c 2' b' 2', a'2'm} \]

Origin at center (\(2/m \))

Asymmetric unit

\[0 \leq x < 1/2; \quad 0 \leq y < 1/2; \quad 0 \leq z < 1/2 \]

Symmetry Operations

For \((0,0,0) + \) set

1. \((1|0,0,0)\)
2. \((2|0,0,z)\)
3. \((3|0,1/2,0)\)
4. \((4|1/2,0,0)\)
5. \((5|0,0,0)\)
6. \((6|1/2,1/2,0)^*\)
7. \((7|1/2,1/2,1)^*\)
8. \((8|1/2,1/2,0)^*\)

For \((0,0,1') + \) set

1. \((1|0,0,1')\)
2. \((2|0,0,1)\)
3. \((3|0,1/2,0)\)
4. \((4|1/2,0,0)\)
5. \((5|0,0,1/2)\)
6. \((6|0,0,1)\)
7. \((7|1/2,0,1)\)
8. \((8|0,1/2,1)\)

\[55.10.450 - 1 - 890 \]
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td>16</td>
<td>i 1</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x, y, z [u, v, w]</td>
</tr>
<tr>
<td>(3) x+1/2, y+1/2, z [u, v, w]</td>
<td>(4) x+1/2, y+1/2, z [u, v, w]</td>
</tr>
<tr>
<td>(5) x, y, z [u, v, w]</td>
<td>(6) x, y, z [u, v, w]</td>
</tr>
<tr>
<td>(7) x+1/2, y+1/2, z [u, v, w]</td>
<td>(8) x+1/2, y+1/2, z [u, v, w]</td>
</tr>
<tr>
<td>8</td>
<td>h ..m'</td>
</tr>
<tr>
<td>x, y, 1/2 [u, v, 0]</td>
<td>x, y, 1/2 [u, v, 0]</td>
</tr>
<tr>
<td>x+1/2, y+1/2, 1/2 [u, v, 0]</td>
<td>x+1/2, y+1/2, 1/2 [u, v, 0]</td>
</tr>
<tr>
<td>8</td>
<td>g ..m</td>
</tr>
<tr>
<td>x, y, 0 [0, 0, w]</td>
<td>x, y, 0 [0, 0, w]</td>
</tr>
<tr>
<td>x+1/2, y+1/2, 0 [0, 0, w]</td>
<td>x+1/2, y+1/2, 0 [0, 0, w]</td>
</tr>
<tr>
<td>8</td>
<td>f ..2</td>
</tr>
<tr>
<td>0, 1/2, z [0, 0, w]</td>
<td>1/2, 0, z [0, 0, w]</td>
</tr>
<tr>
<td>0, 1/2, z [0, 0, w]</td>
<td>1/2, 0, z [0, 0, w]</td>
</tr>
<tr>
<td>8</td>
<td>e ..2</td>
</tr>
<tr>
<td>0, 0, z [0, 0, w]</td>
<td>1/2, 1/2, z [0, 0, w]</td>
</tr>
<tr>
<td>0, 0, z [0, 0, w]</td>
<td>1/2, 1/2, z [0, 0, w]</td>
</tr>
<tr>
<td>4</td>
<td>d ..2/m'</td>
</tr>
<tr>
<td>0, 1/2, 1/2 [0, 0, 0]</td>
<td>1/2, 0, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>4</td>
<td>c ..2/m</td>
</tr>
<tr>
<td>0, 1/2, 0 [0, 0, w]</td>
<td>1/2, 0, 0 [0, 0, w]</td>
</tr>
<tr>
<td>4</td>
<td>b ..2/m'</td>
</tr>
<tr>
<td>0, 0, 1/2 [0, 0, 0]</td>
<td>1/2, 1/2, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>4</td>
<td>a ..2/m</td>
</tr>
<tr>
<td>0, 0, 0 [0, 0, w]</td>
<td>1/2, 1/2, 0 [0, 0, w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2gg1' Along [1,0,0] p2a2' 2m'm' Along [0,1,0] p2a2' 2m'm'

a* = a	b* = b
a* = -c	b* = b/2
Origin at 0,0,z	Origin at x,0,1/2

a* = c	b* = a/2
a* = -c	b* = b/2
Origin at 1/4,y,1/2	Origin at x,0,1/2
Origin at $\overline{1}$ on 11n

Asymmetric unit: $0 \leq x \leq 1/4; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2$

Symmetry Operations:

1. $1 (1 | 0,0,0)$
2. $2 1/4,1/4,z (2 \overline{z} | 1/2,1/2,0)$
3. $2 (0,1/2,0) 0,y,1/4 (2 | 0,1/2,1/2)$
4. $2 (1/2,0,0) x,0,1/4 (2 | 1/2,0,1/2)$
5. $\overline{1} 0,0,0 (1 | 0,0,0)$
6. $n (1/2,1/2,0) x,y,0 (m_{\overline{z}} | 1/2,1/2,0)$
7. $c (0,0,1/2) x,1/4,z (m_{y} | 0,1/2,1/2)$
8. $c (0,0,1/2) 1/4,y,z (m_{z} | 1/2,0,1/2)$
Continued

Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5). \)

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[
\begin{align*}
8 & \quad e & 1 & \quad (1) & x,y,z & [u,v,w] & \quad (2) & x+1/2, y+1/2, z & [u,v,w] & \quad (3) & x, y+1/2, z+1/2 & [u,v,w] & \quad (4) & x+1/2, y, z+1/2 & [u,v,w] \\
& & & & \quad (5) & x, y, z & [u,v,w] & \quad (6) & x+1/2, y+1/2, z & [u,v,w] & \quad (7) & x, y+1/2, z+1/2 & [u,v,w] & \quad (8) & x+1/2, y, z+1/2 & [u,v,w] \\
4 & \quad d & 0.2 & \quad 1/4, 3/4, z & [0,0,w] & \quad 3/4, 1/4, z+1/2 & [0,0,w] & \quad 3/4, 1/4, z & [0,0,w] & \quad 1/4, 3/4, z+1/2 & [0,0,w] \\
4 & \quad c & 0.2 & \quad 1/4, 1/4, z & [0,0,w] & \quad 3/4, 3/4, z+1/2 & [0,0,w] & \quad 3/4, 3/4, z & [0,0,w] & \quad 1/4, 1/4, z+1/2 & [0,0,w] \\
4 & \quad b & 1 & \quad 0, 0, 1/2 & [u,v,w] & \quad 1/2, 1/2, 1/2 & [u,v,w] & \quad 0, 1/2, 0 & [u,v,w] & \quad 1/2, 0, 0 & [u,v,w] \\
4 & \quad a & 1 & \quad 0, 0, 0 & [u,v,w] & \quad 1/2, 1/2, 0 & [u,v,w] & \quad 0, 1/2, 1/2 & [u,v,w] & \quad 1/2, 0, 1/2 & [u,v,w] \\
\end{align*}
\]

Symmetry of Special Projections

Along \([0,0,1]\) \(c_{1p}, 2mm \)
Along \([1,0,0]\) \(p_{21b}, 2m'g' \)
Along \([0,1,0]\) \(p_{21b}, 2m'g' \)

\[
\begin{align*}
a^* & = a & b^* & = b & \quad a^* & = b & b^* & = c/2 & \quad a^* & = -a & b^* & = c/2 \\
\end{align*}
\]

Origin at \(1/4, 1/4, z\)
Origin at \(x, 0, 1/4\)
Origin at \(0, y, 0\)
Origin at \(1'\) on 11\(n1'\)

Asymmetric unit \(0 \leq x \leq \frac{1}{4}; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq \frac{1}{2}\)

Symmetry Operations

For 1 + set

1. \((0,0,0)\)
2. \((1/4,1/4,z)\)
3. \((0,1/2,0)\)
4. \((1/2,0,0)\)
5. \((0,0,0)\)
6. \((1/2,1/2,0)\)
7. \((0,0,1/2)\)
8. \((0,0,1/2)\)

For \(1'\) + set

1. \((0,0,0)\)
2. \((1/4,1/4,z)\)
3. \((0,1/2,0)\)
4. \((1/2,0,0)\)
5. \((0,0,0)\)
6. \((1/2,1/2,0)\)
7. \((0,0,1/2)\)
8. \((0,0,1/2)\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

Multiplicity, Coordinates
Wyckoff letter, Site Symmetry.

<p>|</p>
<table>
<thead>
<tr>
<th>1</th>
<th>1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>---</td>
</tr>
</tbody>
</table>

8 e	11'	(1) x,y,z [0,0,0] (2) x+1/2,y+1/2,z [0,0,0] (3) x,y+1/2,z+1/2 [0,0,0] (4) x+1/2,y,z+1/2 [0,0,0] (5) x,y,z [0,0,0] (6) x+1/2,y+1/2,z [0,0,0] (7) x,y+1/2,z+1/2 [0,0,0] (8) x+1/2,y,z+1/2 [0,0,0]
4 d	.21'	1/4,3/4,z [0,0,0] 3/4,1/4,z+1/2 [0,0,0] 3/4,1/4,z [0,0,0] 1/4,3/4,z+1/2 [0,0,0]
4 c	.21'	1/4,1/4,z [0,0,0] 3/4,3/4,z+1/2 [0,0,0] 3/4,3/4,z [0,0,0] 1/4,1/4,z+1/2 [0,0,0]
4 b	11'	0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0]
4 a	11'	0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0] 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] c2mm1' Along [1,0,0] p 2mg1' Along [0,1,0] p 2mg1'
a* = a b* = b a* = b b* = c/2 a* = -a b* = c/2
Origin at 1/4,1/4,z Origin at x,0,0 Origin at 0,y,0
Pc'cn

56.3.453

m'mm

P2₁, /c'2, '/c2'/n

Orthorhombic

Origin at \(\bar{1} \) on \(11n \)

Asymmetric unit

\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

1. \[1 \]
2. \[2', 1/4, 1/4, z \]
3. \[2', (0, 1/2, 0), 0, y, 1/4 \]
4. \[2, (1/2, 0, 0), x, 0, 1/4 \]
5. \[\bar{1}, 0, 0, 0 \]
6. \[n, (1/2, 1/2, 0), x, y, 0 \]
7. \[c, (0, 0, 1/2), x, 1/4, z \]
8. \[c', (0, 0, 1/2), 1/4, y, z \]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w] (2) x+1/2,y+1/2,z [u,v,w] (3) x,y+1/2,z+1/2 [u,v,w] (4) x+1/2,y,z+1/2 [u,v,w] (5) x,y,z [u,v,w] (6) x+1/2,y+1/2,z [u,v,w] (7) x,y+1/2,z+1/2 [u,v,w] (8) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 d .2'</td>
<td>1/4,3/4,z [u,v,0] 3/4,1/4,z+1/2 [u,v,0] 3/4,1/4,z [u,v,0] 1/4,3/4,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 c .2'</td>
<td>1/4,1/4,z [u,v,0] 3/4,3/4,z+1/2 [u,v,0] 3/4,3/4,z [u,v,0] 1/4,1/4,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 b 1'</td>
<td>0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 1'</td>
<td>0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0] 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c_p 2'mm'

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>c_p 2'mm'</td>
</tr>
<tr>
<td>a' = a b' = b</td>
<td>Origin at 1/4,1/4,z</td>
</tr>
</tbody>
</table>

Along [1,0,0] p 2mg

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,0,0]</td>
<td>p 2mg</td>
</tr>
<tr>
<td>a' = b b' = c/2</td>
<td>Origin at x,0,0</td>
</tr>
</tbody>
</table>

Along [0,1,0] p_2b 2mg

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,1,0]</td>
<td>p_2b 2mg</td>
</tr>
<tr>
<td>a' = -a b' = c/2</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>

56.3.453 - 2 - 897
Origin at \(\bar{1} \) on \(11 \) column

Asymmetric unit

\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

1. \(1 \)
 - \((1|0,0,0) \)
 - \((1|0,0,0)' \)

2. \(2 \)
 - \(1/4,1/4,z \)
 - \(1/2,1/2,0 \)

3. \(2' \)
 - \(0,1/2,0 \)
 - \(x,y,1/4 \)
 - \(0,1/2,1/2 \)

4. \(2' \)
 - \(1/2,0,0 \)
 - \(x,0,1/4 \)
 - \(1/2,0,1/2 \)

5. \(\bar{1} \)
 - \(0,0,0 \)

6. \(n' \)
 - \(1/2,1/2,0 \)
 - \(x,y,0 \)
 - \(1/2,1/2,0 \)

7. \(c \)
 - \(0,0,1/2 \)
 - \(x,1/4,z \)
 - \(0,1/2,1/2 \)

8. \(m \)
 - \(0,0,1/2 \)
 - \(1/4,y,z \)
 - \(0,1/2,0 \)

- \(1 \) is the identity operation.
- \(2 \) represents a 90° rotation about the x-axis.
- \(2' \) represents a 90° rotation about the y-axis.
- \(\bar{1} \) represents a reflection in the plane perpendicular to the x-axis.
- \(n' \) represents a 180° rotation about the z-axis.
- \(c \) represents a glide reflection along the z-axis.
- \(m \) represents a screw operation.
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

4 d ..2
1/4,3/4,z [0,0,w]
3/4,1/4,z+1/2 [0,0,w]
3/4,1/4,z [0,0,w]
1/4,3/4,z+1/2 [0,0,w]

4 c ..2
1/4,1/4,z [0,0,w]
3/4,3/4,z+1/2 [0,0,w]
3/4,3/4,z [0,0,w]
1/4,1/4,z+1/2 [0,0,w]

4 b 1'
0,0,1/2 [0,0,0]
1/2,1/2,1/2 [0,0,0]
0,1/2,0 [0,0,0]
1/2,0,0 [0,0,0]

4 a 1'
0,0,0 [0,0,0]
1/2,1/2,0 [0,0,0]
0,1/2,1/2 [0,0,0]
1/2,0,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,01] c2mm
Along [1,0,0] p21b, 2m'g'
Along [0,1,0] p21b, 2m'g'

\[a^* = a \quad b^* = b \]
\[a^* = b \quad b^* = c/2 \]
\[a^* = -a \quad b^* = c/2 \]

Origin at 1/4,1/4,z
Origin at x,0,0
Origin at 0,y,0
Origin at $\vec{1}$ on 11n

Asymmetric unit
$0 \leq x \leq 1/4; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2$

Symmetry Operations

1. I
 (1) I
 (5) $\bar{1}$
 (0,0,0)

2. 2
 (2) $2 1/4,1/4,z$
 (2) $1/2,1/2,0$

3. $2'$
 (3) $2' (0,1/2,0) 0,y,1/4$
 (2,$y,0,1/2$)

4. $2'$
 (4) $2' (1/2,0,0) x,0,1/4$
 (2,$x,1/2,0$)

5. $\bar{1}$
 (5) $\bar{1}$
 (6) $n (1/2,1/2,0) x,y,0$
 (m,$y,1/2,1/2$)

6. $\bar{1}$
 (7) $c' (0,0,1/2) x,1/4,z$
 (m,$y,0,1/2,1/2$)

7. $\bar{1}$
 (8) $c' (0,0,1/2) 1/4,y,z$
 (m,$y,1/2,0,1/2$)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
</table>
| 8 e 1 | (1) x,y,z [u,v,w]
| | (2) x+1/2,y+1/2,z [u,v,w]
| | (3) x,y+1/2,z+1/2 [u,v,w]
| | (4) x+1/2,y,z+1/2 [u,v,w]
| | (5) x,y,z [u,v,w]
| | (6) x+1/2,y+1/2,z [u,v,w]
| | (7) x,y+1/2,z+1/2 [u,v,w]
| | (8) x+1/2,y,z+1/2 [u,v,w] |
| 4 d ..2 | 1/4,3/4,z [0,0,w]
| | 3/4,1/4,z+1/2 [0,0,w]
| | 3/4,1/4,z [0,0,w]
| | 1/4,3/4,z+1/2 [0,0,w] |
| 4 c ..2 | 1/4,1/4,z [0,0,w]
| | 3/4,3/4,z+1/2 [0,0,w]
| | 3/4,3/4,z [0,0,w]
| | 1/4,1/4,z+1/2 [0,0,w] |
| 4 b .1 | 0,0,1/2 [u,v,w]
| | 1/2,1/2,1/2 [u,v,w]
| | 0,1/2,0 [u,v,w]
| | 1/2,0,0 [u,v,w] |
| 4 a .1 | 0,0,0 [u,v,w]
| | 1/2,1/2,0 [u,v,w]
| | 0,1/2,1/2 [u,v,w]
| | 1/2,0,1/2 [u,v,w] |

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>沿 [0,01] c2m'm'</th>
<th>沿 [1,0,0] p 2'm'g</th>
<th>沿 [0,1,0] p 2'm'g</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>a* = -a</td>
</tr>
<tr>
<td>b* = b</td>
<td></td>
<td>b* = c/2</td>
<td>b* = c/2</td>
</tr>
</tbody>
</table>

Origin at 1/4,1/4,z
Origin at x,0,0
Origin at 0,y,0
Origin at $\bar{1}$ on 11n'

Asymmetric unit

0 \leq x \leq 1/4; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2

Symmetry Operations

1. 1
 1
 0,0,0

2. $2'$ 1/4,1/4,z
 (2$'_z$ 1/2,1/2,0)'

3. 2 (0,1/2,0) 0,y,1/4
 (2$_y$ 0,1/2,1/2)

4. $2'$ (1/2,0,0) x,0,1/4
 (2$'_x$ 1/2,0,1/2)'

5. $\bar{1}$ 0,0,0
 (1|0,0,0)

6. n' (1/2,1/2,0) x,y,0
 (m$'_z$ 1/2,1/2,0)'

7. c (0,0,1/2) x,1/4,z
 (m$'_y$ 0,1/2,1/2)

8. c' (0,0,1/2) 1/4,y,z
 (m$'_x$ 1/2,0,1/2)'

56.6.456 - 1 - 902
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>((1)) (x,y,z) [(u,v,w)]</td>
<td>((1)) (x,y,z) [(u,v,w)]</td>
</tr>
<tr>
<td>4 d (.2')</td>
<td>(1/4,3/4,z) [(u,v,0)]</td>
<td>(1/4,3/4,z+1/2) [(u,v,0)]</td>
</tr>
<tr>
<td>4 c (.2')</td>
<td>(1/4,1/4,z) [(u,v,0)]</td>
<td>(1/4,1/4,z+1/2) [(u,v,0)]</td>
</tr>
<tr>
<td>4 b (\overline{1})</td>
<td>(0,0,1/2) [(u,v,w)]</td>
<td>(0,1/2,0) [(u,v,w)]</td>
</tr>
<tr>
<td>4 a (\overline{1})</td>
<td>(0,0,0) [(u,v,w)]</td>
<td>(0,1/2,1/2) [(u,v,w)]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along \([0,01]\) c2\(mm'\)**
 - \(a^* = -b \quad b^* = a \)
 - Origin at \(1/4,1/4,z \)

- **Along \([1,0,0]\) p\(2'mg'\)**
 - \(a^* = b \quad b^* = c/2 \)
 - Origin at \(x,0,0 \)

- **Along \([0,1,0]\) \(p_{2\beta},2mg \)**
 - \(a^* = -a \quad b^* = c/2 \)
 - Origin at \(0,y,0 \)
Origin at $\overline{1}$ on $11n'$

Asymmetric unit $0 < x < 1/4; 0 < y < 1; 0 < z < 1/2$

Symmetry Operations

1. $\begin{align*}
T & (1,0,0,0) \\
& (1,0,0,0)' \\
\end{align*}$

2. $\begin{align*}
& (2,1/4,1/4,0) \\
& (2,1/2,1/2,0) \\
\end{align*}$

3. $\begin{align*}
& (3,0,1/2,0) \\
& (3,1/2,1/2,0) \\
\end{align*}$

4. $\begin{align*}
& (4,0,1/2,0) \\
& (4,1/2,0,1/2) \\
\end{align*}$

5. $\begin{align*}
& (5,0,0,0) \\
& (5,0,0,0)' \\
\end{align*}$

6. $\begin{align*}
& (6,n',1/2,1/2) \\
& (6,m_z,1/2,1/2) \\
\end{align*}$

7. $\begin{align*}
& (7,c',0,0,1/2) \\
& (7,m_y,0,1/2,1/2) \\
\end{align*}$

8. $\begin{align*}
& (8,c',0,0,1/2) \\
& (8,m_z,1/2,0,1/2) \\
\end{align*}$

Orthorhombic
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2, y+1/2, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y+1/2, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2, y, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2, y+1/2, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y+1/2, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2, y, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 d ..2</td>
<td>1/4,3/4,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 c ..2</td>
<td>1/4,1/4,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/4,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 b 1/4</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 1/4</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2m'm'
Along [1,0,0] p 2m'g'
Along [0,1,0] p 2m'g'

\(a^* = a \quad b^* = b \)

Along [0,0,1] c2m'm'
Along [1,0,0] p 2m'g'
Along [0,1,0] p 2m'g'

\(a^* = -a \quad b^* = c/2 \)
Orthonormic

57.1.458

Pbcm

mmm

P2/b21/c21/m

Origin

At \(\vec{1} \) on \(b12 \)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Asymmetric Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\vec{1})</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>2</td>
<td>((0,0,1/2))</td>
<td>(0,0,z)</td>
</tr>
<tr>
<td>3</td>
<td>((0,1/2,0))</td>
<td>(0,y,1/4)</td>
</tr>
<tr>
<td>4</td>
<td>((0,1/2,1/2))</td>
<td>(0,y,z)</td>
</tr>
<tr>
<td>5</td>
<td>(\vec{1})</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>6</td>
<td>(m)</td>
<td>(x,y,1/4)</td>
</tr>
<tr>
<td>7</td>
<td>(c)</td>
<td>(x,1/4,z)</td>
</tr>
<tr>
<td>8</td>
<td>(b)</td>
<td>(0,1/2,0)</td>
</tr>
</tbody>
</table>

[Diagram showing lattice and symmetry operations]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w] (2) (\bar{x},y,z+1/2 [u,v,w]) (3) (x,y+1/2,z+1/2 [u,v,w]) (4) (x,y+1/2,z [u,v,w]) (5) (x,y,z [u,v,w]) (6) (x,y,z+1/2 [u,v,w]) (7) (x,y+1/2,z+1/2 [u,v,w]) (8) (x,y+1/2,z [u,v,w])</td>
</tr>
<tr>
<td>4 d ..m</td>
<td>x,y,1/4 [0,0,w] (\bar{x},y,3/4 [0,0,w]) (\bar{x},y+1/2,1/4 [0,0,w]) (x,\bar{y}+1/2,3/4 [0,0,w])</td>
</tr>
<tr>
<td>4 c 2..</td>
<td>x,1/4,0 [u,0,0] (\bar{x},3/4,1/2 [u,0,0]) (\bar{x},3/4,0 [u,0,0]) (x,1/4,1/2 [u,0,0])</td>
</tr>
<tr>
<td>4 b 1</td>
<td>1/2,0,0 [u,v,w] (\bar{1},2,0,1/2 [u,v,w]) (1/2,1,2,1/2 [u,v,w]) (1/2,1,1/2,0 [u,v,w])</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [u,v,w] (0,0,1/2 [u,v,w]) (0,1/2,1/2 [u,v,w]) (0,1/2,0 [u,v,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,01] \(p2mg1'\) Along [1,0,0] \(p_{2b},2mg\) Along [0,1,0] \(p_{2a},2mm\)
\(a^* = -b \quad b^* = a\) \(a^* = -c \quad b^* = b/2\) \(a^* = c/2 \quad b^* = a\)
Origin at 0,0,z Origin at x,1/4,0 Origin at 0,y,1/4
Pbcm1' mmm1' Orthorhombic

57.2.459 P2/b2/c2/m1'

Origin at 1' on b1211'
Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Symmetry Operations

For 1' + set

(1) 1
 (1) 1
(1) 1'
(1) 1'

(2) 2 (0,0,1/2) 0,0,z
 (2) 2 (0,0,1/2)
(2) 2'
(2) 2'

(3) 2 (0,1/2,0) 0,y,1/4
 (3) 2 (0,1/2,0)
(3) 2'
(3) 2'

(4) 2 x,1/4,0
 (4) 2 (2x,0,0,1/2,1/2)
(4) 2
(4) 2

(5) m x,y,1/4
 (5) m x,y,1/4
(5) m'
(5) m'

(6) m (0,0,0)
 (6) m (0,0,0)
(6) m
(6) m

(7) c (0,0,1/2) x,1/4,z
 (7) c (0,0,1/2)
(7) c'
(7) c'

(8) b (0,1/2,0) 0,y,z
 (8) b (0,1/2,0)
(8) b'
(8) b'

(1') 1
 (1') 1
(1') 1'
(1') 1'

(2') 2 (0,0,1/2) 0,0,z
 (2') 2 (0,0,1/2)
(2') 2'
(2') 2'

(3') 2' (0,1/2,0) 0,y,1/4
 (3') 2' (0,1/2,0)
(3') 2''
(3') 2''

(4') 2' x,1/4,0
 (4') 2' (2x,0,0,1/2,1/2)
(4') 2'
(4') 2'

(5') m' x,y,1/4
 (5') m' x,y,1/4
(5') m''
(5') m''

(6') m' (0,0,0)
 (6') m' (0,0,0)
(6') m''
(6') m''

(7') c' (0,0,1/2) x,1/4,z
 (7') c' (0,0,1/2)
(7') c''
(7') c''

(8') b' (0,1/2,0) 0,y,z
 (8') b' (0,1/2,0)
(8') b''
(8') b''

57.2.459 - 1 - 908
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) x, y, z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z [0,0,0]</td>
<td>(6) x, y, z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 d ..m1'</td>
<td>x,y,1/4 [0,0,0]</td>
<td>x,y,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 c 2..1'</td>
<td>x,1/4,0 [0,0,0]</td>
<td>x,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b 11'</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a 11'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,01] p2mg1'
 $a^* = -b$ $b^* = a$
 Origin at 0,0,z
- Along [1,0,0] p2mg1'
 $a^* = -c$ $b^* = b/2$
 Origin at x,0,0
- Along [0,1,0] p2mm1'
 $a^* = c/2$ $b^* = a$
 Origin at 0,y,0
Origin at \(\bar{1} \) on \(b'12_1' \)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \)

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \quad (1 \mid 0,0,0) \\
(2)' & \quad 2' \quad (0,0,1/2) \quad 0,0,z \quad (2_z \mid 0,0,1/2)'
(3)' & \quad 2' \quad (0,1/2,0) \quad 0,y,1/4 \quad (2_y \mid 0,1/2,1/2)'
(4) & \quad 2 \quad x,1/4,0 \quad (2_z \mid 0,1/2,0) \\
(5)' & \quad \bar{1} \quad 0,0,0 \quad (1 \mid 0,0,0)'
(6) & \quad m \quad x,y,1/4 \quad (m_z \mid 0,0,1/2) \\
(7) & \quad c \quad (0,0,1/2) \quad x,1/4,z \quad (m_y \mid 0,1/2,1/2) \\
(8)' & \quad b' \quad (0,1/2,0) \quad 0,y,z \quad (m_z \mid 0,1/2,0)'
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>e 1 (1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>d..m x,y,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,3/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y+1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y+1/2,3/4 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>c 2.. x,1/4,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,3/4,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,3/4,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/4,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>b1 1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>a1 0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,01] p2m1' Along [1,0,0] p2mg Along [0,1,0] p2m'm'
\(\mathbf{a}^* = -\mathbf{b}, \quad \mathbf{b}^* = \mathbf{a}\)
\(\mathbf{a}^* = -\mathbf{c}, \quad \mathbf{b}^* = \mathbf{b}/2\)
\(\mathbf{a}^* = \mathbf{c}/2, \quad \mathbf{b}^* = \mathbf{a}\)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at $\bar{1}$ on $b12_1$;

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4$

Symmetry Operations

(1) 1
(1) $0,0,0$

(2) $2'$ $(0,0,1/2)$ $0,0,z$
(2*) $(0,0,1/2)$

(3) 2 $(0,1/2,0)$ $0,y,1/4$
(2*) $(0,1/2,1/2)$

(4) $2'$ $x,1/4,0$
(4*) $(0,1/2,0)$

(5) $\bar{1}$ $0,0,0$
($\bar{1}$) $0,0,0$

(6) m $x,y,1/4$
(m_z) $(0,0,1/2)$

(7) c' $(0,0,1/2)$ $x,1/4,z$
(m_y) $(0,1/2,1/2)$

(8) b $(0,1/2,0)$ $0,y,z$
(m_z) $(0,1/2,0)$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>8</th>
<th>e</th>
<th>1</th>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) x,y,z+1/2 [u,v,w]</th>
<th>(3) x,y+1/2,z+1/2 [u,v,w]</th>
<th>(4) x,y+1/2,z [u,v,w]</th>
<th>(5) x,y,z [u,v,w]</th>
<th>(6) x,y,z+1/2 [u,v,w]</th>
<th>(7) x,y+1/2,z+1/2 [u,v,w]</th>
<th>(8) x,y+1/2,z [u,v,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>d</td>
<td>.m</td>
<td>x,y,1/4 [0,0,w]</td>
<td>x,y,3/4 [0,0,w]</td>
<td>x,y+1/2,1/4 [0,0,0,w]</td>
<td>x,y+1/2,3/4 [0,0,w]</td>
<td>x,y,1/4 [0,v,w]</td>
<td>x,3/4,1/2 [0,v,w]</td>
<td>x,3/4,0 [0,v,w]</td>
<td>x,1/4,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>2.</td>
<td>x,1/4,0 [0,v,w]</td>
<td>x,3/4,1/2 [0,v,w]</td>
<td>x,1/2,0,1/2 [0,0,0]</td>
<td>x,1/2,0,1/2 [0,0,0]</td>
<td>x,1/4,0 [0,v,w]</td>
<td>x,1/4,0 [0,v,w]</td>
<td>x,1/2,0,1/2 [0,0,0]</td>
<td>x,1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>1</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg1' Along [1,0,0] p2b, 2mg Along [0,1,0] p2mm
a* = -b b* = a a* = -c b* = b/2 a* = c/2 b* = a
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at \(\bar{1} \) on \(b12 \)

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq \frac{1}{4} \]

Symmetry Operations

1. \((1)\) \(\bar{1} \quad (0,0,0)\)

2. \((1)\) \(2 \quad (0,0,1/2) \quad 0,0,z\)

3. \((1)\) \(2' \quad (0,1/2,0) \quad 0,y,1/4\)

4. \((1)\) \(2' \quad x,1/4,0\)

5. \((5)\) \(\bar{1} \quad 0,0,0\)

6. \((5)\) \(m' \quad x,y,1/4\)

7. \((5)\) \(c \quad (0,0,1/2) \quad x,1/4,z\)

8. \((5)\) \(b \quad (0,1/2,0) \quad 0,y,z\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 d .m'</td>
<td>x,y,1/4 [u,v,0]</td>
</tr>
<tr>
<td>4 c 2'</td>
<td>x,1/4,0 [0,v,w]</td>
</tr>
<tr>
<td>4 b 1'</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 1'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg Along [1,0,0] p2b, 2mg Along [0,1,0] p2a, 2mm
a* = -b b* = a a* = -c b* = b/2 a* = c/2 b* = a
Origin at 0,0,z Origin at x,1/4,0 Origin at 0,y,0
Pb’c’m

m’m’m

Orthorhombic

57.6.463

P2'/b'2,'/c'2,/m

Origin at 1 on b’12,

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Symmetry Operations

(1) 1
(1 0,0,0)

(2) 2 (0,0,1/2) 0,0,z
(2z 0,0,1/2)

(3) 2’ (0,1/2,0) 0,y,1/4
(2,0,1/2,1/2)’

(4) 2’ x,1/4,0
(2,0,1/2,0)’

(5) 1
(1 0,0,0)

(6) m x,y,1/4
(mz 0,0,1/2)

(7) c’ (0,0,1/2) x,1/4,z
(m,0,1/2,1/2)’

(8) b’ (0,1/2,0) 0,y,z
(m,0,1/2,0)’
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>4 d ..m</td>
<td>x,y,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,3/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y+1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y+1/2,3/4 [0,0,w]</td>
</tr>
<tr>
<td>4 c 2'..</td>
<td>x,1/4,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,3/4,1/2 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,3/4,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,1/4,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>1/2,0,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,01] p2mg1' Along [1,0,0] p 2'mg' Along [0,1,0] p 2'mm'
\(a^* = -b \) \(b^* = a \) \(a^* = -c \) \(b^* = b/2 \) \(a^* = c/2 \) \(b^* = a \)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Pbc'm'

mm'm'

Orthorhombic

57.7.464

P2/b2₁ /c'2₁ /m'

Origin at 0 on b12₁

Asymmetric unit

\(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \)

Symmetry Operations

(1) \(\bar{1} \) (1 | 0,0,0)
(2) \(2' (0,0,1/2) \quad 0,0,z \)
(3) \(2' (0,1/2,0) \quad 0,y,1/4 \)
(4) \(2 \ x,1/4,0 \)
(5) \(\bar{1} \) 0,0,0
(6) \(m' \ x,y,1/4 \)
(7) \(c' (0,0,1/2) \ x,1/4,z \)
(8) \(b (0,1/2,0) \ 0,y,z \)

\((2z | 0,0,1/2)' \)
\((2y | 0,1/2,1/2)' \)
\((2x | 0,1/2,0) \)
\((m_z | 0,0,1/2)' \)
\((m_y | 0,1/2,1/2)' \)
\((m_x | 0,1/2,0) \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) (x, y, z+1/2 [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(3) (x, y+1/2, z+1/2 [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(4) (x, y+1/2, z [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(5) (x, y, z [u,v,w])</td>
</tr>
<tr>
<td>4 d ..m'</td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 c 2..</td>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>(8) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>(9) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) x,y,1/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>(11) x,y,3/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>(12) x,y+1/2,1/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y+1/2,3/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>(14) x,1/4,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>(15) x,3/4,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>(16) x,3/4,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>(17) x,1/4,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>(18) 1/2,0,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(19) 1/2,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(20) 1/2,1,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(21) 1/2,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(22) 0,0,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(23) 0,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(24) 0,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(25) 0,1/2,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,01]** \(\ p2'm'g\) \(a^* = -b\) \(b^* = a\)
 Origin at 0,0,z
- **Along [1,0,0]** \(\ p_{2b} \2m'g'\) \(a^* = -c\) \(b^* = b/2\)
 Origin at x,1/4,0
- **Along [0,1,0]** \(\ p \ 2'mm'\) \(a^* = -a\) \(b^* = c/2\)
 Origin at 0,y,0

57.7.464 - 2 - 919
Origin at $\bar{1}$ on $b'12_1^\prime$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4$

Symmetry Operations

1. 1

2. $2'$ $(0,0,1/2) \quad 0,0,z$

3. $2 (0,1/2,0) \quad 0,y,1/4$

4. $2' \quad x,1/4,0$

5. $1 \quad 0,0,0$

6. $m' \quad x,y,1/4$

7. $c (0,0,1/2) \quad x,1/4,z$

8. $b' (0,1/2,0) \quad 0,y,z$

57.8.465 - Pb'cm'

57.8.465 m'm'm'

Orthorhombic

57.8.465 P2'/b'/2_1^\prime/c2_1^\prime/m'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>4 d ..m'</td>
<td>x,y,1/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,3/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y+1/2,1/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y+1/2,3/4 [u,v,0]</td>
</tr>
<tr>
<td>4 c 2'..</td>
<td>x,1/4,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,3/4,1/2 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,3/4,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,1/4,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>1/2,0,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,01] p2'mg' Along [1,0,0] p 2'm'g Along [0,1,0] p2a',2m'm'
\(\mathbf{a}^* = -\mathbf{b} \ \mathbf{b}^* = \mathbf{a} \) \(\mathbf{a}^* = -\mathbf{c} \ \mathbf{b}^* = \mathbf{b}/2 \) \(\mathbf{a}^* = \mathbf{c}/2 \ \mathbf{b}^* = \mathbf{a} \)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,1/4
Origin at \(\overline{1} \) on \(b'12_1 \).

Asymmetric unit: \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1; \ 0 \leq z \leq 1/4 \)

Symmetry Operations:

1. \(1 \)
 \((1 | 0,0,0) \)

2. \(2 (0,0,1/2) 0,0,z \)
 \((2z | 0,0,1/2) \)

3. \(2 (0,1/2,0) 0,y,1/4 \)
 \((2z | 0,1/2,1/2) \)

4. \(2 x,1/4,0 \)
 \((2x | 0,1/2,0) \)

5. \(\overline{1} 0,0,0 \)
 \((\overline{1} | 0,0,0) \)
 \((m_z | 0,0,1/2) \)

6. \(m' x,y,1/4 \)
 \((m_z | 0,0,1/2) \)

7. \(c' (0,0,1/2) x,1/4,z \)
 \((m_y | 0,1/2,1/2) \)

8. \(b' (0,1/2,0) 0,y,z \)
 \((m_y | 0,1/2,0) \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1 (1) x,y,z [u,v,w] (5) x,y,z [u,v,w]</td>
<td>(2) x,y,z+1/2 [u,v,w] (6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y+1/2,z+1/2 [u,v,w] (7) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y+1/2,z [u,v,w] (8) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>4 d ..m' x,y,1/4 [u,v,0]</td>
<td>x,y,3/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y+1/2,1/4 [u,v,0]</td>
</tr>
<tr>
<td>4 c 2. x,1/4,0 [u,0,0]</td>
<td>x,3/4,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,3/4,0 [u,0,0]</td>
</tr>
<tr>
<td>4 b 1' 1/2,0,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a 1' 0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,01] p2m'g'
 - a' = -b b' = a
 - Origin at 0,0,z

- Along [1,0,0] p 2m'g'
 - a' = -c b' = b/2
 - Origin at x,0,0

- Along [0,1,0] p 2m'm'
 - a' = c/2 b' = a
 - Origin at 0,y,0
Orthorhombic

P_{2a} bcm

57.10.467

mmm'

$P_{2a}2/b2_1/c2_1/m$

Origin at $\bar{1}$ on $b12_1$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4$

Symmetry Operations

For $(0,0,0)$ + set

(1) 1
(2) 2 $(0,0,1/2)$ $0,0,z$
(3) $2'$ $(0,1/2,0)$ $0,y,1/4$
(4) 2 $(0,1/2,0)$ $x,1/4,0$

For $(1,0,0)'$ + set

(5) $\bar{1}$ $0,0,0$
(6) m $x,y,1/4$
(7) n' $(0,0,1/2)$ $x,1/4,z$
(8) b $(0,1/2,0)$ $0,y,z$

(1) t' $(1,0,0)'
(2) 2'$ $(0,0,1/2)$ $1/2,0,z$
(3) $2'$ $(0,1/2,0)$ $1/2,y,1/4$
(4) $2'$ $(1,0,0)$ $x,1/4,0$

(5) $\bar{1}'$ $1/2,0,0$
(6) a' $(1,0,0)$ $x,y,1/4$
(7) n' $(1,0,1/2)$ $x,1/4,z$
(8) b' $(0,1/2,0)$ $1/2,y,z$

(1) 1
(2) 2 $(0,0,1/2)$ $0,0,1/2$
(3) 2 $(0,1/2,1/2)$

(5) $\bar{1}$ $0,0,0$
(6) m $x,y,1/4$
(7) n' $(0,0,1/2)$ $x,1/4,z$
(8) b $(0,1/2,0)$ $0,y,z$

(1) t' $(1,0,0)'
(2) 2'$ $(0,0,1/2)$ $1/2,0,1/2'$
(3) $2'$ $(1,1/2,1/2')$
(4) $2'$ $(1,0,0)$ $x,1/4,0$

(5) $\bar{1}'$ $1/2,0,0$
(6) a' $(1,0,0)$ $x,y,1/4$
(7) n' $(1,0,1/2)$ $x,1/4,z$
(8) b' $(0,1/2,0)$ $1/2,y,z$

(1) 1
(2) 2 $(0,0,1/2)$ $0,0,1/2$
(3) 2 $(0,1/2,1/2)$

(5) $\bar{1}$ $0,0,0$
(6) m $x,y,1/4$
(7) n' $(0,0,1/2)$ $x,1/4,z$
(8) b $(0,1/2,0)$ $0,y,z$

(1) t' $(1,0,0)'
(2) 2'$ $(0,0,1/2)$ $1/2,0,1/2'$
(3) $2'$ $(1,1/2,1/2')$
(4) $2'$ $(1,0,0)$ $x,1/4,0$

(5) $\bar{1}'$ $1/2,0,0$
(6) a' $(1,0,0)$ $x,y,1/4$
(7) n' $(1,0,1/2)$ $x,1/4,z$
(8) b' $(0,1/2,0)$ $1/2,y,z$
Generators selected (1); t'(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
<th>Muliplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 e 1</td>
<td>(0,0,0) +</td>
<td>(1,0,0) +</td>
</tr>
<tr>
<td>16 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>16 e 1</td>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
<td>(4) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>16 e 1</td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
<td>(6) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>16 e 1</td>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
<td>(8) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>8 d ..m</td>
<td>x,y,1/4 [0,0,w]</td>
<td>x,y,3/4 [0,0,w]</td>
</tr>
<tr>
<td>8 c 2..</td>
<td>x,1/4,0 [u,0,0]</td>
<td>x,3/4,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 b 1'</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 a 1</td>
<td>0,0,0 [u,v,w]</td>
<td>0,0,1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mg1' Along [1,0,0] p2mg1' Along [0,1,0] p c 2mm
a* = -b b* = a a* = -c b* = b/2 a* = c/2 b* = a
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,1/4
Origin at $\overline{1}b_{12}'$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4$

Symmetry Operations

For $(0,0,0) + set$

1. $I^{(0,0,0)}$
2. $2'(0,0,1/2) \quad 0,0,z$
3. $2(0,1/2,0) \quad 0,y,1/4$
4. $2' \quad x,1/4,0$
5. $m \quad x,y,1/4$
6. $n \quad (m_{z}|0,0,1/2)$
7. $c'(0,0,1/2) \quad x,1/4,z$
8. $b \quad (0,1/2,0) \quad 0,y,z$

For $(1,0,0)' + set$

1. $I'(1,0,0)$
2. $2(0,0,1/2) \quad 1/2,0,z$
3. $2'(0,1/2,0) \quad 1/2,y,1/4$
4. $2 \quad (1,0,0) \quad x,1/4,0$
5. $a'(1,0,0) \quad x,y,1/4$
6. $n(1,0,1/2) \quad x,1/4,z$
7. $b'(0,1/2,0) \quad 1/2,y,z$
8. $m_{z}(1,0,1/2)$
Generators selected (1); t'(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(0,0,0)</td>
<td></td>
</tr>
<tr>
<td>(1,0,0)'</td>
<td></td>
</tr>
<tr>
<td>(1,0,0)'</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 e</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z</td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z</td>
<td>(8) x,y+1/2,z [u,v,w]</td>
</tr>
</tbody>
</table>

8 d	x,y,1/4 [0,0,w]
	x,y,3/4 [0,0,w]
	x,y+1/2,1/4 [0,0,w]
	x,y+1/2,3/4 [0,0,w]

8 c	x,1/4,0 [0,v,w]
	x,3/4,1/2 [0,v,w]
	x,3/4,0 [0,v,w]
	x,1/4,1/2 [0,v,w]

8 b	1/2,0,0 [u,v,w]
	1/2,0,1/2 [u,v,w]
	1/2,1/2,1/2 [u,v,w]
	1/2,1/2,0 [u,v,w]

8 a	0,0,0 [0,0,0]
	0,0,1/2 [0,0,0]
	0,1/2,1/2 [0,0,0]
	0,1/2,0 [0,0,0]

Symmetry of Special Projections

- **Along [0,01]**
 - p2mg1'
 - a* = -b
 - b* = a
 - Origin at 0,0,z

- **Along [1,0,0]**
 - p2mg1'
 - a* = -c
 - b* = b/2
 - Origin at x,0,0

- **Along [0,1,0]**
 - p2a, 2mm
 - a* = -a
 - b* = c/2
 - Origin at 0,y,0
Origin at \(\bar{1} \) on \(b12 \)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \)

Symmetry Operations

For \((0,0,0)\) + set

1. \(1 \)
 \((0,0,0)\)

2. \(2 \)
 \((0,0,1/2)\) 0,0,z
 \((2_z,0,0,1/2)\)

3. \(2' \)
 \((0,1/2,0)\) 0,y,1/4
 \((2_{z'}|0,1/2,1/2\)')

4. \(2' \)
 \((x,1/4,0)\)
 \((2_{z'}|0,1/2,0\)')

5. \(\bar{1} \)
 \((0,0,0)\)

6. \(m' \)
 \((x,y,1/4)\)
 \((m_{z'}|0,0,1/2\)')

7. \(c \)
 \((0,0,1/2)\) x,1/4,z
 \((m_{y'}|0,1/2,1/2\)')

8. \(b \)
 \((0,1/2,0)\) 0,y,z
 \((m_{x'}|0,1/2,0\)')

For \((1,0,0)\)' + set

1. \(t' \)
 \((1,0,0)\)

2. \(2' \)
 \((0,0,1/2)\) 1/2,0,z
 \((2_{z'}|1,0,1/2\)')

3. \(2 \)
 \((0,1/2,0)\) 1/2,y,1/4
 \((2_{y'}|1,1/2,1/2\)')

4. \(2 \)
 \((1,0,0)\) x,1/4,0
 \((2_{x'}|1,1/2,0\)')

5. \(\bar{1} \)
 \((1,0,0)\)

6. \(a \)
 \((1,0,0)\) x,y,1/4
 \((m_{z'}|1,0,1/2\)')

7. \(n' \)
 \((1,0,1/2)\) x,1/4,z
 \((m_{y'}|1,1/2,1/2\)')

8. \(b' \)
 \((0,1/2,0)\) 1/2,y,z
 \((m_{x'}|1,1/2,0\)')
Generators selected (1); t'(1,0,0); t(0,0,1); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td></td>
</tr>
<tr>
<td>(1,0,0)' +</td>
<td></td>
</tr>
</tbody>
</table>

16 e 1
(1) x,y,z [u,v,w]
(2) x,y,z+1/2 [u,v,w]
(3) x,y+1/2,z+1/2 [u,v,w]
(4) x,y+1/2,z [u,v,w]
(5) x,y,z [u,v,w]
(6) x,y,z+1/2 [u,v,w]
(7) x,y+1/2,z+1/2 [u,v,w]
(8) x,y+1/2,z [u,v,w]

8 d ..m' x,y,1/4 [u,v,0]
(2) x,y,3/4 [u,v,0]
(3) x,y+1/2,1/4 [u,v,0]
(4) x,y+1/2,3/4 [u,v,0]

8 c 2'.. x,1/4,0 [0,v,w]
(6) x,3/4,1/2 [0,v,w]
(7) x,3/4,0 [0,v,w]
(8) x,1/4,1/2 [0,v,w]

8 b 1/2,0,0 [u,v,w]
(1) 1/2,0,1/2 [u,v,w]
(2) 1/2,1/2,1/2 [u,v,w]
(3) 1/2,1/2,0 [u,v,w]

8 a 1' 0,0,0 [0,0,0]
(1) 0,0,1/2 [0,0,0]
(2) 0,1/2,1/2 [0,0,0]
(3) 0,1/2,0 [0,0,0]

Symmetry of Special Projections

Along [0,01] p 2b 2mg
a* = -c b* = a
Origin at 0,0,z

Along [1,0,0] p 2mg1'
a* = -c b* = b/2
Origin at x,0,0

Along [0,1,0] p 2mm
a* = c/2 b* = a
Origin at 0,y,0
Origin at \(\bar{1} \) on \(b1\bar{2},' \)

Asymmetric unit \(0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq \frac{1}{4} \)

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2' (0,0,1/2) \quad 0,0,z \\
(3) & \quad 2' (0,1/2,0) \quad 0,y,1/4 \\
(4) & \quad 2 \quad x,1/4,0 \\
(5) & \quad 1/2,0,0 \\
(6) & \quad m' x,y,1/4 \\
(7) & \quad c' (0,0,1/2) \quad x,1/4,z \\
(8) & \quad b (0,1/2,0) \quad 0,y,z
\end{align*}
\]

For \((1,0,0)\) + set

\[
\begin{align*}
(1) & \quad t' (1,0,0) \\
(2) & \quad 2 (0,0,1/2) \quad 1/2,0,z \\
(3) & \quad 2 (0,1/2,0) \quad 1/2,y,1/4 \\
(4) & \quad 2' (1,0,0) \quad x,1/4,0 \\
(5) & \quad 1/2,0,0 \\
(6) & \quad a (1,0,0) \quad x,y,1/4 \\
(7) & \quad n (1,0,1/2) \quad x,1/4,z \\
(8) & \quad b' (0,1/2,0) \quad 1/2,y,z
\end{align*}
\]
Generators selected (1); t'(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th></th>
<th>Multiplicity</th>
<th>Coordinates</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>e 1</td>
<td>(1) x, y, z [u, v, w]</td>
<td>(2) x, y, z+1/2 [u, v, w]</td>
<td>(3) x, y+1/2, z+1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x, y, z [u, v, w]</td>
<td>(6) x, y, z+1/2 [u, v, w]</td>
<td>(7) x, y+1/2, z+1/2 [u, v, w]</td>
</tr>
<tr>
<td>8</td>
<td>d ..m'</td>
<td>x, y, 1/4 [u, v, 0]</td>
<td>x, y, 3/4 [u, v, 0]</td>
<td>x, y+1/2, 1/4 [u, v, 0]</td>
</tr>
<tr>
<td>8</td>
<td>c 2-</td>
<td>x, 1/4, 0 [u, 0, 0]</td>
<td>x, 3/4, 1/2 [u, 0, 0]</td>
<td>x, 3/4, 0 [u, 0, 0]</td>
</tr>
<tr>
<td>8</td>
<td>b 1-</td>
<td>1/2, 0, 0 [0, 0, 0]</td>
<td>1/2, 0, 1/2 [0, 0, 0]</td>
<td>1/2, 1/2, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>8</td>
<td>a 1</td>
<td>0, 0, 0 [u, v, w]</td>
<td>0, 0, 1/2 [u, v, w]</td>
<td>0, 1/2, 1/2 [u, v, w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0, 0, 1] \(p_{2a} \) 2m'g' \[\begin{align*} a^* &= -b & b^* &= a \end{align*} \] Origin at 1/4, 0, z
Along [1, 0, 0] \(p 2m1' \) \[\begin{align*} a^* &= -c & b^* &= b/2 \end{align*} \] Origin at x, 0, 0
Along [0, 1, 0] \(p_{2a} \) 2m'm' \[\begin{align*} a^* &= -a & b^* &= c/2 \end{align*} \] Origin at 1/4, y, 1/4

57.13.470 - 2 - 931
Origin at center (2/m)

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

1. 1
 0,0,0

2. 0,0,z
 0,0,0

3. 0,0,1/2
 0,0,1/2

4. 1/2,0,0
 1/2,0,0

5. 1,0,0
 1,0,0

6. x,y,0
 0,0,0

7. x,1/4,0
 x,1/4,0

8. 1/4,1/4,0
 1/4,1/4,0

9. x,1/4,1/4
 x,1/4,1/4

10. 1/4,1/4,1/4
 1/4,1/4,1/4

11. 1/2,1/2,1/2
 1/2,1/2,1/2

12. 1/2,1/2,1/2
 1/2,1/2,1/2

13. 1/2,1/2,1/2
 1/2,1/2,1/2

14. 1/2,1/2,1/2
 1/2,1/2,1/2

15. 1/2,1/2,1/2
 1/2,1/2,1/2

16. 1/2,1/2,1/2
 1/2,1/2,1/2

17. 1/2,1/2,1/2
 1/2,1/2,1/2

18. 1/2,1/2,1/2
 1/2,1/2,1/2

19. 1/2,1/2,1/2
 1/2,1/2,1/2

20. 1/2,1/2,1/2
 1/2,1/2,1/2

21. 1/2,1/2,1/2
 1/2,1/2,1/2
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 h 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x+1/2,y+1/2,z+1/2 [u,v,w] (4) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 g ..m</td>
<td>x,y,0 [0,0,w] x,y,0 [0,0,w] x+1/2,y+1/2,1/2 [0,0,w] x+1/2,y+1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 f ..2</td>
<td>0,1/2,z [0,0,w] 1/2,0,z+1/2 [0,0,w] 0,1/2,z [0,0,w] 1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 e ..2</td>
<td>0,0,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 0,0,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 d ..2/m</td>
<td>0,1/2,1/2 [0,0,w] 1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>2 c ..2/m</td>
<td>0,1/2,0 [0,0,w] 1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 b ..2/m</td>
<td>0,0,1/2 [0,0,w] 1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 a ..2/m</td>
<td>0,0,0 [0,0,w] 1/2,1/2,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2gg1' a* = a b* = b
Along [1,0,0] c_p 2'mm' a* = -c b* = b
Along [0,1,0] c_p 2'mm' a* = c b* = a
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at center (2/m1')

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For 1 + set

(1) 1
(1 | 0,0,0)

(2) 2 0,0,z
(2 | 0,0,0)

(3) 2 (0,1/2,0) 1/4,y,1/4
(2 | 1/2,1/2,1/2)

(4) 2 (1/2,0,0) x,1/4,1/4
(2 | 1/2,1/2,1/2)

(5) m 0,0,0
(m | 0,0,0)

(6) m' x,y,0
(m' | 0,0,0)

(7) n (1/2,0,1/2) x,1/4,z
(n | 1/2,1/2,1/2)

(8) n (0,1/2,1/2) 1/4,y,z
(n | 1/2,1/2,1/2)

For 1' + set

(1) 1'
(1 | 0,0,0')

(2) 2' 0,0,z
(2 | 0,0,0')

(3) 2' (0,1/2,0) 1/4,y,1/4
(2 | 1/2,1/2,1/2')

(4) 2' (1/2,0,0) x,1/4,1/4
(2 | 1/2,1/2,1/2')

(5) m' 0,0,0
(m' | 0,0,0')

(6) m' x,y,0
(m' | 0,0,0')

(7) n' (1/2,0,1/2) x,1/4,z
(n' | 1/2,1/2,1/2')

(8) n' (0,1/2,1/2) 1/4,y,z
(n' | 1/2,1/2,1/2')
Continued 58.2.472 Pnnm1'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions
Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,y,z [0,0,0]</td>
<td>8</td>
<td>h</td>
<td>11'</td>
</tr>
<tr>
<td>x+1/2,y+1/2,z+1/2 [0,0,0]</td>
<td>(3)</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>x+1/2,y+1/2,z+1/2 [0,0,0]</td>
<td>(4)</td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>x,y,z [0,0,0]</td>
<td>(5)</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>x+1/2,y+1/2,z+1/2 [0,0,0]</td>
<td>(6)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>0,1/2,z [0,0,0]</td>
<td>4</td>
<td>f</td>
<td>.21'</td>
</tr>
<tr>
<td>1/2,0,z+1/2 [0,0,0]</td>
<td>(7)</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>1/2,0,z [0,0,0]</td>
<td>(8)</td>
<td>(8)</td>
<td></td>
</tr>
<tr>
<td>0,0,z [0,0,0]</td>
<td>4</td>
<td>e</td>
<td>.21'</td>
</tr>
<tr>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
<td>(9)</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td>1/2,1/2,z [0,0,0]</td>
<td>(10)</td>
<td>(10)</td>
<td></td>
</tr>
<tr>
<td>0,1/2,0 [0,0,0]</td>
<td>2</td>
<td>c</td>
<td>.2/m1'</td>
</tr>
<tr>
<td>1/2,0,1/2 [0,0,0]</td>
<td>(11)</td>
<td>(11)</td>
<td></td>
</tr>
<tr>
<td>1/2,0,1/2 [0,0,0]</td>
<td>(12)</td>
<td>(12)</td>
<td></td>
</tr>
<tr>
<td>0,0,1/2 [0,0,0]</td>
<td>2</td>
<td>b</td>
<td>.2/m1'</td>
</tr>
<tr>
<td>1/2,1/2,0 [0,0,0]</td>
<td>(13)</td>
<td>(13)</td>
<td></td>
</tr>
<tr>
<td>1/2,1/2,0 [0,0,0]</td>
<td>(14)</td>
<td>(14)</td>
<td></td>
</tr>
<tr>
<td>0,0,0 [0,0,0]</td>
<td>2</td>
<td>a</td>
<td>.2/m1'</td>
</tr>
<tr>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>(15)</td>
<td>(15)</td>
<td></td>
</tr>
<tr>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>(16)</td>
<td>(16)</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2gg1'
Along [1,0,0] c 2mm1'
Along [0,1,0] c 2mm1'

\[a^* = a \quad b^* = b \]
\[a^* = b \quad b^* = c \]
\[a^* = c \quad b^* = a \]

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin at center (2'/m)

Asymmetric unit: $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1/2$

Symmetry Operations:

1. 1
 \[(1|0,0,0) \]
2. $2'$
 \[(2_z|0,0,0) \]
3. $2'$
 \[(2_z|1/2,1/2,1/2) \]
4. 2
 \[(1/2,0,0) \]
 \[x,1/4,1/4 \]
5. 1
 \[(0,0,0)' \]
6. m
 \[(m_z|0,0,0) \]
7. n
 \[(m_y|1/2,1/2,1/2) \]
8. n'
 \[(m_z|1/2,1/2,1/2) \]
Generators selected $(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5)$.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 h 1</td>
<td>$(1) x,y,z [u,v,w]$</td>
</tr>
<tr>
<td></td>
<td>$(2) \bar{x},\bar{y},\bar{z} [u,v,w]$</td>
</tr>
<tr>
<td></td>
<td>$(3) x+1/2,y+1/2,z+1/2 [u,v,w]$</td>
</tr>
<tr>
<td></td>
<td>$(4) x+1/2,y+1/2,z+1/2 [u,v,w]$</td>
</tr>
<tr>
<td></td>
<td>$(5) x,y,z [u,v,w]$</td>
</tr>
<tr>
<td></td>
<td>$(6) x,y,z [u,v,w]$</td>
</tr>
<tr>
<td></td>
<td>$(7) x+1/2,y+1/2,z+1/2 [u,v,w]$</td>
</tr>
<tr>
<td></td>
<td>$(8) x+1/2,y+1/2,z+1/2 [u,v,w]$</td>
</tr>
<tr>
<td>4 g ..m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,y+1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,y+1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 f ..2'</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 e ..2'</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>2 d ..2'/m</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 c ..2'/m</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b ..2'/m</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 a ..2'/m</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2gg1'</th>
<th>Along [1,0,0] c2mm</th>
<th>Along [0,1,0] c_p 2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^* = a$ $b^* = b$</td>
<td>$a^* = b$ $b^* = c$</td>
<td>$a^* = c$ $b^* = a$</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>

58.3.473 - 2 - 937
Orthorhombic

Pnnm' 58.4.474 mmm' P2₁/n2₁/n2/m'

Origin at center (2/m')

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

<table>
<thead>
<tr>
<th>(1) 1</th>
<th>(2) 2</th>
<th>(3) 2'</th>
<th>(4) 2'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1</td>
<td>0,0,0)</td>
<td>(2z</td>
<td>0,0,0)</td>
</tr>
<tr>
<td>(5) 2'</td>
<td>(6) m'</td>
<td>(7) n</td>
<td>(8) n</td>
</tr>
<tr>
<td>0,0,0</td>
<td>x,y,0</td>
<td>(1/2,0,1/2)</td>
<td>(0,1/2,1/2)</td>
</tr>
<tr>
<td>(1</td>
<td>0,0,0)'</td>
<td>(m</td>
<td>0,0,0)'</td>
</tr>
</tbody>
</table>

Symmetry Operations

<table>
<thead>
<tr>
<th>(1) 1</th>
<th>(2) 2</th>
<th>(3) 2'</th>
<th>(4) 2'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1</td>
<td>0,0,0)</td>
<td>(2z</td>
<td>0,0,0)</td>
</tr>
<tr>
<td>(5) 2'</td>
<td>(6) m'</td>
<td>(7) n</td>
<td>(8) n</td>
</tr>
<tr>
<td>0,0,0</td>
<td>x,y,0</td>
<td>(1/2,0,1/2)</td>
<td>(0,1/2,1/2)</td>
</tr>
<tr>
<td>(1</td>
<td>0,0,0)'</td>
<td>(m</td>
<td>0,0,0)'</td>
</tr>
</tbody>
</table>
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 h 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2, y+1/2, z+1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2, y+1/2, z+1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(6) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2, y+1/2, z+1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2, y+1/2, z+1/2 [u, v, w]</td>
</tr>
</tbody>
</table>

4 g ..m'	x, y, 0 [u, v, 0]
	x, y, 0 [u, v, 0]
	x+1/2, y+1/2, 1/2 [u, v, 0]
	x+1/2, y+1/2, 1/2 [u, v, 0]
	x+1/2, y+1/2, 1/2 [u, v, 0]

4 f ..2	0, 1/2, z [0, 0, w]
	1/2, 0, z+1/2 [0, 0, w]
	0, 1/2, z [0, 0, w]
	1/2, 0, z+1/2 [0, 0, w]

4 e ..2	0, 0, z [0, 0, w]
	1/2, 1/2, z+1/2 [0, 0, w]
	0, 0, z [0, 0, w]
	1/2, 1/2, z+1/2 [0, 0, w]

| 2 d ..2/m' | 0, 1/2, 1/2 [0, 0, 0] |
| | 1/2, 0, 0 [0, 0, 0] |

| 2 c ..2/m' | 0, 1/2, 0 [0, 0, 0] |
| | 1/2, 0, 1/2 [0, 0, 0] |

| 2 b ..2/m' | 0, 0, 1/2 [0, 0, 0] |
| | 1/2, 1/2, 0 [0, 0, 0] |

| 2 a ..2/m' | 0, 0, 0 [0, 0, 0] |
| | 1/2, 1/2, 1/2 [0, 0, 0] |

Symmetry of Special Projections

Along [0,0,1] p2gg
Along [1,0,0] c_p` 2m`m`

a^* = a b^* = b
a^* = b b^* = c
a^* = c b^* = a

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Orthorhombic

Pn'n'm
58.5.475
m'm'm
P2₁/n'2₁/n'2/m

Origin at center (2/m)

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

(1) 1
(1 | 0,0,0)
(2) 2 0,0,z
(2z | 0,0,0)

(3) 2' (0,1/2,0) 1/4,y,1/4
(2y' | 1/2,1/2,1/2)

(4) 2' (1/2,0,0) x,1/4,1/4
(2z' | 1/2,1/2,1/2)

(5) 1
(1 | 0,0,0)
(6) m x,y,0
(mz | 0,0,0)

(7) n' (1/2,0,1/2) x,1/4,z
(my | 1/2,1/2,1/2)

(8) n' (0,1/2,1/2) 1/4,y,z
(mz | 1/2,1/2,1/2)
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter, Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 h 1</td>
<td>x,y,z [u,v,w]</td>
<td>1 (1)</td>
</tr>
<tr>
<td>8 h 1</td>
<td>x,y,z [u,v,w]</td>
<td>2 (1)</td>
</tr>
<tr>
<td>8 h 1</td>
<td>x,y,z [u,v,w]</td>
<td>3 (1)</td>
</tr>
<tr>
<td>8 h 1</td>
<td>x,y,z [u,v,w]</td>
<td>4 (1)</td>
</tr>
<tr>
<td>8 h 1</td>
<td>x,y,z [u,v,w]</td>
<td>5 (1)</td>
</tr>
<tr>
<td>4 g .m</td>
<td>x,y,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 f .2</td>
<td>0,1/2,2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 e .2</td>
<td>0,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 d .2/m</td>
<td>0,1/2,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 c .2/m</td>
<td>0,1/2,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 b .2/m</td>
<td>0,0,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 a .2/m</td>
<td>0,0,0 [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2gg1'</th>
<th>Along [1,0,0] c 2'mm'</th>
<th>Along [0,1,0] c 2'mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = -c b* = b</td>
<td>a* = c b* = a</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Pnn'\textit{m}'

58.6.476

Orthorhombic

\begin{align*}
\text{mm}'\textit{m}' & \quad P2_1/n2_1'/n'2'm' \\
\end{align*}

\textbf{Origin} at center (2'/m')

\textbf{Asymmetric unit} \quad 0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2

\textbf{Symmetry Operations}

\begin{align*}
(1) & \quad 1 \\
(1) & \quad (0,0,0) \\
(2) & \quad 2', 0,0,z \\
(2) & \quad (0,0,0)' \\
(3) & \quad 2' (0,1/2,0), 1/4,y,1/4 \\
(3) & \quad (0,1/2,1/2)' \\
(4) & \quad 2 (1/2,0,0), x,1/4,1/4 \\
(4) & \quad (1/2,1/2,1/2) \\
(5) & \quad 1 \\
(5) & \quad (0,0,0) \\
(6) & \quad m', x,y,0 \\
(6) & \quad (0,0,0)' \\
(7) & \quad n' (1/2,0,1/2), x,1/4,z \\
(7) & \quad (1/2,1/2,1/2)' \\
(8) & \quad n (0,1/2,1/2), 1/4,y,z \\
(8) & \quad (1/2,1/2,1/2) \\
\end{align*}
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Site Symmetry</th>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 h 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 g ..m'</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
<td>x+1/2,y+1/2,1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 f ..2'</td>
<td>0,1/2,z [u,v,0]</td>
<td>1/2,0,z+1/2 [u,v,0]</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>4 e ..2'</td>
<td>0,0,z [u,v,0]</td>
<td>1/2,1/2,z+1/2 [u,v,0]</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td>2 d ..2'/m'</td>
<td>0,1/2,1/2 [u,v,0]</td>
<td>1/2,0,0 [u,v,0]</td>
<td>1/2,0,1/2 [u,v,0]</td>
</tr>
<tr>
<td>2 c ..2'/m'</td>
<td>0,1/2,0 [u,v,0]</td>
<td>1/2,1/2,0 [u,v,0]</td>
<td>1/2,1/2,0 [u,v,0]</td>
</tr>
<tr>
<td>2 b ..2'/m'</td>
<td>0,0,1/2 [u,v,0]</td>
<td>1/2,1/2,1/2 [u,v,0]</td>
<td>1/2,1/2,1/2 [u,v,0]</td>
</tr>
<tr>
<td>2 a ..2'/m'</td>
<td>0,0,0 [u,v,0]</td>
<td>1/2,1/2,1/2 [u,v,0]</td>
<td>1/2,1/2,1/2 [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'gg' \(a^* = a \) \(b^* = b \) \(c_{2'} \) \(2'mm' \) Along [1,0,0] c \(2mm' \) \(a^* = b \) \(b^* = c \) \(c_2 \) \(2mm' \) Along [0,1,0] c \(2mm' \) \(a^* = -a \) \(b^* = c \) \(c_2 \) \(2mm' \) Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at center (2/m')

Asymmetric unit 0 $\leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

\[
\begin{align*}
\text{(1)} & \quad 1 \\
& \quad (1|0,0,0) \\
\text{(2)} & \quad 2 \quad 0,0,z \\
& \quad (2_z|0,0,0) \\
\text{(3)} & \quad 2 \quad (0,1/2,0) \quad 1/4,y,1/4 \\
& \quad (2_z|1/2,1/2,1/2) \\
\text{(4)} & \quad 2 \quad (1/2,0,0) \quad x,1/4,1/4 \\
& \quad (2_z|1/2,1/2,1/2) \\
\text{(5)} & \quad \bar{1} \quad 0,0,0 \\
& \quad (\bar{1}|0,0,0)' \\
\text{(6)} & \quad m' \quad x,y,0 \\
& \quad (m_z|0,0,0)' \\
\text{(7)} & \quad n' \quad (1/2,0,1/2) \quad x,1/4,z \\
& \quad (m_y|1/2,1/2,1/2)' \\
\text{(8)} & \quad n' \quad (0,1/2,1/2) \quad 1/4,y,z \\
& \quad (m_y|1/2,1/2,1/2)'
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 h 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

4 g ..m'	x,y,0 [u,v,0]
	x,y,0 [u,v,0]
	x+1/2,y+1/2,1/2 [u,v,0]

4 f .2	0,1/2,z [0,0,w]
	1/2,0,z+1/2 [0,0,w]
	0,1/2,z [0,0,w]
	1/2,0,z+1/2 [0,0,w]

4 e .2	0,0,z [0,0,w]
	1/2,1/2,z+1/2 [0,0,w]
	0,0,z [0,0,w]
	1/2,1/2,z+1/2 [0,0,w]

| 2 d ..2/m' | 0,1/2,1/2 [0,0,0] |
| | 1/2,0,0 [0,0,0] |

| 2 c ..2/m' | 0,1/2,0 [0,0,0] |
| | 1/2,0,1/2 [0,0,0] |

| 2 b ..2/m' | 0,0,1/2 [0,0,0] |
| | 1/2,1/2,0 [0,0,0] |

| 2 a ..2/m' | 0,0,0 [0,0,0] |
| | 1/2,1/2,1/2 [0,0,0] |

Symmetry of Special Projections

- Along [0,0,1] p2g'g'
 \[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]
 Origin at 0,0,z

- Along [1,0,0] c 2m'm'
 \[\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \]
 Origin at x,0,0

- Along [0,1,0] c 2m'm'
 \[\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = \mathbf{a} \]
 Origin at 0,y,0
Origin at mm2/n at 1/4,1/4,0 from $\overline{1}$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

1. T
 - 1 (0,0,0)
 - Ti (1/2,1/2,0)

2. 2
 - $0,0,z$
 - $0,0,0$
 - $1/4,0,0$

3. 2
 - $(0,1/2,0)\ 1/4,y,0$
 - $(2z,1/2,1/2,0)$

4. 2
 - $(1/2,0,0)\ x,1/4,0$
 - $(2z,1/2,1/2,0)$

5. T
 - $1/4,1/4,0$
 - $1/2,1/2,0$

6. n
 - $(1/2,1/2,0)\ x,y,0$
 - $(m,z,1/2,1/2,0)$

7. m
 - $x,0,z$
 - $(0,0,0)$

8. m
 - $0,y,z$
 - $(0,0,0)$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td></td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1] c_p,2mm</td>
</tr>
<tr>
<td>a* = a b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
</tr>
</tbody>
</table>

59.1.478 - 2 - 947
Origin at mm2/n1' at 1/4,1/4,0 from 11'

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For 1 + set

1. $I \quad (1|0,0,0)$
2. $2 \quad 0,0,z \quad (2_z|0,0,0)$
3. $2 \quad (0,1/2,0) \quad 1/4,y,0 \quad (2_y|1/2,1/2,0)$
4. $2 \quad (1/2,0,0) \quad x,1/4,0 \quad (2_x|1/2,1/2,0)$
5. $T \quad 1/4,1/4,0 \quad (1|2,1/2,0)$
6. $n \quad (1/2,1/2,0) \quad x,y,0 \quad (m_z|1/2,1/2,0)$
7. $m \quad x,0,z \quad (m_y|0,0,0)$
8. $m' \quad 0,y,z \quad (m_x|0,0,0)$

For 1' + set

1. $t' \quad (1|0,0,0)'$
2. $2' \quad 0,0,z \quad (2_z|0,0,0)'$
3. $2' \quad (0,1/2,0) \quad 1/4,y,0 \quad (2_y|1/2,1/2,0)'$
4. $2' \quad (1/2,0,0) \quad x,1/4,0 \quad (2_x|1/2,1/2,0)'$
5. $t' \quad 1/4,1/4,0 \quad (1|2,1/2,0)'$
6. $n' \quad (1/2,1/2,0) \quad x,y,0 \quad (m_z|1/2,1/2,0)'$
7. $m' \quad x,0,z \quad (m_y|0,0,0)'$
8. $m' \quad 0,y,z \quad (m_x|0,0,0)'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

8 g 11'

(1) x,y,z [0,0,0]
(2) x,y,z [0,0,0]
(3) x+1/2,y+1/2,z [0,0,0]
(4) x+1/2,y+1/2,z [0,0,0]
(5) x+1/2,y+1/2,z [0,0,0]
(6) x+1/2,y+1/2,z [0,0,0]
(7) x,y,z [0,0,0]
(8) x,y,z [0,0,0]

4 f .m.1’ x,0,z [0,0,0] x,0,z [0,0,0]
4 e m..1’ 0,y,z [0,0,0] 0,y,z [0,0,0]
4 d 11’ 1/4,1/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0]
4 c 11’ 1/4,1/4,0 [0,0,0] 3/4,3/4,0 [0,0,0]
2 b mm21’ 0,1/2,z [0,0,0] 1/2,0,z [0,0,0]
2 a mm21’ 0,0,z [0,0,0] 1/2,1/2,z [0,0,0]

Symmetry of Special Projections

Along [0,0,1] c2mm1’
Along [1,0,0] p2mg1’
Along [0,1,0] p2mg1’

\(a^* = a \quad b^* = b \)
\(a^* = b \quad b^* = c \)
\(a^* = -a \quad b^* = c \)

Origin at 0,0,z
Origin at x,1/4,0
Origin at 1/4,y,0
Origin at m'm2'/n at 1/4,1/4,0 from \(\bar{1} \)

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations:

1. \(\bar{1} \)
2. \(2' \) 0,0,z
3. \(2' (0,1/2,0) \) 1/4,y,0
4. \(2 (1/2,0,0) \) x,1/4,0
5. \(\bar{1} \) 1/4,1/4,0
6. \(n (1/2,1/2,0) \) x,y,0
7. \(m \) x,0,z
8. \(m' \) 0,y,z
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

8 g 1

8g 1

(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x+1/2,y+1/2,z [u,v,w] (4) x+1/2,y+1/2,z [u,v,w]
(5) x+1/2,y+1/2,z [u,v,w] (6) x+1/2,y+1/2,z [u,v,w] (7) x,y,z [u,v,w] (8) x,y,z [u,v,w]

4 f .m. x,0,z [0,v,0] x,0,z [0,v,0] x+1/2,1/2,z [0,v,0] x+1/2,1/2,z [0,v,0]
4 e m'. 0,y,z [0,v,w] 0,y,z [0,v,w] 1/2,y+1/2,z [0,v,w] 1/2,y+1/2,z [0,v,w]
4 d 1 1/4,1/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 1/4,3/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0]
4 c 1 1/4,1/4,0 [0,0,0] 3/4,3/4,0 [0,0,0] 1/4,3/4,0 [0,0,0] 3/4,1/4,0 [0,0,0]
2 b m'm2' 0,1/2,z [0,v,0] 1/2,0,z [0,v,0]
2 a m'm2' 0,0,z [0,v,0] 1/2,1/2,z [0,v,0]

Symmetry of Special Projections

Along [0,0,1] cₚₚ2'mm' Along [1,0,0] p2mg Along [0,1,0] p2mg1'
a* = -b b* = a a* = b b* = c a* = -a b* = c
Origin at 0,0,z Origin at x,1/4,0 Origin at 1/4,y,0
Origin at mm2/n' at 1/4,1/4,0 from $\overline{1}$

Asymmetric unit $0 \leq x \leq 1/2$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1/2$

Symmetry Operations

(1) $\overline{1}$
(2) $2\overline{2}$ 0,0,z
(3) $2'$ (0,1/2,0) 1/4,y,0
(4) $2'$ (1/2,0,0) x,1/4,0
(5) $\overline{1}$ 1/4,1/4,0
(6) n' (1/2,1/2,0) x,y,0
(7) m x,0,z
(8) m 0,y,z

Orthorhombic

Pmmn' mmn' 59.4.481
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y+1/2,z [u,v,w]</td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
<td>(8) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 f .m.</td>
<td>x,0,z [0,v,0]</td>
<td>x,0,z [0,v,0]</td>
<td>x+1/2,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>4 e m..</td>
<td>0,y,z [u,0,0]</td>
<td>0,y,z [u,0,0]</td>
<td>1/2,y+1/2,z [u,0,0]</td>
</tr>
<tr>
<td>4 d 1</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
<td>3/4,3/4,1/2 [0,0,0]</td>
<td>1/4,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c 1</td>
<td>1/4,1/4,0 [0,0,0]</td>
<td>3/4,3/4,0 [0,0,0]</td>
<td>1/4,3/4,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b mm2</td>
<td>0,1/2,z [0,0,0]</td>
<td>1/2,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a mm2</td>
<td>0,0,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm Along [1,0,0] p2mg1' Along [0,1,0] p2mg1'
\(a^* = a\) \(b^* = b\) \(a^* = b\) \(b^* = c\) \(a^* = -a\) \(b^* = c\)
Origin at 0,0,z Origin at x,1/4,0 Origin at 1/4,y,0
Orthorhombic

Origin at m'm'2/n at 1/4,1/4,0 from \(\bar{1} \)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

1. \(1 \)

 \[
 \begin{align*}
 (1) & \quad 1 \\
 (1 | 0,0,0) & \\
 \end{align*}
 \]

2. \(2 \)

 \[
 \begin{align*}
 (2) & \quad 0,0,z \\
 (2z | 0,0,0) & \\
 \end{align*}
 \]

3. \(2' \)

 \[
 \begin{align*}
 (3) & \quad (0,1/2,0) \quad 1/4,0,0 \quad (2,|1/2,1/2,0) \\
 & \quad (2z | 1/2,1/2,0)' & \quad (2,|1/2,1/2,0)' \\
 \end{align*}
 \]

4. \(2' \)

 \[
 \begin{align*}
 (4) & \quad (1/2,0,0) \quad x,1/4,0 \\
 & \quad (2,|1/2,1/2,0) & \quad (2,|1/2,1/2,0)' \\
 \end{align*}
 \]

5. \(\bar{1} \)

 \[
 \begin{align*}
 (5) & \quad 1/4,1/4,0 \\
 (1 | 1/2,1/2,0) & \\
 \end{align*}
 \]

6. \(n \)

 \[
 \begin{align*}
 (6) & \quad (1/2,1/2,0) \quad x,y,0 \\
 & \quad (mz | 1/2,1/2,0) \\
 \end{align*}
 \]

7. \(m' \)

 \[
 \begin{align*}
 (7) & \quad m',x,0,z \\
 & \quad (m | 0,0,0)' \\
 \end{align*}
 \]

8. \(m' \)

 \[
 \begin{align*}
 (8) & \quad m',0,y,z \\
 & \quad (m | 0,0,0)' \\
 \end{align*}
 \]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g</td>
<td>1</td>
</tr>
</tbody>
</table>

(1) x,y,z [u,v,w]
(2) x+1/2,y+1/2,z [u,v,w]
(3) x+1/2,y+1/2,z [u,v,w]
(4) x+1/2,y+1/2,z [u,v,w]

(5) x+1/2,y+1/2,z [u,v,w]
(6) x+1/2,y+1/2,z [u,v,w]
(7) x,y,z [u,v,w]
(8) x,y,z [u,v,w]

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1] c_p 2m' m'</td>
</tr>
<tr>
<td>a* = a b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
</tr>
</tbody>
</table>
Origin at mm'2'/n' at 1/4,1/4,0 from \(\bar{1} \)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \)

Symmetry Operations

1. \(\bar{1} \) (1 0,0,0) \(\bar{1} \) (1 0,0,0)
2. \(2' \) 0,0,z 0,0,0')
3. \(2' (0,1/2,0) 1/4,y,0 (2z,1/2,1/2,0) \)
4. \(2 (1/2,0,0) x,1/4,0 (2z,1/2,1/2,0) \)
5. \(\bar{1} 1/4,1/4,0 (1/2,1/2,0) \)
6. \(n' (1/2,1/2,0) x,y,0 (m_z,1/2,1/2,0)' \)
7. \(m' x,0,z (m_y,0,0,0)' \)
8. \(m 0,y,z (m_z,0,0,0) \)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(4) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(8) x,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2'mm'</th>
<th>Along [1,0,0]</th>
<th>p2mg1'</th>
<th>Along [0,1,0]</th>
<th>p2'mg'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = -a</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,1/4,0</td>
<td></td>
<td>Origin at 1/4,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at $m'm'2/n'$ at $1/4,1/4,0$ from $\overline{1}'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

1. $1 (1|0,0,0)$
2. $2 (0,0,z)$
 $(2_z|0,0,0)$
3. $2 (0,1/2,0) \quad 1/4,y,0$
 $(2_{y,1/2,1/2,0})$
4. $2 (1/2,0,0) \quad x,1/4,0$
 $(2_z|1/2,1/2,0)$
5. $\overline{1}' \quad 1/4,1/4,0$
 $(\overline{1} | 1/2,1/2,0)'$
6. $n' (1/2,1/2,0) \quad x,y,0$
 $(m_z|1/2,1/2,0)'$
7. $m' \quad x,0,z$
 $(m_y|0,0,0)'$
8. $m' \quad 0,y,z$
 $(m_z|0,0,0)'$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td></td>
</tr>
<tr>
<td>4 f .m.'</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>4 e m'.</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 d .1</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c .1</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b m'm2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 a m'm2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2m'g'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,1/4,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>p2m'g'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -a</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 1/4,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at mm2/n at 1/4,1/4,0 from \(\overline{1} \)

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

For \((0,0,0) + \) set

1. \(1 \)
 \((1|0,0,0)\)

2. \(2\)
 \((0,0,z)\)
 \((2_z|0,0,0)\)

3. \(2\)
 \((0,1/2,0)\)
 \((1/4,y,0)\)
 \((2_y|1/2,1/2,0)\)

4. \(2\)
 \((1/2,0,0)\)
 \((x,1/4,0)\)
 \((2_x|1/2,1/2,0)\)

5. \(\overline{1}\)
 \((1/4,1/4,0)\)
 \((1/2,1/2,0)\)

6. \(n\)
 \((1/2,1/2,2,0)\)
 \((x,y,0)\)
 \((m_2|1/2,1/2,0)\)

7. \(m\)
 \((x,0,z)\)
 \((m_y|0,0,0)\)

8. \(m\)
 \((0,y,z)\)
 \((m_x|0,0,0)\)

For \((0,0,1) + \) set

1. \(t'\)
 \((0,0,1)\)
 \((1|0,0,1)\)

2. \(2'\)
 \((0,0,1)\)
 \((0,0,z)\)
 \((2_z|0,0,1)'\)

3. \(2'\)
 \((0,1/2,0)\)
 \((1/4,y,1/2)\)
 \((2_y|1/2,1/2,1)'\)

4. \(2'\)
 \((1/2,0,0)\)
 \((x,1/4,1/2)\)
 \((2_x|1/2,1/2,1)'\)

5. \(\overline{1}\)
 \((1/4,1/4,1/2)\)
 \((1/2,1/2,1)'\)

6. \(n'\)
 \((1/2,1/2,2,0)\)
 \((x,y,1/2)\)
 \((m_2|1/2,1/2,1)'\)

7. \(c'\)
 \((0,0,1)\)
 \((x,0,z)\)
 \((m_y|0,0,1)'\)

8. \(c'\)
 \((0,0,1)\)
 \((0,y,z)\)
 \((m_x|0,0,1)'\)
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g</td>
<td>(0,0,0) + (0,0,1)</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x',y',z' [u',v',w']</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+1/2,y+1/2,z' [u',v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x+1/2,y'+1/2,z' [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z' [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x+1/2,y+1/2,z' [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 f.m.</td>
<td>x,0,z [0,v,0]</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 e.m.</td>
<td>0,y,z [u,0,0]</td>
<td>(2) x',y',z' [u',v',w']</td>
</tr>
<tr>
<td>8 d 1'</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
<td>(3) x+1/2,y+1/2,z' [u',v,w]</td>
</tr>
<tr>
<td>8 c 1</td>
<td>1/4,1/4,0 [u,v,w]</td>
<td>(4) x+1/2,y'+1/2,z' [u,v,w]</td>
</tr>
<tr>
<td>4 b mm2</td>
<td>0,1/2,z [0,0,0]</td>
<td>(5) x+1/2,y+1/2,z' [u,v,w]</td>
</tr>
<tr>
<td>4 a mm2</td>
<td>0,0,z [0,0,0]</td>
<td>(6) x+1/2,y+1/2,z' [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1' a* = a b* = b
Along [1,0,0] p2mg1' a* = b b* = c
Along [0,1,0] p2mg1' a* = -a b* = c

Origin at 0,0,z Origin at x,1/4,0 Origin at 1/4,y,0
Origin at m’m2’/n at 1/4,1/4,0 from \(\overline{T} \)

Asymmetric unit

\[0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/2 \]

Symmetry Operations

For \((0,0,0) + \) set

1. \(1 \quad (1|0,0,0)\)
2. \(2' \quad 0,0,z\) \((2_z|0,0,0)' \)
3. \(2' \quad (0,1/2,0) \quad 1/4,y,0\) \((2_z|1/2,1/2,0)' \)
4. \(2 \quad (1/2,0,0) \quad x,1/4,0\) \((2_z|1/2,1/2,0) \)
5. \(\overline{T} \quad 1/4,1/4,0\)
6. \((\overline{T}|1/2,1/2,0)' \)
7. \(m \quad x,0,z\) \((m_z|0,0,0) \)
8. \(m' \quad 0,y,z\) \((m_z|0,0,0)' \)

For \((0,0,1)' + \) set

1. \(t' \quad (0,0,1)\)
2. \((1,0,0)' \)
3. \(2 \quad (0,1/2,0) \quad 1/4,y,1/2\) \((2_z|1/2,1/2,1) \)
4. \(2' \quad (1/2,0,0) \quad x,1/4,1/2\) \((2_z|1/2,1/2,1)' \)
5. \(\overline{T} \quad 1/4,1/4,1/2\)
6. \((\overline{T}|1/2,1/2,1)' \)
7. \(c' \quad (0,0,1) \quad x,0,z\) \((m_z|0,0,0)' \)
8. \(c \quad (0,0,1) \quad 0,y,z\) \((m_z|0,0,1) \)
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity,</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>Wyckoff letter,</td>
<td>(0,0,1)' +</td>
</tr>
<tr>
<td>Site Symmetry.</td>
<td>(0,0,0) +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) x ,y ,z [u,v,w]</th>
<th>(3) x+1/2,y+1/2,z [u,v,w]</th>
<th>(4) x+1/2,y+1/2,z [u,v,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 g</td>
<td>x,y,z [u,v,w]</td>
<td></td>
<td>x+1/2,1/2,1/2 [0,v,w]</td>
<td>x+1/2,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(5) x+1/2,y+1/2,z</td>
<td>1/2,y+1/2,z [0,v,w]</td>
<td>1/2,y+1/2,z [0,v,w]</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>(6) x+1/2,y+1/2,z</td>
<td>1/2,y+1/2,z [0,v,w]</td>
<td>1/2,y+1/2,z [0,v,w]</td>
</tr>
<tr>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] c2mm1'</th>
<th>Along [1,0,0] p2mg</th>
<th>Along [0,1,0] p2mg1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = b b* = c</td>
<td>a* = -a b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,1/4,0</td>
<td>Origin at 1/4,y,0</td>
</tr>
</tbody>
</table>
Origin at m'm'2/n at 1/4,1/4,0 from m

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1 0,0,0
1 0,0,0
1/4,1/4,0
1/2,1/2,0

1/4,1/4,1/2
1/2,1/2,1/2

(1) 1
(2) 2 0,0,z
(2) 0,0,0
(3) 2' (0,1/2,0) 1/4,y,0
(2) 1/2,1/2,0)
(4) 2' (1/2,0,0) x,1/4,0
(2) 1/2,1/2,0)

(5) 1/4,1/4,0
(6) n (1/2,1/2,0) x,y,0
(6) 1/2,1/2,0)
(7) m' x,0,z
(7) 0,0,0')
(8) m' 0,y,z
(8) 0,0,0')

For (0,0,1) + set

1 0,0,1
1 0,0,1
1/4,1/4,1/2
1/2,1/2,1/2

x,y,0
x,0,z
x,0,z
x,0,z

(1) t' (0,0,1)
(2) 2' (0,0,1) 0,0,z
(2) 0,0,1')
(3) 2 (0,1/2,0) 1/4,y,1/2
(3) 1/2,1/2,1)
(4) 2 (1/2,0,0) x,1/4,1/2
(4) 1/2,1/2,1)

(5) 1/4,1/4,1/2
(6) n' (1/2,1/2,0) x,y,1/2
(6) 1/2,1/2,1)
(7) c (0,0,1) x,0,z
(7) 0,0,1)
(8) c (0,0,1) 0,y,z
(8) 0,0,1)
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,0,0) + (0,0,1) +</td>
</tr>
<tr>
<td>16 g 1</td>
<td></td>
</tr>
<tr>
<td>(1) (x,y,z [u,v,w])</td>
<td>(2) (x,y,z, [u,v,w])</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) (x+1/2, y+1/2, z [u,v,w])</td>
<td>(6) (x+1/2, y+1/2, z [u,v,w])</td>
</tr>
<tr>
<td>8 f .m'.</td>
<td>(x,0,z [u,0,w])</td>
</tr>
<tr>
<td>8 e m'.</td>
<td>(0,y,z [0,v,w])</td>
</tr>
<tr>
<td>8 d (\bar{T})</td>
<td>(1/4,1/4,1/2 [0,0,0])</td>
</tr>
<tr>
<td>8 c (\bar{T})</td>
<td>(1/4,1/4,0 [u,v,w])</td>
</tr>
<tr>
<td>4 b m'm'2</td>
<td>(0,1/2,z [0,0,w])</td>
</tr>
<tr>
<td>4 a m'm'2</td>
<td>(0,0,z [0,0,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] c2mm1'</th>
<th>Along [1,0,0] p2m'g'</th>
<th>Along [0,1,0] p2v, 2m'g'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a) (b^* = b)</td>
<td>(a^* = b) (b^* = c)</td>
<td>(a^* = -a) (b^* = c)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,1/4,1/4</td>
<td>Origin at 1/4,y,0</td>
</tr>
</tbody>
</table>
Origin at $\bar{1}$ on 1c1

Asymmetric unit: $0 \leq x < 1/2$; $0 \leq y < 1/2$; $0 \leq z \leq 1/2$

Symmetry Operations:

1. 1
 $(1 | 0,0,0)$

2. 2 (0,0,1/2)
 $1/4,1/4,z$
 $(2 | 1/2,1/2,1/2)$

3. 2
 $0,y,1/4$
 $(2 | 0,0,1/2)$

4. 2 (1/2,0,0)
 $x,1/4,0$
 $(2 | 1/2,1/2,0)$

5. $\bar{1}$
 $(1 | 0,0,0)$

6. n (1/2,1/2,0)
 $x,y,1/4$
 $(m_2 | 1/2,1/2,1/2)$

7. c (0,0,1/2)
 $x,0,z$
 $(m_y | 0,0,1/2)$

8. b (0,1/2,0)
 $1/4,y,z$
 $(m_z | 1/2,1/2,0)$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
</table>
| 8 d 1 | (1) x,y,z [u,v,w]
 | (2) x+1/2,y+1/2,z+1/2 [u,v,w]
 | (3) x,y,z+1/2 [u,v,w]
 | (4) x+1/2,y+1/2,z [u,v,w]
 | (5) x,y,z [u,v,w]
 | (6) x+1/2,y+1/2,z+1/2 [u,v,w]
 | (7) x,y,z+1/2 [u,v,w]
 | (8) x+1/2,y+1/2,z [u,v,w] |
| 4 c .2. | 0,y,1/4 [0,v,0]
 | 1/2,y+1/2,3/4 [0,v,0]
 | 0,y,3/4 [0,v,0]
 | 1/2,y+1/2,1/4 [0,v,0] |
| 4 b 1 | 0,1/2,0 [u,v,w]
 | 1/2,0,1/2 [u,v,w]
 | 0,1/2,1/2 [u,v,w]
 | 1/2,0,0 [u,v,w] |
| 4 a 1 | 0,0,0 [u,v,w]
 | 1/2,1/2,1/2 [u,v,w]
 | 0,0,1/2 [u,v,w]
 | 1/2,1/2,0 [u,v,w] |

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] c_p 2'mm'</th>
<th>Along [1,0,0] p_{2b}. 2m'g'</th>
<th>Along [0,1,0] p_{2b}. 2m'g'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = -b b' = a</td>
<td>a' = -c b' = b/2</td>
<td>a' = -a b' = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,1/4,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Pbcn1'
$60.2.489$

mmm1'
$P2_1/b2/c2\overline{1}/n1'$

Orthorhombic

Origin at $\bar{1}1'$ on $1c11'$

Asymmetric unit
$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $1'$ set

- $1'$, $(1' | 0,0,0)$
- $2'$, $(0,0,1/2)$, $1/4,1/4,z$
- $2'$, $(1/2,0,0)$, $x,1/4,0$
- $3'$, $(0,0,1/2)$, $x,0,z$
- $4'$, $(0,1/2,0)$, $1/4,y,z$

For $1' + set$

- $(1 | 0,0,0)$
- $(2 | 0,0,1/2)$, $1/4,1/4,z$
- $(2 | 1/2,1/2,1/2)$
- $(3 | 0,0,1/2)$, $x,0,z$
- $(4 | 0,0,1/2)$, $x,1/4,0$

- $(5 | 0,0,0)$
- $(6 | 1/2,1/2,0)$, $x,1/4$
- $(7 | 0,0,1/2)$, $y,1/4$
- $(8 | 1/2,1/2,0)$, $1/4,y,z$

- $(1' | 0,0,0)$
- $(2' | 0,0,1/2)$, $1/4,1/4,z$
- $(2' | 1/2,1/2,1/2)$
- $(3' | 0,0,1/2)$, $x,0,z$
- $(4' | 1/2,0,0)$, $x,1/4,0$

- $(5' | 0,0,0)$
- $(6' | 1/2,1/2,0)$, $x,1/4$
- $(7' | 0,0,1/2)$, $x,0,z$
- $(8' | 0,1/2,0)$, $1/4,y,z$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [0,0,0]</td>
<td>8</td>
<td>(2) x+1/2,y+1/2,z+1/2 [0,0,0]</td>
<td>1</td>
</tr>
<tr>
<td>(3) x,y,z+1/2 [0,0,0]</td>
<td></td>
<td>(4) x+1/2,y+1/2,z-</td>
<td>1' +</td>
</tr>
<tr>
<td>(5) x,y,z-</td>
<td></td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(6) x+1/2,y+1/2,z+1/2</td>
<td>(7) x,y,z+1/2 [0,0,0]</td>
<td>(8) x+1/2,y+1/2,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(8) x+1/2,y+1/2,z</td>
<td></td>
<td>[0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1'
Along [1,0,0] p 2mg1'
Along [0,1,0] p 2mg1'

a* = a b* = b c* = b/2
a* = -a b* = c/2 c* = c/2

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin at \(\bar{1} \) on 1c1

Asymmetric unit: \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \)

Symmetry Operations:

1. \(1 \) \((0,0,0) \)
2. \(2' (0,0,1/2) \) \(1/4,1/4,1/2 \) \((2\,z,1/2,1/2,1/2)' \)
3. \(2' \) \(0,0,1/4 \) \((2,0,0,1/2)' \)
4. \(2 \) \((1/2,0,0) \) \(x,1/4,0 \) \((2,1/2,1/2,0) \)
5. \(\bar{1} \) \((0,0,0) \)
6. \(n (1/2,1/2,0) \) \(x,y,1/4 \) \((m,1/2,1/2,1/2) \)
7. \(c (0,0,1/2) \) \(x,0,z \) \((m_y,0,1/2) \)
8. \(b' (0,1/2,0) \) \(1/4,y,z \) \((m_z,1/2,1/2,0)' \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th></th>
<th>Coordinates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
<td>(4) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z+1/2 [u,v,w]</td>
<td>(8) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>4 c .2′</td>
<td>0,y,1/4 [u,0,w]</td>
<td>1/2,y+1/2,3/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c_{p,2mm} Along [1,0,0] p 2mg Along [0,1,0] p_{2b}, 2m′g′
\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \] \[\mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = \mathbf{b}/2 \] \[\mathbf{a}^* = -\mathbf{a} \quad \mathbf{b}^* = \mathbf{c}/2 \]
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at \(\overline{1} \) on 1c'1

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

1. \(\bar{1} \)
 - \((1\bar{1}|0,0,0) \)
 - \((1\bar{1}|0,0,0)' \)

2. \(2' \)
 - \((0,0,1/2) \)
 - \((1/2,1/2,1/2)' \)

3. \(2 \)
 - \((0,y,1/4) \)
 - \((2,z|0,0,1/2) \)

4. \(2' \)
 - \((1/2,0,0) \)
 - \((x,1/4,0) \)

5. \(\bar{1} \)
 - \((0,0,0) \)
 - \((1/2,1/2,1/2)' \)

6. \(n \)
 - \((1/2,1/2,0) \)
 - \((x,y,1/4) \)
 - \((m_z|1/2,1/2,1/2) \)

7. \(c' \)
 - \((0,0,1/2) \)
 - \((x,0,z) \)
 - \((m_y|0,0,1/2)' \)

8. \(b \)
 - \((0,1/2,0) \)
 - \((1/4,y,z) \)
 - \((m_z|1/2,1/2,0) \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w] (2) x+1/2,y+1/2,z+1/2 [u,v,w] (3) x,y,z+1/2 [u,v,w] (4) x+1/2,y+1/2,z [u,v,w] (5) x,y,z [u,v,w] (6) x+1/2,y+1/2,z+1/2 [u,v,w] (7) x,y,z+1/2 [u,v,w] (8) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>c_p 2m'm'</td>
</tr>
<tr>
<td>a^* = a</td>
<td>b^* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>p_4b 2m'g'</td>
</tr>
<tr>
<td>a^* = -c</td>
<td>b^* = b/2</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
<tr>
<td>Along [0,1,0]</td>
<td>p 2mg</td>
</tr>
<tr>
<td>a^* = -a</td>
<td>b^* = c/2</td>
</tr>
<tr>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at $\bar{1}$ on $1c1$

Asymmetric unit \[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

1. $1 (0,0,0)$
2. $2 (0,0,1/2) \quad 1/4,1/4,z$
3. $2' \quad 0,y,1/4$
4. $2' (1/2,0,0) \quad x,1/4,0$
5. $\bar{1} (0,0,0)$
6. $n' (1/2,1/2,2,0) \quad x,y,1/4$
7. $c (0,0,1/2) \quad x,0,z$
8. $b (0,1/2,0) \quad 1/4,y,z$

Orthorhombic

Pbcn' 60.5.492

mmm' 60.5.492 /b2'/c2'/n'
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z+1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1] c2mm</td>
</tr>
<tr>
<td>Along [1,0,0] p2b, 2mg</td>
</tr>
<tr>
<td>Along [0,1,0] p2b, 2mg</td>
</tr>
<tr>
<td>a^* = a b^* = b</td>
</tr>
<tr>
<td>a^* = -c b^* = b/2</td>
</tr>
<tr>
<td>a^* = -a b^* = c/2</td>
</tr>
</tbody>
</table>

60.5.492 - 2 - 975
Pb'c'n
60.6.493

m'm'm
P2₁/b'2'/c'2/, n

Orthorhombic

Origin at 1 on 1c'1

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2 (0,0,1/2) 1/4,1/4,z
(2z | 1/2,1/2,1/2)

(3) 2' 0,y,1/4
(2y | 0,0,1/2)'

(4) 2' (1/2,0,0) x,1/4,0
(2x | 1/2,1/2,0)'

(5) 1
(1 | 0,0,0)

(6) n (1/2,1/2,0) x,y,1/4
(mz | 1/2,1/2,1/2)

(7) c' (0,0,1/2) x,0,z
(my | 0,0,1/2)'

(8) b' (0,1/2,0) 1/4,y,z
(mz | 1/2,1/2,0)'
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>4 c .2'</td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y+1/2,3/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y+1/2,1/4 [u,0,w]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>0,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [u,v,w]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c, 2mm' Along [1,0,0] p 2'mg' Along [0,1,0] p 2'mg
a' = a b' = b a' = -c b' = b/2 a' = -a b' = c/2
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at 1 on 1c'1

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

(1) 1
 (1 | 0,0,0)

(2) 2' (0,0,1/2) 1/4,1/4,z
 (2 | 1/2,1/2,1/2)'

(3) 2' 0,y,1/4
 (2 | 0,0,1/2)'

(4) 2 (1/2,0,0) x,1/4,0
 (2 | 1/2,1/2,0)

(5) 1
 (1 | 0,0,0)

(6) n' (1/2,1/2,0) x,y,1/4
 (m z | 1/2,1/2,1/2)'

(7) c' (0,0,1/2) x,0,z
 (m y | 0,0,1/2)'

(8) b (0,1/2,0) 1/4,y,z
 (m z | 1/2,1/2,0)
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 (d) 1 ((1) \ x,y,z [u,v,w]) ((2) \ x+1/2,y+1/2,z+1/2 [u,v,w]) ((3) \ x,y,z+1/2 [u,v,w]) ((4) \ x+1/2,y+1/2,z [u,v,w]) ((5) \ x,y,z [u,v,w]) ((6) \ x+1/2,y+1/2,z+1/2 [u,v,w]) ((7) \ x,y,z+1/2 [u,v,w]) ((8) \ x+1/2,y+1/2,z [u,v,w])</td>
<td></td>
</tr>
<tr>
<td>4 (c) .2' (0,y,1/4 [u,0,w]) (1/2,y+1/2,3/4 [u,0,w]) (0,y,3/4 [u,0,w]) (1/2,y+1/2,1/4 [u,0,w])</td>
<td></td>
</tr>
<tr>
<td>4 (b) (1) (0,1/2,0 [u,v,w]) (1/2,0,1/2 [u,v,w]) (0,1/2,1/2 [u,v,w]) (1/2,0,0 [u,v,w])</td>
<td></td>
</tr>
<tr>
<td>4 (a) (\overline{1}) (0,0,0 [u,v,w]) (1/2,1/2,1/2 [u,v,w]) (0,0,1/2 [u,v,w]) (1/2,1/2,0 [u,v,w])</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along \([0,0,1]\)** \(c'2\text{mm}' \)
 - \(a^* = a \) \(b^* = b \)
 - Origin at \(0,0,z \)

- **Along \([1,0,0]\)** \(p_{2a}, 2\text{mg} \)
 - \(a^* = -c \) \(b^* = b/2 \)
 - Origin at \(x,1/4,0 \)

- **Along \([0,1,0]\)** \(p \ 2'\text{mg}' \)
 - \(a^* = a \) \(b^* = c/2 \)
 - Origin at \(0,y,0 \)
Pb'cn'
60.8.495

m'mm'
P2₁/b'/b'2/c₂, '/n'

Origin at 11 on 1c1

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

(1) T
(1 0,0,0)

(2) 2' (0,0,1/2) 1/4,1/4,z
(2_{z} 1/2,1/2,1/2')

(3) 2 0,y,1/4
(2_{y} 0,0,1/2)

(4) 2' (1/2,0,0) x,1/4,0
(2_{x} 1/2,1,2,0')

(5) T
(1 0,0,0)

(6) n' (1/2,1/2,0) x,y,1/4
(m_{z} 1/2,1/2,1/2')

(7) c (0,0,1/2) x,0,z
(m_{y} 0,0,1/2)

(8) b' (0,1/2,0) 1/4,y,z
(m_{x} 1/2,1/2,0')
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w] (2) x+1/2,y+1/2,z+1/2 [u,v,w] (3) x,y,z+1/2 [u,v,w] (4) x+1/2,y+1/2,z [u,v,w] (5) x,y,z [u,v,w] (6) x+1/2,y+1/2,z+1/2 [u,v,w] (7) x,y,z+1/2 [u,v,w] (8) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>4 c .2</td>
<td>0,y,1/4 [0,v,0] 1/2,y+1/2,3/4 [0,v,0] 0,y,3/4 [0,v,0] 1/2,y+1/2,1/4 [0,v,0]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>0,1/2,0 [u,v,w] 1/2,0,1/2 [u,v,w] 0,1/2,1/2 [u,v,w] 1/2,0,0 [u,v,w]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [u,v,w] 1/2,1/2,1/2 [u,v,w] 0,0,1/2 [u,v,w] 1/2,1/2,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2' mm' Along [1,0,0] p 2'm'g Along [0,1,0] p2v, 2m'g'
\(a^* = -b, b^* = a \) \(a^* = -c, b^* = b/2 \) \(a^* = -a, b^* = c/2 \)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Orthorhombic

\[\text{Pb}'c'n' \]

\[\text{m}'m'm' \]

60.9.496

\[\text{P}2_1/b'2/c'2/n' \]

Origin at \(\overline{1} \) on \(1c'1 \)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

1. \(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \)
2. \(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \)
3. \(\frac{3}{2}, \frac{3}{2}, \frac{1}{2} \)
4. \(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \)
5. 0, 0, 0
6. 0, 0, 0
7. 0, 0, 0
8. 0, 0, 0

\(\overline{1} \)

\(\overline{1} \)

\(\overline{1} \)

\(\overline{1} \)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p 2m'g'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -c</td>
<td>b* = b/2</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>p 2m'g'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -a</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Pbca

Orthorhombic

61.1.497

mmm

P2₁/b2₁/c2₁/a

Origin at \(\overline{1} \)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

\[
\begin{align*}
(1) \ & \begin{pmatrix} 1 \\ 0,0,0 \end{pmatrix} \\
(1) \ & \begin{pmatrix} 0,0,0 \end{pmatrix} \\
(5) \ & \begin{pmatrix} \overline{1} \\ 0,0,0 \end{pmatrix} \\
(1) \ & \begin{pmatrix} 0,0,0 \end{pmatrix} \\
(2) \ & \begin{pmatrix} 2 \ 0,0,1/2 \end{pmatrix} \ 1/4,0,z \\
(2) \ & \begin{pmatrix} 2 \ 1/2,0,1/2 \end{pmatrix} \\
(6) \ & \begin{pmatrix} a \ 1/2,0,0 \end{pmatrix} \ x,y,1/4 \\
(6) \ & \begin{pmatrix} m_z \ 1/2,0,1/2 \end{pmatrix} \\
(3) \ & \begin{pmatrix} 2 \ 0,1/2,0 \end{pmatrix} \ 0,y,1/4 \\
(2) \ & \begin{pmatrix} 2 \ 0,1/2,1/2 \end{pmatrix} \\
(7) \ & \begin{pmatrix} c \ 0,0,1/2 \end{pmatrix} \ x,1/4,z \\
(7) \ & \begin{pmatrix} m_y \ 0,1/2,1/2 \end{pmatrix} \\
(4) \ & \begin{pmatrix} 2 \ 1/2,0,0 \end{pmatrix} \ x,1/4,0 \\
(4) \ & \begin{pmatrix} 2 \ 1/2,1/2,0 \end{pmatrix} \\
(8) \ & \begin{pmatrix} b \ 0,1/2,0 \end{pmatrix} \ 1/4,y,z \\
(8) \ & \begin{pmatrix} m_x \ 1/2,1/2,0 \end{pmatrix}
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>0,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**
 $a^* = -b$
 $b^* = a/2$
 Origin at $1/4,0,z$

- **Along [1,0,0]**
 $a^* = -c$
 $b^* = b/2$
 Origin at $x,1/4,0$

- **Along [0,1,0]**
 $a^* = -a$
 $b^* = c/2$
 Origin at $0,y,1/4$
Origin at 1'1'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For 1 + set

(1) 1
(1 | 0,0,0)

(2) 2 (0,0,1/2) 1/4,0,z
(2z | 1/2,0,1/2)

(3) 2 (0,1/2,0) 0,y,1/4
(2y | 0,1/2,1/2)

(4) 2 (1/2,0,0) x,1/4,0
(2x | 1/2,1/2,0)

(5) 1
(0,0,0)

(6) a (1/2,0,0) x,y,1/4
(mz | 1/2,0,1/2)

(7) c (0,0,1/2) x,1/4,z
(my | 0,1/2,1/2)

(8) b (0,1/2,0) 1/4,y,z
(mx | 1/2,1/2,0)

For 1' + set

(1) 1'
(1 | 0,0,0')

(2) 2' (0,0,1/2) 1/4,0,z
(2z | 1/2,0,1/2')

(3) 2' (0,1/2,0) 0,y,1/4
(2y | 0,1/2,1/2')

(4) 2' (1/2,0,0) x,1/4,0
(2x | 1/2,1/2,0')

(5) 1'
(0,0,0')

(6) a' (1/2,0,0) x,y,1/4
(mz | 1/2,0,1/2')

(7) c' (0,0,1/2) x,1/4,z
(my | 0,1/2,1/2')

(8) b' (0,1/2,0) 1/4,y,z
(mx | 1/2,1/2,0)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry, Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1' +</td>
<td></td>
</tr>
<tr>
<td>8 c 11'</td>
<td></td>
</tr>
<tr>
<td>(1) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(2) x+1/2,y,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(3) x+1/2,y+1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(4) x+1/2,y+1/2,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(5) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(6) x+1/2,y,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(7) x,y+1/2,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(8) x,y+1/2,z+1/2 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p 2mg1'</th>
<th>Along [1,0,0]</th>
<th>p 2mg1'</th>
<th>Along [0,1,0]</th>
<th>p 2mg1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -b</td>
<td>b* = a/2</td>
<td>a* = -c</td>
<td>b* = b/2</td>
<td>a* = -a</td>
<td>b* = c/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Pb’ca
61.3.499
Orthorhombic

m′mm
P2₁/b’2₁/c’2₁/a

Origin at \(\overline{1} \)

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

(1) 1
\[(1 \mid 0,0,0) \]

(2) \(\overline{1} \)
\[(0,0,1/2) \]
\[1/4,0,z \]

(3) \(\overline{2} \)
\[(0,1/2,0) \]
\[0,y,1/4 \]

(4) \(\overline{2} \)
\[(1/2,0,0) \]
\[x,1/4,0 \]

(5) \(\overline{1} \)
\[(0,0,0) \]

(6) \(\overline{1} \)
\[(1/2,0,0) \]
\[x,y,1/4 \]

(7) \(\overline{1} \)
\[(0,0,1/2) \]
\[x,1/4,z \]

(8) \(\overline{1} \)
\[(0,1/2,0) \]
\[1/4,y,z \]
Continued 61.3.499 Pb'ca

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

4 b 1	0,0,1/2 [0,0,0]
	1/2,0,0 [0,0,0]
	0,1/2,0 [0,0,0]
	1/2,1/2,1/2 [0,0,0]

4 a 1	0,0,0 [0,0,0]
	1/2,0,1/2 [0,0,0]
	0,1/2,1/2 [0,0,0]
	1/2,1/2,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p2 2mg
a* = -b b* = a/2
Origin at 0,0,z

Along [1,0,0] p 2mg
a* = -c b* = b/2
Origin at x,0,0

Along [0,1,0] p2 2m'g'
a* = -a b* = c/2
Origin at 0,y,0
Origin at \(\bar{1} \)

Asymmetric unit: \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1/2 \)

Symmetry Operations:

1. \((1 \bar{0} 0,0,0) \)
2. \(2 (0,0,1/2) \ 1/4,0,z \)
 \((2z, 1/2,0,1/2) \)
3. \(2' (0,1/2,0) \ 0,y,1/4 \)
 \((2y, 0,1/2,1/2)' \)
4. \(2' (1/2,0,0) \ x,1/4,0 \)
 \((2x, 1/2,1/2,0)' \)
5. \((5 \bar{1} 0,0,0) \)
6. \(a (1/2,0,0) \ x,y,1/4 \)
 \((mz, 1/2,0,1/2) \)
7. \(c' (0,0,1/2) \ x,1/4,z \)
 \((my, 0,1/2,1/2)' \)
8. \(b' (0,1/2,0) \ 1/4,y,z \)
 \((mz, 1/2,1/2,0)' \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinate</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
<td>(4) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
<td>(8) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
</tbody>
</table>

| 4 b 1 | 0,0,1/2 [u,v,w] | 1/2,0,0 [u,v,w] | 0,1/2,0 [u,v,w] | 1/2,1/2,1/2 [u,v,w] |
| 4 a 1 | 0,0,0 [u,v,w] | 1/2,0,1/2 [u,v,w] | 0,1/2,1/2 [u,v,w] | 1/2,1/2,0 [u,v,w] |

Symmetry of Special Projections

Along [0,0,1] p 2m'g' Along [1,0,0] p 2'mg' Along [0,1,0] p 2'm'g

\(\mathbf{a}^* = -\mathbf{b} \quad \mathbf{b}^* = \mathbf{a}/2 \) \(\mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = \mathbf{b}/2 \) \(\mathbf{a}^* = -\mathbf{a} \quad \mathbf{b}^* = \mathbf{c}/2 \)

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at $\bar{1}$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

1. 1
2. $(0,0,1/2) \quad 1/4,0,z$
3. $(0,1/2,0) \quad 0,y,1/4$
4. $(1/2,0,0) \quad x,1/4,0$

5. $\bar{1}$
6. $(1/2,0,0) \quad x,y,1/4$
7. $(0,0,1/2) \quad x,1/4,z$
8. $(0,1/2,0) \quad 1/4,y,z$

$Pb'c'a'$

$m'm'm'$

Orthorhombic

$P2_1/b'2_1/c'2_1/a'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w] (2) x+1/2, y+1/2, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y+1/2, z+1/2 [u,v,w] (4) x+1/2, y+1/2, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w] (6) x+1/2, y+1/2, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y+1/2, z+1/2 [u,v,w] (8) x+1/2, y+1/2, z [u,v,w]</td>
</tr>
</tbody>
</table>

4 b 1' 0,0,1/2 [0,0,0] 1/2,0,0 [0,0,0] 0,1/2,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]

4 a 1' 0,0,0 [0,0,0] 1/2,0,1/2 [0,0,0] 0,1/2,1/2 [0,0,0] 1/2,1/2,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p 2m'g' Along [1,0,0] p 2m'g' Along [0,1,0] p 2m'g'

\(\mathbf{a}^* = -\mathbf{b} \quad \mathbf{b}^* = \mathbf{a}/2 \) \(\mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = \mathbf{b}/2 \) \(\mathbf{a}^* = -\mathbf{a} \quad \mathbf{b}^* = \mathbf{c}/2 \)

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at $\bar{1}$ on 12,1

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1$

Symmetry Operations

(1) 1

 (1 | 0,0,0)

(2) 2

 (0,0,1/2)
 $1/4,0,z$

 $2_z | 1/2,0,1/2$

(3) 2

 (0,1/2,0)
 $0,y,0$

 $2_y | 0,1/2,0$

(4) 2

 (1/2,0,0)
 $x,1/4,1/4$

 $2_x | 1/2,1/2,1/2$

(5) $\bar{1}$

 (0,0,0)

(6) a

 (1/2,0,0)
 $x,y,1/4$

 $(m_z | 1/2,0,1/2)$

(7) m

 $x,1/4,z$

 $(m_y | 0,1/2,0)$

(8) n

 (0,1/2,1/2)
 $1/4,y,z$

 $(m_x | 1/2,1/2,1/2)$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w] (2) x+1/2,y,z+1/2 [u,v,w] (3) x,y+1/2,z [u,v,w] (4) x+1/2,y+1/2,z+1/2 [u,v,w] (5) x,y,z [u,v,w] (6) x+1/2,y+1/2,z+1/2 [u,v,w] (7) x,y+1/2,z [u,v,w] (8) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 c .m.</td>
<td>x,1/4,z [0,v,0] x+1/2,3/4,z+1/2 [0,v,0] x,3/4,z [0,v,0] x+1/2,1/4,z+1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 b 1</td>
<td>0,0,1/2 [u,v,w] 1/2,0,0 [u,v,w] 0,1/2,1/2 [u,v,w] 1/2,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>4 a 1</td>
<td>0,0,0 [u,v,w] 1/2,0,1/2 [u,v,w] 0,1/2,0 [u,v,w] 1/2,1/2,1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p 2bb 2mg Along [1,0,0] c p 2mm Along [0,1,0] p 2g 1'
\(a^* = -b \quad b^* = a/2 \) \(a^* = b \quad b^* = c \) \(a^* = c \quad b^* = a \)
Origin at 1/4,0,z Origin at x,1/4,1/4 Origin at 0,y,0
Origin at \(1'\) on 12;11'

Asymmetric unit: 0 ≤ \(x\) ≤ 1/2; 0 ≤ \(y\) ≤ 1/4; 0 ≤ \(z\) ≤ 1

Symmetry Operations

For 1 + set

1. (1 | 0,0,0)
2. (2 | 0,0,1/2) 1/4,0,z
3. (2 | 0,1/2,0) 0,y,0
4. (2 | 1/2,0,0) x,1/4,1/4
5. (1 | 0,0,0)'
6. (6 | a | 1/2,0,0) x,y,1/4
7. (7 | m | x,1/4,z)
8. (8 | n | 0,1/2,1/2) 1/4,y,z

For 1' + set

1. (1' | 0,0,0)'
2. (2' | 0,0,1/2) 1/4,0,z
3. (2' | 0,1/2,0) 0,y,0
4. (2' | 1/2,0,0) x,1/4,1/4
5. (1' | 0,0,0)''
6. (6' | a' | 1/2,0,0) x,y,1/4
7. (7' | m' | x,1/4,z)
8. (8' | n' | 0,1/2,1/2) 1/4,y,z

\(62.2.503\) - 1 - 996
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>d</td>
<td>11'</td>
</tr>
<tr>
<td>(1) x,y,z</td>
<td>[0,0,0]</td>
<td>(2) x+1/2,y+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(3) x,y+1/2,z</td>
<td>[0,0,0]</td>
<td>(4) x+1/2,y+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(5) x,y,z</td>
<td>[0,0,0]</td>
<td>(6) x+1/2,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(7) x,y+1/2,z</td>
<td>[0,0,0]</td>
<td>(8) x+1/2,y+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>.m.1'</td>
</tr>
<tr>
<td>(1) x,1/4,z</td>
<td>[0,0,0]</td>
<td>(2) x+1/2,3/4,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(3) x,3/4,z</td>
<td>[0,0,0]</td>
<td>(4) x+1/2,1/4,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>11'</td>
</tr>
<tr>
<td>(0,0,1/2)</td>
<td>[0,0,0]</td>
<td>(1/2,0,0) [0,0,0]</td>
</tr>
<tr>
<td>(0,1/2,1/2)</td>
<td>[0,0,0]</td>
<td>(1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>11'</td>
</tr>
<tr>
<td>(0,0,0)</td>
<td>[0,0,0]</td>
<td>(1/2,0,1/2) [0,0,0]</td>
</tr>
<tr>
<td>(0,1/2,0)</td>
<td>[0,0,0]</td>
<td>(1/2,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p 2mg1' a* = -b b* = a/2
Along [1,0,0] c 2mm1' a* = b b* = c
Along [0,1,0] p 2gg1' a* = c b* = a
Origin at 0,0,z
Origin at x,1/4,1/4
Origin at 0,y,0
Pn'ra

62.3.504

Origin at \(\overline{1} \) on 121

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{4}; \quad 0 \leq z \leq 1 \]

Symmetry Operations

1. \(\overline{1} \)
2. \(2' \) (0,0,1/2) 1/4,0,z
3. \(2' \) (0,1/2,0) 0,y,0
4. \(2' \) (1/2,0,0) x,1/4,1/4
5. \(\overline{1} \)
6. a (1/2,0,0) x,y,1/4
7. m x,1/4,z
8. n' (0,1/2,1/2) 1/4,y,z

\[(2')_{1/2,0,1/2} \]

\[(2')_{0,1/2,0} \]

\[(2')_{1/2,1/2,1/2} \]

\[(m_x)_{1/2,0,1/2} \]

\[(m_y)_{0,1/2,0} \]

\[(m_z)_{1/2,1/2,1/2} \]
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w] (2) x+1/2,y,z+1/2 [u,v,w] (3) x,y+1/2,z [u,v,w] (4) x+1/2,y+1/2,z+1/2 [u,v,w] (5) x,y,z [u,v,w] (6) x+1/2,y,z+1/2 [u,v,w] (7) x,y+1/2,z [u,v,w] (8) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 c .m.</td>
<td>x,1/4,z [0,v,0] x+1/2,3/4,z+1/2 [0,0,0] x,3/4,z [0,v,0] x+1/2,1/4,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 b 1'</td>
<td>0,0,1/2 [0,0,0] 1/2,0,0 [0,0,0] 0,1/2,1/2 [0,0,0] 1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 a 1'</td>
<td>0,0,0 [0,0,0] 1/2,0,1/2 [0,0,0] 0,1/2,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2_{2}2mg

\(a^{*} = -b \quad b^{*} = a/2 \)

Origin at 0,0,z

Along [1,0,0] c 2mm

\(a^{*} = b \quad b^{*} = c \)

Origin at x,1/4,1/4

Along [0,1,0] p2gg1'

\(a^{*} = c \quad b^{*} = a \)

Origin at 0,y,0
Origin at \(\overline{1} \) on 12_1

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1 \]

Symmetry Operations

1. \(T \quad 0,0,0 \)
 \((T | 0,0,0) \)
2. \(2' (0,0,1/2) \quad 1/4,0,z \)
 \((2_z | 1/2,0,1/2)' \)
3. \(2 (0,1/2,0) \quad 0,y,0 \)
 \((2_y | 0,1/2,0) \)
4. \(2' (1/2,0,0) \quad x,1/4,1/4 \)
 \((2_x | 1/2,1/2,1/2)' \)
5. \(\bar{T} \quad 0,0,0 \)
 \((\bar{T} | 0,0,0)' \)
6. \(a (1/2,0,0) \quad x,y,1/4 \)
 \((m_z | 1/2,0,1/2) \)
7. \(m' \quad x,1/4,z \)
 \((m_y | 0,1/2,0)' \)
8. \(n (0,1/2,1/2) \quad 1/4,y,z \)
 \((m_x | 1/2,1/2,1/2) \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(2) x + 1/2, y, z + 1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(3) x, y + 1/2, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(4) x + 1/2, y + 1/2, z + 1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(6) x + 1/2, y, z + 1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(7) x, y + 1/2, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(8) x + 1/2, y + 1/2, z + 1/2 [u, v, w]</td>
</tr>
</tbody>
</table>

4 c .m'	x, 1/4, z [u, 0, w]
	x + 1/2, 3/4, z + 1/2 [u, 0, w]
	x, 3/4, z [u, 0, w]
	x + 1/2, 1/4, z + 1/2 [u, 0, w]

4 b ̅1'	0, 0, 1/2 [0, 0, 0]
	1/2, 0, 0 [0, 0, 0]
	0, 1/2, 1/2 [0, 0, 0]
	1/2, 1/2, 0 [0, 0, 0]

4 a ̅1'	0, 0, 0 [0, 0, 0]
	1/2, 0, 1/2 [0, 0, 0]
	0, 1/2, 0 [0, 0, 0]
	1/2, 1/2, 1/2 [0, 0, 0]

Symmetry of Special Projections

Along [0, 0, 1] p_2\text{y}. 2m'g'
\[\mathbf{a}^* = -\mathbf{b} \quad \mathbf{b}^* = a/2 \]

Origin at 0, 0, z

Along [1, 0, 0] c_p. 2'mm'
\[\mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = \mathbf{b} \]

Origin at x, 1/4, 1/4

Along [0, 1, 0] p 2gg
\[\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = \mathbf{a} \]

Origin at 0, y, 0
Origin at $\bar{1}$ on $12\bar{1}1$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1$

Symmetry Operations

(1) 1
 $(1 \mid 0,0,0)$

(5) $\bar{1}$
 $0,0,0$
 $(\bar{1} \mid 0,0,0)'$

(2) 2 $(0,0,1/2)$ $1/4,0,z$
 $(2_z \mid 1/2,0,1/2)$

(6) a' $(1/2,0,0)$ $x,y,1/4$
 $(m_z \mid 1/2,0,1/2)'$

(3) $2'$ $(0,1/2,0)$ $0,y,0$
 $(2_y \mid 0,1/2,0)'$

(7) m $x,1/4,z$
 $(m_y \mid 0,1/2,0)$

(4) $2'$ $(1/2,0,0)$ $x,1/4,1/4$
 $(2_x \mid 1/2,1/2,1/2)'$

(8) n $(0,1/2,1/2)$ $1/4,y,z$
 $(m_x \mid 1/2,1/2,1/2)$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 c .m.</td>
<td>x,1/4,z [0,v,0]</td>
</tr>
<tr>
<td>4 b 1'</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a 1'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p 2mg Along [1,0,0] c_p, 2'mm' Along [0,1,0] p 2gg1'
a* = -b b* = a/2 a* = b b* = c a* = c b* = a
Origin at 0,0,z Origin at x,1/4,1/4 Origin at 0,y,0
Origin at \(\overline{1} \) on 12,1

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1 \]

Symmetry Operations

1. \(\overline{1} \) \(\overline{1} \) \(0,0,0 \)
2. \((0,0,1/2) \) \((0,1/2,0) \) \((1/2,0,0) \)
3. \((0,0,1/2) \) \((0,1/2,0) \) \((1/2,0,0) \)
4. \((1/2,0,0) \) \(x,1/4,1/4 \)
5. \((0,0,0) \) \((0,1/2,0) \) \((1/2,0,0) \)
6. \((0,1/2,0) \) \(x,y,1/4 \)
7. \((0,1/2,0) \) \((1,0,1/2) \)
8. \((0,1/2,0) \) \((1,0,1/2) \)

Pn'm'a

Origin on 12,1

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1 \]

Symmetry Operations

1. \(\overline{1} \) \(\overline{1} \) \(0,0,0 \)
2. \((0,0,1/2) \) \((0,1/2,0) \) \((1/2,0,0) \)
3. \((0,0,1/2) \) \((0,1/2,0) \) \((1/2,0,0) \)
4. \((1/2,0,0) \) \(x,1/4,1/4 \)
5. \((0,0,0) \) \((0,1/2,0) \) \((1/2,0,0) \)
6. \((0,1/2,0) \) \(x,y,1/4 \)
7. \((0,1/2,0) \) \((1,0,1/2) \)
8. \((0,1/2,0) \) \((1,0,1/2) \)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 c .m'</td>
<td>x,1/4,z [u,0,w]</td>
<td>x+1/2,3/4,z+1/2 [u,0,w]</td>
</tr>
<tr>
<td>4 b</td>
<td>0,0,1/2 [u,v,w]</td>
<td>1/2,0,0 [u,v,w]</td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,0 [u,v,w]</td>
<td>1/2,0,1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1]
P_{2b}, 2m'g'
\[a^* = -b \quad b^* = a/2 \]
Origin at 0,0,z

Along [1,0,0]
c 2'm'm'
\[a^* = -c \quad b^* = b \]
Origin at x,1/4,1/4

Along [0,1,0]
p 2'gg'
\[a^* = c \quad b^* = a \]
Origin at 0,y,0
Origin at \(\frac{1}{2}, \frac{1}{2}, 0 \)

Asymmetric unit \(0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{4}; \quad 0 \leq z \leq 1 \)

Symmetry Operations

1. \(\overline{1} \) (1, 0, 0)
 \((1, 0, 0) \)

2. \(2' (0, 0, \frac{1}{2}), 1/4, 0, z \)
 \((2, \frac{1}{2}, 0, \frac{1}{2})' \)

3. \(2' (0, 1/2, 0) \) \(0, y, 0 \)
 \((2, \frac{1}{2}, 0, \frac{1}{2})' \)

4. \(2 (1/2, 0, 0) \) \(x, 1/4, 1/4 \)
 \((2, \frac{1}{2}, 1/2, 1/2) \)

5. \(\overline{1} (0, 0, 0) \)
 \((1, 0, 0) \)

6. \(a' (1/2, 0, 0), x, y, 1/4 \)
 \((m, 1/2, 0, 1/2)' \)

7. \(m' x, 1/4, z \)
 \((m, 1/2, 0, 1/2)' \)

8. \(n (0, 1/2, 1/2) \) \(1/4, y, z \)
 \((m, 1/2, 1/2)' \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) (x,y,z) ([u,v,w]) ((2) \ \bar{x}+1/2,\bar{y},z+1/2) ([u,v,w]) ((3) \ \bar{x},y+1/2,\bar{z}) ([u,v,w]) ((4) x+1/2,y+1/2,\bar{z}+1/2) ([u,v,w]) ((5) \ x,\bar{y},z) ([u,v,w]) ((6) \ x+1/2,y,\bar{z}+1/2) ([u,v,w]) ((7) \ x,\bar{y}+1/2,\bar{z}) ([u,v,w]) ((8) \ \bar{x}+1/2,y+1/2,z+1/2) ([u,v,w])</td>
</tr>
<tr>
<td>4 c .m'</td>
<td>(x,1/4,z) ([u,0,w]) ((2) \ \bar{x}+1/2,3/4,z+1/2) ([u,0,w]) ((3) \ \bar{x},3/4,\bar{z}) ([u,0,w]) ((4) x+1/2,1/4,\bar{z}+1/2) ([u,0,w])</td>
</tr>
<tr>
<td>4 b 1</td>
<td>(0,0,1/2) ([u,v,w]) ((1) \ 0,1/2) ([u,v,w]) ((2) \ 1/2,0,1/2) ([u,v,w]) ((3) \ 0,1/2,0) ([u,v,w]) ((4) \ 1/2,1/2,0) ([u,v,w])</td>
</tr>
<tr>
<td>4 a 1</td>
<td>(0,0,0) ([u,v,w]) ((1) \ 1/2,0,1/2) ([u,v,w]) ((2) \ 0,1/2,0) ([u,v,w]) ((3) \ 1/2,1/2,1/2) ([u,v,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) \(p \ 2'm'g \) Along \([1,0,0]\) \(c_p, \ 2m'm' \) Along \([0,1,0]\) \(p \ 2'gg' \)
\(a^* = -b \quad b^* = a/2\) \(a^* = b \quad b^* = c\) \(a^* = -a \quad b^* = c\)
Origin at \(0,0,z\) Origin at \(x,1/4,1/4\) Origin at \(0,y,0\)
Origin at $\bar{1}$ on 12,1

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1$

Symmetry Operations

(1) $\bar{1}$ (0,0,0) (2) $2' \; (0,0,1/2) \; 1/4,0,z$ (3) $2 \; (0,1/2,0) \; 0,y,0$ (4) $2' \; (1/2,0,0) \; x,1/4,1/4$

(5) $\bar{1}$ 0,0,0 (6) $a' \; (1/2,0,0) \; x,y,1/4$ (7) $m \; x,1/4,z$ (8) $n' \; (0,1/2,1/2) \; 1/4,y,z$

Origin at $\bar{1}$ on 12,1

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1$

Symmetry Operations

(1) $\bar{1}$ (0,0,0) (2) $2' \; (0,0,1/2) \; 1/4,0,z$ (3) $2 \; (0,1/2,0) \; 0,y,0$ (4) $2' \; (1/2,0,0) \; x,1/4,1/4$

(5) $\bar{1}$ 0,0,0 (6) $a' \; (1/2,0,0) \; x,y,1/4$ (7) $m \; x,1/4,z$ (8) $n' \; (0,1/2,1/2) \; 1/4,y,z$

62.8.509 - 1 - 1008
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5)\).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>((1) \ x, y, z [u, v, w]) (\text{Wyckoff letter} \ x, y+1/2, z+1/2 [u, v, w]) (\text{Wyckoff letter} \ x+1/2, y+1/2, z+1/2 [u, v, w]) (\text{Wyckoff letter} \ x, y, z+1/2 [u, v, w]) (\text{Wyckoff letter} \ x+1/2, y, z+1/2 [u, v, w])</td>
</tr>
<tr>
<td>4 c .m.</td>
<td>(x, 1/4, z [0, v, 0]) (x+1/2, 3/4, z+1/2 [0, v, 0]) (x, 3/4, z [0, v, 0]) (x+1/2, 1/4, z+1/2 [0, v, 0])</td>
</tr>
<tr>
<td>4 b 1</td>
<td>(0, 0, 1/2 [u, v, w]) (1/2, 0, 0 [u, v, w]) (0, 1/2, 1/2 [u, v, w]) (1/2, 1/2, 0 [u, v, w])</td>
</tr>
<tr>
<td>4 a 1</td>
<td>(0, 0, 0 [u, v, w]) (1/2, 0, 1/2 [u, v, w]) (0, 1/2, 0 [u, v, w]) (1/2, 1/2, 1/2 [u, v, w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) \(p \ 2'mg'\) \(a^* = -b^* = a/2\) \(\text{Origin at } 0,0,z\)
- Along \([1,0,0]\) \(c \ 2'mm'\) \(a^* = b^* = c\) \(\text{Origin at } x,1/4,1/4\)
- Along \([0,1,0]\) \(p \ 2gg1'\) \(a^* = c^* \ b^* = a\) \(\text{Origin at } 0, y, 0\)
Pn'm'a'
Origin at 1 on 12,1
Asymmetric unit
Symmetry Operations

\[
\begin{align*}
\text{(1) } & \quad 1 \\
& \quad (1 | 0,0,0) \\
\text{(2) } & \quad 2 (0,0,1/2) \\
& \quad (2 | 1/2,0,1/2) \\
\text{(3) } & \quad 2 (0,1/2,0) \\
& \quad (2 | 0,1/2,0) \\
\text{(4) } & \quad 2 (1/2,0,0) \\
& \quad (2 | 1/2,1/2,1/2) \\
\text{(5) } & \quad \overline{1} \\
& \quad (0,0,0) \\
& \quad (0,0,0)' \\
\text{(6) } & \quad a' (1/2,0,0) \\
& \quad (m_z | 1/2,0,1/2)' \\
\text{(7) } & \quad m' x,1/4,z \\
& \quad (m_y | 0,1/2,0)' \\
\text{(8) } & \quad n' (0,1/2,1/2) \\
& \quad (m_z | 1/2,1/2,1/2)' \\
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2, y, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x, y+1/2, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2, y+1/2, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2, y, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x, y+1/2, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2, y+1/2, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 c .m'</td>
<td>x, 1/4, z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2, 3/4, z+1/2 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x, 3/4, z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2, 1/4, z+1/2 [u,0,w]</td>
</tr>
<tr>
<td>4 a 1'</td>
<td>0, 0, 1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2, 0, 0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0, 1/2, 1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2, 1/2, 0 [0,0,0]</td>
</tr>
<tr>
<td>4 b 1'</td>
<td>0, 0, 0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2, 0, 1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0, 1/2, 0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2, 1/2, 1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p 2m'g'
Along [1,0,0] c_p 2m'm'
Along [0,1,0] p 2g'g'

\[\mathbf{a}^* = -\mathbf{b}, \quad \mathbf{b}^* = \mathbf{a}/2 \]

Origin at 0,0,z
Origin at 0,y,0
Origin at (2/m) at 2/mc2,

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(5) T
(1 | 0,0,0)

(2) 2 (0,0,1/2) 0,0,2m
(2 | 0,0,1/2)

(6) m x,y,1/4
(mz | 0,0,1/2)

(7) c (0,0,1/2) x,0,z
(mz | 0,0,1/2)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,2,0)
(1 | 1/2,1/2,2,0)

(5) T
(1 | 1/2,1/2,2,0)

(2) 2 (0,0,1/2) 1/4,1/4,0
(2 | 1/2,1/2,1/2)

(6) n (1/2,1/2,2,0) x,1/4
(mz | 1/2,1/2,1/2)

(7) n (1/2,0,1/2) x,1/4,0
(mz | 1/2,1/2,1/2)

(8) b (0,1/2,0) 1/4,0,1/4
(mz | 1/2,1/2,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 h 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 g ..m</td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 f m..</td>
<td>(9) x,y,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(10) x,y,3/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(11) x,y,1/4 [0,0,w]</td>
</tr>
<tr>
<td>8 e 2..</td>
<td>(12) x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>(13) x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>(14) x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>(15) x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 d 1</td>
<td>(16) 1/4,1/4,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(17) 3/4,3/4,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(18) 3/4,1/4,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(19) 1/4,3/4,0 [u,v,w]</td>
</tr>
<tr>
<td>4 c m2m</td>
<td>(20) 0,y,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(21) 0,y,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b 2/m..</td>
<td>(22) 0,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>(23) 0,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 a 2/m..</td>
<td>(24) 0,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>(25) 0,0,1/2 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections
Along [0,0,1] c2mm1' Along [1,0,0] p2mg1' Along [0,1,0] p2a, 2mm
\[a^* = a \quad b^* = b \]
\[a^* = -c \quad b^* = b/2 \]
\[a^* = c/2 \quad b^* = a/2 \]
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,1/4
Orthorhombic

Cmcm1' 63.2.512

Origin at (2/m1') at 2/mc2,1'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1 (1|0,0,0)
(2) 2 (0,0,1/2) 0,0,z (2z|0,0,1/2)
(3) 2' 0,y,1/4 (2y|0,0,1/2)
(4) 2' x,0,0 (2x|0,0,0)

(5) T 0,0,0 (T|0,0,0)
(6) m x,y,1/4 (mz|0,0,1/2)
(7) c (0,0,1/2) x,0,z (m|0,0,1/2)
(8) m 0,y,z (m|0,0,0)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0) (1|1/2,1/2,0)
(2) 2 (0,0,1/2) 1/4,1/4,z (2z|1/2,1/2,1/2)
(3) 2 (0,1/2,0) 1/4,y,1/4 (2y|1/2,1/2,1/2)
(4) 2 (1/2,0,0) x,1/4,0 (2x|1/2,1/2,0)

(5) T 1/4,1/4,0 (1|1/2,1/2,0)
(6) n (1/2,1/2,0) x,y,1/4 (mz|1/2,1/2,1/2)
(7) n (1/2,0,1/2) x,1/4,z (m|1/2,1/2,1/2)
(8) b (0,1/2,0) 1/4,y,z (m|1/2,1/2,0)

For (0,0,0)' + set

(1) 1' (0,0,0') (1|0,0,0')
(2) 2' (0,0,1/2) 0,0,z (2z|0,0,1/2')
(3) 2' 0,y,1/4 (2y|0,0,1/2')
(4) 2' x,0,0 (2x|0,0,0')

(5) T' 0,0,0 (T|0,0,0')
(6) m' x,y,1/4 (mz|0,0,1/2')
(7) c' (0,0,1/2) x,0,z (m|0,0,1/2')
(8) m' 0,y,z (m|0,0,0')

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0) (1|1/2,1/2,0')
(2) 2' (0,0,1/2) 1/4,1/4,z (2z|1/2,1/2,1/2')
(3) 2' (0,1/2,0) 1/4,y,1/4 (2y|1/2,1/2,1/2')
(4) 2' (1/2,0,0) x,1/4,0 (2x|1/2,1/2,0')

(5) T' 1/4,1/4,0 (1|1/2,1/2,0')
(6) n' (1/2,1/2,0) x,y,1/4 (mz|1/2,1/2,1/2')
(7) n' (1/2,0,1/2) x,1/4,z (m|1/2,1/2,1/2')
(8) b' (0,1/2,0) 1/4,y,z (m|1/2,1/2,0')
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positions</td>
<td>Coordinates</td>
</tr>
<tr>
<td>Coordinates</td>
<td></td>
</tr>
<tr>
<td>Multiplicity</td>
<td></td>
</tr>
<tr>
<td>Wyckoff letter,</td>
<td></td>
</tr>
<tr>
<td>Site Symmetry.</td>
<td></td>
</tr>
</tbody>
</table>

16 h 11' (1) x,y,z [0,0,0] (2) x,y,z+1/2 [0,0,0] (3) x,y,z+1/2 [0,0,0] (4) x,y,z+1/2 [0,0,0] (5) x,y,z [0,0,0] (6) x,y,z+1/2 [0,0,0] (7) x,y,z+1/2 [0,0,0] (8) x,y,z [0,0,0]

8 g .m1' x,y,1/4 [0,0,0] x,y,3/4 [0,0,0] x,y,1/4 [0,0,0] x,y,3/4 [0,0,0]

8 f m..1' 0,y,z [0,0,0] 0,y,z+1/2 [0,0,0] 0,y,z+1/2 [0,0,0] 0,y,z [0,0,0]

8 e 2..1' x,0,0 [0,0,0] x,0,1/2 [0,0,0] x,0,1/2 [0,0,0] x,0,1/2 [0,0,0]

8 d 11' 1/4,1/4,0 [0,0,0] 3/4,3/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0] 1/4,3/4,0 [0,0,0]

4 c m2m1' 0,y,1/4 [0,0,0] 0,y,3/4 [0,0,0]

4 b 2/m..1' 0,1/2,0 [0,0,0] 0,1/2,1/2 [0,0,0]

4 a 2/m..1' 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] c2mm1' Along [1,0,0] p2mg1' Along [0,1,0] p2mm1'

\(a^* = a \) \(b^* = b \)

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at (2/m') at 2/m'c21'

Asymmetric unit

\[0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{4}\]

Symmetry Operations

For (0,0,0) + set

(1) \(\overline{1} \)
 \((1|0,0,0) \)

(2) \(2' \)
 \((0,0,1/2) \)
 \(0,0,z \)
 \((2_z|0,0,1/2)' \)

(3) \(2' \)
 \(0,y,1/4 \)
 \((2_y|0,0,1/2)' \)

(4) \(2 \)
 \(x,0,0 \)
 \((2_x|0,0,0) \)

(5) \(\overline{1} \)
 \(0,0,0 \)
 \((1|0,0,0)' \)

(6) \(m \)
 \(x,y,1/4 \)
 \((m_z|0,0,1/2) \)

(7) \(c \)
 \((0,0,1/2) \)
 \(x,0,z \)
 \((m_y|0,0,1/2) \)

(8) \(m' \)
 \(0,y,z \)
 \((m'_z|0,0,0)' \)

For (1/2,1/2,0) + set

(1) \(t \)
 \((1/2,1/2,2,0) \)
 \((1|1/2,1/2,2,0) \)

(2) \(2' \)
 \((0,0,1/2) \)
 \(1/4,1/4,z \)
 \((2_z|1/2,1/2,1/2)' \)

(3) \(2' \)
 \((0,1/2,0) \)
 \(1/4,y,1/4 \)
 \((2_y|1/2,1/2,1/2)' \)

(4) \(2 \)
 \(x,1/4,0 \)
 \((2_x|1/2,1/2,0) \)

(5) \(\overline{1} \)
 \(1/4,1/4,0 \)
 \((1|1/2,1/2,0)' \)

(6) \(n \)
 \((1/2,1/2,2,0) \)
 \(x,y,1/4 \)
 \((m_z|1/2,1/2,1/2) \)

(7) \(n \)
 \((1/2,0,1/2) \)
 \(x,1/4,z \)
 \((m_y|1/2,1/2,1/2) \)

(8) \(b' \)
 \((0,1/2,0) \)
 \(1/4,y,z \)
 \((m_z|1/2,1/2,0)' \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>16 h</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 g</td>
<td>x,y,1/4 [0,0,w]</td>
</tr>
<tr>
<td>8 f m'</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 e 2</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>8 d 1</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c m'2m</td>
<td>0,y,1/4 [0,0,w]</td>
</tr>
<tr>
<td>4 b 2/m'</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2/m'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1' Along [1,0,0] p2mg Along [0,1,0] p2a' 2m'm'
a* = a b* = b a* = c b* = b/2 a* = c/2 b* = a/2
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Orthorhombic

Cmc'\text{m}

63.4.514

mm'\text{m}

C2'/m2/c'2, '/m

Origin at (2'/m) at 2'/mc'2, '

Asymmetric unit

0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1 | 0,0,0)
(2) 2' \ (0,0,1/2) \ 0,0,z
 (2_z | 0,0,1/2)'
(3) 2 \ 0,y,1/4
 (2_y | 0,0,1/2)
(4) 2' \ x,0,0
 (2_x | 0,0,0)'

(5) \text{\overline{1}} \ 0,0,0
 (1 | 0,0,0)'
(6) m \ x,y,1/4
 (m_z | 0,0,1/2)
(7) c' \ (0,0,1/2) \ x,0,z
 (m_y | 0,0,1/2)'
(8) m \ 0,y,z
 (m_z | 0,0,0)

For (1/2,1/2,0) + set

(1) t \ (1/2,1/2,2,0)
 (1 | 1/2,1/2,2,0)
(2) 2' \ (0,0,1/2) \ 1/4,1/4,z
 (2_z | 1/2,1/2,1,2)'
(3) 2 \ (0,1/2,0) \ 1/4,y,1/4
 (2_y | 1/2,1,2,1/2)
(4) 2' \ (1/2,0,0) \ x,1/4,0
 (2_x | 1/2,1/2,0)'

(5) \text{\overline{1}} \ 1/4,1/4,0
 (1 | 1/2,1/2,2,0)'
(6) n \ (1/2,1/2,2,0) \ x,y,1/4
 (m_z | 1/2,1/2,1/2)
(7) n' \ (1/2,0,1/2) \ x,1/4,z
 (m_y | 1/2,1/2,1/2)'
(8) b \ (0,1/2,0) \ 1/4,y,z
 (m_z | 1/2,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>16 h 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 g .m</td>
<td>x,y,1/4 [0,0,w]</td>
</tr>
<tr>
<td>8 f m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 e 2'..</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>8 d 1</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c m2m</td>
<td>0,y,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b 2'/m..</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2'/m..</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1'
Along [1,0,0] p2mg1'
Along [0,1,0] p2mm

\(a^* = a \) \(b^* = b \)
\(a^* = -c \) \(b^* = b/2 \)
\(a^* = c/2 \) \(b^* = a/2 \)

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin at (2/m) at 2/mc$_2$.

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

1. 1
2. 2 (0,0,1/2) 0,0,z
3. 2' 0,y,1/4
4. 2' x,0,0
5. m' 0,0,0
6. m' x,y,1/4
7. c (0,0,1/2) x,0,z
8. m 0,y,z

For (1/2,1/2,0) + set

1. t (1/2,1/2,0)
2. 2 (0,0,1/2) 1/4,1/4,z
3. 2' (0,1/2,0) 1/4,y,1/4
4. 2' (1/2,0,0) x,1/4,0
5. n' 1/2,1/4,0
6. m' 1/2,1/2,1/2'
7. n 1/2,1/2,1/2'
8. b (0,1/2,0) 1/4,y,z
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 h</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>16</td>
<td>(1/2,1/2,0) +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>(1/2,1/2,0) +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinates</td>
</tr>
<tr>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>(1/2,1/2,0) +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinates</td>
</tr>
<tr>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>(1/2,1/2,0) +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>(1/2,1/2,0) +</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm

<table>
<thead>
<tr>
<th>Origin at 0,0,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
</tr>
<tr>
<td>b* = b</td>
</tr>
</tbody>
</table>

Along [1,0,0] p2mg1' a* = -c b* = b/2

Along [0,1,0] p2a, 2mm a* = c/2 b* = a/2

Origin at 0,0,0

Origin at x,0,0

Origin at 0,y,0
Origin at (2/m') at 2/m'c'2,

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)
(5) 1/2,1/2,0
(1 | 0,0,0)

(2) 2 (0,0,1/2) 0,0,z
(2z | 0,0,1/2)
(6) m x,y,1/4
(mz | 0,0,1/2)

(3) 2' 0,y,1/4
(2'y | 0,0,1/2)
(7) c' (0,0,1/2) x,0,z
(c | 0,0,1/2)

(4) 2' x,0,0
(2'y | 0,0,0)
(8) m' 0,y,z
(mz | 0,0,0)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(1 | 1/2,1/2,0)

(2) 2 (0,0,1/2) 1/4,1/4,z
(2z | 1/2,1/2,1/2)
(6) n (1/2,1/2,0) x,y,1/4
(mz | 1/2,1/2,1/2)

(3) 2' (0,1/2,0) 1/4,y,1/4
(2'y | 1/2,1/2,1/2)
(7) n' (1/2,0,1/2) x,1/4,z
(n | 1/2,1/2,1/2)

(4) 2' (1/2,0,0) x,1/4,0
(2'y | 1/2,1/2,0)
(8) b' (0,1/2,0) 1/4,y,z
(b | 1/2,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td></td>
</tr>
<tr>
<td>(1/2,1/2,0) +</td>
<td></td>
</tr>
</tbody>
</table>

16	h	1	(1) x,y,z [u,v,w]	(2) \(x, y, z + 1/2 [u, v, w]\)	(3) \(x, y, z + 1/2 [u, v, w]\)	(4) \(x, y, z [u, v, w]\)
8	g	.m	x,y,1/4 [0,0,w]	x,y,3/4 [0,0,w]	x,y,1/4 [0,0,w]	x,y,3/4 [0,0,w]
8	f	m'..	0,y,z [0,v,w]	0,y,z+1/2 [0,v,w]	0,y,z+1/2 [0,v,w]	0,y,z [0,v,w]
8	e	2'..	x,0,0 [0,v,w]	x,0,1/2 [0,v,w]	x,0,0 [0,v,w]	x,0,1/2 [0,v,w]
8	d	1	1/4,1/4,0 [u,v,w]	3/4,3/4,1/2 [u,v,w]	3/4,1/4,1/2 [u,v,w]	1/4,3/4,0 [u,v,w]
4	c	m'2'm	0,y,1/4 [0,0,w]	0,y,3/4 [0,0,w]		
4	b	2'/m'..	0,1/2,0 [0,v,w]	0,1/2,1/2 [0,v,w]		
4	a	2'/m'..	0,0,0 [0,v,w]	0,0,1/2 [0,v,w]		

Symmetry of Special Projections

- Along [0,0,1] c2mm1'
 - \(a^* = a\) \(b^* = b\)
 - Origin at 0,0,z
- Along [1,0,0] p2'mg'
 - \(a^* = -c\) \(b^* = b/2\)
 - Origin at x,0,0
- Along [0,1,0] p 2'mm'
 - \(a^* = c/2\) \(b^* = a/2\)
 - Origin at 0,y,0
Cmc'm'

63.7.517

mm'm'

C2/m2/c'2, 'm'

Origin at (2/m) at 2/mc'2,'

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>2</td>
<td>2' (0,0,1/2)</td>
<td>0,0,z</td>
</tr>
<tr>
<td>3</td>
<td>2'</td>
<td>(0,0,1/2)'</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>x,0,0</td>
</tr>
<tr>
<td>5</td>
<td>0,0,0</td>
<td>(0,0,1/2)'</td>
</tr>
<tr>
<td>6</td>
<td>m'</td>
<td>x,y,1/4</td>
</tr>
<tr>
<td>7</td>
<td>c' (0,0,1/2)</td>
<td>x,0,z</td>
</tr>
<tr>
<td>8</td>
<td>m</td>
<td>0,y,z</td>
</tr>
</tbody>
</table>

For (1/2,1/2,0) + set

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>t (1/2,1/2,0)</td>
<td>(1/2,1/2,0)</td>
</tr>
<tr>
<td>2</td>
<td>2' (0,0,1/2)</td>
<td>1/4,1/4,z</td>
</tr>
<tr>
<td>3</td>
<td>2' (0,1/2,0)</td>
<td>1/4,y,1/4</td>
</tr>
<tr>
<td>4</td>
<td>2 (1/2,0,0)</td>
<td>x,1/4,0</td>
</tr>
<tr>
<td>5</td>
<td>1/4,1/4,0</td>
<td>(1/2,1/2,0)'</td>
</tr>
<tr>
<td>6</td>
<td>n' (1/2,1/2,0)</td>
<td>x,1/4,z</td>
</tr>
<tr>
<td>7</td>
<td>n' (1/2,0,1/2)</td>
<td>x,1/4,z</td>
</tr>
<tr>
<td>8</td>
<td>b (0,1/2,0)</td>
<td>1/4,0,0</td>
</tr>
</tbody>
</table>

63.7.517 - 1 - 1024
Generators selected

\((1): t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5)\).

Positions

Multiplicities, Wyckoff letters, Site Symmetries.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 h</td>
<td>(x,y,z\ [u,v,w])</td>
</tr>
<tr>
<td>16 h</td>
<td>(x,y,z+1/2\ [u,v,w])</td>
</tr>
<tr>
<td>16 h</td>
<td>(x,y,z+1/2\ [u,v,w])</td>
</tr>
<tr>
<td>8 g</td>
<td>(x,y,1/4\ [u,v,0])</td>
</tr>
<tr>
<td>8 g</td>
<td>(x,y,3/4\ [u,v,0])</td>
</tr>
<tr>
<td>8 f</td>
<td>(0,y,z\ [u,0,0])</td>
</tr>
<tr>
<td>8 e</td>
<td>(x,0,0\ [u,0,0])</td>
</tr>
<tr>
<td>8 e</td>
<td>(x,0,1/2\ [u,0,0])</td>
</tr>
<tr>
<td>8 d</td>
<td>(1/4,1/4,0\ [u,v,w])</td>
</tr>
<tr>
<td>8 d</td>
<td>(3/4,3/4,1/2\ [u,v,w])</td>
</tr>
<tr>
<td>4 c</td>
<td>(0,y,1/4\ [u,0,0])</td>
</tr>
<tr>
<td>4 b</td>
<td>(0,1/2,0\ [u,0,0])</td>
</tr>
<tr>
<td>4 a</td>
<td>(0,0,0\ [u,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) p 2 mm' \(a^* = a\) \(b^* = b\)

Along \([1,0,0]\) p 2 mg1' \(a^* = -c\) \(b^* = b/2\)

Along \([0,1,0]\) p 2 mm' \(a^* = -a/2\) \(b^* = c/2\)
Origin at (2'/m') at 2'/m'c2,;

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2' (0,0,1/2) 0,0,z
(2' | 0,0,1/2)

(3) 2 0,y,1/4
(2 | 0,0,1/2)

(4) 2' x,0,0
(2' | 0,0,0)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(1 | 1/2,1/2,0)

(2) 2' (0,0,1/2) 1/4,1/4,z
(2' | 1/2,1/2,1/2)

(3) 2 (0,1/2,0) 1/4,y,1/4
(2 | 1/2,1/2,1/2)

(4) 2' (1/2,0,0) x,1/4,0
(2' | 1/2,1/2,0)

(5) t 1/4,1/4,0
(1 | 1/2,1/2,0)

(6) n' (1/2,1/2,0) x,y,1/4
(m | 1/2,1/2,1/2)

(7) n (1/2,0,1/2) x,1/4,z
(m | 1/2,1/2,1/2)

(8) b' (0,1/2,0) 1/4,y,z
(m | 1/2,1/2,0)
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positions</td>
<td>Coordinates</td>
</tr>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positions</td>
<td>Coordinates</td>
</tr>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2mm'</th>
<th>Along [1,0,0]</th>
<th>p2'm'g</th>
<th>Along [0,1,0]</th>
<th>p2a, 2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -b</td>
<td>b* = a</td>
<td>a* = -c</td>
<td>b* = b/2</td>
<td>a* = c/2</td>
<td>b* = a/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 0,y,1/4</td>
<td></td>
</tr>
</tbody>
</table>

63.8.518 - 2 - 1027
Origin at (2/m') at 2/m'c',

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

1. 1
 (1 | 0,0,0)

2. (0,0,1/2) 0,0,z
 (2 | 0,0,1/2)

3. 2 0,y,1/4
 (2 | 0,0,1/2)

4. 2 x,0,0
 (2 | 0,0,0)

5. 1/m' 0,0,0
 (1 | 0,0,0)

6. m' x,y,1/4
 (m | 0,0,1/2)

7. c' (0,0,1/2) x,0,z
 (m | 0,0,1/2)

8. m' 0,y,z
 (m | 0,0,0)

For (1/2,1/2,0) + set

1. t (1/2,1/2,2,0)
 (1 | 1/2,1/2,2,0)

2. (0,0,1/2) 1/4,1/4,z
 (2 | 1/2,1/2,1/2)

3. 2 (0,1/2,0) 1/4,y,1/4
 (2 | 1/2,1/2,1/2)

4. 2 (1/2,0,0) x,1/4,0
 (2 | 1/2,1/2,0)

5. 1/m' 1/4,1/4,0
 (1 | 1/2,1/2,0)

6. n' (1/2,1/2,2,0) x,y,1/4
 (m | 1/2,1/2,1/2)

7. n' (1/2,0,1/2) x,1/4,z
 (m | 1/2,1/2,1/2)

8. b' (0,1/2,0) 1/4,y,z
 (m | 1/2,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>16 h 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 g .m'</td>
<td>x,y,1/4 [u,v,0]</td>
</tr>
<tr>
<td>8 f m'..</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 e 2..</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>8 d 1'</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c m'2m'</td>
<td>0,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>4 b 2/m'..</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2/m'..</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2m'm' Along [1,0,0] p2m'g' Along [0,1,0] p2m'm'
\(a^* = a\) \(b^* = b\) \(a^* = c/2\) \(b^* = a/2\)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Orthorhombic

Cp mcm

63.10.520

mmm1'

Cp 2/m 2/c 2/m

Origin at (2/m) at 2/mc2,

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) 2 (0,0,1/2) 0,0,z
(2|0,0,1/2)

(3) 2 0,y,1/4
(2|0,0,1/2)

(4) 2 x,0,0
(2|0,0,0)

(5) m 0,0,0
(m0,0,0)

(6) m x,y,1/4
(m0,0,0)

(7) m (0,0,1/2) x,0,z
(m0,0,1/2)

(8) m 0,y,z
(m0,0,0)

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0)
(1|0,0,0)

(2) t' (0,0,1/2)
(0,0,1/2)

(3) 2' (0,1/2,0) 1/4,y,1/4
(0,1/2,0)

(4) 2' (1,2,0,0) x,1/4,0
(1,2,0,0)

(5) t' 1/4,1/4,0
(1|0,0,0)

(6) t' (1/2,1/2,0) x,y,1/4
(1/2,1/2,0)

(7) t' (0,1/2,0) x,1/4,1/4
(0,1/2,0)

(8) t' (1,2,1/2,0) x,1/4,0
(1,2,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,0)' +</td>
<td></td>
</tr>
<tr>
<td>16 h 1</td>
<td>(1) x,y,z [u,v,w] (2) x',y',z+1/2 [u',v',w'] (3) x,y,z+1/2 [u,v,w] (4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 g ..m</td>
<td>(5) x',y',z [u,v,w] (6) x,y,z+1/2 [u,v,w] (7) x,y,z+1/2 [u,v,w] (8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 f m..</td>
<td>x,y,1/4 [0,0,w] x',y,3/4 [0,0,w] x,y,1/4 [0,0,w] x,y,3/4 [0,0,w]</td>
</tr>
<tr>
<td>8 e 2..</td>
<td>0,y,z [u,0,0] 0,y,z+1/2 [u,0,0] 0,y,z+1/2 [u,0,0] 0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 d 1</td>
<td>x,0,0 [u,0,0] x,0,0 [u,0,0] x,0,0 [u,0,0] x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>1/4,1/4,0 [0,0,0]</td>
<td>3/4,3/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 1/4,3/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c m2m</td>
<td>0,y,1/4 [0,0,0] 0,y,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b 2/m..</td>
<td>0,1/2,0 [u,0,0] 0,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 a 2/m..</td>
<td>0,0,0 [u,0,0] 0,0,1/2 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1' a* = a b* = b
Along [1,0,0] p2mg1' a* = -c b* = b/2
Origin at 0,0,z Origin at x,0,0

Along [0,1,0] p2221 a* = c/2 b* = a/2
Origin at 0,y,1/4
Orthorhombic

C\textsubscript{p}m'cm

63.11.521

mmm1'

C\textsubscript{p}2/m'2'/c2'\textsubscript{1}/m

Origin at (2/m') at 2/m'c2'\textsubscript{1}

Asymmetric unit

0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) 2' (0,0,1/2) 0,0,z
(2_2|0,0,1/2)'

(3) 2' 0,y,1/4
(2_2|0,0,1/2)'

(4) 2 x,0,0
(2_x|0,0,0)

(5) m' 0,0,0
(1|0,0,0)'

(6) m x,y,1/4
(m_x|0,0,1/2)

(7) c (0,0,1/2) x,0,z
(m_y|0,0,1/2)

(8) m' 0,y,z
(m_z|0,0,0)'

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0)'
(1|1/2,1/2,0)'

(2) 2 (0,0,1/2) 1/4,1/4,z
(2_2|1/2,1/2,1/2)

(3) 2 (0,1/2,0) 1/4,y,1/4
(2_2|1/2,1/2,1/2)

(4) 2' (1/2,0,0) x,1/4,0
(2_x|1/2,1/2,0)'

(5) n' (1/2,1/2,0) x,y,1/4
(m_z|1/2,1/2,1/2)'

(7) n' (1/2,0,1/2) x,1/4,z
(m_y|1/2,1/2,1/2)'

(8) b (0,1/2,0) 1/4,y,z
(m_z|1/2,1/2,0)
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 h</td>
<td>((0,0,0) + (1/2,1/2,0)) +</td>
</tr>
<tr>
<td>16 g</td>
<td>((0,0,0) + (1/2,1/2,0)) +</td>
</tr>
<tr>
<td>16 f</td>
<td>((0,0,0) + (1/2,1/2,0)) +</td>
</tr>
<tr>
<td>16 e</td>
<td>((0,0,0) + (1/2,1/2,0)) +</td>
</tr>
<tr>
<td>16 d</td>
<td>((0,0,0) + (1/2,1/2,0)) +</td>
</tr>
<tr>
<td>16 c</td>
<td>((0,0,0) + (1/2,1/2,0)) +</td>
</tr>
<tr>
<td>16 b</td>
<td>((0,0,0) + (1/2,1/2,0)) +</td>
</tr>
<tr>
<td>16 a</td>
<td>((0,0,0) + (1/2,1/2,0)) +</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] \(c2mm \)
 \(a^* = a \)
 \(b^* = b \)
 Origin at 0,0,z

- Along [1,0,0] \(p_{2b} \)
 \(a^* = -c \)
 \(b^* = b/2 \)
 Origin at x,0,0

- Along [0,1,0] \(p_{\infty} \)
 \(a^* = c/2 \)
 \(b^* = a/2 \)
 Origin at 1/4,y,1/4
Cp,m'cm

63.12.522

mmm1'

Cp2'/m2/c2', /m

Ortorhombic

Origin at (2'/m) at 2'/mc'2',

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1

(1|0,0,0)

(2) 2' (0,0,1/2) 0,0,z

(2|0,0,1/2')

(3) 2' 0,y,1/4

(2|0,0,1/2)

(4) 2' x,0,0

(2|0,0,0)

For (1/2,1/2,0) + set

(1) t' (1/2,1/2,0)

(1|1/2,1/2,0')

(2) 2 (0,0,1/2) 1/4,1/4,z

(2|1/2,1/2,1/2)

(3) 2' (0,1/2,0) 1/4,y,1/4

(2|1/2,1/2,1/2)

(4) 2 (1/2,0,0) x,1/4,0

(2|1/2,1/2,0)

For (1/2,1/2,0) + set

(5) 1/4,1/4,0

(1|1/2,1/2,0')

(6) n' (1/2,1/2,0) x,y,1/4

(1/2,1/2,1/2')

(7) n (1/2,0,1/2) x,1/4,z

(1/2,1/2,1/2')

(8) b' (0,1/2,0) 1/4,y,z

(1/2,1/2,1/2)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,0)′ +</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>h</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>g</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
</tr>
<tr>
<td>8</td>
<td>e</td>
</tr>
<tr>
<td>1</td>
<td>d</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** c2mm 1′
 - $a^* = a$
 - $b^* = b$

- **Along [1,0,0]** p2mg 1′
 - $a^* = a$
 - $b^* = b/2$

- **Along [0,1,0]** $p_{2a} 2mm$
 - $a^* = c/2$
 - $b^* = a/2$

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
CPmcm’ Orthorhombic

63.13.523

mm1’ Orthorhombic

63.13.523 C2’/m2’/c21/m’

Origin at (2’/m) at 2’/mc21

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(5) T1 0,0,0
(1 | 0,0,0)’

(6) m’ x,y,1/4
(mz | 0,0,1/2)’

(7) c (0,0,1/2) x,0,z
(my | 0,0,1/2)

(8) m 0,y,z
(mz | 0,0,0)

For (1/2,1/2,0)’ + set

(1) t’ (1/2,1/2,0)
(1 | 1/2,1/2,0)’

(5) T1 1/4,1/4,0
(1 | 1/2,1/2,0)

(6) n (1/2,1/2,0) x,y,1/4
(mz | 1/2,1/2,1/2)

(7) n’ (1/2,0,1/2) x,1/4,z
(my | 1/2,1/2,1/2)’

(8) b’ (0,1/2,0) 1/4,y,z
(mz | 1/2,1/2,0)’

For (0,0,0) + set

(2) 2 (0,0,1/2) 0,0,z
(2z | 0,0,1/2)

(3) 2’ 0,y,1/4
(2z | 0,0,1/2)’

(4) 2’ x,0,0
(2z | 0,0,0)’

For (1/2,1/2,0)’ + set

(2) 2’ (0,0,1/2) 1/4,1/4,z
(2z | 1/2,1/2,1/2)’

(3) 2 (0,1/2,0) 1/4,y,1/4
(2y | 1/2,1/2,1/2)

(4) 2 (1/2,0,0) x,1/4,0
(2z | 1/2,1/2,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 h 1</td>
<td>(0,0,0) + (1/2,1/2,0') +</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(2) x',y',z+1/2 [u',v',w]</td>
<td></td>
</tr>
<tr>
<td>(3) x',y',z+1/2 [u',v',w]</td>
<td></td>
</tr>
<tr>
<td>(4) x',y',z [u',v',w]</td>
<td></td>
</tr>
<tr>
<td>(5) x',y',z [u',v',w]</td>
<td></td>
</tr>
<tr>
<td>(6) x,y,z+1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(7) x,y,z+1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(8) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 g ..m'</td>
<td></td>
</tr>
<tr>
<td>x,y,1/4 [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>x',y,3/4 [u',v',0]</td>
<td></td>
</tr>
<tr>
<td>x',y,1/4 [u',v',0]</td>
<td>x',y,3/4 [u',v',0]</td>
</tr>
<tr>
<td>8 f m..</td>
<td></td>
</tr>
<tr>
<td>0,y,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,y,z+1/2 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,y,z+1/2 [u,0,0]</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 e 2'..</td>
<td></td>
</tr>
<tr>
<td>x,0,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>x,0,1/2 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>x,0,0 [0,v,w]</td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 d 1</td>
<td></td>
</tr>
<tr>
<td>1/4,1/4,0 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>3/4,3/4,1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>3/4,1/4,1/2 [u,v,w]</td>
<td>1/4,3/4,0 [u,v,w]</td>
</tr>
<tr>
<td>4 c m2'm'</td>
<td></td>
</tr>
<tr>
<td>0,y,1/4 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,y,3/4 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 b 2'/m..</td>
<td></td>
</tr>
<tr>
<td>0,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 a 2'/m..</td>
<td></td>
</tr>
<tr>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2mm</th>
<th>Along [1,0,0]</th>
<th>p2mg1'</th>
<th>Along [0,1,0]</th>
<th>p..m 2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = a</td>
<td>b' = b</td>
<td>a' = -c</td>
<td>b' = b/2</td>
<td>a' = c/2</td>
<td>b' = a/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at (2'/m') at 2'/m'c'2,

Asymmetric unit

\[0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/4 \]

Symmetry Operations

For (0,0,0) + set

(1) \(\mathbb{T} (0,0,0) \)

(2) \(2 (0,0,1/2) \) \(0,0,z \)

(3) \(2' (0,0,1/2) \)

(4) \(2' x,0,0 \)

For (1/2,1/2,0)' + set

(1) \(t' (1/2,1/2,0) \)

(2) \(2' (0,0,1/2) \) \(1/4,1/4,z \)

(3) \(2 (0,1/2,0) \) \(1/4,y,1/4 \)

(4) \(2 (1/2,0,0) \) \(x,1/4,0 \)

(5) \(\mathbb{T} 1/4,1/4,0 \)

(6) \(n (1/2,1/2,0) \) \(x,1/4 \)

(7) \(n (1/2,0,1/2) \) \(x,1/4,z \)

(8) \(b (0,1/2,0) \) \(1/4,y,z \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0)(2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) + (1/2,1/2,0)' +</td>
</tr>
<tr>
<td>16 h</td>
<td>1 x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 g</td>
<td>m x,y,1/4 [0,0,w]</td>
</tr>
<tr>
<td>8 f</td>
<td>m' x,y,3/4 [0,0,w]</td>
</tr>
<tr>
<td>8 e</td>
<td>2' x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>8 d</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c</td>
<td>m'2 m 0,y,1/4 [0,0,w]</td>
</tr>
<tr>
<td>4 b</td>
<td>2'/m' 0,1/2,0 [0,v,w]</td>
</tr>
<tr>
<td>4 a</td>
<td>2'/m' 0,0,0 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1'
Along [1,0,0] p_{2b},2mg
Along [0,1,0] p_{2a},2mm

\(a^* = a \quad b^* = b \)
\(a^* = -c \quad b^* = b/2 \)
\(a^* = -a/2 \quad b^* = c/2 \)

Origin at 0,0,z
Origin at x,1/4,0
Origin at 1/4,y,1/4
Origin at (2/m) at 2/mc'2,'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1 (1 | 0,0,0)
(2) 2' (0,0,1/2) 0,0,z
(3) 2' 0,y,1/4 (2 | 0,0,1/2)
(4) 2 x,0,0
(5) 1 & 0,0,0
(6) m' x,y,1/4 (m | 0,0,1/2)
(7) c' (0,0,1/2) x,0,z (m | 0,0,1/2)
(8) m 0,y,z (m | 0,0,0)

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,2,0)
(2) 2 (0,0,1/2) 1/4,1/4,z (2 | 1/2,1/2,1/2)
(3) 2 (0,1/2,0) 1/4,y,1/4 (2 | 1/2,1/2,1/2)
(4) 2' (1/2,0,0) x,1/4,0 (2 | 1/2,1/2,0)
(5) t' 1/4,1/4,0 (1 | 2,1/2,0)
(6) n (1/2,1/2,0) x,y,1/4 (m | 1/2,1/2,1/2)
(7) n (1/2,0,1/2) x,1/4,z (m | 1/2,1/2,1/2)
(8) b' (0,1/2,0) 1/4,y,z (m | 1/2,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

Multiplicities,
Wyckoff letters,
Site symmetries.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 h</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 g</td>
<td>..m'</td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 f m..</td>
<td>0,y,z [u,0,0]</td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8 e</td>
<td>2..</td>
<td>(7) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8 d</td>
<td>1/4,1/4,0</td>
<td>(8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 c m2m'</td>
<td>0,y,1/4 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 b 2/m..</td>
<td>0,1/2,0 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 a 2/m..</td>
<td>0,0,0 [u,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm' a* = a b* = b
Along [1,0,0] p2mg1' a* = -c b* = b/2
Along [0,1,0] p2a2m'm' a* = a/2 b* = c/2
Origin at 0,0,z Origin at 0,0,z Origin at 0,y,0
Orthorhombic

$\text{C}_{p}\text{m}'\text{cm}'$

$\text{mmm}1'$

$63.16.526$

$\text{C}_{p}2'/\text{m}'2/\text{c}2_1'/\text{m}'$

Origin at (2'/m'') at 2'/m'c2,

Asymmetric unit

$0 < x < 1/2; 0 < y < 1/2; 0 < z < 1/4$

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2' (0,0,1/2) 0,0,z
(2_ | 0,0,1/2)'

(3) 2 0,y,1/4
(2_ | 0,0,1/2)

(4) 2' x,0,0
(2_ | 0,0,0)

(5) 1/2,1/2,0)
(1 | 1/2,1/2,0)

(6) m' x,y,1/4
(m_ | 0,0,1/2)

(7) c (0,0,1/2) x,0,z
(m_ | 0,0,1/2)

(8) m' 0,y,z
(m_ | 0,0,0)

For (1/2,1/2,0)' + set

(1) 1/2,1/2,0)'
(1 | 1/2,1/2,0)

(2) 2 (0,0,1/2) 1/4,1/4,z
(2_ | 1/2,1/2,1/2)

(3) 2' (0,1/2,0) 1/4,y,1/4
(2_ | 1/2,1/2,1/2)

(4) 2 (1/2,0,0) x,1/4,0
(2_ | 1/2,1/2,0)

(5) 1/2,1/2,0)'
(1 | 1/2,1/2,0)

(6) n (1/2,1/2,0) x,y,1/4
(m_ | 1/2,1/2,1/2)

(7) n' (1/2,0,1/2) x,1/4,z
(m_ | 1/2,1/2,1/2)

(8) b (0,1/2,0) 1/4,y,z
(m_ | 1/2,1/2,0)
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,0)' +</td>
<td></td>
</tr>
<tr>
<td>16 h 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 g ..m'</td>
<td>x,y,1/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,3/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,3/4 [u,v,0]</td>
</tr>
<tr>
<td>8 f m'..'</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,z+1/2 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,z+1/2 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,z+1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 e 2'..'</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 d 1'</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c m'2m'</td>
<td>0,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,3/4 [0,v,0]</td>
</tr>
<tr>
<td>4 b 2'/m'..'</td>
<td>0,1/2,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 a 2'/m'...</td>
<td>0,0,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm'
Along [1,0,0] p_{ab2m}g'
Along [0,1,0] p_c2mm

a* = -b b* = a
a* = -c b* = b/2
a* = c/2 b* = a/2

Origin at 0,0,z Origin at x,1/4,0 Origin at 1/4,y,0
Origin at \((2/m') at 2/m'c'2_1\)

Asymmetric unit \(0 \leq x \leq 1/2;\) \(0 \leq y \leq 1/2;\) \(0 \leq z \leq 1/4\)

Symmetry Operations

For \((0,0,0) + \text{set}\)

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad (0,0,1/2) 0,0,z \\
(3) & \quad 2' 0,y,1/4 \\
(4) & \quad 2' x,0,0 \\
(5) & \quad 1' 0,0,0 \\
(6) & \quad m' x,y,1/4 \\
(7) & \quad c' (0,0,1/2) x,0,z \\
(8) & \quad m' 0,y,z \\
\end{align*}
\]

For \((1/2,1/2,0) + \text{set}\)

\[
\begin{align*}
(1) & \quad t' (1/2,1/2,0) \\
(2) & \quad 2' (0,0,1/2) 1/4,1/4,z \\
(3) & \quad 2' (0,1/2,0) 1/4,y,1/4 \\
(4) & \quad 2' (1/2,0,0) x,1/4,0 \\
(5) & \quad 1/4,1/4,0 \\
(6) & \quad n (1/2,1/2,0) x,y,1/4 \\
(7) & \quad n (1/2,0,1/2) x,1/4,z \\
(8) & \quad b (0,1/2,0) 1/4,y,z \\
\end{align*}
\]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>(0,0,0) + (1/2,1/2,0)' +</td>
<td></td>
</tr>
<tr>
<td>16h</td>
<td>x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16(5)</td>
<td>x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>x,y,1/4 [u,v,0]</td>
<td>x,y,3/4 [u,v,0]</td>
</tr>
<tr>
<td>8</td>
<td>0,y,z [0,v,w]</td>
<td>0,y,z+1/2 [0,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>x,0,0 [u,0,0]</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>1/4,1/4,4/0 [u,v,w]</td>
<td>3/4,3/4,1/2 [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>0,y,1/4 [0,v,0]</td>
<td>0,y,3/4 [0,v,0]</td>
</tr>
<tr>
<td>4</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm'
Along [1,0,0] p2mg'
Along [0,1,0] p2mm'

\[a^* = a \quad b^* = b \]
\[a^* = -c \quad b^* = b/2 \]
\[a^* = c/2 \quad b^* = a/2 \]

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0

63.17.527 - 2 - 1045
Origin at center (2/m) at 2/mn1

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1 | 0,0,0)
(5) 1/4,0,0
 (1) 0,0,0

(2) 2 (0,0,1/2) 0,1/4,z
 (2z | 0,1/2,1/2)
(6) b (0,1/2,0) x,y,1/4
 (mz | 0,1/2,1/2)
(7) c (0,0,1/2) x,1/4,z
 (my | 0,1/2,1/2)
(8) m 0,y,z
 (mx | 0,0,0)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
 (1 | 1/2,1/2,0)
(5) 1/4,1/4,0
 (1 | 1/2,1/2,0)

(2) 2 (0,0,1/2) 1/4,0,z
 (2z | 1/2,0,1/2)
(6) a (1/2,0,0) x,y,1/4
 (mz | 1/2,0,1/2)
(7) n (1/2,0,1/2) x,0,z
 (my | 1/2,0,1/2)
(8) b (0,1/2,0) 1/4,y,z
 (mx | 1/2,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g</td>
<td>(0,0,0) + (1/2,1/2,0) +</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) (\bar{x}, \bar{y}, \bar{z} [u,v,w])</td>
</tr>
<tr>
<td>8 f</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 e .2</td>
<td>1/4,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>8 d 2</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>8 c 1</td>
<td>1/4,1/4,0 [u,v,w]</td>
</tr>
<tr>
<td>4 b 2/m</td>
<td>1/2,0,0 [u,0,0]</td>
</tr>
<tr>
<td>4 a 2/m</td>
<td>0,0,0 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1] p\(\bar{c} \)-2mm:
 - \(a^* = a/2 \) \(b^* = b/2 \)
 - Origin at 0,1/4,z

- **Along [1,0,0] p2mg1'**:
 - \(a^* = -c \) \(b^* = b/2 \)
 - Origin at x,0,0

- **Along [0,1,0] p_{2a}2mm**:
 - \(a^* = c/2 \) \(b^* = a/2 \)
 - Origin at 0,y,0
Cmca1' mmm1' Orthorhombic
64.2.529

Origin at center (2/m1') at 2/mn11'

Symmetry Operations

For (0,0,0) + set

1. \((1 \mid 0,0,0) \)
2. \((2 \mid 0,0,1/2) \) \(0,1/4,z \)
3. \((3 \mid 0,1/2,0) \) \(0,y,1/4 \)
4. \((4 \mid x,0,0) \)

For (0,1/2,1/2,0) + set

1. \((1 \mid 1/2,1/2,0) \)
2. \((2 \mid 0,0,1/2) \) \(1/4,0,z \)
3. \((3 \mid 1/4,y,1/4) \)
4. \((4 \mid x,1/4,0) \)

For (0,0,0)' + set

1. \((1 \mid 0,0,0)' \)
2. \((2 \mid 0,0,1/2) \) \(0,1/4,z \)
3. \((3 \mid 0,1/2,0) \) \(0,y,1/4 \)
4. \((4 \mid x,0,0) \)

For (1/2,1/2,0)' + set

1. \((1 \mid 1/2,1/2,0)' \)
2. \((2 \mid 0,0,1/2) \) \(1/4,0,z \)
3. \((3 \mid 1/4,y,1/4) \)
4. \((4 \mid x,1/4,0) \)

Asymmetric unit

\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) + (0,0,0)’ +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,0) + (1/2,1/2,0)’ +</td>
</tr>
<tr>
<td>16 g 11' (1) x,y,z [0,0,0]</td>
<td>(2) (x, y + 1/2, z + 1/2) [0,0,0] (3) (x, y + 1/2, z + 1/2) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) (x, y, z) [0,0,0]</td>
</tr>
<tr>
<td>(5) (\bar{x}, \bar{y}, \bar{z}) [0,0,0]</td>
<td>(6) (x, y + 1/2, z + 1/2) [0,0,0] (7) (x, y + 1/2, z + 1/2) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(8) (\bar{x}, \bar{y}, \bar{z}) [0,0,0]</td>
</tr>
<tr>
<td>8 f m..1' 0,y,z [0,0,0]</td>
<td>0,(y + 1/2, z + 1/2) [0,0,0] 0,(y + 1/2, z + 1/2) [0,0,0] 0,(y, z) [0,0,0]</td>
</tr>
<tr>
<td>8 e .2.1' 1/4,y,1/4 [0,0,0]</td>
<td>3/4,(y + 1/2, 3/4) [0,0,0] 3/4,(y, 3/4) [0,0,0] 1/4,(y + 1/2, 1/4) [0,0,0]</td>
</tr>
<tr>
<td>8 d 2..1' x,0,0 [0,0,0]</td>
<td>(\bar{x}, 1/2, 1/2) [0,0,0] (\bar{x}, 0, 0) [0,0,0] (x, 1/2, 1/2) [0,0,0]</td>
</tr>
<tr>
<td>8 c 11' 1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 1/4,3/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 b 2/m..1' 1/2,0,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2/m..1' 0,0,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2mm1'</th>
<th>Along [1,0,0] p2mg1'</th>
<th>Along [0,1,0] p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a/2) (b^* = b/2)</td>
<td>(a^* = -c) (b^* = b/2)</td>
<td>(a^* = c/2) (b^* = a/2)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Cm'ca

64.3.530

m'mm

C2/m'2'/c2; '/a

Orthorhombic

Origin at center (2/m') at 2/m'n1

Asymmetric unit

\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

For (0,0,0) + set

1. \(\mathbf{1} \) \((0,0,0) \)
2. \(\mathbf{2'} \) \((0,0,1/2) \) \(0,1/4,z \)
3. \(\mathbf{2'} \) \((0,1/2,0) \) \(0,y,1/4 \)
4. \(\mathbf{2} \) \((0,0,0) \)

5. \(\mathbf{1'} \) \((0,0,0) \)
6. \(\mathbf{b} \) \((0,1/2,0) \) \(x,y,1/4 \)
7. \(\mathbf{c} \) \((0,0,1/2) \) \(x,1/4,z \)
8. \(\mathbf{m'} \) \((0,0,0) \)

For (1/2,1/2,0) + set

1. \(\mathbf{t} \) \((1/2,1/2,0) \)
2. \(\mathbf{2'} \) \((0,0,1/2) \) \(1/4,0,z \)
3. \(\mathbf{2'} \) \((1/2,0,0) \) \(1/4,y,1/4 \)
4. \(\mathbf{2} \) \((1/2,0,0) \)

5. \(\mathbf{1'} \) \((1/2,1/2,0) \)
6. \(\mathbf{a} \) \((1/2,0,0) \) \(x,y,1/4 \)
7. \(\mathbf{n} \) \((1/2,0,1/2) \) \(x,0,z \)
8. \(\mathbf{b'} \) \((0,1/2,0) \) \(1/4,y,z \)
Generators selected \(t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>((0,0,0) + (1/2,1/2,0) +)</td>
</tr>
<tr>
<td>8</td>
<td>((1) x,y,z [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>((2) \bar{x}, \bar{y}+1/2, \bar{z}+1/2 [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>((3) \bar{x}, y+1/2, \bar{z}+1/2 [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>((4) x,\bar{y},\bar{z} [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>((5) \bar{x}, \bar{y}, \bar{z} [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>((6) x,y+1/2, \bar{z}+1/2 [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>((7) x,\bar{y}+1/2, \bar{z}+1/2 [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>((8) \bar{x}, \bar{y}, \bar{z} [u,v,w])</td>
</tr>
<tr>
<td>8</td>
<td>(m'.. 0,y,z [0,v,w])</td>
</tr>
<tr>
<td>8</td>
<td>(e ..2'. 1/4,y,1/4 [u,0,w])</td>
</tr>
<tr>
<td>8</td>
<td>(d .. 2.. x,0,0 [u,0,0])</td>
</tr>
<tr>
<td>8</td>
<td>(c \bar{1}' 1/4,1/4,0 [0,0,0])</td>
</tr>
<tr>
<td>4</td>
<td>(b 2/m'.. 1/2,0,0 [0,0,0])</td>
</tr>
<tr>
<td>4</td>
<td>(a 2/m'.. 0,0,0 [0,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) \ p2mm1' \(b^* = b/2 \)
- Along \([1,0,0]\) \ p2mg \(a^* = a/2 \)
- Along \([0,1,0]\) \ p_{2a'2m1'm'} \(a^* = c/2 \)

Origin at \(0,0,z\)

Origin at \(x,0,0\)
Origin at center (2'/m) at 2'/mn'1

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)
(2') 2' (0,0,1/2) 0,1/4,z
(2 | 0,1/2,1/2)'
(3) 2 (0,1/2,0) 0,y,1/4
(2 | 0,1/2,1/2)
(4) 2' x,0,0
(2 | 0,0,0)'

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(1 | 1/2,1/2,0)
(2') 2' (0,0,1/2) 1/4,0,z
(2 | 1/2,0,1/2)'
(3) 2 1/4,y,1/4
(2 | 1/2,0,1/2)
(4) 2' (1/2,0,0) x,1/4,0
(2 | 1/2,1/2,0)'

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(1 | 1/2,1/2,0)
(2') 2' (0,0,1/2) 1/4,0,z
(2 | 1/2,0,1/2)'
(3) 2 1/4,y,1/4
(2 | 1/2,0,1/2)
(4) 2' (1/2,0,0) x,1/4,0
(2 | 1/2,1/2,0)'

(5) T' 1/4,1/4,0
(1 | 1/2,1/2,0)'
(6) a (1/2,0,0) x,y,1/4
(1 | 2,0,1/2)
(7) n' (1/2,0,1/2) x,0,z
(1 | 2,0,1/2)'
(8) b (0,1/2,0) 1/4,y,z
(1 | 2,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g</td>
<td>(0,0,0) + (1/2,1/2,0) +</td>
</tr>
<tr>
<td>8 f</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 e</td>
<td>1/4,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>8 d</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>8 c</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [0,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>p2-mm'</td>
<td>p2-mm'</td>
<td>p2mg1'</td>
<td>p2a-2mm</td>
</tr>
<tr>
<td>a* = a/2</td>
<td>a* = -c</td>
<td>a* = -a/2</td>
<td>a* = c/2</td>
</tr>
<tr>
<td>b* = b/2</td>
<td>b* = b/2</td>
<td>b* = b/2</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at 0,1/4,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Operations

For (0,0,0) + set

1. $t(1,0,0)$
2. $2 (0,0,1/2)$, $0,1/4,z$
3. $2' (0,1/2,0)$, $0,y,1/4$
4. $2' x,0,0$

For (1/2,1/2,0) + set

1. $t(1/2,1,2,0)$
2. $2 (0,0,1/2)$, $1/4,0,z$
3. $2' 1/4,y,1/4$
4. $2' (1/2,0,0)$, $x,1/4,0$

Origin at center (2/m) at 2/m1

Asymmetric unit: $0 \leq x \leq 1/4; 0 \leq y \leq 1/2; 0 \leq z \leq 1/2$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>16 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 f m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y+1/2,z+1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y+1/2,z+1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 e .2'</td>
<td>1/4,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,y+1/2,3/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,y+1/2,3/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,y+1/2,1/4 [u,0,w]</td>
</tr>
<tr>
<td>8 d 2'..</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>8 c 1</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 b 2'/m..</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2'/m..</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2mm
 - a' = a/2
 - Origin at 0,0,z

- Along [1,0,0] p2mg1'
 - a' = -c
 - b' = b/2
 - Origin at x,0,0

- Along [0,1,0] p2a-2mm
 - a' = c/2
 - b' = a/2
 - Origin at 0,y,0
Origin at center (2'/m') at 2'/m'n'1

Asymmetric unit $0 < x < 1/4; \ 0 < y < 1/2; \ 0 < z < 1/2$

Symmetry Operations

For (0,0,0) + set

(1) 1

$\begin{align*}
(1, 0, 0, 0) \\
(1, 1/2, 0, 0)
\end{align*}$

(2) $2 (0, 0, 1/2) \ 0, 1/4, z$

$\begin{align*}
(2, 0, 1/2, 0) \\
(2, 0, 1/2, 1/2)
\end{align*}$

(3) $2' (0, 1/2, 0) \ 0, y, 1/4$

$\begin{align*}
(2, 1/2, 0, 0) \\
(2, 1/2, 0, 1/2)
\end{align*}$

(4) $2' x, 0, 0$

$\begin{align*}
(2, 1/2, 0, 0) \\
(2, 1/2, 1/2, 0)
\end{align*}$$

\begin{align*}
(2, 0, 0, 0) \\
(2, 0, 0, 1/2)
\end{align*}$

(5) $0, 0, 0$

(6) $0, 1/2, 0)$

$\begin{align*}
(0, 1/2, 1/2) \\
(m, 0, 1/2, 1/2)
\end{align*}$

(7) $0, 1/2, 0) \ x, 1/4, z$

$\begin{align*}
(m, 1/2, 0, 0) \\
(m, 1/2, 0, 1/2)
\end{align*}$

(8) $0, y, z$

$\begin{align*}
(0, 1/2, 0) \\
(0, 1/2, 1/2)
\end{align*}$

For (1/2,1/2,1/2) + set

(1) $t (1/2, 1/2, 0)$

$\begin{align*}
(1, 1/2, 1/2, 0) \\
(1, 1/2, 2, 0)
\end{align*}$

(2) $2 (0, 0, 1/2) \ 1/4, 0, z$

$\begin{align*}
(2, 1/2, 0, 1/2) \\
(2, 1/2, 0, 1/2)
\end{align*}$

(3) $2' 1/4, y, 1/4$

$\begin{align*}
(2, 1/2, 2, 0, 0) \\
(2, 1/2, 2, 0, 1/2)
\end{align*}$

(4) $2' (1/2, 0, 0) \ x, 1/4, 0$

$\begin{align*}
(2, 1/2, 1/2, 0) \\
(2, 1/2, 1/2, 0)
\end{align*}$

(5) $1/4, 1/4, 0$

$\begin{align*}
(1/2, 1/4, 0) \\
(1/2, 1/4, 0)
\end{align*}$

(6) $a (1/2, 0, 0) \ x, y, 1/4$

$\begin{align*}
(m, 1/2, 0, 1/2) \\
(m, 1/2, 0, 1/2)
\end{align*}$

(7) $n' (1/2, 0, 1/2) \ x, 0, z$

$\begin{align*}
(m, 1/2, 0, 1/2) \\
(m, 1/2, 0, 1/2)
\end{align*}$

(8) $b' (0, 1/2, 0) \ 1/4, y, z$

$\begin{align*}
(m, 1/2, 0, 1/2) \\
(m, 1/2, 0, 1/2)
\end{align*}$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g</td>
<td>(0,0,0) +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,0) +</td>
<td></td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y+1/2,z+1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
<td>(4) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y+1/2,z+1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
<td>(8) x,y,z [u,v,w]</td>
<td></td>
</tr>
</tbody>
</table>

8 f	0,y,z [0,v,w]	
	0,y+1/2,z+1/2 [0,v,w]	
(1/2,0,0) [u,v,w]	(0,v,w)	

8 e	1/4,y,1/4 [u,0,w]	
	3/4,y+1/2,3/4 [u,0,w]	
1/2,1/2,1/2 [u,0,w]	(0,v,w)	

8 d	x,0,0 [0,v,w]	
	x,1/2,1/2 [0,v,w]	
1/2,1/2,1/2 [0,v,w]	(0,v,w)	

8 c	1/4,1/4,0 [u,v,w]	
	3/4,1/4,1/2 [u,v,w]	
3/4,3/4,1/2 [u,v,w]	(0,v,w)	

| 4 b | 1/2,0,0 [0,v,w] | |
| | 1/2,1/2,1/2 [0,v,w] | |

| 4 a | 0,0,0 [0,v,w] | |
| | 0,1/2,1/2 [0,v,w] | |

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2/m'm'</th>
<th>Along [1,0,0] p2'mg'</th>
<th>Along [0,1,0] p2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a/2</td>
<td>a* = -c</td>
<td>a* = c/2</td>
</tr>
<tr>
<td>b* = b/2</td>
<td>b* = b/2</td>
<td>b* = a/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 1/4,y,1/4</td>
</tr>
</tbody>
</table>
Origin at center (2/m) at 2/mn'1

Asymmetric unit $0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For (0,0,0) + set

(1) 1

 (1) $0,0,0$

(2) $2' (0,1/2,0) \quad 0,1/4,z$

 (2) $0,1/2,1/2'$

(3) $2' (0,1/2,0) \quad 0,y,1/4$

 (3) $0,1/2,1/2'$

(4) $2 \quad x,0,0$

 (4) $2,0,0$

(5) 1

 (5) $0,0,0$

(6) $b' (1/2,0,0) \quad x,y,1/4$

 (6) $1/2,0,1/2'$

(7) $c' (0,0,1/2) \quad x,1/4,z$

 (7) $0,1/2,1/2'$

(8) $m \quad 0,y,z$

 (8) $m,0,0,0$

For (1/2,1/2,0) + set

(1) $t (1/2,1/2,0)$

 (1) $1/2,1/2,0$

(2) $2' (0,1/2,0) \quad 1/4,0,z$

 (2) $1/2,0,1/2'$

(3) $2' \quad 1/4,y,1/4$

 (3) $1/2,0,1/2'$

(4) $2 \quad 1/2,0,0,0,0$

 (4) $2,1/2,1/2,0$

(5) 1

 (5) $1/2,1/2,0$

(6) $a' (1/2,0,0) \quad x,y,1/4$

 (6) $1/2,0,1/2'$

(7) $n' (1/2,0,1/2) \quad x,0,z$

 (7) $1/2,0,1/2'$

(8) $b (0,1/2,0) \quad 1/4,y,z$

 (8) $1/2,1/2,0$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 f</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y+1/2,z+1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y+1/2,z+1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 e</td>
<td>1/4,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,y+1/2,3/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,y+1/2,3/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,y+1/2,1/4 [u,0,w]</td>
</tr>
<tr>
<td>8 d</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 c</td>
<td>1/4,1/4,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,0 [u,v,w]</td>
</tr>
<tr>
<td>4 b</td>
<td>1/2,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2' mm'</th>
<th>Along [1,0,0] p2mg 1'</th>
<th>Along [0,1,0] p2' mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a/2 b* = b/2</td>
<td>a* = c/2 b* = a/2</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Cm'ca'

64.8.535

m'm'2/c2, 'a'

Orthorhombic

Origin at center (2'/m') at 2'/m'n1

Asymmetric unit

0 < x < 1/4; 0 < y < 1/2; 0 < z < 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 0,0,0)

(2) 2' (0,0,1/2) 0,1/4,z
(2z 0,1/2,1/2')

(3) 2 (0,1/2,0) 0,y,1/4
(2y 0,1/2,1/2)

(4) 2' x,0,0
(2x 0,0,0)

(5) 1/2,0,0
(1 0,0,0)

(6) b' (0,1/2,0) x,y,1/4
(mz 0,1/2,1/2')

(7) c (0,0,1/2) x,1/4,z
(my 0,1/2,1/2)

(8) m' 0,y,z
(mz 0,0,0')

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(1 1/2,1/2,0)

(2) 2' (0,0,1/2) 1/4,0,z
(2z 1/2,0,1/2')

(3) 2 1/4,y,1/4
(2y 1/2,0,1/2)

(4) 2' (1/2,0,0) x,1/4,0
(2x 1/2,1/2,0)

(5) 1/4,1/4,0
(1 1/2,1/2,0)

(6) a' (1/2,0,0) x,y,1/4
(mz 1/2,0,1/2')

(7) n (1/2,0,1/2) x,0,z
(my 1/2,0,1/2)

(8) b' (0,1/2,0) 1/4,y,z
(mz 1/2,1/2,0)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g</td>
<td>(0,0,0) + (1/2,1/2,0) +</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,x+1/2,y+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 f</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 e</td>
<td>1/4,y+1/4 [0,v,0]</td>
</tr>
<tr>
<td>8 d</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>8 c</td>
<td>1/4,1/4 [0,v,w]</td>
</tr>
<tr>
<td>4 b</td>
<td>1/2,0,0 [0,v,w]</td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,0 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'2'm'

\[a^* = -b/2 \quad b^* = a/2 \]

Origin at 0,0,z

Along [1,0,0] p2'm'g

\[a^* = -c \quad b^* = b/2 \]

Origin at x,0,0

Along [0,1,0] p_{2a}2'm'

\[a^* = c/2 \quad b^* = a/2 \]

Origin at 0,y,1/4
Cm'c'a'
64.9.536

m'm'm'
C2/m'2/c'2,/a'

Orthonombic

Origin at center (2/m') at 2/m'n'1

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2 (0,0,1/2) 0,1/4,z
(2 | 0,1/2,1/2)

(3) 2 (0,1/2,0) 0,y,1/4
(2 | 0,1/2,1/2)

(4) 2 x,0,0
(2 | 0,0,0)

(5) T' 0,0,0
(1 | 0,0,0)'

(6) b' (0,1/2,0) x,y,1/4
(m, 0,1/2,1/2)'

(7) c' (0,0,1/2) x,1/4,z
(m, 0,1/2,1/2)'

(8) m' 0,y,z
(m, 0,0,0)'

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(1 | 1/2,1/2,0)

(2) 2 (0,0,1/2) 1/4,0,z
(2 | 1/2,0,1/2)

(3) 2 1/4,y,1/4
(2 | 1/2,0,1/2)

(4) 2 (1/2,0,0) x,1/4,0
(2 | 1/2,1/2,0)

(5) T' 1/4,1/4,0
(1 | 2,1/2,0)'

(6) a' (1/2,0,0) x,y,1/4
(m, 1/2,0,1/2)'

(7) n' (1/2,0,1/2) x,0,z
(m, 1/2,0,1/2)'

(8) b' (0,1/2,0) 1/4,y,z
(m, 1/2,1/2,0)'

64.9.536 - 1 - 1062
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
<td>(8) x,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

8 f m'.. 0,y,z [0,v,w]
8 e .2. 1/4,y,1/4 [0,v,0]
8 d 2.. x,0,0 [u,0,0]
8 c 1/4,1/4,0 [0,0,0]
4 b 2/m'. 1/2,0,0 [0,0,0]
4 a 2/m'. 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p2m'm'
Along [1,0,0] p2m'g'
Along [0,1,0] p2m'm'

\[a^* = a/2 \] \[b^* = b/2 \]
\[a^* = -c \] \[b^* = b/2 \]
\[a^* = c/2 \] \[b^* = a/2 \]

Origin at 0,z
Origin at x,0,0
Origin at 0,y,0
Origin at center (2/m) at 2/mn'1

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. 1
2. (0,0,1/2) 0,1/4,z
3. (0,1/2,0) 0,y,1/4
4. x,0,0
5. 0,0,0
6. (0,1/2,1/2) x,y,1/4
7. (0,0,1/2) x,1/4,z
8. 0,y,z

For (1/2,1/2,0)' + set

1. t' (1/2,1/2,0)
2. (0,0,1/2) 1/4,0,z
3. 1/4,y,1/4
4. (1/2,0,0) x,1/4,0
5. 1/2,1/2,0)
6. (0,1/2,0) x,y,1/4
7. (1/2,0,1/2) x,0,z
8. b' (0,1/2,0) 1/4,y,z

64.10.537 - 1 - 1064
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0):(2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) x,y +1/2,z +1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) x,y +1/2,z +1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x,y +1/2,z +1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) x,y +1/2,z +1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z [u,v,w]</td>
<td></td>
</tr>
</tbody>
</table>

8 f m..	0,y,z [u,0,0]	
8 e .2.	1/4,y,1/4 [0,v,0]	
8 d 2..	x,0,0 [u,0,0]	
8 c 1'	1/4,1/4,0 [0,0,0]	
4 b 2/m..	1/2,0,0 [u,0,0]	
4 a 2/m..	0,0,0 [u,0,0]	

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2a-2mm</th>
<th>Along [1,0,0]</th>
<th>p2mg1'</th>
<th>Along [0,1,0]</th>
<th>p_c-2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -b/2</td>
<td>b* = a/2</td>
<td>a* = -c</td>
<td>b* = b/2</td>
<td>a* = c/2</td>
<td>b* = a/2</td>
</tr>
<tr>
<td>Origin at 0,1/4,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 1/4,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Orthorhombic

$C_{p'm'ca}$

$64.11.538$

$mmm1'$

$C_{p2/m'2'/c21'/a}$

Origin at center (2/m') at 2/m'n'1

Asymmetric unit

$0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For (0,0,0) + set

(1) 1

(2) $2'$ (0,0,1/2) 0,1/4,z

(3) $2'$ (0,1/2,0) 0,y,1/4

(4) 2 x,0,0

For (1/2,1/2,0)' + set

(5) $\bar{1}'$ 0,0,0

(6) b (0,1/2,0) x,y,1/4

(7) c (0,0,1/2) x,1/4,z

(8) m' 0,y,z

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0)

(2) 2 (0,0,1/2) 1/4,0,z

(3) 2 1/4,y,1/4

(4) $2'$ (1/2,0,0) x,1/4,0

(1/2,1/2,0)

(5) $\bar{1}$ 1/4,1/4,0

(6) a' (1/2,0,0) x,y,1/4

(7) n' (1/2,0,1/2) x,0,z

(8) b (0,1/2,0) 1/4,y,z

(1/2,1/2,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + + (1/2,1/2,0)</td>
<td>(2) x, y+1/2, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z [u,v,w]</td>
<td></td>
<td>(3) x, y+1/2, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8 f m'..</td>
<td>0,y,z [0,v,w]</td>
<td></td>
<td>(4) x, y, z [u,v,w]</td>
</tr>
<tr>
<td>8 e .2'</td>
<td>1/4, y, 1/4 [u,0,w]</td>
<td></td>
<td>(6) x, y+1/2, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8 d 2..</td>
<td>x, 0, 0 [u,0,0]</td>
<td></td>
<td>(7) x, y+1/2, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8 c 1</td>
<td>1/4, 1/4, 0 [u,v,w]</td>
<td></td>
<td>(8) x, y, z [u,v,w]</td>
</tr>
<tr>
<td>4 b 2/m'..</td>
<td>1/2, 0, 0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 a 2/m'..</td>
<td>0, 0, 0 [0,0,0]</td>
<td></td>
<td>0,1/2, 1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**
 \(p_{2a}=2m'm' \)
 \(a^* = -b/2 \quad b^* = a/2 \)
 Origin at 0,0,z

- **Along [1,0,0]**
 \(p2m'g' \)
 \(a^* = -c \quad b^* = b/2 \)
 Origin at x,0,0

- **Along [0,1,0]**
 \(p_{c}=2mm \)
 \(a^* = c/2 \quad b^* = a/2 \)
 Origin at 1/4, y, 1/4
Origin at center (2’/m) at 2’/mn1

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1 | 0,0,0)
(2) 2’ (0,0,1/2) 0,1/4,z
 (2’ | 0,1/2,1/2)
(3) 2 (0,1/2,0) 0,y,1/4
 (2 | 0,1/2,1/2)
(4) 2’ x,0,0
 (2’ | 0,0,0)
(5) 1/4,1/4,0
 (1/4 | 0,0,0)
(6) b (0,1/2,0) x,y,1/4
 (m | 0,1/2,1/2)
(7) c’ (0,0,1/2) x,1/4,z
 (m’ | 0,1/2,1/2)
(8) m 0,y,z
 (m’ | 0,0,0)

For (1/2,1/2,0)’ + set

(1) t’ (1/2,1/2,0)
 (1/2 | 1/2,1/2,0)
(2) 2 (0,0,1/2) 1/4,0,z
 (2’ | 1/2,0,1/2)
(3) 2’ 1/4,y,1/4
 (2 | 1/2,0,1/2)
(4) 2 (1/2,0,0) x,1/4,0
 (2 | 1/2,1/2,0)
(5) 1/4,1/4,0
 (1/4 | 1/2,1/2,0)
(6) a’ (1/2,0,0) x,y,1/4
 (m | 1/2,0,1/2)
(7) n (1/2,0,1/2) x,0,z
 (m’ | 1/2,0,1/2)
(8) b’ (0,1/2,0) 1/4,y,z
 (m | 1/2,1/2,0)
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0)' +</td>
</tr>
<tr>
<td>16 g 1</td>
<td>(1) x,y,z [u,v,w] (2) x̃,ỹ+1/2,z+1/2 [ũ,ṽ,w̃] (3) x̃,ỹ+1/2,z+1/2 [ũ,ṽ,w̃] (4) x̃,ỹ,z [ũ,ṽ,w̃] (5) x̃,ỹ,z [ũ,ṽ,w̃] (6) x̃,ỹ+1/2,z+1/2 [ũ,ṽ,w̃] (7) x̃,ỹ+1/2,z+1/2 [ũ,ṽ,w̃] (8) x̃,ỹ,z [ũ,ṽ,w̃]</td>
</tr>
<tr>
<td>8 f m..</td>
<td>0,y,z [u,0,0] 0,ỹ+1/2,z+1/2 [ũ,0,0] 0,ỹ+1/2,z+1/2 [ũ,0,0] 0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 e .2.</td>
<td>1/4,y,1/4 [0,v,0] 3/4,y+1/2,3/4 [0,v,0] 3/4,ỹ+1/2,3/4 [0̃,ṽ,0] 1/4,y+1/2,1/4 [0̃,ṽ,0]</td>
</tr>
<tr>
<td>8 d 2'.</td>
<td>x,0,0 [0,v,w] x̃,1/2,1/2 [0̃,ṽ,w̃] x̃,0,0 [0̃,ṽ,w̃] x,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 c 1</td>
<td>1/4,1/4,0 [u,v,w] 3/4,1/4,1/2 [ũ,ṽ,w̃] 3/4,3/4,1/2 [ũ,ṽ,w̃] 1/4,3/4,0 [u,v,w]</td>
</tr>
<tr>
<td>4 b 2'/m..</td>
<td>1/2,0,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2'/m..</td>
<td>0,0,0 [0,0,0] 0,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p_{2a}2mm, $a^* = -b/2$, $b^* = a/2$
- Along [1,0,0] p_{2mg}1', $a^* = -c$, $b^* = b/2$
- Along [0,1,0] p_{2a}2mm, $a^* = -a/2$, $b^* = c/2$
- Origin at 0,0,z
- Origin at x,0,0
- Origin at 0,y,0
Orthorhombic

Origin at center (2/m) at 2/mn'1

Asymmetric unit

\[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2} \]

Symmetry Operations

For \((0,0,0)\) + set

1. \((1|0,0,0)\)
2. \((2|0,0,1/2)\) \(0,1/4,z\)
3. \((2'|0,1/2,0)\) \(0,y,1/4\)
4. \((2'|0,0,0)\) \(x,0,0\)

5. \((\bar{1}|0,0,0)\)
6. \((b'|0,1/2,0)\) \(x,y,1/4\)
7. \((c|0,0,1/2)\) \(x,1/4,z\)
8. \((a|0,1/2,0)\) \(1/4,y,z\)

For \((1/2,1/2,0)\) + set

1. \((t'|1/2,1/2,0)\)
2. \((2'|0,0,1/2)\) \(1/4,0,z\)
3. \((2|0,1/2,0)\) \(1/4,0,1/4\)
4. \((2|1/2,0,0)\) \(1/4,0,0\)

5. \((\bar{1}|1/4,1/4,0)\)
6. \((a|1/2,0,0)\) \(x,y,1/4\)
7. \((n'|1/2,1/2,0)\) \(x,0,z\)
8. \((b'|1/2,1/2,0)\) \(1/4,0,z\)

\[64.13.540 \]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0)’ +</td>
</tr>
<tr>
<td>16 g</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 f m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y+1/2,z+1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y+1/2,z+1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 e .2'</td>
<td>1/4,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,y+1/2,3/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,y+1/2,3/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,y+1/2,1/4 [u,0,w]</td>
</tr>
<tr>
<td>8 d 2'..</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 c 1</td>
<td>1/4,1/4,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,0 [u,v,w]</td>
</tr>
<tr>
<td>4 b 2'/m..</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2'/m..</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2a-2mm

Along [1,0,0] p2mg1'

Along [0,1,0] p_c-2mm

\(a^* = a/2 \) \(b^* = b/2 \)

Origin at 0,0,z

\(a^* = -c \) \(b^* = b/2 \)

Origin at x,0,0

\(a^* = c/2 \) \(b^* = a/2 \)

Origin at 0,y,0
Origin at center (2'/m') at 2'/m'n1

Asymmetric unit
0 < x < 1/4; 0 < y < 1/2; 0 < z < 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2 (0,0,1/2) 0,1/4,z
(2z | 0,1/2,1/2)

(3) 2' (0,1/2,0) 0,y,1/4
(2z | 0,1/2,1/2)'

(4) 2' x,0,0
(2z | 0,0,0)'

(5) 1
(1 | 0,0,0)

(6) b (0,1/2,0) x,y,1/4
(mz | 0,1/2,1/2)

(7) c' (0,0,1/2) x,1/4,z
(my | 0,1/2,1/2)'

(8) m' 0,y,z
(mz | 0,0,0)'

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0)
(1 | 1/2,1/2,0)'

(2) 2' (0,0,1/2) 1/4,0,z
(2z | 1/2,0,1/2)'

(3) 2 1/4,y,1/4
(2y | 1/2,0,1/2)

(4) 2 (1/2,0,0) x,1/4,0
(2z | 1/2,1/2,0)

(5) t' 1/4,1/4,0
(1 | 1/2,1/2,0)'

(6) a' (1/2,0,0) x,y,1/4
(mz | 1/2,0,1/2)'

(7) n (1/2,0,1/2) x,0,z
(my | 1/2,0,1/2)

(8) b (0,1/2,0) 1/4,y,z
(my | 1/2,1/2,0)
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0);(2); (3); (5)\).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g</td>
<td>((1) x,y,z [u,v,w]) (2) (\bar{x},y+1/2,z+1/2 [u,v,w]) (3) (\bar{x},y+1/2,z+1/2 [u,v,w]) (4) (x,y,z [u,v,w])</td>
</tr>
<tr>
<td>8 f</td>
<td>(m'..) (0,y,z [0,v,w]) (0,y+1/2,z+1/2 [0,v,w]) (0,y+1/2,z+1/2 [0,v,w]) (0,y,z [0,v,w])</td>
</tr>
<tr>
<td>8 e</td>
<td>(2'.) (1/4,y,1/4 [u,0,w]) (3/4,y+1/2,3/4 [u,0,w]) (3/4,y,3/4 [u,0,w]) (1/4,y+1/2,1/4 [u,0,w])</td>
</tr>
<tr>
<td>8 d</td>
<td>(2'..) (x,0,0 [0,v,w]) (\bar{x},1/2,1/2 [0,v,w]) (\bar{x},0,0 [0,v,w]) (x,1/2,1/2 [0,v,w])</td>
</tr>
<tr>
<td>8 c</td>
<td>(\bar{1}) (1/4,1/4,0 [0,0,0]) (3/4,1/4,1/2 [0,0,0]) (3/4,3/4,1/2 [0,0,0]) (1/4,3/4,0 [0,0,0])</td>
</tr>
<tr>
<td>4 b</td>
<td>(2'/m'..) (1/2,0,0 [0,v,w]) (1/2,1/2,1/2 [0,v,w])</td>
</tr>
<tr>
<td>4 a</td>
<td>(2'/m'..) (0,0,0 [0,v,w]) (0,1/2,1/2 [0,v,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along ([0,0,1]) (p_{2a}2m'1m')</th>
<th>Along ([1,0,0]) (p_{2b}2mg)</th>
<th>Along ([0,1,0]) (p_{2a}2mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = -b/2) (b^* = a/2)</td>
<td>(a^* = -c) (b^* = b/2)</td>
<td>(a^* = -a/2) (b^* = c/2)</td>
</tr>
<tr>
<td>Origin at (0,1/4,z)</td>
<td>Origin at (x,1/4,0)</td>
<td>Origin at (1/4,y,1/4)</td>
</tr>
</tbody>
</table>
Origin at center (2/m) at 2/mn1

Asymmetric unit:

\[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2}\]

Symmetry Operations

For \((0,0,0) + \) set

1. \(1\, (0,0,0)\)
2. \(2'(0,0,1/2)\) \(0,1/4,z\)
3. \(2'(0,1/2,0)\) \(0,y,1/4\)
4. \(2 x,0,0\)

\(1^*\ (0,0,0)\)
\(2^* (0,1/2,1/2)\)
\(2^* (0,1/2,1/2)'\)
\(2^* (0,0,0)\)

5. \(1/4,0,0\)
\(0,1/2,1/2)\)
\(0,1/2,1/2)\)
\(0,1/2,1/2)\)

6. \(1/2,1/2,0\)
\(0,1/2,0)\) \(x,y,1/4\)
\(m_z,0,1/2,1/2)\)
\(m_z,0,1/2,1/2)\)

7. \(1/2,0,1/2)\)
\(0,1/2,0)\) \(x,1/4,z\)
\(m_y,0,1/2,1/2)\)
\(m_y,0,1/2,1/2)\)

8. \(m,0,y,z\)
\(m,0,y,z\)
\(m,0,y,z\)
\(m,0,y,z\)

For \((1/2,1/2,0)' + \) set

1. \(t' (1/2,1/2,0)\)
\(1/2,1/2,0)\)
\(1/2,1/2,0)\)
\(1/2,1/2,0)\)

2. \(2 (0,0,1/2)\) \(1/4,0,z\)
\(2 (1/2,0,1/2)\)
\(2 (1/2,0,1/2)\)
\(2 (1/2,0,1/2)\)

3. \(2 (1/2,0,1/2)\) \(1/4,y,1/4\)
\(2 (1/2,0,1/2)\)
\(2 (1/2,0,1/2)\)
\(2 (1/2,0,1/2)\)

4. \(2 (1/2,0,1/2)\) \(x,1/4,0\)
\(2 (1/2,0,1/2)\)
\(2 (1/2,0,1/2)\)
\(2 (1/2,0,1/2)\)

5. \(t^\prime (1/4,1/4,0)\)
\(1/2,1/2,0)\)
\(1/2,1/2,0)\)
\(1/2,1/2,0)\)

6. \(a (1/2,0,0)\) \(x,y,1/4\)
\(m_z,1/2,0,1/2)\)
\(m_z,1/2,0,1/2)\)
\(m_z,1/2,0,1/2)\)

7. \(n (1/2,0,1/2)\) \(x,0,z\)
\(m_y,1/2,0,1/2)\)
\(m_y,1/2,0,1/2)\)
\(m_y,1/2,0,1/2)\)

8. \(b' (0,1/2,0)\) \(1/4,y,z\)
\(m_z,1/2,1/2,0)'\)
\(m_z,1/2,1/2,0)'\)
\(m_z,1/2,1/2,0)'\)

64.15.542 - 1 - 1074
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5)\).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0,0)) +</td>
<td>((1/2,1/2,0)) +</td>
</tr>
<tr>
<td>16 g 1 ((1)) x,y,z [u,v,w]</td>
<td>((2)) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8 f m.. 0,y,z [u,0,0]</td>
<td>0,y+1/2,z+1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 e .2'. 1/4,y,1/4 [u,0,w]</td>
<td>3/4,y+1/2,3/4 [u,0,w]</td>
</tr>
<tr>
<td>8 d 2.. x,0,0 [u,0,0]</td>
<td>x,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 c 1' 1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b 2/m.. 1/2,0,0 [u,0,0]</td>
<td>1/2,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 a 2/m.. 0,0,0 [u,0,0]</td>
<td>0,1/2,1/2 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along \([0,0,1]\) \(p_{2a}2m1m'\)
 - \(a^* = a/2\) \(b^* = b/2\)
 - Origin at 1/4,1/4,z

- **Along \([1,0,0]\) \(p2mg1'\)
 - \(a^* = c\) \(b^* = b/2\)
 - Origin at x,0,0

- **Along \([0,1,0]\) \(p_{2a}2m1m'\)
 - \(a^* = -a/2\) \(b^* = c/2\)
 - Origin at 0,y,0
Origin at center (2'/m') at 2'/m'n'

Asymmetric unit

\[0 < x < 1/4; \quad 0 < y < 1/2; \quad 0 < z < 1/2 \]

Symmetry Operations

For \((0,0,0) + \text{set}\):

1. \(1 \quad 0,0,0\)
2. \(2' \quad (0,0,1/2) \quad 0,1/4,z\)
3. \(2 \quad (0,1/2,0) \quad 0,y,1/4\)
4. \(2' \quad x,0,0\)

For \((1/2,1/2,0)' + \text{set}\):

1. \(t' \quad (1/2,1/2,0)\)
2. \(2 \quad (0,0,1/2) \quad 1/4,0,z\)
3. \(2' \quad 1/4,y,1/4\)
4. \(2 \quad (1/2,0,0) \quad x,1/4,0\)

\[(\tau | 0,0,0) \]

1. \(b' \quad (0,1/2,0) \quad x,y,1/4\)
2. \(c \quad (0,0,1/2) \quad x,1/4,z\)
3. \(m' \quad 0,y,z\)
4. \(a \quad (1/2,0,0) \quad x,y,1/4\)
5. \(n' \quad (1/2,0,1/2) \quad x,0,z\)
6. \(b \quad (0,1/2,0) \quad 1/4,y,z\)

\[(\tau | 1/2,1/2,0) \]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>16 g 1</td>
<td>(0,0,0) + (1/2,1/2,0)* +</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(8) x,y,z [u,v,w]</td>
<td>(8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 f m..</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 e .2.</td>
<td>1/4,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>8 d 2'..</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>8 c 1'</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 b 2'/m'..</td>
<td>1/2,0,0 [0,v,w]</td>
</tr>
<tr>
<td>4 a 2'/m'..</td>
<td>0,0,0 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_{2a}2mm\) \(a^* = a/2\ \ b^* = b/2\) Origin at 1/4,0,z
Along [1,0,0] \(p_{2b}2mg\) \(a^* = -c\ \ b^* = b/2\) Origin at x,1/4,0
Along [0,1,0] \(p_{c}2mm\) \(a^* = c/2\ \ b^* = a/2\) Origin at 1/4,y,0
Orthorhombic

64.17.544

$\text{C}_p m' c' a'$

$\text{mmm}_1' \quad \text{C}_p 2/m' 2/c' 2/a'$

Origin at center (2/m') at 2/m'n1

Asymmetric unit $0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For (0,0,0) + set

1. I (1|0,0,0)
2. $2 \cdot (0,0,1/2) \quad 0,1/4,z$
 (2$_z|0,1/2,1/2$)
3. $2 \cdot (0,1/2,0) \quad 0,y,1/4$
 (2$_y|0,1/2,1/2$)
4. $2 \cdot x,0,0$
 (2$_x|0,0,0$)

5. T' 0,0,0
 (1|0,0,0)'
6. $b' \cdot (0,1/2,0) \quad x,y,1/4$
 (m$_z|0,1/2,1/2$)'
7. $c' \cdot (0,0,1/2) \quad x,1/4,z$
 (m$_y|0,1/2,1/2$)'
8. $m' \cdot 0,y,z$
 (m$_z|0,0,0$)'

For (1/2,1/2,0) + set

1. $t' \cdot (1/2,1/2,0)$
 (1|1/2,1/2,0)'
2. $2' \cdot (0,0,1/2) \quad 1/4,0,z$
 (2$_z|1/2,0,1/2$)'
3. $2' \cdot 1/4,y,1/4$
 (2$_y|1/2,0,1/2$)'
4. $2' \cdot (1/2,0,0) \quad x,1/4,0$
 (2$_x|1/2,1/2,0$)'

5. $T \cdot 1/4,1/4,0$
 (1|1/2,1/2,0)'
6. $a \cdot (1/2,0,0) \quad x,y,1/4$
 (m$_z|1/2,0,1/2$)
7. $n \cdot (1/2,0,1/2) \quad x,0,z$
 (m$_y|1/2,0,1/2$)
8. $b \cdot (0,1/2,0) \quad 1/4,y,z$
 (m$_z|1/2,1/2,0$)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g 1</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,0)' +</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
<td>(8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 f m'..</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 e .2.</td>
<td>1/4,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>8 d 2..</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>8 c 1</td>
<td>1/4,1/4,0 [u,v,w]</td>
</tr>
<tr>
<td>4 b 2/m'..</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2/m'..</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2a•2m1'm'
Along [1,0,0] p2b•2mg
Along [0,1,0] p2a•2m1'm'

\[a^* = a/2 \quad b^* = b/2 \]
\[a^* = -c \quad b^* = b/2 \]
\[a^* = -a/2 \quad b^* = c/2 \]

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Cmmm

65.1.545

Origin at center (mmm)

Asymmetric unit

0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1|0,0,0)

(2) 2 0,0,z
 (2z|0,0,0)

(3) 2 0,y,0
 (2y|0,0,0)

(4) 2 x,0,0
 (2x|0,0,0)

(5) 1
 (1|0,0,0)

(6) m x,y,0
 (mz|0,0,0)

(7) m x,0,z
 (my|0,0,0)

(8) m 0,y,z
 (my|0,0,0)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
 (1|1/2,1/2,0)

(2) 2 1/4,1/4,z
 (2z|1/2,1/2,0)

(3) 2 (0,1/2,0) 1/4,y,0
 (2y|1/2,1/2,0)

(4) 2 (1/2,0,0) x,1/4,0
 (2x|1/2,1/2,0)

(5) 1
 (1|1/2,1/2,0)

(2) 2 1/4,1/4,z
 (2z|1/2,1/2,0)

(3) 2 (0,1/2,0) 1/4,y,0
 (2y|1/2,1/2,0)

(4) 2 (1/2,0,0) x,1/4,0
 (2x|1/2,1/2,0)

(5) 1
 (1|1/2,1/2,0)

(6) n (1/2,1/2,0) x,y,0
 (mz|1/2,1/2,0)

(7) a (1/2,0,0) x,1/4,z
 (my|1/2,1/2,0)

(8) b (0,1/2,0) 1/4,y,z
 (mz|1/2,1/2,0)
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 r 1</td>
<td>(0,0,0) + (1/2,1/2,0) +</td>
</tr>
<tr>
<td>8 q ..m</td>
<td>(2) (x, y, z [u, v, w]) (3) (x, y, z [u, v, w]) (4) (x, y, z [u, v, w])</td>
</tr>
<tr>
<td>8 p ..m</td>
<td>(5) (x, y, z [u, v, w]) (6) (x, y, z [u, v, w]) (7) (x, y, z [u, v, w]) (8) (x, y, z [u, v, w])</td>
</tr>
<tr>
<td>8 o ..m</td>
<td>1/4,1/4,(z [0,0,w]) 3/4,1/4,(z [0,0,w]) 3/4,3/4,(z [0,0,w]) 1/4,3/4,(z [0,0,w])</td>
</tr>
<tr>
<td>4 l mm2</td>
<td>0,1/2,(z [0,0,0]) 0,1/2,(z [0,0,0])</td>
</tr>
<tr>
<td>4 k mm2</td>
<td>0,0,(z [0,0,0]) 0,0,(z [0,0,0])</td>
</tr>
<tr>
<td>4 j m2m</td>
<td>0,(y, 1/2 [0,0,0]) 0,(y, 1/2 [0,0,0])</td>
</tr>
<tr>
<td>4 i m2m</td>
<td>0,(y, 0 [0,0,0]) 0,(y, 0 [0,0,0])</td>
</tr>
<tr>
<td>4 h 2mm</td>
<td>(x, 0, 1/2 [0,0,0]) (x, 0, 1/2 [0,0,0])</td>
</tr>
<tr>
<td>4 g 2mm</td>
<td>(x, 0, 0 [0,0,0]) (x, 0, 0 [0,0,0])</td>
</tr>
<tr>
<td>4 f ..2/m</td>
<td>1/4,1/4,1/2 [0,0,w] 3/4,1/4,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 e ..2/m</td>
<td>1/4,1/4,0 [0,0,w] 3/4,1/4,0 [0,0,w]</td>
</tr>
<tr>
<td>2 d mmm</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c mmm</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b mmm</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 a mmm</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) c2mm1'\(\quad\star a = a\quad b^* = b\star\)
- Along \([1,0,0]\) p2mm1'\(\quad a^* = b/2\quad b^* = c\star\)
- Along \([0,1,0]\) p2mm1'\(\quad a^* = c\quad b^* = a/2\star\)

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Orthorhombic

$$\text{Cmmm1'}$$

65.2.546

$$\text{mmm1'}$$

$$\text{C2/m2/m2/m1'}$$

Origin at center (mmm1')

Asymmetric unit

$$0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$$

Symmetry Operations

For (0,0,0) + set

1. $$1$$
 $$1'$$
2. $$2$$ $$0,0,z$$
 $$0,0,0$$
3. $$2$$ $$0,y,0$$
 $$0,0,0$$
4. $$2$$ $$0,0,0$$
 $$0,0,0$$

For (1/2,1/2,0) + set

5. $$1'$$ $$1/2,1/2,0$$
 $$1/2,1/2,0$$
6. $$2$$ $$1/4,1/4,z$$
 $$1/2,1/2,2/0$$
7. $$2$$ $$0,1/2,0$$
 $$1/2,1/2,2/0$$
8. $$2$$ $$0,1/2,0$$
 $$1/2,1/2,2/0$$

For (0,0,0)' + set

9. $$1'$$ $$0,0,0$$
 $$0,0,0$$
10. $$2'$$ $$0,0,z$$
 $$0,0,0$$
11. $$2'$$ $$0,y,0$$
 $$0,0,0$$
12. $$2'$$ $$0,0,0$$
 $$0,0,0$$

For (1/2,1/2,0)' + set

13. $$1'$$ $$1/2,1/2,0$$
 $$1/2,1/2,0$$
14. $$2'$$ $$1/4,1/4,z$$
 $$1/2,1/2,2/0$$
15. $$2'$$ $$0,1/2,0$$
 $$1/2,1/2,2/0$$
16. $$2'$$ $$0,1/2,0$$
 $$1/2,1/2,2/0$$
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) + (0,0,0)’ +</td>
</tr>
<tr>
<td>16 r 11’ (1) x,y,z [0,0,0] (2) x,y,z [0,0,0] (3) x,y,z [0,0,0] (4) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,0) + (1/2,1/2,0)’ +</td>
</tr>
<tr>
<td>8 q ..m1’ x,y,1/2 [0,0,0] x,y,1/2 [0,0,0] x,y,1/2 [0,0,0] x,y,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 p ..m1’ x,y,0 [0,0,0] x,y,0 [0,0,0] x,y,0 [0,0,0] x,y,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 o ..m1’ x,0,z [0,0,0] x,0,z [0,0,0] x,0,z [0,0,0] x,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 n ..1’ 0,y,0 [0,0,0] 0,y,0 [0,0,0] 0,y,0 [0,0,0] 0,y,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 m ..21’ 1/4,1/4,z [0,0,0] 3/4,1/4,z [0,0,0] 3/4,3/4,z [0,0,0] 1/4,3/4,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 l mm21’ 0,1/2,z [0,0,0] 0,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 k mm21’ 0,0,z [0,0,0] 0,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 j m2m1’ 0,y,1/2 [0,0,0] 0,y,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 i m2m1’ 0,y,0 [0,0,0] 0,y,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 h 2mm1’ x,0,1/2 [0,0,0] x,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 g 2mm1’ x,0,0 [0,0,0] x,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 f ..2/m1’ 1/4,1/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 e ..2/m1’ 1/4,1/4,0 [0,0,0] 3/4,1/4,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 d mmm1’ 0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 c mmm1’ 1/2,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 b mmm1’ 1/2,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a mmm1’ 0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1’
a* = a b* = b
Origin at 0,0,z
Along [1,0,0] p2mm1’
a* = b/2 b* = c
Origin at x,0,0
Along [0,1,0] p2mm1’
a* = c b* = a/2
Origin at 0,y,0
Origin
at center (m’mm)

Asymmetric unit
0 \leq x < 1/4; \quad 0 \leq y < 1/2; \quad 0 \leq z < 1/2

Symmetry Operations

For (0,0,0) + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (1)</td>
<td>(1</td>
</tr>
<tr>
<td>(2) (2')</td>
<td>(0,0,z) (2_z</td>
</tr>
<tr>
<td>(3) (2')</td>
<td>(0,y,0) (2_y</td>
</tr>
<tr>
<td>(4) (2)</td>
<td>((x,0,0)) (2_x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5) (\overline{1})</td>
<td>(0,0,0) (\overline{1}</td>
</tr>
<tr>
<td>(6) (m)</td>
<td>(x,y,0) (m_x</td>
</tr>
<tr>
<td>(7) (m)</td>
<td>(x,0,z) (m_y</td>
</tr>
<tr>
<td>(8) (m')</td>
<td>(y,z) (m_z</td>
</tr>
</tbody>
</table>

For (1/2,1/2,0) + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (t)</td>
<td>((1/2,1/2,0)) ((1</td>
</tr>
<tr>
<td>(2) (2')</td>
<td>((1/4,1/4,z)) ((2_z</td>
</tr>
<tr>
<td>(3) (2')</td>
<td>((0,1/2,0)) ((2_y</td>
</tr>
<tr>
<td>(4) (2)</td>
<td>((x,1/4,0)) ((2_x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5) (\overline{1})</td>
<td>((1/4,1/4,0)) ((\overline{1}</td>
</tr>
<tr>
<td>(6) (n)</td>
<td>((1/2,1/2,0)) ((m_z</td>
</tr>
<tr>
<td>(7) (a)</td>
<td>((1/2,0,0)) ((m_y</td>
</tr>
<tr>
<td>(8) (b')</td>
<td>((0,1/2,0)) ((m_z</td>
</tr>
</tbody>
</table>
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1);t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
<td>(0,0,0) +</td>
<td></td>
</tr>
<tr>
<td>16 r</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 q ..m</td>
<td>x,y,1/2 [0,0,0]</td>
<td>x,y,1/2 [0,0,0]</td>
<td>x,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 p ..m</td>
<td>x,y,0 [0,0,0]</td>
<td>x,y,0 [0,0,0]</td>
<td>x,y,0 [0,0,0]</td>
</tr>
<tr>
<td>8 o ..m</td>
<td>x,0,z [0,0,0]</td>
<td>x,0,z [0,0,0]</td>
<td>x,0,z [0,0,0]</td>
</tr>
<tr>
<td>8 n m' ..</td>
<td>0,y,z [0,0,0]</td>
<td>0,y,z [0,0,0]</td>
<td>0,y,z [0,0,0]</td>
</tr>
<tr>
<td>8 m ..2'</td>
<td>1/4,1/4,z [0,0,0]</td>
<td>3/4,1/4,z [0,0,0]</td>
<td>3/4,3/4,z [0,0,0]</td>
</tr>
<tr>
<td>4 l m'm2'</td>
<td>0,1/2,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 k m'm2'</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 j m'2'm</td>
<td>0,y,1/2 [0,0,0]</td>
<td>0,y,1/2 [0,0,0]</td>
<td>0,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 i m'2'm</td>
<td>0,y,0 [0,0,0]</td>
<td>0,y,0 [0,0,0]</td>
<td>0,y,0 [0,0,0]</td>
</tr>
<tr>
<td>4 h 2mm</td>
<td>x,0,1/2 [0,0,0]</td>
<td>x,0,1/2 [0,0,0]</td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 g 2mm</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 f ..2'/m</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
<td>3/4,1/4,1/2 [0,0,0]</td>
<td>3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 e ..2'/m</td>
<td>1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>2 d m'mm</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c m'mm</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b m'mm</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 a m'mm</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1'
\[a^* = a, b^* = b \]
Origin at 0,0,0

Along [1,0,0] p2mm
\[a^* = b/2, b^* = c \]
Origin at 0,0,0

Along [0,1,0] p2mm1'
\[a^* = c, b^* = a/2 \]
Origin at 0,y,0
Origin at center (mmm')

Asymmetric unit: 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. 1 0,0,0
2. 2 0,0,z
 (2z 0,0,0)
3. 2' 0,y,0
 (2z 0,0,0)'
4. 2' x,0,0
 (2z 0,0,0)'
5. m' 0,0,0
 (mz 0,0,0)'
6. m' x,y,0
 (mz 0,0,0)'
7. m x,0,z
 (mz 0,0,0)
8. m 0,y,z
 (mz 0,0,0)

For (1/2,1/2,0) + set

1. t (1/2,1/2,2,0)
 (1 1/2,1/2,2,0)
2. 2 1/4,1/4,z
 (2z 1/2,1/2,2,0)
3. 2' (0,1/2,0) 1/4,y,0
 (2z 1/2,1/2,2,0)'
4. 2' (1/2,0,0) x,1/4,0
 (2z 1/2,1/2,2,0)'
5. n' (1/2,1/2,2,0)
 (mz 1/2,1/2,2,0)'
6. n' x,y,0
 (mz 1/2,1/2,2,0)'
7. a (1/2,0,0) x,1/4,z
 (mz 1/2,1/2,2,0)
8. b (0,1/2,0) 1/4,y,z
 (mz 1/2,1/2,2,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 r 1</td>
<td>(1) x, y, z [u, v, w]</td>
<td>(0,0,0) + (1/2,1/2,0) +</td>
</tr>
<tr>
<td>8 q ..m'</td>
<td>x, y, 1/2 [u, v, 0]</td>
<td>x, y, 1/2 [u, v, 0]</td>
</tr>
<tr>
<td>8 p ..m'</td>
<td>x, y, 0 [u, v, 0]</td>
<td>x, y, 1/2 [u, v, 0]</td>
</tr>
<tr>
<td>8 o .m.</td>
<td>x, 0, z [0, v, 0]</td>
<td>x, 1/2 [u, v, 0]</td>
</tr>
<tr>
<td>8 n m..</td>
<td>0, y, z [u, 0, 0]</td>
<td>0, y, 1/2 [u, v, 0]</td>
</tr>
<tr>
<td>8 m ..2</td>
<td>1/4, 1/4, z [0, 0, w]</td>
<td>3/4, 3/4, z [0, 0, w]</td>
</tr>
<tr>
<td>4 l mm2</td>
<td>0, 1/2, z [0, 0, 0]</td>
<td>0, 1/2, z [0, 0, 0]</td>
</tr>
<tr>
<td>4 k mm2</td>
<td>0, 0, z [0, 0, 0]</td>
<td>0, 0, z [0, 0, 0]</td>
</tr>
<tr>
<td>4 j m2m'</td>
<td>0, y, 1/2 [u, 0, 0]</td>
<td>0, y, 1/2 [u, 0, 0]</td>
</tr>
<tr>
<td>4 i m2m'</td>
<td>0, y, 0 [u, 0, 0]</td>
<td>0, y, 0 [u, 0, 0]</td>
</tr>
<tr>
<td>4 h 2'mm'</td>
<td>x, 0, 1/2 [0, v, 0]</td>
<td>x, 0, 1/2 [0, v, 0]</td>
</tr>
<tr>
<td>4 g 2'mm'</td>
<td>x, 0, 0 [0, v, 0]</td>
<td>x, 0, 0 [0, v, 0]</td>
</tr>
<tr>
<td>4 f ..2/m'</td>
<td>1/4, 1/4, 1/2 [0, 0, 0]</td>
<td>3/4, 1/4, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>4 e ..2/m'</td>
<td>1/4, 1/4, 0 [0, 0, 0]</td>
<td>3/4, 1/4, 0 [0, 0, 0]</td>
</tr>
<tr>
<td>2 d mmm'</td>
<td>0, 0, 1/2 [0, 0, 0]</td>
<td>0, 0, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>2 c mmm'</td>
<td>1/2, 0, 1/2 [0, 0, 0]</td>
<td>1/2, 0, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>2 b mmm'</td>
<td>1/2, 0, 0 [0, 0, 0]</td>
<td>1/2, 0, 0 [0, 0, 0]</td>
</tr>
<tr>
<td>2 a mmm'</td>
<td>0, 0, 0 [0, 0, 0]</td>
<td>0, 0, 0 [0, 0, 0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Axes</th>
<th>Along [0, 0, 1]</th>
<th>c2mm</th>
<th>Along [1, 0, 0]</th>
<th>p2mm1'</th>
<th>Along [0, 1, 0]</th>
<th>p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a*</td>
<td>= a</td>
<td></td>
<td>a* = b/2</td>
<td></td>
<td>a* = c</td>
<td></td>
</tr>
<tr>
<td>b*</td>
<td>= b</td>
<td></td>
<td>b* = c</td>
<td></td>
<td>b* = a/2</td>
<td></td>
</tr>
</tbody>
</table>

Origin at 0,0, z
Origin at x,0,0
Origin at 0, y, 0

65.4.548 - 2 - 1087
Origin at center (m'm'm)

Asymmetric unit: $0 \leq x \leq 1/4$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1/2$

Symmetry Operations

For (0,0,0) + set

1. \(I \) (0,0,0)
2. \(2 \) 0,0,z
 \((2z \ 0,0,0) \)
3. \(2' \) 0,y,0
 \((2y \ 0,0,0)' \)
4. \(2' \) x,0,0
 \((2x \ 0,0,0)' \)
5. \(\bar{1} \) 0,0,0
 \((1 \ 0,0,0) \)
6. \(m \) x,y,0
 \((mz \ 0,0,0) \)
7. \(m' \) x,0,z
 \((m'y \ 0,0,0)' \)
8. \(m' \) 0,y,z
 \((m'z \ 0,0,0)' \)

For (1/2,1/2,0) + set

1. \(t \) (1/2,1/2,0)
 \((1 \ 1/2,1/2,0) \)
2. \(2 \) 1/4,1/4,z
 \((2z \ 1/2,1/2,0) \)
3. \(2' \) (0,1/2,0)
 \(1/4,y,0 \)
 \((2y \ 1/2,1/2,0)' \)
4. \(2' \) (1/2,0,0)
 \(x,1/4,0 \)
 \((2x \ 1/2,1/2,0)' \)
5. \(\bar{1} \) 1/4,1/4,0
 \((1 \ 1/2,1/2,0) \)
6. \(n \) (1/2,1/2,0)
 \(x,y,0 \)
 \((mz \ 1/2,1/2,0) \)
7. \(a' \) (1/2,0,0)
 \(x,1/4,0 \)
 \((m'y \ 1/2,1/2,0)' \)
8. \(b' \) (0,1/2,0)
 \(1/4,y,z \)
 \((m'z \ 1/2,1/2,0)' \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>16 r 1 (1) x,y,z [u,v,w]</td>
<td>(2) (\bar{x},y,\bar{z} [\bar{u},\bar{v},w])</td>
</tr>
<tr>
<td></td>
<td>(3) (\bar{x},y,\bar{z} [\bar{u},\bar{v},w])</td>
</tr>
<tr>
<td></td>
<td>(4) (x,\bar{y},\bar{z} [\bar{u},\bar{v},w])</td>
</tr>
<tr>
<td></td>
<td>(5) (x,\bar{y},\bar{z} [\bar{u},\bar{v},w])</td>
</tr>
<tr>
<td>16 r 1 (5) (x,\bar{y},\bar{z} [\bar{u},\bar{v},w])</td>
<td>(6) (x,y,\bar{z} [\bar{u},\bar{v},w])</td>
</tr>
<tr>
<td>16 r 1 (6) (x,y,\bar{z} [\bar{u},\bar{v},w])</td>
<td>(7) (x,\bar{y},z [\bar{u},\bar{v},w])</td>
</tr>
<tr>
<td>16 r 1 (7) (x,\bar{y},z [\bar{u},\bar{v},w])</td>
<td>(8) (x,y,z [\bar{u},\bar{v},w])</td>
</tr>
<tr>
<td>8 q (\ldots m) x,y,1/2 [0,0,w]</td>
<td>(\bar{x},\bar{y},1/2 [0,0,w])</td>
</tr>
<tr>
<td>8 p (\ldots m) x,y,0 [0,0,w]</td>
<td>(\bar{x},\bar{y},0 [0,0,w])</td>
</tr>
<tr>
<td>8 o (\ldots m') x,0,z [u,0,w]</td>
<td>(\bar{x},0,z [u,0,w])</td>
</tr>
<tr>
<td>8 n (\ldots m') (0,0,z [0,v,w])</td>
<td>(0,\bar{y},z [\bar{u},\bar{v},w])</td>
</tr>
<tr>
<td>8 m (\ldots m') (1/4,1/4,z [0,0,w])</td>
<td>(3/4,1/4,\bar{z} [0,0,w])</td>
</tr>
<tr>
<td>4 l (m'm'2) (0,1/2,z [0,0,w])</td>
<td>(0,1/2,\bar{z} [0,0,w])</td>
</tr>
<tr>
<td>4 k (m'm'2) (0,0,z [0,0,w])</td>
<td>(0,0,\bar{z} [0,0,w])</td>
</tr>
<tr>
<td>4 j (m'2'm) (0,y,1/2 [0,0,w])</td>
<td>(0,\bar{y},1/2 [0,0,w])</td>
</tr>
<tr>
<td>4 i (m'2'm) (0,y,0 [0,0,w])</td>
<td>(0,\bar{y},0 [0,0,w])</td>
</tr>
<tr>
<td>4 h (2'm'm) (x,0,1/2 [0,0,w])</td>
<td>(\bar{x},0,1/2 [0,0,w])</td>
</tr>
<tr>
<td>4 g (2'm'm) (x,0,0 [0,0,w])</td>
<td>(\bar{x},0,0 [0,0,w])</td>
</tr>
<tr>
<td>4 f (\ldots /m) (1/4,1/4,1/2 [0,0,w])</td>
<td>(3/4,1/4,1/2 [0,0,w])</td>
</tr>
<tr>
<td>4 e (\ldots /m) (1/4,1/4,0 [0,0,w])</td>
<td>(3/4,1/4,0 [0,0,w])</td>
</tr>
<tr>
<td>2 d (m'm'm) (0,0,1/2 [0,0,w])</td>
<td>(0,0,1/2 [0,0,w])</td>
</tr>
<tr>
<td>2 c (m'm'm) (1/2,0,1/2 [0,0,w])</td>
<td>(1/2,0,1/2 [0,0,w])</td>
</tr>
<tr>
<td>2 b (m'm'm) (1/2,0,0 [0,0,w])</td>
<td>(1/2,0,0 [0,0,w])</td>
</tr>
<tr>
<td>2 a (m'm'm) (0,0,0 [0,0,w])</td>
<td>(0,0,0 [0,0,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections
Along [0,0,1] c2m'm'
a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p2'mm'
a* = -c b* = b/2
Origin at x,0,0

Along [0,1,0] p2'mm'
a* = c b* = a/2
Origin at 0,y,0

65.5.549 - 2 - 1089
Cmm'm'
mm'm'
Orthorhombic

65.6.550

Origin at center (mm'm')

Asymmetric unit
0 \leq x \leq 1/4; 0 \leq y \leq 1/2; 0 \leq z \leq 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) 2' 0,0,z
(2_2^z|0,0,0)'

(3) 2' y,0
(2_2^y|0,0,0)'

(4) 2 x,0,0
(2_x|0,0,0)

(5) 1
(1|0,0,0)

(6) m' x,y,0
(m_2^x|0,0,0)'

(7) m' x,0,z
(m_y|0,0,0)'

(8) m 0,y,z
(m_z|0,0,0)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(1|1/2,1/2,0)

(2) 2' 1/4,1/4,z
(2_2^z|1/2,1/2,0)'

(3) 2' (0,1/2,0) 1/4,y,0
(2_2^y|1/2,1/2,0)'

(4) 2 (1/2,0,0) x,1/4,0
(2_x|1/2,1/2,0)

(5) ' 1/4,1/2,0
(1|1/2,1/2,0)

(6) m' (1/2,1/2,0) x,y,0
(m_2^x|1/2,1/2,0)'

(7) a' (1/2,0,0) x,1/4,z
(m_y|1/2,1/2,0)'

(8) b (0,1/2,0) 1/4,y,z
(m_z|1/2,1/2,0)

65.6.550 - 1 - 1090
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>16 r</td>
<td>1 x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 q</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 p</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>8 o</td>
<td>x,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [u,v,0]</td>
</tr>
<tr>
<td>8 n</td>
<td>0,y,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [u,v,0]</td>
</tr>
<tr>
<td>8 m</td>
<td>1/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td>4 l</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>4 k</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td>4 j</td>
<td>0,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 i</td>
<td>0,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,0 [u,v,0]</td>
</tr>
<tr>
<td>4 h</td>
<td>x,0,1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 g</td>
<td>x,0,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [u,v,0]</td>
</tr>
<tr>
<td>4 f</td>
<td>1/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td>4 e</td>
<td>1/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td>2 d</td>
<td>0,0,1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [u,v,0]</td>
</tr>
<tr>
<td>2 c</td>
<td>1/2,0,1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [u,v,0]</td>
</tr>
<tr>
<td>2 b</td>
<td>1/2,0,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [u,v,0]</td>
</tr>
<tr>
<td>2 a</td>
<td>0,0,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,0 [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: c2′mm′
 - **a* = a**
 - **b* = b**
 - Origin at 0,0,z

- **Along [1,0,0]**: p2mm1′
 - **a* = b/2**
 - **b* = c**
 - Origin at x,0,0

- **Along [0,1,0]**: p2′mm′
 - **a* = -a/2**
 - **b* = c**
 - Origin at 0,y,0
Origin at center \((m'm'm')\)

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

For \((0,0,0) + \) set

\[\begin{align*}
(1) & \quad 1 \\
& \quad (1|0,0,0) \\
(2) & \quad 2 \quad 0,0,z \\
& \quad (2_z|0,0,0) \\
(5) & \quad T \quad 0,0,0 \\
& \quad (1|0,0,0)' \\
(6) & \quad m' \quad x,y,0 \\
& \quad (m_z|0,0,0)' \\
(7) & \quad m' \quad x,0,z \\
& \quad (m_y|0,0,0)' \\
(8) & \quad m' \quad 0,y,z \\
& \quad (m_x|0,0,0)' \\
\end{align*}\]

For \((1/2,1/2,0) + \) set

\[\begin{align*}
(1) & \quad t \quad (1/2,1/2,0) \\
& \quad (1|1/2,1/2,0) \\
(2) & \quad 2 \quad 1/4,1/4,z \\
& \quad (2_z|1/2,1/2,0) \\
(5) & \quad T \quad 1/4,1/4,0 \\
& \quad (1|1/2,1/2,0)' \\
(6) & \quad n' \quad (1/2,1/2,0) \quad x,y,0 \\
& \quad (m_z|1/2,1/2,0)' \\
(7) & \quad a' \quad (1/2,0,0) \quad x,1/4,z \\
& \quad (m_y|1/2,1/2,0)' \\
(8) & \quad b' \quad (0,1/2,0) \quad 1/4,y,z \\
& \quad (m_x|1/2,1/2,0)' \\
\end{align*}\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1);t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity,</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>16 r</td>
<td>1</td>
</tr>
<tr>
<td>8 q</td>
<td>.m'</td>
</tr>
<tr>
<td>8 p</td>
<td>.m'</td>
</tr>
<tr>
<td>8 o</td>
<td>.m'</td>
</tr>
<tr>
<td>8 n</td>
<td>m'</td>
</tr>
<tr>
<td>8 m</td>
<td>.2</td>
</tr>
<tr>
<td>4 l</td>
<td>m'm'2</td>
</tr>
<tr>
<td>4 k</td>
<td>m'm'2</td>
</tr>
<tr>
<td>4 j</td>
<td>m'2m'</td>
</tr>
<tr>
<td>4 i</td>
<td>m'2m'</td>
</tr>
<tr>
<td>4 h</td>
<td>2m'm'</td>
</tr>
<tr>
<td>4 g</td>
<td>2m'm'</td>
</tr>
<tr>
<td>4 f</td>
<td>.2/m'</td>
</tr>
<tr>
<td>4 e</td>
<td>.2/m'</td>
</tr>
<tr>
<td>2 d</td>
<td>m'm'm'</td>
</tr>
<tr>
<td>2 c</td>
<td>m'm'm'</td>
</tr>
<tr>
<td>2 b</td>
<td>m'm'm'</td>
</tr>
<tr>
<td>2 a</td>
<td>m'm'm'</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2m'm'</th>
<th>Along [1,0,0]</th>
<th>p2m'm'</th>
<th>Along [0,1,0]</th>
<th>p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b)</td>
<td>(a^* = b/2)</td>
<td>(b^* = c)</td>
<td>(a^* = c)</td>
<td>(b^* = a/2)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (mmm)

Asymmetric unit

\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

For \((0,0,0) + \text{set}\):

\[\begin{align*}
&\text{(1)} \, t \quad (1|0,0,0) \\
&\quad \bar{t} \quad 0,0,0 \\
&\quad m \quad x,y,0 \\
&\quad m' \quad x,0,1/2 \\
&\quad t' \quad (0,0,1) \\
&\quad \bar{t}' \quad 0,0,1/2 \\
&\quad m'' \quad x,y,1/2 \\
&\quad m''' \quad x,0,1/2 \\
&\quad t'' \quad (1/2,1/2,1) \\
&\quad \bar{t}'' \quad 1/4,1/4,1/2 \\
&\quad m''' \quad x,0,1/2 \\
&\quad m''''' \quad x,0,1/2 \\
&\quad t''' \quad (1/2,1/2,1,1) \\
&\quad \bar{t}''' \quad 1/4,1/4,1/2 \\
&\quad m'''''' \quad x,y,1/2 \\
&\quad m''''''' \quad x,0,1/2 \\
&\quad t'''' \quad (1/2,1/2,1,1) \\
&\quad \bar{t}'''' \quad 1/4,1/4,1/2 \\
\end{align*} \]

For \((1/2,1/2,0) + \text{set}\):

\[\begin{align*}
&\text{(1)} \, t \quad (1/2,1/2,2,0) \\
&\quad \bar{t} \quad 1/4,1/4,0 \\
&\quad m \quad x,y,0 \\
&\quad m' \quad x,0,1/2 \\
&\quad t' \quad (0,0,1) \\
&\quad \bar{t}' \quad 0,0,1/2 \\
&\quad m'' \quad x,y,1/2 \\
&\quad m''' \quad x,0,1/2 \\
&\quad t'' \quad (1/2,1/2,1) \\
&\quad \bar{t}'' \quad 1/4,1/4,1/2 \\
&\quad m''' \quad x,0,1/2 \\
&\quad m''''' \quad x,0,1/2 \\
&\quad t''' \quad (1/2,1/2,1,1) \\
&\quad \bar{t}''' \quad 1/4,1/4,1/2 \\
\end{align*} \]

For \((0,0,1)' + \text{set}\):

\[\begin{align*}
&\text{(1)} \, t' \quad (1/2,1/2,1) \\
&\quad \bar{t}' \quad 1/4,1/4,1/2 \\
&\quad m' \quad x,y,1/2 \\
&\quad m'' \quad x,0,1/2 \\
&\quad t'' \quad (1/2,1/2,1) \\
&\quad \bar{t}'' \quad 1/4,1/4,1/2 \\
&\quad m''' \quad x,0,1/2 \\
&\quad m''''' \quad x,0,1/2 \\
&\quad t''' \quad (1/2,1/2,1,1) \\
&\quad \bar{t}''' \quad 1/4,1/4,1/2 \\
\end{align*} \]

For \((1/2,1/2,1)' + \text{set}\):

\[\begin{align*}
&\text{(1)} \, t'' \quad (1/2,1/2,1,1) \\
&\quad \bar{t}'' \quad 1/4,1/4,1/2 \\
&\quad m'' \quad x,y,1/2 \\
&\quad m''' \quad x,0,1/2 \\
&\quad t''' \quad (1/2,1/2,1,1) \\
&\quad \bar{t}''' \quad 1/4,1/4,1/2 \\
&\quad m''' \quad x,0,1/2 \\
&\quad m''''' \quad x,0,1/2 \\
&\quad t''' \quad (1/2,1/2,1,1) \\
&\quad \bar{t}''' \quad 1/4,1/4,1/2 \\
\end{align*} \]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,0,1)*</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) x,y,z [u,v,w]</td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>32 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 q ..m'</td>
<td>x,y,1/2 [u,v,0]</td>
<td>x,y,1/2 [u,v,0]</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>16 p ..m</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>16 o ..m.</td>
<td>x,0,z [0,v,0]</td>
<td>x,0,z [0,v,0]</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>16 n m..</td>
<td>0,y,z [u,0,0]</td>
<td>0,y,z [u,0,0]</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>16 m ..2</td>
<td>1/4,1/4,z [0,0,w]</td>
<td>3/4,1/4,z [0,0,w]</td>
<td>3/4,3/4,z [0,0,w]</td>
</tr>
<tr>
<td>8 l mm2</td>
<td>0,1/2,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>8 k mm2</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>8 j m2'm'</td>
<td>0,y,1/2 [u,0,0]</td>
<td>0,y,1/2 [u,0,0]</td>
<td>0,y,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 i m2m</td>
<td>0,y,0 [0,0,0]</td>
<td>0,y,0 [0,0,0]</td>
<td>0,y,0 [0,0,0]</td>
</tr>
<tr>
<td>8 h 2'm'm'</td>
<td>x,0,1/2 [0,v,0]</td>
<td>x,0,1/2 [0,v,0]</td>
<td>x,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>8 g 2mm</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>8 f ..2/m'</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
<td>3/4,1/4,1/2 [0,0,0]</td>
<td>3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 e ..2/m</td>
<td>1/4,1/4,0 [0,0,w]</td>
<td>3/4,1/4,0 [0,0,w]</td>
<td>3/4,1/4,0 [0,0,w]</td>
</tr>
<tr>
<td>4 d mmm'</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c mmm'</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b mmm</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a mmm</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [0,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>c2mm1'</td>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = c</td>
</tr>
<tr>
<td>p2mm1'</td>
<td>a* = b/2</td>
<td>b* = c</td>
<td>a* = b/2</td>
</tr>
<tr>
<td>p2mm1'</td>
<td>a* = a/2</td>
<td>b* = b/2</td>
<td>a* = a/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin at center (mmm)

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. (1 0,0,0)
 (1 0,0,0)

2. (2 0,0,z)
 (2 0,0,0)

3. (3 2 y,0)
 (2 y 0,0,0)

4. (4 2 x,0,0)
 (2 x 0,0,0)

For (1/2,1/2,0) + set

1. (1 1/2,1/2,0)
 (1 1/2,1/2,0)

2. (2 1/4,1/4,z)
 (2 1/2,1/2,0)

3. (3 2 1/1,2,0)
 (2 1/2,1/2,0)

4. (4 2 1/2,1/2,0)
 (2 1/2,1/2,0)

For (1/2,1/2,0) + set

1. (1 1/2,1/2,0)
 (1 1/2,1/2,0)

2. (2 1/4,1/4,z)
 (2 1/2,1/2,0)

3. (3 2 1/1,2,0)
 (2 1/2,1/2,0)

4. (4 2 1/2,1/2,0)
 (2 1/2,1/2,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(1/2,1/2,0)' +</td>
</tr>
<tr>
<td>8 q .m</td>
<td>x,y,1/2 [0,0,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 p .m</td>
<td>x,y,0 [0,0,w]</td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 o .m</td>
<td>x,0,z [0,v,0]</td>
<td>(9) x,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x,y,0 [0,0,0]</td>
</tr>
<tr>
<td>8 n m..</td>
<td>0,y,z [u,0,0]</td>
<td>(11) x,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) x,y,0 [0,0,0]</td>
</tr>
<tr>
<td>8 m .2'</td>
<td>1/4,1/4,z [u,v,0]</td>
<td>(13) x,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14) x,y,0 [0,0,0]</td>
</tr>
<tr>
<td>4 l mm2</td>
<td>0,1/2,z [0,0,0]</td>
<td>(15) x,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 k mm2</td>
<td>0,0,z [0,0,0]</td>
<td>(16) x,y,0 [0,0,0]</td>
</tr>
<tr>
<td>4 j m2m</td>
<td>0,y,1/2 [0,0,0]</td>
<td>(17) x,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 i m2m</td>
<td>0,y,0 [0,0,0]</td>
<td>(18) x,y,0 [0,0,0]</td>
</tr>
<tr>
<td>4 h 2mm</td>
<td>x,0,1/2 [0,0,0]</td>
<td>(19) x,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 g 2mm</td>
<td>x,0,0 [0,0,0]</td>
<td>(20) x,y,0 [0,0,0]</td>
</tr>
<tr>
<td>4 f ..2'/m</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
<td>(21) x,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 e ..2'/m</td>
<td>1/4,1/4,0 [0,0,0]</td>
<td>(22) x,y,0 [0,0,0]</td>
</tr>
<tr>
<td>2 d mmm</td>
<td>0,0,1/2 [0,0,0]</td>
<td>(23) x,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c mmm</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>(24) x,y,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b mmm</td>
<td>1/2,0,0 [0,0,0]</td>
<td>(25) x,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a mmm</td>
<td>0,0,0 [0,0,0]</td>
<td>(26) x,y,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** c2mm1'
 \(a^* = a\) \(b^* = b\)
 Origin at 0,0,z

- **Along [1,0,0]** p2mm1'
 \(a^* = b/2\) \(b^* = c\)
 Origin at x,0,0

- **Along [0,1,0]** p2mm1'
 \(a^* = c\) \(b^* = a/2\)
 Origin at 0,y,0
Orthorhombic

C\textsubscript{I}mmm

\begin{align*}
65.10.554
\end{align*}

\begin{align*}
\text{Symmetry Operations}
\end{align*}

For \((0,0,0) + \text{set}\):

\begin{align*}
(1) \ 1 & \quad (2) \ z \ \ 0,0,z \\
(1|0,0,0) & \quad (2_z|0,0,0) \\
(5) \overset{\ast}{\text{T}} & \quad (6) \ m \ x,y,0 \\
(\overset{\ast}{\text{T}}|0,0,0) & \quad (m_z|0,0,0)
\end{align*}

For \((1/2,1/2,0)' + \text{set}\):

\begin{align*}
(1) \ t' & \quad (2) \ 2' \ 1/4,1/4,z \\
(1/2,1/2,0)' & \quad (2_2'\mid1/2,1/2,0)' \\
(5) \overset{\text{T}}{\text{T}} & \quad (6) \ n' \ x,y,0 \\
(\overset{\text{T}}{\text{T}}\mid1/2,1/2,0)' & \quad (m_z|1/2,1/2,0)'
\end{align*}

For \((0,0,1)' + \text{set}\):

\begin{align*}
(1) \ t' & \quad (2) \ 2' \ 0,0,z \\
(0,0,1)' & \quad (2_2'|0,0,1)' \\
(5) \overset{\text{T}}{\text{T}} & \quad (6) \ m' \ x,y,1/2 \\
(\overset{\text{T}}{\text{T}}\mid0,0,1)' & \quad (m_z|0,0,1)'
\end{align*}

For \((1/2,1/2,1) + \text{set}\):

\begin{align*}
(1) \ t & \quad (2) \ 2 \ 0,0,1/2 \\
(1/2,1/2,1) & \quad (2_2|1/2,1/2,1) \\
(5) \overset{\text{T}}{\text{T}} & \quad (6) \ n \ x,y,1/2 \\
(\overset{\text{T}}{\text{T}}\mid1/2,1/2,1) & \quad (m_z|1/2,1/2,1)
\end{align*}
Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>((0,0,0) + (0,0,1)' + (1/2,1/2,0)' + (1/2,1/2,1) + (0,0,0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 r 1</td>
<td>(1) (x,y,z [u,v,w])</td>
<td>((2) \overline{x},y,\overline{z} [\overline{u},v,\overline{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((3) x,y,\overline{z} [\overline{u},v,\overline{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((4) x,\overline{y},\overline{z} [u,\overline{v},\overline{w}])</td>
</tr>
<tr>
<td>16 q .m'</td>
<td>(x,y,1/2 [u,v,0])</td>
<td>((2) \overline{x},\overline{y},1/2 [\overline{u},\overline{v},0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((3) x,\overline{y},1/2 [u,\overline{v},0])</td>
</tr>
<tr>
<td>16 p .m</td>
<td>(x,y,0 [0,0,w])</td>
<td>((2) \overline{x},\overline{y},0 [0,0,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((3) x,\overline{y},0 [u,\overline{v},0])</td>
</tr>
<tr>
<td>16 o .m.</td>
<td>(x,0,z [0,v,0])</td>
<td>((2) \overline{x},0,z [\overline{u},v,0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((3) x,0,z [0,0,\overline{w}])</td>
</tr>
<tr>
<td>16 n m..</td>
<td>(0,y,z [u,0,0])</td>
<td>((2) \overline{0},y,z [\overline{u},0,0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((3) 0,y,\overline{z} [u,0,0])</td>
</tr>
<tr>
<td>16 m ..2'</td>
<td>(1/4,1/4,z [u,v,0])</td>
<td>((2) 3/4,1/4,\overline{z} [u,\overline{v},0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((3) 3/4,3/4,\overline{z} [u,\overline{v},0])</td>
</tr>
<tr>
<td>8 l mm2</td>
<td>(0,1/2,z [0,0,0])</td>
<td>((2) 0,1/2,\overline{z} [0,0,0])</td>
</tr>
<tr>
<td>8 k mm2</td>
<td>(0,0,z [0,0,0])</td>
<td>((2) 0,0,\overline{z} [0,0,0])</td>
</tr>
<tr>
<td>8 j m2m'</td>
<td>(0,y,1/2 [u,0,0])</td>
<td>((2) 0,\overline{y},1/2 [\overline{u},0,0])</td>
</tr>
<tr>
<td>8 i m2m</td>
<td>(0,y,0 [0,0,0])</td>
<td>((2) 0,\overline{y},0 [0,0,0])</td>
</tr>
<tr>
<td>8 h 2'mm'</td>
<td>(x,0,1/2 [0,v,0])</td>
<td>((2) \overline{x},0,1/2 [0,\overline{v},0])</td>
</tr>
<tr>
<td>8 g 2mm</td>
<td>(x,0,0 [0,0,0])</td>
<td>((2) \overline{x},0,0 [0,0,0])</td>
</tr>
<tr>
<td>8 f ..2'/m'</td>
<td>(1/4,1/4,1/2 [u,v,0])</td>
<td>((2) 3/4,1/4,1/2 [u,\overline{v},0])</td>
</tr>
<tr>
<td>8 e ..2'/m</td>
<td>(1/4,1/4,0 [0,0,0])</td>
<td>((2) 3/4,1/4,0 [0,0,0])</td>
</tr>
<tr>
<td>4 d mm..</td>
<td>(0,0,1/2 [0,0,0])</td>
<td>((2) 0,0,1/2 [0,0,0])</td>
</tr>
<tr>
<td>4 c mm..</td>
<td>(1/2,0,1/2 [0,0,0])</td>
<td>((2) 1/2,0,1/2 [0,0,0])</td>
</tr>
<tr>
<td>4 b mmm</td>
<td>(1/2,0,0 [0,0,0])</td>
<td>((2) 1/2,0,0 [0,0,0])</td>
</tr>
<tr>
<td>4 a mmm</td>
<td>(0,0,0 [0,0,0])</td>
<td>((2) 0,0,0 [0,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) c2mm1' \(a^* = a \) \(b^* = b \) Origin at \(0,0,z \)
- Along \([1,0,0]\) p2mm1' \(a^* = b/2 \) \(b^* = c \) Origin at \(x,0,0 \)
- Along \([0,1,0]\) p2mm1' \(a^* = c \) \(b^* = a/2 \) Origin at \(0,y,0 \)
Symmetry Operations

For (0,0,0) + set

1. \(\tau \) (0,0,0)
2. \(2 \) 0,0,z
3. \(2' \) 0,y,0
4. \(2' \) x,0,0
5. \(m' \) x,0,z
6. \(m' \) 0,y,z
7. \(m' \) 0,0,0
8. \(m' \) 0,0,0

For (1/2,1/2,0) + set

1. \(\tau \) (1/2,1/2,0)
2. \(2 \) 1/4,1/4,z
3. \(2' \) (0,1/2,0) 1/4,y,0
4. \(2' \) (1/2,0,0) x,1/4,0
5. \(m' \) x,y,0
6. \(m' \) 1/4,1/4,0
7. \(m' \) 1/4,y,z
8. \(m' \) 1/4,y,z

For (0,0,1) + set

1. \(\tau \) (0,0,1)
2. \(2' \) (0,0,1) 0,0,z
3. \(2' \) (0,0,1) 0,0,z
4. \(2' \) (0,0,1) 0,0,z
5. \(m' \) x,y,1/2
6. \(m' \) 0,0,1/2
7. \(m' \) 0,0,1/2
8. \(m' \) 0,0,1/2

For (1/2,1/2,1) + set

1. \(\tau \) (1/2,1/2,1)
2. \(2' \) (0,0,1) 1/4,1/4,z
3. \(2' \) (0,0,1) 1/4,1/4,z
4. \(2' \) (0,0,1) 1/4,1/4,z
5. \(m' \) x,y,1/2
6. \(m' \) 1/4,1/4,1/2
7. \(m' \) 1/4,1/4,1/2
8. \(m' \) 1/4,1/4,1/2

Origin at center (m'm'm)

Asymmetric unit

\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]
Generators selected: (1); t(1,0,0); t(0,1,0); t'(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,0,1)' +</td>
</tr>
<tr>
<td>(1/2,1/2,0) +</td>
<td>(1/2,1/2,1)' +</td>
</tr>
</tbody>
</table>

- **32 r 1** (1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w] (5) x,y,z [u,v,w] (6) x,y,z [u,v,w] (7) x,y,z [u,v,w] (8) x,y,z [u,v,w]

- **16 q ..m'** x,y,1/2 [u,v,0] x,y,1/2 [u,v,0] x,y,1/2 [u,v,0]

- **16 p ..m** x,y,0 [0,0,w] x,y,0 [0,0,w] x,y,0 [0,0,w] x,y,0 [0,0,w]

- **16 o ..m'** x,0,z [u,0,w] x,0,z [u,0,w] x,0,z [u,0,w] x,0,z [u,0,w]

- **16 n ..m'** 0,y,z [0,v,w] 0,y,z [0,v,w] 0,y,z [0,v,w] 0,y,z [0,v,w]

- **16 m ..2** 1/4,1/4,z [0,0,w] 3/4,1/4,z [0,0,w] 3/4,3/4,z [0,0,w] 1/4,3/4,z [0,0,w]

- **8 l m'm'2** 0,1/2,z [0,0,w] 0,1/2,z [0,0,w] 0,1/2,z [0,0,w]

- **8 k m'm'2** 0,0,z [0,0,w] 0,0,z [0,0,w] 0,0,z [0,0,w] 0,0,z [0,0,w]

- **8 j m'2m'** 0,y,1/2 [0,v,0] 0,y,1/2 [0,v,0] 0,y,1/2 [0,v,0] 0,y,1/2 [0,v,0]

- **8 i m'2'm** 0,y,0 [0,0,w] 0,y,0 [0,0,w] 0,y,0 [0,0,w] 0,y,0 [0,0,w]

- **8 h 2m'm'** x,0,1/2 [u,0,0] x,0,1/2 [u,0,0] x,0,1/2 [u,0,0] x,0,1/2 [u,0,0]

- **8 g 2'm'm** x,0,0 [0,0,w] x,0,0 [0,0,w] x,0,0 [0,0,w] x,0,0 [0,0,w]

- **8 f ..2'/m'** 1/4,1/4,1/2 [u,v,0] 3/4,1/4,1/2 [u,v,0] 3/4,1/4,1/2 [u,v,0] 3/4,1/4,1/2 [u,v,0]

- **8 e ..2/m** 1/4,1/4,0 [0,0,w] 3/4,1/4,0 [0,0,w] 3/4,1/4,0 [0,0,w] 3/4,1/4,0 [0,0,w]

- **4 d mmm'** 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0]

- **4 c mmm'** 1/2,0,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]

- **4 b m'm'm** 1/2,0,0 [0,0,w] 1/2,0,0 [0,0,w] 1/2,0,0 [0,0,w] 1/2,0,0 [0,0,w]

- **4 a m'm'm** 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] c2mm1' Along [1,0,0] p2\textsubscript{2}2m'm' Along [0,1,0] p2\textsubscript{2}2mm'
\textbf{a}^* = \textbf{a} \quad \textbf{b}^* = \textbf{b}
\textbf{a}^* = -\textbf{c} \quad \textbf{b}^* = \textbf{b}/2
\textbf{a}^* = \textbf{c} \quad \textbf{b}^* = \textbf{a}/2
Origin at 0,0,z Origin at x,0,1/4 Origin at 0,y,0
Origin at center (mm'm')

Asymmetric unit
0 < x < 1/4;
0 < y < 1/2;
0 < z < 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)
(5) t 0,0,0
(1 | 0,0,0)
(6) m' x,y,0
(mz | 0,0,0)

(2) 2' 0,0,z
(2z | 0,0,0)
(7) m' x,0,z
(mz | 0,0,0)

(3) 2' y,0
(2z | 0,0,0)
(8) m 0,y,z
(mz | 0,0,0)

(4) 2 x,0,0
(2z | 0,0,0)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(1 | 1/2,1/2,0)
(5) t 1/4,1/4,0
(1 | 1/2,1/2,0)
(6) m' x,y,0
(mz | 0,0,0)

(2) 2' 1/4,1/4,z
(2z | 1/2,1/2,0)
(7) m' x,0,z
(mz | 0,0,0)

(3) 2' (0,1/2,0)
(2z | 1/2,1/2,0)
(8) m 0,y,z
(mz | 0,0,0)

(4) 2 (1/2,0,0)
(2z | 1/2,1/2,0)

For (0,0,1)' + set

(1) t' (0,0,1)
(1 | 0,0,1)
(5) t 0,0,1/2
(1 | 0,0,1)
(6) m x,y,1/2
(mz | 0,0,1)

(2) 2 (0,0,1)
(2z | 0,0,1)
(7) c (0,0,1)
(mz | 0,0,1)

(3) 2 0,y,1/2
(2z | 0,0,1)
(8) c' (0,0,1)
(mz | 0,0,1)

(4) 2' x,0,1/2
(2z | 0,0,1)

For (1/2,1/2,1)' + set

(1) t' (1/2,1/2,1)
(1 | 1/2,1/2,1)
(5) t 1/4,1/4,1/2
(1 | 1/2,1/2,1)
(6) m (1/2,1/2,0)
(mz | 1/2,1/2,1)

(2) 2 (0,0,1)
(2z | 1/2,1/2,1)
(7) c (1/2,0,1)
(mz | 1/2,1/2,1)

(3) 2 (0,1/2,0)
(2z | 1/2,1/2,1)
(8) n' (0,1/2,1)
(mz | 1/2,1/2,1)

(4) 2' (1/2,0,0)
(2z | 1/2,1/2,1)'
Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,0,1)' + (1/2,1/2,0) + (1/2,1/2,1)' +</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td>(0,0,0) + (0,0,1)' + (1/2,1/2,0) + (1/2,1/2,1)' +</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
</tbody>
</table>

32 r 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w] (5) x,y,z [u,v,w] (6) x,y,z [u,v,w] (7) x,y,z [u,v,w] (8) x,y,z [u,v,w]

16 q ..m x,y,1/2 [0,0,w] x,y,1/2 [0,0,w]

16 p ..m' x,y,0 [u,v,0] x,y,0 [u,v,0]

16 o ..m' x,0,z [u,0,w] x,0,z [u,0,w]

16 n m.. 0,y,z [u,0,0] 0,y,z [u,0,0]

16 m ..' 1/4,1/4,z [u,v,0] 3/4,1/4,z [u,v,0]

8 l mm'2' 0,1/2,z [u,0,0] 0,1/2,z [u,0,0]

8 k mm'2' 0,0,z [u,0,0] 0,0,z [u,0,0]

8 j m2m 0,y,1/2 [0,0,0] 0,y,1/2 [0,0,0]

8 i m2m' 0,y,0 [u,0,0] 0,y,0 [u,0,0]

8 h 2'm'm x,0,1/2 [0,0,w] x,0,1/2 [0,0,w]

8 g 2'm'm' x,0,0 [u,0,0] x,0,0 [u,0,0]

8 f ..'2/m 1/4,1/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0]

8 e ..'2/m' 1/4,1/4,0 [u,v,0] 3/4,1/4,0 [u,v,0]

4 d mm'm 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0]

4 c mm'm 1/2,0,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]

4 b mm'm' 1/2,0,0 [u,0,0] 1/2,0,0 [u,0,0]

4 a mm'm' 0,0,0 [u,0,0] 0,0,0 [u,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2mm1'</th>
<th>Along [1,0,0]</th>
<th>p2mm1'</th>
<th>Along [0,1,0]</th>
<th>p2e-2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = b/2 b* = c</td>
<td>a* = c b* = a/2</td>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 1/2,y,0</td>
</tr>
</tbody>
</table>
Origin at center (m'mm)

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. \(\overline{1} \)
 \((0,0,0)\)

2. \(2\)
 \((0,0,z)\)

3. \(2\)
 \((0,y,0)\)

4. \(2\)
 \((x,0,0)\)

5. \(m\)
 \((x,y,0)\)

6. \(m\)
 \((y,x,0)\)

7. \(m\)
 \((y,0,z)\)

8. \(m\)
 \((0,y,z)\)

For \((1/2,1/2,0)\) + set

1. \(t\)
 \((1/2,1/2,0)\)

2. \(2\)
 \((1/2,1/4,1/4,z)\)

3. \(2\)
 \((1/2,1/2,1/4,y,0)\)

4. \(2\)
 \((1/2,1/2,1/4,x,0)\)

5. \(n\)
 \((1/2,1/4,1/4,0)\)

6. \(n\)
 \((1/2,1/4,1/4,x,0)\)

7. \(a\)
 \((1/2,1/4,1/4,y,0)\)

8. \(b\)
 \((1/2,1/4,1/4,z,0)\)
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 r 1 ((1) x,y,z [u,v,w]) ((1/2,1/2,0)' +) ((0,0,0) +)</td>
<td>((2) \bar{x},\bar{y},\bar{z} [u\bar{v},w]) ((3) x, y, z [u,\bar{v},w]) ((4) x, y, z [u,v,w])</td>
</tr>
<tr>
<td>8 q ..m (x,y,1/2 [0,0,w])</td>
<td>(\bar{x}, \bar{y}, 1/2 [0,0,\bar{w}]) (x,y,1/2 [0,0,\bar{w}]) (x,y,1/2 [0,0,\bar{w}])</td>
</tr>
<tr>
<td>8 p ..m (x,y,0 [0,0,w])</td>
<td>(\bar{x}, \bar{y}, 0 [0,0,\bar{w}]) (x,y,0 [0,0,\bar{w}]) (x,y,0 [0,0,\bar{w}])</td>
</tr>
<tr>
<td>8 o ..m (x,0,z [0,v,0])</td>
<td>(\bar{x}, 0, z [0,v,\bar{0}]) (x, 0, z [0,\bar{v},0]) (x,0,\bar{z} [0,\bar{v},0])</td>
</tr>
<tr>
<td>8 n m'.. 0,y,z [0,v,w]</td>
<td>(0, y, z [0, v, \bar{w}]) (0, y, \bar{z} [0, v, \bar{w}]) (0, y, \bar{z} [0, v, \bar{w}])</td>
</tr>
<tr>
<td>8 m ..2 (1/4,1/4,z [0,0,w])</td>
<td>(3/4,1/4, \bar{z} [0,0,\bar{w}]) (3/4,3/4, \bar{z} [0,0,\bar{w}]) (1/4,3/4, z [0,0,\bar{w}])</td>
</tr>
<tr>
<td>4 l m'm'2' (0,1/2, z [0,v,0])</td>
<td>(0,1/2, z [0,v,0]) (0,1/2, z [0,v,0])</td>
</tr>
<tr>
<td>4 k m'm'2' (0,0, z [0,v,0])</td>
<td>(0,0, \bar{z} [0,\bar{v},0]) (0,0, \bar{z} [0,\bar{v},0])</td>
</tr>
<tr>
<td>4 j m'2'm (0, y,1/2 [0,0,w])</td>
<td>(0, y,1/2 [0,0,w]) (0, \bar{y}, 1/2 [0,0,\bar{w}])</td>
</tr>
<tr>
<td>4 i m'2'm (0, y,0 [0,0,w])</td>
<td>(0, y,0 [0,0,\bar{w}]) (0, \bar{y}, 0 [0,0,\bar{w}])</td>
</tr>
<tr>
<td>4 h 2mm (x,0,1/2 [0,0,0])</td>
<td>(\bar{x}, 0,1/2 [0,0,0]) (\bar{x}, 0,1/2 [0,0,0])</td>
</tr>
<tr>
<td>4 g 2mm (x,0,0 [0,0,0])</td>
<td>(\bar{x}, 0,0 [0,0,0]) (x,0,0 [0,0,0])</td>
</tr>
<tr>
<td>4 f ..2/m (1/4,1/4,1/2 [0,0,w])</td>
<td>(3/4,1/4,1/2 [0,0,w]) (3/4,1/4,1/2 [0,0,w])</td>
</tr>
<tr>
<td>4 e ..2/m (1/4,1/4,0 [0,0,w])</td>
<td>(3/4,1/4,0 [0,0,w]) (3/4,1/4,0 [0,0,w])</td>
</tr>
<tr>
<td>2 d m'm'm (0,0,1/2 [0,0,0])</td>
<td>(0,0,1/2 [0,0,0]) (0,0,1/2 [0,0,0])</td>
</tr>
<tr>
<td>2 c m'm'm (1/2,0,1/2 [0,0,0])</td>
<td>(1/2,0,1/2 [0,0,0]) (1/2,0,1/2 [0,0,0])</td>
</tr>
<tr>
<td>2 b m'm'm (1/2,0,0 [0,0,0])</td>
<td>(1/2,0,0 [0,0,0]) (1/2,0,0 [0,0,0])</td>
</tr>
<tr>
<td>2 a m'm'm (0,0,0 [0,0,0])</td>
<td>(0,0,0 [0,0,0]) (0,0,0 [0,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along** \([0,0,1]\) \(\text{c2mm}^1 \)
- **Along** \([1,0,0]\) \(\text{p}_{2\alpha z}^z 2\text{mm} \)
- **Along** \([0,1,0]\) \(\text{p}2\text{mm} 1' \)

\(\mathbf{a}^* = \mathbf{a} \) \(\mathbf{b}^* = \mathbf{b} \)

- Origin at \(0,0,z\)

\(\mathbf{a}^* = \mathbf{b}/2 \) \(\mathbf{b}^* = \mathbf{c} \)

- Origin at \(x,0,0\)

\(\mathbf{a}^* = \mathbf{c} \) \(\mathbf{b}^* = \mathbf{a}/2 \)

- Origin at \(0,y,0\)
Orthorhombic

Origin at center (mmm')

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1) 0,0,0

(2) 2' 0,0,z
(2) 2' 0,0,0

(3) 2' 0,y,0
(3) 2' 0,0,0

(4) 2' x,0,0
(4) 2' x,0,0

(5) 1/4,1/4,0
(5) 1/4,1/4,0

(6) m' x,y,0
(6) m' 0,0,0

(7) m 0,x,z
(7) m 0,0,0

(8) m 0,y,z
(8) m 0,0,0

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0)
(1) 1/2,1/2,0

(2) 2' 1/4,1/4,z
(2) 2' 1/2,1/2,0

(3) 2 (0,1/2,0) 1/4,y,0
(3) 2 (0,1/2,0) 1/2,1/2,0

(4) 2 (1/2,0,0) x,1/4,0
(4) 2 (1/2,0,0) x,1/2,1/2,0

(5) 1/4,1/4,0
(5) 1/2,1/2,0

(6) n (1/2,1/2,0) x,y,0
(6) n (1/2,1/2,0)

(7) a' (1/2,0,0) x,1/4,z
(7) a' (1/2,0,0) 1/2,1/2,0

(8) b' (0,1/2,0) 1/4,y,z
(8) b' (0,1/2,0) 1/2,1/2,0

65.14.558-1 - 1106
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0)’ +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16 r 1</th>
<th>(1) x,y,z [u,v,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 q .m’</th>
<th>x,y,1/2 [u,v,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 p .m’</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>8 o .m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>8 n .m.</td>
<td>0,y,z [u,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 m .2’</th>
<th>1/4,1/4,z [u,v,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 l mm2</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 k mm2</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 j m2’m’</td>
<td>0,y,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 i m2’m’</td>
<td>0,y,0 [u,0,0]</td>
</tr>
<tr>
<td>4 h 2’m’m’</td>
<td>x,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 g 2’m’m’</td>
<td>x,0,0 [0,v,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 f .2’/m’</th>
<th>1/4,1/4,1/2 [u,v,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 e .2’/m’</td>
<td>1/4,1/4,0 [u,v,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 d mmm’</th>
<th>0,0,1/2 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 c mmm’</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b mmm’</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 a mmm’</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(c_{p,2mm} \)
\(a^* = a \) \(b^* = b \)
Origin at 0,0,z

Along [1,0,0] \(p2mm1' \)
\(a^* = b/2 \) \(b^* = c \)
Origin at x,0,0

Along [0,1,0] \(p2mm1' \)
\(a^* = c \) \(b^* = a/2 \)
Origin at 0,y,0
Cpm'm'm

Cp2'/m'2'/m'2/m

Orthorhombic

65.15.559

Orthorhombic

65.15.559

Origin at center (m'm'm)

Asymmetric unit

0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1

(2) 2 0,0,z

(3) 2' 0,y,0

(4) 2' x,0,0

(5) m 0,0,0

(6) m' x,y,0

(7) m' x,0,z

(8) m' 0,y,z

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0)

(2) 2' 1/4,1/4,z

(3) 2 (0,1/2,0) 1/4,y,0

(4) 2 (1/2,0,0) x,1/4,0

(5) t' 1/4,1/4,0

(6) n' (1/2,1/2,0) x,y,0

(7) a (1/2,0,0) x,1/4,z

(8) b (0,1/2,0) 1/4,y,z

65.15.559 - 1 - 1108
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,0)' + (2) (3) (5).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 r 1 (1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(4) x,y,z [u,v,w]</td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(8) x,y,z [u,v,w]</td>
<td>(8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 q 1/4,1/4,z [u,v,0]</td>
<td>3/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td>4 l m'm'2 0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 k m'm'2 0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 i m'2m 0,y,1/2 [0,0,w]</td>
<td>0,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 i m'2m 0,y,1/2 [0,0,w]</td>
<td>0,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 h 2m'm' x,0,1/2 [0,0,w]</td>
<td>x,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 g 2m'm' x,0,0 [0,0,w]</td>
<td>x,0,0 [0,0,w]</td>
</tr>
<tr>
<td>4 f 1/4,1/4,1/2 [0,0,0]</td>
<td>3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 e 1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>2 d m'm'm 0,0,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 c m'm'm 1/2,0,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 b m'm'm 1/2,0,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 a m'm'm 0,0,0 [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1'
Along [1,0,0] p_{2a*}2mm
Along [0,1,0] p_{2a*}2mm

a* = a
b* = b
Origin at 0,0,z

a* = b/2
b* = c
Origin at x,1/4,0

a* = -a/2
b* = c
Origin at 0,y,1/4

Continued

65.15.559 - 2 - 1109
Origin at center (mm'm')

Asymmetric unit
0 ≤ x ≤ 1/4;
0 ≤ y ≤ 1/2;
0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1)
(1|0,0,0)
(2) 2' 0,0,z
(2|0,0,0)'
(3) 2' 0,y,0
(2|0,0,0)'
(4) 2 0,0
(2|0,0,0)

(5)
(1|0,0,0)
(6) m' x,y,0
(m|0,0,0)'
(7) m' x,0,z
(m|0,0,0)'
(8) m 0,y,z
(m|0,0,0)

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0)
(1|1/2,1/2,0)'
(2) 2 1/4,1/4,z
(2|1/2,1/2,0)
(3) 2 (0,1/2,0)
(2|1/2,1/2,0)
(4) 2' (1/2,0,0)
(2|1/2,1/2,0)'

(5)
(1|1/2,1/2,0)
(6) n (1/2,1/2,0)
(m|1/2,1/2,0)
(7) a (1/2,0,0)
(m|1/2,1/2,0)
(8) b' (0,1/2,0)
(m|1/2,1/2,0)'

65.16.560 - 1 - 1110
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0)</td>
</tr>
<tr>
<td>16 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>8 q ..m'</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 p ..m'</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>8 o ..m'</td>
<td>x,0,z [u,0,]</td>
</tr>
<tr>
<td>8 n m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 m ..2</td>
<td>1/4,1/4,z [0,0,]</td>
</tr>
<tr>
<td>4 l mm'2'</td>
<td>0,1/2,z [u,0,0]</td>
</tr>
<tr>
<td>4 k mm'2'</td>
<td>0,0,z [u,0,0]</td>
</tr>
<tr>
<td>4 j m2m'</td>
<td>0,y,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 i m2m'</td>
<td>0,y,0 [u,0,0]</td>
</tr>
<tr>
<td>4 h 2m'm'</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 g 2m'm'</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>4 f ..2/m'</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 e ..2/m'</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>2 d mm'm'</td>
<td>0,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 c mm'm'</td>
<td>1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 b mm'm'</td>
<td>1/2,0,0 [u,0,0]</td>
</tr>
<tr>
<td>2 a mm'm'</td>
<td>0,0,0 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c_p,2mm
a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p2mm1'
a* = b/2 b* = c
Origin at x,0,0

Along [0,1,0] p2221'
a* = -a/2 b* = c
Origin at y,0,0
Cp m'm'm'
65.17.561

mmm1'
Cp 2/m'2/m'2/m'

Orthorhombic

Origin at center (m'm'm')

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) 2 0,0,z
(2|0,0,0)

(3) 2 0,y,0
(2|0,0,0)

(4) 2 x,0,0
(2|0,0,0)

(5) 1/4,1/4,0
(1/2,1/2,0)

(6) m' x,y,0
(m'z|0,0,0)

(7) m' x,0,z
(m'y|0,0,0)

(8) m' 0,y,z
(m'z|0,0,0)

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0)
(1|1/2,1/2,0')

(2) 2' 1/4,1/4,z
(2'|1/2,1/2,0')

(3) 2' (0,1/2,0) 1/4,y,0
(2'|1/2,1/2,0')

(4) 2' (1/2,0,0) x,1/4,0
(2'|1/2,1/2,0')

(5) 1/4,1/4,0
(1|1/2,1/2,0)

(6) n (1/2,1/2,0) x,y,0
(nz|1/2,1/2,0)

(7) a (1/2,0,0) x,1/4,z
(n|1/2,1/2,0)

(8) b (0,1/2,0) 1/4,y,z
(nz|1/2,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(5) x,y,z [u,v,w]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
<td>(7) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
<td>(8) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 q .m'</td>
<td>x,y,1/2 [u,v,0]</td>
<td>x,y,1/2 [u,v,0]</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 p .m'</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>8 o .m'</td>
<td>x,0,z [u,0,w]</td>
<td>x,0,z [u,0,w]</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>8 n .m'</td>
<td>0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 m .2'</td>
<td>1/4,1/4,z [u,v,0]</td>
<td>3/4,1/4,z [u,v,0]</td>
<td>1/4,3/4,z [u,v,0]</td>
</tr>
<tr>
<td>4 l m'2</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 k m'2</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 j m'2m'</td>
<td>0,y,1/2 [0,v,0]</td>
<td>0,y,1/2 [0,v,0]</td>
<td>0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 i m'2m'</td>
<td>0,y,0 [0,v,0]</td>
<td>0,y,0 [0,v,0]</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td>4 h 2m'm'</td>
<td>x,0,1/2 [u,0,0]</td>
<td>x,0,1/2 [u,0,0]</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 g 2m'm'</td>
<td>x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>4 f .2'/m'</td>
<td>1/4,1/4,1/2 [u,v,0]</td>
<td>3/4,1/4,1/2 [u,v,0]</td>
<td>3/4,1/4,1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 e .2'/m'</td>
<td>1/4,1/4,0 [u,v,0]</td>
<td>3/4,1/4,0 [u,v,0]</td>
<td>3/4,1/4,0 [u,v,0]</td>
</tr>
<tr>
<td>2 d m'm'</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c m'm'</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b m'm'</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 a m'm'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] \(c_{p} \cdot 2m'm' \)
- Along [1,0,0] \(p_{2a} \cdot 2m'm' \)
- Along [0,1,0] \(p_{2g} \cdot 2m'm' \)

\(a^* = a \quad b^* = b \)

Origin at 0,0,z

\(a^* = b/2 \quad b^* = c \)

Origin at x,0,0

\(a^* = -a/2 \quad b^* = c \)

Origin at 0,y,0
Cm'm'm
65.18.562

Orthorhombic

mmm1'
C2/m'2'/m2'/m

Origin at center (m'mm)

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)
(2) 2' 0,0,z
(2' | 0,0,0)
(3) 2' 0,y,0
(2' | 0,0,0)
(4) 2 x,0,0
(2 | 0,0,0)

(5) T' 0,0,0
(T | 0,0,0)
(6) m x,y,0
(mz | 0,0,0)
(7) m x,0,z
(mz | 0,0,0)
(8) m' 0,y,z
(mz | 0,0,0)

For (1/2,1/2,0)' + set

(1) T' (1/2,1/2,0)
(1 | 1/2,1/2,0)
(2) 2 1/4,1/4,z
(2' | 1/2,1/2,0)
(3) 2 (0,1/2,0) 1/4,y,0
(2 | 1/2,1/2,0)
(4) 2' (1/2,0,0) x,1/4,0
(2 | 1/2,1/2,0)

(5) T 1/4,1/4,0
(T | 1/2,1/2,0)
(6) n' (1/2,1/2,0) x,y,0
(mz' | 1/2,1/2,0)
(7) a' (1/2,0,0) x,1/4,z
(mz | 1/2,1/2,0)
(8) b (0,1/2,0) 1/4,y,z
(mz | 1/2,1/2,0)

For (0,0,1)' + set

(1) T' (0,0,1)
(1 | 0,0,1)
(2) 2 (0,0,1) 0,0,z
(2' | 0,0,1)
(3) 2 0,y,1/2
(2 | 0,0,1)
(4) 2' x,0,1/2
(2 | 0,0,1)

(5) T 0,0,1/2
(T | 0,0,1)
(6) m' x,y,1/2
(mz | 0,0,1)
(7) c' (0,0,1) x,0,z
(mz | 0,0,1)
(8) c (0,0,1) 0,y,z
(mz | 0,0,1)

For (1/2,1/2,1) + set

(1) T (1/2,1/2,1)
(1 | 1/2,1/2,1)
(2) 2' (0,0,1) 1/4,1/4,z
(2' | 1/2,1/2,1)
(3) 2' (0,1/2,0) 1/4,y,1/2
(2 | 1/2,1/2,1)
(4) 2 (1/2,0,0) x,1/4,1/2
(2 | 1/2,1/2,1)

(5) T' 1/4,1/4,1/2
(T | 1/2,1/2,1)
(6) n (1/2,1/2,0) x,y,1/2
(mz | 1/2,1/2,1)
(7) n (1/2,0,1) x,1/4,z
(mz | 1/2,1/2,1)
(8) n' (0,1/2,1) 1/4,y,z
(mz | 1/2,1/2,1)
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,0,1)' +</td>
<td>1/2,1/2,0) +</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>32 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 q ..m'</td>
<td>x,y,1/2 [u,v,0]</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>16 p ..m</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>16 o ..m.</td>
<td>x,0,z [0,v,0]</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>16 n m'..</td>
<td>0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>16 m ..2</td>
<td>1/4,1/4,z [0,0,w]</td>
<td>3/4,1/4,z [0,0,w]</td>
</tr>
<tr>
<td>8 l m'm'2'</td>
<td>0,1/2,z [0,v,0]</td>
<td>0,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>8 k m'm'2'</td>
<td>0,0,z [0,v,0]</td>
<td>0,0,z [0,v,0]</td>
</tr>
<tr>
<td>8 j m'2m'1'</td>
<td>0,y,1/2 [0,v,0]</td>
<td>0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>8 i m'2'm</td>
<td>0,y,0 [0,0,w]</td>
<td>0,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 h 2'mm'</td>
<td>x,0,1/2 [0,v,0]</td>
<td>x,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>8 g 2mm</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>8 f ..2'\m</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
<td>3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 e ..2'\m</td>
<td>1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 d m'm'm'</td>
<td>0,0,1/2 [0,v,0]</td>
<td>0,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 c m'm'm'</td>
<td>1/2,0,1/2 [0,v,0]</td>
<td>1/2,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 b m'mm</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a m'nm</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] c2mm1'
- Along [1,0,0] p_{c2}mm
- Along [0,1,0] p2mm1'

\[\mathbf{a}' = \mathbf{a} \quad \mathbf{b}' = \mathbf{b} \]

Origin at 0,0,z
Orthorhombic

Origin at center \((m'm'm)\)

Asymmetric unit

\[0 \leq x \leq \frac{1}{4}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2}\]

Symmetry Operations

For \((0,0,0)\) + set

1. \(T\)
 \((1,0,0,0)\)

2. \(S\)
 \((2_z,0,0,0)\)

3. \(S'\)
 \((0,y,0)\)

4. \(S'\)
 \((x,0,0)\)

5. \(\overline{T}\)
 \((0,0,0)\)

6. \(m\)
 \((x,y,0)\)

7. \(m'\)
 \((x,0,z)\)

8. \(m'\)
 \((0,y,z)\)

For \((1/2,1/2,0)\)' + set

1. \(T'\)
 \((1/2,1/2,2,0)\)

2. \(S'\)
 \((1/4,1/4,z)\)

3. \(S'\)
 \((0,1/2,0)\)

4. \(S'\)
 \((1/2,0,0)\)

5. \(\overline{T}\)
 \((1/2,1/2,0)\)

6. \(n'\)
 \((x,y,0)\)

7. \(a\)
 \((1/2,0,0)\)

8. \(n'\)
 \((0,1/2,0)\)

For \((0,0,1)\)' + set

1. \(T'\)
 \((0,0,1)\)

2. \(S'\)
 \((0,0,1)\)

3. \(S'\)
 \((0,y,1/2)\)

4. \(S'\)
 \((x,0,1/2)\)

5. \(\overline{T}\)
 \((0,0,1)\)

6. \(m'\)
 \((x,y,1/2)\)

7. \(c\)
 \((0,0,1)\)

8. \(c\)
 \((0,0,1)\)

For \((1/2,1/2,1)\) + set

1. \(T\)
 \((1/2,1/2,2,1)\)

2. \(S\)
 \((1/4,1/4,z)\)

3. \(S'\)
 \((0,1/2,0)\)

4. \(S'\)
 \((1/2,0,0)\)

5. \(\overline{T}\)
 \((1/2,1/2,2,1)\)

6. \(n\)
 \((1/2,1/2,0)\)

7. \(n'\)
 \((1/2,0,1)\)

8. \(n'\)
 \((0,1/2,1)\)
Generators selected: (1); t(1,0,0); t(0,1,0); t'(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0) +</td>
<td>(0,0,0)</td>
<td>(1/2,1/2,0)</td>
</tr>
<tr>
<td>(0,0,1)'</td>
<td></td>
<td>(1/2,1/2,1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 q ..m'</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>16 p ..m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>16 o ..m'..</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>16 n ..m'..</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>16 m ..2'</td>
<td>1/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td>8 l m'm'2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 k m'm'2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 j m'2m'</td>
<td>0,y,1/2 [0,0,v]</td>
</tr>
<tr>
<td>8 i m'2m'</td>
<td>0,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 h 2m'm'</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 g 2m'm'</td>
<td>x,0,0 [0,0,w]</td>
</tr>
<tr>
<td>8 f ..2'/m'</td>
<td>1/4,1/4,1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 e ..2'/m'</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 d m'm'm'</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c m'm'm'</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b m'm'm'</td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>4 a m'm'm'</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: c2mm1'
 - $a^* = a$, $b^* = b$
 - Origin at 0,0,z

- **Along [1,0,0]**: p_{2a}-2mm
 - $a^* = b/2$, $b^* = c$
 - Origin at x,1/4,0

- **Along [0,1,0]**: p_{2a}-2mm
 - $a^* = c$, $b^* = a/2$
 - Origin at 1/4,y,0
Origin at center (2/m) at cc2/m

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. \((1) 1 (0,0,0) \)
2. \((2) 2 0,0,z (0,0,0) \)
3. \((3) 2 y,0,1/4 (0,0,1/2) \)
4. \((4) 2 x,0,1/4 (0,0,1/2) \)
5. \((5) 1 0,0,0 \)
6. \((6) m x,y,0 (0,0,0) \)
7. \((7) c (0,0,1/2) x,0,z (0,0,1/2) \)
8. \((8) c (0,0,1/2) 0,y,z (0,0,1/2) \)

For (1/2,1/2,0) + set

1. \((1) t (1/2,1/2,0) \)
2. \((2) 2 1/4,1/4,z (1/2,1/2,0) \)
3. \((3) 2 (0,1/2,0) 1/4,y,1/4 (1/2,1/2,1/2) \)
4. \((4) 2 (1/2,0,0) x,1/4,1/4 (1/2,1/2,1/2) \)
5. \((5) 1/2,1/2,0 \)
6. \((6) n (1/2,1/2,0) x,y,0 (1/2,1/2,0) \)
7. \((7) n (1/2,0,1/2) x,1/4,z (1/2,1/2,1/2) \)
8. \((8) n (0,1/2,1/2) 1/4,y,z (1/2,1/2,1/2) \)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 m</td>
<td>(1) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(2) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(3) x, y, z +1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(4) x, y, z +1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(6) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(7) x, y, z +1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(8) x, y, z +1/2 [u, v, w]</td>
</tr>
</tbody>
</table>

8 l	x, y, 0 [0, 0, w]
	x, y, 1/2 [0, 0, w]
	x, y, 1/2 [0, 0, w]

8 k	1/4, 1/4, z [0, 0, w]
	3/4, 1/4, z +1/2 [0, 0, w]
	3/4, 3/4, z [0, 0, w]
	1/4, 3/4, z +1/2 [0, 0, w]

8 j	0,1/2, z [0, 0, w]
	0,1/2, z [0, 0, w]
	0,1/2, z [0, 0, w]

8 i	0,0, z [0, 0, w]
	0,0, z [0, 0, w]
	0,0, z [0, 0, w]

8 h	0, y, 1/4 [0, v, 0]
	0, y, 3/4 [0, v, 0]
	0, y, 3/4 [0, v, 0]

8 g	x, 0, 1/4 [u, 0, 0]
	x, 0, 1/4 [u, 0, 0]
	x, 0, 1/4 [u, 0, 0]

4 f	1/4, 3/4, 0 [0, 0, w]
	3/4, 3/4, 1/2 [0, 0, w]
	3/4, 3/4, 1/2 [0, 0, w]

4 e	1/4, 1/4, 0 [0, 0, w]
	3/4, 1/4, 1/2 [0, 0, w]
	3/4, 1/4, 1/2 [0, 0, w]

4 d	0, 1/2, 0 [0, 0, w]
	0, 1/2, 1/2 [0, 0, w]
	0, 1/2, 1/2 [0, 0, w]

4 c	0, 0, 0 [0, 0, w]
	0, 0, 1/2 [0, 0, w]
	0, 0, 1/2 [0, 0, w]

4 b	0, 1/2, 1/4 [0, 0, 0]
	0, 1/2, 3/4 [0, 0, 0]
	0, 1/2, 3/4 [0, 0, 0]

4 a	0, 0, 1/4 [0, 0, 0]
	0, 0, 3/4 [0, 0, 0]
	0, 0, 3/4 [0, 0, 0]

Symmetry of Special Projections

- Along [0,0,1] c2mm1'
- Along [1,0,0] p2a2m'
- Along [0,1,0] p2a2m'

\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

\[\mathbf{a}^* = -c/2 \quad \mathbf{b}^* = b/2 \]
Origin at x,0,0

\[\mathbf{a}^* = c/2 \quad \mathbf{b}^* = a/2 \]
Origin at x,0,0
Symmetry Operations

For $(0,0,0) +$ set

1. $T (0,0,0)$
2. $2 (0,0,z)$
3. $2 (0,y,1/4)$
4. $2 (x,0,1/4)$
5. $T (1/2,1/2,0)$
6. $n (1/2,1/2,0)$
7. $n (0,1/2,0)$
8. $n (0,0,1/2)$

For $(1/2,1/2,0) +$ set

1. $T (1/2,1/2,0)$
2. $2 (1/2,1/2,0)$
3. $2 (0,1/2,0)$
4. $2 (1/2,0,0)$
5. $T (1/2,1/2,0)$
6. $n (1/2,1/2,0)$
7. $n (0,1/2,0)$
8. $n (0,0,1/2)$

For $(0,0,0)' +$ set

1. $T (0,0,0)'$
2. $2 (0,0,z)'$
3. $2 (0,y,1/4)'$
4. $2 (x,0,1/4)'$
5. $T (0,0,0)'$
6. $m (0,0,z)'$
7. $c' (0,0,1/2) x,0,z$
8. $c' (0,0,1/2) 0,y,z$

For $(1/2,1/2,0)' +$ set

1. $T (1/2,1/2,0)'$
2. $2 (1/2,1/2,0)'$
3. $2 (0,1/2,0)'$
4. $2 (1/2,0,0)'$
5. $T (1/2,1/2,0)'$
6. $n' (1/2,1/2,0)'$
7. $n' (1/2,0,1/2)'$
8. $n' (0,1/2,1/2)'$

Origin at center (2/m1') at cc2/m1'

Asymmetric unit

$0 \leq x \leq 1/4; 0 \leq y \leq 1/2; 0 \leq z \leq 1/2$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 m 11' (1) x,y,z [0,0,0]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>(5) x,y,z, [0,0,0]</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>8 l .m1' x,y,0 [0,0,0]</td>
<td>(0,0,0)' +</td>
</tr>
<tr>
<td>8 k .21' 1/4,1/4,z [0,0,0]</td>
<td>(1/2,1/2,0)' +</td>
</tr>
<tr>
<td>8 j .21' 0,1/2,z [0,0,0]</td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>8 i .21' 0,0,z [0,0,0]</td>
<td>(3) x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 h .21' 0,y,1/4 [0,0,0]</td>
<td>(4) x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 g .21' x,0,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 f .2/m1' 1/4,3/4,0 [0,0,0]</td>
<td>3/4,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 e .2/m1' 1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 d .2/m1' 0,1/2,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c .2/m1' 0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b 2221' 0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2221' 0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2mm1'</th>
<th>Along [1,0,0]</th>
<th>p2mm1'</th>
<th>Along [0,1,0]</th>
<th>p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b/2</td>
<td>b* = c/2</td>
<td>a* = c/2</td>
<td>b* = a/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0

66.2.565 - 2 - 1121
Origin at center \((2'/m)\) at \(c'c2'/m\)

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

For \((0,0,0) + \) set

\begin{align*}
(1) & \quad \text{I} \\
(2') & \quad 0,0,z \\
(2) & \quad 2',0,0,0' \\
(3) & \quad 2',0,y,1/4 \\
(4) & \quad 2',x,0,1/4 \\
(5) & \quad 1/2,1/2,0 \\
(6) & \quad m,x,y,0 \\
(7) & \quad c,0,0,1/2 \\
(8) & \quad c',0,0,1/2' \\
(1') & \quad 0,0,0 \\
(2') & \quad 0,0,0' \\
(6') & \quad m,z,0,0,0 \\
(7') & \quad m,y,0,0,0' \\
(8') & \quad m',0,0,0' \\
\end{align*}

For \((1/2,1/2,0) + \) set

\begin{align*}
(1) & \quad t,1/2,1/2,0 \\
(2') & \quad 1/4,1/4,0 \\
(2) & \quad 2',1/2,1/2,0' \\
(3) & \quad 2',0,1/2,0 \\
(4) & \quad 2',x,0,1/4 \\
(5) & \quad 1/4,1/4,0 \\
(6) & \quad n,1/2,1/2,0 \\
(7) & \quad n,1/2,0,1/2 \\
(8) & \quad n',0,1/2,1/2' \\
(1') & \quad 1/2,1/2,0 \\
(2') & \quad 1/2,1/2,0' \\
(6') & \quad m,z,1/2,1/2,0 \\
(7') & \quad m,y,1/2,1/2,0 \\
(8') & \quad m',1/2,1/2,1/2' \\
\end{align*}
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>16 m</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 l</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 k</td>
<td>1/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,z [u,v,0]</td>
</tr>
<tr>
<td>8 j</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>8 i</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td>8 h</td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td>8 g</td>
<td>x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,3/4 [u,0,0]</td>
</tr>
<tr>
<td>4 f</td>
<td>1/4,3/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 e</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 d</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>0,1/2,1/4 [u,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,1/4 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] c2mm1'
 - \(\mathbf{a}^* = \mathbf{a} \) \(\mathbf{b}^* = \mathbf{b} \)
 - Origin at 0,0,z

- Along [1,0,0] p2mm
 - \(\mathbf{a}^* = \mathbf{b}/2 \) \(\mathbf{b}^* = \mathbf{c}/2 \)
 - Origin at x,0,0

- Along [0,1,0] p2a2mm
 - \(\mathbf{a}^* = \mathbf{c}/2 \) \(\mathbf{b}^* = \mathbf{a}/2 \)
 - Origin at 0,y,1/4
Cccm' mmm' Orthorhombic

66.4.567 66.4.567 C2'/c2'/c2/m'

Origin at center (2/m') at cc2/m'

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1 | 0,0,0)

(2) 2 0,0,z
 (2 | 0,0,0)

(3) 2' 0,y,1/4
 (2' | 0,0,1/2)

(4) 2' x,0,1/4
 (2' | 0,0,1/2)

(5) 1
 (1 | 0,0,0)

(5) m' x,y,0
 (m' | 0,0,0)

(6) c 0,0,1/2
 (c | 0,0,1/2)

(7) c 0,0,1/2
 (c | 0,0,1/2)

(8) c 0,0,1/2
 (c | 0,0,1/2)

For (1/2,1/2,0) + set

(1) t 1/2,1/2,0
 (1 | 1/2,1/2,0)

(2) 2 1/4,1/4,z
 (2 | 1/2,1/2,0)

(3) 2' 0,1/2,0
 (2' | 1/2,1/2,1/2)

(4) 2' x,1/4,1/4
 (2' | 1/2,1/2,1/2)

(5) m' 1/4,1/4,0
 (m' | 1/2,1/2,0)

(6) n' 1/2,1/2,0
 (m' | 1/2,1/2,0)

(7) n 1/2,0,1/2
 (m | 1/2,1/2,1/2)

(8) n 0,1/2,1/2
 (m | 1/2,1/2,1/2)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
<td></td>
</tr>
<tr>
<td>16 m 1</td>
<td>x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 l .m'</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>8 k .2</td>
<td>1/4,1/4,z [0,0,w]</td>
<td>3/4,1/4,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 j .2</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 i .2</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 h .2'</td>
<td>0,y,1/4 [u,0,w]</td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>8 g .2'</td>
<td>x,0,1/4 [0,v,w]</td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td>4 f .2/m'</td>
<td>1/4,3/4,0 [0,0,0]</td>
<td>3/4,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 e .2/m'</td>
<td>1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 d .2/m'</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c .2/m'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b 2'2'</td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2'2'</td>
<td>0,0,1/4 [0,0,w]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [0,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>c2mm</td>
<td>p<sub>2a</sub>2m'm'</td>
<td>p<sub>2a</sub>2m'm'</td>
<td></td>
</tr>
<tr>
<td>a* = a b* = b</td>
<td>a* = -c/2 b* = b/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,1/4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The notation and symmetry operations are specific to the crystallographic group Cccm'.
Orthorhombic

Cc'c'm

m'm'm

C2'/c'2'/c'2/m

66.5.568

Origin at center (2/m) at c'c'2/m

Asymmetric unit

0 ≤ x ≤ 1/4;
0 ≤ y ≤ 1/2;
0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2 0,0,z
(3) 2' 0,y,1/4
(4) 2' x,0,1/4

(1') 0,0,0
(2 z 0,0,0)
(3 y 0,0,1/2)'
(4 x 0,0,1/2)'

(5) 1/4,0,0,0
(6) m x,y,0
(7) c' (0,0,1/2) x,0,z
(8) c' (0,0,1/2) 0,y,z

(1'*) 0,0,0
(2 z* 0,0,0)
(3 y* 0,0,1/2)'
(4 x* 0,0,1/2)'

For (1/2,1/2,0) + set

(1) t (1/2,1/2,2,0)
(2) 2 1/4,1/4,z
(3) 2' (0,1/2,0) 1/4,y,1/4
(4) 2' (1/2,0,0) x,1/4,1/4

(1'*) (1/2,1/2,2,0)
(2 z* 1/2,1/2,2,0)
(3 y* 0,1/2,1/2)'
(4 x* 1/2,1/2,1/2)'

(5) 1/4,1/4,0
(6) n (1/2,1/2,0) x,y,0
(7) n' (1/2,0,1/2) x,1/4,z
(8) n' (0,1/2,1/2) 1/4,y,z

(1'*) 1/4,1/4,0
(2 z* 1/2,1/2,2,0)
(3 y* 0,1/2,1/2)'
(4 x* 1/2,1/2,1/2)'

(5) 1/2,1/2,0
(6) m (1/2,1/2,1/2) x,y,0
(7) m' (1/2,1/2,1/2) x,1/4,z
(8) m' (0,1/2,1/2) 1/4,y,z
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 m</td>
<td>1</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>8 l</td>
<td>..m</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>8 k</td>
<td>.2</td>
<td>1/4,1/4,z</td>
</tr>
<tr>
<td>8 j</td>
<td>.2</td>
<td>0,1/2,z</td>
</tr>
<tr>
<td>8 i</td>
<td>.2</td>
<td>0,0,z</td>
</tr>
<tr>
<td>8 h</td>
<td>.2'</td>
<td>0,y,1/4</td>
</tr>
<tr>
<td>8 g</td>
<td>.2'</td>
<td>x,0,1/4</td>
</tr>
<tr>
<td>4 f</td>
<td>.2/m</td>
<td>1/4,3/4,0</td>
</tr>
<tr>
<td>4 e</td>
<td>.2/m</td>
<td>1/4,1/4,0</td>
</tr>
<tr>
<td>4 d</td>
<td>.2/m</td>
<td>0,1/2,0</td>
</tr>
<tr>
<td>4 c</td>
<td>.2/m</td>
<td>0,0,0</td>
</tr>
<tr>
<td>4 b</td>
<td>2'2'</td>
<td>0,1/2,1/4</td>
</tr>
<tr>
<td>4 a</td>
<td>2'2'</td>
<td>0,0,1/4</td>
</tr>
</tbody>
</table>

Coordinates

- \((x,y,z)\) [u,v,w]
- \((x,y,\bar{z}+1/2)\) [u,v,w]
- \((x,y,z)\) [u,v,w]
- \((x,y,\bar{z}+1/2)\) [u,v,w]

Symmetry of Special Projections

- Along [0,0,1] c2mm1'
- Along [1,0,0] p2m'm'
- Along [0,1,0] p2mm'

- \(a^* = a\) \(b^* = b\)
- \(a^* = b/2\) \(b^* = c/2\)
- \(a^* = c/2\) \(b^* = a/2\)

Origin at 0,0,z

Origin at x,0,0

Origin at 0,y,0
"Origin at center (2'/m') at cc'2'/m'
Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations
For (0,0,0) + set

(1) 1
(1 | 0,0,0)
(5) 1/4,0,0
(1/2 | 0,0,0)

(2) 2' 0,0,z
(2' | 0,0,0)
(6) m' x,y,0
(m | 0,0,0)

(3) 2' 0,y,1/4
(2' | 0,0,1/2)
(7) c' (0,0,1/2) x,0,z
(c | 0,0,1/2)

(4) 2 x,0,1/4
(2 | 0,0,1/2)
(8) n (0,0,1/2) 0,y,z
(n | 0,0,1/2)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,2)
(1/2,1/2,2)
(5) t 1/4,1/4,0
(1/2,1/2,2)

(2) 2' 1/4,1/4,z
(2' | 1/2,1/2,2)
(6) n' (1/2,1/2,2) x,y,0
(n | 1/2,1/2,2)

(3) 2' (0,1/2,0) 1/4,y,1/4
(2' | 1/2,1/2,2)
(7) n' (1/2,0,1/2) x,1/4,z
(n | 1/2,1/2,2)

(4) 2 (1/2,0,0) x,1/4,1/4
(2 | 1/2,1/2,2)
(8) n (0,1/2,1/2) 1/4,y,z
(n | 1/2,1/2,2)

66.6.569 - 1 - 1128
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 m</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 l</td>
<td>x,y,0 [u,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,y,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 k</td>
<td>1/4,1/4,z [u,v,0]</td>
<td>1/4,3/4,1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 j</td>
<td>1/2,1/2,z [u,v,0]</td>
<td>1/2,3/2,z [u,v,0]</td>
</tr>
<tr>
<td>8 i</td>
<td>0,0,z [u,v,0]</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td>8 h</td>
<td>0,y,1/4 [u,0,w]</td>
<td>0,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td>8 g</td>
<td>x,0,1/4 [u,0,0]</td>
<td>x,0,3/4 [u,0,0]</td>
</tr>
<tr>
<td>4 f</td>
<td>1/4,3/4,0 [u,v,0]</td>
<td>3/4,3/4,1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 e</td>
<td>1/4,1/4,0 [u,v,0]</td>
<td>3/4,1/4,1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 d</td>
<td>0,1/2,0 [u,v,0]</td>
<td>0,1/2,1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 c</td>
<td>0,0,0 [u,v,0]</td>
<td>0,0,1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>0,1/2,1/4 [u,0,0]</td>
<td>0,1/2,3/4 [u,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,1/4 [u,0,0]</td>
<td>0,0,3/4 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2'mm'</th>
<th>Along [1,0,0]</th>
<th>p2a-2mm</th>
<th>Along [0,1,0]</th>
<th>p2'mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = -c/2</td>
<td>b* = b/2</td>
<td>a* = -a/2</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (2/m') at c'c'2/m'

Asymmetric unit

\[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2} \]

Symmetry Operations

For (0,0,0) + set

1. \((1) \quad (0,0,0)\)
2. \((2) \quad 0,0,z\)
3. \((3) \quad 0,y,1/4\)
4. \((4) \quad x,0,1/4\)
5. \((5) \quad 0,0,0\)
6. \((6) \quad x,y,0\)
7. \((7) \quad c'(0,0,1/2)\)
8. \((8) \quad c'(0,0,1/2)\)

For (1/2,1/2,0) + set

1. \((1) \quad (1/2,1/2,0)\)
2. \((2) \quad 1/4,1/4,z\)
3. \((3) \quad 0,1/2,0\)
4. \((4) \quad x,1/4,1/4\)
5. \((5) \quad 1/4,1/4,0\)
6. \((6) \quad x,y,0\)
7. \((7) \quad n'(1/2,0,1/2)\)
8. \((8) \quad n'(0,1/2,1/2)\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>16 m 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8 l ..m'</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>8 k ..2</td>
<td>1/4,1/4,z [0,0,w]</td>
</tr>
<tr>
<td>8 j ..2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 i ..2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 h ..2</td>
<td>0,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>8 g 2..</td>
<td>x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td>4 f ..2/m'</td>
<td>1/4,3/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 e ..2/m'</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 d ..2/m'</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c ..2/m'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 b 222</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 a 222</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2m'm'
Along [1,0,0] p2m'm'
Along [0,1,0] p2m'm'

\[a^* = a \quad b^* = b \]

Origin at 0,0,z

\[a^* = b/2 \quad b^* = c/2 \]

Origin at x,0,0

\[a^* = c/2 \quad b^* = a/2 \]

Origin at 0,y,0
Origin: at center (2/m) at cc2/m

Asymmetric unit: 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) $T | 0,0,0$
(2) $T | 0,0,z$
(3) $T | y,1/4$
(4) $T | x,0,1/4$

For (1/2,1/2,0)' + set

(5) $T | 1/2,1/2,0$
(6) $T | x,y,0$
(7) $T | 0,0,1/2$
(8) $T | 0,0,1/2$

For (1/2,1/2,0)' + set

(1) $T | 1/2,1/2,0$
(2) $T | 1/4,1/4,z$
(3) $T | 0,1/2,0$
(4) $T | x,1/4,1/4$

(5) $T | 1/2,1/2,0$
(6) $T | x,y,0$
(7) $T | 1/2,1/2,0$
(8) $T | 1/4,1/4,z$

Symmetry Operations

For (0,0,0) + set

(1) $T | 0,0,0$
(2) $T | 0,0,z$
(3) $T | y,1/4$
(4) $T | x,0,1/4$

For (1/2,1/2,0)' + set

(5) $T | 1/2,1/2,0$
(6) $T | x,y,0$
(7) $T | 0,0,1/2$
(8) $T | 0,0,1/2$

For (1/2,1/2,0)' + set

(1) $T' | 1/2,1/2,0$
(2) $T' | 1/4,1/4,z$
(3) $T' | 0,1/2,0$
(4) $T' | x,1/4,1/4$

(5) $T' | 1/2,1/2,0$
(6) $T' | x,y,0$
(7) $T' | 0,0,1/2$
(8) $T' | 0,0,1/2$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 m 1</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>8 l ..m</td>
<td>(1/2,1/2,0)' +</td>
</tr>
<tr>
<td>8 k ..2'</td>
<td>1/4,1/4,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8 j ..2</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 i ..2</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 h ..2</td>
<td>0,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>8 g ..2..</td>
<td>x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td>4 f ..2'/m</td>
<td>3/4,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 e ..2'/m</td>
<td>3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 d ..2/m</td>
<td>0,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 c ..2/m</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 b 222</td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 a 222</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] c2mm1'
 \[a^* = a\quad b^* = b\]
 Origin at 0,0,z

- Along [1,0,0] p2a2m'm'
 \[a^* = -c/2\quad b^* = b/2\]
 Origin at x,0,0

- Along [0,1,0] p2a2m'm'
 \[a^* = c/2\quad b^* = a/2\]
 Origin at 0,y,0
Orthorhombic

66.9.572

C_p\text{c'cm}

mmm1'

C_p2/c'2'/c2'/m

Origin at center (2'/m) at c'c2'/m

Asymmetric unit

\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\]

Symmetry Operations

For (0,0,0) + set

1. \(1\) \(1 | 0,0,0\)
 \(1 | 0,0,0\)

2. \(2\) \(0,0,z\)
 \(2 | 0,0,0\)'

3. \(3\) \(2\) \(0,y,1/4\)
 \(2 | 0,0,1/2\)'

4. \(4\) \(2\) \(x,0,1/4\)
 \(2 | 0,0,1/2\)

5. \(5\) \(1\) \(0,0,0\)
 \(1 | 0,0,0\)'

6. \(6\) \(m\) \(x,y,0\)
 \(m | 0,0,0\)

7. \(7\) \(c\) \(0,0,1/2\) \(x,0,z\)
 \(m | 0,0,1/2\)

8. \(8\) \(c'\) \(0,0,1/2\) \(0,y,z\)
 \(m | 0,0,1/2\)'

For (1/2,1/2,0) + set

1. \(1\) \(t'\) \(1/2,1/2,0\)
 \(1 | 1/2,1/2,0\)'

2. \(2\) \(2\) \(1/4,1/4,z\)
 \(2 | 1/2,1/2,0\)

3. \(3\) \(2\) \(0,1/2,0\) \(1/4,y,1/4\)
 \(2 | 1/2,1/2,1/2\)

4. \(4\) \(2\) \(1/2,0,0\) \(x,1/4,1/4\)
 \(2 | 1/2,1/2,1/2\)'

5. \(5\) \(1\) \(1/4,1/4,0\)
 \(1 | 1/2,1/2,0\)'

6. \(6\) \(n'\) \(1/2,1/2,0\) \(x,y,0\)
 \(m | 1/2,1/2,0\)'

7. \(7\) \(n'\) \(1/2,1/2,1/2\) \(x,1/4,z\)
 \(m | 1/2,1/2,1/2)'

8. \(8\) \(n\) \(0,1/2,1/2) \(1/4,y,z\)
 \(m | 1/2,1/2,1/2\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t’(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0)’ +</td>
</tr>
<tr>
<td>16 m 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 l ..m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 k ..2</td>
<td>1/4,1/4,z [0,0,w]</td>
</tr>
<tr>
<td>8 j ..2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 i ..2’</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td>8 h ..2’</td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>8 g ..2</td>
<td>x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td>4 f ..2/m’</td>
<td>1/4,3/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 e ..2/m’</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 d ..2/m’</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c ..2/m’</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 b ..2’</td>
<td>0,1/2,1/4 [u,0,0]</td>
</tr>
<tr>
<td>4 a ..2’</td>
<td>0,0,1/4 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] c2mm1’
- Along [1,0,0] p2mm
- Along [0,1,0] p2a2mm

\[a^* = a \quad b^* = b \]
Origin at 0,0,z

\[a^* = b/2 \quad b^* = c/2 \]
Origin at x,0,0

\[a^* = c/2 \quad b^* = a/2 \]
Origin at 0,y,1/4
Origin at center (2/m') at cc2/m'

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. (1)
 (1|0,0,0)

2. (2) 0, 0, z
 (2|0,0,0)

3. (3) 0, y, 1/4
 (2|0,0,1/2)

4. (4) x, 0, 1/4
 (2|0,0,1/2)

For (1/2,1/2,0) + set

1. (5) 1/4, 1/4, 0
 (1/2,1/2,0)

2. (2) 1/4, 1/4, z
 (1/2,1/2,0)

3. (3) 1/4, y, 1/4
 (1/2,1/2,1/2)

4. (4) x, 1/4, 1/4
 (1/2,1/2,1/2)

For (1/2,1/2,1/2) + set

1. (5) 1/4, 1/4, 0
 (1/2,1/2,0)

2. (2) 1/4, 1/4, z
 (1/2,1/2,0)

3. (3) 1/4, y, 1/4
 (1/2,1/2,1/2)

4. (4) x, 1/4, 1/4
 (1/2,1/2,1/2)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 m 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x',y',z' [u',v',w']</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z+1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 l .m'</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x',y',0 [u',v',0]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 k .2'</td>
<td>1/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,z+1/2 [u,v,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 j .2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i .2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 h .2'</td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,3/4 [u,0,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g .2'</td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,3/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,3/4 [0,v,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 f .2'm'</td>
<td>1/4,3/4,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/2 [u,v,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 e .2'm'</td>
<td>1/4,1/4,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,1/2 [u,v,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 d .2'm'</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c .2'm'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 b 2'2'</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,3/4 [0,0,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 a 2'2'</td>
<td>0,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,3/4 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Along [0,0,1] c2mm</th>
<th>Along [1,0,0] p2ac2m'm'</th>
<th>Along [0,1,0] p2ac2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>-a* = -c/2</td>
<td>a* = c/2</td>
<td>a* = c/2</td>
</tr>
<tr>
<td>b* = b</td>
<td>b* = b/2</td>
<td>b* = b/2</td>
<td>b* = b/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,1/4</td>
<td>Origin at x,0,1/4</td>
<td>Origin at x,0,1/4</td>
</tr>
<tr>
<td>66.10.573 - 2 - 1137</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin: at center (2/m) at c'c'2/m

Asymmetric unit: 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations:

For (0,0,0) + set:

- (1) T 0,0,0
- (2) 2 0,0,z
- (3) 2' 0,y,1/4
- (4) 2' x,0,1/4

For (1/2,1/2,0)' + set:

- (1) T' 1/2,1/2,0)
- (2) 2' 1/4,1/4,z
- (3) 2 (0,1/2,0) 1/4,y,1/4
- (4) 2 (1/2,0,0) x,1/4,1/4

66.11.574 - 1 - 1138
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1] c2mm1'</td>
</tr>
<tr>
<td>Along [1,0,0] p2'mm'</td>
</tr>
<tr>
<td>Along [0,1,0] p2'mm'</td>
</tr>
<tr>
<td>a = a b = b</td>
</tr>
<tr>
<td>a = -c/2 b = b/2</td>
</tr>
<tr>
<td>a = c/2 b = a/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>(1/2,1/2,0)' +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
</tr>
<tr>
<td>(0,0,0) + (1/2,1/2,0)' +</td>
</tr>
<tr>
<td>16 m 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w] (5) x,y,z [u,v,w] (6) x,y,z [u,v,w] (7) x,y,z [u,v,w] (8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 l ..m x,y,0 [0,0,w] x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 k ..2' 1/4,1/4,z [u,v,0] 3/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td>8 j ..2 0,1/2,z [0,0,w] 0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 i ..2 0,0,z [0,0,w] 0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 h ..2' 0,y,1/4 [u,0,w] 0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>8 g ..2' x,0,1/4 [0,v,w] x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td>4 f ..2'm 1/4,3/4,0 [0,0,0] 3/4,3/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 e ..2'm 1/4,1/4,0 [0,0,0] 3/4,1/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 d ..2'm 0,1/2,0 [0,0,0] 0,1/2,1/2 [0,0,0] 0,1/2,1/2 [0,0,0] 0,1/2,1/2 [0,0,0] 0,1/2,1/2 [0,0,0] 0,1/2,1/2 [0,0,0] 0,1/2,1/2 [0,0,0] 0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c ..2'm 0,0,0 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b 2'2' 0,1/2,1/4 [0,0,0] 0,1/2,3/4 [0,0,0] 0,1/2,3/4 [0,0,0] 0,1/2,3/4 [0,0,0] 0,1/2,3/4 [0,0,0] 0,1/2,3/4 [0,0,0] 0,1/2,3/4 [0,0,0] 0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2'2' 0,0,1/4 [0,0,0] 0,0,3/4 [0,0,0] 0,0,3/4 [0,0,0] 0,0,3/4 [0,0,0] 0,0,3/4 [0,0,0] 0,0,3/4 [0,0,0] 0,0,3/4 [0,0,0] 0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>
Origin at center (2/m') at cc'2'/m'

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

For (0,0,0) + set

1. \(I \quad (0,0,0)\)
2. \(2' \quad 0,0,z\) \((2_z,0,0)' \)
3. \(2' \quad 0,y,1/4\) \((2_z,0,0.1/2)' \)
4. \(2 \quad x,0,1/4\) \((2_x,0,0.1/2) \)
5. \(m' \quad x,y,0\) \((m_z,0,0,0)' \)
6. \(c' \quad (0,0,1/2)\) \(x,0,z\) \((m_y,0,0.1/2)' \)
7. \(c \quad (0,0,1/2)\) \(0,y,z\) \((m_z,0,0.1/2) \)

For (1/2,1/2,0) + set

1. \(t' \quad (1/2,1/2,2,0)\) \((1,1/2,1/2,2,0)' \)
2. \(2 \quad 1/4,1/4,z\) \((2_z,1/2,1/2,2,0) \)
3. \(2 \quad (0,1/2,0)\) \(1/4,y,1/4\) \((2_y,1/2,1/2,2,0)' \)
4. \(2' \quad (1/2,0,0)\) \(x,1/4,1/4\) \((2_x,1/2,1/2,2,0)' \)
5. \(n' \quad 1/4,1/4,0\) \((1/2,1/2,2,0)' \)
6. \(n \quad (1/2,1/2,2,0)\) \(x,y,0\) \((m_z,1/2,1/2,2,0) \)
7. \(n \quad (1/2,0,1/2)\) \(x,1/4,z\) \((m_y,1/2,1/2,2,0)' \)
8. \(n \quad (1/2,1/2,2,0)' \) \(1/4,y,z\) \((m_z,1/2,1/2,2,0)' \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(1)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) x,y,z+1/2 [u,v,w]</td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(6)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(7) x,y,z+1/2 [u,v,w]</td>
<td>(8) x,y,z+1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c22mm' Along [1,0,0] p2a2mm Along [0,1,0] p222m

a* = a b* = b a* = -a/2 b* = b/2 a* = -a/2 b* = c/2

Origin at 0,0,z Origin at 0,0,0 Origin at 0,y,0
Origin at center (2/m) at c'c'2/m'

Asymmetric unit

0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For $$(0,0,0)$$ + set

1. $$(1) \quad 0,0,0$$

2. $$(2) \quad 2 \cdot 0,0,z$$

3. $$(3) \quad 2 \cdot 0,0,1/2$$

For $$(1/2,1/2,0)'$$ + set

1. $$(1) \quad t' (1/2,1/2,0)$$

2. $$(2) \quad 2' \cdot 1/4,1/4,z$$

3. $$(3) \quad 2' (0,1/2,0) \cdot 1/4,y,1/4$$

4. $$(4) \quad 2' (1/2,0,0) \cdot 1/4,1/4$$

5. $$(5) \quad 1/4,1/4,0$$

6. $$(6) \quad n (1/2,1/2,0) \cdot x,y,0$$

7. $$(7) \quad n (1/2,0,1/2) \cdot x,1/4,z$$

8. $$(8) \quad n (0,1/2,1/2) \cdot 1/4,y,z$$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 m</td>
<td>(0,0,0) + (1/2,1/2,0)' +</td>
</tr>
<tr>
<td>8 l ..m'</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>8 k ..2'</td>
<td>1/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td>8 j ..2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 i ..2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 h ..2</td>
<td>0,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>8 g ..1</td>
<td>x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td>4 f ..2'/m'</td>
<td>1/4,3/4,0 [u,v,0]</td>
</tr>
<tr>
<td>4 e ..2'/m'</td>
<td>1/4,1/4,0 [u,v,0]</td>
</tr>
<tr>
<td>4 d ..2/m'</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c ..2/m'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 b 222</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 a 222</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2m'm' Along [1,0,0] p2m'm' Along [0,1,0] p2m'm'
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
\(\mathbf{a}^* = \mathbf{b}/2 \quad \mathbf{b}^* = \mathbf{c}/2 \)
\(\mathbf{a}^* = \mathbf{c}/2 \quad \mathbf{b}^* = \mathbf{a}/2 \)

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at center (2/m) at 2/m21/aa

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1) 0,0,0
 (2) 1/4,0,z
 (2) 1/2,0,0
 (3) 1/4,y,0
 (3) 1/2,0,0
 (4) 2 x,0,0
 (2) 0,0,0

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
 (1) 1/2,1/2,0
 (2) 0,1/4,z
 (2) 0,1/2,0
 (3) 0,1/2,0
 (3) 0,1/2,0
 (4) 2 (1/2,0,0) x,1/4,0
 (2) 1/2,1/2,0

(5) 1/4,1/4,0
 (1) 1/2,1/2,0
 (6) b (0,1/2,0)
 (6) 0,1/2,0
 (7) m x,1/4,z
 (7) m,0,1/2,0
 (8) b (0,1/2,0) 1/4,y,z
 (8) m,1/2,1/2,0

Cmma mmm Orthorhombic

67.1.577 C2/m2/m2/a
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
<td></td>
</tr>
<tr>
<td>16 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+1/2, y+z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z [u,v,w]</td>
<td>(3) x+1/2, y, z [u,v,w]</td>
</tr>
<tr>
<td>8 n.m.</td>
<td>x,1/4, z [0,v,0]</td>
<td>x,3/4, z [0,v,0]</td>
</tr>
<tr>
<td>8 m m..</td>
<td>0,y,z [0,0,0]</td>
<td>0,y+1/2, z [u,0,0]</td>
</tr>
<tr>
<td>8 l ..2</td>
<td>1/4,0, z [0,0,w]</td>
<td>3/4,1/2, z [0,0,w]</td>
</tr>
<tr>
<td>8 k ..2.</td>
<td>1/4,y,1/4 [0,v,0]</td>
<td>3/4,y +1/2, 1/2 [0,v,0]</td>
</tr>
<tr>
<td>8 j ..2.</td>
<td>1/4,y,0 [0,v,0]</td>
<td>3/4,y +1/2, 0 [0,v,0]</td>
</tr>
<tr>
<td>8 i ..2.</td>
<td>x,0,1/2 [u,0,0]</td>
<td>x,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 h ..2.</td>
<td>x,0,0 [u,0,0]</td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4 g mm2</td>
<td>0,1/4, z [0,0,0]</td>
<td>0,3/4, z [0,0,0]</td>
</tr>
<tr>
<td>4 f .2/m.</td>
<td>1/4,1/4,1/2 [0,v,0]</td>
<td>3/4,1/4,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 e .2/m.</td>
<td>1/4,1/4,0 [0,v,0]</td>
<td>3/4,1/4,0 [0,v,0]</td>
</tr>
<tr>
<td>4 d 2/m..</td>
<td>0,0,1/2 [u,0,0]</td>
<td>0,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 c 2/m..</td>
<td>0,0,0 [u,0,0]</td>
<td>0,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4 b 222</td>
<td>1/4,0,1/2 [0,0,0]</td>
<td>3/4,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a 222</td>
<td>1/4,0,0 [0,0,0]</td>
<td>3/4,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_c 2mm
\(a^* = a/2\) \(b^* = b/2\)
Origin at 0,1/4,z

Along [1,0,0] p2mm 1'
\(a^* = b/2\) \(b^* = c\)
Origin at x,0,0

Along [0,1,0] p_{2a} 2m'
\(a^* = c\) \(b^* = a/2\)
Origin at 1/4,y,0

67.1.577 - 2 - 1145
Cmma1

Orthorhombic

67.2.578

C2/m2/m2/a1

Origin at center (2/m1') at 2/m2/aa1'

Asymmetric unit

0 < x < 1/2; 0 < y < 1/4; 0 < z < 1/2

Symmetry Operations

For (0,0,0) + set

(1) t (1 | 0,0,0)
(2) 2 1/4,0,z
(3) 2 1/4,y,0 (4) 2 x,0,0
(5) 2 1/2,0,0
(6) a (1/2,0,0) x,y,0 (7) a (1/2,0,0) x,0,z
(8) m 0,y,z
(1*) 1/2,0,0
(2 z* 1/2,0,0)
(2 y* 1/2,0,0)
(2 x* 0,0,0)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(1) 1/2,1/2,0)
(2) 2 0,1/4,z (3) 2 (0,1/2,0) 0,y,0 (4) 2 (1/2,0,0) x,1/4,0
(5) 2 0,1,2,0)
(2 z* 0,1,2,0)
(2 y* 0,1,2,0)
(2 x* 1/2,1/2,0)

For (0,0,0)' + set

(1) t (1' | 0,0,0)' (1* 0,0,0)'
(2) 2' 1/4,0,z
(3) 2' 1/4,y,0 (4) 2' x,0,0
(5) 2' 1/2,0,0' (6) a' (1/2,0,0) x,y,0
(7) a' (1/2,0,0) x,0,z
(8) m' 0,y,z
(1* 0,0,0)'
(2 z* 1/2,0,0)'
(2 y* 1/2,0,0)'
(2 x* 1/2,1/2,0)'

For (1/2,1/2,0)'+ set

(1) t (1'/2,1/2,0)'
(1' 1/2,1/2,0)'
(2) 2' 0,1/4,z
(3) 2' (0,1/2,0) 0,y,0 (4) 2' (1/2,0,0) x,1/4,0
(5) 2' 1/2,0,0' (6) b' (0,1/2,0) x,y,0
(7) m' x,1/4,z (8) b' (0,1/2,0) 1/4,y,z
(1* 1/2,1/2,0)'
(2 z* 1/2,0,0)'
(2 y* 1/2,0,0)'
(2 x* 1/2,1/2,0)'

67.2.578 - 1 - 1146
Generators selected: \((1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5); 1'\).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 o 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) (x+1/2,y,z) [0,0,0]</td>
</tr>
<tr>
<td>8 n .m. 1'</td>
<td>x,1/4,z [0,0,0]</td>
<td>x,1/4,z [0,0,0]</td>
</tr>
<tr>
<td>8 m m.. 1'</td>
<td>0,y,z [0,0,0]</td>
<td>0,y+1/2,z [0,0,0]</td>
</tr>
<tr>
<td>8 l ..21'</td>
<td>1/4,0,z [0,0,0]</td>
<td>3/4,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>8 k .2.1'</td>
<td>1/4,y,1/4 [0,0,0]</td>
<td>3/4,y+1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 j .2.1'</td>
<td>1/4,y,0 [0,0,0]</td>
<td>3/4,y+1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>8 i 2..1'</td>
<td>x,0,1/2 [0,0,0]</td>
<td>x,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 h 2..1'</td>
<td>x,0,0 [0,0,0]</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 g mm21'</td>
<td>0,1/4,z [0,0,0]</td>
<td>0,3/4,z [0,0,0]</td>
</tr>
<tr>
<td>4 f .2/m.1'</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
<td>3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 e .2/m.1'</td>
<td>1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 d 2/m..1'</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c 2/m..1'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 b 2221'</td>
<td>1/4,0,1/2 [0,0,0]</td>
<td>3/4,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2221'</td>
<td>1/4,0,0 [0,0,0]</td>
<td>3/4,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm1'
\(a^* = a/2\)
Origin at 0,0,z

Along [1,0,0] p2mm1'
\(a^* = b/2\)
Origin at x,0,0

Along [0,1,0] p2mm1'
\(a^* = c\)
Origin at y,0,0
Cm'ma
67.3.579

m'mm
C2/m'2'/m2'/a

Orthorhombic

Origin at center (2/m') at 2/m'2', 'aa

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2' 1/4,0,z
(2z | 1/2,0,0)'

(5) 1'
(0,0,0)'

(6) a (1/2,0,0) x,y,0
(mz | 1/2,0,0)

(10) a (1/2,0,0) x,0,z
(2y | 1/2,0,0)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,2,0)
(1 | 1/2,1/2,0)

(2) 2' 0,1/4,z
(2z | 0,1/2,0)'

(5) 1'
(1/2,1/2,0)'

(6) b (0,1/2,0) x,y,0
(mz | 0,1/2,0)

(10) m x,1/4,z
(2y | 0,1/2,0)

(8) b' (0,1/2,0) 1/4,y,z
(mz | 1/2,1/2,0)'

67.3.579 - 1 - 1148
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 o 1</td>
<td>(1) x,y,z [u,v,w] (2) x +1/2, y, z [u,v,w] (3) x +1/2, y, z [u,v,w] (4) x, y, z [u,v,w] (5) x, y, z [u,v,w] (6) x +1/2, y, z [u,v,w] (7) x +1/2, y, z [u,v,w] (8) x, y, z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 n .m. 8</td>
<td>x,1/4, z [0,v,0] x,3/4, z [0,v,0] x,3/4, z [0,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 m m'.. 8</td>
<td>0,y, z [0,v,w] 0,y +1/2, z [0,v,w] 0,y +1/2, z [0,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 l .2' 8</td>
<td>1/4,0, z [u,v,0] 1/4,1/2, z [u,v,0] 1/4,1/2, z [u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 k .2'. 8</td>
<td>1/4, y,1/4 [u,0,w] 3/4, y, 1/2 [u,0,w] 1/4, y+1/2,1/2 [u,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 j .2'. 8</td>
<td>1/4, y,0 [u,0,w] 3/4, y+1/2,2 [u,0,w] 1/4, y+1/2,2 [u,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 i 2.. 8</td>
<td>x,0,1/2 [u,0,0] x,0,1/2 [u,0,0] x,0,1/2 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 h 2.. 8</td>
<td>x,0,0 [u,0,0] x,1/2,0 [u,0,0] x,1/2,0 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 g m'm2' 4</td>
<td>0,1/4, z [0,v,0] 0,3/4, z [0,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 f .2'/m. 4</td>
<td>1/4,1/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 e .2'/m. 4</td>
<td>1/4,1/4,0 [0,0,0] 3/4,1/4,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 d 2/m'.. 4</td>
<td>0,0,1/2 [0,0,0] 0,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 c 2/m'.. 4</td>
<td>0,0,0 [0,0,0] 0,1/2,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 b 22'2' 4</td>
<td>1/4,0,1/2 [u,0,0] 3/4,0,1/2 [u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 a 22'2' 4</td>
<td>1/4,0,0 [u,0,0] 3/4,0,0 [u,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_{c-}2mm Along [1,0,0] p2mm Along [0,1,0] p_{2a}.2m'm'
a* = a/2 b* = b/2 a* = b/2 b* = c a* = -a/2 b* = c
Origin at 1/4,1/4,z Origin at x,0,0 Origin at 0,y,0
Symmetry Operations

For (0,0,0) + set

1. \(I \) \((0,0,0)\)
2. \(2 \) 1/4,0,z
 \((2_z|1/2,0,0)\)
3. \(2' \) 1/4,y,0
 \((2_z|1/2,0,0)'\)
4. \(2' \) x,0,0
 \((2_z|0,0,0)'\)

5. \(T \) 0,0,0
 \((1/2,0,0)'\)
6. \(a' \) (1/2,0,0) x,y,0
 \((m_z|1/2,0,0)'\)
7. \(a \) (1/2,0,0) x,0,z
 \((m_y|1/2,0,0)\)
8. \(m \) 0,y,z
 \((m_z|0,0,0)\)

For (1/2,1/2,0) + set

1. \(t \) (1/2,1/2,0)
 \((1|1/2,1/2,0)\)
2. \(2 \) 0,1/4,z
 \((2_z|0,1/2,0)\)
3. \(2' \) (0,1/2,0) 0,y,0
 \((2_y|0,1/2,0)'\)
4. \(2' \) (1/2,0,0) x,1/4,0
 \((2_z|1/2,1/2,0)'\)

5. \(T \) 1/4,1/4,0
 \((1/2,1/2,0)'\)
6. \(b' \) (0,1/2,0) x,y,0
 \((m_z|0,1/2,0)'\)
7. \(m \) x,1/4,z
 \((m_y|0,1/2,0)\)
8. \(b \) (0,1/2,0) 1/4,y,z
 \((m_z|1/2,1/2,0)\)
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>16 o</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x ,y ,z [ū,v,w]</td>
</tr>
<tr>
<td>8 n</td>
<td>x,1/4,z [0,v,0]</td>
</tr>
<tr>
<td>8 m</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 l</td>
<td>1/4,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 k</td>
<td>1/4,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>8 j</td>
<td>1/4,y,0 [u,0,w]</td>
</tr>
<tr>
<td>8 i</td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 h</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>4 g</td>
<td>0,1/4,z [0,0,0]</td>
</tr>
<tr>
<td>4 f</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 e</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>4 d</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>1/4,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 a</td>
<td>1/4,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm

\[a^* = a/2 \quad b^* = b/2 \]

Origin at 0,0,z

Along [1,0,0] p2mm1'

\[a^* = b/2 \quad b^* = c \]

Origin at 0,0,0

Along [0,1,0] p2a2mm

\[a^* = -a/2 \quad b^* = c \]

Origin at 0,y,0
Origin: at center (2'/m') at 2'/m'2'/a'

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) t (0,0,0)
 (1|0,0,0)
 (1|0,0,0)
(2) 2 1/4,0,z
 (2z|1/2,0,0)
 (5) 1/4,0,0
 (0,0,0)
 (5|0,0,0)
 (5|0,0,0)
(6) a (1/2,0,0)
 (mz|1/2,0,0)
 (7) a' (1/2,0,0)
 (mx|1/2,0,0)
 (8) m' 0,y,z
 (mz|0,0,0)
 (mz|0,0,0)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
 (1|1/2,1/2,0)
 (5|1/2,1/2,0)
(2) 2 0,1/4,z
 (2z|0,1/2,0)
 (6) b (0,1/2,0)
 (mz|0,1/2,0)
 (7) m' x,1/4,z
 (mz|0,1/2,0)
 (8) b' (0,1/2,0) 1/4,y,z
 (mz|1/2,1/2,0)
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>(1,1/2,1/2,0)</td>
<td></td>
</tr>
<tr>
<td>16 o 1</td>
<td>x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(5) -</td>
<td>x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 n .m.'</td>
<td>x/1/4,z [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>(6) -</td>
<td>x/1/4,z [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 m m'</td>
<td>0,y,z [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>(7) -</td>
<td>0,y+1/2,z [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 l .2</td>
<td>1/4,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>(8) -</td>
<td>1/4,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 k .2'</td>
<td>1/4,y,1/4 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>(9) -</td>
<td>1/4,y,1/4 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 j .2'</td>
<td>1/4,y,0 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>(10) -</td>
<td>1/4,y,0 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 i .2'</td>
<td>x,0,1/2 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>(11) -</td>
<td>x,0,1/2 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 h .2'</td>
<td>x,0,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>(12) -</td>
<td>x,0,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 g m'm'2</td>
<td>0,1/4,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>(13) -</td>
<td>0,1/4,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 f .2'/m'</td>
<td>1/4,1/4,1/2 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>(14) -</td>
<td>1/4,1/4,1/2 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 e .2'/m'</td>
<td>1/4,1/4,0 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>(15) -</td>
<td>1/4,1/4,0 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 d 2'/m'..</td>
<td>0,0,1/2 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>(16) -</td>
<td>0,0,1/2 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 c 2'/m'..</td>
<td>0,0,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>(17) -</td>
<td>0,0,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 b 2'2</td>
<td>1/4,0,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>(18) -</td>
<td>1/4,0,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 a 2'2'</td>
<td>1/4,0,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>(19) -</td>
<td>1/4,0,0 [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_c-2mm
Along [0,1,0] p2'mm'
Along [0,1,0] p2'mm'

\[a^* = a/2 \quad b^* = b/2 \]
\[a^* = c \quad b^* = b/2 \]
\[a^* = c \quad b^* = a/2 \]

Origin at 1/4,0,0
Origin at x,0,0
Origin at 0,y,0
Cm'm'α'
67.6.582
mm'm'
C2/m2'/m2'/α'

Origin at center (2/m) at 2/m2'/a'a'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. $t(0,0,0)$
2. $t(1/2,0,0)'
3. $t(1/2,1/2,0)$
4. $t(1/2,1/2,0)'$

For (1/2,1/2,0) + set

1. $t(1/2,0,0)$
2. $t(0,1/2,0)'
3. $t(0,1/2,0)$
4. $t(1/2,0,0)'$

6. $a'(1/2,0,0) x,y,0$
7. $a'(1/2,0,0) x,0,z$
8. $m 0,y,z$
9. $m 0,0,0$

10. $b'(0,1/2,0) x,y,0$
11. $m x,1/4,z$
12. $b (0,1/2,0) 1/4,y,z$
13. $m 1/2,1/2,0$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>16 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x +1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 n .m'</td>
<td>x,1/4,z [u,0,w]</td>
</tr>
<tr>
<td>8 m .m.</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 l .2'</td>
<td>1/4,0,z [u,v,0]</td>
</tr>
<tr>
<td>8 k .2'</td>
<td>1/4,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>8 j .2'</td>
<td>1/4,y,0 [u,0,w]</td>
</tr>
<tr>
<td>8 i 2 ..</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 h 2 ..</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>4 g mm'2'</td>
<td>0,1/4,z [u,0,0]</td>
</tr>
<tr>
<td>4 f .2'm'</td>
<td>1/4,1/4,1/2 [u,0,w]</td>
</tr>
<tr>
<td>4 e .2'm'</td>
<td>1/4,1/4,0 [u,0,w]</td>
</tr>
<tr>
<td>4 d 2/m.</td>
<td>0,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 c 2/m.</td>
<td>0,0,0 [u,0,0]</td>
</tr>
<tr>
<td>4 b 22'2</td>
<td>1/4,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 a 22'2</td>
<td>1/4,0,0 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2'mm'
Along [1,0,0] p2mm1'
Along [0,1,0] p2'mm'
a* = a/2
b* = b/2
a* = a/2
b* = c
Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin at center (2/m') at 2/m'2/a'a'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. t (x,0,0)
 1' (1/2,0,0)

2. 2 1/4,0,z
 2' 1/2,0,0

3. 2 1/4,y,0
 2' 1/2,0,0

4. 2 x,0,0
 2' 0,0,0

5. t - 0,0,0
 1/2,0,0

6. a' (1/2,0,0)
 m'_1/2,0,0

7. a' (1/2,0,0)
 m'_1/2,0,0

8. m' 0,y,z
 m'_0,0,0

For (1/2,1/2,0) + set

1. t (1/2,1/2,0)
 1' 1/2,1/2,0

2. 2 0,1/4,z
 2' 0,1/2,0

3. 2 (0,1/2,0) 0,y,0
 2' 0,1/2,0

4. 2 (1/2,0,0) x,1/4,0
 2' 1/2,1/2,0

5. t - 1/4,1/4,0
 1/2,1/2,0

6. b' (0,1/2,0) x,y,0
 m'_0,1/2,0

7. m' x,1/4,z
 m'_0,1/2,0

8. b' (0,1/2,0) 1/4,y,z
 m'_1/2,1/2,0
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 o 1</td>
<td>(1) x, y, z [u, v, w]</td>
<td>(2) x+1/2, y, z [u, v, w]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+1/2, y, z [u, v, w]</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z [u, v, w]</td>
<td>(6) x+1/2, y, z [u, v, w]</td>
<td></td>
</tr>
<tr>
<td>8 n .m'</td>
<td>x,1/4, z [u,0,w]</td>
<td>x,1/4, z [u,0,w]</td>
<td>x,1/4, z [u,0,w]</td>
</tr>
<tr>
<td>8 m m'</td>
<td>0,y,z [0,v,w]</td>
<td>0,y+1/2,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 l ..2</td>
<td>1/4,0,z [0,0,w]</td>
<td>1/4,1/2,z [0,0,w]</td>
<td>1/4,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 k .2</td>
<td>1/4,y,1/4 [0,v,0]</td>
<td>1/4,y+1/2,1/2 [0,v,0]</td>
<td>1/4,y+1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td>8 j .2</td>
<td>1/4,y,0 [0,v,0]</td>
<td>1/4,y+1/2,0 [0,v,0]</td>
<td>1/4,y+1/2,0 [0,v,0]</td>
</tr>
<tr>
<td>8 i 2..</td>
<td>x,0,1/2 [u,0,0]</td>
<td>x,0,1/2 [u,0,0]</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 h 2..</td>
<td>x,0,0 [u,0,0]</td>
<td>x,1/2,0 [u,0,0]</td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4 g m'm'2</td>
<td>0,1/4,z [0,0,w]</td>
<td>0,3/4,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 f .2/m'</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
<td>3/4,1/4,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 e .2/m'</td>
<td>1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 d .m'</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 c 2/m'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 b 222</td>
<td>1/4,0,1/2 [0,0,0]</td>
<td>3/4,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 a 222</td>
<td>1/4,0,0 [0,0,0]</td>
<td>3/4,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2m'm'
 a*=a/2 b*=b/2 Origin at 0,0,z

- Along [1,0,0] p2m'm'
 a*=b/2 b*=c Origin at x,0,0

- Along [0,1,0] p2m'm'
 a*=c b*=a/2 Origin at 0,y,0
C2c mma

67.8.584

Orthorhombic

C2c 2/m2/m2/a

Asymmetric unit

\[0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{4}; \quad 0 < z < \frac{1}{2}\]

Symmetry Operations

For \(0,0,0\) + set

1. \(I \quad (0,0,0)\)
2. \(\bar{1} \quad \frac{1}{2},0,0\)
3. \(a \quad \frac{1}{2},0,0\)
4. \(b \quad 0,0,0\)
5. \(c \quad 0,0,1\)
6. \(d \quad 0,1,0\)
7. \(e \quad 1,0,0\)
8. \(f \quad 0,0,1\)

For \(1/2,1/2,0\) + set

1. \(t \quad \frac{1}{2},1/2,0\)
2. \(\bar{t} \quad 0,1/2,0\)
3. \(a' \quad 1/2,0,1\)
4. \(b' \quad 0,1/2,1\)
5. \(c' \quad 1/2,1/2,1\)
6. \(d' \quad 0,1/2,1\)
7. \(e' \quad 1/2,0,1\)
8. \(f' \quad 0,0,1\)

For \(0,0,1\) + set

1. \(t' \quad \frac{1}{2},1/2,1\)
2. \(\bar{t}' \quad 0,1/2,1\)
3. \(a'' \quad 1/2,0,1\)
4. \(b'' \quad 0,1/2,1\)
5. \(c'' \quad 1/2,1/2,1\)
6. \(d'' \quad 0,1/2,1\)
7. \(e'' \quad 1/2,0,1\)
8. \(f'' \quad 0,0,1\)

For \(1/2,1/2,1\) + set

1. \(t'' \quad \frac{1}{2},1/2,1\)
2. \(\bar{t}'' \quad 0,1/2,1\)
3. \(a''' \quad 1/2,0,1\)
4. \(b''' \quad 0,1/2,1\)
5. \(c''' \quad 1/2,1/2,1\)
6. \(d''' \quad 0,1/2,1\)
7. \(e''' \quad 1/2,0,1\)
8. \(f''' \quad 0,0,1\)
Generators selected: (1); t(1,0,0); t(0,1,0); t'(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 n .m.</td>
<td>x,1/4,z [u,v,0]</td>
<td>x,1/4,z [u,v,0]</td>
</tr>
<tr>
<td>16 m ..</td>
<td>0,y,z [u,0,0]</td>
<td>0,y+1/2,z [u,0,0]</td>
</tr>
<tr>
<td>16 l ..2</td>
<td>1/4,0,z [0,0,w]</td>
<td>3/4,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>16 k ..2'</td>
<td>1/4,y,1/4 [u,0,w]</td>
<td>3/4,y+1/2,1/2 [u,0,w]</td>
</tr>
<tr>
<td>16 j ..2</td>
<td>1/4,y,0 [u,0,v]</td>
<td>3/4,y+1/2,0 [u,0,v]</td>
</tr>
<tr>
<td>16 i ..2'</td>
<td>x,0,1/2 [v,0,w]</td>
<td>x,0,1/2 [v,0,w]</td>
</tr>
<tr>
<td>16 h ..2</td>
<td>x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>8 g mm2</td>
<td>0,1/4,z [0,0,0]</td>
<td>0,3/4,z [0,0,0]</td>
</tr>
<tr>
<td>8 f .2/m.</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
<td>3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 e .2/m.</td>
<td>1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>8 d .2/m.</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 c .2/m.</td>
<td>0,0,0 [u,0,0]</td>
<td>0,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>8 b 2'2</td>
<td>1/4,0,1/2 [0,0,w]</td>
<td>3/4,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 a 222</td>
<td>1/4,0,0 [0,0,0]</td>
<td>3/4,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2mm1'
 \[a^* = a/2 \quad b^* = b/2\]
 Origin at 0,0,z

- Along [1,0,0] p2mm1'
 \[a^* = b/2 \quad b^* = c\]
 Origin at x,0,0

- Along [0,1,0] p2mm1'
 \[a^* = c \quad b^* = a/2\]
 Origin at 1/2,y,0

67.8.584 - 2 - 1159
Origin at center (2/m) at 2/m2/1/aa

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) \(T_1 \)
(1 | 0,0,0)

(2) \(2_{1} \) 1/4,0,z
(2_1 | 1/2,0,0)

(3) \(2_{1} \) 1/4,y,0
(2_1 | 1/2,0,0)

(4) \(2_{1} \) x,0,0
(2_1 | 0,0,0)

(5) \(T_1 \)
(1 | 0,0,0)

(6) a (1/2,0,0) x,y,0
(m_1 | 1/2,0,0)

(7) a (1/2,0,0) x,0,z
(m_1 | 1/2,0,0)

(8) m 0,y,z
(m_1 | 0,0,0)

For (1/2,1/2,0)' + set

(1) \(T_1 \)
(1 | 1/2,1/2,0)

(2) \(2' \) 0,1/4,z
(2_1 | 0,1/2,0)

(3) \(2' \) (0,1/2,0) 0,y,0
(2_1 | 0,1/2,0)

(4) \(2' \) (1/2,0,0) x,1/4,0
(2_1 | 1/2,0,0)

(5) \(T_1 \)
(1 | 1/2,1/2,0)

(6) b' (0,1/2,0) x,y,0
(m_1 | 0,1/2,0)

(7) m' x,1/4,z
(m_1 | 0,1/2,0)

(8) b' (0,1/2,0) 1/4,y,z
(m_1 | 1/2,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry. Coordinates

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 o 1</td>
<td>16</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>8 n .m'</td>
<td>8</td>
<td>(1/2,1/2,0)' +</td>
</tr>
<tr>
<td>8 m m..</td>
<td>8</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>8 l .2</td>
<td>8</td>
<td>1/4,0,0</td>
</tr>
<tr>
<td>8 k .2</td>
<td>8</td>
<td>1/4,0,0</td>
</tr>
<tr>
<td>8 j .2</td>
<td>8</td>
<td>1/4,0,0</td>
</tr>
<tr>
<td>8 i .2</td>
<td>8</td>
<td>1/4,0,0</td>
</tr>
<tr>
<td>8 h .2</td>
<td>8</td>
<td>1/4,0,0</td>
</tr>
<tr>
<td>4 g m'm'2</td>
<td>4</td>
<td>0,1/4,0</td>
</tr>
<tr>
<td>4 f .2/m'</td>
<td>4</td>
<td>1/4,1/4,1/2</td>
</tr>
<tr>
<td>4 e .2/m'</td>
<td>4</td>
<td>1/4,1/4,1/2</td>
</tr>
<tr>
<td>4 d 2/m..</td>
<td>4</td>
<td>0,1/2,1/2</td>
</tr>
<tr>
<td>4 c 2/m..</td>
<td>4</td>
<td>0,1/2,1/2</td>
</tr>
<tr>
<td>4 b 222</td>
<td>4</td>
<td>1/4,0,0</td>
</tr>
<tr>
<td>4 a 222</td>
<td>4</td>
<td>3/4,0,0</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_{2a}.2m'1' \) \(a^* = a/2 \) \(b^* = b/2 \) Origin at 1/4,0,z
Along [1,0,0] \(p2mm1' \) \(a^* = b/2 \) \(b^* = c \) Origin at x,0,0
Along [0,1,0] \(p_{2a}.2m'1' \) \(a^* = -a/2 \) \(b^* = c \) Origin at 1/4,y,0

C_{pmmma}
C1, mma
67.10.586
Orthorhombic

mmm1’
C1, 2/m2/m2/a

Origin at center (2/m) at 2/m2/m/a

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. (1,0,0,0)
2. (2, 1/4,0,z)
3. (3, 1/4,y,0)
4. (4, x,0,0)

For (1/2,1/2,0)’ + set

(1) t’ (1/2,1/2,0)
(1) 1/2,1/2,0)
(2) 2’ (0,1/4,z)
(2) 1/2,0,0)
(3) 2’ (0,1/2,0) 0,y,0
(3) 0,0,1/2
(4) 2’ (1/2,0,0) x,1/4,0
(4) 2,0,0

For (0,0,1)’ + set

(1) t’ (0,0,1)
(1) 0,0,1)
(2) 2’ (0,0,1) 1/4,0,z
(2) 1/2,0,1)
(3) 2’ (0,0,1) 1/4,y,1/2
(3) 0,1/2,0)
(4) 2’ x,0,1/2
(4) 2,1/2,0)

For (1/2,1/2,1) + set

(1) t (1/2,1/2,1)
(1) 1/2,1/2,1)
(2) 2 (0,0,1) 0,1/4,z
(2) 0,1/2,1)
(3) 2 (0,1/2,0) 0,y,1/2
(3) 0,1/2,1)
(4) 2 (1/2,0,0) x,1/4,1/2
(4) 0,1/2,1)

For (1/4,1/4,1/2) + set

(1) t (1/4,1/4,1/2)
(1) 1/4,1/4,1/2)
(2) 2 (0,1/2,0) x,y,1/2
(2) 0,1/2,1)
(3) 2 (0,0,1) x,1/4,z
(3) 0,1/2,1)
(4) 2 (1/2,0,0) x,1/4,1/2
(4) 0,1/2,1)
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 o 1</td>
<td>(0,0,0) + (1/2,1/2,0)</td>
</tr>
<tr>
<td>(0,0,1)' +</td>
<td>(1/2,1/2,1)</td>
</tr>
<tr>
<td>(5) x, y, z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(6) x, y, z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(7) x, y, z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(8) x, y, z</td>
<td>[u,v,w]</td>
</tr>
</tbody>
</table>

16 n.m'	x,1/4,z [u,0,w]
16 m..	0,y,z [u,0,0]
16 l..	1/4,0,z [0,0,w]
16 k..	1/4,y,1/4 [u,0,w]
16 j..	1/4,y,0 [0,0,0]
16 i..	x,0,1/2 [0,v,w]
16 h..	x,0,0 [u,0,0]
8 g m'm'	0,1/4,z [0,0,w]
8 f m'..	1/4,1/4,1/2 [u,0,w]
8 e m'..	1/4,1/4,0 [0,0,0]
8 d m..	0,0,1/2 [0,0,0]
8 c m..	0,0,0 [u,0,0]
8 b c'2	1/4,0,1/2 [0,0,w]
8 a 222	1/4,0,0 [0,0,0]

Symmetry of Special Projections

- Along [0,0,1] p2mm1'
 - $a^* = a/2$
 - $b^* = b/2$
 - Origin at 0,0,z

- Along [1,0,0] p2mm1'
 - $a^* = b/2$
 - $b^* = c$
 - Origin at x,0,0

- Along [0,1,0] p2mm1'
 - $a^* = c$
 - $b^* = a/2$
 - Origin at 1/2,y,0
Symmetry Operations

For (0,0,0) + set

1. 1
2. $2'$ 1/4,0,z
3. $2'$ 1/4,y,0
4. 2 x,0,0
5. 1 (0,0,0)
6. a (1/2,0,0) x,y,0
7. a (1/2,0,0) x,0,z
8. m' 0,y,z
9. 1 (0,0,0)
10. a (1/2,0,0) x,y,0
11. m x,1/4,z
12. b' (0,1/2,0) 1/4,y,z
13. 1 (0,0,0)
14. a (1/2,0,0) x,y,0
15. m x,1/4,z
16. c (0,0,1) 0,y,z
17. 1 (0,0,0)
18. a (1/2,0,0) x,y,0
19. m x,1/4,z
20. n (0,1/2,1) 1/4,y,z

For (1/2,1/2,0) + set

1. t (1/2,1/2,1)
2. $2'$ 1/2,0,0
3. $2'$ 0,1/2,0
4. 2 (1/2,0,0) x,1/4,0
5. 1 (1/2,1/2,2)
6. b (0,1/2,0) x,y,0
7. m x,1/4,z
8. b' (0,1/2,0) 1/4,y,z
9. 1 (1/2,1/2,2)
10. b (0,1/2,0) x,y,0
11. m x,1/4,z
12. c (0,0,1) 0,y,z

For (0,0,1) + set

1. t' (0,0,1)
2. 2 (0,0,1) 1/4,0,z
3. 2 0,1/2,0
4. $2'$ x,0,1/2
5. 1 (0,0,1)
6. a' (1/2,0,0) x,y,1/2
7. n' (1/2,0,1) x,0,z
8. c (0,0,1) 0,y,z
9. 1 (0,0,1)
10. a' (1/2,0,0) x,y,1/2
11. n' (1/2,0,1) x,0,z
12. m (0,0,1)

For (1/2,1/2,1) + set

1. t' (1/2,1/2,1)
2. 2 (0,0,1) 0,1/4,z
3. 2 (0,1/2,0) 0,y,1/2
4. $2'$ (1/2,0,0) x,1/4,1/2
5. 1 (1/2,1/2,1)
6. b' (0,1/2,0) x,y,1/2
7. c' (0,0,1) x,1/4,z
8. n (0,1/2,1) 1/4,y,z
9. 1 (1/2,1/2,1)
10. b' (0,1/2,0) x,y,1/2
11. c' (0,0,1) x,1/4,z
12. m (1/2,1/2,1)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 o</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x+1/2, y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+1/2, y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 n</td>
<td>m</td>
<td>1/4,0,z [u,v,0]</td>
</tr>
<tr>
<td>16 m</td>
<td>m'</td>
<td>1/4,0,z [0,v,0]</td>
</tr>
<tr>
<td>16 l</td>
<td>.2'</td>
<td>3/4,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>16 k</td>
<td>.2</td>
<td>3/4,1,2/1 [u,v,0]</td>
</tr>
<tr>
<td>16 j</td>
<td>.2'</td>
<td>3/4,1,2/0 [u,v,0]</td>
</tr>
<tr>
<td>16 i</td>
<td>2'</td>
<td>3/4,1,2/0 [0,v,w]</td>
</tr>
<tr>
<td>16 h</td>
<td>2</td>
<td>3/4,1,2/0 [u,v,0]</td>
</tr>
<tr>
<td>8 g</td>
<td>m'2'</td>
<td>0,1/4,z [0,v,0]</td>
</tr>
<tr>
<td>8 f</td>
<td>.2/m</td>
<td>3/4,1,4/1 [u,v,0]</td>
</tr>
<tr>
<td>8 e</td>
<td>.2'/m</td>
<td>3/4,1,4/0 [0,v,0]</td>
</tr>
<tr>
<td>8 d</td>
<td>2'/m'</td>
<td>0,1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td>8 c</td>
<td>2/m'</td>
<td>0,1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td>8 b</td>
<td>2'22'</td>
<td>3/4,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>8 a</td>
<td>22'2'</td>
<td>3/4,0,0 [u,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm1'
\[a^* = a/2 \quad b^* = b/2 \]
Origin at 0,0,0

Along [1,0,0] p22m2mm
\[a^* = -c \quad b^* = b/2 \]
Origin at x,0,0

Along [0,1,0] p2c2mm
\[a^* = -a/2 \quad b^* = c \]
Origin at 1/4,y,0
Symmetry Operations

For (0,0,0) + set

(1) \begin{tabular}{c}
1 (1 | 0,0,0) \\
\end{tabular}

(2) \begin{tabular}{c}
2 1/4,0,z (z | 1/2,0,0) \\
\end{tabular}

(3) \begin{tabular}{c}
2' 1/4,y,0 (2z | 1/2,0,0') \\
\end{tabular}

(4) \begin{tabular}{c}
2' x,0,0 (2z | 0,0,0') \\
\end{tabular}

(5) \begin{tabular}{c}
\(\bar{1}\) 0,0,0 \\
(\(\bar{1}\) | 0,0,0) \\
\end{tabular}

(6) \begin{tabular}{c}
a (1/2,0,0) x,y,0 (mz | 1/2,0,0) \\
\end{tabular}

(7) \begin{tabular}{c}
a' (1/2,0,0) x,0,z (mz | 1/2,0,0') \\
\end{tabular}

(8) \begin{tabular}{c}
m' 0,y,z (mz | 0,0,0') \\
\end{tabular}

For (1/2,1/2,0) + set

(1) \begin{tabular}{c}
t (1/2,1/2,0) (1 | 1/2,1/2,0) \\
\end{tabular}

(2) \begin{tabular}{c}
2 0,1/4,z (2z | 1/2,0,0) \\
\end{tabular}

(3) \begin{tabular}{c}
2' (0,1/2,0) 0,y,0 (2z | 0,1/2,0') \\
\end{tabular}

(4) \begin{tabular}{c}
2' (1/2,0,0) x,1/4,0 (2z | 1/2,1/2,0') \\
\end{tabular}

(5) \begin{tabular}{c}
\(\bar{1}\) 1/4,1/4,0 (\(\bar{1}\) | 1/2,1/2,0) \\
\end{tabular}

(6) \begin{tabular}{c}
b (0,1/2,0) x,y,0 (mz | 0,1/2,0) \\
\end{tabular}

(7) \begin{tabular}{c}
m' x,1/4,z (mz | 0,1/2,0) \\
\end{tabular}

(8) \begin{tabular}{c}
b' (0,1/2,0) 1/4,y,z (mz | 1/2,1/2,0) \\
\end{tabular}

For (0,0,1') + set

(1) \begin{tabular}{c}
t' (0,0,1) (1 | 0,0,1') \\
\end{tabular}

(2) \begin{tabular}{c}
2' (0,0,1) 1/4,0,z (2z | 1/2,0,1') \\
\end{tabular}

(3) \begin{tabular}{c}
2 1/4,y,1/2 (2z | 1/2,0,1) \\
\end{tabular}

(4) \begin{tabular}{c}
2 x,0,1/2 (2z | 0,0,1) \\
\end{tabular}

(5) \begin{tabular}{c}
\(\bar{1}\) 0,0,1/2 (\(\bar{1}\) | 0,0,1') \\
\end{tabular}

(6) \begin{tabular}{c}
a' (1/2,0,0) x,y,1/2 (mz | 1/2,0,1) \\
\end{tabular}

(7) \begin{tabular}{c}
n (1/2,0,1) x,0,z (mz | 1/2,0,1) \\
\end{tabular}

(8) \begin{tabular}{c}
c (0,0,1) 0,y,z (mz | 0,0,1) \\
\end{tabular}

For (1/2,1/2,1') + set

(1) \begin{tabular}{c}
t' (1/2,1/2,1) (1 | 1/2,1/2,1') \\
\end{tabular}

(2) \begin{tabular}{c}
2' (0,0,1) 0,1/4,z (2z | 0,1/2,1) \\
\end{tabular}

(3) \begin{tabular}{c}
2 (0,1/2,0) 0,y,1/2 (2y | 0,1/2,1) \\
\end{tabular}

(4) \begin{tabular}{c}
2 (1/2,0,0) x,1/4,1/2 (2x | 1/2,1/2,1) \\
\end{tabular}

(5) \begin{tabular}{c}
\(\bar{1}\) 1/4,1/4,1/2 (\(\bar{1}\) | 1/2,1/2,1') \\
\end{tabular}

(6) \begin{tabular}{c}
b' (0,1/2,0) x,y,1/2 (mz | 0,1/2,1) \\
\end{tabular}

(7) \begin{tabular}{c}
c (0,0,1) x,1/4,z (mz | 0,1/2,1) \\
\end{tabular}

(8) \begin{tabular}{c}
n (0,1/2,1) 1/4,y,z (mz | 1/2,1/2,1) \\
\end{tabular}
Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x + 1/2, y + z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x + 1/2, y, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x, y, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z [u,v,w]</td>
</tr>
<tr>
<td>16 n .m'</td>
<td>x,1/4,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,1/4,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>0, y, z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,1/4,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,3/4,z [u,v,w]</td>
</tr>
<tr>
<td>16 m ..</td>
<td>1/4,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>16 l ..2</td>
<td>1/4,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>16 k .2</td>
<td>1/4,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>16 j .2'</td>
<td>1/4,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>16 i .2'</td>
<td>1/4,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>16 h .2'</td>
<td>1/4,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 g m'm'2</td>
<td>0,1/4,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/4,z [0,0,w]</td>
</tr>
<tr>
<td>8 f .2/m'</td>
<td>1/4,1,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 e .2'/m'</td>
<td>1/4,1,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 d 2/m'..</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 c 2'/m'..</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 b 222</td>
<td>1/4,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 a 2'2'2</td>
<td>1/4,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: p2mm1'
 \[a^* = a/2 \quad b^* = b/2 \]
- **Along [1,0,0]**: \(p_{2a}2m'm' \)
 \[a^* = -c \quad b^* = b/2 \]
- **Along [0,1,0]**: \(p_{2a}2m'm' \)
 \[a^* = c \quad b^* = a/2 \]

Origin at 0,0,z
Origin at x,0,1/2
Origin at 0,y,1/2
Origin at center (2/m') at 2/m'2'/m2'/a

Asymmetric unit

0 ≤ x ≤ 1/2;

0 ≤ y ≤ 1/4;

0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(5) T
0,0,0

(1|0,0,0)'

(6) a (1/2,0,0) x,y,0

(7) a (1/2,0,0) x,0,z

(8) m' 0,y,z

(1|0,0,0)'

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0)
(1|1/2,1/2,0)'

(5) T
1/4,1/4,0

(1|1/2,1/2,0)'

(2) 2 0,1/4,z

(2|0,1/2,0)

(6) b' (0,1/2,0) x,y,0

(7) m' x,1/4,z

(8) b (0,1/2,0) 1/4, y,z

(2|0,1/2,0)'

(3) 2' (1/2,0,0) 0,y,0

(2|0,1/2,0)'

(4) 2' (1/2,0,0) x,1/4,0

(2|1/2,1/2,0)'

(4) 2 x,0,0

(2|0,0,0)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,0)' +</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>o</td>
</tr>
<tr>
<td>8</td>
<td>n</td>
</tr>
<tr>
<td>8</td>
<td>l</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p_{2a}2m'm'</th>
<th>Along [1,0,0] p_{2a}2m'm'</th>
<th>Along [0,1,0] p_{2a}2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a/2</td>
<td>b* = b/2</td>
<td>a* = -a/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
C_{pmm'a}
67.14.590

Ortorhombic

mmm1'
C_{p2'/m2/m'2'}/a

Origin at center (2'/m) at 2'/m2/a'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) \(1\)
\(1\mid 0,0,0\)

(2) \(2\)'
\(1/4,0,z\)
\((2_x\mid 1/2,0,0)\')

(3) \(2\)
\(1/4,y,0\)
\((2_y\mid 1/2,0,0)\)

(4) \(2\)'
\(x,0,0\)
\((2_x\mid 0,0,0)\')

(5) \(\bar{1}\)
\(0,0,0\)
\((\bar{1}\mid 0,0,0)\')

(6) a (1/2,0,0)
x,y,0
\((m_z\mid 1/2,0,0)\)

(7) a' (1/2,0,0)
x,0,z
\((m_y\mid 1/2,0,0)\')

(8) \(m\)
0,y,z
\((m_x\mid 0,0,0)\)

For (1/2,1/2,0)' + set

(1) \(t\)' (1/2,1/2,0)
\(1\mid 1/2,1/2,0)\')

(2) \(2\)
0,1/4,z
\((2_x\mid 0,1/2,0)\)

(3) \(2\)' (0,1/2,0)
0,y,0
\((2_y\mid 0,1/2,0)\')

(4) \(2\)' (1/2,0,0)
x,1/4,0
\((2_x\mid 1/2,1/2,0)\)

(5) \(\bar{1}\)
1/4,1/4,0
\((\bar{1}\mid 1/2,1/2,0)\)

(6) b' (0,1/2,0)
x,y,0
\((m_z\mid 0,1/2,0)\')

(7) m
x,1/4,z
\((m_y\mid 0,1/2,0)\)

(8) b' (0,1/2,0)
1/4,y,z
\((m_x\mid 1/2,1/2,0)\)'
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 o 1</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,0)' +</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 n.m.</td>
<td>x,1/4,z [0,v,0]</td>
</tr>
<tr>
<td>8 m m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 l .2'</td>
<td>1/4,0,z [u,v,0]</td>
</tr>
<tr>
<td>8 k .2.</td>
<td>1/4,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>8 j .2.</td>
<td>1/4,y,0 [0,v,0]</td>
</tr>
<tr>
<td>8 i 2'..</td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 h 2'..</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>4 g mm2</td>
<td>0,1/4,z [0,0,0]</td>
</tr>
<tr>
<td>4 f .2/m.</td>
<td>1/4,1/4,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 e .2/m.</td>
<td>1/4,1/4,0 [0,v,0]</td>
</tr>
<tr>
<td>4 d 2'm..</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c 2'm..</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 b 2'2'</td>
<td>1/4,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 a 2'2'</td>
<td>1/4,0,0 [0,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p_{2a}2mm
 \(a^* = a/2 \quad b^* = b/2 \)
- Along [1,0,0] p_{2mm}1'
 \(a^* = b/2 \quad b^* = c \)
- Origin at 0,0,z
- Along [0,1,0] p_{2mm}1'
 \(a^* = c \quad b^* = a/2 \)
- Origin at x,0,0
- Origin at 0,y,0
Origin at center (2'/m) at 2'/m2'/a'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

For \((0,0,0) +\) set

\[
\begin{align*}
(1) & \quad 1 \\
(1 & |0,0,0) \\
(2) & \quad 2 \quad 1/4, 0, z \\
(2 &_z |1/2, 0, 0) \\
(3) & \quad 2' \quad 1/4, y, 0 \\
(2 &'_z |1/2, 0, 0)' \\
(4) & \quad 2' \quad x, 0, 0 \\
(2 &'_x |0, 0, 0)' \\
(5) & \quad \overline{1} \quad 0, 0, 0 \\
(1 & |0,0,0) \\
(6) & \quad a' \quad (1/2, 0, 0) \quad x, y, 0 \\
(1 & |2, 0, 0)' \\
(7) & \quad a \quad (1/2, 0, 0) \quad x, 0, z \\
(1 & |2, 0, 0)' \\
(8) & \quad m \quad 0, y, z \\
(1 & |2, 0, 0)' \\
\end{align*}
\]

For \((1/2,1/2,0) +\) set

\[
\begin{align*}
(1) & \quad t' \quad (1/2, 1/2, 0) \\
(1 & |1/2, 1/2, 0)' \\
(2) & \quad 2' \quad 0, 1/4, z \\
(2 &_z |0, 1/2, 0)' \\
(3) & \quad 2 \quad (0, 1/2, 0) \quad 0, y, 0 \\
(2 & |0, 1/2, 0) \\
(4) & \quad 2 \quad (1/2, 0, 0) \quad x, 1/4, 0 \\
(2 & |1/2, 1/2, 0) \\
(5) & \quad \overline{1} \quad 1/4, 1/4, 0 \\
(1 & |1/2, 1/2, 0) \\
(6) & \quad b \quad (0, 1/2, 0) \quad x, y, 0 \\
(1 & |2, 0, 0)' \\
(7) & \quad m' \quad x, 1/4, z \\
(1 & |2, 0, 0)' \\
(8) & \quad b' \quad (0, 1/2, 0) \quad 1/4, y, z \\
(1 & |2, 0, 0)' \\
\end{align*}
\]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 o 1</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>8 n .m'</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>8 m .m..</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>8 l .2</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>8 k .2'</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>8 j .2'</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>8 i .2'</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>8 h .2'</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>4 g mm'2</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>4 f .2'/m'</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>4 e .2'/m'</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>4 d .2'/m'</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>4 c .2'/m'</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>4 b .2'2</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>4 a .2'2</td>
<td>(0,0,0) +</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2a.2mm

a* = -b/2 b* = a/2
Origin at 0,0,z

Along [1,0,0] p2mm1'

a* = b/2 b* = c
Origin at x,0,0

Along [0,1,0] p2a.2mm

a* = -a/2 b* = c
Origin at 0,y,0
Origin at center (2/m) at 2'/m2/a'a

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0)$ + set

1. $t (0,0,0)$
 1. $1 (0,0,0)$
 2. $2^{'} 1/4,0,z$
 $(2z_{1/2,0,0})$
 3. $2 1/4,y,0$
 $(2y_{1/2,0,0})$
 4. $2^{'} x,0,0$
 $(2x_{0,0,0})$

5. $\bar{1}^{'} 0,0,0$
 $(\bar{1} 0,0,0)_{1/2}$

6. $a (1/2,0,0)_{1/2}$
 $(m_{x} 1/2,0,0)$

7. $a^{'} (1/2,0,0)_{1/2}$
 $(m_{y} 1/2,0,0)$

8. $m_{0,y,z} (m_{z} 0,0,0)$

For $(1/2,1/2,0)$ + set

1. $t^{'} (1/2,1/2,0)_{1/2}$
 1. $t^{'} (1/2,1/2,0)_{1/2}$
 2. $2 0,1/4,z$
 $(2z_{0,1/2,0})$
 3. $2^{'} (0,1/2,0)$
 $(2y_{0,1/2,0})$
 4. $2 (1/2,0,0)_{1/2}$
 $(2x_{1/2,1/2,0})$

5. $\bar{1} 1/4,1/4,0$
 $(\bar{1} 1/2,1/2,0)$

6. $b^{'} (0,1/2,0)_{1/2}$
 $(m_{z} 0,1/2,0)$

7. $m^{'} x,1/4,z$
 $(m_{z} 0,1/2,0)$

8. $b^{'} (0,1/2,0)_{1/2}$
 $(m_{z} 1/2,1/2,0)$

For $(0,0,1)$ + set

1. $t^{'} (0,0,1)_{1/2}$
 1. $t^{'} (0,0,1)_{1/2}$
 2. $2 (0,0,1)_{1/2}$
 $(2z_{1/2,0,1})$
 3. $2^{'} (0,1/2,0)_{1/2}$
 $(2y_{1/2,0,1})$
 4. $2 x,0,1/2$
 $(2x_{0,0,1})$

5. $\bar{1} 0,0,1/2$
 $(\bar{1} 0,0,1)$

6. $a^{'} (1/2,0,0)_{1/2}$
 $(m_{x} 1/2,0,1)$

7. $n (1/2,0,1)_{1/2}$
 $(m_{x} 1/2,0,1)$

8. $c^{'} (0,0,1)_{1/2}$
 $(m_{z} 0,0,1)$

For $(1/2,1/2,1)$ + set

1. $t (1/2,1/2,1)_{1/2}$
 1. $t (1/2,1/2,1)_{1/2}$
 2. $2^{'} (0,0,1)_{1/2}$
 $(2z_{0,1/2,1})$
 3. $2 (0,1/2,0)_{1/2}$
 $(2y_{0,1/2,1})$
 4. $2^{'} (1/2,0,0)_{1/2}$
 $(2x_{1/2,1/2,1})$

5. $\bar{1}^{'} 1/4,1/4,1/2$
 $(\bar{1} 1/2,1/2,1)_{1/2}$

6. $b^{'} (0,1/2,0)_{1/2}$
 $(m_{z} 0,1/2,1)$

7. $c^{'} (0,0,1)_{1/2}$
 $(m_{x} 0,1/2,1)$

8. $n (0,1/2,1)_{1/2}$
 $(m_{z} 1/2,1/2,1)$
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0)' +</td>
</tr>
<tr>
<td>(0,0,1)'</td>
<td>(1/2,1/2,1) +</td>
</tr>
</tbody>
</table>

32 o 1 (1) x,y,z [u,v,w] (2) x+1/2, y,z [u,v,w] (3) x+1/2, y,z [u,v,w] (4) x, y,z [u,v,w] (5) x, y,z [u,v,w] (6) x+1/2, y,z [u,v,w] (7) x+1/2, y,z [u,v,w] (8) x, y,z [u,v,w]

16 n m.. x,1/4,z [0,v,0] x,1/4,z [0,v,0] x,1/4,z [0,v,0] x,3/4,z [0,v,0] x,3/4,z [0,v,0] x,3/4,z [0,v,0] x,3/4,z [0,v,0]

16 m m.. 0,y,z [u,0,0] 0, y+1/2, z [u,0,0] 0, y+1/2, z [u,0,0] 0, y-z [u,0,0]

16 l 2' 1/4,0,z [u,v,0] 3/4,1/2,z [u,v,0] 3/4,1/2,z [u,v,0] 1/4,1/2,z [u,v,0] 1/4,1/2,z [u,v,0] 1/4,1/2,z [u,v,0] 1/4,1/2,z [u,v,0]

16 k 2' 1/4,y,1/4 [u,0,w] 3/4,y+1/2,1/2 [u,0,w] 3/4,y+1/2,1/2 [u,0,w] 1/4,y+1/2,1/2 [u,0,w] 1/4,y+1/2,1/2 [u,0,w] 1/4,y+1/2,1/2 [u,0,w] 1/4,y+1/2,1/2 [u,0,w]

16 j 2' 1/4,y,0 [v,0,0] 3/4,y+1/2,0 [v,0,0] 3/4,y+1/2,0 [v,0,0] 1/4,y+1/2,0 [v,0,0] 1/4,y+1/2,0 [v,0,0] 1/4,y+1/2,0 [v,0,0] 1/4,y+1/2,0 [v,0,0]

16 i 2' x,0,1/2 [u,0,0] x,1/2,1/2 [u,0,0] x,1/2,1/2 [u,0,0] x,1/2,1/2 [u,0,0]

16 h 2' x,0,0 [v,w] x,1/2,0 [v,w] x,1/2,0 [v,w] x,1/2,0 [v,w] x,1/2,0 [v,w] x,1/2,0 [v,w] x,1/2,0 [v,w]

8 g mm2 0,1/4,z [0,0,0] 0,3/4,z [0,0,0] 0,3/4,z [0,0,0]

8 f 2'm. 1/4,1/4,1/2 [0,0,0] 3/4,1,4,1/2 [0,0,0] 3/4,1,4,1/2 [0,0,0]

8 e 2'm. 1/4,1/4,0 [0,v,0] 3/4,1,4,0 [0,v,0] 3/4,1,4,0 [0,v,0]

8 d 2'm.. 0,0,1/2 [u,0,0] 0,1/2,1/2 [u,0,0] 0,1/2,1/2 [u,0,0] 0,1/2,1/2 [u,0,0]

8 c 2'm.. 0,0,0 [0,0,0] 0,1/2,0 [0,0,0] 0,1/2,0 [0,0,0] 0,1/2,0 [0,0,0]

8 b 22'2' 1/4,0,1/2 [u,0,0] 3/4,0,1/2 [u,0,0] 3/4,0,1/2 [u,0,0] 3/4,0,1/2 [u,0,0]

8 a 22'2' 1/4,0,0 [v,0,0] 3/4,0,0 [v,0,0] 3/4,0,0 [v,0,0] 3/4,0,0 [v,0,0]

Symmetry of Special Projections

Along [0,0,1] p2mm1' Along [1,0,0] p2mm1' Along [0,1,0] p2mm1'

a* = a/2 b* = b/2

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
CI m'ma'

Orthorhombic

67.17.593

mmm1'

C_1, 2_m'2/m2'/a'

Origin

at center (2'/m') at 2'/m'2'/aa'

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. (1) 1
 (1 0,0,0)

2. (2)' 1/4,0,z
 (2_z 1/2,0,0)'

3. (3) 2' 1/4,y,0
 (2_y 1/2,0,0)

4. (4) 2' x,0,0
 (2_x 0,0,0)'

5. (5) 1/2,0,0,0
 (1/2 0,0,0,0)'

6. (6) a'(1/2,0,0) x,y,0
 (m_z 1/2,0,0)'

7. (7) a(1/2,0,0) x,0,z
 (m_y 1/2,0,0)'

8. (8) m' 0,y,z
 (m_x 0,0,0)'

For (1/2,1/2,0)' + set

1. (1) 1/2,1/2,1,0
 (1/2 1/2,1,0,0)'

2. (2) 2 0,1/4,z
 (2_z 0,1/2,0,0)

3. (3)' 1/2,0,1,0
 (2_y 1/2,0,1,0)'

4. (4) 1/2,0,0,0
 (2_x 1/2,1,2,0)'

5. (5) 1/2,1/2,0,0
 (1/2 1/2,0,0,0)'

6. (6) b(0,1/2,0) x,y,0
 (m_z 0,1/2,0,0)'

7. (7) m' x,1/4,z
 (m_y 0,1/2,0,0)'

8. (8) b(0,1/2,0) 1/4,y,z
 (m_z 1/2,1,2,0)'

For (0,0,1)'+ set

1. (1) 0,0,1,0
 (0,0,1,0)'

2. (2) 1/4,0,z
 (1/2 1/2,0,1)

3. (3) 1/4,y,1/2
 (2_y 1/2,0,1,1)'

4. (4) x,0,1/2
 (2_x 0,0,1,1)'

5. (5) 0,0,1/2
 (0,0,1/2)'

6. (6) a(1/2,0,0) x,y,1/2
 (m_z 1/2,0,1)'

7. (7) n'(1/2,0,1) x,0,z
 (m_y 1/2,0,1,1)'

8. (8) c(0,0,1) 0,y,z
 (m_x 0,0,1,1)'

For (1/2,1/2,1) + set

1. (1) 1/2,1/2,1,0
 (1/2 1/2,1,0,0)'

2. (2) 0,1/4,z
 (2_z 0,1/2,1)

3. (3) 0,y,1/2
 (2_y 0,1/2,1,1)'

4. (4) x,1/4,1/2
 (2_x 1/2,1,2,1)'

5. (5) 1/4,0,1/2
 (1/2 1/2,0,1)'

6. (6) b'(0,1/2,0) x,y,1/2
 (m_z 0,1/2,1,1)'

7. (7) c(0,0,1) x,1/4,z
 (m_y 1/2,0,1,2)'

8. (8) n'(0,1/2,1) 1/4,y,z
 (m_x 1/2,1/2,1)'

67.17.593 - 1 - 1176
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td></td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>(0,0,1) ' +</td>
<td>(1/2,1/2,1) +</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 o 1</td>
<td>(1) x,y,z [u,v,w] (2) x+1/2, y,z [u,v,w] (3) x+1/2,y,z [u,v,w] (4) x,y,z [u,v,w] (5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 m .m':</td>
<td>x,1/4,z [u,v,w] x,1/4,z [u,v,w] x,1/4,z [u,v,w]</td>
</tr>
<tr>
<td>16 m .m':</td>
<td>x,1/4,z [u,v,w] x,1/4,z [u,v,w] x,1/4,z [u,v,w]</td>
</tr>
<tr>
<td>16 l .2'</td>
<td>1/4,0,z [u,v,0] 3/4,1,2, z [u,v,0] 3/4,0, z [u,v,0] 1/4,1,2, z [u,v,0]</td>
</tr>
<tr>
<td>16 k .2'</td>
<td>1/4,y,1/4 [u,v,0] 3/4,y+1/2,1,2 [u,v,0] 3/4,y,1/2 [u,v,0] 1/4,y+1/2,1,2 [u,v,0]</td>
</tr>
<tr>
<td>16 j .2'</td>
<td>1/4,y,0 [0,v,0] 3/4,y+1/2,0 [0,v,0] 3/4,y,0 [0,v,0] 1/4,y+1/2,0 [0,v,0]</td>
</tr>
<tr>
<td>16 i .2'</td>
<td>x,0,1/2 [u,v,0] x,1/2,1,2 [u,v,0] x,0,1/2 [u,v,0] x,1/2,1,2 [u,v,0]</td>
</tr>
<tr>
<td>16 h .2'</td>
<td>x,0,0 [0,v,0] x,1,2,0 [0,v,0] x,0,0 [0,v,0] x,1,2,0 [0,v,0]</td>
</tr>
<tr>
<td>8 g m' .m'</td>
<td>0,1/4,z [0,0,0] 0,3/4, z [0,0,0]</td>
</tr>
<tr>
<td>8 f .2'm':</td>
<td>1/4,1/4,1,2 [u,v,0] 3/4,1/4,1,2 [u,v,0]</td>
</tr>
<tr>
<td>8 e .2'm':</td>
<td>1/4,1/4,0 [0,0,0] 3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>8 d .2'm':</td>
<td>0,0,1/2 [0,0,0] 1/2,1,2 [0,0,0]</td>
</tr>
<tr>
<td>8 c .2'm':</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>8 b 22'</td>
<td>1/4,0,1,2 [u,v,0] 3/4,0,1,2 [u,v,0]</td>
</tr>
<tr>
<td>8 a 22'</td>
<td>1/4,0,0,0 [0,0,0] 3/4,0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2mm1'
 - $a^* = a/2$ $b^* = b/2$
 - Origin at 0,0,z
- Along [1,0,0] p22mm1'
 - $a^* = b/2$ $b^* = c$
 - Origin at x,0,1/2
- Along [0,1,0] p22mm
 - $a^* = c$ $b^* = a/2$
 - Origin at 1/4,y,0

67.17.593 - 2 - 1177
Ccca

Orthorhombic

68.1.594

mmm

C2/c2/c2/a

Origin at 222 at 2/n2/n2 at 0.1/4.1/4 from \(\bar{T} \)

Asymmetric unit

\(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \)

Symmetry Operations

For \((0,0,0) + \text{set}\)

\begin{align*}
(1) & \bar{T} \quad 0,1/4,1/4 \\
(5) & 1/2,0,0 \quad x,y,1/4 \\
(6) & b \quad (0,1/2,0) \quad x,y,1/4 \\
(9) & c \quad (0,0,1/2) \quad x,1/4,z \\
(10) & n \quad (0,1/2,1/2) \quad 0,y,z
\end{align*}

For \((1/2,1/2,0) + \text{set}\)

\begin{align*}
(1) & t \quad (1/2,1/2,0) \\
(2) & 1/4,1/4,z \\
(6) & a \quad (1/2,0,0) \quad x,y,1/4 \\
(7) & n \quad (1/2,0,1/2) \quad x,0,z \\
(8) & c \quad (0,0,1/2) \quad 1/4,y,z
\end{align*}
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>16 i 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w] (5) x,y+1/2,z+1/2 [u,v,w] (6) x,y+1/2,z+1/2 [u,v,w] (7) x,y+1/2,z+1/2 [u,v,w] (8) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8 h .2</td>
<td>1/4,1/4,z [0,0,w] 3/4,1/4,z [0,0,w] 3/4,1/4,z+1/2 [0,0,w] 1/4,1/4,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 g .2</td>
<td>0,0,z [0,0,w] 0,0,z [0,0,w] 0,1/2,z+1/2 [0,0,w] 0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 f .2</td>
<td>0,y,0 [0,v,0] 1/2,y+1/2,0 [0,v,0] 0,y+1/2,1/2 [0,v,0] 1/2,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>8 e .2</td>
<td>x,0,0 [u,0,0] x+1/2,1/2,0 [u,0,0] x+1/2,1/2,0 [u,0,0] x+1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 d 1/2</td>
<td>0,1/4,1/4 [u,v,w] 1/2,1/4,1/4 [u,v,w] 1/2,1/4,3/4 [u,v,w] 1/2,1/4,3/4 [u,v,w]</td>
</tr>
<tr>
<td>8 c 1/2</td>
<td>1/4,0,1/4 [u,v,w] 1/4,0,1/4 [u,v,w] 3/4,0,3/4 [u,v,w] 3/4,1/2,3/4 [u,v,w]</td>
</tr>
<tr>
<td>4 b 222</td>
<td>0,0,1/2 [0,0,0] 0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 222</td>
<td>0,0,0 [0,0,0] 0,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p_{c2}2mm</th>
<th>Along [1,0,0]</th>
<th>p_{2a2}2m'm'</th>
<th>Along [0,1,0]</th>
<th>p_{2a2}2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a/2)</td>
<td>(b^* = b/2)</td>
<td>(a^* = -c/2)</td>
<td>(b^* = b/2)</td>
<td>(a^* = c/2)</td>
<td>(b^* = a/2)</td>
</tr>
<tr>
<td>Origin at 1/4,1/4,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ccca1' Orthorhombic
68.2.595

mmm1' C2/c2/c2/a1'

Origin at 2221' at 2/n2/n2' at 0,1/4,1/4 from 1 1'

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2 0,0,z
(2z | 0,0,0)

(3) 2 0,y,0
(2z' | 0,0,0)

(4) 2 x,0,0
(2z | 0,0,0)

(5) 1' 0,1/4,1/4
(1' | 0,1/2,1/2)

(6) b (0,1/2,0) x,y,1/4
(mz | 0,1/2,1/2)

(7) c (0,0,1/2) x,1/4,z
(my | 0,1/2,1/2)

(8) n (0,1/2,1/2) 0,y,z
(mz | 0,1/2,1/2)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(1 | 1/2,1/2,0)

(2) 2 1/4,1/4,z
(2z' | 1/2,1/2,0)

(3) 2 (0,1/2,0) 1/4,y,0
(2z' | 1/2,1/2,0)

(4) 2 (1/2,0,0) x,1/4,0
(2z | 1/2,1/2,0)

(5) 1' 1/4,0,1/4
(1' | 1/2,0,1/2)

(6) a (1/2,0,0) x,y,1/4
(mz' | 1/2,0,1/2)

(7) n (1/2,0,1/2) x,0,z
(my' | 1/2,0,1/2)

(8) c (0,1/2,1/2) 1/4,y,z
(mz' | 1/2,0,1/2)

For (0,0,0)' + set

(1) t' (1/2,1/2,0)
(1 | 1/2,1/2,0)

(2) 2' 0,0,z
(2z' | 0,0,0)

(3) 2' 0,y,0
(2z' | 0,0,0)

(4) 2' x,0,0
(2z' | 0,0,0)

(5) 1' 0,1/4,1/4
(1' | 0,1/2,1/2)

(6) b' (0,1/2,0) x,y,1/4
(mz' | 0,1/2,1/2)

(7) c' (0,0,1/2) x,1/4,z
(my' | 0,1/2,1/2)

(8) n' (0,1/2,1/2) 0,y,z
(mz' | 0,1/2,1/2)

For (1/2,1/2,0)' + set

(1) t' (1/2,1/2,0)
(1 | 1/2,1/2,0)

(2) 2' 1/4,1/4,z
(2z' | 1/2,1/2,0)

(3) 2' (0,1/2,0) 1/4,y,0
(2z | 1/2,1/2,0)'

(4) 2' (1/2,0,0) x,1/4,0
(2z | 1/2,1/2,0)'

(5) 1' 1/4,0,1/4
(1' | 1/2,0,1/2)

(6) a' (1/2,0,0) x,y,1/4
(mz | 1/2,0,1/2)

(7) n' (1/2,0,1/2) x,0,z
(my | 1/2,0,1/2)

(8) c' (0,0,1/2) 1/4,y,z
(mz | 1/2,0,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>(0,0,0)' +</td>
<td>(1/2,1/2,0)' +</td>
</tr>
</tbody>
</table>

16 i 11' (1) x,y,z [0,0,0] (2) \(\bar{x},\bar{y},z\) [0,0,0] (3) \(x,\bar{y},z\) [0,0,0] (4) x,y,z [0,0,0] (5) \(\bar{x},\bar{y}+1/2,\bar{z}+1/2\) [0,0,0] (6) x,y+1/2,\(\bar{z}+1/2\) [0,0,0] (7) x,y+1/2,\(z+1/2\) [0,0,0] (8) \(\bar{x},y+1/2,\bar{z}+1/2\) [0,0,0]

8 h ..21' 1/4,1/4,z [0,0,0] 3/4,1/4,\(\bar{z}\) [0,0,0] 3/4,1/4,\(\bar{z}+1/2\) [0,0,0] 1/4,1/4,\(\bar{z}+1/2\) [0,0,0]

8 g ..21' 0,0,z [0,0,0] 0,0,\(\bar{z}\) [0,0,0] 0,1/2,\(\bar{z}+1/2\) [0,0,0] 0,1/2,\(z+1/2\) [0,0,0]

8 f .2.1' 0,y,0 [0,0,0] 1/2,\(\bar{y}+1/2\),0 [0,0,0] 0,\(\bar{y}+1/2,1/2\) [0,0,0] 1/2,\(y+1/2,1/2\) [0,0,0]

8 e 2..1' x,0,0 [0,0,0] \(\bar{x}+1/2,1/2,0\) [0,0,0] \(\bar{x},1/2,1/2\) [0,0,0] x+1/2,0,1/2 [0,0,0]

8 d 1\(\bar{1}\)' 0,1/4,1/4 [0,0,0] 1/2,1/4,1/4 [0,0,0] 0,1/4,3/4 [0,0,0] 1/2,1/4,3/4 [0,0,0]

8 c 1\(\bar{1}\)' 1/4,0,1/4 [0,0,0] 1/4,1/2,1/4 [0,0,0] 3/4,0,3/4 [0,0,0] 3/4,1/2,3/4 [0,0,0]

4 b 2221' 0,0,1/2 [0,0,0] 0,1/2,0 [0,0,0]

4 a 2221' 0,0,0 [0,0,0] 0,1/2,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p2mm1' Along [1,0,0] p2mm1' Along [0,1,0] p2mm1'

a* = a/2 b* = b/2

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Origin at 22'2' at 2/n'2'/n2' at 0,1/4,1/4 from \bar{T}

Asymmetric unit $0 < x < 1/4; \quad 0 < y < 1/2; \quad 0 < z < 1/2$

Symmetry Operations

For (0,0,0) + set

1. $t (1 | 0,0,0)$
2. $2' 0,0,z (2_z | 0,0,0')$
3. $2' 0,y,0 (2_y | 0,0,0')$
4. $2 x,0,0 (2_x | 0,0,0)$
5. $\bar{T} 0,1/4,1/4 (\bar{T} | 0,1/2,1/2')$
6. $b (0,1/2,0) x,y,1/4 (m_x | 0,1/2,1/2')$
7. $c (0,0,1/2) x,1/4,z (m_y | 0,1/2,1/2')$
8. $n (0,1/2,1/2) 0,y,z (m_z | 0,1/2,1/2')$

For (1/2,1/2,0) + set

1. $t (1/2,1/2,0) (1/2,1/2,0')$
2. $2' 1/4,1/4,z (2_z | 1/2,1/2,0')$
3. $2' (0,1/2,0) 1/4,y,0 (2_y | 1/2,1/2,0')$
4. $2 (1/2,0,0) x,1/4,0 (2_x | 1/2,1/2,0)$
5. $\bar{T} 1/4,0,1/4 (\bar{T} | 1/2,0,1/2')$
6. $a (1/2,0,0) x,y,1/4 (m_z | 1/2,0,1/2)$
7. $n (1/2,0,1/2) x,0,z (m_y | 1/2,0,1/2)$
8. $c' (0,0,1/2) 1/4,y,z (m_z | 1/2,0,1/2')$
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>(0,0,0) +</th>
<th>(1/2,1/2,0) +</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 h</td>
<td>.2' 1/4,1/4,z [u,v,0]</td>
<td>3/4,1/4,z [u,v,0]</td>
<td>3/4,1/4,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 g</td>
<td>.2' 0,0,z [u,v,0]</td>
<td>0,0,z [u,v,0]</td>
<td>0,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 f</td>
<td>.2' 0,y,0 [u,0,w]</td>
<td>1/2,y+1/2,0 [u,0,w]</td>
<td>0,y+1/2,1/2 [u,0,w]</td>
</tr>
<tr>
<td>8 e</td>
<td>2.. x,0,0 [u,0,0]</td>
<td>x+1/2,1/2,0 [u,0,0]</td>
<td>x,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 d</td>
<td>1' 0,1/4,1/4 [0,0,0]</td>
<td>1/2,1/4,1/4 [0,0,0]</td>
<td>0,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>8 c</td>
<td>1' 1/4,0,1/4 [0,0,0]</td>
<td>1/4,1/2,1/4 [0,0,0]</td>
<td>3/4,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>22'2' 0,0,1/2 [u,0,0]</td>
<td>0,1/2,0 [u,0,0]</td>
<td>0,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>22'2' 0,0,0 [u,0,0]</td>
<td>0,1/2,1/2 [u,0,0]</td>
<td>0,1/2,1/2 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p22mm
Along [1,0,0] p222mm
Along [0,1,0] p2222mm

\begin{align*}
\mathbf{a}^* &= \mathbf{a}/2 & \mathbf{b}^* &= \mathbf{b}/2 & \mathbf{a}^* &= \mathbf{c}/2 & \mathbf{b}^* &= \mathbf{a}/2 \\
\text{Origin at } 0,1/4,z & \quad \text{Origin at } x,0,0 & \quad \text{Origin at } 0,y,1/4
\end{align*}
Origin at 2′2′2 at 2′2′2 at 0,1/4,1/4 from \(\bar{T} \).

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \)

Symmetry Operations

For \((0,0,0)\) + set

1. \(|\bar{T} \quad 0,1/4,1/4 \)
2. \(|\bar{T} \quad 0,1/2,1/2 \)
3. \(|\bar{T} \quad 1/4,0,1/4 \)
4. \(|\bar{T} \quad 1/2,0,1/2 \)

Symmetry Operations

For \((1/2,1/2,0)\) + set

1. \(|\bar{T} \quad 0,1/2,0 \)
2. \(|\bar{T} \quad 1/4,1/4,2 \)
3. \(|\bar{T} \quad 1/2,1/2,0 \)
4. \(|\bar{T} \quad 1/2,0,1/2 \)

Symmetry Operations

For \((1/2,1/2,0)\) + set

1. \(|\bar{T} \quad 0,1/2,0 \)
2. \(|\bar{T} \quad 1/4,1/4,2 \)
3. \(|\bar{T} \quad 1/2,1/2,0 \)
4. \(|\bar{T} \quad 1/2,0,1/2 \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>16 i 1</td>
<td>x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w] (5) x,y+1/2,z+1/2 [u,v,w] (6) x,y+1/2,z+1/2 [u,v,w] (7) x,y+1/2,z+1/2 [u,v,w] (8) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8 h .2</td>
<td>1/4,1/4,z [0,0,w] 3/4,1/4,z [0,0,w] 3/4,1/4,z+1/2 [0,0,w] 1/4,1/4,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 g .2</td>
<td>0,0,z [0,0,w] 0,0,z [0,0,w] 0,1/2,z+1/2 [0,0,w] 0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 f .2'</td>
<td>0,y,0 [u,0,w] 1/2,y+1/2,0 [u,0,w] 0,y+1/2,1/2 [u,0,w] 1/2,y+1/2 [u,0,w]</td>
</tr>
<tr>
<td>8 e 2'..</td>
<td>x,0,0 [v,w] x+1/2,1/2,0 [v,w] x,1/2,1/2 [v,w] x+1/2,0,1/2 [v,w]</td>
</tr>
<tr>
<td>8 d 2'</td>
<td>0,1/4,1/4 [0,0,0] 1/2,1/4,1/4 [0,0,0] 0,1/4,3/4 [0,0,0] 1/2,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>8 c 2'</td>
<td>1/4,0,1/4 [0,0,0] 1/4,1/2,1/4 [0,0,0] 3/4,0,3/4 [0,0,0] 3/4,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b 2'2'</td>
<td>0,0,1/2 [0,0,w] 0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>4 a 2'2'</td>
<td>0,0,0 [0,0,w] 0,1/2,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2mm
 - \(a^* = a/2 \) \(b^* = b/2 \)
- Along [1,0,0] \(p_{2\alpha}2m'm' \)
 - \(a^* = -c/2 \) \(b^* = b/2 \)
- Along [0,1,0] \(p_{2\alpha}2m'm' \)
 - \(a^* = c/2 \) \(b^* = a/2 \)
- Origin at 0,0,z
 - Origin at x,0,1/4
- Origin at 0,1/4,0
Origin
at $2'2'2'$ at $2'n'2'\!/n'2'\!$ at $0,1/4,1/4$ from $\bar{1}$

Asymmetric unit
$0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0)$ + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Matrix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
<td>$(1</td>
<td>0,0,0)$</td>
</tr>
<tr>
<td>(2) 2</td>
<td>$(2_1</td>
<td>0,0,0)$</td>
</tr>
<tr>
<td>(3) $2'$</td>
<td>$(2'_1</td>
<td>0,0,0)'$</td>
</tr>
<tr>
<td>(4) $2'$</td>
<td>$(2_{1.0,0})$</td>
<td>$0,0,0$</td>
</tr>
<tr>
<td>(5) $\bar{1}$</td>
<td>$(\bar{1}</td>
<td>0,1/4,1/4)$</td>
</tr>
<tr>
<td>(6) b</td>
<td>$(0,1/2,0)$</td>
<td>$x,y,1/4$</td>
</tr>
<tr>
<td>(7) c</td>
<td>$(0,0,1/2)$</td>
<td>$x,1/4,z$</td>
</tr>
<tr>
<td>(8) n</td>
<td>$(0,1/2,1/2)$</td>
<td>$0,y,z$</td>
</tr>
</tbody>
</table>

For $(1/2,1/2,0)$ + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Matrix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t</td>
<td>$(1/2,1/2,0)$</td>
<td>$1/4,1/4,z$</td>
</tr>
<tr>
<td>(2) 2</td>
<td>$(2_1</td>
<td>1/2,1/2,0)$</td>
</tr>
<tr>
<td>(3) $2'$</td>
<td>$(2'_1</td>
<td>1/2,1/2,0)'$</td>
</tr>
<tr>
<td>(4) $2'$</td>
<td>$(2_{1.0,0})$</td>
<td>$1/2,0,0$</td>
</tr>
<tr>
<td>(5) $\bar{1}$</td>
<td>$(\bar{1}</td>
<td>1/4,0,1/4)$</td>
</tr>
<tr>
<td>(6) a</td>
<td>$(1/2,0,0)$</td>
<td>$x,y,1/4$</td>
</tr>
<tr>
<td>(7) n'</td>
<td>$(1/2,0,1/2)$</td>
<td>$x,0,z$</td>
</tr>
<tr>
<td>(8) c'</td>
<td>$(0,0,1/2)$</td>
<td>$1/4,0,1/2$</td>
</tr>
</tbody>
</table>

68.5.598 - 1 - 1186
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>(0,0,0)</td>
<td>(1/2,0,0)</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(1) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(3) x,y,z [u,v,w]</td>
<td>(3) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(4) x,y,z [u,v,w]</td>
<td>(4) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y+1/2,z+1/2 [u,v,w]</td>
<td>(5) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(6) x,y+1/2,z+1/2 [u,v,w]</td>
<td>(6) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(8) x,y+1/2,z+1/2 [u,v,w]</td>
<td>(8) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p\text{_}2\text{_}2mm</td>
</tr>
<tr>
<td>a^* = a/2</td>
<td>Origin at 0,0,z</td>
</tr>
<tr>
<td>b^* = b/2</td>
<td></td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>p2\text{_}m'</td>
</tr>
<tr>
<td>a^* = -c/2</td>
<td>Origin at x,0,0</td>
</tr>
<tr>
<td>b^* = b/2</td>
<td></td>
</tr>
<tr>
<td>Along [0,1,0]</td>
<td>p2\text{_}m'</td>
</tr>
<tr>
<td>a^* = c/2</td>
<td>Origin at 0,y,0</td>
</tr>
<tr>
<td>b^* = a/2</td>
<td></td>
</tr>
</tbody>
</table>
Origin at 22'2' at 2/n2'/n'2' at 0,1/4,1/4 from \(\bar{1} \)

Asymmetric unit \(0 < x < 1/4; \quad 0 < y < 1/2; \quad 0 < z < 1/2 \)

Symmetry Operations

For \((0,0,0) + \) set

1. \(\bar{1} \)
 \((1|0,0,0) \)
2. \(2' \)
 \(0,0,z \)
 \((2_z|0,0,0) \)
3. \(2' \)
 \(0,y,0 \)
 \((2_y|0,0,0) \)
4. \(2 \)
 \(x,0,0 \)
 \((2_x|0,0,0) \)
5. \(\bar{1} \)
 \(0,1/4,1/4 \)
 \((1|0,1/2,1/2) \)
6. \(b \)
 \((0,1/2,0) \)
 \(x,y,1/4 \)
 \((m_z|0,1/2,1/2)' \)
7. \(c \)
 \((0,0,1/2) \)
 \(x,1/4,z \)
 \((m_y|0,1/2,1/2)' \)
8. \(n \)
 \((0,1/2,1/2) \)
 \(0,y,z \)
 \((m_x|0,1/2,1/2) \)

For \((1/2,1/2,0) + \) set

1. \(t \)
 \((1/2,1/2,0) \)
2. \(2' \)
 \(1/4,1/4,z \)
 \((2_z|1/2,1/2,0) \)
3. \(2' \)
 \((0,1/2,0) \)
 \(1/4,y,0 \)
 \((2_y|1/2,1/2,0) \)
4. \(2 \)
 \((1/2,0,0) \)
 \(x,1/4,0 \)
 \((2_x|1/2,1/2,0) \)
5. \(\bar{1} \)
 \(1/4,0,1/4 \)
 \((1|1/2,0,1/2) \)
6. \(a' \)
 \((1/2,0,0) \)
 \(x,y,1/4 \)
 \((m_z|1/2,0,1/2)' \)
7. \(n' \)
 \((1/2,0,1/2) \)
 \(x,0,z \)
 \((m_y|1/2,0,1/2)' \)
8. \(c \)
 \((0,0,1/2) \)
 \(1/4,y,z \)
 \((m_x|1/2,0,1/2) \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>16 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

8 h ..2' 1/4,1/4,z [u,v,0] 3/4,1/4,z [u,v,0] 3/4,1/4,z+1/2 [u,v,0] 1/4,1/4,z+1/2 [u,v,0]
8 g ..2' 0,0,z [u,v,0] 0,0,z [u,v,0] 0,1/2,z+1/2 [u,v,0] 0,1/2,z+1/2 [u,v,0]
8 f ..2' 0,y,0 [u,0,w] 1/2,y+1/2,0 [u,0,w] 0,y+1/2,1/2 [u,0,w] 1/2,y,1/2 [u,0,w]
8 e .. 0,0,0 [u,0,0] x+1/2,1/2,0 [u,0,0] x+1/2,1/2,0 [u,0,0] x+1/2,0,1/2 [u,0,0]
8 d .. 0,1/4,1/4 [u,v,w] 1/2,1/4,1/4 [u,v,w] 0,1/4,3/4 [u,v,w] 1/2,1/4,3/4 [u,v,w]
8 c .. 1/4,0,1/4 [u,v,w] 1/4,1/2,1/4 [u,v,w] 1/4,0,3/4 [u,v,w] 3/4,1/2,3/4 [u,v,w]
4 b 22'2' 0,0,1/2 [u,0,0] 0,1/2,0 [u,0,0]
4 a 22'2' 0,0,0 [u,0,0] 0,1/2,1/2 [u,0,0]

Symmetry of Special Projections

Along [0,0,1] p2'mm' Along [1,0,0] p_2m2mm Along [0,1,0] p2'mm'
a* = a/2 b* = b/2 a* = -c/2 b* = b/2 a* = -a/2 b* = c/2
Origin at 1/4,1/4,z Origin at x,0,0 Origin at 0,y,0
Origin at 222 at 2/n'2/n'2 at 0,1/4,1/4 from \(\bar{1} \)

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \)

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \quad (1 | 0,0,0) \\
(2) & \quad 2 \quad 0,0,z \quad (2_z | 0,0,0) \\
(3) & \quad 2 \quad y,0 \quad (2_y | 0,0,0) \\
(4) & \quad 2 \quad x,0,0 \quad (2_x | 0,0,0) \\
(5) & \quad \bar{1} \quad 0,1/4,1/4 \quad (\bar{1} | 0,1/2,1/2)' \\
(6) & \quad b \quad (0,1/2,0) \quad x,y,1/4 \quad (m_y | 0,1/2,1/2)' \\
(7) & \quad c \quad (0,0,1/2) \quad x,1/4,z \quad (m_y | 0,1/2,1/2)' \\
(8) & \quad n \quad (0,1/2,1/2) \quad 0,y,z \quad (m_y | 0,1/2,1/2)'
\end{align*}
\]

For \((1/2,1/2,0) + \) set

\[
\begin{align*}
(1) & \quad t \quad (1/2,1/2,2,0) \quad (1 | 1/2,1/2,2,0) \\
(2) & \quad 2 \quad 1/4,1/4,z \quad (2_z | 1/2,1/2,2,0) \\
(3) & \quad 2 \quad (0,1/2,0) \quad 1/4,y,0 \quad (2_y | 1/2,1/2,2,0) \\
(4) & \quad 2 \quad (1/2,0,0) \quad x,1/4,0 \quad (2_x | 1/2,1/2,2,0) \\
(5) & \quad \bar{1} \quad 1/4,0,1/4 \quad (\bar{1} | 1/2,0,1/2)' \\
(6) & \quad a' \quad (1/2,0,0) \quad x,y,1/4 \quad (m_y | 1/2,0,1/2)' \\
(7) & \quad n' \quad (1/2,0,1/2) \quad x,0,z \quad (m_y | 1/2,0,1/2)' \\
(8) & \quad c' \quad (0,0,1/2) \quad 1/4,y,z \quad (m_y | 1/2,0,1/2)'
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>16 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8 h .2</td>
<td>1/4,1/4,z [0,0,w]</td>
</tr>
<tr>
<td>8 g .2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 f .2</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td>8 e .2</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>8 d .1</td>
<td>0,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>8 c .1</td>
<td>1/4,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b 222</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a 222</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2m'1m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a/2</td>
<td>b* = b/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2m'1m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b/2</td>
<td>b* = a/2</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>p2m'1m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c/2</td>
<td>b* = a/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
</tr>
</tbody>
</table>
Origin at 222 at 2/n2/n2 at 0,1/4,1/4 from \(\overline{1} \)

Asymmetric unit

\[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2} \]

Symmetry Operations

For \((0,0,0) + \) set

1. \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & z \end{pmatrix} \)
2. \(\begin{pmatrix} 2 & 0 & 0 \\ z & 0 & 0 \end{pmatrix} \)
3. \(\begin{pmatrix} 2 & 0 & y \\ 0 & 0 & 0 \end{pmatrix} \)
4. \(\begin{pmatrix} 2 & x & 0 \\ 0 & 0 & 0 \end{pmatrix} \)
5. \(\begin{pmatrix} \overline{1} & 0 & 1/4, 1/4 \\ 0 & 1/2, 1/2 \end{pmatrix} \)
6. \(\begin{pmatrix} b & (0,1/2,0) \\ 0,1/2,1/2 \end{pmatrix} \)
7. \(\begin{pmatrix} c & (0,0,1/2) \\ 0,1/2,1/2 \end{pmatrix} \)
8. \(\begin{pmatrix} n & (0,1/2,1/2) \\ 0,1/2,1/2 \end{pmatrix} \)

For \((1/2,1/2,0) + \) set

1. \(\begin{pmatrix} t' & (1/2,1/2,0) \\ 1/2,1/2,0 \end{pmatrix} \)
2. \(\begin{pmatrix} 2' & 1/4,1/4,z \\ z & 1/2,1/2,0 \end{pmatrix} \)
3. \(\begin{pmatrix} 2' & (0,1/2,0) \\ z & 1/2,1/2,0 \end{pmatrix} \)
4. \(\begin{pmatrix} 2' & (1/2,0,0) \\ 1/2,1/2,0 \end{pmatrix} \)
5. \(\begin{pmatrix} \overline{1}' & 1/4,0,1/4 \\ 1/2,0,1/2 \end{pmatrix} \)
6. \(\begin{pmatrix} a' & (1/2,0,0) \\ z & 1/2,0,1/2 \end{pmatrix} \)
7. \(\begin{pmatrix} n' & (1/2,0,1/2) \\ 0,0 \end{pmatrix} \)
8. \(\begin{pmatrix} c' & (0,0,1/2) \\ 1/2,0,1/2 \end{pmatrix} \)
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>(1/2,1/2,0)</td>
</tr>
<tr>
<td>16 i 1</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 h ..2'</td>
<td>1/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td>8 g ..2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 f ..2</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td>8 e ..2</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>8 d ⊤</td>
<td>0,1/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td>8 c ⊤</td>
<td>1/4,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b 222</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a 222</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_{2a}2m'm'
\(a^* = -b/2\) \(b^* = a/2\)
Origin at 0,0,z

Along [1,0,0] p_{2a}2m'm'
\(a^* = b/2\) \(b^* = c/2\)
Origin at 0,0,0

Along [0,1,0] p2mm
\(a^* = c/2\) \(b^* = a/2\)
Origin at 0, y, 0
Origin at 22'2' at 2/n2'/n'2' at 0,1/4,1/4 from \(\bar{1} \).

Asymmetric unit

\[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2} \]

Symmetry Operations

For \((0,0,0) \) + set

1. \(1 \)

 \[(1 \mid 0,0,0) \]

2. \(2' \quad 0,0,z \)

 \[(2_z \mid 0,0,0)' \]

3. \(2' \quad 0,y,0 \)

 \[(2 \mid 0,0,0)' \]

4. \(2 \quad x,0,0 \)

 \[(2_x \mid 0,0,0) \]

5. \(\bar{1} \quad 0,1/4,1/4 \)

 \[(1 \mid 0,1/2,1/2)' \]

6. \(b \quad (0,1/2,0) \)

 \[x,y,1/4 \]

 \[(m_z \mid 0,1/2,1/2) \]

7. \(c \quad (0,0,1/2) \)

 \[x,1/4,z \]

 \[(m_y \mid 0,1/2,1/2) \]

8. \(n \quad (0,1/2,1/2) \)

 \[0,y,z \]

 \[(m_x \mid 0,1/2,1/2)' \]

For \((1/2,1/2,0)' \) + set

1. \(t' \quad (1/2,1/2,0) \)

 \[(1/2 \mid 1/2,1/2,0)' \]

2. \(2 \quad 1/4,1/4,z \)

 \[(2_z \mid 1/2,1/2,0) \]

3. \(2 \quad (0,1/2,0) \)

 \[1/4,y,0 \]

 \[(2_y \mid 1/2,1/2,0) \]

4. \(2' \quad (1/2,0,0) \)

 \[x,1/4,0 \]

 \[(2_z \mid 1/2,1/2,0)' \]

5. \(\bar{1} \quad 1/4,0,1/4 \)

 \[(1/2 \mid 1/2,0,1/2)' \]

6. \(a' \quad (1/2,0,0) \)

 \[x,y,1/4 \]

 \[(m_z \mid 1/2,0,1/2)' \]

7. \(n' \quad (1/2,0,1/2) \)

 \[x,0,z \]

 \[(m_y \mid 1/2,0,1/2)' \]

8. \(c \quad (0,0,1/2) \)

 \[1/4,y,z \]

 \[(m_x \mid 1/2,0,1/2) \]

\[68.9.602 - 1 - 1194 \]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity</td>
<td>Coordinates</td>
</tr>
<tr>
<td>Wyckoff letter</td>
<td>Site Symmetry</td>
</tr>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,0)' +</td>
</tr>
<tr>
<td>16 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x',y',z' [u',v',w']</td>
</tr>
<tr>
<td></td>
<td>(3) x',y',z' [u',v',w']</td>
</tr>
<tr>
<td></td>
<td>(4) x',y',z' [u',v',w']</td>
</tr>
<tr>
<td></td>
<td>(5) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

| Symmetry of Special Projections |
|---|---|---|
| Along [0,0,1] | p_{2a}.2mm | Along [1,0,0] | p_{a}.2mm | Along [0,1,0] | p_{c}.2mm |
| a^* = -b/2, b^* = a/2 | a^* = b/2, b^* = c/2 | a^* = c/2, b^* = a/2 |
| Origin at 0,1/4,z | Origin at x,0,0 | Origin at 0,y,1/4 |
Origin at 2'2'2 at 2'/n2'/n'2 at 0,1/4,1/4 from T

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) T (0,0,0) (1) 1
(2) 2 0,0,z (2) 2' 0,0,0
(3) 2' 0,y,0 (3) 2' x,0,0
(4) 2' x,0,0
(5) b (0,1/2,0) (5) 1/4,0,1/4
(6) c (0,0,1/2) (6) b (0,1/2,1/2)
(7) n (0,1/2,1/2) (7) c (0,0,1/2)
(8) n' (0,1/2,1/2) (8) n (0,1/2,1/2)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0) (1) T (1/2,1/2,0)
(2) 2' 1/4,1/4,z (2) 1/2,1/2,0
(3) 2 (0,1/2,0) (3) 2 (0,1/2,0)
(4) 2 (0,1/2,0) (4) 2' 1/4,1/4,0
(5) T 1/4,0,1/4 (5) T 1/2,0,1/2
(6) a (1/2,0,0) (6) a (1/2,0,0)
(7) n' (1/2,0,1/2) (7) n' (1/2,0,1/2)
(8) c' (0,0,1/2) (8) c' (0,0,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) + (1/2,1/2,0)' +</td>
</tr>
<tr>
<td>16 i 1</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 h .2'</td>
<td>1/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 g .2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 f .2'</td>
<td>0,y,0 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y+1/2,0 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y+1/2,1/2 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y+1/2,0 [u,0,w]</td>
</tr>
<tr>
<td>8 e .2'</td>
<td>x,0,0 [v,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,0 [0,v,w]</td>
</tr>
<tr>
<td>8 d .1'</td>
<td>0,1/4,1/4 [v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/4,1/4 [v,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/4,3/4 [v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/4,3/4 [v,w]</td>
</tr>
<tr>
<td>8 c .1'</td>
<td>1/4,0,1/4 [v,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/2,1/4 [v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,0,3/4 [v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/2,3/4 [v,w]</td>
</tr>
<tr>
<td>4 b 2'2'</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>4 a 2'2'</td>
<td>0,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
</tr>
<tr>
<td>a* = a/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
</tr>
<tr>
<td>Along [1,0,0]</td>
</tr>
<tr>
<td>a* = b/2</td>
</tr>
<tr>
<td>Origin at x,0,1/4</td>
</tr>
<tr>
<td>Along [0,1,0]</td>
</tr>
<tr>
<td>a* = c/2</td>
</tr>
<tr>
<td>Origin at 1/4,y,1/4</td>
</tr>
</tbody>
</table>
Origin at 22'2' at 2/n2'/n2' at 0,1/4,1/4 from \(\overline{1} \)

Asymmetric unit \(0 \leq x \leq 1/4; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1/2 \)

Symmetry Operations

For \((0,0,0)\) + set

1. \(1 \)
 \((1 | 0,0,0) \)

2. \(2' \ 0,0,z \)
 \((2_z | 0,0,0)' \)

3. \(2' \ y,0,0 \)
 \((2_y | 0,0,0)' \)

4. \(2 \ x,0,0 \)
 \((2_x | 0,0,0) \)

5. \(\overline{1} \ 0,1/4,1/4 \)
 \((\overline{1} | 0,1/2,1/2) \)

6. \(b \ (0,1/2,0) \ x,y,1/4 \)
 \((m_z | 0,1/2,1/2)' \)

7. \(c \ (0,0,1/2) \ x,1/4,z \)
 \((m_y | 0,1/2,1/2)' \)

8. \(n \ (0,1/2,1/2) \ 0,y,z \)
 \((m_y | 0,1/2,1/2) \)

For \((1/2,1/2,0)\) + set

1. \(t' \ (1/2,1/2,0) \)
 \((1 | 1/2,1/2,0)' \)

2. \(2 \ 1/4,1/4,z \)
 \((2_z | 1/2,1/2,0) \)

3. \(2 \ (0,1/2,0) \ 1/4,y,0 \)
 \((2_y | 1/2,1/2,0) \)

4. \(2' \ (1/2,0,0) \ x,1/4,0 \)
 \((2_x | 1/2,1/2,0)' \)

5. \(\overline{1} \ 1/4,0,1/4 \)
 \((\overline{1} | 1/2,0,1/2)' \)

6. \(a \ (1/2,0,0) \ x,y,1/4 \)
 \((m_z | 1/2,0,1/2) \)

7. \(n \ (1/2,0,1/2) \ x,0,z \)
 \((m_y | 1/2,0,1/2) \)

8. \(c' \ (0,0,1/2) \ 1/4,y,z \)
 \((m_y | 1/2,0,1/2)' \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,0); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 i</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,0) +</td>
</tr>
<tr>
<td>(1) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(2) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(3) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(4) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(6) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(7) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(8) x,y,z</td>
<td>[u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_{2a} \cdot 2mm \) \(a^* = a/2 \) \(b^* = b/2 \) \(c^* = c/2 \)
Origin at 1/4,1/4,z

Along [1,0,0] \(p_{cc} \cdot 2mm \) \(a^* = b/2 \) \(b^* = c/2 \) \(a^* = a/2 \) \(b^* = c/2 \)
Origin at x,0,0

Along [0,1,0] \(p_{2a} \cdot 2m'm' \) \(a^* = a/2 \) \(b^* = c/2 \) \(a^* = a/2 \) \(b^* = c/2 \)
Origin at 0,y,1/4
Orthorhombic

Asymmetric unit

\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/2\]

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. \((1 | 0,0,0)\)
2. \((2 | 0,0,z) 0,0,0\)
3. \((3 | 2 \cdot 0,y,0) 2,0,0\)
4. \((4 | 2 \cdot x,0,0) 2,0,0\)
5. \((5 | 1,0,0,0)\)
6. \((6 | m \cdot x,y,0) m,0,0\)
7. \((7 | m \cdot x,0,z) m,0,0\)
8. \((8 | m \cdot 0,y,z) m,0,0\)

For \((0,1/2,1/2) + \text{set}\)

1. \((1 | 1/2,0,1/2)\)
2. \((2 | 2 \cdot 0,0,1/2) 0,0,1/2\)
3. \((3 | 2 \cdot 0,1/2,0) 0,1/2,0\)
4. \((4 | 2 \cdot x,1/4,1/4) 2,x,1/4,1/4\)
5. \((5 | 0,1/4,1/4)\)
6. \((6 | b \cdot 0,1/2,0) 0,1/2,1/2\)
7. \((7 | c \cdot 0,0,1/2) 0,1/2,1/2\)
8. \((8 | n \cdot 0,1/2,1/2) 0,1/2,1/2\)

For \((1/2,0,1/2) + \text{set}\)

1. \((1 | 1/2,0,1/2)\)
2. \((2 | 2 \cdot 0,0,1/2) 1/2,0,1/2\)
3. \((3 | 2 \cdot 1/4,0,1/4) 1/2,0,1/2\)
4. \((4 | 2 \cdot 1/2,0,0) 1/2,0,1/2\)
5. \((5 | 1/2,0,1/2)\)
6. \((6 | a \cdot 1/2,0,0) 1/2,0,1/2\)
7. \((7 | n \cdot 1/2,0,1/2) 1/2,0,1/2\)
8. \((8 | c \cdot 0,1/2,1/2) 1/2,0,1/2\)

For \((1/2,1/2,0) + \text{set}\)

1. \((1 | 1/2,1/2,0)\)
2. \((2 | 2 \cdot 1/4,1/4,0) 1/2,1/2,0\)
3. \((3 | 2 \cdot 0,1/2,0) 1/2,1/2,0\)
4. \((4 | 2 \cdot 1/2,0,0) 1/2,1/2,0\)
5. \((5 | 1/2,1/2,0)\)
6. \((6 | n \cdot 1/2,1/2,0) 1/2,1/2,0\)
7. \((7 | a \cdot 1/2,0,0) 1/2,1/2,0\)
8. \((8 | b \cdot 0,1/2,0) 1/2,1/2,0\)
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5). \)

Positions

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,1/2,1/2) +</td>
</tr>
<tr>
<td>32 p 1 (1) (x,y,z [u,v,w])</td>
<td>(2) (\bar{x},y,z [\bar{u},v,\bar{w}])</td>
</tr>
<tr>
<td>16 o ..m</td>
<td>(x,y,0 [0,0,w])</td>
</tr>
<tr>
<td>16 n ..m</td>
<td>(x,0,z [0,v,0])</td>
</tr>
<tr>
<td>16 m ..m</td>
<td>(0,y,z [u,0,0])</td>
</tr>
<tr>
<td>16 l ..m</td>
<td>(x,1/4,1/4 [u,0,0])</td>
</tr>
<tr>
<td>16 k ..m</td>
<td>(1/4,y,1/4 [0,v,0])</td>
</tr>
<tr>
<td>16 j ..m</td>
<td>(1/4,1/4,z [0,0,w])</td>
</tr>
<tr>
<td>8 i mm2</td>
<td>(0,0,z [0,0,0])</td>
</tr>
<tr>
<td>8 h m2m</td>
<td>(0,y,0 [0,0,0])</td>
</tr>
<tr>
<td>8 g 2mm</td>
<td>(x,0,0 [0,0,0])</td>
</tr>
<tr>
<td>8 f 222</td>
<td>(1/4,1/4,1/4 [0,0,0])</td>
</tr>
<tr>
<td>8 e ..m</td>
<td>(1/4,1/4,0 [0,0,w])</td>
</tr>
<tr>
<td>8 d ..m</td>
<td>(1/4,0,1/4 [0,v,0])</td>
</tr>
<tr>
<td>8 c ..m</td>
<td>(0,1/4,1/4 [u,0,0])</td>
</tr>
<tr>
<td>4 b mmm</td>
<td>(0,0,1/2 [0,0,0])</td>
</tr>
<tr>
<td>4 a mmm</td>
<td>(0,0,0 [0,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\] p2mm1' \(a^* = a/2 \) \(b^* = b/2 \) Origin at 0,0,z
Along \([1,0,0]\] p2mm1' \(a^* = b/2 \) \(b^* = c/2 \) Origin at \(x,0,0\)
Along \([0,1,0]\] p2mm1' \(a^* = c/2 \) \(b^* = a/2 \) Origin at 0,\(y,0\)
Fmmm1'
Orthorhombic
69.2.606

Asymmetric unit
$0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0)$ + set

1. 1

 $(1 \mid 0,0,0)$

2. 2 0,0,z

 $(2_z \mid 0,0,0)$

3. 2 0,y,0

 $(2_y \mid 0,0,0)$

4. 2 x,0,0

 $(2_x \mid 0,0,0)$

5. $\overline{1}$ 0,0,0

 $(\overline{1} \mid 0,0,0)$

6. m x,y,0

 $(m_z \mid 0,0,0)$

7. m x,0,z

 $(m_y \mid 0,0,0)$

8. m 0,y,z

 $(m_x \mid 0,0,0)$

For $(0,1/2,1/2)$ + set

1. t $(0,1/2,1/2)$

 $(1 \mid 0,1/2,1/2)$

2. 2 (0,0,1/2) 0,1/4,z

 $(2_z \mid 0,1/2,1/2)$

3. 2 (0,1/2,0) 0,y,1/4

 $(2_y \mid 0,1/2,1/2)$

4. 2 (1/2,0,0) x,0,1/4

 $(2_x \mid 0,1/2,1/2)$

5. $\overline{1}$ 0,1/4,1/4

 $(\overline{1} \mid 0,1/2,1/2)$

6. b (0,1/2,0) x,y,1/4

 $(m_x \mid 0,1/2,1/2)$

7. c (0,0,1/2) x,1/4,z

 $(m_y \mid 0,1/2,1/2)$

8. n (0,1/2,1/2) 0,y,z

 $(m_z \mid 0,1/2,1/2)$

For $(1/2,0,1/2)$ + set

1. t $(1/2,0,1/2)$

 $(1 \mid 1/2,0,1/2)$

2. 2 (0,0,1/2) 1/4,0,z

 $(2_z \mid 1/2,0,1/2)$

3. 2 (0,1/2,0) 1/4,y,1/4

 $(2_y \mid 1/2,0,1/2)$

4. 2 (1/2,0,0) x,0,1/4

 $(2_x \mid 1/2,0,1/2)$

5. $\overline{1}$ 1/4,0,1/4

 $(\overline{1} \mid 1/2,0,1/2)$

6. a (1/2,0,0) x,y,1/4

 $(m_x \mid 1/2,0,1/2)$

7. n (1/2,0,1/2) x,0,z

 $(m_y \mid 1/2,0,1/2)$

8. c (0,0,1/2) 1/4,y,z

 $(m_z \mid 1/2,0,1/2)$

For $(1,2,1,2,0)$ + set

1. t $(1,2,1,2,0)$

 $(1 \mid 1/2,1/2,0)$

2. 2 1/4,1/4,z

 $(2_z \mid 1/2,1/2,0)$

3. 2 (0,1/2,0) 1/4,y,0

 $(2_y \mid 1/2,1/2,0)$

4. 2 (1/2,0,0) x,1/4,0

 $(2_x \mid 1/2,1/2,0)$

5. $\overline{1}$ 1/4,1/4,0

 $(\overline{1} \mid 1/2,1/2,0)$

6. n (1,2,1,2,0) x,y,0

 $(m_z \mid 1/2,1/2,0)$

7. a (1/2,0,0) x,1/4,z

 $(m_y \mid 1/2,1/2,0)$

8. b (0,1/2,0) 1/4,y,z

 $(m_z \mid 1/2,1/2,0)$
Continued

For (0,0,0)'+ set

(1) t' (0,0,0)'
 (1) 0,0,0')

(2) 2' 0,0,z
 (2) |0,0,0)'

(3) 2' 0,y,0
 (3) |0,0,0)'

(4) 2' x,0,0
 (4) |0,0,0)'

(5) T' 0,0,0
 (T |0,0,0)'

(6) m' x,y,0
 (6) |0,0,0)'

(7) m' x,0,z
 (7) |0,0,0)'

(8) m' 0,y,z
 (8) |0,0,0)'

For (0,1/2,1/2)'+ set

(1) t' (0,1/2,1/2)
 (1) |0,1/2,1/2)

(2) 2' (0,0,1/2) 0,1/4,z
 (2) |0,1/2,1/2)

(3) 2' (0,1/2,0) y,1/4
 (3) |0,1/2,1/2)

(4) 2' x,1/4,1/4
 (4) |0,1/2,1/2)

(5) T' 0,1/4,1/4
 (T |0,1/2,1/2)

(6) b' (0,1/2,0) x,y,1/4
 (6) |0,1/2,1/2)

(7) c' (0,0,1/2) x,1/4,z
 (7) |0,1/2,1/2)

(8) n' (0,1/2,1/2) 0,y,z
 (8) |0,1/2,1/2)

For (1/2,0,1/2)'+ set

(1) t' (1/2,0,1/2)
 (1) |1/2,0,1/2)

(2) 2' (0,0,1/2) 1/4,0,z
 (2) |1/2,0,1/2)

(3) 2' 1/4,y,1/4
 (3) |1/2,0,1/2)

(4) 2' (1/2,0,0) x,0,1/4
 (4) |1/2,0,1/2)

(5) T' 1/4,0,1/4
 (T |1/2,0,1/2)

(6) a' (1/2,0,0) x,y,1/4
 (6) |1/2,0,1/2)

(7) c' (0,0,1/2) x,1/4,z
 (7) |1/2,0,1/2)

(8) n' (0,1/2,1/2) 0,y,z
 (8) |1/2,0,1/2)

For (1/2,1/2,0)'+ set

(1) t' (1/2,1/2,0)
 (1) |1/2,1/2,0)

(2) 2' 1/4,1/4,z
 (2) |1/2,1/2,0)

(3) 2' (0,1/2,0) 1/4,y,0
 (3) |1/2,1/2,0)

(4) 2' (1/2,0,0) x,1/4,0
 (4) |1/2,1/2,0)

(5) T' 1/4,1/4,0
 (T |1/2,1/2,0)

(6) n' (1/2,1/2,0) x,y,0
 (6) |1/2,1/2,0)

(7) a' (1/2,0,0) x,1/4,z
 (7) |1/2,1/2,0)

(8) b' (0,1/2,0) 1/4,y,z
 (8) |1/2,1/2,0)

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5): t'.

Positions

Multiset,
Wyckoff letter,
Site Symmetry.

Multipliciy

Coordinates

(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +
(0,0,0)' + (0,1/2,1/2)' + (1/2,0,1/2)' + (1/2,1/2,0)'

32 p 11' (1) x,y,z [0,0,0] (2) x,y,z [0,0,0] (3) x,y,z [0,0,0] (4) x,y,z [0,0,0]
 (5) x,y,z [0,0,0] (6) x,y,z [0,0,0] (7) x,y,z [0,0,0] (8) x,y,z [0,0,0]

16 o _m1' x,y,0 [0,0,0] x,y,0 [0,0,0] x,y,0 [0,0,0] x,y,0 [0,0,0]

16 n _m1' x,0,z [0,0,0] x,0,z [0,0,0] x,0,z [0,0,0] x,0,z [0,0,0]

16 m _m1' 0,y,z [0,0,0] 0,y,z [0,0,0] 0,y,z [0,0,0] 0,y,z [0,0,0]

16 l _1' x,1/4,1/4 [0,0,0] x,1/4,1/4 [0,0,0] x,1/4,1/4 [0,0,0] x,1/4,1/4 [0,0,0]
Continued

<table>
<thead>
<tr>
<th>16 k</th>
<th>.21'</th>
<th>1/4,y,1/4 [0,0,0]</th>
<th>3/4,y,1/4 [0,0,0]</th>
<th>3/4, y,3/4 [0,0,0]</th>
<th>1/4,y,3/4 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j</td>
<td>.21'</td>
<td>1/4,1/4,z [0,0,0]</td>
<td>3/4,1/4,z [0,0,0]</td>
<td>3/4,3/4,z [0,0,0]</td>
<td>1/4,3/4,z [0,0,0]</td>
</tr>
<tr>
<td>8 i</td>
<td>mm2 1'</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>8 h</td>
<td>m2 1'</td>
<td>0,y,0 [0,0,0]</td>
<td>0,y,0 [0,0,0]</td>
<td>0,y,0 [0,0,0]</td>
<td>0,y,0 [0,0,0]</td>
</tr>
<tr>
<td>8 g</td>
<td>2mm1'</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>8 f</td>
<td>2221'</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,3/4 [0,0,0]</td>
<td>3/4,3/4,3/4 [0,0,0]</td>
<td>3/4,3/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>8 e</td>
<td>..2/m1'</td>
<td>1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>8 d</td>
<td>.2/m1'</td>
<td>1/4,0,1/4 [0,0,0]</td>
<td>3/4,0,1/4 [0,0,0]</td>
<td>3/4,0,1/4 [0,0,0]</td>
<td>3/4,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>8 c</td>
<td>2/m1'</td>
<td>0,1/4,1/4 [0,0,0]</td>
<td>0,3/4,1/4 [0,0,0]</td>
<td>0,3/4,1/4 [0,0,0]</td>
<td>0,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>mmm1'</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>mmm1'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm1'
Along [1,0,0] p2mm1'
Along [0,1,0] p2mm1'

\[a^* = a/2 \quad b^* = b/2 \quad a^* = b/2 \quad b^* = c/2 \quad a^* = c/2 \quad b^* = a/2 \]

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0

69.2.606 - 3 - 1204
Orthorhombic

69.3.607

Symmetry Operations

For $(0,0,0)$ + set

1. $t (0,0,0)$
2. $2' (0,0,0), z$
3. $2' (0,0,0)$
4. $2 (0,0,0)$
5. $m (0,0,0)$
6. $m (0,0,0)$
7. $m' (0,0,0)$
8. $m' (0,0,0)$

For $(0,1/2,1/2)$ + set

1. $t (0,1/2,1/2)$
2. $2' (0,1/2,1/2), 0,1/4, z$
3. $2' (0,1/2,1/2), 0,1/4, z$
4. $2 (0,1/2,1/2), 1/4, 0, z$
5. $m (0,1/2,1/2)$
6. $m (0,1/2,1/2)$
7. $m (0,1/2,1/2)$
8. $m (0,1/2,1/2)$

For $(1/2,0,1/2)$ + set

1. $t (1/2,0,1/2)$
2. $2' (1/2,0,1/2), 1/4, 0, z$
3. $2' (1/2,0,1/2), 1/4, 0, z$
4. $2 (1/2,0,1/2), 1/4, 0, z$
5. $m (1/2,0,1/2)$
6. $m (1/2,0,1/2)$
7. $m (1/2,0,1/2)$
8. $m (1/2,0,1/2)$

For $(1/2,1/2,0)$ + set

1. $t (1/2,1/2,0)$
2. $2' (1/2,1/2,0), 1/4, 0, z$
3. $2' (1/2,1/2,0), 1/4, 0, z$
4. $2 (1/2,1/2,0), 1/4, 0, z$
5. $m (1/2,1/2,0)$
6. $m (1/2,1/2,0)$
7. $m (1/2,1/2,0)$
8. $m (1/2,1/2,0)$

Asymmetric unit: $0 \leq x \leq 1/4; 0 \leq y \leq 1/4; 0 \leq z \leq 1/2$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +</td>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +</td>
</tr>
<tr>
<td>32 p 1 (1) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 o .m x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>16 n .m x,0,z [0,v,0]</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>16 m .m' 0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>16 i 2.. x,1/4,1/4 [u,0,0]</td>
<td>x,3/4,1/4 [u,0,0]</td>
</tr>
<tr>
<td>16 k .2' 1/4,y,1/4 [u,0,w]</td>
<td>3/4,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td>16 j ..2' 1/4,1/4,z [u,v,0]</td>
<td>3/4,1/4,z [u,v,0]</td>
</tr>
<tr>
<td>8 i m'm2' 0,0,z [0,v,0]</td>
<td>0,0,z [0,v,0]</td>
</tr>
<tr>
<td>8 h m'2'm 0,y,0 [0,0,w]</td>
<td>0,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 g 2mm x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>8 f 22'2' 1/4,1/4,1/4 [u,0,0]</td>
<td>3/4,3/4,3/4 [u,0,0]</td>
</tr>
<tr>
<td>8 e .2'/m 1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>8 d .2'/m. 1/4,0,1/4 [0,0,0]</td>
<td>3/4,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>8 c 2/m'.. 0,1/4,1/4 [0,0,0]</td>
<td>0,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b m'mm 0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 a m'mm 0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2mm1' a* = a/2 b* = b/2
- Along [1,0,0] p2mm a* = b/2 b* = c/2
- Along [0,1,0] p2mm1' a* = c/2 b* = a/2

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Orthorhombic

Fm'\text{m}'m' \quad \text{69.4.608} \quad m'm' \quad F2'/m'2'/m'2/m

Origin at center (m'm'm)

Asymmetric unit:

\hspace{1cm} 0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/2

Symmetry Operations

For (0,0,0) + set:

\begin{align*}
(1) \quad & \text{t} (0,0,0) \\
(2) \quad & 2 (0,0,z) \quad (2z,0,0,0) \\
(3) \quad & 2' (0,y,0) \quad (2z,0,0,0)' \\
(4) \quad & 2' (x,0,0) \quad (2z,0,0,0)'
\end{align*}

For (0,1/2,1/2) + set:

\begin{align*}
(1) \quad & \text{t} (0,1/2,1/2) \\
(2) \quad & 2 (0,0,1/2) \quad 0,1/4,z \\
(3) \quad & 2' (0,1/2,0) \quad 0,y,1/4 \\
(4) \quad & 2' (x,1/4,1/4) \quad (2z,0,1/2,1/2)'
\end{align*}

For (1/2,0,1/2) + set:

\begin{align*}
(1) \quad & \text{t} (1/2,0,1/2) \\
(2) \quad & 2 (0,0,1/2) \quad 1/4,0,z \\
(3) \quad & 2' (1/2,0,0) \quad x,0,1/4 \\
(4) \quad & 2' (1/2,0,0) \quad x,0,1/4
\end{align*}

For (1/2,1/2,0) + set:

\begin{align*}
(1) \quad & \text{t} (1/2,1/2,0) \\
(2) \quad & 2 (0,1/2,0) \quad 1/4,1/4,z \\
(3) \quad & 2' (0,1/2,0) \quad 1/4,y,0 \\
(4) \quad & 2' (1/2,0,0) \quad x,1/4,0
\end{align*}
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +</td>
<td></td>
</tr>
<tr>
<td>(0,0,0)</td>
<td>(0,1/2,1/2)</td>
</tr>
<tr>
<td>32 p 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>16 o .m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>16 n .m'</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>16 m .m''</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>16 l .2''</td>
<td>x,1/4,1/4 [0,v,w]</td>
</tr>
<tr>
<td>16 k .2'</td>
<td>1/4,1/4,y [u,0,w]</td>
</tr>
<tr>
<td>16 j .2</td>
<td>1/4,1/4,z [0,0,w]</td>
</tr>
<tr>
<td>8 i m'2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 h m'2</td>
<td>0,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 g 2'm'm</td>
<td>x,0,0 [0,0,w]</td>
</tr>
<tr>
<td>8 f 2'2'</td>
<td>1/4,1/4,1/4 [0,0,w]</td>
</tr>
<tr>
<td>8 e .2/m</td>
<td>1/4,1/4,0 [0,0,w]</td>
</tr>
<tr>
<td>8 d .2/m'</td>
<td>1/4,0,1/4 [u,0,w]</td>
</tr>
<tr>
<td>8 c 2/m'</td>
<td>0,1/4,1/4 [0,v,w]</td>
</tr>
<tr>
<td>4 b m'm'm</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 a m'm'm</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2m'm'

\[\mathbf{a}^* = \frac{a}{2} \quad \mathbf{b}^* = \frac{b}{2} \]

Origin at 0,0,z

Along [1,0,0] p2mm'

\[\mathbf{a}^* = -\frac{c}{2} \quad \mathbf{b}^* = \frac{b}{2} \]

Origin at x,0,0

Along [0,1,0] p2mm'

\[\mathbf{a}^* = \frac{c}{2} \quad \mathbf{b}^* = \frac{a}{2} \]

Origin at 0,y,0
Origin at center (m'm'm')

Asymmetric unit $0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For (0,0,0) + set

1. $T (1|0,0,0)$
2. $T (2|0,0,z)$
3. $T (2|0,y,0)$
4. $T (2|x,0,0)$
5. $T (1|0,0,0)'$
6. $T (m'x|0,y,0)$
7. $T (m'x|0,z)$
8. $T (m'0,y,z)$

For (0,1/2,1/2) + set

1. $T (1|0,1/2,1/2)$
2. $T (2|0,0,1/2)$
3. $T (2|0,y,1/4)$
4. $T (2|x,0,0)$
5. $T (1|0,1/2,1/2)'$
6. $T (m'x|0,y,0)$
7. $T (m'x|0,z)$
8. $T (m'0,y,z)$

For (1/2,0,1/2) + set

1. $T (1|1/2,0,1/2)$
2. $T (2|0,1/2,1/2)$
3. $T (2|1/4,y,1/4)$
4. $T (2|x,0,0)$
5. $T (1|1/2,0,1/2)'$
6. $T (m'x|0,y,0)$
7. $T (m'x|0,z)$
8. $T (m'0,y,z)$

For (1,2,0,1/2) + set

1. $T (1|1/2,1/2,0)$
2. $T (2|0,1/2,1/2)$
3. $T (2|1/4,y,1/4)$
4. $T (2|x,0,0)$
5. $T (1|1/2,2,0,1/2)'$
6. $T (m'x|0,y,0)$
7. $T (m'x|0,z)$
8. $T (m'0,y,z)$

For (1/2,1,2,0) + set

1. $T (1|1/2,1/2,0)$
2. $T (2|1/4,y,z)$
3. $T (2|x,0,0)$
4. $T (2|x,1/2,2,0)$
5. $T (1|1/2,1/2,0)'$
6. $T (m'x|0,y,0)$
7. $T (m'x|0,z)$
8. $T (m'0,y,z)$
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +</td>
<td></td>
</tr>
<tr>
<td>32 p 1 x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>16 o m' x,y,0 [u,v,0] x,y,0 [u,v,0] x,y,0 [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>16 n m' x,0,z [u,0,w] x,0,z [u,0,w] x,0,z [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>16 m' m' 0,y,z [0,v,w] 0,y,z [0,v,w] 0,y,z [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>16 l 2 x,1/4,1/4 [u,0,0] x,3/4,1/4 [u,0,0] x,3/4,3/4 [u,0,0] x,1/4,3/4 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>16 k 2 1/4,y,1/4 [0,v,0] 3/4,y,1/4 [0,v,0] 3/4,y,3/4 [0,v,0] 1/4,y,3/4 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>16 j 2 1/4,1/4,z [0,0,w] 3/4,1/4,z [0,0,w] 3/4,3/4,z [0,0,w] 1/4,3/4,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 i m'2 0,0,z [0,0,w] 0,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 h m'2 0,y,0 [0,v,0] 0,y,0 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 g 2m'1 x,0,0 [u,0,0] x,0,0 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 f 222 1/4,1/4,1/4 [0,0,0] 3/4,3/4,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 e 2/m' 1/4,1/4,0 [0,0,0] 3/4,1/4,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 d 2/m' 1/4,0,1/4 [0,0,0] 3/4,0,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 c 2/m' 0,1/4,1/4 [0,0,0] 0,3/4,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 b m'm' 0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 a m'm' 0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2m'm' a* = a/2 b* = b/2 Origin at 0,0,z
Along [1,0,0] p2m'm' a* = b/2 b* = c/2 Origin at x,0,0
Along [0,1,0] p2m'm' a* = c/2 b* = a/2 Origin at 0,y,0
Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. 1
 (1) 0,0,0

2. 2 0,0,z
 (2) z,0,0,0

3. 2 0,y,0
 (2) 0,0,0

4. 2 x,0,0
 (2) x,0,0,0

5. 1 0,0,0
 (5) 0,0,0

6. m x,y,0
 (m) x,y,0

7. m x,0,z
 (m) x,0,z

8. m 0,y,z
 (m) 0,y,z

For (0,1/2,1/2) + set

1. t (0,1/2,1/2)
 (1) 0,1/2,1/2

2. 2 0,0,1/2
 (2) z,0,1/2,1/2

3. 2 0,1/2,0
 (2) 0,1/2,1/2

4. 2 x,1/4,1/4
 (2) x,0,1/2,1/2

5. 1 0,1/4,1/4
 (5) 0,1/4,1/4

6. m x,y,1/4
 (m) x,y,1/4

7. m x,0,1/4
 (m) x,0,1/4

8. m 0,y,1/4
 (m) 0,y,1/4

For (1/2,0,1/2) + set

1. t (1/2,0,1/2)
 (1) 1/2,0,1/2

2. 2 0,0,1/2
 (2) z,0,1/2,1/2

3. 2 1/4,0,1/4
 (2) z,1/2,0,1/2

4. 2 x,0,1/4
 (2) x,1/2,0,1/2

5. 1 1/4,0,1/4
 (5) 1/4,0,1/4

6. m x,y,1/4
 (m) x,y,1/4

7. m x,0,1/4
 (m) x,0,1/4

8. m 0,y,1/4
 (m) 0,y,1/4

For (1/2,2,0,1/2) + set

1. t (1/2,1,2/0)
 (1) 1/2,1,2/0

2. 2 1/4,1/4,z
 (2) z,1/2,1/2,0

3. 2 0,1/2,0
 (2) 1/2,1/2,0

4. 2 x,1/4,1/4
 (2) x,1/2,1/2,0

5. t (1/2,1,2/0)
 (5) 1/2,1,2/0

6. m x,y,0
 (m) x,y,0

7. m x,0,1/4
 (m) x,0,1/4

8. m 0,y,1/4
 (m) 0,y,1/4
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t'(1/2,0,1/2); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>(0,1/2,1/2)'</td>
<td>(1/2,0,1/2)'</td>
</tr>
<tr>
<td>32 p 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z</td>
<td>(2) x,y,z [u,v,w]</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>16 o .m</td>
<td>x,y,0 [0,0,w]</td>
<td>[0,0,w]</td>
</tr>
<tr>
<td>16 n .m</td>
<td>x,0,z [0,v,0]</td>
<td>[0,v,0]</td>
</tr>
<tr>
<td>16 m m..</td>
<td>0,y,z [u,0,0]</td>
<td>[u,0,0]</td>
</tr>
<tr>
<td>16 l 2'..</td>
<td>x,1/4,1/4 [0,v,w]</td>
<td>[0,v,w]</td>
</tr>
<tr>
<td>16 k .2'</td>
<td>1/4,y,1/4 [u,0,w]</td>
<td>[u,0,w]</td>
</tr>
<tr>
<td>16 j ..2</td>
<td>1/4,1/4,z [0,0,w]</td>
<td>[0,0,w]</td>
</tr>
<tr>
<td>8 i mm2</td>
<td>0,0,z [0,0,0]</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>8 h m2m</td>
<td>0,y,0 [0,0,0]</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>8 g 2mm</td>
<td>x,0,0 [0,0,0]</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>8 f 2'2'</td>
<td>1/4,1/4,1/4 [0,0,w]</td>
<td>[0,0,w]</td>
</tr>
<tr>
<td>8 e ..2/m</td>
<td>1/4,1/4,0 [0,0,w]</td>
<td>[0,0,w]</td>
</tr>
<tr>
<td>8 d .2'/m.</td>
<td>1/4,0,1/4 [0,0,0]</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>8 c 2'/m..</td>
<td>0,1/4,1/4 [0,0,0]</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>4 b mmm</td>
<td>0,0,1/2 [0,0,0]</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>4 a mmm</td>
<td>0,0,0 [0,0,0]</td>
<td>[0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm1' Along [1,0,0] p2mm1' Along [0,1,0] p2mm1'

\[a^* = a/2 \quad b^* = b/2 \quad a^* = b/2 \quad b^* = c/2 \]

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0

69.6.610 - 2 - 1212
Asymmetric unit: $0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0)$ + set

1. 1
2. $2' \quad 0,0,z$
3. $2' \quad 0,y,0$
4. $2 \quad x,0,0$
5. $1 \quad 0,0,0$
6. $m \quad x,y,0$
7. $m \quad x,0,z$
8. $m' \quad 0,y,z$

For $(0,1/2,1/2)' + set$

1. $t' \quad (0,1/2,1/2)$
2. $2' \quad 0,0,1/2, 1/4,z$
3. $2 \quad (0,1/2,0) \quad 0,y,1/4$
4. $2' \quad x,1/4,1/4$
5. $1 \quad (0,1/2,1/2)'$
6. $b' \quad (0,1/2,0) \quad x,y,1/4$
7. $c' \quad (0,0,1/2) \quad x,1/4,z$
8. $n \quad (0,1/2,1/2) \quad 0,y,z$

For $(1/2,0,1/2) + set$

1. $t' \quad (1/2,0,1/2)$
2. $2 \quad (0,0,1/2) \quad 1/4,0,z$
3. $2 \quad 1/4,y,1/4$
4. $2' \quad (1/2,0,0) \quad x,0,1/4$
5. $1 \quad (1/2,0,1/2)'$
6. $a' \quad (1/2,0,0) \quad x,y,1/4$
7. $n' \quad (1/2,0,1/2) \quad x,0,z$
8. $c \quad (0,0,1/2) \quad 1/4,y,z$

For $(1/2,1/2,0) + set$

1. $t \quad (1/2,1,2,0)$
2. $2' \quad 1/4,1/4,z$
3. $2' \quad (0,1/2,0) \quad 1/4,y,0$
4. $2 \quad (1/2,1/2,0)$
5. $1 \quad (1/2,1,2,0)'
6. $n \quad (1/2,1,2,0) \quad x,y,0$
7. $a \quad (1/2,2,0) \quad x,1/4,z$
8. $b' \quad (0,1/2,0) \quad 1/4,y,z$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(0,1/2,1/2); t'(1/2,0,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 p 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (0,1/2,1/2)' + (1/2,0,1/2) + (1/2,1/2,0) +</td>
<td>(0,0,0) + (0,1/2,1/2)' + (1/2,0,1/2) + (1/2,1/2,0) +</td>
</tr>
<tr>
<td>16 o .m</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>16 n .m.</td>
<td>x,0,z [0,v,0]</td>
<td>x,0,z [0,v,0]</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>16 m m'..</td>
<td>0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>16 l 2'..</td>
<td>x,1/4,1/4 [0,v,w]</td>
<td>x,3/4,1/4 [0,v,w]</td>
<td>x,1/4,1/4 [0,v,w]</td>
</tr>
<tr>
<td>16 k .2.</td>
<td>1/4,y,1/4 [0,v,0]</td>
<td>3/4,y,3/4 [0,v,0]</td>
<td>1/4,y,3/4 [0,v,0]</td>
</tr>
<tr>
<td>16 j .2'</td>
<td>1/4,1/4,z [u,v,0]</td>
<td>3/4,3/4,z [u,v,0]</td>
<td>1/4,3/4,z [u,v,0]</td>
</tr>
<tr>
<td>8 i m'm2'</td>
<td>0,0,z [0,v,0]</td>
<td>0,0,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 h m'2'm</td>
<td>0,y,0 [0,0,w]</td>
<td>0,y,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 g 2mm</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 f 2'22'</td>
<td>1/4,1/4,1/4 [0,v,0]</td>
<td>3/4,3/4,3/4 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 e .2' m</td>
<td>1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 d .2/m.</td>
<td>1/4,0,1/4 [0,v,0]</td>
<td>3/4,0,1/4 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 c 2'm'..</td>
<td>0,1/4,1/4 [0,v,w]</td>
<td>0,3/4,1/4 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 b m'mm</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 a m'mm</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: p2mm1'
 \(\mathbf{a}^* = \mathbf{a}/2 \) \(\mathbf{b}^* = \mathbf{b}/2 \)
 Origin at 0,0,z

- **Along [1,0,0]**: p2\(\mathbf{a}^* \)-2mm
 \(\mathbf{a}^* = \mathbf{c}/2 \) \(\mathbf{b}^* = \mathbf{b}/2 \)
 Origin at x,0,0

- **Along [0,1,0]**: p2mm1'
 \(\mathbf{a}^* = \mathbf{c}/2 \) \(\mathbf{b}^* = \mathbf{a}/2 \)
 Origin at 0,y,0

Symmetry Operations

For $(0,0,0)$ + set

1. 1
2. 2 $0,0,z$

3. $2'$ $0,y,0$

4. $2'$ $x,0,0$

For $(0,1/2,1/2)$ + set

1. t' $(0,1/2,1/2)$
2. $2'$ $(0,0,1/2) 0,1/4,z$

3. $2 (0,1/2,0) 0,y,1/4$

4. $2 (1/2,0,0) x,1/4,0$

For $(1/2,0,1/2)$ + set

1. t $(1/2,0,1/2)$
2. $2' (0,0,1/2) 1/4,0,z$

3. $2 (1/2,0,0) 1/4,y,1/4$

4. $2 (1/2,0,0) x,0,1/4$

For $(1,2,0,1/2)$ + set

1. $t (1,2,0,1/2)$
2. $2' (0,0,1/2) 1/4,0,z$

3. $2 (1/2,0,0) 1/4,y,1/4$

4. $2 (1/2,0,0) x,0,1/4$

For $(1,2,1,2)$ + set

1. $t (1/2,1/2,0)$
2. $2 1/4,1/4,z$

3. $2' (0,1/2,0) 1/4,y,0$

4. $2' (1/2,0,0) x,1/4,0$

For $(1/2,1/2,0)$ + set

1. $t' (1/2,1/2,0)$
2. $2' (0,1/2,0) 1/4,y,0$

3. $2' (1/2,0,0) x,1/4,0$

4. $2' (1/2,0,0) x,1/4,0$

Origin at center (mmm')

Asymmetric unit

$0 \leq x \leq 1/4; 0 \leq y \leq 1/4; 0 \leq z \leq 1/2$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(0,1/2,1/2); t'(1/2,0,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2)' + (1/2,0,1/2)' + (1/2,1/2,0) +</td>
<td>(0,0,0) + (0,1/2,1/2)' + (1/2,0,1/2)' + (1/2,1/2,0) +</td>
</tr>
<tr>
<td>32 p 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w] (5) x,y,z [u,v,w] (6) x,y,z [u,v,w] (7) x,y,z [u,v,w] (8) x,y,z [u,v,w]</td>
<td>32 p 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w] (5) x,y,z [u,v,w] (6) x,y,z [u,v,w] (7) x,y,z [u,v,w] (8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 o ..m' x,y,0 [u,v,0] x,y,0 [u,v,0] x,y,0 [u,v,0] x,y,0 [u,v,0]</td>
<td>16 o ..m' x,y,0 [u,v,0] x,y,0 [u,v,0] x,y,0 [u,v,0] x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>16 n ..m' x,0,z [0,v,0] x,0,z [0,v,0] x,0,z [0,v,0] x,0,z [0,v,0]</td>
<td>16 n ..m' x,0,z [0,v,0] x,0,z [0,v,0] x,0,z [0,v,0] x,0,z [0,v,0]</td>
</tr>
<tr>
<td>16 m ..m' 0,y,z [u,0,0] 0,y,z [u,0,0] 0,y,z [u,0,0] 0,y,z [u,0,0]</td>
<td>16 m ..m' 0,y,z [u,0,0] 0,y,z [u,0,0] 0,y,z [u,0,0] 0,y,z [u,0,0]</td>
</tr>
<tr>
<td>16 l .2 .. 1/4,1/4 [u,0,0] 3/4,1/4 [u,0,0] 3/4,1/4 [u,0,0] 3/4,1/4 [u,0,0]</td>
<td>16 l .2 .. 1/4,1/4 [u,0,0] 3/4,1/4 [u,0,0] 3/4,1/4 [u,0,0] 3/4,1/4 [u,0,0]</td>
</tr>
<tr>
<td>16 k .2 . 1/4,y,1/4 [0,v,0] 3/4,y,1/4 [0,v,0] 3/4,y,1/4 [0,v,0] 3/4,y,1/4 [0,v,0]</td>
<td>16 k .2 . 1/4,y,1/4 [0,v,0] 3/4,y,1/4 [0,v,0] 3/4,y,1/4 [0,v,0] 3/4,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>16 j ..2 1/4,1/4,z [0,0,w] 3/4,1/4,z [0,0,w] 3/4,1/4,z [0,0,w] 3/4,1/4,z [0,0,w]</td>
<td>16 j ..2 1/4,1/4,z [0,0,w] 3/4,1/4,z [0,0,w] 3/4,1/4,z [0,0,w] 3/4,1/4,z [0,0,w]</td>
</tr>
<tr>
<td>8 i mm2 0,0,z [0,0,0] 0,0,z [0,0,0] 0,0,z [0,0,0]</td>
<td>8 i mm2 0,0,z [0,0,0] 0,0,z [0,0,0] 0,0,z [0,0,0]</td>
</tr>
<tr>
<td>8 h m2'm' 0,y,0 [u,0,0] 0,y,0 [u,0,0] 0,y,0 [u,0,0]</td>
<td>8 h m2'm' 0,y,0 [u,0,0] 0,y,0 [u,0,0] 0,y,0 [u,0,0]</td>
</tr>
<tr>
<td>8 g 2'mm' x,0,0 [0,v,0] x,0,0 [0,v,0] x,0,0 [0,v,0]</td>
<td>8 g 2'mm' x,0,0 [0,v,0] x,0,0 [0,v,0] x,0,0 [0,v,0]</td>
</tr>
<tr>
<td>8 f 222 1/4,1/4,1/4 [0,0,0] 3/4,3/4,3/4 [0,0,0] 3/4,3/4,3/4 [0,0,0]</td>
<td>8 f 222 1/4,1/4,1/4 [0,0,0] 3/4,3/4,3/4 [0,0,0] 3/4,3/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>8 e ..2/m' 1/4,1/4,0 [0,0,0] 3/4,1/4,0 [0,0,0] 3/4,1/4,0 [0,0,0]</td>
<td>8 e ..2/m' 1/4,1/4,0 [0,0,0] 3/4,1/4,0 [0,0,0] 3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>8 d .2/m. 1/4,0,1/4 [0,v,0] 3/4,0,1/4 [0,v,0] 3/4,0,1/4 [0,v,0]</td>
<td>8 d .2/m. 1/4,0,1/4 [0,v,0] 3/4,0,1/4 [0,v,0] 3/4,0,1/4 [0,v,0]</td>
</tr>
<tr>
<td>8 c 2/m.. 1/4,1/4 [u,0,0] 1/4,1/4 [u,0,0] 1/4,1/4 [u,0,0]</td>
<td>8 c 2/m.. 1/4,1/4 [u,0,0] 1/4,1/4 [u,0,0] 1/4,1/4 [u,0,0]</td>
</tr>
<tr>
<td>4 b mmm' 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0]</td>
<td>4 b mmm' 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a mmm' 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0]</td>
<td>4 a mmm' 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p_2/mmm
 \[
a^* = a/2 \quad b^* = b/2 \quad c^* = c/2
\]
 Origin at 0,0,z

- Along [1,0,0] p2mm1
 \[
a^* = b/2 \quad b^* = c/2 \quad a^* = c/2 \quad b^* = a/2
\]
 Origin at x,0,0

- Along [0,1,0] p2mm1
 \[
a^* = c/2 \quad b^* = a/2
\]
 Origin at 0,y,0
Orthorhombic

$$F_c m'm'm$$

$$mmm1'$$

$$F_c 2'/m'2'/m'2/m$$

Asymmetric unit:
$$0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/2$$

Symmetry Operations:

For $$(0,0,0) +$$ set:

1. $$1$$
 $$(1 \mid 0,0,0)$$

2. $$2$$
 $$0,0,z$$
 $$(2_z \mid 0,0,0)$$

3. $$2'$$
 $$0,y,0$$
 $$(2_y \mid 0,0,0)'$$

4. $$2'$$
 $$x,0,0$$
 $$(2_x \mid 0,0,0)'$$

5. $$T$$
 $$0,0,0$$
 $$(T \mid 0,0,0)$$

6. $$m$$
 $$x,y,0$$
 $$(m_x \mid 0,0,0)$$

7. $$m'$$
 $$x,0,z$$
 $$(m_y \mid 0,0,0)'$$

8. $$m'$$
 $$0,y,z$$
 $$(m_z \mid 0,0,0)'$$

For $$(0,1/2,1/2)' +$$ set:

1. $$t'$$
 $$(0,1/2,1/2)$$
 $$(1 \mid 0,1/2,1/2)'$$

2. $$2'$$
 $$(0,0,1/2)$$
 $$0,1/4,z$$
 $$(2_z \mid 0,1/2,1/2)'$$

3. $$2$$
 $$(0,1/2,0)$$
 $$0,y,1/4$$
 $$(2_y \mid 0,1/2,1/2)$$

4. $$2$$
 $$x,1/4,1/4$$
 $$(2_x \mid 0,1/2,1/2)$$

5. $$T$$
 $$1/4,0,1/4$$
 $$(T \mid 1/2,0,1/2)$$

6. $$b'$$
 $$(0,1/2,0)$$
 $$x,y,1/4$$
 $$(m_x \mid 0,1/2,1/2)'$$

7. $$c$$
 $$(0,0,1/2)$$
 $$x,1/4,z$$
 $$(m_y \mid 0,1/2,1/2)$$

8. $$n$$
 $$(0,1/2,1/2)$$
 $$0,y,z$$
 $$(m_z \mid 0,1/2,1/2)'$$

For $$(1/2,0,1/2)' +$$ set:

1. $$t'$$
 $$(1/2,0,1/2)$$
 $$(1 \mid 1/2,0,1/2)'$$

2. $$2'$$
 $$(0,0,1/2)$$
 $$1/4,0,z$$
 $$(2_z \mid 1/2,0,1/2)'$$

3. $$2$$
 $$1/4,y,1/4$$
 $$(2_y \mid 1/2,0,1/2)$$

4. $$2$$
 $$(1/2,0,0)$$
 $$x,0,1/4$$
 $$(2_x \mid 1/2,0,1/2)'$$

5. $$T$$
 $$1/4,0,1/4$$
 $$(T \mid 1/2,0,1/2)'$$

6. $$a'$$
 $$(1/2,0,0)$$
 $$x,y,1/4$$
 $$(m_x \mid 1/2,0,1/2)'$$

7. $$n$$
 $$(1/2,0,1/2)$$
 $$x,0,z$$
 $$(m_y \mid 1/2,0,1/2)$$

8. $$c$$
 $$(0,0,1/2)$$
 $$1/4,y,z$$
 $$(m_z \mid 1/2,0,1/2)'$$

For $$(1/2,1,2,0) +$$ set:

1. $$t$$
 $$(1/2,1,2,0)$$
 $$(1 \mid 1/2,1,2,0)$$

2. $$2$$
 $$1/4,1/4,z$$
 $$(2_z \mid 1/2,1,2,0)$$

3. $$2'$$
 $$(0,1/2,0)$$
 $$1/4,y,0$$
 $$(2_y \mid 1/2,1,2,0)'$$

4. $$2'$$
 $$(1/2,0,0)$$
 $$x,1/4,0$$
 $$(2_x \mid 1/2,1,2,0)'$$

5. $$T$$
 $$1/4,1/4,0$$
 $$(T \mid 1/2,1,2,0)$$

6. $$n$$
 $$(1/2,1,2,0)$$
 $$x,y,0$$
 $$(m_x \mid 1/2,1,2,0)$$

7. $$a'$$
 $$(1/2,0,0)$$
 $$x,1/4,z$$
 $$(m_y \mid 1/2,1,2,0)'$$

8. $$b'$$
 $$(0,1/2,0)$$
 $$1/4,y,z$$
 $$(m_z \mid 1/2,1,2,0)'$$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(0,1/2,1/2); t'(1/2,0,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 p 1</td>
<td>(0,0,0) + (0,1/2,1/2)' + (1/2,0,1/2)' + (1/2,1/2,0) +</td>
<td>x,y,z [u,v,w]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td>16 o .m</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td>16 n .m'</td>
<td>x,0,z [u,0,w]</td>
<td>x,0,z [u,0,w]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td>16 m m'..</td>
<td>0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td>16 l 2..</td>
<td>x,1/4,1/4 [u,0,0]</td>
<td>x,3/4,1/4 [u,0,0]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td>16 k .2.</td>
<td>1/4,y,1/4 [0,v,0]</td>
<td>3/4,y,1/4 [0,v,0]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td>16 j .2</td>
<td>1/4,1/4,z [0,0,w]</td>
<td>3/4,1/4,z [0,0,w]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td>8 i m'm'2</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td>8 h m'2'm</td>
<td>0,y,0 [0,0,w]</td>
<td>0,y,0 [0,0,w]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td>8 g 2'm'm</td>
<td>x,0,0 [0,0,w]</td>
<td>x,0,0 [0,0,w]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td>8 f 222</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,3/4 [0,0,0]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td>8 e .2/m</td>
<td>1/4,1/4,0 [0,0,w]</td>
<td>3/4,1/4,0 [0,0,w]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td>8 d .2/m'</td>
<td>1/4,0,1/4 [0,0,0]</td>
<td>3/4,0,1/4 [0,0,0]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td>8 c 2/m'..</td>
<td>0,1/4,1/4 [0,0,0]</td>
<td>0,3/4,1/4 [0,0,0]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td>4 b m'm'm</td>
<td>0,0,1/2 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td>4 a m'm'm</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,0 [0,0,w]</td>
<td>p2mm1'</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2mm1' a* = a/2 b* = b/2 Origin at 0,0,z
- Along [1,0,0] p2mm1' a* = c/2 b* = b/2 Origin at x,0,1/4
- Along [0,1,0] p2mm1' a* = c/2 b* = a/2 Origin at 0,y,1/4
Asymmetric unit: 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set:

(1) 1
(1 0,0,0)
(5) T 0,0,0
(5 0,0,0)

For (0,1/2,1/2) + set:

(1) t' (0,1/2,1/2)
(1 0,1/2,1/2)
(5) T' 0,1/2,1/4
(5 0,1/2,1/2)

For (1/2,0,1/2) + set:

(1) t' (1/2,0,1/2)
(1 1/2,0,1/2)
(5) T' 1/4,0,1/4
(5 1/2,0,1/2)

For (1/2,1,2,0) + set:

(1) t (1/2,1/2,0)
(1 1/2,1/2,0)
(5) T' 1,4,1/4,0
(5 1/2,1/2,0)

Orthorhombic

69.10.614

mm'm'1'

69.10.614 Fc 2/m2'/m'2'/m'

Origin

At center (mm'm')
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(0,1/2,1/2); t'(1/2,0,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(0,1/2,1/2)' +</td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(1/2,0,1/2)' +</td>
<td>(3) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(1/2,1/2,0) +</td>
<td>(4) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>32 p 1</td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>(0,0,0) +</th>
<th>(0,1/2,1/2)' +</th>
<th>(1/2,0,1/2)' +</th>
<th>(1/2,1/2,0) +</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

16 o .m'	x,y,0 [u,v,0]	x,y,0 [u,v,0]	x,y,0 [u,v,0]
16 n .n'	x,0,z [u,0,w]	x,0,z [u,0,w]	x,0,z [u,0,w]
16 m n..	0,y,z [u,0,0]	0,y,z [u,0,0]	0,y,z [u,0,0]
16 l 2'..	x,1/4,1/4 [0,v,w]	x,1/4,1/4 [0,v,w]	x,1/4,1/4 [0,v,w]
16 k .2.	1/4,y,1/4 [0,v,0]	1/4,y,1/4 [0,v,0]	1/4,y,1/4 [0,v,0]
16 j .2'	1/4,1/4,z [u,0,v,0]	1/4,1/4,z [u,0,v,0]	1/4,1/4,z [u,0,v,0]

Symmetry of Special Projections

Along [0,0,1] p_{c}, 2mm
\(a^* = a/2 \) \(b^* = b/2 \)
Origin at 0,1/4,z

Along [1,0,0] p_{2mm1'}
\(a^* = b/2 \) \(b^* = c/2 \)
Origin at x,0,0

Along [0,1,0] p_{2x}, 2mm
\(a^* = c/2 \) \(b^* = a/2 \)
Origin at 0,y,1/4

69.10.614 - 2 - 1220
Symmetry Operations

For (0,0,0) + set

1. \(\overline{1} \)
 - \((1|0,0,0)\)
 - \((2|0,0,z)\)
 - \((3|0,y,0)\)
 - \((4|x,0,0)\)

2. \(\overline{1} \)
 - \((0,1/2,1/2)\)
 - \((0,0,0)\)
 - \((0,1/2,1/2)\)
 - \((0,0,0)\)

3. \(\overline{1} \)
 - \((1/2,0,0)\)
 - \((0,1/2,0)\)
 - \((1/2,0,0)\)
 - \((0,1/2,0)\)

4. \(\overline{1} \)
 - \((1,0,0)\)
 - \((0,1/2,0)\)
 - \((1,0,0)\)
 - \((0,1/2,0)\)

5. \(\overline{1} \)
 - \((0,0,0)\)
 - \((0,0,0)\)
 - \((0,0,0)\)
 - \((0,0,0)\)

6. \(\overline{1} \)
 - \((0,1/2,0)\)
 - \((0,1/2,0)\)
 - \((0,1/2,0)\)
 - \((0,1/2,0)\)

7. \(\overline{1} \)
 - \((1/2,0,0)\)
 - \((1/2,0,0)\)
 - \((1/2,0,0)\)
 - \((1/2,0,0)\)

8. \(\overline{1} \)
 - \((1/2,0,0)\)
 - \((1/2,0,0)\)
 - \((1/2,0,0)\)
 - \((1/2,0,0)\)

For (0,1/2,1/2) + set

1. \(t \)
 - \((1/2,0,1/2)\)
 - \((0,1/2,0)\)
 - \((1/2,0,1/2)\)
 - \((0,1/2,0)\)

2. \(t \)
 - \((0,1/2,1/2)\)
 - \((1/2,0,1/2)\)
 - \((0,1/2,1/2)\)
 - \((1/2,0,1/2)\)

3. \(t \)
 - \((1/2,0,0)\)
 - \((0,1/2,0)\)
 - \((1/2,0,0)\)
 - \((0,1/2,0)\)

4. \(t \)
 - \((0,1/2,1/2)\)
 - \((1/2,0,1/2)\)
 - \((0,1/2,1/2)\)
 - \((1/2,0,1/2)\)

5. \(t \)
 - \((1/2,0,0)\)
 - \((0,1/2,0)\)
 - \((1/2,0,0)\)
 - \((0,1/2,0)\)

6. \(t \)
 - \((1/2,0,1/2)\)
 - \((0,1/2,1/2)\)
 - \((1/2,0,1/2)\)
 - \((0,1/2,1/2)\)

7. \(t \)
 - \((0,1/2,0)\)
 - \((1/2,0,0)\)
 - \((0,1/2,0)\)
 - \((1/2,0,0)\)

8. \(t \)
 - \((1/2,0,1/2)\)
 - \((0,1/2,1/2)\)
 - \((1/2,0,1/2)\)
 - \((0,1/2,1/2)\)

For (1/2,0,1/2) + set

1. \(a \)
 - \((1/2,0,0)\)
 - \((0,1/2,0)\)
 - \((1/2,0,0)\)
 - \((0,1/2,0)\)

2. \(a \)
 - \((1/2,1/2,0)\)
 - \((0,1/2,1/2)\)
 - \((1/2,1/2,0)\)
 - \((0,1/2,1/2)\)

3. \(a \)
 - \((1/2,0,1/2)\)
 - \((0,1/2,0)\)
 - \((1/2,0,1/2)\)
 - \((0,1/2,0)\)

4. \(a \)
 - \((1/2,1/2,0)\)
 - \((0,1/2,1/2)\)
 - \((1/2,1/2,0)\)
 - \((0,1/2,1/2)\)

5. \(a \)
 - \((1/2,0,0)\)
 - \((0,1/2,0)\)
 - \((1/2,0,0)\)
 - \((0,1/2,0)\)

6. \(a \)
 - \((1/2,1/2,0)\)
 - \((0,1/2,1/2)\)
 - \((1/2,1/2,0)\)
 - \((0,1/2,1/2)\)

7. \(a \)
 - \((1/2,0,1/2)\)
 - \((0,1/2,0)\)
 - \((1/2,0,1/2)\)
 - \((0,1/2,0)\)

8. \(a \)
 - \((1/2,1/2,0)\)
 - \((0,1/2,1/2)\)
 - \((1/2,1/2,0)\)
 - \((0,1/2,1/2)\)

For (1/2,1/2,0) + set

1. \(n \)
 - \((1/2,0,1/2)\)
 - \((0,1/2,0)\)
 - \((1/2,0,1/2)\)
 - \((0,1/2,0)\)

2. \(n \)
 - \((0,1/2,1/2)\)
 - \((1/2,0,1/2)\)
 - \((0,1/2,1/2)\)
 - \((1/2,0,1/2)\)

3. \(n \)
 - \((1/2,0,0)\)
 - \((0,1/2,0)\)
 - \((1/2,0,0)\)
 - \((0,1/2,0)\)

4. \(n \)
 - \((0,1/2,1/2)\)
 - \((1/2,0,1/2)\)
 - \((0,1/2,1/2)\)
 - \((1/2,0,1/2)\)

5. \(n \)
 - \((1/2,0,0)\)
 - \((0,1/2,0)\)
 - \((1/2,0,0)\)
 - \((0,1/2,0)\)

6. \(n \)
 - \((1/2,1/2,0)\)
 - \((0,1/2,1/2)\)
 - \((1/2,1/2,0)\)
 - \((0,1/2,1/2)\)

7. \(n \)
 - \((1/2,0,1/2)\)
 - \((0,1/2,0)\)
 - \((1/2,0,1/2)\)
 - \((0,1/2,0)\)

8. \(n \)
 - \((0,1/2,1/2)\)
 - \((1/2,0,1/2)\)
 - \((0,1/2,1/2)\)
 - \((1/2,0,1/2)\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2); t'(1/2,0,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,1/2,1/2)’+</td>
<td>(1/2,0,1/2)’+</td>
</tr>
<tr>
<td>32 p 1</td>
<td>x,y,z [u,v,w]</td>
<td>32 p 1</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>32 p 1</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 o .m'</td>
<td>x,y,0 [u,v,0]</td>
<td>16 o .m'</td>
</tr>
<tr>
<td>16 n .m'</td>
<td>x,0,z [0,0,w]</td>
<td>16 n .m'</td>
</tr>
<tr>
<td>16 m .m'</td>
<td>0,y,z [0,0,w]</td>
<td>16 m .m'</td>
</tr>
<tr>
<td>16 l .m'</td>
<td>x,1/4,1/4 [0,0,w]</td>
<td>16 l .m'</td>
</tr>
<tr>
<td>16 k .m'</td>
<td>1/4,1/4,1/4 [u,0,w]</td>
<td>16 k .m'</td>
</tr>
<tr>
<td>16 j .m'</td>
<td>1/4,1/4,1/4 [0,0,w]</td>
<td>16 j .m'</td>
</tr>
<tr>
<td>8 i m'm'2</td>
<td>0,0,z [0,0,0]</td>
<td>8 i m'm'2</td>
</tr>
<tr>
<td>8 h m'm'</td>
<td>0,y,0 [0,0,0]</td>
<td>8 h m'm'</td>
</tr>
<tr>
<td>8 g 2m'm'</td>
<td>x,0,0 [u,0,0]</td>
<td>8 g 2m'm'</td>
</tr>
<tr>
<td>8 f 2'2'2</td>
<td>1/4,1/4,1/4 [0,0,w]</td>
<td>8 f 2'2'2</td>
</tr>
<tr>
<td>8 e .m'</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>8 e .m'</td>
</tr>
<tr>
<td>8 d .m'</td>
<td>1/4,0,1/4 [0,0,0]</td>
<td>8 d .m'</td>
</tr>
<tr>
<td>8 c 2'm'm'..</td>
<td>0,1/4,1/4 [u,0,0]</td>
<td>8 c 2'm'm'..</td>
</tr>
<tr>
<td>4 b m'm'm'</td>
<td>0,0,1/2 [0,0,0]</td>
<td>4 b m'm'm'</td>
</tr>
<tr>
<td>4 a m'm'm'</td>
<td>0,0,0 [0,0,0]</td>
<td>4 a m'm'm'</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p_c 2mm</th>
<th>Along [1,0,0]</th>
<th>p_{2a^*} 2m'm'</th>
<th>Along [0,1,0]</th>
<th>p_{2a^*} 2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a/2</td>
<td>b* = b/2</td>
<td>a* = -c/2</td>
<td>b* = b/2</td>
<td>a* = c/2</td>
<td>b* = a/2</td>
</tr>
<tr>
<td>Origin at 1/4,1/4,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fdd mmm Orthorhombic

70.1.616

F2/d2/d2/d

Origin

at 222 at -1/8,-1/8,-1/8 from \(\bar{1} \)

Asymmetric unit

\(0 < x < 1/8; \quad 0 < y < 1/4; \quad 0 < z < 1 \)

Symmetry Operations

For (0,0,0) + set

1. \(\bar{1} \)
2. \((1\bar{0},0,0) \)
3. \((2\bar{z},0,0,0) \)
4. \(x,0,0 \)
5. \(\bar{1}/8,1/8,1/8 \)
6. \((1/4,1/4,0) x,y,1/8 \)
7. \((1/4,0,1/4) x,1/8,z \)
8. \((0,1/4,1/4) 1/8,y,z \)

For (0,1/2,1/2) + set

1. \(t (0,1/2,1/2) \)
2. \((1\bar{0},1/2,1/2) \)
3. \((2\bar{z},0,1/2,1/2) \)
4. \(x,1/4,1/4 \)
5. \(\bar{1}/8,3/8,3/8 \)
6. \((1/4,3/4,0) x,y,3/8 \)
7. \((1/4,0,3/4) x,3/8,z \)
8. \((0,3/4,3/4) 1/8,y,z \)

For (1/2,0,1/2) + set

1. \(t (1/2,0,1/2) \)
2. \((1\bar{0},0,1/2) \)
3. \((2\bar{z},1/2,0,1/2) \)
4. \(x,0,1/4 \)
5. \(\bar{3}/8,1/8,3/8 \)
6. \((3/4,1,4,0) x,y,3/8 \)
7. \((3/4,0,3/4) x,1/8,z \)
8. \((0,1/4,3/4) 3/8,y,z \)

For (1/2,1/2,0) + set

1. \(t (1/2,1/2,0) \)
2. \((1\bar{0},1/2,0) \)
3. \((2\bar{z},1/2,1/2,0) \)
4. \(x,1/4,0 \)
5. \(\bar{3}/8,3/8,1/8 \)
6. \((3/4,3,4,0) x,y,1/8 \)
7. \((3/4,0,1/4) x,3/8,z \)
8. \((0,3/4,1/4) 3/8,y,z \)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,1/2,1/2) +</td>
</tr>
<tr>
<td>32</td>
<td>h 1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>g ..2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>f .2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>e 2..</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>d 1/8,1/8,1/8 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>b 222</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>a 222</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c_p 2m' m'
Along [1,0,0] c_p 2m' m'
Along [0,1,0] c_p 2m' m'

a* = a/2 b* = b/2
Origin at 0,0,z

a* = b/2 b* = c/2
Origin at x,0,0

a* = c/2 b* = a/2
Origin at 0,y,0
Origin at 22'' at -1/8,-1/8,-1/8 from 1''

Asymmetric unit $0 \leq x < 1/8$; $0 \leq y < 1/4$; $0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0) + \text{set}$

$(1) \text{ t (0,0,0)}$

$(2) \text{ 2 (0,0,z)}$

$(3) \text{ 2 (0,y,0)}$

$(4) \text{ 2 (x,0,0)}$

$(5) \text{ 1/8,1/8,z}$

$(6) \text{ d (1/4,1/4,0) x,y,1/8}$

$(7) \text{ d (1/4,0,1/4) x,1/8,z}$

$(8) \text{ d (0,1/4,1/4) 1/8,y,z}$

For $(0,1/2,1/2) + \text{set}$

$(1) \text{ t (0,1/2,1/2)}$

$(2) \text{ 2 (0,0,1/2) 0,1/4,z}$

$(3) \text{ 2 (0,1/2,0) 0,y,1/4}$

$(4) \text{ 2 (x,1/4,1/4)}$

$(5) \text{ 1/4,3/4,3/4}$

$(6) \text{ d (1/4,3/4,0) x,y,3/8}$

$(7) \text{ d (1/4,0,1/4) x,3/8,z}$

$(8) \text{ d (0,3/4,3/4) 1/8,y,z}$

For $(1/2,0,1/2) + \text{set}$

$(1) \text{ t (1/2,0,1/2)}$

$(2) \text{ 2 (0,0,1/2) 1/4,0,z}$

$(3) \text{ 2 (1/2,0,1/2) 1/4,y,1/4}$

$(4) \text{ 2 (1/2,0,0) x,0,1/4}$

$(5) \text{ 3/4,1/4,3/4}$

$(6) \text{ d (3/4,1/4,0) x,y,3/8}$

$(7) \text{ d (3/4,0,3/4) x,1/8,z}$

$(8) \text{ d (0,1/4,3/4) 3/8,y,z}$

For $(1/2,1/2,0) + \text{set}$

$(1) \text{ t (1/2,1/2,0)}$

$(2) \text{ 2 (1/2,1/2,0) 1/4,1/4,z}$

$(3) \text{ 2 (0,1/2,0) 1/4,y,0}$

$(4) \text{ 2 (1/2,0,0) x,1/4,0}$

$(5) \text{ 3/4,3/4,1/4}$

$(6) \text{ d (3/4,3/4,0) x,y,1/8}$

$(7) \text{ d (3/4,0,1/4) x,3/8,z}$

$(8) \text{ d (0,3/4,1/4) 3/8,y,z}$

70.2.617 - 1 - 1225
For (0,0,0)’ + set

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t’ (0,0,0)’</td>
<td>(0,0,0,z) [0,0,0]</td>
</tr>
<tr>
<td>(2) 2’ (0,0,0)’</td>
<td>(0,y,0) [0,0,0]</td>
</tr>
<tr>
<td>(3) 2’ (0,0,0)’</td>
<td>(x,0,0) [0,0,0]</td>
</tr>
<tr>
<td>(4) 2’ (0,0,0)’</td>
<td>(2,0,0) [0,0,0]</td>
</tr>
<tr>
<td>(5) T’ 1/8,1/8,1/8</td>
<td>(d’ (1/4,1/4,0) x,y,1/8)</td>
</tr>
<tr>
<td>(T</td>
<td>1/4,1/4,1/4)’</td>
</tr>
</tbody>
</table>

For (0,1/2,1/2)’ + set

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t’ (0,1/2,1/2)’</td>
<td>(0,0,1/2,1/2)</td>
</tr>
<tr>
<td>(2) 2’ (0,0,1/2,1/2)’</td>
<td>(0,1/4,0,1/4)</td>
</tr>
<tr>
<td>(3) 2’ (0,1/2,0)</td>
<td>(0,1/4,0,1/4)</td>
</tr>
<tr>
<td>(4) 2’ (0,1/2,0)</td>
<td>(2,0,1/2,1/2)</td>
</tr>
<tr>
<td>(5) T’ 1/8,3/8,3/8</td>
<td>(d’ (1/4,3/4,0) x,y,3/8)</td>
</tr>
<tr>
<td>(T</td>
<td>1/4,3/4,3/4)’</td>
</tr>
</tbody>
</table>

For (1/2,0,1/2)’ + set

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t’ (1/2,0,1/2)’</td>
<td>(0,0,1/2,1/2)</td>
</tr>
<tr>
<td>(2) 2’ (1/2,0,1/2)’</td>
<td>(1/4,0,1/4)</td>
</tr>
<tr>
<td>(3) 2’ (1/2,0,1/2)’</td>
<td>(1/4,0,1/4)</td>
</tr>
<tr>
<td>(4) 2’ (1/2,0,1/2)’</td>
<td>(2,1/2,1/2)</td>
</tr>
<tr>
<td>(5) T’ 3/8,1/8,3/8</td>
<td>(d’ (3/4,1/4,0) x,y,3/8)</td>
</tr>
<tr>
<td>(T</td>
<td>3/4,1/4,3/4)’</td>
</tr>
</tbody>
</table>

For (1/2,1/2,0)’ + set

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t’ (1/2,1/2,0)’</td>
<td>(0,0,1/2,1/2)</td>
</tr>
<tr>
<td>(2) 2’ (1/2,1/2,0)’</td>
<td>(1/4,1/4,0)</td>
</tr>
<tr>
<td>(3) 2’ (1/2,1/2,0)’</td>
<td>(1/4,1/4,0)</td>
</tr>
<tr>
<td>(4) 2’ (1/2,1/2,0)’</td>
<td>(2,1/2,1/2)</td>
</tr>
<tr>
<td>(5) T’ 3/8,3/8,1/8</td>
<td>(d’ (3/4,3/4,0) x,y,1/8)</td>
</tr>
<tr>
<td>(T</td>
<td>3/4,3/4,1/4)’</td>
</tr>
</tbody>
</table>

Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); 1’.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 h 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) x + 1/4, y + 1/4, z + 1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x + 1/4, y + 1/4, z + 1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) x + 1/4, y + 1/4, z + 1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>16 g ..21'</td>
<td>(0,0,0) [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,0,0) [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>16 f ..21'</td>
<td>(0,0,0) [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,0,0) [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

70.2.617 - 2 - 1226
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>沿线</th>
<th>投影</th>
<th>原点</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[0,0,1]$</td>
<td>c2mm1'</td>
<td>$0,0,0$</td>
</tr>
<tr>
<td>$[1,0,0]$</td>
<td>c2mm1'</td>
<td>$x,0,0$</td>
</tr>
<tr>
<td>$[0,0,0]$</td>
<td>c2mm1'</td>
<td>$0,y,0$</td>
</tr>
</tbody>
</table>

Note

$a^* = a/2$ $b^* = b/2$ $c^* = c/2$
Origin at 22'2' at -1/8, -1/8, -1/8 from T'

Asymmetric unit 0 ≤ x ≤ 1/8; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) T (1 | 0,0,0)
(2) 2' 0,0,z (2 | 0,0,0)
(3) 2' 0,y,0 (2 | 0,0,0)
(4) 2 0,0,0 (2 | 0,0,0)
(5) T' 1/8,1/8,1/8 (1 | 1/4,1/4,1/4)
(6) d (1/4,1/4,0) x,y,1/8 (m_z | 1/4,1/4,1/4)
(7) d (1/4,0,1/4) x,1/8,z (m_y | 1/4,1/4,1/4)
(8) d' (0,1/4,1/4) 1/8,y,z (m_x | 1/4,1/4,1/4)

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2) (1 | 0,1/2,1/2)
(2) 2' (0,0,1/2) 0,1/4,z (2 | 0,1/2,1/2)
(3) 2' (0,1/2,0) 0,y,1/4 (2 | 0,1/2,1/2)
(4) 2 x,1/4,1/4 (2 | 0,1/2,1/2)
(5) T' 1/8,3/8,3/8 (1 | 1/4,3/4,3/4)
(6) d (1/4,3/4,0) x,y,3/8 (m_z | 1/4,3/4,3/4)
(7) d (1/4,0,1/4) x,3/8,z (m_y | 1/4,3/4,3/4)
(8) d' (0,3/4,1/4) 3/8,y,z (m_x | 1/4,3/4,3/4)

For (1/2,0,1/2) + set

(1) t (1/2,0,1/2) (1 | 1/2,0,1/2)
(2) 2' (0,0,1/2) 1/4,0,z (2 | 1/2,0,1/2)
(3) 2' 1/4,y,1/4 (2 | 1/2,0,1/2)
(4) 2 x,0,1/4 (2 | 1/2,0,1/2)
(6) d (3/4,1/4,0) x,y,3/8 (m_z | 3/4,1/4,3/4)
(7) d (3/4,0,3/4) x,1/8,z (m_y | 3/4,1/4,3/4)
(8) d' (0,1/4,3/4) 3/8,y,z (m_x | 3/4,1/4,3/4)

For (1/2,1,2,0) + set

(1) t (1/2,1/2,0) (1 | 1/2,1/2,0)
(2) 2' 1/4,1/4,z (2 | 1/2,1/2,0)
(3) 2' (0,1/2,0) 1/4,y,0 (2 | 1/2,1/2,0)
(4) 2 x,1/4,0 (2 | 1/2,1/2,0)
(6) d (3/4,3/4,0) x,y,1/8 (m_z | 3/4,3/4,1/4)
(7) d (3/4,0,1/4) x,3/8,z (m_y | 3/4,3/4,1/4)
(8) d' (0,3/4,1/4) 3/8,y,z (m_x | 3/4,3/4,1/4)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,1/2,1/2) +</td>
</tr>
<tr>
<td>32 h 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) x̄,y,z [ū,v̄,w]</td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x+1/4,y+1/4,z+1/4 [ū,v̄,w]</td>
<td>(6) x+1/4,y+1/4,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td>(7) x+1/4,y+1/4,z+1/4 [u,v,w]</td>
<td>(8) x̄+1/4,y+1/4,z+1/4 [ū,v̄,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c_p 2'mm'
Along [1,0,0] c2mm
Along [0,1,0] c_p 2'mm'

<table>
<thead>
<tr>
<th>a* = a/2</th>
<th>b* = b/2</th>
<th>c* = c/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>
Origin at 2'2'2 at -1/8, -1/8, -1/8 from $\overline{1}$

Asymmetric unit $0 \leq x \leq 1/8; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1$

Symmetry Operations

For (0,0,0) + set

(1) t \quad (2) $2 \quad$ $0,0,z$ \quad (3) $2' \quad$ $0,y,0$ \quad (4) $2' \quad$ $x,0,0$

\quad \quad (2z \quad $0,0,0$) \quad (2z \quad $0,0,0$) \quad (2z \quad $0,0,0$)$'$

(5) $\overline{1}$ \quad 1/8, 1/8, 1/8 \quad (6) $d \quad$ (1/4, 1/4, 0) \quad x,y,1/8 \quad (7) $d' \quad$ (1/4, 0, 1/4) \quad x,1/8,z \quad (8) $d' \quad$ (0, 1/4, 1/4) \quad 1/8,y,z

\quad (1/4, 1/4, 1/4) \quad (1/4, 1/4, 1/4) \quad (1/4, 1/4, 1/4)$'$

For (0,1/2,1/2) + set

(1) $t \quad$ (0,1/2,1/2) \quad (2) $2 \quad$ (0,0,1/2) \quad 0,1/4,z \quad (3) $2' \quad$ (0,1/2,0) \quad 0,y,1/4 \quad (4) $2' \quad$ x,1/4,1/4

\quad (1/2,1/2,1/2) \quad (1/2,0,1/2) \quad (1/2,0,1/2)$'$ \quad (2z \quad 0,1/2,1/2) \quad (2z \quad 0,1/2,1/2)$'$

(5) $\overline{1}$ \quad 1/8, 3/8, 3/8 \quad (6) $d \quad$ (1/4, 3/4, 0) \quad x,y,3/8 \quad (7) $d' \quad$ (1/4, 0, 3/4) \quad x,3/8,z \quad (8) $d' \quad$ (0, 3/4, 3/4) \quad 1/8,y,z

\quad (1/4, 3/4, 3/4) \quad (1/4, 3/4, 3/4)$'$ \quad (1/4, 3/4, 3/4)$'$

For (1/2,0,1/2) + set

(1) $t \quad$ (1/2,0,1/2) \quad (2) $2 \quad$ (0,0,1/2) \quad 1/4,0,z \quad (3) $2' \quad$ 1/4, y,1/4 \quad (4) $2' \quad$ x,1/4,0,1/4

\quad (1/2,1/2,0) \quad (1/2,0,1/2) \quad (1/2,0,1/2)$'$ \quad (2z \quad 1/2,0,1/2) \quad (2z \quad 1/2,0,1/2)$'$

(5) $\overline{1}$ \quad 3/8, 1/8, 3/8 \quad (6) $d \quad$ (3/4, 1/4, 0) \quad x,y,3/8 \quad (7) $d' \quad$ (3/4, 0, 3/4) \quad x,3/8,z \quad (8) $d' \quad$ (0, 3/4, 3/4) \quad 3/8,y,z

\quad (3/4, 1/4, 3/4) \quad (3/4, 1/4, 3/4)$'$ \quad (3/4, 1/4, 3/4)$'$

For (1/2,1/2,0) + set

(1) $t \quad$ (1/2,1/2,0) \quad (2) $2 \quad$ 1/4,1/4, z \quad (3) $2' \quad$ (0,1/2,0) \quad 1/4,y,0 \quad (4) $2' \quad$ x,1/4,0

\quad (1/2,1/2,0) \quad (1/2,1/2,0) \quad (1/2,1/2,0)$'$ \quad (2z \quad 1/2,1/2,0) \quad (2z \quad 1/2,1/2,0)$'$

(5) $\overline{1}$ \quad 3/8, 3/8, 1/8 \quad (6) $d \quad$ (3/4, 3/4, 0) \quad x,y,1/8 \quad (7) $d' \quad$ (3/4, 0, 1/4) \quad x,3/8,z \quad (8) $d' \quad$ (0, 3/4, 1/4) \quad 3/8,y,z

\quad (3/4, 3/4, 1/4) \quad (3/4, 3/4, 1/4)$'$ \quad (3/4, 3/4, 1/4)$'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +</td>
<td></td>
</tr>
</tbody>
</table>

32 h 1
(1) x,y,z [u,v,w]
(2) \(\bar{x}, \bar{y}, \bar{z} \) [\(\bar{u}, \bar{v}, \bar{w}\)]
(3) \(x, y, z \) [u,v,w]
(4) \(x, y, z \) [u,v,w]
(5) \(x + 1/4, y + 1/4, z + 1/4 \) [u,v,w]
(6) \(x + 1/4, y + 1/4, z + 1/4 \) [u,v,w]
(7) \(x + 1/4, y + 1/4, z + 1/4 \) [u,v,w]
(8) \(x + 1/4, y + 1/4, z + 1/4 \) [u,v,w]

16 g .2 0,0,z [0,0,w] 0,0,\(\bar{z} \) [0,0,w] 1/4,1/4,\(\bar{z} + 1/4 \) [0,0,\(\bar{w}\)] 1/4,1/4,\(\bar{z} + 1/4 \) [0,0,\(\bar{w}\)]

16 f .2' 0,y,0 [u,0,w] 0,y,0 [u,0,w] 1/4,\(y + 1/4, 1/4 \) [u,0,w] 1/4,\(y + 1/4, 1/4 \) [u,0,w]

16 e 2'.. x,0,0 [0,v,w] \(\bar{x}, 0,0 \) [0,\(\bar{v}, \bar{w}\)] \(\bar{x} + 1/4, 1/4, 1/4 \) [0,v,w] \(x + 1/4, 1/4, 1/4 \) [0,\(\bar{v}, \bar{w}\)]

16 d \(\bar{1} \) 5/8,5/8,5/8 [u,v,w] 3/8,3/8,5/8 [u,\(\bar{v}, \bar{w}\)] 3/8,5/8,3/8 [u,\(\bar{v}, \bar{w}\)] 5/8,3/8,3/8 [u,\(\bar{v}, \bar{w}\)]

16 c \(\bar{1} \) 1/8,1/8,1/8 [u,v,w] 7/8,7/8,1/8 [u,\(\bar{v}, \bar{w}\)] 7/8,1/8,7/8 [u,\(\bar{v}, \bar{w}\)] 1/8,7/8,7/8 [u,\(\bar{v}, \bar{w}\)]

8 b 2'2' 0,0,1/2 [0,0,w] 1/4,1/4,3/4 [0,0,w]

8 a 2'2' 0,0,0 [0,0,w] 1/4,1/4,1/4 [0,0,w]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c(\alpha), 2mm</th>
<th>Along [1,0,0]</th>
<th>c 2'mm'</th>
<th>Along [0,1,0]</th>
<th>c 2'mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a/2)</td>
<td>(b^* = b/2)</td>
<td>(a^* = -c/2)</td>
<td>(b^* = b/2)</td>
<td>(a^* = c/2)</td>
<td>(b^* = a/2)</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Origin at 222 at -1/8, -1/8, -1/8 from \(\overline{1} \)

Asymmetric unit

\[
0 \leq x \leq 1/8; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1
\]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad (1,0,0,0) \\
(5) & \quad \overline{1} \quad 1/8,1/8,1/8 \\
(5) & \quad (\overline{1} \quad 1/4,1/4,1/4)'
\end{align*}
\]

\[
\begin{align*}
(6) & \quad d' \quad (1/4,1/4,0) \quad x,y,1/8 \\
(6) & \quad (m_z \quad 1/4,1/4,1/4)'
\end{align*}
\]

\[
\begin{align*}
(7) & \quad d' \quad (1/4,0,1/4) \quad x,1/8,z \\
(7) & \quad (m_y \quad 1/4,1/4,1/4)'
\end{align*}
\]

\[
\begin{align*}
(8) & \quad d' \quad (0,1/4,1/4) \quad 1/8,y,z \\
(8) & \quad (m_\overline{1} \quad 1/4,1/4,1/4)'
\end{align*}
\]

For \((0,1/2,1/2) + \) set

\[
\begin{align*}
(1) & \quad t \quad (0,1/2,1/2) \\
(1) & \quad (1,0,1/2,1/2) \\
(5) & \quad \overline{1} \quad 1/8,3/8,3/8 \\
(5) & \quad (\overline{1} \quad 1/4,3/4,3/4)'
\end{align*}
\]

\[
\begin{align*}
(6) & \quad d' \quad (1/4,3/4,0) \quad x,y,3/8 \\
(6) & \quad (m_z \quad 1/4,3/4,3/4)'
\end{align*}
\]

\[
\begin{align*}
(7) & \quad d' \quad (1/4,0,1/4) \quad x,3/8,z \\
(7) & \quad (m_y \quad 1/4,3/4,3/4)'
\end{align*}
\]

\[
\begin{align*}
(8) & \quad d' \quad (0,3/4,3/4) \quad 1/8,y,z \\
(8) & \quad (m_\overline{1} \quad 1/4,3/4,3/4)'
\end{align*}
\]

For \((1/2,0,1/2) + \) set

\[
\begin{align*}
(1) & \quad t \quad (1/2,0,1/2) \\
(1) & \quad (1,2,0,1/2) \\
(5) & \quad \overline{1} \quad 3/8,1/8,3/8 \\
(5) & \quad (\overline{1} \quad 3/4,1/4,3/4)'
\end{align*}
\]

\[
\begin{align*}
(6) & \quad d' \quad (3/4,1/4,0) \quad x,y,3/8 \\
(6) & \quad (m_z \quad 3/4,1/4,3/4)'
\end{align*}
\]

\[
\begin{align*}
(7) & \quad d' \quad (3/4,0,3/4) \quad x,1/8,z \\
(7) & \quad (m_y \quad 3/4,1/4,3/4)'
\end{align*}
\]

\[
\begin{align*}
(8) & \quad d' \quad (0,1/4,3/4) \quad 3/8,y,z \\
(8) & \quad (m_\overline{1} \quad 3/4,1/4,3/4)'
\end{align*}
\]

For \((1/2,1,2,0) + \) set

\[
\begin{align*}
(1) & \quad t \quad (1/2,1,2,0) \\
(1) & \quad (1,2,1,2,0) \\
(5) & \quad \overline{1} \quad 3/8,3/8,1/8 \\
(5) & \quad (\overline{1} \quad 3/4,3/4,1/4)'
\end{align*}
\]

\[
\begin{align*}
(6) & \quad d' \quad (3/4,3/4,0) \quad x,y,1/8 \\
(6) & \quad (m_z \quad 3/4,3/4,1/4)'
\end{align*}
\]

\[
\begin{align*}
(7) & \quad d' \quad (3/4,0,1/4) \quad x,3/8,z \\
(7) & \quad (m_y \quad 3/4,3/4,1/4)'
\end{align*}
\]

\[
\begin{align*}
(8) & \quad d' \quad (0,3/4,1/4) \quad 3/8,y,z \\
(8) & \quad (m_\overline{1} \quad 3/4,3/4,1/4)'
\end{align*}
\]

70.5.620 - 1 - 1232
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +</td>
<td></td>
</tr>
</tbody>
</table>

(1) x,y,z [u,v,w]	(2) x,y,z [u,v,w]
(3) x,y,z [u,v,w]	(4) x,y,z [u,v,w]
(5) x+1/4,y+1/4,z+1/4 [u,v,w]	(6) x+1/4,y+1/4,z+1/4 [u,v,w]
(7) x+1/4,y+1/4,z+1/4 [u,v,w]	(8) x+1/4,y+1/4,z+1/4 [u,v,w]

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1] c 2m'm' a" = a/2 b" = b/2</td>
</tr>
<tr>
<td>Along [1,0,0] c 2m'm' a" = b/2 b" = c/2</td>
</tr>
<tr>
<td>Along [0,1,0] c 2m'm' a" = c/2 b" = a/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z Origin at 0,0,z Origin at x,0,0
Immm | mmm | Orthorhombic
71.1.621 | I2/m2/m2/m

Origin at center (mmm)

Asymmetric unit
$0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0) +$ set

(1) 1
$\begin{array}{c}
(1) 0,0,0
\end{array}$

(2) $2 \begin{array}{c}
0,0,z
(2_{z} 0,0,0)
\end{array}$

(3) $2 \begin{array}{c}
y,0,0
(2_{y} 0,0,0)
\end{array}$

(4) $2 \begin{array}{c}
x,0,0
(2_{x} 0,0,0)
\end{array}$

(5) $\bar{1} \begin{array}{c}
0,0,0
\end{array}$

(6) $m \begin{array}{c}
x,y,0
(m_{z} 0,0,0)
\end{array}$

(7) $m \begin{array}{c}
x,0,z
(m_{y} 0,0,0)
\end{array}$

(8) $m \begin{array}{c}
y,0,z
(m_{x} 0,0,0)
\end{array}$

For $(1/2,1/2,1/2) +$ set

(1) $t \begin{array}{c}
(1/2,1/2,1/2)
\end{array}$

(2) $2 \begin{array}{c}
(0,0,1/2)
(2_{z} 1/2,1/2,1/2)
\end{array}$

(3) $2 \begin{array}{c}
(0,1/2,0)
(2_{y} 1/2,1/2,1/2)
\end{array}$

(4) $2 \begin{array}{c}
(1/2,0,0)
(2_{x} 1/2,1/2,1/2)
\end{array}$

(5) $\bar{1} \begin{array}{c}
(1/2,1/2,1/2)
\end{array}$

(6) $n \begin{array}{c}
(1/2,1/2,0)
(m_{z} 1/2,1/2,1/2)
\end{array}$

(7) $n \begin{array}{c}
(1/2,0,1/2)
(m_{y} 1/2,1/2,1/2)
\end{array}$

(8) $n \begin{array}{c}
(0,1/2,1/2)
(m_{x} 1/2,1/2,1/2)
\end{array}$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x ,y ,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x ,y ,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x ,y ,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x ,y ,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x ,y ,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x ,y ,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x ,y ,z [u,v,w]</td>
</tr>
<tr>
<td>8 n .m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x ,y ,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x ,y ,0 [0,0,w]</td>
</tr>
<tr>
<td>8 m .m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x ,0 ,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x ,0 ,z [0,v,0]</td>
</tr>
<tr>
<td>8 l m..</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 k I</td>
<td>1/4,1/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,3/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,3/4 [u,v,w]</td>
</tr>
<tr>
<td>4 j mm2</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 i mm2</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 h mm2m</td>
<td>0,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 g mm2m</td>
<td>0,y,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,0 [0,0,0]</td>
</tr>
<tr>
<td>4 f 2mm</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x ,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 e 2mm</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x ,0 ,0 [0,0,0]</td>
</tr>
<tr>
<td>2 d mmm</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c mmm</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b mmm</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a mmm</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1'
\(a^* = a \quad b^* = b\)
Origin at 0,0,z

Along [1,0,0] c2mm1'
\(a^* = b \quad b^* = c\)
Origin at x,0,0

Along [0,1,0] c2mm1'
\(a^* = c \quad b^* = a\)
Origin at 0,y,0
Immm1'
71.2.622

Orthorhombic

m1m1'
I2/m2/m2/m1'

Origin at center (mmm1')
Asymmetric unit
0 < x < 1/4; 0 < y < 1/2; 0 < z < 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 0,0,0)

(2) 2 0,0,z
(2z 0,0,0)

(3) 2 0,y,0
(2y 0,0,0)

(4) 2 x,0,0
(2x 0,0,0)

(5) T 0,0,0
(T 0,0,0)

(6) m x,y,0
(mz 0,0,0)

(7) m x,0,z
(my 0,0,0)

(8) m 0,y,z
(m 0,0,0)

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(1 1/2,1/2,1/2)

(2) 2 (0,0,1/2) 1/4,1/4,z
(2z 1/2,1/2,1/2)

(3) 2 (0,1/2,0) 1/4,y,1/4
(2y 1/2,1/2,1/2)

(4) 2 (1/2,0,0) x,1/4,1/4
(2x 1/2,1/2,1/2)

(5) T' 1/4,1/4,1/4
(T' 1/2,1/2,1/2)

(6) n (1/2,1/2,0) x,y,1/4
(mz 1/2,1/2,1/2)

(7) n (1/2,0,1/2) x,1/4,z
(my 1/2,1/2,1/2)

(8) n (0,1/2,1/2) 1/4,y,z
(m 1/2,1/2,1/2)

For (0,0,0)' + set

(1) 1'
(1 0,0,0)'

(2) 2' 0,0,z
(2z' 0,0,0)'

(3) 2' 0,y,0
(2y' 0,0,0)'

(4) 2' x,0,0
(2x' 0,0,0)'

(5) T' 0,0,0
(T' 0,0,0)'

(6) m' x,y,0
(mz' 0,0,0)'

(7) m' x,0,z
(my' 0,0,0)'

(8) m' 0,y,z
(m' 0,0,0)'

For (1/2,1/2,1/2)' + set

(1) t' (1/2,1/2,1/2)
(1 1/2,1/2,1/2)'

(2) 2' (0,0,1/2) 1/4,1/4,z
(2z 1/2,1/2,1/2)'

(3) 2' (0,1/2,0) 1/4,y,1/4
(2y 1/2,1/2,1/2)'

(4) 2' (1/2,0,0) x,1/4,1/4
(2x 1/2,1/2,1/2)'

(5) T' 1/4,1/4,1/4
(T' 1/2,1/2,1/2)'

(6) n' (1/2,1/2,0) x,y,1/4
(mz 1/2,1/2,1/2)'

(7) n' (1/2,0,1/2) x,1/4,z
(my 1/2,1/2,1/2)'

(8) n' (0,1/2,1/2) 1/4,y,z
(m 1/2,1/2,1/2)'

71.2.622 - 1 - 1236
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,0,0)' + (1/2,1/2,1/2) + (1/2,1/2,1/2)' +</td>
<td></td>
</tr>
<tr>
<td>16 o 11'</td>
<td>(1) x,y,z [0,0,0] (2) x , y , z [0,0,0] (3) x , y , z [0,0,0] (4) x , y , z [0,0,0] (5) x , y , z [0,0,0] (6) x , y , z [0,0,0] (7) x , y , z [0,0,0] (8) x , y , z [0,0,0]</td>
</tr>
<tr>
<td>8 n .m1'</td>
<td>x , y , 0 [0,0,0] x , y , 0 [0,0,0] x , y , 0 [0,0,0] x , y , 0 [0,0,0]</td>
</tr>
<tr>
<td>8 m .m1'</td>
<td>x , 0 , z [0,0,0] x , 0 , z [0,0,0] x , 0 , z [0,0,0] x , 0 , z [0,0,0]</td>
</tr>
<tr>
<td>8 l m..1'</td>
<td>0 , y , z [0,0,0] 0 , y , z [0,0,0] 0 , y , z [0,0,0] 0 , y , z [0,0,0]</td>
</tr>
<tr>
<td>8 k 1/1'</td>
<td>1/4 , 1/4 , 1/4 [0,0,0] 3/4 , 3/4 , 1/4 [0,0,0] 3/4 , 1/4 , 3/4 [0,0,0] 1/4 , 3/4 , 3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 j mm21'</td>
<td>1/2 , 0 , z [0,0,0] 1/2 , 0 , z [0,0,0]</td>
</tr>
<tr>
<td>4 i mm21'</td>
<td>0 , 0 , z [0,0,0] 0 , 0 , z [0,0,0]</td>
</tr>
<tr>
<td>4 h m2m1'</td>
<td>0 , y , 1/2 [0,0,0] 0 , y , 1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 g m2m1'</td>
<td>0 , y , 0 [0,0,0] 0 , y , 0 [0,0,0]</td>
</tr>
<tr>
<td>4 f 2mm1'</td>
<td>x , 1/2 , 0 [0,0,0] x , 1/2 , 0 [0,0,0]</td>
</tr>
<tr>
<td>4 e 2mm1'</td>
<td>x , 0 , 0 [0,0,0] x , 0 , 0 [0,0,0]</td>
</tr>
<tr>
<td>2 d mmm1'</td>
<td>1/2 , 0 , 1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c mmm1'</td>
<td>1/2 , 1/2 , 0 [0,0,0]</td>
</tr>
<tr>
<td>2 b mmm1'</td>
<td>0 , 1/2 , 1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a mmm1'</td>
<td>0 , 0 , 0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>c2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>c2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c</td>
<td>b* = a</td>
</tr>
<tr>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Im'mm
71.3.623

m'mm
l2/m'2'/m2'/m

Orthorhombic

Origin at center (m'mm)

Asymmetric unit
0 < x < 1/4; 0 < y < 1/2; 0 < z < 1/2

Symmetry Operations

For (0,0,0) + set

(1)
(1 0,0,0)

(5)
(1 0,0,0)

(1)
(1 1/2,1/2,1/2)

(2) 2' 0,0,z
(2z 0,0,0')

(6) m x,y,0
(mz 0,0,0)

(3) 2' 0,y,0
(2y 0,0,0')

(7) m x,0,z
(my 0,0,0)

(4) 2 x,0,0
(2x 0,0,0)

(8) m' 0,y,z
(mz 0,0,0')

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)

(2) 2' (0,0,1/2)
(2z 1/2,1/2,1/2')

(6) n (1/2,1/2,0)
(mz 1/2,1/2,1/2)

(3) 2' (0,1/2,0)
(2y 1/2,1/2,1/2')

(7) n (1/2,0,1/2)
(my 1/2,1/2,1/2)

(4) 2 (1/2,0,0)
(2x 1/2,1/2,1/2)

(8) n' (0,1/2,1/2)
(mx 1/2,1/2,1/2')

71.3.623 - 1 - 1238
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x̅,y̅,z̅ [u̅,v̅,w̅]</td>
<td>(6) x̅,y̅,z̅ [u̅,v̅,w̅]</td>
</tr>
<tr>
<td>8 n..m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 m..m'</td>
<td>x̅,0,z [0,v,0]</td>
</tr>
<tr>
<td>8 l m'..</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 k 1</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 j m'm2'</td>
<td>1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 i m'm2'</td>
<td>0,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 h m'2'm</td>
<td>0,y,1/2 [0,w,0]</td>
</tr>
<tr>
<td>4 g m'2'm</td>
<td>0,y,0 [0,w,0]</td>
</tr>
<tr>
<td>4 f 2mm</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 e 2mm</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 d m'2m</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c m'2m</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b m'2m</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a m'2m</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2mm1'</th>
<th>Along [1,0,0]</th>
<th>c2mm</th>
<th>Along [0,1,0]</th>
<th>c2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = c</td>
<td>b* = a</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,0,0</td>
<td>Origin at 0,y,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Im"m"m
71.4.624

m"m"m
l2'/m'2'/m'2/m

Orthorhombic

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2 0,0,z
(2 | 0,0,0)

(3) 2' 0,y,0
(2' | 0,0,0')

(4) 2' x,0,0
(2 | 0,0,0)

(5) T 0,0,0
(T | 0,0,0)

(6) m x,y,0
(m | 0,0,0)

(7) m' x,0,z
(m' | 0,0,0')

(8) m' 0,y,z
(m' | 0,0,0')

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(1 | 1/2,1/2,1/2)

(2) 2 (0,0,1/2) 1/4,1/4,z
(2 | 1/2,1/2,1/2)

(3) 2' (0,1/2,0) 1/4,y,1/4
(2' | 1/2,1/2,1/2')

(4) 2' (1/2,0,0) x,1/4,1/4
(2 | 1/2,1/2,1/2')

(5) T 1/4,1/4,1/4
(T | 1/2,1/2,1/2)

(6) n (1/2,1/2,0) x,y,1/4
(m | 1/2,1/2,1/2)

(7) n' (1/2,0,1/2) x,1/4,z
(m' | 1/2,1/2,1/2')

(8) n' (0,1/2,1/2) 1/4,y,z
(m' | 1/2,1/2,1/2')
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 o 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w] (5) x,y,z [u,v,w] (6) x,y,z [u,v,w] (7) x,y,z [u,v,w] (8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 n.m</td>
<td>x,y,0 [0,0,w] x,y,0 [0,0,w] x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 m.m'</td>
<td>x,0,z [u,0,w] x,0,z [u,0,w] x,0,z [u,0,w]</td>
</tr>
<tr>
<td>8 l.m'</td>
<td>0,y,z [0,v,w] 0,y,z [0,v,w] 0,y,z [0,v,w]</td>
</tr>
<tr>
<td>4 j m'm'2</td>
<td>1/2,0,z [0,0,w] 1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 i m'm'2</td>
<td>0,0,z [0,0,w] 0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 h m'2m</td>
<td>0,y,1/2 [0,0,w] 0,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 g m'2m</td>
<td>0,y,0 [0,0,w] 0,y,0 [0,0,w]</td>
</tr>
<tr>
<td>4 f 2'm'm</td>
<td>x,1/2,0 [0,0,w] x,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>4 e 2'm'm</td>
<td>x,0,0 [0,0,w] x,0,0 [0,0,w]</td>
</tr>
<tr>
<td>2 d m'm'm</td>
<td>1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 c m'm'm</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 b m'm'm</td>
<td>0,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a m'm'm</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1' Along [1,0,0] c2'mm' Along [0,1,0] c2'mm'

\[a^* = a \quad b^* = b \]

Origin at 0,0,z \[a^* = -c \quad b^* = b \]

Origin at x,0,0 \[a^* = c \quad b^* = a \]

Origin at 0,y,0
Im'm'm'
71.5.625
Orthorhombic

m'm'm'
l2/m'2/m'2/m'

Origin at center (m'm'm')

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) \(\begin{pmatrix} 1 \\ 0,0,0 \end{pmatrix} \)

(2) \(\begin{pmatrix} 2 \\ 0,0,0 \end{pmatrix} \)

(3) \(\begin{pmatrix} 2 \\ 0,y,0 \end{pmatrix} \)

(4) \(\begin{pmatrix} 2 \\ x,0,0 \end{pmatrix} \)

(5) \(\begin{pmatrix} \bar{1} \\ 0,0,0 \end{pmatrix} \)

(6) \(\begin{pmatrix} m' \\ x,y,0 \end{pmatrix} \)

(7) \(\begin{pmatrix} m' \\ x,0,z \end{pmatrix} \)

(8) \(\begin{pmatrix} m' \\ 0,y,z \end{pmatrix} \)

For (1/2,1/2,1/2) + set

(1) \(\begin{pmatrix} t \end{pmatrix} \)

(2) \(\begin{pmatrix} 2 \end{pmatrix} \)

(3) \(\begin{pmatrix} 2 \end{pmatrix} \)

(4) \(\begin{pmatrix} 2 \end{pmatrix} \)

(5) \(\begin{pmatrix} \bar{1} \end{pmatrix} \)

(6) \(\begin{pmatrix} n' \end{pmatrix} \)

(7) \(\begin{pmatrix} n' \end{pmatrix} \)

(8) \(\begin{pmatrix} n' \end{pmatrix} \)
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x, y, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x, y, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x, y, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x, y, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x, y, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x, y, z [u,v,w]</td>
</tr>
<tr>
<td>8 n .m'</td>
<td>x,y,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>x, y, 0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x, y, 0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x, y, 0 [u,v,0]</td>
</tr>
<tr>
<td>8 m .m'</td>
<td>x,0,z [u,w]</td>
</tr>
<tr>
<td></td>
<td>x, 0, z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x, 0, z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x, 0, z [u,0,w]</td>
</tr>
<tr>
<td>8 l .m'</td>
<td>0, y, z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0, y, z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0, y, z [0,v,w]</td>
</tr>
<tr>
<td>8 k .m'</td>
<td>1/4, 1, 1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4, 3/4, 1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4, 1/4, 3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4, 3/4, 3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 j m'm'2</td>
<td>1/2, 0, z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2, 0, z [0,0,w]</td>
</tr>
<tr>
<td>4 i m'm'2</td>
<td>0, 0, z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0, 0, z [0,0,w]</td>
</tr>
<tr>
<td>4 h m'2m'</td>
<td>0, y, 1/2 [0, v,0]</td>
</tr>
<tr>
<td></td>
<td>0, y, 1/2 [0, v,0]</td>
</tr>
<tr>
<td>4 g m'2m'</td>
<td>0, y, 0 [0, v,0]</td>
</tr>
<tr>
<td></td>
<td>0, y, 0 [0, v,0]</td>
</tr>
<tr>
<td>4 f 2m'm'</td>
<td>x, 1/2, 0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x, 1/2, 0 [u,0,0]</td>
</tr>
<tr>
<td>4 e 2m'm'</td>
<td>x, 0, 0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x, 0, 0 [u,0,0]</td>
</tr>
<tr>
<td>2 d m'm'm'</td>
<td>1/2, 0, 1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c m'm'm'</td>
<td>1/2, 1/2, 0 [0,0,0]</td>
</tr>
<tr>
<td>2 b m'm'm'</td>
<td>0, 1/2, 1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a m'm'm'</td>
<td>0, 0, 0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2m'm'</th>
<th>Along [1,0,0]</th>
<th>c2m'm'</th>
<th>Along [0,1,0]</th>
<th>c2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>

71.5.625 - 2 - 1243
Symmetry Operations

For (0,0,0) + set

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1) (0,0,0)</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>2</td>
<td>(2) (0,0,z)</td>
<td>(2_z) (0,0,0)</td>
</tr>
<tr>
<td>3</td>
<td>(2) (0,y,0)</td>
<td>(2_y) (0,0,0)</td>
</tr>
<tr>
<td>4</td>
<td>(2) (x,0,0)</td>
<td>(2_x) (0,0,0)</td>
</tr>
<tr>
<td>5</td>
<td>(1) (0,0,0)</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>6</td>
<td>(m) (x,y,0)</td>
<td>(m_z) (0,0,0)</td>
</tr>
<tr>
<td>7</td>
<td>(m) (x,0,z)</td>
<td>(m_y) (0,0,0)</td>
</tr>
<tr>
<td>8</td>
<td>(m) (0,y,z)</td>
<td>(m_x) (0,0,0)</td>
</tr>
</tbody>
</table>

For \((1/2,1/2,1/2)' + set\)

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(t') (1/2,1/2,1/2)</td>
<td>(0,0,1/4)</td>
</tr>
<tr>
<td>2</td>
<td>(2') (0,0,1/2)</td>
<td>(1/4,1/4,1/4)</td>
</tr>
<tr>
<td>3</td>
<td>(2') (0,1/2,0)</td>
<td>(1/4,1/4,1/4)</td>
</tr>
<tr>
<td>4</td>
<td>(2') (1/2,0,0)</td>
<td>(1/4,1/4,1/4)</td>
</tr>
<tr>
<td>5</td>
<td>(1/2,1/2,1/2)</td>
<td>(0,0,1/4)</td>
</tr>
<tr>
<td>6</td>
<td>(n') (1/2,1/2,0)</td>
<td>(0,0,1/4)</td>
</tr>
<tr>
<td>7</td>
<td>(n') (1/2,0,1/2)</td>
<td>(0,0,1/4)</td>
</tr>
<tr>
<td>8</td>
<td>(n') (0,1/2,1/2)</td>
<td>(0,0,1/4)</td>
</tr>
</tbody>
</table>

Asymmetric unit

\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 o 1</td>
<td>x,y,z [u,v,w]</td>
<td>(2) (\bar{x},\bar{y},\bar{z} [\bar{u},\bar{v},\bar{w}])</td>
</tr>
<tr>
<td>8 n m</td>
<td>x,y,0 [0,0,w]</td>
<td>(3) (x,y,\bar{z} [\bar{u},\bar{v},w])</td>
</tr>
<tr>
<td>8 m l</td>
<td>x,0,z [0,v,0]</td>
<td>(4) (x,y,z [u,v,w])</td>
</tr>
<tr>
<td>8 k (\bar{1})</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>(5) (\bar{x},\bar{y},\bar{z} [\bar{u},\bar{v},\bar{w}])</td>
</tr>
<tr>
<td>4 j mm2</td>
<td>1/2,0,z [0,0,0]</td>
<td>(6) (x,y,z [u,v,w])</td>
</tr>
<tr>
<td>4 i mm2</td>
<td>0,0,z [0,0,0]</td>
<td>(7) (x,\bar{y},\bar{z} [\bar{u},\bar{v},\bar{w}])</td>
</tr>
<tr>
<td>4 h m2m</td>
<td>0,y,1/2 [0,0,0]</td>
<td>(8) (x,y,z [u,v,w])</td>
</tr>
<tr>
<td>4 g m2m</td>
<td>0,y,0 [0,0,0]</td>
<td>8 n m</td>
</tr>
<tr>
<td>4 f 2mm</td>
<td>x,1/2,0 [0,0,0]</td>
<td>(3) (x,y,\bar{z} [\bar{u},\bar{v},0])</td>
</tr>
<tr>
<td>4 e 2mm</td>
<td>x,0,0 [0,0,0]</td>
<td>(4) (x,y,z [u,v,w])</td>
</tr>
<tr>
<td>2 d mmm</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>(5) (\bar{x},\bar{y},\bar{z} [\bar{u},\bar{v},\bar{w}])</td>
</tr>
<tr>
<td>2 c mmm</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>(6) (x,y,z [u,v,w])</td>
</tr>
<tr>
<td>2 b mmm</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>(7) (x,\bar{y},\bar{z} [\bar{u},\bar{v},\bar{w}])</td>
</tr>
<tr>
<td>2 a mmm</td>
<td>0,0,0 [0,0,0]</td>
<td>(8) (x,y,z [u,v,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b)</td>
</tr>
</tbody>
</table>

Origin at 0,0,z

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>c2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = b)</td>
<td>(b^* = c)</td>
</tr>
</tbody>
</table>

Origin at x,0,0

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>c2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = c)</td>
<td>(b^* = a)</td>
</tr>
</tbody>
</table>

Origin at 0,y,0
Orthorhombic

Asymmetric unit:

\(0 < x < 1/4; \quad 0 < y < 1/2; \quad 0 < z < 1/2 \)

Symmetry Operations

For \((0,0,0) + \) set:

1. \((1) \uparrow (0,0,0) \)
2. \((2) 0,0,z \)
3. \((3) 0,y,0 \)
4. \((4) x,0,0 \)

For \((1/2,1/2,1/2)'+ \) set:

1. \((1) (1/2,1/2,1/2) \)
2. \((2) (0,1/2,1/2) \)
3. \((3) (0,1/2,0) \)
4. \((4) (1/2,0,0) \)

Origin at center \((m'mm)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 n .m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 m .m</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>8 l m'</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 k 1</td>
<td>1/4,1/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,3/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,3/4 [u,v,w]</td>
</tr>
<tr>
<td>4 j m'2'</td>
<td>1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 i m'2'</td>
<td>0,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 h m'2'm</td>
<td>0,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 g m'2'm</td>
<td>0,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,0 [0,0,w]</td>
</tr>
<tr>
<td>4 f 2mm</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 e 2mm</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 d m'mm</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c m'mm</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b m'mm</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a m'mm</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] c2mm1'
 \(a' = a \) \(b' = b \)
 Origin at 0,0,z

- Along [1,0,0] c\(_p\)2mm
 \(a' = b \) \(b' = c \)
 Origin at x,0,0

- Along [0,1,0] c2mm1'
 \(a' = c \) \(b' = a \)
 Origin at 0,y,0
Origin at center (m’m’m)

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. 1 (1 0,0,0)
2. 2 0,0,z (2 0,0,0)
3. 2’ 0,y,0 (2 0,0,0)’
4. 2’ x,0,0 (2 0,0,0)’
5. 1 (0,0,0) (1 0,0,0)’
6. m x,y,0 (m 0,0,0) (m 0,0,0)’
7. m’ x,0,z (m 0,0,0)’
8. m’ 0,y,z (m 0,0,0)’

For (1/2,1/2,1/2)’ + set

1. t’ (1/2,1/2,1/2) (1 1/2,1/2,1/2)’
2. 2’ (0,0,1/2) 1/4,1/4,z (2 1/2,1/2,1/2)’
3. 2 (0,1/2,0) 1/4,y,1/4 (2 1/2,1/2,1/2)
4. 2 (1/2,0,0) x,1/4,1/4 (2 1/2,1/2,1/2)
5. 1’ 1/4,1/4,1/4 (1 1/2,1/2,1/2)’
6. n’ (1/2,1/2,0) x,y,1/4 (m 1/2,1/2,1/2)’
7. n (1/2,0,1/2) x,1/4,z (m 1/2,1/2,1/2)
8. n (0,1/2,1/2) 1/4,y,z (m 1/2,1/2,1/2)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
<td></td>
</tr>
<tr>
<td>16 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2) x̅,y̅,z [u̅,v̅,w̅]</td>
<td></td>
</tr>
<tr>
<td>(3) x̅,y̅,z̅ [u̅,v̅,w̅]</td>
<td></td>
</tr>
<tr>
<td>(4) x̄,ȳ,z̄ [ū,v̄,w̄]</td>
<td></td>
</tr>
<tr>
<td>(5) x̅,y̅,z̅ [u̅,v̅,w̅]</td>
<td></td>
</tr>
<tr>
<td>(6) x̅,y̅,z̅ [u̅,v̅,w̅]</td>
<td></td>
</tr>
<tr>
<td>(7) x̅,y̅,z̅ [u̅,v̅,w̅]</td>
<td></td>
</tr>
<tr>
<td>(8) x̅,y̅,z̅ [u̅,v̅,w̅]</td>
<td></td>
</tr>
<tr>
<td>8 n .m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>x̄,ȳ,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>x̅,y̅,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>x̅,y̅,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 m .m'</td>
<td>x̅,0,z [u̅,0,w]</td>
</tr>
<tr>
<td>x̅,0,z [u̅,0,w]</td>
<td></td>
</tr>
<tr>
<td>x̅,0,z [u̅,0,w]</td>
<td></td>
</tr>
<tr>
<td>x̅,0,z [u̅,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 l .m</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>0,y,z [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>0,y,z [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>0,y,z [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 k 1</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>3/4,3/4,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>3/4,1/4,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1/4,3/4,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 j m'm'2</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>1/2,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 i m'm'2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>0,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 h m'2m</td>
<td>0,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>0,y,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 g m'2m</td>
<td>0,y,0 [0,0,w]</td>
</tr>
<tr>
<td>0,y,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 f 2'm'm</td>
<td>x,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>x̅,1/2,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 e 2'm'm</td>
<td>x,0,0 [0,0,w]</td>
</tr>
<tr>
<td>x̅,0,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 d m'm'm</td>
<td>1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 c m'm'm</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 b m'm'm</td>
<td>0,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a m'm'm</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>c_p'2'mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -c b* = b</td>
<td></td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>c_p'-2'mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c b* = a</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (m’m’m’)

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1) [0,0,0]
(2) 2 0,0,z
(2) [0,0,0]
(3) 2 0,y,0
(3) [0,0,0]
(4) 2 x,0,0
(4) [0,0,0]
(5) 1/4,1/4,1/4
(6) m’ x,y,0
(6) [0,0,0]
(7) m’ x,0,z
(7) [0,0,0]
(8) m’ 0,y,z
(8) [0,0,0]

(1) m’ (1/2,1/2,1/2)
(1) [1/2,1/2,1/2]
(2) 2’ (0,0,1/2) 1/4,1/4,z
(2) [1/2,1/2,1/2]
(3) 2’ (0,1/2,0) 1/4,y,1/4
(3) [1/2,1/2,1/2]
(4) 2’ (1/2,0,0) x,1/4,1/4
(4) [1/2,1/2,1/2]

(5) m’ (1/4,1/4,1/4)
(5) [1/2,1/2,1/2]
(6) n (1/2,1/2,0) x,y,1/4
(6) [1/2,1/2,1/2]
(7) n (1/2,0,1/2) x,1/4,z
(7) [1/2,1/2,1/2]
(8) n (0,1/2,1/2) 1/4,y,z
(8) [1/2,1/2,1/2]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 o</td>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>8 n</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>8 m</td>
<td>x,0,z [u,0,w]</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>8 l</td>
<td>0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 k</td>
<td>1/4,1/4,1/4 [u,v,w]</td>
<td>1/4,1/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td>4 j</td>
<td>1/2,0,z [0,0,0]</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 i</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 h</td>
<td>0,y,1/2 [0,v,0]</td>
<td>0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 g</td>
<td>0,y,0 [0,v,0]</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td>4 f</td>
<td>x,1/2,0 [u,0,0]</td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4 e</td>
<td>x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>2 d</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c_p 2m'm'
Along [1,0,0] c_p 2m'm'
Along [0,1,0] c_p 2m'm'

a* = a b* = b
a* = b b* = c
a* = c b* = a

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0

71.9.629 - 2 - 1251
Orthorhombic

Ibam

\[\text{72.1.630} \]

mmm

\[\text{l2/b2/a2/m} \]

Origin at center \((2/m)\) at \(cc2/m\)

Asymmetric unit

\[
0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2}
\]

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)
 \[
 (1|0,0,0)
 \]
2. \(2\)
 \[
 (2|0,0,0; 2z|0,0,0)
 \]
3. \(3\)
 \[
 (3|0,0,1/2; 2z|0,0,1/2)
 \]
4. \(4\)
 \[
 (4|x,0,1/4; 2x|0,0,1/2)
 \]
5. \(5\)
 \[
 (5|0,0,0; m|0,0,0)
 \]
6. \(6\)
 \[
 (6|x,y,0; m|0,0,0)
 \]
7. \(7\)
 \[
 (7|0,0,1/2; c|0,0,1/2)
 \]
8. \(8\)
 \[
 (8|0,0,1/2; c|0,0,1/2)
 \]

For \((1/2,1/2,1/2)\) + set

1. \(1\)
 \[
 (1|1/2,1/2,1/2)
 \]
2. \(2\)
 \[
 (2|0,1/2,0; 1/2,1/2,1/2)
 \]
3. \(3\)
 \[
 (3|1/2,0,0; 1/2,1/2,0)
 \]
4. \(4\)
 \[
 (4|1/2,0,0; 1/2,1/2,0)
 \]
5. \(5\)
 \[
 (5|1/2,1/2,1/2)
 \]
6. \(6\)
 \[
 (6|x,y,1/4; m|1/2,1/2,1/2)
 \]
7. \(7\)
 \[
 (7|x,1/4,0; m|1/2,1/2,1/2)
 \]
8. \(8\)
 \[
 (8|1/4,y,z; m|1/2,1/2,0)
 \]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x, y, -z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x, y, -z +1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x, y, -z +1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, -z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x, y, -z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x, y, -z +1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x, y, -z +1/2 [u,v,w]</td>
</tr>
<tr>
<td>8 j</td>
<td>x, y, 0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x, y, 1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x, y, 1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 i</td>
<td>0,1/2, z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2, z +1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2, z +1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 h</td>
<td>0, 0, z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0, 0, z +1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0, 0, z +1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 g</td>
<td>0, y, 1/4 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0, y, 3/4 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0, y, 3/4 [0,v,0]</td>
</tr>
<tr>
<td>8 f</td>
<td>x, 0, 1/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x, 0, 3/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x, 0, 3/4 [u,0,0]</td>
</tr>
<tr>
<td>8 e</td>
<td>1/4, 1/4, 1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/4, 3/4, 1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4, 3/4, 1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4, 3/4, 1/4 [u,v,w]</td>
</tr>
<tr>
<td>4 d</td>
<td>1/2, 0, 0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2, 0, 1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0, 0, 1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 c</td>
<td>0, 0, 0 [0,0,w]</td>
</tr>
<tr>
<td>4 b</td>
<td>1/2, 0, 1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>0, 0, 1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0, 0, 3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] c2mm1'
- Along [1,0,0] p2_2_2'mm'
- Along [0,1,0] p2_2_2'mm'
- Origin at 0,0,z

a* = a b* = b

Origin at x,0,0

a* = c/2 b* = a/2

Origin at x,0,0

Origin at 0,y,0

72.1.630 - 2 - 1253
Origin at center (2/m1') at cc2/m1'

Asymmetric unit

\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

For \((0,0,0) + \text{set}\)

\[
\begin{align*}
(1) & \quad 1 \quad (0,0,0) \\
(2) & \quad 2 \quad 0,0,z \\
& \quad (2,0,0,0) \\
(5) & \quad \overline{1} \quad 0,0,0 \\
& \quad (\overline{1},0,0,0) \\
(6) & \quad \bar{m} \quad x,y,0 \\
& \quad (m_x,0,0,0) \\
(7) & \quad \bar{c} \quad (0,0,1/2) \quad x,0,z \\
& \quad (m_y,0,0,1/2) \\
(8) & \quad \bar{c} \quad (0,0,1/2) \quad 0,y,z \\
& \quad (m_y,0,0,1/2) \\
\end{align*}
\]

For \((1/2,1/2,1/2) + \text{set}\)

\[
\begin{align*}
(1) & \quad t \quad (1/2,1/2,1/2) \\
& \quad (1/2,1/2,1/2) \\
(2) & \quad 2 \quad (0,0,1/2) \quad 1/4,1/4,z \\
& \quad (2,1/2,1/2,1/2) \\
(5) & \quad \overline{1} \quad 1/4,1/4,1/4 \\
& \quad (\overline{1},1/2,1/2,1/2) \\
(6) & \quad n \quad (1/2,1/2,0) \quad x,y,1/4 \\
& \quad (m_z,1/2,1/2,1/2) \\
(7) & \quad \bar{a} \quad (1/2,0,0) \quad x,1/4,z \\
& \quad (m_y,1/2,1/2,0) \\
(8) & \quad \bar{b} \quad (0,1/2,0) \quad 1/4,y,z \\
& \quad (m_z,1/2,1/2,0) \\
\end{align*}
\]

For \((0,0,0)' + \text{set}\)

\[
\begin{align*}
(1) & \quad 1' \quad (0,0,0)' \\
& \quad (1,0,0,0)' \\
(2) & \quad 2' \quad 0,0,z \\
& \quad (2,0,0,0)' \\
(5) & \quad \overline{1}' \quad 0,0,0 \\
& \quad (\overline{1},0,0,0)' \\
(6) & \quad m' \quad x,y,0 \\
& \quad (m_z,0,0,0)' \\
(7) & \quad \bar{c}' \quad (0,0,1/2) \quad x,0,z \\
& \quad (m_y,0,0,1/2)' \\
(8) & \quad \bar{c}' \quad (0,0,1/2) \quad 0,y,z \\
& \quad (m_y,0,0,1/2)' \\
\end{align*}
\]

For \((1/2,1/2,1/2)' + \text{set}\)

\[
\begin{align*}
(1) & \quad t' \quad (1/2,1/2,1/2)' \\
& \quad (1/2,1/2,1/2)' \\
(2) & \quad 2' \quad (0,0,1/2) \quad 1/4,1/4,z \\
& \quad (2,1/2,1/2,1/2)' \\
(5) & \quad \overline{1}' \quad 1/4,1/4,1/4 \\
& \quad (\overline{1},1/2,1/2,1/2)' \\
(6) & \quad n' \quad (1/2,1/2,0) \quad x,y,1/4 \\
& \quad (m_z,1/2,1/2,1/2)' \\
(7) & \quad \bar{a}' \quad (1/2,0,0) \quad x,1/4,z \\
& \quad (m_y,1/2,1/2,0)' \\
(8) & \quad \bar{b}' \quad (0,1/2,0) \quad 1/4,y,z \\
& \quad (m_z,1/2,1/2,0)' \\
\end{align*}
\]

\[72.2.631 - 1 - 1254\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); 1'.

Positions

| Multiplicity, Wyckoff letter, Site Symmetry. | Coordinates | |
|---|-------------|
| 16 k 11' (1) x,y,z [0,0,0] | (0,0,0) + (1/2,1/2,1/2) + |
| (5) x,y,z [0,0,0] | (0,0,0)' + (1/2,1/2,1/2)' + |
| 8 j .m1' x,y,0 [0,0,0] | x,y,z [0,0,0] |
| 8 i .21' 0,1/2,z [0,0,0] | x,y,z+1/2 [0,0,0] |
| 8 h .21' 0,0,z [0,0,0] | 0,0,z+1/2 [0,0,0] |
| 8 g .2.1' 0,y,1/4 [0,0,0] | 0,y,3/4 [0,0,0] |
| 8 f 2..1' x,0,1/4 [0,0,0] | x,0,3/4 [0,0,0] |
| 8 e 1' 1/4,1/4,1/4 [0,0,0] | 3/4,1/4,1/4 [0,0,0] |
| 4 d .2/m1' 1/2,0,0 [0,0,0] | 1/2,0,1/2 [0,0,0] |
| 4 c .2/m1' 0,0,0 [0,0,0] | 0,0,1/2 [0,0,0] |
| 4 b 2221' 1/2,0,1/4 [0,0,0] | 1/2,0,3/4 [0,0,0] |
| 4 a 2221' 0,0,1/4 [0,0,0] | 0,0,3/4 [0,0,0] |

Symmetry of Special Projections

Along [0,0,1] c2mm1'
a' = **a**
b' = **b**

Along [1,0,0] p2mm1'
a' = **b**/2
b' = **c**/2

Along [0,1,0] p2mm1'
a' = **c**/2
b' = **a**/2

Origin at 0,0,z

Origin at x,0,0

Origin at 0,y,0
Ib'am
72.3.632

m'mm
I2/b'2'/a2'/m

Orthorhombic

Origin at center (2'/m) at c'c2'/m

Asymmetric unit
0 < x < 1/4; 0 < y < 1/2; 0 < z < 1/2

Symmetry Operations

For (0,0,0) + set

1. I
 1 0 0
 (1 0 0,0)

2. 2' 0 0,0,0
 (2z 0,0,0')

3. 2' 0,y,1/4
 (2z 0,0,1/2')

4. 2 x,0,1/4
 (2z 0,0,1/2)

5. T 0,0,0
 (0 0,0,0)

6. m x,y,0
 (m_z 0,0,0)

7. c (0,0,1/2) x,0,z
 (m_y 0,0,1/2)

8. c' (0,0,1/2) 0,y,z
 (m_z 0,0,1/2')

For (1/2,1/2,1/2) + set

1. t (1/2,1/2,1/2)
 (1 1/2,1,1/2)

2. 2' (0,0,1/2) 1/4,1/4,z
 (2z 1/2,1/2,1/2')

3. 2' (0,1/2,0) 1/4,y,0
 (2z 1/2,1/2,0')

4. 2 (1/2,0,0) x,1/4,0
 (2z 1/2,1/2,0)

5. T 1/4,1/4,1/4
 (0 1/2,1/2,1/2)

6. n (1/2,1/2,0) x,y,1/4
 (m_z 1/2,1/2,1/2)

7. a (1/2,0,0) x,1/4,z
 (m_y 1/2,1/2,0)

8. b' (0,1/2,0) 1/4,y,z
 (m_z 1/2,1/2,0')
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>16 k 1</td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>16 k 1</td>
<td>(3) x,y,z +1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>16 k 1</td>
<td>(4) x,y,z +1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>16 k 1</td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 j .m</td>
<td>x,y,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 i .2'</td>
<td>0,1/2,z [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 h .2'</td>
<td>0,0,z [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 g .2'</td>
<td>0,y,1/4 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 e .1'</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 d .2'lm</td>
<td>1/2,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 c .2'lm</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 b 22'2'</td>
<td>1/2,0,1/4 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 a 22'2'</td>
<td>0,0,1/4 [u,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

(0,0,0) + (1/2,1/2,1/2) +

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>z</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1'
Along [1,0,0] p2mm
Along [0,1,0] p2mm

a* = a b* = b
a* = b/2 b* = c/2
a* = c/2 b* = a/2

Origin at 0,0,z
Origin at x,0,0
Ibam’ Orthorhombic

72.4.633 mmm’ l2'/b2'/a2/m’

Origin at center (2/m’) at cc2/m’

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. \[T (0,0,0) \]
 \[\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

2. \[T (0,0,z) \]
 \[\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & z \end{bmatrix} \]

3. \[T (0,y,1/4) \]
 \[\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

4. \[T (x,0,1/4) \]
 \[\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

For (1/2,1/2,1/2) + set

1. \[T (1/2,1/2,1/2) \]
 \[\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

2. \[T (0,0,1/2) \]
 \[\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

3. \[T (0,1/2,0) \]
 \[\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

4. \[T (1/2,0,0) \]
 \[\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z +1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z +1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 j ..m'</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 i ..2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z +1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z +1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 h ..2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z +1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z +1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 g ..2'</td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td>8 f ..2'</td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,3/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,3/4 [0,v,w]</td>
</tr>
<tr>
<td>8 e ..'</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] c2mm
- Along [1,0,0] p2m'm'
- Along [0,1,0] p2m'm'

```
<table>
<thead>
<tr>
<th>a' = a</th>
<th>b' = b</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = -c/2</td>
<td>b' = b/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>a' = a</th>
<th>b' = b</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = c/2</td>
<td>b' = a/2</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>a' = a</th>
<th>b' = b</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = c/2</td>
<td>b' = a/2</td>
</tr>
<tr>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
```
Ib’a’m

72.5.634

m’m’m

l2'/b'2'/a'2/m

Orthorhombic

Origin at center (2/m) at c’c’2/m

Asymmetric unit

\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\]

Symmetry Operations

For (0,0,0) + set

1. \(1\)

 \[x,0,0\]

 \[x,0,0\]

 \[x,0,0\]

2. \(2\)

 \[0,0,z\]

 \[0,0,z\]

 \[0,0,z\]

3. \(2’\)

 \[y,1/4\]

 \[y,1/4\]

 \[y,1/4\]

4. \(2’\)

 \[x,1/4\]

 \[x,1/4\]

 \[x,1/4\]

5. \(1\)

 \[m\]

 \[m\]

 \[m\]

6. \(6\)

 \[x,y,0\]

 \[x,y,0\]

 \[x,y,0\]

7. \(c’\)

 \[0,0,1/2\]

 \[0,0,1/2\]

 \[0,0,1/2\]

8. \(c’\)

 \[0,0,1/2\]

 \[0,0,1/2\]

 \[0,0,1/2\]

For (1/2,1/2,1/2) + set

1. \(1\)

 \[1/2,1/2,1/2\]

 \[1/2,1/2,1/2\]

 \[1/2,1/2,1/2\]

2. \(2\)

 \[1/2,1/2,1/2\]

 \[1/2,1/2,1/2\]

 \[1/2,1/2,1/2\]

3. \(2’\)

 \[1/2,1/2,1/2\]

 \[1/2,1/2,1/2\]

 \[1/2,1/2,1/2\]

4. \(2’\)

 \[1/2,1/2,1/2\]

 \[1/2,1/2,1/2\]

 \[1/2,1/2,1/2\]

5. \(1\)

 \[1/2,1/2,1/2\]

 \[1/2,1/2,1/2\]

 \[1/2,1/2,1/2\]

6. \(6\)

 \[1/2,1/2,1/2\]

 \[1/2,1/2,1/2\]

 \[1/2,1/2,1/2\]

7. \(a’\)

 \[1/2,1/2,1/2\]

 \[1/2,1/2,1/2\]

 \[1/2,1/2,1/2\]

8. \(b’\)

 \[1/2,1/2,1/2\]

 \[1/2,1/2,1/2\]

 \[1/2,1/2,1/2\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
<td></td>
</tr>
<tr>
<td>(16) k (1)</td>
<td>((1)) (x,y,z) ([u,v,w])</td>
</tr>
<tr>
<td>(16) l (5)</td>
<td>((5)) (x,y,z) ([u,v,w])</td>
</tr>
<tr>
<td>(8) j (1)</td>
<td>((2)) (x,y,z) ([u,v,w])</td>
</tr>
<tr>
<td>(8) i (1)</td>
<td>((3)) (x,y,z+1/2) ([u,v,w])</td>
</tr>
<tr>
<td>(8) h (1)</td>
<td>((4)) (x,y,z+1/2) ([u,v,w])</td>
</tr>
<tr>
<td>(8) g (1)</td>
<td>((6)) (x,y,z) ([u,v,w])</td>
</tr>
<tr>
<td>(8) f (1)</td>
<td>((7)) (x,y,z+1/2) ([u,v,w])</td>
</tr>
<tr>
<td>(8) e (1)</td>
<td>((8)) (x,y,z+1/2) ([u,v,w])</td>
</tr>
<tr>
<td>(4) d (2/m)</td>
<td>((0,0,0))</td>
</tr>
<tr>
<td>(4) c (2/m)</td>
<td>((0,0,0))</td>
</tr>
<tr>
<td>(4) b (2'2')</td>
<td>((0,0,0))</td>
</tr>
<tr>
<td>(4) a (2'2')</td>
<td>((0,0,0))</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) c2mm1' Along \([1,0,0]\) p2'mm' Along \([0,1,0]\) p2'mm'
\(a^* = a\) \(b^* = b\) \(a^* = c/2\) \(b^* = b/2\) \(a^* = c/2\) \(b^* = a/2\)
Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Iba’m’ Orthorhombic
72.6.635

Origin at center (2’m’) at cc’2’m’

Asymmetric unit
0 < x < 1/4; 0 < y < 1/2; 0 < z < 1/2

Symmetry Operations

For (0,0,0) + set
(1) 1
(1 0,0,0)
(2) 2’ 0,0,z
(2z 0,0,0)’
(5) 1/4,0,0
(1/4 0,0,0)
(6) m’ x,y,0
(mz 0,0,0)’
(7) c’ (0,0,1/2) x,0,z
(my 0,0,1/2)’
(8) c (0,0,1/2) 0,y,z
(nz 0,0,1/2)

For (1/2,1/2,1/2) + set
(1) t (1/2,1/2,1/2)
(1/2 1/2,1/2,1/2)
(2) 2’ (0,0,1/2) 1/4,1/4,z
(2z 1/2,1/2,1/2)’
(6) n’ (1/2,1/2,0) x,y,1/4
(mz 1/2,1/2,1/2)’
(7) a’ (1/2,0,0) x,1/4,z
(my 1/2,1/2,0)’
(8) b (0,1/2,0) 1/4,y,z
(nz 1/2,1/2,0)
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>8 j</td>
<td>x,y,0 [u,v,0]</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>8 i</td>
<td>0,1/2,z [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 h</td>
<td>0,0,z [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 g</td>
<td>0,y,1/4 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 f</td>
<td>x,0,1/4 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 e</td>
<td>1/4,1/4,1/4 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 d</td>
<td>1/2,0,0 [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 c</td>
<td>0,0,0 [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 b</td>
<td>1/2,0,1/4 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,1/4 [u,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2'mm' Along [1,0,0] p_{12}2mm Along [0,1,0] p2'mm'
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \quad \mathbf{a}^* = -\mathbf{a}/2 \quad \mathbf{b}^* = \mathbf{c}/2 \quad \mathbf{a}^* = -\mathbf{a}/2 \quad \mathbf{b}^* = \mathbf{c}/2 \)

Origin at 0,0,z Origin at x,0,1/4 Origin at 0,y,0
Ib'a'm' Orthorhombic
72.7.636

m'm'm' I2/b'2/a'2/m'

Origin at center (2/m') at c'c'/2/m'

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) \(\bar{1} \) 0,0,0
(1 | 0,0,0)
(2) \(2 \) 0,0,z
(2_z | 0,0,0)
(3) \(2 \) 0,y,1/4
(2_y | 0,0,1/2)
(4) \(2 \) x,0,1/4
(2_x | 0,0,1/2)
(5) \(\bar{1} \) 0,0,0
(1 | 0,0,0)
(6) \(m' \) x,y,0
(m_z | 0,0,0)
(7) \(c' \) (0,0,1/2) x,0,z
(m_y | 0,0,1/2)
(8) \(c' \) (0,0,1/2) 0,y,z
(m_z | 0,0,1/2)

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(1 | 1/2,1/2,1/2)
(2) \(2 \) (0,0,1/2) 1/4,1/4,z
(2_z | 1/2,1/2,1/2)
(3) \(2 \) (0,1/2,0) 1/4,y,0
(2_y | 1/2,1/2,0)
(4) \(2 \) (1/2,0,0) x,1/4,0
(2_x | 1/2,1/2,0)
(5) \(\bar{1} \) 1/4,1/4,1/4
(1 | 1/2,1/2,1/2)
(6) n' (1/2,1/2,0) x,y,1/4
(m_z | 1/2,1/2,1/2)
(7) \(a' \) (1/2,0,0) x,1/4,z
(m_y | 1/2,1/2,0)
(8) \(b' \) (0,1/2,0) 1/4,y,z
(m_z | 1/2,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 j</td>
<td>.m'</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>8 i</td>
<td>.2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 h</td>
<td>.2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 g</td>
<td>.2</td>
<td>0,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>8 f</td>
<td>2..</td>
<td>x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td>8 e</td>
<td>1/1</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 d</td>
<td>.2/m'</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c</td>
<td>.2/m'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>222</td>
<td>1/2,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>222</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>(0,0,0) +</th>
<th>(1/2,1/2,1/2) +</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k</td>
<td>8 j</td>
</tr>
<tr>
<td>8 i</td>
<td>8 h</td>
</tr>
<tr>
<td>8 g</td>
<td>8 f</td>
</tr>
<tr>
<td>8 e</td>
<td>4 d</td>
</tr>
<tr>
<td>4 c</td>
<td>4 b</td>
</tr>
<tr>
<td>4 a</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2m'm'</th>
<th>Along [1,0,0]</th>
<th>p2m'm'</th>
<th>Along [0,1,0]</th>
<th>p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b/2</td>
<td>b* = c/2</td>
<td>a* = c/2</td>
<td>b* = a/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
IPbam

72.8.637

Orthorhombic

mmm1'

I2/b2/a2/m

Origin at center (2/m) at cc2/m

Asymmetric unit

0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1

(1 | 0,0,0)

(2) 2 0,0,z

(2 | 0,0,0)

(3) 2 0,y,1/4

(2 | 0,0,1/2)

(4) 2 0,x,1/4

(2 | 0,0,1/2)

(5) m 0,0,0

(1 | 0,0,0)

(6) m x,y,0

(m_z | 0,0,0)

(7) c (0,0,1/2) x,0,z

(m_y | 0,0,1/2)

(8) c (0,0,1/2) 0,y,z

(m_z | 0,0,1/2)

For (1/2,1/2,1/2)' + set

(1) t' (1/2,1/2,1/2)

(1 | 1/2,1/2,1/2)

(2) 2' (0,0,1/2) 1/4,1/4,z

(2 | 1/2,1/2,1/2)

(3) 2' (0,1/2,0) 1/4,y,0

(2 | 1/2,1/2,0)

(4) 2' (1/2,0,0) x,1/4,0

(2 | 1/2,1/2,0)

(5) n' (1/2,1/2,0) x,y,1/4

(1 | 1/2,1/2,1/2)

(6) m' (1/2,1/2,0) x,y,1/4

(m_z | 1/2,1/2,1/2)

(7) a' (1/2,0,0) x,1/4,z

(m_y | 1/2,1/2,0)

(8) b' (0,1/2,0) 1/4,y,z

(m_z | 1/2,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2)′ +</td>
<td></td>
</tr>
<tr>
<td>16 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8 j .m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [0,0, w]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [0,0, w]</td>
</tr>
<tr>
<td>8 i .2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0, w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0, w]</td>
</tr>
<tr>
<td>8 h .2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0, w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0, w]</td>
</tr>
<tr>
<td>8 g .2</td>
<td>0,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,3/4 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,3/4 [0,v,0]</td>
</tr>
<tr>
<td>8 f 2</td>
<td>x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,3/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,3/4 [u,0,0]</td>
</tr>
<tr>
<td>8 e T′</td>
<td>1/4,1,4/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 d .2/m</td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0, w]</td>
</tr>
<tr>
<td>4 c .2/m</td>
<td>0,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,0, w]</td>
</tr>
<tr>
<td>4 b 222</td>
<td>1/2,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 a 222</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1′
Along [1,0,0] p212′mm′
Along [0,1,0] p212′mm′

\[a^* = a \quad b^* = b \]
\[a^* = c/2 \quad b^* = b/2 \]
\[a^* = c/2 \quad b^* = a/2 \]

Origin at 0,0,z
Origin at x,0,0
Origin at 0,y,0
Ip'b'am
Orthorhombic
72.9.638

$m\text{mm}1'$
$I_p2/b'2'/a2'/m$

Origin at center ($2'/m$) at $c'c'/m$

Asymmetric unit

\[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2}\]

Symmetry Operations

For $(0,0,0) +$ set

(1) I

(1) $0,0,0$

(2) $2', 0,0,z$

(2) $2', 0,0,0'$

(3) $2', 0,y,1/4$

(3) $2', 0,y,1/4'$

(4) $2, x,0,1/4$

(5) I

(1) $1/2,1/2,1/2$

(1) $1/2,1/2,1/2'$

(5) T

(1) $1/4,1/4,1/4$

(1) $1/2,1/2,1/2'$

(5) T

(1) $1/2,1/2,1/2$

(1) $1/2,1/2,1/2'$

(5) T

(1) $1/2,1/2,1/2$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>(0,0,0)</td>
<td>(1/2,1/2,1/2)</td>
</tr>
<tr>
<td>8 j</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 i</td>
<td>0,1/2,z [u,v,0]</td>
<td>0,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 h</td>
<td>0,0,z [u,v,0]</td>
<td>0,0,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 g</td>
<td>0,y,1/4 [u,0,w]</td>
<td>0,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td>8 f</td>
<td>x,0,1/4 [u,0,0]</td>
<td>x,0,3/4 [u,0,0]</td>
</tr>
<tr>
<td>8 e</td>
<td>1/4,1/4,1/4 [u,v,w]</td>
<td>3/4,3/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td>4 d</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>1/2,0,1/4 [u,0,0]</td>
<td>1/2,0,3/4 [u,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,1/4 [u,0,0]</td>
<td>0,0,3/4 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p_{2a}2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b/2</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>p_{2a}2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c/2</td>
<td>b* = a/2</td>
</tr>
<tr>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (2/m') at cc2/m'

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1 (1|0,0,0)
(2) 2 0,0,z (2z|0,0,0)
(3) 2' 0,y,1/4 (2y|0,0,1/2)
(4) 2' x,0,1/4 (2x|0,0,1/2)
(5) 1/4,1/4,0 (1/4,1/4,0)
(6) m' x,y,0 (mz|0,0,0)
(7) c (0,0,1/2) x,0,z (m,0,0,1/2)
(8) c (0,0,1/2) 0,y,z

For (1/2,1/2,1/2) + set

(1) t' (1/2,1/2,1/2) (1/2,1/2,1/2)
(2) 2' (0,0,1/2) 1/4,1/4,z (2z|1/2,1/2,1/2)
(3) 2 (0,1/2,0) 1/4,y,0 (2y|1/2,1/2,0)
(4) 2 (1/2,0,0) x,1/4,0 (2x|1/2,1/2,0)
(5) 1/4,1/4,1/4 (1/4,1/4,1/4)
(6) n (1/2,1/2,0) x,y,1/4 (mz|1/2,1/2,1/2)
(7) a' (1/2,0,0) x,1/4,z (my|1/2,1/2,0)
(8) b' (0,1/2,0) 1/4,y,z (mx|1/2,1/2,0)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (+ (1/2,1/2,1/2)' +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z +1/2 [u,v,w]</td>
<td>(4) x,y,z +1/2 [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z</td>
<td>[u,v,w]</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>8 j -m'</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>8 i .2</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 h .2</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 g .2''</td>
<td>0,y,1/4 [u,0,w]</td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>8 f .2''</td>
<td>x,0,1/4 [0,v,w]</td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td>8 e 1/4</td>
<td>1/4,1/4,1/4 [u,v,w]</td>
<td>1/4,1/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td>4 d .2/m'</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c .2/m'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b 2'2'</td>
<td>1/2,0,1/4 [0,0,w]</td>
<td>1/2,0,3/4 [0,0,w]</td>
</tr>
<tr>
<td>4 a 2'2'</td>
<td>0,0,1/4 [0,0,w]</td>
<td>0,0,3/4 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c_p_2mm

\(a^* = a\) \(b^* = b\)

Origin at 0,0,z

Along [1,0,0] \(p_{2z2m'm'}\)

\(a^* = -c/2\) \(b^* = b/2\)

Origin at x,0,0

Along [0,1,0] \(p_{2z2m'm'}\)

\(a^* = c/2\) \(b^* = a/2\)

Origin at 0,y,0
Origin at center (2/m) at c'c'2/m

Asymmetric unit

\[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2} \]

Symmetry Operations

For (0,0,0) + set

1) \[\begin{pmatrix} 1 \\ 0 \end{pmatrix} \]

2) \[\begin{pmatrix} 2 \\ 0,0,z \end{pmatrix} \]

3) \[\begin{pmatrix} 2' \\ 0,y,1/4 \end{pmatrix} \]

4) \[\begin{pmatrix} 2' \\ x,0,1/4 \end{pmatrix} \]

5) \[\begin{pmatrix} 1/2,1/2,1/2 \end{pmatrix} \]

6) \[\begin{pmatrix} m \\ x,y,0 \end{pmatrix} \]

7) \[\begin{pmatrix} c' \end{pmatrix} \]

8) \[\begin{pmatrix} c' \end{pmatrix} \]

For (1/2,1/2,1/2)' + set

1) \[\begin{pmatrix} 1/2,1/2,1/2 \end{pmatrix} \]

2) \[\begin{pmatrix} 2' \end{pmatrix} \]

3) \[\begin{pmatrix} 2 \end{pmatrix} \]

4) \[\begin{pmatrix} 2 \end{pmatrix} \]

5) \[\begin{pmatrix} 1/4,1/4,1/4 \end{pmatrix} \]

6) \[\begin{pmatrix} n' \end{pmatrix} \]

7) \[\begin{pmatrix} a \end{pmatrix} \]

8) \[\begin{pmatrix} b \end{pmatrix} \]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z +1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z +1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 j .m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 i .2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z +1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z +1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 h .2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z +1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z +1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 g .2'</td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,3/4 [u,0,w]</td>
</tr>
<tr>
<td>8 f .2'</td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,3/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,3/4 [0,v,w]</td>
</tr>
<tr>
<td>8 e .1'</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 d .2/m</td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 c .2/m</td>
<td>0,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 b 2'2'</td>
<td>1/2,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,3/4 [0,0,w]</td>
</tr>
<tr>
<td>4 a 2'2'</td>
<td>0,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,3/4 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1'
Along [1,0,0] p2121m'
Along [0,1,0] p2121m'
Along [0,1,0] p2121m'
a* = a b* = b
a* = b/2 b* = c/2
a* = -a/2 b* = c/2
Origin at 0,0,z
Origin at x,0,1/4
Origin at 0,y,1/4
Origin at center ($2'm'$) at $c'c2'm'$

Asymmetric unit

\[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2} \]

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2', 0,0,z \\
(3) & \quad 2 \quad 0,y,1/4 \\
(4) & \quad 2', x,0,1/4 \\
(5) & \quad m' \quad x,y,0 \\
(6) & \quad m \quad x,y,0 \\
(7) & \quad c \quad (0,0,1/2) \quad x,0,z \\
(8) & \quad c' \quad (0,0,1/2) \quad 0,y,z
\end{align*}
\]

For \((1/2,1/2,1/2)'\) + set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \quad (0,0,1/2) \quad 1/4,1/4,1/4 \\
(3) & \quad 2' \quad (0,1/2,0) \quad 1/4,y,0 \\
(4) & \quad 2 \quad (1/2,0,0) \quad x,1/4,0 \\
(5) & \quad 1/2,1/2,1/2 \\
(6) & \quad n \quad (1/2,1/2,0) \quad x,y,1/4 \\
(7) & \quad a' \quad (1/2,0,0) \quad x,1/4,z \\
(8) & \quad b \quad (0,1/2,0) \quad 1/4,y,z
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
</tbody>
</table>

16	k	1	(1) x,y,z [u,v,w]	(2) x,y,z [u,v,w]	(3) x,y,z +1/2 [u,v,w]	(4) x,y,z +1/2 [u,v,w]
			(5) x,y,z [u,v,w]	(6) x,y,z [u,v,w]	(7) x,y,z +1/2 [u,v,w]	(8) x,y,z +1/2 [u,v,w]
8	j	..m'	x,y,0 [u,v,0]	x,y,0 [u,v,0]	x,y,1/2 [u,v,0]	x,y,1/2 [u,v,0]
8	i	..2'	0,1/2,z [u,v,0]	0,1/2,z [u,v,0]	0,1/2,z +1/2 [u,v,0]	0,1/2,z +1/2 [u,v,0]
8	h	..2'	0,0,z [u,v,0]	0,0,z [u,v,0]	0,0,z +1/2 [u,v,0]	0,0,z +1/2 [u,v,0]
8	g	.2.	0,y,1/4 [0,v,0]	0,y,1/4 [0,v,0]	0,y,3/4 [0,v,0]	0,y,3/4 [0,v,0]
8	f	2'.	x,0,1/4 [0,v,w]	x,0,1/4 [0,v,w]	x,0,3/4 [0,v,w]	x,0,3/4 [0,v,w]
8	e	1/4,1,1/4 [0,0,0]	1/4,3,4/4 [0,0,0]	3/4,3,4/4 [0,0,0]	3/4,1,4/4 [0,0,0]	
4	d	..2'm'	1/2,0,0 [u,v,0]	1/2,0,1/2 [u,v,0]		
4	c	..2'm'	0,0,0 [u,v,0]	0,0,1/2 [u,v,0]		
4	b	2'2'	1/2,0,1/4 [0,v,0]	1/2,0,3/4 [0,v,0]		
4	a	2'2'	0,0,1/4 [0,v,0]	0,0,3/4 [0,v,0]		

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>c_p 2'2mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = -b</td>
<td>b^* = a</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p_2z 2'2mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = b/2</td>
<td>b^* = c/2</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>p_2z 2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = c/2</td>
<td>b^* = a/2</td>
</tr>
<tr>
<td>Origin at 0,y,1/4</td>
<td></td>
</tr>
</tbody>
</table>
Orthonhobic

72.13.642

Symmetry Operations

For (0,0,0) + set

1. $T(0,0,0)$
2. $2 \cdot 0,0,z$
3. $2 \cdot 0,y,1/4$
4. $2 \cdot x,0,1/4$
5. $m' \cdot 0,0,0$
6. $m' \cdot x,y,0$
7. $c' \cdot (0,0,1/2)$
8. $c' \cdot (0,0,1/2)$

For (1/2,1/2,1/2) + set

1. $t' (1/2,1/2,1/2)$
2. $2' (0,0,1/2) \cdot 1/4,1/4,z$
3. $2' (0,1/2,0) \cdot 1/4,y,0$
4. $2' (1/2,0,0) \cdot x,1/4,0$
5. $n (1/2,1/2,0) \cdot x,y,1/4$
6. $a (1/2,0,0) \cdot x,1/4,z$
7. $b (0,1/2,0) \cdot 1/4,y,z$
8. $m' (1/2,1/2,1/2)$

Asymmetric unit

$$0 < x < 1/4; \quad 0 < y < 1/2; \quad 0 < z < 1/2$$
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(16 \ k \ 1) x,y,z [u,v,w] ((1))</td>
<td>((0,0,0) +) (1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>(8 \ j \ ..m') x,y,0 [u,v,0] ((5))</td>
<td>(\bar{x},y,\bar{z} [\bar{u},\bar{v},\bar{w}])</td>
</tr>
<tr>
<td>(8 \ i \ ..2) 0,1/2,z [0,0,w] ((6))</td>
<td>(\bar{x},y,\bar{z} [u,v,w])</td>
</tr>
<tr>
<td>(8 \ h \ ..2) 0,0,z [0,0,w] ((7))</td>
<td>(\bar{x},y,\bar{z}+1/2 [u,v,w])</td>
</tr>
<tr>
<td>(8 \ g \ ..2) 0,y,1/4 [0,v,0] ((8))</td>
<td>(\bar{x},y,\bar{z}+1/2 [\bar{u},\bar{v},\bar{w}])</td>
</tr>
<tr>
<td>(8 \ f \ ..) (x,0,1/4 [u,0,0]) ((1))</td>
<td>(\bar{x},0,1/4 [\bar{u},0,0])</td>
</tr>
<tr>
<td>(8 \ e \ ..) (1/4,1/4,1/4 [u,v,w]) ((1))</td>
<td>(1/4,3/4,1/4 [\bar{u},\bar{v},\bar{w}])</td>
</tr>
<tr>
<td>(4 \ d \ ..2/m') 1/2,0,0 [0,0,0] ((1))</td>
<td>(1/2,0,1/2 [0,0,0])</td>
</tr>
<tr>
<td>(4 \ c \ ..2/m') 0,0,0 [0,0,0] ((1))</td>
<td>(0,0,1/2 [0,0,0])</td>
</tr>
<tr>
<td>(4 \ b \ 222) 1/2,0,1/4 [0,0,0] ((1))</td>
<td>(1/2,0,3/4 [0,0,0])</td>
</tr>
<tr>
<td>(4 \ a \ 222) 0,0,1/4 [0,0,0] ((1))</td>
<td>(0,0,3/4 [0,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

\(\mathbf{a}^* = a \mathbf{b}^* = b \) Origin at 0,0,z

Along \([0,0,1] \) c2m'm'

Along \([1,0,0] \) \(p_{2a} \) 2m'm'

Along \([0,1,0] \) \(p_{2a} \) 2m'm'

Along \([0,1,0] \) \(p_{2a} \) 2m'm'

\(\mathbf{a}^* = -a/2 \mathbf{b}^* = c/2 \) Origin at x,0,0

\(\mathbf{a}^* = a/2 \mathbf{b}^* = c/2 \) Origin at 0,y,0
Ibca

73.1.643

Orthorhombic

mmm

I2_/b2_/c2_/a

Origin at \(\mathbf{1} \) at \(\mathbf{a} \mathbf{b} \mathbf{c} \)

Asymmetric unit

\[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2} \]

Symmetry Operations

For \((0,0,0)\) + set

1. \(\mathbf{1} \)
2. \((0,0,1/2) \quad 1/4,0,z \)
3. \((0,1/2,0) \quad 0,y,1/4 \)
4. \((1/2,0,0) \quad x,1/4,0 \)

5. \(\mathbf{1} \)
6. \((0,0,0) \quad a \quad 1/2,0,1/2 \)
7. \((0,1/2,0) \quad x,y,1/4 \)
8. \((1/2,0,0) \quad m_z,1/2,0,1/2 \)

For \((1/2,1/2,1/2)\) + set

1. \((1/2,1/2,1/2) \quad t \)
2. \((1/2,1/2,0) \quad 0,1/4,z \)
3. \((1/2,0,0) \quad 0,1/2,0 \)
4. \((1/2,0,1/2) \quad 0,1/2,0 \)

5. \(\mathbf{1} \)
6. \((0,1/2,0) \quad x,y,0 \)
7. \((0,1/2,0) \quad x,0,z \)
8. \((0,0,1/2) \quad z,0,1/4 \)

\(\mathbf{1} \mathbf{2} \mathbf{1} \mathbf{2} \mathbf{1} \mathbf{2} \)

\(m \mathbf{m} \mathbf{m} \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f 1</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>8 e .2</td>
<td>0,1/4,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,3/4,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,3/4,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/4,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 d .2</td>
<td>1/4,y,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,y,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>8 c 2..</td>
<td>x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,0,3/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,3/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td>8 b 1</td>
<td>1/4,1/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,3/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,3/4 [u,v,w]</td>
</tr>
<tr>
<td>8 a 1</td>
<td>0,0,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p c̄ 2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a/2</td>
<td>b* = b/2</td>
</tr>
<tr>
<td>Origin at 1/4,1/4,z</td>
<td>Origin at x,1/4,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p 2a̅ 2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b/2</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at x,1/4,0</td>
<td>Origin at 0,y,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>p 2a̅ 2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c/2</td>
<td>b* = a/2</td>
</tr>
</tbody>
</table>

Continued
Ibca1' Orthorhombic

73.2.644 I2 1/b2 1/c2 1/a1'

Origin at 1 at abc

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 0 0 0)

(2) 2 (0,0,1/2) 1/4,0,z
(2z 1/2,0,1/2)

(3) 2 (0,1/2,0) 0,y,1/4
(2y 0,1/2,1/2)

(4) 2 (1/2,0,0) x,1/4,0
(2x 1/2,1/2,0)

(5) 1
(0 0,0 0)

(6) a (1/2,0,0) x,y,1/4
(mz 1/2,0,1/2)

(7) c (0,0,1/2) x,1/4,z
(my 0,1/2,1/2)

(8) b (0,1/2,0) 1/4,y,z
(mn 1/2,1/2,0)

For (1/2,1/2,1/2) + set

(1) 1
(1 1/2,1/2,1/2)

(2) 2 0,1/4,z
(2z 0,1/2,0)

(3) 2 1/4,y,0
(2y 0,1/2,0)

(4) 2 x,0,1/4
(2x 0,0,1/2)

(5) 1
(1/2,1/2,1/2)

(6) b (0,1/2,0) x,y,0
(mz 0,1/2,0)

(7) a (1/2,0,0) x,0,z
(my 1/2,0,0)

(8) c (0,0,1/2) 0,y,z
(mn 0,0,1/2)

For (0,0,0)' + set

(1) 1'
(1 0,0,0)'

(2) 2' (0,0,1/2) 1/4,0,z
(2z 1/2,0,1/2)'

(3) 2' (0,1/2,0) 0,y,1/4
(2y 0,1/2,1/2)'

(4) 2' (1/2,0,0) x,1/4,0
(2x 1/2,1/2,0)'

(5) 1'
(0 0,0 0)'

(6) a' (1/2,0,0) x,y,1/4
(mz 1/2,0,1/2)'

(7) c' (0,0,1/2) x,1/4,z
(my 0,1/2,1/2)'

(8) b' (0,1/2,0) 1/4,y,z
(mn 1/2,1/2,0)'

For (1/2,1/2,1/2)' + set

(1) 1'
(1 1/2,1/2,1/2)'

(2) 2' 0,1/4,z
(2z 0,1/2,0)'

(3) 2' 1/4,y,0
(2y 0,1/2,0)'

(4) 2' x,0,1/4
(2x 0,0,1/2)'

(5) 1'
(1/2,1/2,1/2)'

(6) b' (0,1/2,0) x,y,0
(mz 0,1/2,0)'

(7) a' (1/2,0,0) x,0,z
(my 0,1/2,0)'

(8) c' (0,0,1/2) 0,y,z
(mn 0,0,1/2)'
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + 11' x,y,z [0,0,0] & (1/2,1/2,1/2) + (0,0,0)' + (1/2,1/2,1/2)' +</td>
<td></td>
</tr>
<tr>
<td>16 f 11' x+1/2,y,z [0,0,0] & x+1/2,y+1/2,z+1/2 [0,0,0] & x+1/2,y+1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 e 0.21' 0,1/4,z [0,0,0] & 0,1/4,z+1/2 [0,0,0] & 0,3/4,z [0,0,0] & 0,1/4,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 d 0.21' 1/4,y,0 [0,0,0] & 1/4,y+1/2 [0,0,0] & 3/4,y,0 [0,0,0] & 3/4,y,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 c 2.1' x,0,1/4 [0,0,0] & x+1/2,0,3/4 [0,0,0] & x,0,3/4 [0,0,0] & x+1/2,0,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 b 21' 1/4,1/4,1/4 [0,0,0] & 1/4,3/4,1/4 [0,0,0] & 3/4,3/4,1/4 [0,0,0] & 3/4,1/4,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 a 21' 0,0,0 [0,0,0] & 1/2,0,1/2 [0,0,0] & 0,1/2,1/2 [0,0,0] & 1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2mm1'
 \(a^* = a/2\)
 Origin at 0,0,z

- Along [1,0,0] p2mm1'
 \(b^* = b/2\)
 Origin at x,0,0

- Along [0,1,0] p2mm1'
 \(c^* = c/2\)
 Origin at 0,y,0
Ib'ca
73.3.645
Orthorhombic

m'mm
l2_and_b2_and_c2_and_a

Origin at c'ab

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. 1 (0,0,0)
 1 (0,0,0)

2. 2' (0,0,1/2) 1/4,0,z
 (2_z|1/2,0,1/2')

3. 2' (0,1/2,0) 0,y,1/4
 (2_y|0,1/2,1/2')

4. 2 (1/2,0,0) x,1/4,0
 (2_x|1/2,1/2,0)

5. 1' 0,0,0
 1 (0,0,0)

6. a (1/2,0,0) x,y,1/4
 (m_z|1/2,0,1/4)

7. c (0,0,1/2) x,1/4,z
 (m_y|1/2,1/4,1/4)

8. b' (0,1/2,0) 1/4,y,z
 (m_x|1/2,1/2,0)

For (1/2,1/2,1/2) + set

1. t (1/2,1/2,1/2)
 1 (1/2,1/2,1/2)

2. 2' 0,1/4,z
 (2_z|0,1/2,0)

3. 2' 1/4,y,0
 (2_y|1/2,0,0)

4. 2 x,0,1/4
 (2_x|0,0,1/2)

5. 1' 1/4,1/4,1/4
 1 (1/2,1/2,1/2)

6. b (0,1/2,0) x,y,0
 (m_z|0,1/2,0)

7. a (1/2,0,0) x,0,z
 (m_y|1/2,0,0)

8. c' (0,0,1/2) 0,y,z
 (m_x|0,0,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th></th>
<th>Coordinates</th>
<th></th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>16 f 1</td>
<td>(2) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z [u,v,w]</td>
<td></td>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8 e 2'</td>
<td>0,1/4,z [u,v,0]</td>
<td>8 d 2'</td>
<td>1/4,y,0 [u,0,w]</td>
</tr>
<tr>
<td>8 c 2'</td>
<td>x,0,1/4 [u,0,0]</td>
<td>8 d 2'</td>
<td>1/4,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>8 a 2'</td>
<td>0,0,0 [0,0,0]</td>
<td>8 d 2'</td>
<td>3/4,y,0 [u,0,w]</td>
</tr>
<tr>
<td>8 a 2'</td>
<td>0,0,0 [0,0,0]</td>
<td>8 d 2'</td>
<td>3/4,y,1/2 [u,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_{2a}mm
\(a^* = a/2 \quad b^* = b/2 \)
Origin at 0,0,z

Along [1,0,0] p2mm
\(a^* = b/2 \quad b^* = c/2 \)
Origin at 0,0,0
Ib'c'a m'm'm Orthorhombic

73.4.646

<table>
<thead>
<tr>
<th>Origin</th>
<th>at 1 at c'a'b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetric unit</td>
<td>0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2</td>
</tr>
</tbody>
</table>

Symmetry Operations

For (0,0,0) + set

1. $I (0,0,0)$
2. $2 (0,0,1/2) 1/4,0,z$
3. $2' (0,1/2,0) 0,y,1/4$
4. $2' (1/2,0,0) x,1/4,0$
5. $1/2,0,0)$
6. $a (1/2,0,0) x,y,1/4$
7. $c' (0,0,1/2) x,1/4,z$
8. $b' (0,1/2,0) 1/4,y,z$

For (1/2,1/2,1/2) + set

1. $t (1/2,1/2,1/2)$
2. $2 0,1/4,z$
3. $2' 1/4,y,0$
4. $2' x,0,1/4$
5. $1/2,1/2,1/2)$
6. $b (0,1/2,0) x,y,0$
7. $a' (1/2,0,0) x,0,z$
8. $c' (0,0,1/2) 0,y,z$

73.4.646 - 1 - 1284
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>8 e .2</td>
<td>0,1/4,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,3/4,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,3/4,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/4,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 d .2'</td>
<td>1/4,y,0 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,y,0 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>8 c 2'.</td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,0,3/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,3/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td>8 b 1</td>
<td>1/4,1/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,3/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,3/4 [u,v,w]</td>
</tr>
<tr>
<td>8 a 1</td>
<td>0,0,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_{2a}.2m'm' \)

\[a^* = a/2 \quad b^* = b/2 \]

Origin at 1/4,0,z

Along [1,0,0] \(p2'mm' \)

\[a^* = -c/2 \quad b^* = b/2 \]

Origin at x,0,0

Along [0,1,0] \(p2'mm' \)

\[a^* = c/2 \quad b^* = a/2 \]

Origin at 0,y,0
Ib'c'a'
73.5.647

Orthorhombic

m'm'm'
I21/b21/c21/a'

Origin at 1 at cab
Asymmetric unit
0 < x < 1/4; 0 < y < 1/2; 0 < z < 1/2

Symmetry Operations

For (0,0,0) + set

1 1
(1) 0,0,0
(2) 0,0,1/2 1/4,0,z
(3) 0,1/2,0 0,y,1/4
(4) 1/2,0,0 x,1/4,0

(5) T' 0,0,0
(1) 0,0,0
(2) (1/2,0,0) x,y,1/4
(3) (0,0,1/2) x,1/4,z
(4) (0,1/2,0) 1/4,y,z

5 (1) 1/2,1/2,1/2
(2) 0,1/4,z
(3) 1/4,y,0
(4) x,0,1/4

5 (1) 1/2,1/2,1/2
(2) 1/2,0,1/2
(3) 1/4,0,0
(4) 2,0,1/2

(5) T' 1/4,1/4,1/4
(1) 1/2,1/2,1/2
(2) 0,1/2,0 x,y,0
(3) 1/2,0,0 x,0,z
(4) 0,1/2,0 0,y,z
(5) 1/2,1/2,1/2
(6) 1/2,0,1/2
(7) 0,1/2,0
(8) 0,0,1/2
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
<td></td>
</tr>
<tr>
<td>16 f 1</td>
<td>(x,y,z \ [u,v,w])</td>
<td>(u,v,w)</td>
</tr>
<tr>
<td>8 e .2</td>
<td>(0,1/4,z \ [0,0,w])</td>
<td>(0,1/4,z+1/2 \ [0,0,w])</td>
</tr>
<tr>
<td>8 d .2</td>
<td>(1/4,y,0 \ [0,v,0])</td>
<td>(3/4,y,1/2 \ [0,v,0])</td>
</tr>
<tr>
<td>8 c .2</td>
<td>(x,0,1/4 \ [u,0,0])</td>
<td>(x+1/2,0,1/4 \ [u,0,0])</td>
</tr>
<tr>
<td>8 b (\bar{T'})</td>
<td>(1/4,1/4,1/4 \ [0,0,0])</td>
<td>(3/4,1/4,3/4 \ [0,0,0])</td>
</tr>
<tr>
<td>8 a (\bar{T'})</td>
<td>(0,0,0 \ [0,0,0])</td>
<td>(1/2,1/2,0 \ [0,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) p2m'\'m'
 - \(a' = a/2 \)
 - \(b' = b/2 \)
- Origin at \(0,0,z \)
- Along \([1,0,0]\) p2m'\'m'
 - \(a' = b/2 \)
 - \(b' = c/2 \)
- Origin at \(x,0,0 \)
- Along \([0,1,0]\) p2m'\'m'
 - \(a' = c/2 \)
 - \(b' = a/2 \)
- Origin at \(0,y,0 \)
Origin at \(\bar{1} \) at c'ab'

Asymmetric unit:

\[
0 < x < 1/4; \quad 0 < y < 1/2; \quad 0 < z < 1/2
\]

Symmetry Operations

For \((0,0,0)\) + set

1. \(\bar{1} (0,0,0) \)
2. \(\bar{2} (0,0,1/2) 1/4,0,z \)
3. \(\bar{2} (0,1/2,0) 0,y,1/4 \)
4. \(\bar{2} (1/2,0,0) x,1/4,0 \)
5. \(0,0,0 \)
6. \(a (1/2,0,0) x,y,1/4 \)
7. \(c (0,0,1/2) x,1/4,z \)
8. \(b (0,1/2,0) 1/4,y,z \)

For \((1/2,1/2,1/2)\)' + set

1. \(\bar{1} (1/2,1/2,1/2) \)
2. \(\bar{2} (0,0,1/2) 1/4,0,z \)
3. \(\bar{2} (0,1/2,0) 0,y,1/4 \)
4. \(\bar{2} (1/2,0,0) x,1/4,0 \)
5. \(0,0,0 \)
6. \(a' (1/2,0,0) x,0,z \)
7. \(c' (0,0,1/2) 0,y,z \)
8. \(b' (0,1/2,0) x,y,0 \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Positions</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y,z+1/2 [u,v,w]</td>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
<td>(4) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x+1/2,y,z+1/2 [u,v,w]</td>
<td>(7) x,y+1/2,z+1/2 [u,v,w]</td>
<td>(8) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
</tbody>
</table>

8 e .2'	0,1/4,0 [u,v,0]	0,3/4,0 [u,v,0]	0,3/4,0 [u,v,0]	0,1/4,0 [u,v,0]
8 d .2'	1/4,0,0 [u,v,w]	1/4,0,0 [u,v,w]	3/4,0,0 [u,v,w]	3/4,0,0 [u,v,w]
8 c 2'	x,0,1/4 [0,v,w]	x+1/2,0,3/4 [0,v,w]	x,0,3/4 [0,v,w]	x+1/2,0,1/4 [0,v,w]
8 b 1/4	1/4,1/4,1/4 [0,v,w]	1/4,3/4,3/4 [0,v,w]	3/4,3/4,3/4 [0,v,w]	3/4,1/4,3/4 [0,v,w]
8 a 1/4	0,0,0 [u,v,w]	1/2,0,1/2 [u,v,w]	0,1/2,1/2 [u,v,w]	1/2,1/2,0 [u,v,w]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p_{2a}2mm</th>
<th>Along [1,0,0] p_{2a}2mm</th>
<th>Along [0,1,0] p_{2a}2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = a/2</td>
<td>b' = b/2</td>
<td>a' = c/2</td>
</tr>
<tr>
<td>Origin at 1/4,0,z</td>
<td>Origin at x,1/4,0</td>
<td>Origin at 0,y,1/4</td>
</tr>
</tbody>
</table>

73.6.648 - 2 - 1289
Orthorhombic

73.7.649

I\textsubscript{b}b'ca

mmm1'

I\textsubscript{2}2'/b'2'/c2'/a

Asymmetric unit

0\leq x \leq 1/4; 0\leq y \leq 1/2; 0\leq z \leq 1/2

Symmetry Operations

For (0,0,0) + set

(1) \text{1} \quad (1 \mid 0,0,0)

(2) \text{2}' \ (0,0,1/2) \ (1/4,0,z)

(3) \text{2}' \ (0,1/2,0) \ (0,y,1/4)

(4) \text{2} \ (1/2,0,0) \ (x,1/4,0)

(5) \text{1}' \ (0,0,0)

(1 \mid 0,0,0)'

(6) \ a \ (1/2,0,0) \ (x,y,1/4)

(7) \ c \ (0,0,1/2) \ (x,1/4,z)

(8) \ b' \ (0,1/2,0) \ (1/4,y,z)

For (1/2,1/2,1/2)' + set

(1) \text{t}' \ (1/2,1/2,1/2)

(1 \mid 1/2,1/2,1/2)'

(2) \ b' \ (0,1/2,0) \ (0,1/4,z)

(3) \ b' \ (0,1/2,0) \ (1/2,y,1/2,0)

(4) \text{2}' \ x,0,1/4

(2 \mid 0,0,1/2)'

(5) \text{1}' \ (1/4,1/4,1/4)

(1 \mid 2,1/2,1/2)'

(6) \ a' \ (1/2,0,0) \ x,y,0

(7) \ a' \ (1/2,0,0) \ x,0,z

(8) \ c \ (0,0,1/2) \ 0,y,z

(3 \mid 1/2,0,0)'

(4 \mid 0,0,1/2)'

73.7.649 - 1 - 1290
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5). \)

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f 1</td>
<td>((0,0,0) + (1/2,1/2,1/2)' + (1/2,1/2,1/2))</td>
<td>((1)) x,y,z [u,v,w]</td>
<td>((2)) x+1/2, y+1/2, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8 e ..2</td>
<td>0,1/4,z [0,0,w]</td>
<td>0,3/4,z+1/2 [0,0,w]</td>
<td>0,1/4,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 d .2</td>
<td>1/4,y,0 [0,v,0]</td>
<td>1/4,y,1/2 [0,v,0]</td>
<td>3/4,y,0 [0,v,0]</td>
</tr>
<tr>
<td>8 c 2'..</td>
<td>x,0,1/4 [0,v,w]</td>
<td>x+1/2,0,3/4 [0,v,w]</td>
<td>x+1/2,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td>8 b 1</td>
<td>1/4,1,4,1/4 [u,v,w]</td>
<td>1/4,3/4,3/4 [u,v,w]</td>
<td>3/4,1/4,3/4 [u,v,w]</td>
</tr>
<tr>
<td>8 a 1'</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) \(p_{2a}2mm\) \(p_{2a}2m'm'\) \(p_{2a}2m'm'\)
\[a^* = a/2 \quad b^* = b/2\]
\[a^* = -c/2 \quad b^* = b/2\]
\[a^* = c/2 \quad b^* = a/2\]

Origin at 0,0,z Origin at x,0,0 Origin at 0,y,0
Imma
74.1.650

Orthorhombic

mmm
I2/m2/m2/a

Origin at center (2/m) at 2/m2/nb

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2 0,1/4,z
(2 | 0,1/2,0)

(3) 2 (0,1/2,0) 0,y,0
(2 | 0,1/2,0)

(4) 2 x,0,0
(2 | 0,0,0)

(5) 1
(1 | 0,0,0)

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(1 | 1/2,1/2,1/2)

(2) 2 (0,0,1/2) 1/4,0,z
(2 | 1/2,0,1/2)

(3) 2 1/4,y,1/4
(2 | 1/2,0,1/2)

(4) 2 (1/2,0,0) x,1/4,1/4
(2 | 1/2,1/2,1/2)

(5) 1
(1 | 0,0,0)

(6) a (1/2,0,0) x,y,1/4
(1 | 2,0,1/2)

(7) n (1/2,0,1/2) x,0,z
(1 | 2,0,1/2)

(8) n (0,1/2,1/2) 1/4,y,z
(1 | 2,1/2,1/2)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16 j 1</th>
<th>(1) x,y,z [u,v,w] (2) x,y+1/2,z [u,v,w] (3) x,y+1/2,z [u,v,w] (4) x,y,z [u,v,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i .m.</td>
<td>8 x,1/4,z [0,v,0] x,1/4,z [0,v,0] x,3/4,z [0,v,0] x,3/4,z [0,v,0]</td>
</tr>
<tr>
<td>8 h m..</td>
<td>8 0,y,z [u,0,0] 0,y+1/2,z [u,0,0] 0,y+1/2,z [u,0,0] 0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 g .2.</td>
<td>8 1/4,y,1/4 [0,v,0] 3/4,y+1/2,1/4 [0,v,0] 3/4,y+1/2,1/4 [0,v,0] 1/4,y+1/2,3/4 [0,v,0]</td>
</tr>
<tr>
<td>8 f .2..</td>
<td>8 x,0,0 [u,0,0] x,1/2,0 [u,0,0] x,0,0 [u,0,0] x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4 e mm2</td>
<td>4 0,1/4,z [0,0,0] 0,3/4,z [0,0,0]</td>
</tr>
<tr>
<td>4 d .2/m.</td>
<td>4 1/4,1/4,3/4 [0,v,0] 3/4,1/4,3/4 [0,v,0]</td>
</tr>
<tr>
<td>4 c .2/m.</td>
<td>4 1/4,1/4,3/4 [0,v,0] 3/4,1/4,3/4 [0,v,0]</td>
</tr>
<tr>
<td>4 b 2/m..</td>
<td>4 0,1/2 [u,0,0] 0,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 a 2/m..</td>
<td>4 0,0,0 [u,0,0] 0,1/2,0 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2a 2mm
 \(a^* = a/2 \quad b^* = b/2 \)
 Origin at 0,1/4,z

- Along [1,0,0] c2mm1'
 \(a^* = b \quad b^* = c \quad a^* = c \quad b^* = a \)
 Origin at 0,y,0
Imma1'
74.2.651

Orthorhombic

mmm1'
l2_/m2_/m2_/a1'

Origin at center (2/m1') at 2/m2_/nb1'

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

1. **1** (0,0,0)
2. **2** 0,1/4,z
3. **2** (0,1/2,0) 0,y,0
4. **2** x,0,0

For (1/2,1/2,1/2) + set

5. **1/2,1/2,1/2**
6. **2** (0,0,1/2) 1/4,0,z
7. **2** 1/4,y,1/4
8. **2** (1/2,0,0) 1/4,1/4,1/4

For (0,0,0)' + set

1'. **1/2,1/2,1/2**
2'. **2**' 0,1/4,z
3'. **2**' (0,1/2,0) 0,y,0
4'. **2**' x,0,0

For (1/2,1/2,1/2)' + set

5'. **1/2,1/2,1/2**
6'. **2**' (0,1/2,0) 1/4,0,z
7'. **2**' 1/4,y,1/4
8'. **2**' (1/2,0,0) 1/4,1/4,1/4
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) x,y+1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x,y+1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(0,0,0)' +</td>
<td>(1/2,1/2,1/2)' +</td>
</tr>
</tbody>
</table>

8 i .m.1'	x,1/4,z [0,0,0]
8 h .m..1'	0,y,z [0,0,0]
8 g .2.1'	1/4,y,1/4 [0,0,0]
8 f .2..1'	x,0,0 [0,0,0]
4 e mm1'	0,1/4,z [0,0,0]
4 d .2/m.1'	1/4,1/4,3/4 [0,0,0]
4 c .2/m.1'	1/4,1/4,1/4 [0,0,0]
4 b 2/m..1'	0,0,1/2 [0,0,0]
4 a 2/m..1'	0,0,0 [0,0,0]

Symmetry of Special Projections

- Along [0,0,1] p2mm1':
 - \(\mathbf{a}^* = \mathbf{a}/2 \)
 - \(\mathbf{b}^* = \mathbf{b}/2 \)
- Along [1,0,0] c2mm1':
 - \(\mathbf{a}^* = \mathbf{b} \)
 - \(\mathbf{b}^* = \mathbf{c} \)
- Along [0,1,0] c2mm1':
 - \(\mathbf{a}^* = \mathbf{c} \)
 - \(\mathbf{b}^* = \mathbf{a} \)
- Origin at 0,0,z
- Origin at x,1/4,1/4
- Origin at 0,y,0
Im' ma
74.3.652
m' mm
l2, m'2, '/m2, '/a
Orthorhombic

Origin at center (2/m') at 2/m'2, '/nb

Asymmetric unit
0 < x < 1/4; 0 < y < 1/4; 0 < z < 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2' 0,1/4,z
(2z | 0,1/2,0)'

(3) 2' (0,1/2,0) 0,y,0
(2 | 0,1/2,0)'

(4) 2 x,0,0
(2x | 0,0,0)

(5) m' 0,0,0
(m | 0,0,0)'

(6) b (0,1/2,0) x,y,0
(mz | 0,1/2,0)

(7) m x,1/4,z
(my | 0,1/2,0)

(8) m' 0,y,z
(my | 0,0,0)'

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(1 | 1/2,1/2,1/2)

(2) 2' (0,0,1/2) 1/4,0,z
(2z | 1/2,0,1/2)'

(3) 2' 1/4,y,1/4
(2y | 1/2,0,1/2)'

(4) 2 (1/2,0,0) x,1/4,1/4
(2x | 1/2,1/2,1/2)

(5) m' 1/4,1/4,1/4
(mz | 1/2,0,1/2)'

(6) a (1/2,0,0) x,y,1/4
(mz | 1/2,0,1/2)

(7) n (1/2,0,1/2) x,0,z
(my | 1/2,0,1/2)

(8) n' (0,1/2,1/2) 1/4,y,z
(my | 1/2,1/2,1/2)'
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x, y + 1/2, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z [u,v,w]</td>
<td>(6) x, y + 1/2, z [u,v,w]</td>
</tr>
<tr>
<td>8 i.m.</td>
<td>x, 1/4, z [0,v,0]</td>
<td>x, 3/4, z [0,v,0]</td>
</tr>
<tr>
<td>8 h m'..</td>
<td>0, y, z [0,v,w]</td>
<td>0, y + 1/2, z [0,v,w]</td>
</tr>
<tr>
<td>8 g .2'..</td>
<td>1/4, y, 1/4 [u,0,w]</td>
<td>3/4, y + 1/2, 1/4 [u,0,w]</td>
</tr>
<tr>
<td>8 f .2..</td>
<td>x, 0, 0 [u,0,0]</td>
<td>x, 1/2, 0 [u,0,0]</td>
</tr>
<tr>
<td>4 e m’m2'</td>
<td>0, 1/4, z [0,v,0]</td>
<td>0, 3/4, z [0,v,0]</td>
</tr>
<tr>
<td>4 d .2'/m.</td>
<td>1/4, 1/4, 3/4 [0,0,0]</td>
<td>3/4, 1/4, 3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 c .2'/m.</td>
<td>1/4, 1/4, 1/4 [0,0,0]</td>
<td>3/4, 1/4, 1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b 2/m'..</td>
<td>0, 0, 1/2 [0,0,0]</td>
<td>0, 1/2, 1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2/m'..</td>
<td>0, 0, 0 [0,0,0]</td>
<td>0, 1/2, 0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p_{2a}, 2m’m’
 \(a^* = -b/2 \quad b^* = a/2 \)
- Along [1,0,0] c2mm
 \(a^* = b \quad b^* = c \)
- Along [0,1,0] c2mm1’
 \(a^* = c \quad b^* = a \)

Origin at 0,0,z
Origin at x,1/4,1/4
Origin at 0,y,0
Imma' 74.4.653

mmm' I2,'m2,'m2,'a'

Orthorhombic

Origin at center (2'/m) at 2'/m2,'nb'

Asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1 | 0,0,0)

(2) 2 0,1/4,z
 (2 | 0,1/2,0)

(3) 2' (0,1/2,0) 0,y,0
 (2' | 0,1/2,0)'

(4) 2' x,0,0
 (2' | 0,0,0)'

(5) 2 0,0,0
 (2 | 0,0,0)' (1 | 0,0,0)'

(6) b' (0,1/2,0) x,y,0
 (m | 0,1/2,0)'

(7) m x,1/4,z
 (m | 0,1/2,0)

(8) m 0,y,z
 (m | 0,0,0)

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
 (1 | 1/2,1/2,1/2)

(2) 2 (0,0,1/2) 1/4,0,z
 (2 | 1/2,0,1/2)

(3) 2' 1/4,y,1/4
 (2' | 1/2,0,1/2)'

(4) 2' (1/2,0,0) x,1/4,1/4
 (2' | 1/2,1/2,1/2)'

(5) 2' 1/4,1/4,1/4
 (1 | 1/2,1/2,1/2)'

(6) a' (1/2,0,0) x,y,1/4
 (m | 1/2,0,1/2)'

(7) n (1/2,0,1/2) x,0,z
 (m | 1/2,0,1/2)

(8) n (0,1/2,1/2) 1/4,y,z
 (m | 1/2,1/2,1/2)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>8 i m.</td>
<td>x,1/4,z [0,v,0]</td>
<td>[u,v,0]</td>
</tr>
<tr>
<td>8 h m..</td>
<td>0,y,z [u,0,0]</td>
<td>[u,0,0]</td>
</tr>
<tr>
<td>8 g .2'.</td>
<td>1/4,y,1/4 [u,0,w]</td>
<td>[u,0,w]</td>
</tr>
<tr>
<td>8 f .2'..</td>
<td>x,0,0 [0,v,w]</td>
<td>[u,0,w]</td>
</tr>
<tr>
<td>4 e mm2</td>
<td>0,1/4,z [0,0,0]</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>4 d .2'/m.</td>
<td>1/4,1/4,3/4 [0,0,0]</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>4 c .2'/m.</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>4 b 2'/m..</td>
<td>0,0,1/2 [0,0,0]</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>4 a 2'/m..</td>
<td>0,0,0 [0,0,0]</td>
<td>[0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm Along [1,0,0] c2mm1' Along [0,1,0] c2mm1'
 \[a^* = a/2\] \[b^* = b/2\] \[a^* = b\] \[b^* = c\] \[a^* = c\] \[b^* = a\]
Origin at 0,0,z Origin at x,1/4,1/4 Origin at 0,y,0
Im'm'a

74.5.654

m'm'm

l2,/m'2,/m'2,/a

Orthorhombic

Origin at center (2'/m') at 2'/m'2,/m'b

Asymmetric unit

\[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{4}; \quad 0 < z < 1\]

Symmetry Operations

For \((0,0,0) + \text{ set}\)

1. \(1\)
2. \(2 \quad 0,1/4,z\)
3. \(2' \quad (0,1/2,0)\)
4. \(2' \quad x,0,0\)
5. \(1\)
6. \(b \quad (0,1/2,0)\)
7. \(m' \quad x,1/4,z\)
8. \(m' \quad 0,y,z\)

For \((1/2,1/2,1/2) + \text{ set}\)

1. \(t \quad (1/2,1/2,1/2)\)
2. \(2 \quad (0,0,1/2)\)
3. \(2' \quad 1/4,y,1/4\)
4. \(2' \quad (1/2,0,0)\)
5. \(1\)
6. \(a \quad (1/2,0,0)\)
7. \(n' \quad (1/2,0,1/2)\)
8. \(n' \quad (0,1/2,1/2)\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>16 j</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8 i</td>
<td>(1/4,z) [u,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8 h</td>
<td>(0,y,z) [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8 g</td>
<td>(1/4,1/4) [u,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8 f</td>
<td>(0,v,w)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4 e</td>
<td>(0,1/4,z) [0,0,w]</td>
</tr>
<tr>
<td>4 d</td>
<td>(1/4,1/4,3/4) [u,0,w]</td>
</tr>
<tr>
<td>4 c</td>
<td>(1/4,1/4,1/4) [u,0,w]</td>
</tr>
<tr>
<td>4 b</td>
<td>(0,0,1/2) [0,v,w]</td>
</tr>
<tr>
<td>4 a</td>
<td>(0,0,0) [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>(p_{2a})2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a/2)</td>
<td>(b^* = b/2)</td>
</tr>
<tr>
<td>Origin at 0,1/4,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>c2'2mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = -c)</td>
<td>(b^* = b)</td>
</tr>
<tr>
<td>Origin at x,1/4,1/4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [0,1,0]</th>
<th>c2'2mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = c)</td>
<td>(b^* = a)</td>
</tr>
<tr>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Imm'a' mm'm' Orthorhombic

74.6.655 l2/m21'/m'/a'

Origin at center (2/m) at 2/m21'/n'b'

Asymmetric unit

0 < x < 1/4; 0 < y < 1/4; 0 < z < 1

Symmetry Operations

For (0,0,0) + set

(1) 1 (1 | 0,0,0)
(2) 2' 0,1/4,z (2 | 0,1/2,0')
(3) 2' (0,1/2,0) 0,y,0 (2 | 0,1/2,0')
(4) 2 x,0,0 (2 | 0,0,0)
(5) 1/2,1/2,1/2 (1 | 0,0,0)
(6) b' (0,1/2,0) x,y,0 (m_z | 1/2,0,1/2')
(7) m' x,1/4,z (m_y | 0,1/2,0')
(8) m 0,y,z (m_z | 0,0,0)

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2) (1 | 1/2,1/2,1/2)
(2) 2' (0,0,1/2) 1/4,0,z (2 | 1/2,0,1/2')
(3) 2' 1/4,y,1/4 (2 | 1/2,0,1/2')
(4) 2 (1/2,0,0) x,1/4,1/4 (2 | 1/2,1/2,1/2)
(5) 1/4,1/4,1/4 (1 | 1/2,1/2,1/2)
(6) a' (1/2,0,0) x,y,1/4 (m_z | 1/2,0,1/2')
(7) n' (1/2,0,1/2) x,0,z (m_y | 1/2,0,1/2')
(8) n 0,1/2,1/2 1/4,y,z (m_z | 1/2,1/2,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity, Coordinates
Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 i</td>
<td>8</td>
<td>m' x,1/4,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4 x+1/2,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4 x+1/2,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4 x+1/2,3/4 [u,v,w]</td>
</tr>
<tr>
<td>8 h</td>
<td>8</td>
<td>m x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>8 g</td>
<td>8</td>
<td>2' x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4 e</td>
<td>4</td>
<td>m' 0,1/4,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4,1/4,3/4 [u,0,0]</td>
</tr>
<tr>
<td>4 d</td>
<td>4</td>
<td>2'/m' 1/4,1/4,3/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4,1/4,1/4 [u,0,0]</td>
</tr>
<tr>
<td>4 c</td>
<td>4</td>
<td>2'/m' 1/4,1/4,1/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4,1/4,1/4 [u,0,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>4</td>
<td>2/m' 0,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>4</td>
<td>2/m' 0,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,0 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2mm' Along [1,0,0] c2mm1' Along [0,1,0] c2mm'
\(a^* = a/2 \) \(b^* = b/2 \) \(a^* = b \) \(b^* = c \) \(a^* = -a \) \(b^* = c \)
Im'm'a'

74.7.656

m'm'm'

l2/m2/l'm2/a'

Orthorhombic

Origin at center (2/m') at 2/m'2,n'b'

Symmetry Operations

Asymmetric unit

\[0 < x < 1/4; \quad 0 < y < 1/4; \quad 0 < z < 1\]

For (0,0,0) + set

(1) \(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \)

(1) \(0,0,0 \)

(2) \(0,1/4,z \)

(2) \(0,1/2,0 \)

(3) \(0,1/2,0 \)

(4) \(x,0,0 \)

\((2,m) \)

\(0,0,0 \)

\((2,z) \)

\(0,0,0 \)

\(0,0,0 \)

(5) \(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \)

(6) \(b', 0,1/2,0 \)

(6) \(m', 0,1/2,0 \)

\(y,x,0 \)

\(x,y,0 \)

\(y,x,0 \)

(7) \(m', 0,1/4,z \)

(7) \(m', 0,1/4,z \)

\(x,0,0 \)

\(0,0,0 \)

\(0,0,0 \)

\(0,0,0 \)

\(0,0,0 \)

\(0,0,0 \)

For (1/2,1/2,1/2) + set

(1) \(1/2,1/2,1/2 \)

(1) \(1/2,1/2,1/2 \)

(1) \(1/2,1/2,1/2 \)

(2) \(0,0,1/2 \)

(2) \(0,1/2,0 \)

(2) \(1/2,1/2,1/2 \)

(2) \(0,1/2,0 \)

(2) \(1/2,1/2,1/2 \)

\(1/4,0,z \)

(3) \(1/4,y,1/4 \)

(4) \(1/2,0,0 \)

(4) \(1/2,0,0 \)

(4) \(1/2,0,0 \)

(4) \(1/2,0,0 \)

(4) \(1/2,0,0 \)

(4) \(1/2,0,0 \)

(4) \(1/2,0,0 \)

For (1/2,1/2,1/2) + set

(1) \(1/2,1/2,1/2 \)

(2) \(1/2,1/2,1/2 \)

(2) \(1/2,1/2,1/2 \)

(2) \(1/2,1/2,1/2 \)

(2) \(1/2,1/2,1/2 \)

(2) \(1/2,1/2,1/2 \)

(2) \(1/2,1/2,1/2 \)

(2) \(1/2,1/2,1/2 \)

(3) \(1/2,0,1/2 \)

(3) \(1/2,0,1/2 \)

(3) \(1/2,0,1/2 \)

(3) \(1/2,0,1/2 \)

(3) \(1/2,0,1/2 \)

(3) \(1/2,0,1/2 \)

(3) \(1/2,0,1/2 \)

(3) \(1/2,0,1/2 \)

(4) \(1/4,y,1/4 \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(2) x,y+1/2,z [u,v,0]</td>
<td>(3) x,y+1/2,z [u,v,0]</td>
</tr>
<tr>
<td>(4) x,y,z [u,v,w]</td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(6) x,y+1/2,z [u,v,w]</td>
<td>(7) x,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(8) x,y,z [u,v,w]</td>
<td>(9) x,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2m'm' Along [1,0,0] c2m'm' Along [0,1,0] c2m'm'

a* = a/2 b* = b/2
Origin at 0,0,z

Along [1,0,0] c2m'm' Along [0,1,0] c2m'm'

a* = a b* = c
Origin at x,1/4,1/4

Along [0,0,1] p2m'm'

a* = c b* = a
Origin at 0,y,0

74.7.656 - 2 - 1305
IPmma

Orthorhombic

74.8.657

IPmma

Orthorhombic

74.8.657

mmm1'

I_{21/m21/m21/a}

Origin at center (2/m) at 2/m21/n'b

Asymmetric unit

0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1

Symmetry Operations

For (0,0,0) + set

(1) 1

(1 | 0,0,0)

(2) 2 0,1/4,z

(2 | 0,1/2,0)

(3) 2 (0,1/2,0) 0,y,0

(2 | 0,1/2,0)

(4) 2 x,0,0

(2 | 0,0,0)

(5) 1

(0,0,0)

(6) b (0,1/2,0) x,y,0

(m_0 | 0,1/2,0)

(7) m x,1/4,z

(0 | 0,0,0)

(8) m y,z

(0 | 0,0,0)

For (1/2,1/2,1/2)' + set

(1) t' (1/2,1/2,1/2)

(1/2 | 1/2,1/2,1/2)

(2) 2' (0,0,1/2) 1/4,0,z

(2 | 1/2,0,1/2)

(3) 2' 1/4,y,1/4

(2 | 1/2,0,1/2)

(4) 2' x,1/4,1/4

(2 | 1/2,1/2,1/2)

(5) t' (1/4,1/4,1/4)

(1/2 | 1/2,1/2,1/2)

(6) a' (1/2,0,0) x,y,1/4

(m_0 | 1/2,0,1/2)

(7) n' (1/2,0,1/2) x,0,z

(m_0 | 1/2,0,1/2)

(8) n' (0,1/2,1/2) 1/4,y,z

(m_0 | 1/2,1/2,1/2)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j 1 (1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2)'</td>
</tr>
<tr>
<td>(2) x,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(3) x,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(4) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 i .m. x,1/4,z [0,v,0]</td>
<td>x,1/4,z [0,v,0]</td>
</tr>
<tr>
<td>x,3/4,z [0,v,0]</td>
<td>x,3/4,z [0,v,0]</td>
</tr>
<tr>
<td>8 h m.. 0,y,z [u,0,0]</td>
<td>0,y+1/2,z [u,0,0]</td>
</tr>
<tr>
<td>0,y+1/2,z [0,v,0]</td>
<td>0,y+1/2,z [u,0,0]</td>
</tr>
<tr>
<td>0,y,z [u,0,0]</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 g .2'. 1/4,y,1/4 [u,0,w]</td>
<td>3/4,y+1/2,1/4 [u,0,w]</td>
</tr>
<tr>
<td>3/4,y+1/2,1/4 [u,0,w]</td>
<td>3/4,y+1/2,1/4 [u,0,w]</td>
</tr>
<tr>
<td>1/4,y+1/2,3/4 [u,0,w]</td>
<td>1/4,y+1/2,3/4 [u,0,w]</td>
</tr>
<tr>
<td>8 f 2.. x,0,0 [u,0,0]</td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>x,1/2,0 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 e mm2 0,1/4,z [0,0,0]</td>
<td>0,1/4,z [0,0,0]</td>
</tr>
<tr>
<td>4 d .2'/m. 1/4,1/4,3/4 [0,0,0]</td>
<td>3/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 c .2'/m. 1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b 2/m.. 0,0,1/2 [u,0,0]</td>
<td>1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 a 2/m.. 0,0,0 [u,0,0]</td>
<td>0,1/2,0 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [0,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>p2\text{a}2mm</td>
<td>a* = -b/2</td>
<td>b* = a/2</td>
<td>c2mm1'</td>
</tr>
<tr>
<td>c2mm1'</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = c</td>
</tr>
<tr>
<td>Origin at 0,1/4,z</td>
<td>Origin at x,1/4,1/4</td>
<td>Origin at 0,y,0</td>
<td></td>
</tr>
</tbody>
</table>
Orthorhombic

$74.9.658$

$\text{mmm}1'$

$\text{l}_{2}'/\text{m}'2_/l_{2}'/\text{m}'2_/a$

Origin at center $(2'/{\text{m'}})$ at $2'/{\text{m'}2'/\text{m }'b}$

Asymmetric unit

$0 < x < 1/4; \quad 0 < y < 1/4; \quad 0 < z < 1$

Symmetry Operations

For $(0,0,0) +$ set

$(1) \ 1 \ (1 | 0,0,0)$

$(2) \ 2 \ (0,1/2,0) \ (2_z | 0,1/2,0)$

$(3) \ 2' \ (0,1/2,0) \ 0,y,0 \ (2_z | 0,1/2,0)'$

$(4) \ 2' \ x,0,0 \ (2_z | 0,0,0)'$

$(5) \ {\text{m'}} \ 0,0,0 \ (1 | 0,0,0)$

$(6) \ {\text{b}} \ (0,1/2,0) \ x,y,0 \ (m_z | 0,1/2,0)$

$(7) \ m' \ x,1/4,z \ (m_y | 0,1/2,0)'$

$(8) \ m' \ 0,y,z \ (m_z | 0,0,0)'$

For $(1/2,1/2,1/2)' +$ set

$(1) \ t' \ (1/2,1/2,1/2) \ (1 | 1/2,1/2,1/2)'$

$(2) \ 2' \ (0,0,1/2) \ 1/4,0,z \ (2_z | 1/2,0,1/2)'$

$(3) \ 2 \ 1/4,y,1/4 \ (2_y | 1/2,0,1/2)$

$(4) \ 2 \ (1/2,0,0) \ x,1/4,1/4 \ (2_x | 1/2,1/2,1/2)$

$(5) \ {\text{t'}} \ 1/4,1/4,1/4 \ (1 | 1/2,1/2,1/2)'$

$(6) \ a' \ (1/2,0,0) \ x,y,1/4 \ (m_z | 1/2,0,1/2)'$

$(7) \ n \ (1/2,0,1/2) \ x,0,z \ (m_y | 1/2,0,1/2)$

$(8) \ n \ (0,1/2,1/2) \ 1/4,y,z \ (m_z | 1/2,1/2,1/2)$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y+1/2, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+1/2, y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y+1/2, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y+1/2, z [u,v,w]</td>
</tr>
<tr>
<td>8 i</td>
<td>x,1/4,z [u,0,w]</td>
</tr>
<tr>
<td>8 h</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 g</td>
<td>1/4,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td>8 f</td>
<td>0,0,0 [0,v,w]</td>
</tr>
<tr>
<td>4 e</td>
<td>0,1/4,z [0,0,w]</td>
</tr>
<tr>
<td>4 d</td>
<td>1/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 c</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>0,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,0 [0,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] $p_{2a} \cdot 2m'm'$
Along [1,0,0] $c_p \cdot 2mm'$
Along [0,1,0] $c_p \cdot 2mm'$

$a^* = -b/2$ \hspace{1cm} $b^* = a/2$

Origin at 0,1/4,z
Origin at x,1/4,1/4
Origin at 0,y,0
Origin at center (2/m) at 2/m2,'h/n'b'

Asymmetric unit

\[0 < x < \frac{1}{4}; \quad 0 < y < \frac{1}{4}; \quad 0 < z < 1 \]

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{align*}
(1) \ & 1 \\
(1) \ & (0,0,0) \\
(2) \ & 2', 0,1/4,z \\
(2) \ & (0,1/2,0)' \\
(3) \ & 2' (0,1/2,0) 0,y,0 \\
(3) \ & (2',0,1/2,0)' \\
(4) \ & 2 x,0,0 \\
(4) \ & (2,0,0,0) \\
(5) \ & 0,0,0 \\
(5) \ & (1,0,0,0) \\
(6) \ & b' (0,1/2,0) x,y,0 \\
(6) \ & (m_z,0,1/2,0)' \\
(7) \ & m' x,1/4,z \\
(7) \ & (m_y,0,1/2,0)' \\
(8) \ & m 0,y,z \\
(8) \ & (m,0,0,0) \\
\end{align*}
\]

For \((1/2,1/2,1/2)'\) + set

\[
\begin{align*}
(1) \ & t' (1/2,1/2,1/2) \\
(1) \ & (1/2,1/2,1/2)' \\
(2) \ & 2 (0,0,1/2) 1/4,0,z \\
(2) \ & (2,1/2,0,1/2) \\
(3) \ & 2 1/4,y,1/4 \\
(3) \ & (2,1/2,0,1/2) \\
(4) \ & 2' (1/2,0,0) x,1/4,1/4 \\
(4) \ & (2,1/2,1/2,1/2)' \\
(5) \ & 1/4,1/4,1/4 \\
(5) \ & (1/2,1/2,1/2)' \\
(6) \ & a (1/2,0,0) x,y,1/4 \\
(6) \ & (m_z,1/2,0,1/2) \\
(7) \ & n (1/2,0,1/2) x,0,z \\
(7) \ & (m_y,1/2,0,1/2) \\
(8) \ & n' (0,1/2,1/2) 1/4,y,z \\
(8) \ & (m,1/2,1/2,1/2)' \\
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y+1/2,z [u,v,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2)' + (u,v,w)</td>
</tr>
<tr>
<td>8 i</td>
<td>.m'</td>
<td>(5) x,y,z [u,v,w]</td>
<td>(u,v,w)</td>
</tr>
<tr>
<td>8 h</td>
<td>m..</td>
<td>(6) x,y+1/2,z [u,v,w]</td>
<td>(u,v,w)</td>
</tr>
<tr>
<td>8 g</td>
<td>.2.</td>
<td>(7) x,y+1/2,z [u,v,w]</td>
<td>(u,v,w)</td>
</tr>
<tr>
<td>8 f</td>
<td>2..</td>
<td>(8) x,y,z [u,v,w]</td>
<td>(u,v,w)</td>
</tr>
<tr>
<td>4 e</td>
<td>mm'2'</td>
<td>0,1/4,z [u,0,0]</td>
<td>0,3/4,z [u,0,0]</td>
</tr>
<tr>
<td>4 d</td>
<td>.2/m'.</td>
<td>1/4,1/4,3/4 [0,0,0]</td>
<td>3/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 c</td>
<td>.2/m'.</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>2/m..</td>
<td>0,1/2,1/2 [u,0,0]</td>
<td>0,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>2/m..</td>
<td>0,0,0 [u,0,0]</td>
<td>0,1/2,0 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p2mm'
 - $a^* = a/2$, $b^* = b/2$
 - Origin at 0,0,z

- Along [1,0,0] c2mm1'
 - $a^* = b$, $b^* = c$
 - Origin at x,1/4,1/4

- Along [0,1,0] c_p-2mm'
 - $a^* = -a$, $b^* = c$
 - Origin at 0,y,0
Orthorhombic

74.11.660

Orthorhombic

I_p'm'ma'

mm1'

I_p2,1/m'/2,m2,1/a'

Origin at center (2'/m') at 2'/m'2,1/b'

Asymmetric unit

0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2' 0,1/4,z
 (2 | 0,1/2,0)

(3) 2 (0,1/2,0) 0,y,0
 (2 | 0,1/2,0)

(4) 2' x,0,0
 (2 | 0,0,0)

(5) 1/m
 (1 | 0,0,0)

(6) b' (0,1/2,0) x,y,0
 (m | 0,1/2,0)

(7) m x,1/4,z
 (m | 0,1/2,0)

(8) m' 0,y,z
 (m | 0,0,0)

For (1/2,1/2,1/2)′ + set

(1) t' (1/2,1/2,1/2)
 (1 | 1/2,1/2,1/2)

(2) 2 (0,0,1/2) 1/4,0,z
 (2 | 1/2,0,1/2)

(3) 2' 1/4,y,1/4
 (2 | 1/2,0,1/2)

(4) 2 (1/2,0,0) x,1/4,1/4
 (2 | 1/2,1/2,1/2)

(5) 1/m'
 (1 | 1/2,1/2,1/2)

(6) a (1/2,0,0) x,y,1/4
 (m | 1/2,0,1/2)

(7) n' (1/2,0,1/2) x,0,z
 (m | 1/2,0,1/2)

(8) n (0,1/2,1/2) 1/4,y,z
 (m | 1/2,1/2,1/2)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) x,y+1/2,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) x,y+1/2,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) x,y,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) x,y+1/2,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) x,y+1/2,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) x,y,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(2) x,y+1/2,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) x,y+1/2,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) x,y,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) x,y+1/2,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) x,y+1/2,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) x,y,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin at 0,0,z</th>
<th>Along [0,0,1] p2mm'</th>
<th>Along [1,0,0] c_p 2mm</th>
<th>Along [0,1,0] c2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = -b/2 b^* = a/2</td>
<td>a^* = b b^* = c</td>
<td>a^* = c b^* = a</td>
<td>a^* = c b^* = a</td>
</tr>
</tbody>
</table>

74.11.660 - 2 - 1313
Origin on 4

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

(1) 1
(1)|0,0,0)

(2) 2 0,0,z
(2z)|0,0,0)

(3) 4z 0,0,z
(4z)|0,0,0)

(4) 4z -1 0,0,z
(4z) -1|0,0,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>2 c 2</td>
<td>0,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>1 b 4</td>
<td>1/2,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>1 a 4</td>
<td>0,0,z [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4</th>
<th>Along [1,0,0]</th>
<th>p1m'1</th>
<th>Along [1,1,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = (a + b)/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 41'

Asymmetric unit \(0 \leq x \leq 1/2;\) \(0 \leq y \leq 1/2;\) \(0 \leq z \leq 1\)

Symmetry Operations

For 1 + set

\[(1) 1 (2) 2 0,0,z (3) 4^+ 0,0,z (4) 4^- 0,0,z \]

\[(1^* 0,0,0) (2^z 0,0,0) (4^z 0,0,0) (4^z^{-1} 0,0,0)\]

For 1' + set

\[(1) 1' (2) 2' 0,0,z (3) 4'^+ 0,0,z (4) 4'^- 0,0,z \]

\[(1^* 0,0,0)' (2^z 0,0,0)' (4^z 0,0,0)' (4^z^{-1} 0,0,0)'\]
Continued

75.2.662

P41'

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>1'</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>d</th>
<th>11'</th>
<th>(1) x,y,z [0,0,0]</th>
<th>(2) x̅,y,z [0,0,0]</th>
<th>(3) y,x,z [0,0,0]</th>
<th>(4) y,x̅,z [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>c</td>
<td>2..1'</td>
<td>0,1/2,z [0,0,0]</td>
<td>1/2,0,z [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>4..1'</td>
<td>1/2,1/2,z [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>4..1'</td>
<td>0,0,z [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p41'

\[a^* = a \quad b^* = b \]

Origin at 0,0,z

Along [1,0,0] p1m11'

\[a^* = b \quad b^* = c \]

Origin at x,0,0

Along [1,1,0] p1m11'

\[a^* = (a + b)/2 \quad b^* = c \]

Origin at x,x,0
Origin on 4'

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

(1) 1
(2) 2 0,0,z
(3) $4'$ 0,0,z
(4) $4'$ 0,0,z

$1\,(0,0,0)
2\,(z,0,0,0)
3\,(4z,0,0,0)
4\,(4z,0,0,0')$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>2 c 2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>1 b 4'..</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>1 a 4'..</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4'</th>
<th>Along [1,0,0]</th>
<th>p1m'1</th>
<th>Along [1,1,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 4

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0)$ + set

(1) 1
(2) $2 \cdot 0,0,z$
(3) $4^+ \cdot 0,0,z$
(4) $4^- \cdot 0,0,z$

For $(0,0,1)'$ + set

(1) $t\cdot (0,0,1)$
(2) $2' \cdot (0,0,1) \cdot 0,0,z$
(3) $4'^+ \cdot (0,0,1) \cdot 0,0,z$
(4) $4'^- \cdot (0,0,1) \cdot 0,0,z$

P$_{2c}$ 4

Tetragonal

75.4.664 - 1 - 1320
Generators selected \(\text{t}(1,0,0); \text{t}(0,1,0); \text{t}(0,0,1)^*; \text{t}; (2); (3). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8) d 1</td>
<td>((0,0,0) + (0,0,1)^* +)</td>
</tr>
<tr>
<td>(4) c 2..</td>
<td>((0,0,1))</td>
</tr>
<tr>
<td>(2) b 4..</td>
<td>((0,0,1))</td>
</tr>
<tr>
<td>(2) a 4..</td>
<td>((0,0,1))</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along ([0,0,1])</th>
<th>(p41^*)</th>
<th>Along ([1,0,0])</th>
<th>(p_{2b}1m1)</th>
<th>Along ([1,1,0])</th>
<th>(p_{2b}1m1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b)</td>
<td>(a^* = b)</td>
<td>(b^* = c)</td>
<td>(a^* = (-a + b)/2)</td>
<td>(b^* = c)</td>
</tr>
</tbody>
</table>
Origin on 4

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad (0,0,0) \\
(2) & \quad 0,0,z \\
(2) & \quad (0,0,0) \\
(3) & \quad 4^+ \quad 0,0,z \\
(3) & \quad (4z|0,0,0) \\
(4) & \quad 4^- \quad 0,0,z \\
(4) & \quad (4z^{-1}|0,0,0)
\end{align*}
\]

For \((1,0,0)'\) + set

\[
\begin{align*}
(1) & \quad t' \quad (1,0,0) \\
(1) & \quad (1,0,0)' \\
(2) & \quad 2' \quad 1/2,0,z \\
(2) & \quad (2z|1,0,0)' \\
(3) & \quad 4^+ \quad 1/2,1/2,z \\
(3) & \quad (4z|1,0,0)' \\
(4) & \quad 4^- \quad 1/2,1/2,z \\
(4) & \quad (4z^{-1}|1,0,0)'
\end{align*}
\]
Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 c 2'..</td>
<td>0,1/2,z [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>2 b 4'..</td>
<td>1/2,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 4..</td>
<td>0,0,z [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1], \(p_p 4 \)

- \(\mathbf{a}^* = \mathbf{a} \)
- \(\mathbf{b}^* = \mathbf{b} \)
- Origin at 0,0,z

Along [1,0,0], \(p1m11' \)

- \(\mathbf{a}^* = \mathbf{b} \)
- \(\mathbf{b}^* = \mathbf{c} \)
- Origin at x,0,0

Along [1,1,0], \(p_{221} 1m1 \)

- \(\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \)
- \(\mathbf{b}^* = \mathbf{c} \)
- Origin at x-1/4,x+1/4,0
Origin on 4

Asymmetric unit \[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0) + \) set

(1) 1
(1|0,0,0)

(2) 2 \(\times \) 0,0,z
(2|0,0,0)

(3) 4^+ \(\times \) 0,0,z
(4|z|0,0,0)

(4) 4^- \(\times \) 0,0,z
(4|z^-1|0,0,0)

For \((1,0,0) + \) set

(1) t' \(\times \) (1,0,0)
(1|1,0,0)

(2) 2' \(\times \) 1/2,0,z
(2|z|1,0,0)

(3) 4^+ \(\times \) 1/2,1/2,z
(4|z|1,0,0)

(4) 4^- \(\times \) 1/2,1/2,z
(4|z^-1|1,0,0)
Generators selected (1); \(t'(1,0,0); t'(0,1,0); t'(0,0,1)\); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>((0,0,0) + (1,0,0)' + (0,1,0)' + (0,0,1))</td>
</tr>
<tr>
<td>4 c 2'..</td>
<td>((0,1/2,z) [u,v,0] 1/2,0,z [v,u,0])</td>
</tr>
<tr>
<td>2 b 4'..</td>
<td>((1/2,1/2,z) [0,0,0])</td>
</tr>
<tr>
<td>2 a 4..</td>
<td>((0,0,z) [0,0,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) \(p41'\) \(a^* = a \quad b^* = b\)
Origin at 0,0,z

Along \([1,0,0]\) \(p1m1'\) \(a^* = b \quad b^* = c\)
Origin at x,0,0

Along \([1,1,0]\) \(p_{1c}1m1\) \(a^* = (-a + b)/2 \quad b^* = c\)
Origin at x-1/4,x+1/4,0
Origin on 4

Asymmetric unit \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1 \)

Symmetry Operations

For \((0,0,0) + \text{set}\)

\begin{align*}
(1) & \text{1} \\
(1|0,0,0) & \\
(2) & 0,0,z \\
(2_2|0,0,0) & \\
(3) & 4^* 0,0,z \\
(4_z|0,0,0)' & \\
(4) & 4^* 0,0,z \\
(4_z^{-1}|0,0,0)' &
\end{align*}

For \((0,0,1)' + \text{set}\)

\begin{align*}
(1) & t' (0,0,1) \\
(1|0,0,1)' & \\
(2) & 2' (0,0,1) 0,0,z \\
(2_z|0,0,1)' & \\
(3) & 4^* (0,0,1) 0,0,z \\
(4_z|0,0,1) & \\
(4) & 4^* (0,0,1) 0,0,z \\
(4_z^{-1}|0,0,1) &
\end{align*}
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1)'; (2); (3).

Positions

Multiplicity, Coordinates
Wyckoff letter, (0,0,0) + (0,0,1) +
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 c 2..</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 b 4..</td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>2 a 4..</td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p41' Along [1,0,0] p21m1 Along [1,1,0] p21m1
\(\mathbf{a}^* = \mathbf{a} \) \(\mathbf{b}^* = \mathbf{b} \) \(\mathbf{a}^* = \mathbf{b} \) \(\mathbf{b}^* = \mathbf{c} \)
Origin at 0,0,z Origin at x,0,0 Origin at x,x,0 Origin at x,x,0

\(\mathbf{a}^* = (\mathbf{a} + \mathbf{b})/2 \) \(\mathbf{b}^* = \mathbf{c} \)
Origin on 4₁

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \)

Symmetry Operations

(1) 1
(1|0,0,0)

(2) 2 (0,0,1/2) 0,0,z
(2|0,0,1/2)

(3) 4⁺ (0,0,1/4) 0,0,z
(4|0,0,1/4)

(4) 4⁻ (0,0,3/4) 0,0,z
(4⁻|0,0,3/4)
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3). \)

Positions

- **Multiplicity**
- **Wyckoff letter**
- **Site Symmetry**

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 a 1</td>
<td>((1) \ x, y, z \ [u, v, w])</td>
</tr>
<tr>
<td></td>
<td>((2) \ \bar{x}, \bar{y}, \bar{z} + 1/2 \ [\bar{u}, \bar{v}, w])</td>
</tr>
<tr>
<td></td>
<td>((3) \ y, x, z + 1/4 \ [v, u, w])</td>
</tr>
<tr>
<td></td>
<td>((4) \ y, x, z + 3/4 \ [v, u, w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along \([0,0,1]\) p4**
- **Along \([1,0,0]\) p1g'1**
- **Along \([1,1,0]\) p1g'1**

\(a^* = a \quad b^* = b \)
\(a^* = b \quad b^* = c \)
\(a^* = (-a + b)/2 \quad b^* = c \)

Origin at \((0,0,0)\) Origin at \((x,0,0)\) Origin at \((x,x,0)\)
Origin on 4,1'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For 1 + set

(1) 1
(1' 0,0,0)
(2) 2 (0,0,1/2) 0,0,z
(2' 0,0,1/2')
(3) 4+ (0,0,1/4) 0,0,z
(4z 0,0,1/4)
(4z' 0,0,3/4)

For 1' + set

(1) 1'
(1' 0,0,0')
(2) 2' (0,0,1/2) 0,0,z
(2' 0,0,1/2')
(3) 4' (0,0,1/4) 0,0,z
(4z' 0,0,1/4')
(4z' 0,0,3/4')
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
<td>1' +</td>
</tr>
<tr>
<td>4 a 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) x̅,y̅,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) y̅,x̅,z+1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x̅,z+3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p41'</th>
<th>Along [1,0,0]</th>
<th>p1g11'</th>
<th>Along [1,1,0]</th>
<th>p1g11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = (-a + b)/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on $4_{1}^{'},$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

1. 1

2. 2 $\{0,0,1/2\}$ 0,0,z

3. $4_{1}^{'},$ 0,0,$1/4$ 0,0,z

4. $4_{1}^{'},$ 0,0,$3/4$ 0,0,z
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

Coordinates

4 a 1 (1) x,y,z [u,v,w] (2) x,y,z+1/2 [u,v,w] (3) y,x,z+1/4 [v,u,w] (4) y,x,z+3/4 [v,u,w]

Symmetry of Special Projections

Along [0,0,1] p4' Along [1,0,0] p1g'1 Along [1,1,0] p1g'1
a* = a b* = b a* = b b* = c a* = (a + b)/2 b* = c
Origin at 0,0,z Origin at x,0,0 Origin at x,x,0
Origin on 41

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{align*}
(1) & \quad \text{1} \\
(2) & \quad \text{2} (0,0,1/2) \quad 0,0,z \\
(3) & \quad \text{4}^+ (0,0,1/4) \quad 0,0,z \\
(4) & \quad \text{4}^- (0,0,3/4) \quad 0,0,z
\end{align*}
\]

For \((1,0,0)\) + set

\[
\begin{align*}
(1) & \quad \text{1} (1,0,0) \\
(2) & \quad \text{2} (0,0,1/2) \quad 1/2,0,z \\
(3) & \quad \text{4}^+ (0,0,1/4) \quad 1/2,1/2,z \\
(4) & \quad \text{4}^- (0,0,3/4) \quad 1/2,1/2,z
\end{align*}
\]
Generators selected
(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 a 1</td>
<td>(1) x,y,z [u,v,w] (2) x̄,ȳ,z+1/2 [u̅,v̅,w̅] (3) ȳ̄,x̄,z+1/4 [v̅,u̅,w̅] (4) y̅,x̅,z+3/4 [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] pₚ 4</th>
<th>Along [1,0,0] p₁g 11'</th>
<th>Along [1,1,0] p₂a 1g 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = b b* = c</td>
<td>a* = (-a + b)/2 b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x-1/4,x+1/4,0</td>
</tr>
</tbody>
</table>
Origin on 2 on 42

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \]

Symmetry Operations

1. \(1\)
 \((1|0,0,0)\)

2. \(2\)
 \((0,0,z)\)

3. \(4^+ (0,0,1/2)\)
 \((0,0,z)\)

4. \(4^- (0,0,1/2)\)
 \((0,0,z)\)

\((4_z |0,0,1/2)\)
\((4_z^{-1} |0,0,1/2)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>p4</td>
</tr>
<tr>
<td>2</td>
<td>c 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b 2..</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a 2..</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4
Along [1,0,0] p1m'1
Along [1,1,0] p1m'1

a* = a
b* = b

Origin at 0,0,z
Origin at x,0,0
Origin at x,x,0
Origin on 21' on 421'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\]

Symmetry Operations

For 1 + set

1. \(1 \quad (1|0,0,0)\)
2. \(2' \quad 0,0,z \quad (2_z|0,0,0)\)
3. \(4' \quad (0,0,1/2) \quad 0,0,z \quad (4_z|0,0,1/2)\)
4. \(4' \quad (0,0,1/2) \quad 0,0,z \quad (4_z^{-1}|0,0,1/2)\)

For 1' + set

1. \(1' \quad (1|0,0,0)'\)
2. \(2' \quad 0,0,z \quad (2_z|0,0,0)'\)
3. \(4' \quad (0,0,1/2) \quad 0,0,z \quad (4_z|0,0,1/2)'\)
4. \(4' \quad (0,0,1/2) \quad 0,0,z \quad (4_z^{-1}|0,0,1/2)'\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>1</th>
<th>1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 d 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>1</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>(2) x, y, z [0,0,0]</td>
<td>1</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>(3) x, y, z+1/2 [0,0,0]</td>
<td>1</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>(4) y, x, z+1/2 [0,0,0]</td>
<td>1</td>
<td>1'</td>
</tr>
<tr>
<td>2 c 2.1'</td>
<td>0,1/2, z [0,0,0]</td>
<td>1</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>1/2,0, z+1/2 [0,0,0]</td>
<td>1</td>
<td>1'</td>
</tr>
<tr>
<td>2 b 2.1'</td>
<td>1/2, 1/2, z [0,0,0]</td>
<td>1</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>1/2, 1/2, z+1/2 [0,0,0]</td>
<td>1</td>
<td>1'</td>
</tr>
<tr>
<td>2 a 2.1'</td>
<td>0,0, z [0,0,0]</td>
<td>1</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>0,0, z+1/2 [0,0,0]</td>
<td>1</td>
<td>1'</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p41'
\[a^* = a, \ b^* = b \]
Origin at 0,0,z

Along [1,0,0] p1m11'
\[a^* = b, \ b^* = c \]
Origin at x,0,0

Along [1,1,0] p1m11'
\[a^* = (-a + b)/2, \ b^* = c \]
Origin at x,x,0
Origin on 2 on $4'_z$

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad (0,0,0) \\
(2) & \quad 2 \\
(2_z) & \quad (0,0,0) \\
(3) & \quad 4'_z \cdot (0,0,1/2) \\
(4_z) & \quad 0,0,0 \\
(4'_z) & \quad (0,0,1/2) \\
(4_z^{-1}) & \quad (0,0,1/2) \\
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>4</th>
<th>d</th>
<th>1</th>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) x,y,z [u,v,w]</th>
<th>(3) y,x,z+1/2 [v,u,w]</th>
<th>(4) y,x,z+1/2 [v,u,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>c</td>
<td>2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>2..</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>2..</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections
Along [0,0,1] p4
\(a^* = a\) \(b^* = b\) Origin at 0,0,z
Along [1,0,0] p1m'1 \(a^* = b\) \(b^* = c\) Origin at x,0,0
Along [1,1,0] p1m'1 \(a^* = (-a + b)/2\) \(b^* = c\) Origin at x,x,0
Origin on $2'$ on 4_2

Asymmetric unit \[0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1\]

Symmetry Operations

For $(0,0,0)$ +

1. 1
2. $2'$ \((0,0,z)\)
3. $4^+ (0,0,1/2) \quad 0,0,z$
4. $4^- (0,0,1/2) \quad 0,0,z$

For $(0,0,1)'$ +

1. $(0,0,1)'$
2. $2 \quad (0,0,1) \quad 0,0,z$
3. $4^+ (0,0,3/2) \quad 0,0,z$
4. $4^- (0,0,3/2) \quad 0,0,z$
Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x, y, z [u, v, w]</td>
</tr>
<tr>
<td>4 c 2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 b 2</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 a 2</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4 Along [1,0,0] p1m1 Along [1,1,0] p1m1
\(a^* = a\) \(b^* = b\) \(a^* = b\) \(b^* = c\) \(a^* = (-a + b)/2\) \(b^* = c\)
Origin at 0,0,z Origin at $x,0,0$ Origin at $x,x,0$
Origin on 2 on 42

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq 1\]

Symmetry Operations

For \((0,0,0)\) + set

\[(1) 1
(2) 2 \quad 0,0,z
(3) 4^+ (0,0,1/2) \quad 0,0,z
(4) 4^- (0,0,1/2) \quad 0,0,z\]

For \((1,0,0)'\) + set

\[(1)' (1,0,0)
(2)' 2' \quad 1/2,0,z
(3)' 4^+ ' (0,0,1/2) \quad 1/2,1/2,z
(4)' 4^- ' (0,0,1/2) \quad 1/2,1/2,z\]

77.5.676 - 1 - 1344
Generators selected
(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1,0,0)' +</td>
<td></td>
</tr>
<tr>
<td>8 d 1 (1) x,y,z [u,v,w] (2) (\bar{x},\bar{y},\bar{z}) [(\bar{u},\bar{v},\bar{w})] (3) (\bar{y},x,z+1/2) [(\bar{v},u,w)] (4) (y,\bar{x},z+1/2) [(v,\bar{u},w)]</td>
<td></td>
</tr>
<tr>
<td>4 c 2'.. 0,1/2,z [u,v,0] 1/2,0,z+1/2 [v,(\bar{u}),0]</td>
<td></td>
</tr>
<tr>
<td>4 b 2.. 1/2,1/2,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 a 2.. 0,0,z [0,0,w] 0,0,z+1/2 [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p2(\times)4</th>
<th>Along [1,0,0]</th>
<th>p1m11'</th>
<th>Along [1,1,0]</th>
<th>p2(\times)1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b)</td>
<td>(a^* = b)</td>
<td>(b^* = c)</td>
<td>(a^* = (-a+b)/2)</td>
<td>(b^* = c)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x-1/4,x+1/4,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin on 2' on 4₂

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \]

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)
2. \((1',0,0)\)
3. \((2',0,0,0)'\)

\((1,0,0)\) + set

1. \((1,0,0)\)
2. \((1,1,0,0)\)
3. \((2,0,0,0)\)

\((2,0,0,0)\) + set

1. \((1,0,0,0)\)
2. \((1,1,0,0)\)
3. \((2,0,0,0)\)
4. \((2,0,0,0)\)
Generators selected \((1); t'(1,0,0); t'(0,1,0); t'(0,0,1); (2); (3). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>((0,0,0) + (1,0,0)' +)</td>
<td>((0,0,0) + (1,0,0)' +)</td>
</tr>
<tr>
<td>4 c 2..</td>
<td>(0,1/2,z [0,0,w] 1/2,0,z+1/2 [0,0,w])</td>
<td>(0,1/2,z [0,0,w] 1/2,0,z+1/2 [0,0,w])</td>
</tr>
<tr>
<td>4 b 2'.</td>
<td>(1/2,1/2,z [u,v,0] 1/2,1/2,z+1/2 [v,u,0])</td>
<td>(1/2,1/2,z [u,v,0] 1/2,1/2,z+1/2 [v,u,0])</td>
</tr>
<tr>
<td>4 a 2'.</td>
<td>(0,0,z [u,v,0] 0,0,z+1/2 [v,u,0])</td>
<td>(0,0,z [u,v,0] 0,0,z+1/2 [v,u,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

| Along [0,0,1] p41' | Along [1,0,0] p1m11' | Along [1,1,0] p\(_
____\)1m1 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a \quad b^* = b)</td>
<td>(a^* = b \quad b^* = c)</td>
<td>(a^* = (-a + b)/2 \quad b^* = c)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Origin on 2' on 4'_z.

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0)^+$

1. 1
2. $2'$ $0,0,z$
3. $4^+ \cdot (0,0,1/2)$ $0,0,z$
4. $4^{-1} \cdot (0,0,1/2)$ $0,0,z$

For $(0,0,1)^+$

1. $1' (0,0,1)$
2. $2 (0,0,1) 0,0,z$
3. $4^+ \cdot (0,0,3/2) 0,0,z$
4. $4^{-1} \cdot (0,0,3/2) 0,0,z$
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) + (0,0,1)′ +</td>
</tr>
<tr>
<td>8 d 1 (1) x,y,z [u,v,w]</td>
<td>(2) x, y ,z [u,v,w]</td>
</tr>
<tr>
<td>4 c 2′.. 0,1/2,z [u,v,0]</td>
<td>1/2,0,z+1/2 [v,u,0]</td>
</tr>
<tr>
<td>4 b 2′.. 1/2,1/2,z [u,v,0]</td>
<td>1/2,1/2,z+1/2 [v,u,0]</td>
</tr>
<tr>
<td>4 a 2′.. 0,0,z [u,v,0]</td>
<td>0,0,z+1/2 [v,u,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p41′</th>
<th>Along [1,0,0] p2b1m1</th>
<th>Along [1,1,0] p2b1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = b b* = c</td>
<td>a* = (a + b)/2 b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Origin on 4₃

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations:

(1) 1
(1 | 0,0,0)

(2) 2 (0.0,1/2) 0.0,z
(2z | 0.0,1/2)

(3) 4⁺ (0.0,3/4) 0.0,z
(4z | 0.0,3/4)

(4) 4⁻ (0.0,1/4) 0.0,z
(4z⁻¹ | 0.0,1/4)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>a 1</td>
</tr>
</tbody>
</table>

(1) x,y,z [u,v,w]
(2) x,y,z+1/2 [u,v,w]
(3) y,x,z+3/4 [v,u,w]
(4) y,x,z+1/4 [v,u,w]

Symmetry of Special Projections

Along [0,0,1] p4
Along [1,0,0] p1g'1
Along [1,1,0] p1g'1

\[a^* = a \quad b^* = b \]
\[a^* = b \quad b^* = c \]
\[a^* = (-a + b)/2 \quad b^* = c \]

Origin at 0,0,z
Origin at x,0,0
Origin at x,x,0
Origin on 4_3 1'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations
For 1 + set
(1) 1
(1) 0,0,0
(2) 2 (0,0,1/2) 0,0,z
(2) 0,0,1/2
(3) 4' (0,0,3/4) 0,0,z
(3) 4'_1 0,0,3/4
(4) 4' (0,0,1/4) 0,0,z
(4) 4'_1 0,0,1/4

For 1' + set
(1) 1'
(1) 0,0,0'
(2) 2' (0,0,1/2) 0,0,z
(2) 0,0,1/2'
(3) 4'' (0,0,3/4) 0,0,z
(3) 4''_1 0,0,3/4'
(4) 4'' (0,0,1/4) 0,0,z
(4) 4''_1 0,0,1/4')
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1'.

Positions
Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1' +</td>
<td></td>
</tr>
<tr>
<td>4 a 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) x̅,y̅,z̅+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) y̅,x̅,z̅+3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) y̅,x̅,z̅+1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections
Along [0,0,1] p41'

<table>
<thead>
<tr>
<th>a* = a</th>
<th>b* = b</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab * = c</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

Along [1,0,0] p1g11'

<table>
<thead>
<tr>
<th>a* = b</th>
<th>b* = c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = (a + b)/2</td>
<td></td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

Along [1,1,0] p1g11'

<table>
<thead>
<tr>
<th>a* = (-a + b)/2</th>
<th>b* = c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 4_3'

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\)

Symmetry Operations

\begin{align*}
(1) \ 1 \\
(1 | 0,0,0) \\
(2) \ 2 \ (0,0,1/2) \ 0,0,z \\
(2_z | 0,0,1/2) \\
(3) \ 4' \ (0,0,3/4) \ 0,0,z \\
(4_z | 0,0,3/4') \\
(4) \ 4' \ (0,0,1/4) \ 0,0,z \\
(4_z^{-1} | 0,0,1/4')
\end{align*}
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>a 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x',y',z+1/2 [u',v',w']</td>
</tr>
<tr>
<td></td>
<td>(3) y',x,z+3/4 [v',u',w']</td>
</tr>
<tr>
<td></td>
<td>(4) y',x',z+1/4 [v',u',w']</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'
Origin at 0,0,z
$a^* = a$
b* = b

Along [1,0,0] p1g'1
Origin at x,0,0
$a^* = b$
b* = c

Along [1,1,0] p1g'1
Origin at x,x,0
a^* = (-a + b)/2
b* = c
Origin on 4₃

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0) + \) set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1) 1)</td>
<td>((1</td>
<td>0,0,0))</td>
</tr>
<tr>
<td>((2) 2)</td>
<td>((0,0,1/2))</td>
<td>(2z</td>
</tr>
<tr>
<td>((3) 4^*)</td>
<td>((0,0,3/4))</td>
<td>(4z</td>
</tr>
<tr>
<td>((4) 4^-)</td>
<td>((0,0,1/4))</td>
<td>(4z^{-1}</td>
</tr>
</tbody>
</table>

For \((1,0,0)' + \) set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1)')</td>
<td>((1,0,0))</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>((2)')</td>
<td>((0,0,1/2))</td>
<td>(2z</td>
</tr>
<tr>
<td>((3)')</td>
<td>((0,0,3/4))</td>
<td>(4z</td>
</tr>
<tr>
<td>((4)')</td>
<td>((0,0,1/4))</td>
<td>(4z^{-1}</td>
</tr>
</tbody>
</table>

\[78.4.682 - 1 - 1356\]
Generators selected \((1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 a 1</td>
<td>(1) (x,y,z[u,v,w]) (2) (x,y,z+1/2[u,v,w]) (3) (y,x,z+3/4[v,u,w]) (4) (y,x,z+1/4[v,u,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p4</th>
<th>Along [1,0,0] p1g'1</th>
<th>Along [1,1,0] p1g'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a) (b^* = b)</td>
<td>(a^* = b) (b^* = c)</td>
<td>(a^* = (-a + b)/2) (b^* = c)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Origin on 4

Asymmetric unit \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0)\) + set

\((1)\) 1
\((1|0,0,0)\)

\((2)\) 2 0,0,z
\((2_z|0,0,0)\)

\((3)\) 4' 0,0,z
\((4_z|0,0,0)\)

\((4)\) 4' 0,0,z
\((4_z^{-1}|0,0,0)\)

For \((1/2,1/2,1/2)\) + set

\((1)\) t \((1/2,1/2,1/2)\)
\((1|1/2,1/2,1/2)\)

\((2)\) 2 \((0,0,1/2)\) 1/4,1/4,z
\((2_z|1/2,1/2,1/2)\)

\((3)\) 4' \((0,0,1/2)\) 0,1/2,z
\((4_z|1/2,1/2,1/2)\)

\((4)\) 4' \((0,0,1/2)\) 1/2,0,z
\((4_z^{-1}|1/2,1/2,1/2)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>4 b 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 a 4..</td>
<td>0,0,z [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4
\(\mathbf{a}^* = (\mathbf{a} - \mathbf{b})/2 \) \(\mathbf{b}^* = (\mathbf{a} + \mathbf{b})/2 \)
Origin at 0,0,z

Along [1,0,0] c1m'1
\(\mathbf{a}^* = \mathbf{b} \) \(\mathbf{b}^* = \mathbf{c} \)
Origin at x,0,0

Along [1,1,0] p1m'1
\(\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \) \(\mathbf{b}^* = \mathbf{c}/2 \)
Origin at x,x,0
Origin on 41'

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

For $(0,0,0)$ + set

(1) 1
 (1 | 0,0,0)

(2) $2 \cdot 0,0,z$
 (2 | 0,0,0)

(3) $4^+ \cdot 0,0,z$
 (4 | 0,0,0)

(4) $4^- \cdot 0,0,z$
 (4 | 0,0,0)

For $(1/2,1/2,1/2)$ + set

(1) $t (1/2,1/2,1/2)$
 (1 | 1/2,1/2,1/2)

(2) $2 \cdot (0,0,1/2)$
 (2 | 1/2,1/2,1/2)

(3) $4^+ (0,0,1/2) \cdot 0,1/2,z$
 (4 | 1/2,1/2,1/2)

(4) $4^- (0,0,1/2) \cdot 1/2,0,z$
 (4 | 1/2,1/2,1/2)

For $(0,0,0)' + set$

(1) $1'$
 (1 | 0,0,0)'

(2) $2' \cdot 0,0,z$
 (2 | 0,0,0)'

(3) $4^+ ' \cdot 0,0,z$
 (4 | 0,0,0)'

(4) $4^- ' \cdot 0,0,z$
 (4 | 0,0,0)'

For $(1/2,1/2,1/2)' + set$

(1) $t' (1/2,1/2,1/2)$
 (1 | 1/2,1/2,1/2)'

(2) $2' (0,0,1/2) \cdot 1/4,1/4,z$
 (2 | 1/2,1/2,1/2)'

(3) $4^+ ' (0,0,1/2) \cdot 0,1/2,z$
 (4 | 1/2,1/2,1/2)'

(4) $4^- ' (0,0,1/2) \cdot 1/2,0,z$
 (4 | 1/2,1/2,1/2)'

79.2.684 - 1 - 1360
Continued

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2) + (0,0,0)' + (1/2,1/2,1/2)' +</td>
<td></td>
</tr>
<tr>
<td>8 c 11' (1) x,y,z [0,0,0]</td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 b 2..1' 0,1/2,z [0,0,0]</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 a 4..1' 0,0,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p41' a* = (a - b)/2 b* = (a + b)/2 Origin at 0,0,z
Along [1,0,0] c1m11' a* = b b* = c Origin at x,0,0
Along [1,1,0] p1m11' a* = (-a + b)/2 b* = c/2 Origin at x,x,0
Origin on 4'

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\]

Symmetry Operations

For \((0,0,0) + \text{ set}\):

1. \(1\)
 \[(1|0,0,0)\]

2. \(2\)
 \[(0,0,z)\]
 \[(2_z|0,0,0)\]

3. \(4^+\) \(0,0,z\)
 \[(4_z|0,0,0)\]

4. \(4^-\) \(0,0,z\)
 \[(4_z^{-1}|0,0,0)\]

For \((1/2,1/2,1/2) + \text{ set}\):

1. \(t\)
 \[(1/2,1/2,1/2,1/2)\]
 \[(1|1/2,1/2,1/2)\]

2. \(2\)
 \[(0,0,1/2)\]
 \[(1/2,1/2,1/2,1/2)\]

3. \(4^+\) \(0,0,1/2\)
 \[(4_z|1/2,1/2,1/2)\]

4. \(4^-\) \(0,0,1/2\)
 \[(4_z^{-1}|1/2,1/2,1/2)\]

79.3.685 - 1 - 1362
Continued 79.3.685 l4'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 b 2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 a 4'..</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin at 0,0,z</th>
<th>Origin at x,0,0</th>
<th>Origin at x,x,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (a - b)/2 b* = (a + b)/2</td>
<td>a* = b b* = c</td>
<td>a* = (-a + b)/2 b* = c/2</td>
</tr>
</tbody>
</table>

Along [0,0,1] p4' Along [1,0,0] c1m'1 Along [1,1,0] p1m'1
Origin on 4

Asymmetric unit
\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq 1\]

Symmetry Operations

For \((0,0,0) + \) set

1. \((1,0,0,0)\)
2. \((2,0,0,z)\)
3. \((4^+,0,0,z)\)
4. \((4^-0,0,z)\)

For \((1/2,1/2,1/2)' + \) set

1. \((1/2,1/2,1/2)\)
2. \((2',0,0,1/2)\)
3. \((4^+,0,0,1/2)\)
4. \((4^-0,0,1/2)\)

\((1/2,1/2,1/2)'\)

\((2_z1/2,1/2,1/2)'\)

\((4_z1/2,1/2,1/2)'\)
Generators selected
(1): t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>c 1</td>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>4</td>
<td>b 2.</td>
<td>(0,1/2,0) [0,0,w] 1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a 4.</td>
<td>(0,0,0) [0,0,w] 2 a</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_p 4
\(\mathbf{a}^* = (a - b)/2 \) \(\mathbf{b}^* = (a + b)/2 \)
Origin at 0,0,z

Along [1,0,0] c_p 1m'1
\(\mathbf{a}^* = \mathbf{b} \) \(\mathbf{b}^* = \mathbf{c} \)
Origin at x,0,0

Along [1,1,0] p_2b 1m'1
\(\mathbf{a}^* = (-a + b)/2 \) \(\mathbf{b}^* = c/2 \)
Origin at x,x,0
Origin on 4'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2 0,0,z
(2z | 0,0,0)

(3) 4+ 0,0,z
(4z | 0,0,0)'

(4) 4− 0,0,z
(4z−1 | 0,0,0)'

For (1/2,1/2,1/2)' + set

(1) t' (1/2,1/2,1/2)
(1 | 1/2,1/2,1/2)'

(2) 2' (0,0,1/2) 1/4,1/4,z
(2z | 1/2,1/2,1/2)'

(3) 4+ (0,0,1/2) 0,1/2,z
(4z | 1/2,1/2,1/2)

(4) 4− (0,0,1/2) 1/2,0,z
(4z−1 | 1/2,1/2,1/2)
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) (x,y,z[u,v,w])</td>
</tr>
<tr>
<td>4 b 2..</td>
<td>(2) (\bar{x},\bar{y},z[u,v,w])</td>
</tr>
<tr>
<td>2 a 4'..</td>
<td>(3) (y,x,z[v,u,w])</td>
</tr>
<tr>
<td></td>
<td>(4) (y,\bar{x},z[v,u,\bar{w}])</td>
</tr>
<tr>
<td></td>
<td>(0,0,0) + (1/2,1/2,1/2) ' +</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p 4
\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]
Origin at 1/2,0,z

Along [1,0,0] c1m'1
\[a^* = b \quad b^* = c \]
Origin at x,0,0

Along [1,1,0] p1m'1
\[a^* = -(a + b)/2 \quad b^* = c/2 \]
Origin at x,x,0
Origin on 2
Asymmetric unit \(0 < x < \frac{1}{2}; \quad 0 < y < 1; \quad 0 < z < \frac{1}{4}\)

Symmetry Operations

For \((0,0,0) + \text{ set}\)

(1) 1

(2) \begin{align*}
 2 & 0,0,z \\
 2 & 0,0,0
\end{align*}

(3) \begin{align*}
 4^+ & (0,0,1/4) -1/4,1/4,z \\
 4 & 0,1/2,1/4
\end{align*}

(4) \begin{align*}
 4 & (0,0,1/4) 1/4,1/4,z \\
 4^{-1} & 0,1/2,1/4
\end{align*}

For \((1/2,1/2,1/2) + \text{ set}\)

(1) \begin{align*}
 t & (1/2,1/2,1/2) \\
 t & 1/2,1/2,1/2
\end{align*}

(2) \begin{align*}
 2 & (0,0,1/2) 1/4,1/4,z \\
 2 & 1/2,1/2,1/2
\end{align*}

(3) \begin{align*}
 4^+ & (0,0,3/4) 1/4,1/4,z \\
 4 & 1/2,0,3/4
\end{align*}

(4) \begin{align*}
 4 & (0,0,3/4) 1/4,-1/4,z \\
 4^{-1} & 1/2,0,3/4
\end{align*}
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
</tbody>
</table>

8 b 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x+1/2,z+1/4 [v,u,w] (4) y,x+1/2,z+1/4 [v,u,w]

4 a 2.. 0,0,z [0,0,w] 0,1/2,z+1/4 [0,0,w]

Symmetry of Special Projections

Along [0,0,1] p4 Along [1,0,0] c1m'1 Along [1,1,0] p1m'1

\(a^* = (a - b)/2\) \(b^* = (a + b)/2\)

Origin at 1/4,1/4,z Origin at x,0,0 Origin at x,x,0
I4₁₁'
80.2.689
Tetragonal

Origin on 21'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2 0,0,z
(3) 4⁺ (0,0,1/4) -1/4,1/4,z
(4) 4⁻ (0,0,1/4) 1/4,1/4,z

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(2) 2 (0,0,1/2) 1/4,1/4,z
(3) 4⁺ (0,0,3/4) 1/4,1/4,z
(4) 4⁻ (0,0,3/4) 1/4,-1/4,z

For (0,0,0)' + set

(1) 1'
(2) 2' 0,0,z
(3) 4⁺ ' (0,0,1/4) -1/4,1/4,z
(4) 4⁻ ' (0,0,1/4) 1/4,1/4,z

For (1/2,1/2,1/2)' + set

(1) t' (1/2,1/2,1/2)
(2) 2' (0,0,1/2) 1/4,1/4,z
(3) 4⁺ ' (0,0,3/4) 1/4,1/4,z
(4) 4⁻ ' (0,0,3/4) 1/4,-1/4,z
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2) + (0,0,0)' + (1/2,1/2,1/2)' +</td>
<td>(1) x,y,z [0,0,0] (2) x,y,z [0,0,0] (3) y,x+1/2,z+1/4 [0,0,0] (4) y,x+1/2,z+1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p41'
a* = (a - b)/2
Origin at 1/4,1/4,z

Along [1,0,0] c1m11'
a* = b
b* = c
Origin at x,0,0

Along [1,1,0] p1m11'
a* = (a + b)/2
b* = c/2
Origin at x,x,0
Origin on 2

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4$

Symmetry Operations

For $(0,0,0)$ + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
<td>(1) 0,0,0</td>
</tr>
<tr>
<td></td>
<td>(2) 0,0,z</td>
</tr>
<tr>
<td></td>
<td>(3) $4^+ \cdot (0,0,1/4)$, $-1/4,1/4,z$</td>
</tr>
<tr>
<td></td>
<td>(4) $4^- \cdot (0,0,1/4)$, $1/4,1/4,z$</td>
</tr>
</tbody>
</table>

For $(1/2,1/2,1/2) + set$

<table>
<thead>
<tr>
<th>Operation</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t</td>
<td>(1) 1/2,1/2,1/2</td>
</tr>
<tr>
<td></td>
<td>(2) $0,0,1/2$</td>
</tr>
<tr>
<td></td>
<td>(3) $4^+ \cdot (0,0,3/4)$, $1/4,1/4,z$</td>
</tr>
<tr>
<td></td>
<td>(4) $4^- \cdot (0,0,3/4)$, $1/4,-1/4,z$</td>
</tr>
</tbody>
</table>

80.3.690 - 1 - 1372
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>8 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 a 2</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (a - b)/2</td>
<td>b* = (a + b)/2</td>
</tr>
<tr>
<td>Origin at 1/4,1/4,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>c1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (-a + b)/2</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 2'

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

For \((0,0,0) + \) set

1. \((1,0,0,0) \)
2. \(2', 0,0,z \)
 \((2_z,0,0) \)
3. \(4^+ (0,0,1/4) -1/4,1/4,z \)
 \((4_z,0,1/2,1/4) \)
4. \(4^- (0,0,1/4) 1/4,1/4,z \)
 \((4_z^{-1},0,1/2,1/4) \)

For \((1/2,1/2,1/2)' + \) set

1. \(t' (1/2,1/2,1/2) \)
 \((1,1/2,1/2) \)
2. \(2 (0,0,1/2) 1/4,1/4,z \)
 \((2_z,1/2,1/2,1/2) \)
3. \(4^+ (0,0,3/4) 1/4,1/4,z \)
 \((4_z,1/2,0,3/4) \)
4. \(4^- (0,0,3/4) 1/4,-1/4,z \)
 \((4_z^{-1},1/2,0,3/4) \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[(0,0,0) + (1/2,1/2,1/2)' + \]

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x+1/2,z+1/4 [v,u,w] (4) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td>4 a'</td>
<td>0,0,z [u,v,0] 0,1/2,z+1/4 [v,u,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(\mathbf{p}_{\mathbf{c}'} \) 4
\(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \) Origin at -1/4,1/4,z

Along [1,0,0] \(\mathbf{c}_{\mathbf{p}'} \) \(\mathbf{1m}' \) 1
\(a^* = b \) \(b^* = c \) Origin at x,0,0

Along [1,1,0] \(\mathbf{p}_{2\mathbf{c}} \) \(\mathbf{1m} \) 1
\(a^* = (-a + b)/2 \) \(b^* = c/2 \) Origin at x,x,0
Origin on 2'

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4\]

Symmetry Operations

For \((0,0,0)\) set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2' \quad 0,0,z \\
(3) & \quad 4^{+} \quad (0,0,1/4) -1/4,1/4,z \\
(4) & \quad 4^{-} \quad (0,0,1/4) \quad 1/4,1/4,z \\
\end{align*}
\]

For \((1/2,1/2,1/2)'\) set

\[
\begin{align*}
(1) & \quad t' \quad (1/2,1/2,1/2) \\
(2) & \quad 2 \quad (0,0,1/2) \quad 1/4,1/4,z \\
(3) & \quad 4^{+} \quad (0,0,3/4) \quad 1/4,1/4,z \\
(4) & \quad 4^{-} \quad (0,0,3/4) \quad 1/4,-1/4,z \\
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>8 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x' - y,z [u,v,w]</td>
</tr>
<tr>
<td>4 a 2'..</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/4 [v,u,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

| Along | | Along | | Along |
|----------------|-----------------------|-----------------------|-----------------------|
| [0,0,1] p_4 | a* = (a - b)/2 | [1,0,0] c_{1m1} | a* = b |
| | b* = (a + b)/2 | | b* = c |
| Origin at -1/4,1/4,z | Origin at x,0,0 | Origin at x,x,0 |
Origin on \(\bar{4} \)

Asymmetric unit: \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1 \)

Symmetry Operations:

1. \((1)\ 1 \)
 \((1|0,0,0)\)

2. \((2)\ 2\ 0,0,z \)
 \((2|0,0,0)\)

3. \((3)\ \bar{4}\ 0,0,z;\ 0,0,0 \)
 \((4|0,0,0)\)

4. \((4)\ \bar{4}\ 0,0,z;\ 0,0,0 \)
 \((4|0,0,0)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 h 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>2 g 2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 f 2..</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 e 2..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>1 d 4..</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1 c 4..</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>1 b 4..</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1 a 4..</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'
\(a^* = a \) \(b^* = b \)
Origin at 0,0,z

Along [1,0,0] p1m'1
\(a^* = b \) \(b^* = c \)
Origin at x,0,0

Along [1,1,0] p1m'1
\(a^* = (-a + b)/2 \) \(b^* = c \)
Origin at x,x,0
Origin on $\overline{4}1'$

Asymmetric unit $\quad 0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

For $1 + set$

(1) 1 \hspace{1cm} (2) $2 \cdot 0,0,z$ \hspace{1cm} (3) $\overline{4}$ $\cdot 0,0,z;\ 0,0,0$ \hspace{1cm} (4) $\overline{4}$ $\cdot 0,0,z;\ 0,0,0$

$\quad (1) 0,0,0$ \hspace{1cm} $\quad (2_z|0,0,0)$ \hspace{1cm} $\quad (4_z|0,0,0)$ \hspace{1cm} $\quad (4_z'|0,0,0)$

For $1' + set$

(1) $1'$ \hspace{1cm} (2) $2' \cdot 0,0,z'\hspace{1cm} (3) \overline{4}' \cdot 0,0,z';\ 0,0,0$ \hspace{1cm} (4) $\overline{4}' \cdot 0,0,z';\ 0,0,0$

$\quad (1) 0,0,0'$ \hspace{1cm} $\quad (2_z|0,0,0)'$ \hspace{1cm} $\quad (4_z|0,0,0)'$ \hspace{1cm} $\quad (4_z'|0,0,0)'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1'</td>
<td></td>
</tr>
<tr>
<td>4 h 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>2 g 2..1'</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 f 2..1'</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 e 2..1'</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>1 d 4..1'</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 c 4..1'</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>1 b 4..1'</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 a 4..1'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** p41'
 - \(a^* = a \)
 - \(b^* = b \)
 - Origin at 0,0,z

- **Along [1,0,0]** p1m1'
 - \(a^* = b \)
 - \(b^* = c \)
 - Origin at x,0,0

- **Along [1,1,0]** p1m1'
 - \(a^* = (-a + b)/2 \)
 - \(b^* = c \)
 - Origin at x,x,0
Origin on \(\alpha' \)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1 \)

Symmetry Operations

(1) 1
(1*0,0,0)

(2) \(z \quad 0,0,z \)
(2*0,0,0)

(3) \(\alpha' \quad 0,0,z; \quad 0,0,0 \)
(\(\alpha_2 \quad 0,0,0' \))

(4) \(\alpha' \quad 0,0,z; \quad 0,0,0 \)
(\(\alpha_2^{-1*0,0,0} \))

Tetragonal

81.3.695 P\&'

P\&'

81.3.695
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) h 1</td>
<td>((1) \ x, y, z \ [u, v, w])</td>
</tr>
<tr>
<td>(2) g 2..</td>
<td>(0,1/2,z \ [0,0,w])</td>
</tr>
<tr>
<td>(2) f 2..</td>
<td>(1/2,1/2,z \ [0,0,w])</td>
</tr>
<tr>
<td>(2) e 2..</td>
<td>(0,0,z \ [0,0,w])</td>
</tr>
<tr>
<td>(1) d</td>
<td>(1/2,1/2,1/2 \ [0,0,0])</td>
</tr>
<tr>
<td>(1) c</td>
<td>(1/2,1/2,0 \ [0,0,0])</td>
</tr>
<tr>
<td>(1) b</td>
<td>(0,0,1/2 \ [0,0,0])</td>
</tr>
<tr>
<td>(1) a</td>
<td>(0,0,0 \ [0,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) \(p4 \)
 - \(a^* = a \) \(b^* = b \)
 - Origin at 0,0,z

- Along \([1,0,0]\) \(p1m'1 \)
 - \(a^* = b \) \(b^* = c \)
 - Origin at x,0,0

- Along \([1,1,0]\) \(p1m'1 \)
 - \(a^* = (-a + b)/2 \) \(b^* = c \)
 - Origin at x,x,0
P2c 4
81.4.696

41'
81.4.696
P2c 4

Origin on $\overline{4}$

Asymmetric unit

$x: 0 \leq x \leq 1/2; \quad y: 0 \leq y \leq 1/2; \quad z: 0 \leq z \leq 1$

Symmetry Operations

For (0,0,0) + set

$\begin{align*}
(1) & \quad 1 \\
(1 \mid 0,0,0) & \quad (2) \quad 2 \quad 0,0,z \\
(2_z \mid 0,0,0) & \quad (3) \quad 4^* \quad 0,0,z; \quad 0,0,0 \\
(4 \mid 0,0,0) & \quad (4_z \mid 0,0,0)
\end{align*}$

For (0,0,1)$'$ + set

$\begin{align*}
(1) & \quad t' \quad (0,0,1) \\
(1 \mid 0,0,1)' & \quad (2) \quad 2' \quad (0,0,1) \quad 0,0,z \\
(2_z \mid 0,0,1)' & \quad (3) \quad 4^* \quad 0,0,z; \quad 0,0,1/2 \\
(4 \mid 0,0,1)' & \quad (4_z \mid 0,0,1)'
\end{align*}$
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>h 1 (1) x,y,z [u,v,w]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>4</td>
<td>g 2.. 0,1/2,z [0,0,w]</td>
<td>(0,0,1) +</td>
</tr>
<tr>
<td>4</td>
<td>f 2.. 1/2,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>e 2.. 0,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>d 4.. 1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>c 4.. 1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b 4.. 0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a 4.. 0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p41'
\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along [1,0,0] p_{2b'}m1'
\[\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,0,0

Along [1,1,0] p_{2b'}m1'
\[\mathbf{a}^* = (\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,x,0
Origin on 4

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0) + \) set

\[(1) \quad 1 \quad (2) \quad 2 \quad (3) \quad 4^+ \quad (4) \quad 4^-\]

\[(1) \quad (0,0,0) \quad (2) \quad (0,0,z) \quad (3) \quad (0,0,0) \quad (4) \quad (0,0,0)\]

\[(1) \quad (1,0,0) \quad (2) \quad (2z,0,0) \quad (3) \quad (4z,0,0) \quad (4) \quad (4z^1,0,0)\]

For \((1,0,0) + \) set

\[(1) \quad t'(1,0,0) \quad (2) \quad 2' \quad 1/2,0,z \quad (3) \quad 4'^- \quad 1/2,1/2,z; \quad 1/2,1/2,0 \quad (4) \quad 4'^- \quad 1/2,1/2,0; \quad 1/2,1/2,0\]

\[(1) \quad (1,0,0)' \quad (2) \quad (2z,1,0,0)' \quad (3) \quad (4z,1,0,0)' \quad (4) \quad (4z^1,1,0,0)'\]
Generators selected (1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8 h 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 g 2'..</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>4 f 2'..</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 e 2'..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 d 4'..</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c 4'..</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b 4'..</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a 4'..</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p\text{p}_{\text{c}} 4</th>
<th>Along [1,0,0] p1m11'</th>
<th>Along [1,1,0] p_{\text{2c}}1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = a b^* = b</td>
<td>a^* = b b^* = c</td>
<td>a^* = (-a + b)/2 b^* = c</td>
</tr>
<tr>
<td>Origin at 1/2,1/2,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x-1/4,x+1/4,0</td>
</tr>
</tbody>
</table>
Origin on $\overline{4}$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

(0,0,0) + set

1

$1 | 0,0,0$

2 $0,0,z$

$2 | 0,0,0$

$\overline{4}$ $0,0,0$

$\overline{4} | 0,0,0$

$\overline{4}$ $0,0,0$

$\overline{4} | 0,0,0$

For $(1,0,0)' + set$

$1'$ $(1,0,0)$

$1' | 1,0,0$

$2' 1/2,0,z$

$2' | 1,0,0$

$\overline{4}' 1/2,1/2,0$

$\overline{4}' | 1,0,0$

$\overline{4}' 1/2,1/2,0$

$\overline{4}' | 1,0,0$
Generators selected (1); t'(1,0,0); t'(0,1,0); t'(0,0,1); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>8 h 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 g 2'..</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>4 f 2..</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 e 2..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 d 4'..</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 c 4'..</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b 4'..</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 4'..</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p41'
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p1m11'
\[a^* = b \quad b^* = c \]
Origin at x,0,0

Along [1,1,0] p_{c1}m1
\[a^* = (-a + b)/2 \quad b^* = c \]
Origin at x-1/4,x+1/4,0
Origin on \(\overline{4}\)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1\)

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. \(1\) \(0,0,0\)
2. \(2\) \(0,0,z\)
3. \(4\) \(0,0,0\)
4. \(4\) \(0,0,0\)

For \((1/2,1/2,1/2) + \text{set}\)

1. \(t\) \(1/2,1/2,1/2\)
2. \(2\) \(0,0,1/2\)
3. \(4\) \(1/2,0,z\)
4. \(4\) \(0,1/2,z\)

\(82.1.699 - 1\ - 1390\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 f 2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 e 2..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 d 4..</td>
<td>0,1/2,3/4 [0,0,w]</td>
</tr>
<tr>
<td>2 c 4..</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>2 b 4..</td>
<td>0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a 4..</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'
\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]
Origin at 0,0,z

Along [1,0,0] c1m'1
\[a^* = b \quad b^* = c \]
Origin at x,0,0

Along [1,1,0] p1m'1
\[a^* = (-a + b)/2 \quad b^* = c/2 \]
Origin at x,x,0
Origin on $\overline{4}1'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1$

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2 0,0,z
(2 | 0,0,0)

(3) $\overline{4}$' 0,0,0; 0,0,0
($4_z | 0,0,0$)

(4) $\overline{4}$' 0,0,z; 0,0,0
($4_z^{-1} | 0,0,0$)

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(1 | 1/2,1/2,1/2)

(2) 2 (0,0,1/2) 1/4,1/4,z
(2 | 1/2,1/2,1/2)

(3) $\overline{4}$' 1/2,0,z; 1/2,0,1/4
($4_z | 1/2,1/2,1/2$)

(4) $\overline{4}$' 0,1/2,z; 0,1/2,1/4
($4_z^{-1} | 1/2,1/2,1/2$)

For (0,0,0)'+ set

(1) 1'
(1 | 0,0,0)

(2) 2' 0,0,z
(2 | 0,0,0)

(3) $\overline{4}$' 0,0,0; 0,0,0
($4_z | 0,0,0$)

(4) $\overline{4}$' 0,0,z; 0,0,0
($4_z^{-1} | 0,0,0$)

For (1/2,1/2,1/2)'+ set

(1) t' (1/2,1/2,1/2)
(1 | 1/2,1/2,1/2)

(2) 2' (0,0,1/2) 1/4,1/4,z
(2 | 1/2,1/2,1/2)

(3) $\overline{4}$' 1/2,0,z; 1/2,0,1/4
($4_z | 1/2,1/2,1/2$)

(4) $\overline{4}$' 0,1/2,z; 0,1/2,1/4
($4_z^{-1} | 1/2,1/2,1/2$)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3);1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 11'</td>
<td>(1) x,y,z</td>
<td>(2) x,y,z</td>
<td>(3) y,x,z</td>
</tr>
<tr>
<td>4 f 2..1'</td>
<td>0,1/2,z</td>
<td></td>
<td>1/2,0,z</td>
</tr>
<tr>
<td>4 e 2..1'</td>
<td>0,0,z</td>
<td></td>
<td>0,0,z</td>
</tr>
<tr>
<td>2 d 4..1'</td>
<td>0,1/2,3/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c 4..1'</td>
<td>0,1/2,1/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b 4..1'</td>
<td>0,0,1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a 4..1'</td>
<td>0,0,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p41' Along [1,0,0] c1m11' Along [1,1,0] p1m11'
\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]
Origin at 0,0,z \[a^* = b \quad b^* = c \]
Origin at x,0,0 \[a^* = (a + b)/2 \quad b^* = c/2 \]
Origin at x,x,0
82.3.701

Tetragonal

I4'

82.3.701 I4'

Asymmetric unit

0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 0,0,0)

(2) 2 0,0,z
(2z 0,0,0)

(3) 4^- 0,0,z; 0,0,0
(4z 0,0,0')

(4) 4^- 0,0,z; 0,0,0
(4z^{-1} 0,0,0')

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(1 1/2,1/2,1/2)

(2) 2 (0,0,1/2) 1/4,1/4,z
(2z 1/2,1/2,1/2)

(3) 4^- 1/2,0,z; 1/2,0,1/4
(4z 1/2,1/2,1/2')

(4) 4^- 1/2,0,z; 1/2,0,1/4
(4z^{-1} 1/2,1/2,1/2')
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 f 2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 e 2..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 d 4'..</td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 c 4'..</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 b 4'..</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 4'..</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4</th>
<th>Along [1,0,0]</th>
<th>c1m'1</th>
<th>Along [1,1,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = (a - b)/2</td>
<td>b' = (a + b)/2</td>
<td>a' = b</td>
<td>b' = c</td>
<td>a' = (-a + b)/2</td>
<td>b' = c/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,0,0
Origin at x,x,0
Origin on $\bar{4}$

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

1. $\bar{1}$

2. $\bar{2}$, 0,0,z

3. $\bar{4}^+$, 0,0,z; 0,0,0

4. $\bar{4}^-$, 0,0,z; 0,0,0

For $(1/2,1/2,1/2)' + set$

1. $t'(1/2,1/2,1/2)$
2. $2'(0,0,1/2)$, 1/4,1/4,z
3. $\bar{4}^{+*}$, 1/2,0,z; 1/2,0,1/4
4. $\bar{4}^{-*}$, 0,1/2,z; 0,1/2,1/4

82.4.702 - 1 - 1396
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>x,y,z [u,v,w]</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>4 f 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 e 2..</td>
<td>0,0,z [0,0,w]</td>
<td>(3) x,y,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>2 d 4'..</td>
<td>0,1/2,3/4 [0,0,0]</td>
<td>(4) x,y,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>2 c 4'..</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>(3) x,y,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>2 b 4'..</td>
<td>0,0,1/2 [0,0,0]</td>
<td>(4) x,y,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>2 a 4'..</td>
<td>0,0,0 [0,0,0]</td>
<td>(4) x,y,z [v,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p_4 4
 - $a^* = (a - b)/2$ $b^* = (a + b)/2$
 - Origin at 1/2,0,z

- Along [1,0,0] c_{1m1}
 - $a^* = b$ $b^* = c$
 - Origin at x,0,0

- Along [1,1,0] p_{21m1}
 - $a^* = (a + b)/2$ $b^* = c/2$
 - Origin at x,x,0
Origin at center (4/m)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

1. \(1\)
 \[(1 | 0,0,0) \]

2. \(2\)
 \[0,0,z \]
 \[(2_z | 0,0,0) \]

3. \(4^+\)
 \[0,0,z \]
 \[(4_z | 0,0,0) \]

4. \(4^-\)
 \[0,0,z \]
 \[(4_z^{-1} | 0,0,0) \]

5. \(\overline{1}\)
 \[0,0,0 \]
 \[(1 | 0,0,0) \]

6. \(m\)
 \[x,y,0 \]
 \[(m_z | 0,0,0) \]

7. \(\overline{4}^+\)
 \[0,0,z; 0,0,0 \]
 \[(4_z | 0,0,0) \]

8. \(\overline{4}^-\)
 \[0,0,z; 0,0,0 \]
 \[(4_z^{-1} | 0,0,0) \]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 l 1</td>
<td>(1) x,y,z [u,v,w] (2) (x, y, z \ [u, v, w]) (3) (y, x, z \ [v, u, w]) (4) (y, x, z \ [v, u, w]) (5) (x, y, z \ [u, v, w]) (6) (x, y, z \ [u, v, w]) (7) (y, x, z \ [v, u, w]) (8) (y, x, z \ [v, u, w])</td>
</tr>
<tr>
<td>4 k m..</td>
<td>x,y,1/2 [0,0,w] (x, y, 1/2 \ [0,0,w]) (y, x, 1/2 \ [0,0,w]) y,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 j m..</td>
<td>x,y,0 [0,0,w] (x, y, 0 \ [0,0,w]) (y, x, 0 \ [0,0,w]) y,x,0 [0,0,w]</td>
</tr>
<tr>
<td>4 l 2..</td>
<td>0,1/2,z [0,0,w] 1/2,0,z [0,0,w] 0,1/2,z [0,0,w] 1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 h 4..</td>
<td>1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 g 4..</td>
<td>0,0,z [0,0,w] 0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 f 2/m..</td>
<td>0,1/2,1/2 [0,0,w] 1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 e 2/m..</td>
<td>0,1/2,0 [0,0,w] 1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>1 d 4/m..</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1 c 4/m..</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>1 b 4/m..</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1 a 4/m..</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** p41’
 \(a^* = a \quad b^* = b\)
 Origin at 0,0,z

- **Along [1,0,0]** p2’mm’
 \(a^* = -c \quad b^* = b\)
 Origin at x,0,0

- **Along [1,1,0]** p2’mm’
 \(a^* = -c \quad b^* = (-a + b)/2\)
 Origin at x,x,0
Origin at center (4/m1')

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

For 1 + set

(1) 1
(1|0,0,0)

(2) 2 0,0,z
(2_z|0,0,0)

(3) 4* 0,0,z
(4_z|0,0,0)

(4) 4* 0,0,z
(4_z^{-1}|0,0,0)

(5) \(\bar{1}\) 0,0,0
(1|0,0,0)

(6) m x,y,0
(m_z|0,0,0)

(7) \(\bar{4}\)* 0,0,z; 0,0,0
(4_z|0,0,0)

(8) \(\bar{4}\)* 0,0,z; 0,0,0
(4_z^{-1}|0,0,0)

For 1' + set

(1) 1'
(1|0,0,0)'

(2) 2' 0,0,z
(2_z|0,0,0)'

(3) 4'* 0,0,z
(4_z|0,0,0)'

(4) 4'* 0,0,z
(4_z^{-1}|0,0,0)'

(5) \(\bar{1}\)' 0,0,0
(1|0,0,0)'

(6) m' x,y,0
(m_z|0,0,0)'

(7) \(\bar{4}\)'* 0,0,z;0,0,0
(4_z|0,0,0)'

(8) \(\bar{4}\)'* 0,0,z;0,0,0
(4_z^{-1}|0,0,0)'

83.2.704 - 1 - 1400
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>11'</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) x, y, z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) y, x, z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) y, x, z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(6) x, y, z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) y, x, z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(8) y, x, z [0,0,0]</td>
</tr>
</tbody>
</table>

4	m..1'
	x,y,1/2 [0,0,0]
	x,y,1/2 [0,0,0]
	y,x,1/2 [0,0,0]
	y,x,1/2 [0,0,0]

4	m..1'
	x,y,0 [0,0,0]
	x,y,0 [0,0,0]
	y,x,0 [0,0,0]
	y,x,0 [0,0,0]

4	l 2..1'
	0,1/2,z [0,0,0]
	1/2,0,z [0,0,0]
	0,1/2,z [0,0,0]
	1/2,0,z [0,0,0]

2	h 4..1'
	1/2,1/2,z [0,0,0]
	1/2,1/2,z [0,0,0]

2	g 4..1'
	0,0,z [0,0,0]
	0,0,z [0,0,0]

2	f 2/m..1'
	0,1/2,1/2 [0,0,0]
	1/2,0,1/2 [0,0,0]

2	e 2/m..1'
	0,1/2,0 [0,0,0]
	1/2,0,0 [0,0,0]

| 1 | d 4/m..1' |
| | 1/2,1/2,1/2 [0,0,0] |

| 1 | c 4/m..1' |
| | 1/2,1/2,0 [0,0,0] |

| 1 | b 4/m..1' |
| | 0,0,1/2 [0,0,0] |

| 1 | a 4/m..1' |
| | 0,0,0 [0,0,0] |

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p41'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (-a + b)/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (4'/m)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\]

Symmetry Operations

1. \(1\)
 \[(1|0,0,0)\]

2. \(2\)
 \[
 \begin{cases}
 0,0,z \\
 (2_z|0,0,0)
 \end{cases}
 \]

3. \(4^+\cdot\)
 \[
 \begin{cases}
 0,0,z \\
 (4_z|0,0,0')
 \end{cases}
 \]

4. \(4^-\cdot\)
 \[
 \begin{cases}
 0,0,z \\
 (4_z^{-1}|0,0,0')
 \end{cases}
 \]

5. \(1\)
 \[(1|0,0,0)\]

6. \(m\)
 \[
 \begin{cases}
 x,y,0 \\
 (m_z|0,0,0)
 \end{cases}
 \]

7. \(4^{+}\cdot\)
 \[
 \begin{cases}
 0,0,z; 0,0,0 \\
 (4_z|0,0,0')
 \end{cases}
 \]

8. \(4^{-}\cdot\)
 \[
 \begin{cases}
 0,0,z; 0,0,0 \\
 (4_z^{-1}|0,0,0')
 \end{cases}
 \]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 l 1</td>
<td>x,y,z [u,v,w]</td>
<td>(2) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>5 x, y, z [u, v, w]</td>
<td>(6) x, y, z [u, v, w]</td>
</tr>
<tr>
<td>4 k m..</td>
<td>x,y,1/2 [0,0,w]</td>
<td>x, y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 j m..</td>
<td>x,y,0 [0,0,w]</td>
<td>x, y,0 [0,0,w]</td>
</tr>
<tr>
<td>4 l 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 h 4'..</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 g 4'..</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 f 2/m..</td>
<td>0,1/2,1/2 [0,0,w]</td>
<td>1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 e 2/m..</td>
<td>0,1/2,0 [0,0,w]</td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>1 d 4'/m..</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 c 4'/m..</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 b 4'/m..</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 a 4'/m..</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>p41'</th>
<th>p2' mm'</th>
<th>p2' mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>a* = a</td>
<td>a* = -c</td>
<td>a* = -c</td>
</tr>
<tr>
<td></td>
<td>b* = b</td>
<td>b* = b</td>
<td>b* = (-a + b)/2</td>
</tr>
<tr>
<td></td>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Origin at center (4/m’)

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations:

1. \(1\) 0,0,0
2. \(2\) 0,0,\(z\) (2\(z\)) 0,0,0
3. \(4\) 0,0,\(z\) (4\(z\)) 0,0,0
4. \(4\) 0,0,\(z\) (4\(z\)) -1 0,0,0
5. \(\overline{1}\) 0,0,0 (1,0,0,0)
6. \(m\) 0,0,0 (0,0,0)
7. \(\overline{4}\) 0,0,\(z\) (0,0,0) (4\(z\)) 0,0,0
8. \(\overline{4}\) 0,0,\(z\) (0,0,0) (4\(z\)) -1 0,0,0

83.4.706 - 1 - 1404
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 l 1</td>
<td>1</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 k</td>
<td>2</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 j</td>
<td>2</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>4 l 2..</td>
<td>2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 h</td>
<td>4</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 g</td>
<td>4</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 f</td>
<td>2/m'..</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 e</td>
<td>2/m'..</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>1 d</td>
<td>4/m'..</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 c</td>
<td>4/m'..</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>1 b</td>
<td>4/m'..</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 a</td>
<td>4/m'..</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p41' Along [1,0,0] p2m'm' Along [1,1,0] p2m'm'

a* = a b* = b a* = b b* = c a* = (-a + b)/2 b* = c

Origin at 0,0,z Origin at x,0,0 Origin at x,x,0
Origin at center (4'/m'')

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

1. \(1\) \((0,0,0)\)
2. \(2\) \(0,0,z\) \((2z,0,0)\)
3. \(4^+\) \(0,0,z\) \((4z,0,0,0)'\)
4. \(4^-\) \(0,0,z\) \((4z^{-1},0,0,0)'\)
5. \(T\) \(0,0,0\) \((1,0,0,0)'\)
6. \(m'\) \(x,y,0\) \((m_z,0,0,0)'\)
7. \(4^+\) \(0,0,z\) \((4z,0,0,0)'\)
8. \(4^-\) \(0,0,z\) \((4z^{-1},0,0,0)'\)
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 l 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 k m'..</td>
<td>x,y,1/2 [u,v,0]</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 j m'..</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>4 l 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 h 4'..</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 g 4'..</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 f 2/m'..</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 e 2/m'..</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>1 d 4'/m'..</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 c 4'/m'..</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 b 4'/m'..</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 a 4'/m'..</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4'</th>
<th>Along [1,0,0]</th>
<th>p2m'm'</th>
<th>Along [1,1,0]</th>
<th>p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td></td>
<td>b* = b</td>
<td></td>
<td>a* = (-a + b)/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (4/m)

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1

(2) 2 0,0,z

(3) 4+ 0,0,z

(4) 4− 0,0,z

For (0,0,1)' + set

(5) t' (0,0,1)

(6) m x,y,0

(7) 4+ (0,0,1) 0,0,z

(8) 4− (0,0,1) 0,0,z

(1) 1 (0,0,0)

(2) 2 0,0,z

(3) 4+ 0,0,z

(4) 4− 0,0,z

(5) t' (0,0,1)

(6) m x,y,0

(7) 4+ (0,0,1) 0,0,z

(8) 4− (0,0,1) 0,0,z

(1) t (0,0,1)

(2) 2 (0,0,1) 0,0,z

(3) 4+ (0,0,1) 0,0,z

(4) 4− (0,0,1) 0,0,z

(5) t' (0,0,1/2)

(6) m' x,y,1/2

(7) 4+ (0,0,1/2) 0,z

(8) 4− (0,0,1/2) 0,z

(1) t (0,0,1)

(2) 2 (0,0,1) 0,0,z

(3) 4+ (0,0,1) 0,0,z

(4) 4− (0,0,1) 0,0,z

(5) t' (0,0,1/2)

(6) m' x,y,1/2

(7) 4+ (0,0,1/2) 0,z

(8) 4− (0,0,1/2) 0,z
Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 I 1</td>
<td>x,y,z [u,v,w]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z</td>
<td>(0,0,1)' +</td>
</tr>
<tr>
<td>8 k m'..</td>
<td>x,y,1/2 [u,v,0]</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 j m..</td>
<td>x,y,0 [0,0,w]</td>
<td>y,x,0 [0,0,w]</td>
</tr>
<tr>
<td>8 l 2..</td>
<td>0,1/2, z [0,0,w]</td>
<td>1/2,0, z [0,0,w]</td>
</tr>
<tr>
<td>4 h 4..</td>
<td>1/2, 1/2, z [0,0,w]</td>
<td>1/2,1/2, z [0,0,w]</td>
</tr>
<tr>
<td>4 g 4..</td>
<td>0, 0, z [0,0,w]</td>
<td>0,0, z [0,0,w]</td>
</tr>
<tr>
<td>4 f 2/m'..</td>
<td>0, 1/2, 1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 e 2/m..</td>
<td>0, 1/2, 0 [0,0,w]</td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>2 d 4/m'..</td>
<td>1/2, 1/2, 1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 c 4/m..</td>
<td>1/2, 1/2, 0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 b 4/m'..</td>
<td>0, 0, 1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 4/m..</td>
<td>0, 0, 0 [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**
 \(p41' \)
 \(\mathbf{a}^* = \mathbf{a} \)
 \(\mathbf{b}^* = \mathbf{b} \)
 \(\mathbf{c}^* = \mathbf{c} \)
 Origin at 0,0, z

- **Along [1,0,0]**
 \(p_{2a}{2m'} \)
 \(\mathbf{a}^* = -\mathbf{c} \)
 \(\mathbf{b}^* = \mathbf{b} \)
 \(\mathbf{c}^* = \mathbf{c} \)
 Origin at x,0,1/2

- **Along [1,1,0]**
 \(p_{2a}{2m'} \)
 \(\mathbf{a}^* = -\mathbf{c} \)
 \(\mathbf{b}^* = (-\mathbf{a} + \mathbf{b})/2 \)
 \(\mathbf{c}^* = \mathbf{c} \)
 Origin at x,x,1/2
Origin at center \((4/m)\)

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\]

Symmetry Operations

For \((0,0,0)\) + set

1. \((1,0,0,0)\)
2. \((0,0,z)\)
 \((m,0,0,0)\)
3. \((0,0,z)\)
 \((m,0,0,0)\)
4. \((0,0,z)\)
 \((m,0,0,0)\)

For \((1,0,0)\) ′ + set

1. \((1,0,0,0)\) ′
2. \((2,1/2,0,0)\) ′
3. \((4,1/2,1/2,0)\) ′
4. \((4,1/2,-1/2,0)\) ′

83.7.709 - 1 - 1410
Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)′ +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 l</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 k</td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>y,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>y,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 j</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>y,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>y,x,0 [0,0,w]</td>
</tr>
<tr>
<td>8 l</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [v,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [v,u,0]</td>
</tr>
<tr>
<td>4 h</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 g</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 f</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 e</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 d</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1]

- \(p41' \)
- \(a^* = a \quad b^* = b \)
- Origin at 0,0,z

Along [1,0,0]

- \(p2mm1' \)
- \(a^* = b \quad b^* = c \)
- Origin at x,0,0

Along [1,1,0]

- \(p2m'm' \)
- \(a^* = (-a + b)/2 \quad b^* = c \)
- Origin at x-1/4,x+1/4,0
Origin at center (4/m)

Asymmetric unit \(0 \leq x \leq 1/2;\quad 0 \leq y \leq 1/2;\quad 0 \leq z \leq 1/2\)

Symmetry Operations

For \((0,0,0)\) + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((1</td>
</tr>
<tr>
<td>2</td>
<td>((0,0,z)) ((2z</td>
</tr>
<tr>
<td>3</td>
<td>((4^+ 0,0,z)) ((4z</td>
</tr>
<tr>
<td>4</td>
<td>((4^- 0,0,z)) ((4z^{-1}</td>
</tr>
<tr>
<td>5</td>
<td>((0,0,0)) ((1</td>
</tr>
<tr>
<td>6</td>
<td>((x,y,0)) ((mz</td>
</tr>
<tr>
<td>7</td>
<td>((4^+ 0,0,z)) ((4z</td>
</tr>
<tr>
<td>8</td>
<td>((4^- 0,0,z)) ((4z^{-1}</td>
</tr>
</tbody>
</table>

For \((1,0,0)\)' + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((1</td>
</tr>
<tr>
<td>2</td>
<td>((1/2,0,0)) ((2z</td>
</tr>
<tr>
<td>3</td>
<td>((4^+ 1/2,1/2,z)) ((4z</td>
</tr>
<tr>
<td>4</td>
<td>((4^- 1/2,-1/2,z)) ((4z^{-1}</td>
</tr>
<tr>
<td>5</td>
<td>((1/2,0,0)) ((1</td>
</tr>
<tr>
<td>6</td>
<td>((x,y,0)) ((mz</td>
</tr>
<tr>
<td>7</td>
<td>((4^+ 1/2,-1/2,z)) ((4z</td>
</tr>
<tr>
<td>8</td>
<td>((4^- 1/2,1/2,z)) ((4z^{-1}</td>
</tr>
</tbody>
</table>
Continued

Generators selected (1); t'(1,0,0); t'(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 l</td>
<td>(0,0,0) + (1,0,0) +</td>
</tr>
<tr>
<td>8 k m'</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 j m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 l 2'</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>4 h 4'</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 g 4..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 f 2'/m'</td>
<td>0,1/2,1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 e 2'/m</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 d 4'/m'</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c 4'/m</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b 4'/m</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 4/m</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p41'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b b* = c</td>
<td></td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p,, 2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (-a + b)/2 b* = c</td>
<td></td>
</tr>
<tr>
<td>Origin at x-1/4,x+1/4,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (4'/m)

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2}\]

Symmetry Operations

For \((0,0,0)\) + set

\[\begin{align*}
(1) & \begin{pmatrix} 1 \\ 0,0,0 \end{pmatrix} \\
(2) & \begin{pmatrix} 2 \\ 0,0,z \end{pmatrix} \quad (2_z | 0,0,0) \\
(3) & \begin{pmatrix} 4^+ \end{pmatrix} \begin{pmatrix} 0,0,z \end{pmatrix} \quad (4_z | 0,0,0) \\
(4) & \begin{pmatrix} 4^- \end{pmatrix} \begin{pmatrix} 0,0,z \end{pmatrix} \quad (4_z^{-1} | 0,0,0) \\
(5) & \begin{pmatrix} T \end{pmatrix} \begin{pmatrix} 0,0,0 \end{pmatrix} \quad (1 | 0,0,0) \\
(6) & \begin{pmatrix} m \end{pmatrix} \begin{pmatrix} x,y,0 \end{pmatrix} \quad (m_z | 0,0,0) \\
(7) & \begin{pmatrix} 4^+ \end{pmatrix} \begin{pmatrix} 0,0,z; 0,0,0 \end{pmatrix} \quad (4_z | 0,0,0) \\
(8) & \begin{pmatrix} 4^- \end{pmatrix} \begin{pmatrix} 0,0,z; 0,0,0 \end{pmatrix} \quad (4_z^{-1} | 0,0,0) \\
\end{align*}\]

For \((0,0,1)'\) + set

\[\begin{align*}
(1) & \begin{pmatrix} t' \end{pmatrix} \begin{pmatrix} 0,0,1 \end{pmatrix} \quad (1 | 0,0,1) \\
(2) & \begin{pmatrix} 2' \end{pmatrix} \begin{pmatrix} 0,0,1 \end{pmatrix} \quad (2_z | 0,0,1) \\
(3) & \begin{pmatrix} 4^+ \end{pmatrix} \begin{pmatrix} 0,0,1 \end{pmatrix} \quad (4_z | 0,0,1) \\
(4) & \begin{pmatrix} 4^- \end{pmatrix} \begin{pmatrix} 0,0,1 \end{pmatrix} \quad (4_z^{-1} | 0,0,1) \\
(5) & \begin{pmatrix} T' \end{pmatrix} \begin{pmatrix} 0,0,1/2 \end{pmatrix} \quad (1 | 0,0,1) \\
(6) & \begin{pmatrix} m' \end{pmatrix} \begin{pmatrix} x,y,1/2 \end{pmatrix} \quad (m_z | 0,0,1) \\
(7) & \begin{pmatrix} 4^+ \end{pmatrix} \begin{pmatrix} 0,0,z; 0,0,1/2 \end{pmatrix} \quad (4_z | 0,0,1) \\
(8) & \begin{pmatrix} 4^- \end{pmatrix} \begin{pmatrix} 0,0,z; 0,0,1/2 \end{pmatrix} \quad (4_z^{-1} | 0,0,1) \\
\end{align*}\]
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

Multiplicity, Coordinates
Wyckoff letter, Site Symmetry.

(0,0,0) + (0,0,1)'

16 l 1 (1) x,y,z [u,v,w] (2) x, y,z [u, v, w] (3) y, x,z [v, u, w] (4) y, x,z [v, u, w]
(5) x, y,z [u,v,w] (6) x,y,z [v,u,w] (7) y, x,z [v,u,w] (8) y, x,z [v,u,w]
8 k 2m'.. x,y,1/2 [u,v,0] x, y,1/2 [u, v, 0] y, x,1/2 [v, u,0] y, x,1/2 [v, u,0]
8 j m.. x,y,0 [0,0,w] x, y,0 [0,0,w] y, x,0 [0,0,w] y, x,0 [0,0,w]
8 l 2.. 0,1/2,z [0,0,w] 1/2,0,z [0,0,w] 0,1/2,z [0,0,w] 1/2,0,z [0,0,w]
4 h 4'.. 1/2,1/2,z [0,0,0] 1/2,1/2,z [0,0,0] 1/2,1/2,z [0,0,0] 1/2,1/2,z [0,0,0]
4 g 4'.. 0,0,z [0,0,0] 0,0,z [0,0,0] 0,0,z [0,0,0] 0,0,z [0,0,0]
4 f 2/m'.. 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]
4 e 2/m.. 0,1/2,0 [0,0,w] 1/2,0,0 [0,0,w] 1/2,0,0 [0,0,w] 1/2,0,0 [0,0,w]
2 d 4'/m'.. 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]
2 c 4'/m.. 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0]
2 b 4'/m'.. 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0]
2 a 4'/m.. 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p41' Along [1,0,0] p22' Along [1,1,0] p22' 2mm'

a* = a b* = b a* = -c b* = b a* = -c b* = (-a+b)/2
Origin at 0,0,z Origin at x,0,0 Origin at x,x,0
Origin at center (4/m')

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

For (0,0,0) + set

1. \(1 \)
2. \(2 \) 0,0,z
 \((2z,0,0) \)
3. \(4^+ \) 0,0,z
 \((4z,0,0) \)
4. \(4^- \) 0,0,z
 \((4z^{-1},0,0) \)
5. \(\bar{1} \) 0,0,0
 \((1,0,0) \)
6. m' x,y,0
 \((mz,0,0) \)
7. \(\bar{4}^{+*} \) 0,0,z; 0,0,0
 \((4z,0,0) \)
8. \(\bar{4}^{-*} \) 0,0,z; 0,0,0
 \((4z^{-1},0,0) \)

For (1,0,0)' + set

1. \(t' \)
 \((1,0,0) \)
2. \(\bar{2} \) 1/2,0,z
 \((2z,1,0) \)
3. \(\bar{4}^{+*} \) 1/2,1/2,z
 \((4z,1,0) \)
4. \(\bar{4}^{-*} \) 1/2,-1/2,z
 \((4z^{-1},1,0) \)
5. \(\bar{1} \) 1/2,0,0
 \((1,0,0) \)
6. a x,y,0
 \((mz,1,0) \)
7. \(\bar{4}^{+} \) 1/2,-1/2,z; 1/2,-1/2,0
 \((4z,1,0) \)
8. \(\bar{4}^{-} \) 1/2,1/2,z; 1/2,1/2,0
 \((4z^{-1},1,0) \)
Generators selected
(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>(0,0,0) +</th>
<th>(1,0,0)' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 l 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>16 l 1</td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 k m..</td>
<td>x,y,1/2 [0,0,w]</td>
<td>x,y,1/2 [0,0,w]</td>
<td>y,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 j m'..</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
<td>y,x,0 [v,u,0]</td>
</tr>
<tr>
<td>8 l 2'..</td>
<td>0,1/2,z [u,v,0]</td>
<td>1/2,0,z [v,u,0]</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>4 h 4'..</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 g 4..</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 f 2'/m..</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 e 2'/m'..</td>
<td>0,1/2,0 [u,v,0]</td>
<td>1/2,0,0 [v,u,0]</td>
<td></td>
</tr>
<tr>
<td>2 d 4'/m..</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c 4'/m'..</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b 4/m..</td>
<td>0,0,1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a 4/m'..</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p_p 4
 \[\mathbf{a}^* = \mathbf{a}, \mathbf{b}^* = \mathbf{b} \]
 Origin at 0,0,z

- Along [1,0,0] p2mm1'
 \[\mathbf{a}^* = \mathbf{b}, \mathbf{b}^* = \mathbf{c} \]
 Origin at x,0,0

- Along [1,1,0] p222 2m'm'
 \[\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2, \mathbf{b}^* = \mathbf{c} \]
 Origin at x,x,0
Origin at center (2/m) on 4_2

Asymmetric unit \[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2} \]

Symmetry Operations

1. \[1 \]
2. \[2 \quad 0,0,z \]
\[(2_2) \quad 0,0,0 \]
3. \[4^z (0,0,1/2) \quad 0,0,z \]
\[(4_z) \quad 0,0,1/2 \]
4. \[1 \]
5. \[1 \]
\[(1|0,0,0) \]
6. \[m \quad x,y,0 \]
\[(m_z) \quad 0,0,0 \]
7. \[4^{x} (0,0,z) \quad 0,0,1/4 \]
\[(4_z) \quad 0,0,1/2 \]
8. \[4^z (0,0,z) \quad 0,0,1/4 \]
\[(4^{x}_z) \quad 0,0,1/2 \]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) (\bar{x}, \bar{y}, \bar{z} [\bar{u}, \bar{v}, \bar{w}])</td>
</tr>
<tr>
<td></td>
<td>(3) (\bar{y}, x, z + 1/2 [\bar{v}, u, w])</td>
</tr>
<tr>
<td></td>
<td>(4) (y, \bar{x}, z + 1/2 [v, u, \bar{w}])</td>
</tr>
<tr>
<td></td>
<td>(5) (\bar{x}, \bar{y}, \bar{z} [u, v, w])</td>
</tr>
<tr>
<td>4 j m..</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(x, \bar{y}, 0 [0,0,w])</td>
</tr>
<tr>
<td></td>
<td>(\bar{y}, x, 1/2 [0,0,w])</td>
</tr>
<tr>
<td></td>
<td>y,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 i 2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z + 1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,\bar{z} + 1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 h 2..</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z + 1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,\bar{z} [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,\bar{z} + 1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 g 2..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z + 1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,\bar{z} [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,\bar{z} + 1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 f 4..</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,3/4 [0,0,w]</td>
</tr>
<tr>
<td>2 e 4..</td>
<td>0,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,3/4 [0,0,w]</td>
</tr>
<tr>
<td>2 d 2/m..</td>
<td>0,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>2 c 2/m..</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 b 2/m..</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a 2/m..</td>
<td>0,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

2/f 4.. \(\bar{a}, \bar{b}, \bar{c} \)

Symmetry of Special Projections

Along [0,0,1] p41'
\(a^* = \bar{a}, \ b^* = \bar{b}, \ c^* = \bar{c} \)
Origin at 0,0,z

Along [1,0,0] p2'mm'
\(a^* = -c, \ b^* = \bar{b}, \ c^* = \bar{c} \)
Origin at x,0,0

Along [1,1,0] p2'mm'
\(a^* = -c, \ b^* = (-\bar{a} + \bar{b})/2 \)
Origin at x,x,0
Origin at center (2/m1') on 421'

Asymmetric unit
\(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

For 1 + set

1. \((1,0,0,0)\)
2. \((2,0,0,z)\)
3. \((3,4^*,0,0,1/2,0,0,z)\)
4. \((4,4^-,0,0,1/2,0,0,z)\)

For 1' + set

1. \((1',0,0,0)\)
2. \((2',0,0,z)\)
3. \((3,4'^*,0,0,1/2,0,0,z)\)
4. \((4,4'^-,0,0,1/2,0,0,z)\)
Continued

84.2.714 P4_1/m1'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 k 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 j m..1'</td>
<td>x,y,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 i 2..1'</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 h 2..1'</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 g 2..1'</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 f 4..1'</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 e 4..1'</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 d 2/m..1'</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 c 2/m..1'</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b 2/m..1'</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 2/m..1'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p41'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (a + b)/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (2/m) on 4_2\,'

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2} \]

Symmetry Operations

\begin{align*}
(1) & \quad 1 \\
(1|0,0,0) & \quad (2) & \quad 2 \quad 0,0,z \\
& & (2_z|0,0,0) & \quad (3) & \quad 4^{+} \cdot (0,0,1/2) \quad 0,0,z \\
& & & & (4_z|0,0,1/2) \quad (4) & \quad 4^{-} \cdot (0,0,1/2) \quad 0,0,z \\
& & & & (4_z^{-1}|0,0,1/2) \quad (5) & \quad \overline{1} \quad 0,0,0 \\
(1|0,0,0) & \quad (6) & \quad m \quad x,y,0 \\
& & (m_z|0,0,0) & \quad (7) & \quad \overline{4}^{+} \cdot 0,0,z; 0,0,1/4 \\
& & & & (4_z|0,0,1/2) \quad (8) & \quad \overline{4}^{-} \cdot 0,0,z; 0,0,1/4 \\
& & & & (4_z^{-1}|0,0,1/2) \end{align*}
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>(x, y, z)</th>
<th>(x, y, z)</th>
<th>(y, x, z + 1/2)</th>
<th>(y, x, z + 1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 k</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(x, y, z [u,v,w])</td>
<td>(y, x,z+1/2 [v,u,w])</td>
<td>(y, x,z+1/2 [v,u,w])</td>
<td></td>
</tr>
<tr>
<td>8 k</td>
<td>(5) (x, y, z) [u,v,w]</td>
<td>(x, y, z) [u,v,w]</td>
<td>(y, x,z+1/2 [v,u,w])</td>
<td>(y, x,z+1/2 [v,u,w])</td>
<td></td>
</tr>
<tr>
<td>4 j m..</td>
<td>x,y,0 [0,0,w]</td>
<td>(x, y,0 [0,0,w])</td>
<td>(y, x,1/2 [0,0,w])</td>
<td>(y, x,1/2 [0,0,w])</td>
<td></td>
</tr>
<tr>
<td>4 i 2..</td>
<td>0,1/2,0 [0,0,w]</td>
<td>1/2,0,0+1/2 [0,0,w]</td>
<td>0,1/2,0 [0,0,w]</td>
<td>1/2,0,0+1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 h 2..</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td>1/2,1/2,0+1/2 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td>1/2,1/2,0+1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 g 2..</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,0+1/2 [0,0,w]</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,0+1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 f 4'..</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 e 4'..</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 d 2/m..</td>
<td>0,1/2,1/2 [0,0,w]</td>
<td>1/2,0,0 [0,0,w]</td>
<td>0,1/2,1/2 [0,0,w]</td>
<td>1/2,0,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 c 2/m..</td>
<td>0,1/2,0 [0,0,w]</td>
<td>1/2,0,1/2 [0,0,w]</td>
<td>0,1/2,0 [0,0,w]</td>
<td>1/2,0,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 b 2/m..</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 a 2/m..</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along \([0,0,1]\) p41'**
 - \(a^* = a \) \(b^* = b \)
 - Origin at 0,0,z

- **Along \([1,0,0]\) p2'\(\text{mm}'\)**
 - \(a^* = -c \) \(b^* = b \)
 - Origin at x,0,0

- **Along \([1,1,0]\) p2'\(\text{mm}'\)**
 - \(a^* = -c \) \(b^* = (-a + b)/2 \)
 - Origin at x,x,0
Origin at center (2/m') on 4₂

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
& \quad (1|0,0,0) \\
(2) & \quad 2, 0,0,z \\
& \quad (2z|0,0,0) \\
(3) & \quad 4^* (0,0,1/2), 0,0,z \\
& \quad (4z|0,0,1/2) \\
(4) & \quad 4^* (0,0,1/2), 0,0,z \\
& \quad (4z^{-1}|0,0,1/2) \\
(5) & \quad \bar{1}^*, 0,0,0 \\
& \quad (1|0,0,0)' \\
(6) & \quad m', x,y,0 \\
& \quad (mz|0,0,0) \\
(7) & \quad \bar{4}^* (0,0,z); 0,0,1/4 \\
& \quad (4z|0,0,1/2)' \\
(8) & \quad \bar{4}^* (0,0,z); 0,0,1/4 \\
& \quad (4z^{-1}|0,0,1/2)'
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 k 1 (1)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 j m'..</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,1/2 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,1/2 [v,u,0]</td>
</tr>
<tr>
<td>4 i 2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 h 2..</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 g 2..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 f 4'..</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 e 4'..</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 d 2/m'..</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 c 2/m'..</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b 2/m'..</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 2/m'..</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4
\(a^* = a \)
\(b^* = b \)

Origin at 0,0,z

Along [1,0,0] p2m'
\(a^* = b \)
\(b^* = c \)

Origin at x,0,0

Along [1,1,0] p2m'
\(a^* = (-a + b)/2 \)
\(b^* = c \)

Origin at x,x,0
Origin at center (2/m') on 42'.

Asymmetric unit:
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations:

(1) 1
(1|0,0,0)

(2) 2 0,0,z
(2z|0,0,0)

(3) 4' ' (0,0,1/2) 0,0,z
(4z|0,0,1/2)

(4') 4' ' (0,0,1/2) 0,0,z
(4z-1|0,0,1/2)

(5) 1* 0,0,0
(1|0,0,0)'

(6) m' x,y,0
(mz|0,0,0)'

(7) 4' ' 0,0,z; 0,0,1/4
(4z|0,0,1/2)

(8) 4' ' 0,0,z; 0,0,1/4
(4z-1|0,0,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x̅,y̅,z [u̅,v̅,w̅]</td>
<td>(3) y̅,x̅,z+1/2 [v̅,u̅,w̅]</td>
</tr>
<tr>
<td>(5) x̅,y̅,z [u̅,v̅,w̅]</td>
<td>(6) x,y,z [u,v,w]</td>
<td>(7) y,x̅,z+1/2 [v,u̅,w̅]</td>
<td>(8) y,x̅,z+1/2 [v,u̅,w̅]</td>
</tr>
<tr>
<td>4 j m'..</td>
<td>x,y,0 [u,v,0]</td>
<td>x̅,y̅,0 [u̅,v̅,0]</td>
<td>y,x,1/2 [v,u̅,0]</td>
</tr>
<tr>
<td>4 i 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
<td>0,1/2, z [0,0,w̅]</td>
</tr>
<tr>
<td>4 h 2..</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td>1/2,1/2, z̅ [0,0,w]</td>
</tr>
<tr>
<td>4 g 2..</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w̅]</td>
<td>0,0, z̅ [0,0,w̅]</td>
</tr>
<tr>
<td>2 f 4..</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
<td>1/2,1/2,3/4 [0,0,w]</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>2 e 4..</td>
<td>0,0,1/4 [0,0,w]</td>
<td>0,0,3/4 [0,0,w]</td>
<td>0,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td>2 d 2/m'..</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c 2/m'..</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b 2/m'..</td>
<td>1/2,1,2/0 [0,0,0]</td>
<td>1/2,1,2/1 [0,0,0]</td>
<td>1/2,1,2/0 [0,0,0]</td>
</tr>
<tr>
<td>2 a 2/m'..</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** \(p4' \) \(a^* = a \) \(b^* = b \) Origin at 0,0,z
- **Along [1,0,0]** \(p2m'm' \) \(a^* = b \) \(b^* = c \) Origin at x,0,0
- **Along [1,1,0]** \(p2m'm' \) \(a^* = (-a + b)/2 \) \(b^* = c \) Origin at x,x,0
Origin at center (2/m) on \(4_2\)

Asymmetric unit:

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\]

Symmetry Operations

For \((0,0,0)\) + set

1. 1
2. 2 \((0,0,0)\), \(2z\) \((0,0,0)\)
3. \(4^+ (0,0,1/2)\) \(0,0,z\) \((4z)0,0,1/2\)
4. \(4^- (0,0,1/2)\) \(0,0,z\) \((4z)^{-1}0,0,1/2\)
5. \(m\) \(x,y,0\) \((mz)0,0,0\)
6. \(4^* (0,0,1/4)\) \(0,0,1/4\) \((4z)0,0,1/4\)
7. \(4^- (0,0,1/4)\) \(0,0,1/4\) \((4z)^{-1}0,0,1/4\)

For \((1,0,0)\)' + set

1. \((1,0,0)\)'\(1,0,0)\)
2. \(2' 1/2,0,z\) \((2z)1,0,0)\)
3. \(4' (0,0,1/2)\) \(1/2,1/2,z\) \((4z)1,0,1/2)\)
4. \(4' (0,0,1/2)\) \(1/2,-1/2,z\) \((4z)^{-1}1,0,1/2)\)
5. \((1,0,0)\)'\(1/2,0,0\)
6. \(a' (1,0,0)\) \(x,y,0\) \((mz)1,0,0)\)
7. \(4' (0,0,1/2)\) \(1/2,-1/2,z\) \((4z)1,0,1/2)\)
8. \(4' (0,0,1/2)\) \(1/2,1/2,z\) \((4z)^{-1}1,0,1/2)\)
Generators selected
(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>16 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z+1/2 [v,u,w] (4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8 1</td>
<td>x,y,0 [0,0,w] x,y,0 [0,0,w] y,x,1/2 [0,0,w] y,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 2'</td>
<td>0,1/2,z [u,v,0] 1/2,0,z+1/2 [v,u,0] 0,1/2,z [u,v,0] 1/2,0,z+1/2 [v,u,0]</td>
</tr>
<tr>
<td>8 2</td>
<td>1/2,1/2,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 1/2,1/2,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 2</td>
<td>0,0,z [0,0,w] 0,0,z+1/2 [0,0,w] 0,0,z [0,0,w] 0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 2'</td>
<td>1/2,1/2,1/4 [0,0,0] 1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 2</td>
<td>0,0,1/4 [0,0,w] 0,0,3/4 [0,0,w]</td>
</tr>
<tr>
<td>4 2'</td>
<td>0,1/2,1/2 [0,0,0] 0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 2</td>
<td>0,1/2,0 [0,0,0] 0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 2'</td>
<td>1/2,1/2,0 [0,0,w] 1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>4 2</td>
<td>0,0,0 [0,0,w] 0,0,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p41' Along [1,0,0] p2mm1' Along [1,1,0] p2c2 2mm

a* = a b* = b a* = b b* = b a* = (-a + b)/2 b* = c

Origin at 0,0,z Origin at x,0,0 Origin at x-1/4,x+1/4,0
Origin at center (2/m') on 4₂

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 0 0,0)

(2) 2 0,0,z
(2z 0,0,0)

(3) 4⁺ (0,0,1/2) 0,0,z
(4z 0,0,1/2)

(4) 4⁻ (0,0,1/2) 0,0,z
(4z⁻¹ 0,0,1/2)

(5) T⁺ 0,0,0
(1 0,0,0)'

(6) m' x,y,0
(mz 0,0,0)'

(7) 4⁻⁺⁺ 0,0,z; 0,0,1/4
(4z 0,0,1/2)'

(8) 4⁻⁻⁻ 0,0,z; 0,0,1/4
(4z⁻¹ 0,0,1/2)'

For (1,0,0) + set

(1) t⁺ (1,0,0)
(1 1,0,0)'

(2) 2' 1/2,0,z
(2z 1,0,0)'

(3) 4⁺⁺ (0,0,1/2) 1/2,1/2,z
(4z 1,0,1/2)'

(4) 4⁻⁺ (0,0,1/2) 1/2,-1/2,z
(4z⁻¹ 1,0,1/2)'

(5) T 1/2,0,0
(T 1,0,0)

(6) a (1,0,0) x,y,0
(mz 1,0,0)

(7) 4⁺⁻ (1/2,-1/2,z; 1/2,-1/2,1/4
(4z 1,0,1/2)

(8) 4⁻⁻⁻ (1/2,1/2,z; 1/2,1/2,1/4
(4z⁻¹ 1,0,1/2)

Continued
Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k</td>
<td>m'</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>8 j</td>
<td>m'</td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>8 i</td>
<td>2'</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>8 h</td>
<td>2'</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>8 g</td>
<td>2'</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>4 f</td>
<td>4'</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>4 e</td>
<td>4'</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>4 d</td>
<td>2/m'</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>4 c</td>
<td>2/m'</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>4 b</td>
<td>2/m'</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>4 a</td>
<td>2/m'</td>
<td>(0,0,0)</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** \(p_p \cdot 4 \)
 - \(a^* = a \)
 - \(b^* = b \)

- **Along [1,0,0]** \(p_{2mm1} \)
 - \(a^* = b \)
 - \(b^* = c \)

- **Along [1,1,0]** \(p_{2m} \cdot 2m' \)
 - \(a^* = (a+b)/2 \)
 - \(b^* = c \)
Origin at \(\bar{1} \) on \(n \), -1/4,1/4,0 from \(\bar{1} \)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \)

Symmetry Operations

1. \(1 \)
 \[(1 | 0,0,0) \]

2. \(2 \) \(0,0,z \)
 \[(2_z | 0,0,0) \]

3. \(4^+ \) \(0,1/2,z \)
 \[(4_z | 1/2,1/2,0) \]

4. \(4^* \) \(1/2,0,z \)
 \[(4_{z^1} | 1/2,1/2,0) \]

5. \(\bar{T} \) \(1/4,1/4,0 \)
 \[(1 | 1/2,1/2,0) \]

6. \(n \) \((1/2,1/2,0) \) \(x,y,0 \)
 \[(m_z | 1/2,1/2,0) \]

7. \(4^* \) \(0,0,z \)
 \[(4_z | 0,0,0) \]

8. \(4^* \) \(0,0,z \)
 \[(4_{z^1} | 0,0,0) \]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4 f 2..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 e 1</td>
<td>1/4,1/4,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 d 1</td>
<td>1/4,1/4,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,0 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,0 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,0 [v,u,w]</td>
</tr>
<tr>
<td>2 c 4..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 b 4..</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a 4..</td>
<td>0,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4 Along [1,0,0] p2mg' Along [1,1,0] p2mm
\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]
Origin at 0,0,z Origin at x,1/4,0 Origin at x,x,0
Origin at $\overline{1'}$ on n, -1/4, 1/4, 0 from $\overline{1'}$

Asymmetric unit $0 \leq x \leq 1/2$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1/2$

Symmetry Operations

1 + set

(1) 1
 (1 | 0,0,0)

(2) 2 $\overline{0,0,z}$
 ($2_{z} | 0,0,0$)

(3) $4^{+} 0,1/2,z$
 ($4_{z} | 1/2,1/2,0$)

(4) $4^{+} 1/2,0,z$
 ($4_{z}^{-1} | 1/2,1/2,0$)

(5) $\overline{1}/4,1/4,0$
 ($\overline{1} | 1/2,1/2,0$)

(6) n $1/2,1/2,0$ x,y,0
 ($m_{z} | 1/2,1/2,0$)

(7) $\overline{4}^{+} 0,0,z; 0,0,0$
 ($\overline{4}_{z} | 0,0,0$)

(8) $\overline{4}^{+} 0,0,z; 0,0,0$
 ($\overline{4}_{z}^{-1} | 0,0,0$)

1' + set

(1) 1'
 (1 | 0,0,0')

(2) 2' $\overline{0,0,z}$
 ($2_{z} | 0,0,0'$)

(3) $4^{+} 0,1/2,z$
 ($4_{z} | 1/2,1/2,0'$)

(4) $4^{-} 1/2,0,z$
 ($4_{z}^{-1} | 1/2,1/2,0'$)

(5) $\overline{1}/4,1/4,0$
 ($\overline{1} | 1/2,1/2,0'$)

(6) n' $1/2,1/2,0$ x,y,0
 ($m_{z} | 1/2,1/2,0'$)

(7) $\overline{4}^{+} 0,0,z; 0,0,0$
 ($\overline{4}_{z} | 0,0,0'$)

(8) $\overline{4}^{-} 0,0,z; 0,0,0$
 ($\overline{4}_{z}^{-1} | 0,0,0'$)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 +</td>
</tr>
<tr>
<td>8 g 11'</td>
<td>x,y,z [0,0,0]</td>
<td>(2) x̅,y̅,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y+1/2,x+1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y+1/2,x+1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z̅ [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x+1/2,y+1/2,z̅ [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z̅ [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y̅,x̅,z [0,0,0]</td>
</tr>
<tr>
<td>4 f 2..1'</td>
<td>0,0,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 e 1'</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
<td>3/4,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 d 1'</td>
<td>1/4,1/4,0 [0,0,0]</td>
<td>3/4,3/4,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4,3/4,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>2 c 4..1'</td>
<td>0,1/2,z [0,0,0]</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 b 4..1'</td>
<td>0,0,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 4..1'</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p41'
\(a^* = (a - b)/2 \)
\(b^* = (a + b)/2 \)
Origin at 0,0,z

Along [1,0,0] p2mg1'
\(a^* = b \)
\(b^* = c \)
Origin at x,1/4,0

Along [1,1,0] p2mm1'
\(a^* = (-a + b)/2 \)
\(b^* = c \)
Origin at x,x,0
Origin at $\overline{4}$ on n, -1/4,1/4,0 from 1

Asymmetric unit $0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1/2$

Symmetry Operations

1. $\{1\} (1|0,0,0)$
2. $\{2\} 0,0,z (2z|0,0,0)$
3. $\{4\} 0,1/2,z (4z|1/2,1/2,0)'$
4. $\{4\} 1/2,0,z (4z'^{-1}|1/2,1/2,0)'$
5. $\{\overline{1}\} 1/4,1/4,0 (\overline{1}|1/2,1/2,0)$
6. $n (1/2,1/2,0) x,y,0 (m|1/2,1/2,0)$
7. $\overline{4} 0,0,z; 0,0,0 (4z|0,0,0)'$
8. $\overline{4} 0,0,z; 0,0,0 (4z'^{-1}|0,0,0)'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) y+1/2,x+1/2,z [v,u,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 f 2..</td>
<td>0,0,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 e 1</td>
<td>1/4,1/4,1/2 [u,v,w]</td>
<td>3/4,3/4,1/2 [v,u,w]</td>
<td>1/4,3,1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 d 1</td>
<td>1/4,1/4,0 [u,v,w]</td>
<td>3/4,3/4,0 [v,u,w]</td>
<td>1/4,3,4,0 [v,u,w]</td>
</tr>
<tr>
<td>2 c 4'..</td>
<td>0,1/2,z [0,0,0]</td>
<td>1/2,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 b 4'..</td>
<td>0,0,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 4'..</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'Along [1,0,0] p2'm'gAlong [1,1,0] p2mm
\[a^* = (a - b)/2\] \[b^* = (a + b)/2\] \[a^* = b \] \[b^* = c\] \[a^* = -(a + b)/2\] \[b^* = c\]
Origin at 0,0,z Origin at x,1/4,0 Origin at x,x,0
Origin at \(\overline{4} \) on \(n' \), -1/4,1/4,0 from \(\overline{1}' \)

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>((1</td>
</tr>
<tr>
<td>2</td>
<td>2 (0,0,z)</td>
<td>((2_z</td>
</tr>
<tr>
<td>3</td>
<td>4 (0,1/2,z)</td>
<td>((4_z</td>
</tr>
<tr>
<td>4</td>
<td>4 (1/2,0,z)</td>
<td>((4_z'^{-1}</td>
</tr>
<tr>
<td>5</td>
<td>(b) (1/4,1/4,0)</td>
<td>((b</td>
</tr>
<tr>
<td>6</td>
<td>(n') ((1/2,1/2,0))</td>
<td>((n'</td>
</tr>
<tr>
<td>7</td>
<td>(4^{+}) (0,0,z)</td>
<td>((4^{+}</td>
</tr>
<tr>
<td>8</td>
<td>(4^{-}) (0,0,z)</td>
<td>((4^{-}</td>
</tr>
</tbody>
</table>
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1 (1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) y+1/2,x+1/2,z [v,u,w]</td>
<td>(4) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
</tbody>
</table>

4 f 2.. 0,0,z [0,0,w]	1/2,1/2,z [0,0,w]
4 e 1/4,1/4,1/2 [0,0,0]	3/4,3/4,1/2 [0,0,0]
4 d 1/4,1/4,0 [0,0,0]	3/4,3/4,0 [0,0,0]
2 c 4.. 0,1/2,z [0,0,w]	1/2,0,z [0,0,w]
2 b 4.. 0,0,1/2 [0,0,0]	1/2,1/2,1/2 [0,0,0]
2 a 4.. 0,0,0 [0,0,0]	1/2,1/2,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p_4. 4
Along [1,0,0] p2m'g'
Along [1,1,0] p2m'm'

a* = (a - b)/2
b* = (a + b)/2
a* = b
b* = c

Origin at 1/2,0,z
Origin at x,1/4,0
Origin at x,x,0

85.4.723 - 2 - 1439
Origin at $\bar{4}$ on n', $-1/4,1/4,0$ from $\bar{1}'$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

1. 1

 $(1|0,0,0)$

2. 2 0,0,z

 $(2_z|0,0,0)$

3. $4' \cdot 0,1/2,z$

 $(4_z|1/2,1/2,0)'$

4. $4' \cdot 1/2,0,z$

 $(4_z^{-1}|1/2,1/2,0)'$

5. $\bar{1}'$ 1/4,1/4,0

 $(1|1/2,1/2,0)'$

6. n' (1/2,1/2,0) x,y,0

 $(m_z|1/2,1/2,0)'$

7. $4' \cdot 0,0,z; 0,0,0$

 $(4_z|0,0,0)$

8. $4' \cdot 0,0,z; 0,0,0$

 $(4_z^{-1}|0,0,0)$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) (\bar{x},\bar{y},z [\bar{u},\bar{v},w])</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) (y+1/2,x+1/2,z [v,u,w])</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) (y+1/2,x+1/2,z [v,u,w])</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) (x+1/2,y+1/2,z [u,v,w])</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) (x+1/2,y+1/2,z [u,v,w])</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) (y,x,z [v,u,w])</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) (y,x,z [v,u,w])</td>
</tr>
<tr>
<td>4 f 2..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 e 1'</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 d 1'</td>
<td>1/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>2 c 4'..</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 b 4'..</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a 4'..</td>
<td>0,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_\rho,4\) \(a^* = (a - b)/2\) \(b^* = (a + b)/2\) Origin at 0,0,z
Along [1,0,0] \(p2m'g'\) \(a^* = b\) \(b^* = c\) Origin at x,1/4,0
Along [1,1,0] \(p2m'm'\) \(a^* = (-a + b)/2\) \(b^* = c\) Origin at x,x,0
Origin at \(\bar{4} \) on \(-1/4,1/4,0\) from \(1\)

Asymmetric unit \(0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1/2\)

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)
2. \(2\) \(0,0,z\)
3. \(4^+\) \(0,1/2,z\)
4. \(4\) \(1/2,0,z\)
5. \(T\) \(1/4,1/4,0\)
6. \(n\) \((1/2,1/2,0)\) \(x,y,0\)
7. \(4^+\) \(0,0,z; 0,0,0\)
8. \(4\) \(-1/2,1/2,0\)

For \((0,0,1)\)' + set

1. \(t'\) \((0,0,1)\)
2. \(2'\) \((0,0,1)'\) \(0,0,z\)
3. \(4'^+\) \((0,0,1)'\) \(0,1/2,1,2,1)'\)
4. \(4'\) \((0,0,1)\) \(1/2,0,z\)
5. \(T'\) \(1/4,1/4,1/2\)
6. \(n'\) \((1/2,1/2,0)\) \(x,y,1/2\)
7. \(4'^+\) \(0,0,z; 0,0,1/2\)
8. \(4'\) \(-1/2,1/2,1)'

85.6.725 - 1 - 1442
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,0,1)' +</td>
<td></td>
</tr>
</tbody>
</table>

16 g 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y+1/2,x+1/2,z [v,u,w] (4) y+1/2,x+1/2,z [v,u,w] (5) x+1/2,y+1/2,z [u,v,w] (6) x+1/2,y+1/2,z [u,v,w] (7) y,x,z [v,u,w] (8) y,x,z [v,u,w]

8 f 2.. 0,0,z [0,0,w] 1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w] 0,0,z [0,0,w] 1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w] 0,0,z [0,0,w]

8 e 1/4,1/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 1/4,3/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0] 1/4,3/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0]

8 d 1/4,1/4,0 [u,v,w] 3/4,3/4,0 [v,u,w] 1/4,3/4,0 [v,u,w] 3/4,1/4,0 [v,u,w] 1/4,3/4,0 [v,u,w] 3/4,1/4,0 [v,u,w] 3/4,1/4,0 [v,u,w] 3/4,1/4,0 [v,u,w]

4 c 4.. 0,1/2,z [0,0,w] 1/2,0,z [0,0,w] 1/2,0,z [0,0,w] 0,1/2,z [0,0,w] 1/2,0,z [0,0,w] 1/2,0,z [0,0,w] 0,1/2,z [0,0,w] 1/2,0,z [0,0,w]

4 b 4'.. 0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]

4 a 4'.. 0,0,0 [0,0,w] 1/2,1/2,0 [0,0,w] 1/2,1/2,0 [0,0,w] 0,0,0 [0,0,w] 1/2,1/2,0 [0,0,w] 1/2,1/2,0 [0,0,w] 0,0,0 [0,0,w] 1/2,1/2,0 [0,0,w]

Symmetry of Special Projections

Along [0,0,1] p41' Along [1,0,0] p2a' 2m'g' Along [1,1,0] p2a' 2m'm'

a* = (a - b)/2 b* = (a + b)/2 a* = b b* = c a* = -c b* = (-a + b)/2

Origin at 0,0,z Origin at x,1/4,1/2 Origin at x,1/4,1/2
Origin at $\bar{4}$ on n, $-1/4,1/4,0$ from $\bar{1}$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0)$ + set

(1) 1

(1) $0,0,0$

(2) 2 $0,0,z$

(2) $0,0,0$

(3) $4^+ \cdot 0,1/2,z$

(4) $4^- \cdot 0,0,z$

(4) $1/2,0,z$

(4) $1/2,0,z$

(5) $\bar{1} 1/4,1/4,0$

(5) $1/2,1/2,0$

(6) n $(1/2,1/2,0)$ $x,y,0$

(6) m_z $(1/2,1/2,0)$

(7) $\bar{4}^+ \cdot 0,0,z$; $0,0,0$

(7) $\bar{4}^- \cdot 0,0,z$; $0,0,0$

(7) $0,0,0$

(7) $0,0,0$

For $(0,0,1')$ + set

(1) t' $(0,0,1)$

(1) $0,0,1'$

(2) $2'$ $(0,0,1)$ $0,0,z$

(2) $0,0,1'$

(3) $4^+ (0,0,1)$ $0,1/2,z$

(4) $4^- (0,0,1)$ $0,0,1/2$

(3) $0,1/2,0,z$

(4) $0,0,1/2$

(4) $1/2,0,z$

(4) $1/2,0,z$

(5) $\bar{1}' 1/4,1/4,1/2$

(5) $1/2,1/2,1'$

(6) n' $(1/2,1/2,0)$ $x,y,1/2$

(6) m_z $(1/2,1/2,1)'$

(7) $\bar{4}^+ 0,0,z$; $0,0,1/2$

(7) $\bar{4}^- 0,0,z$; $0,0,1/2$

(8) $\bar{4}^- 0,0,z$; $0,0,1/2$

(8) $\bar{4}^- 0,0,z$; $0,0,1/2$

85.7.726 - 1 - 1444
Continued 85.7.726

Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g</td>
<td>(0,0,0) + (0,0,1) +</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x̅,y̅,z [u̅,v̅,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 f</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 e</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 d</td>
<td>1/4,1/4,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,0 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,0 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,0 [v,u,w]</td>
</tr>
<tr>
<td>4 c</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4₁'
\[\mathbf{a^*} = (\mathbf{a} - \mathbf{b})/2 \ \mathbf{b^*} = (\mathbf{a} + \mathbf{b})/2 \]

Origin at 0,0,z

Along [1,0,0] p₂₄* 2m'g'
\[\mathbf{a^*} = \mathbf{b} \ \mathbf{b^*} = \mathbf{c} \]

Origin at x,1/4,1/2

Along [1,1,0] p₂₄* 2m'm'
\[\mathbf{a^*} = -\mathbf{c} \ \mathbf{b^*} = (-\mathbf{a} + \mathbf{b})/2 \]

Origin at x,x,1/2

85.7.726 - 2 - 1445
Origin at \(\overline{4} \) at \(-1/4, -1/4, -1/4\) from \(\overline{1} \)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \)

Symmetry Operations

1. \(1 \)
 - \((1|0,0,0) \)
2. \(2 \)
 - \(0,0,z \)
 - \((2_z|0,0,0) \)
3. \(4^+ \)
 - \((0,0,1/2); 0,1/2,z \)
 - \((4_z|1/2,1/2,1/2) \)
 - \((4_z^{-1}|1/2,1/2,1/2) \)
4. \(4^- \)
 - \((0,0,1/2); 1/2,0,z \)
 - \((4_z|1/2,1/2,1/2) \)
 - \((4_z^{-1}|1/2,1/2,1/2) \)
5. \(\overline{1} \)
 - \(1/4,1/4,1/4 \)
 - \((1|1/2,1/2,1/2) \)
 - \((1/2,1/2,1/2) \)
6. \(n \)
 - \((1/2,1/2,0); x,y,1/4 \)
 - \((m_z|1/2,1/2,1/2) \)
7. \(4^* \)
 - \(0,0,z; 0,0,0 \)
 - \((4_z|0,0,0) \)
8. \(4^* \)
 - \(0,0,z; 0,0,0 \)
 - \((4_z|0,0,0) \)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>8 g 1 (1) x,y,z [u,v,w]</td>
<td>(\bar{x}, \bar{y}, \bar{z} [\bar{u}, \bar{v}, \bar{w}])</td>
</tr>
<tr>
<td>(3) (\bar{y}+1/2,x+1/2,z+1/2) ([\bar{v},u,w])</td>
<td>(y+1/2,\bar{x}+1/2,z+1/2) ([v,\bar{u},w])</td>
</tr>
<tr>
<td>(5) (\bar{x}+1/2,\bar{y}+1/2,\bar{z}+1/2) ([u,v,w])</td>
<td>(x+1/2,y+1/2,\bar{z}+1/2) ([\bar{u},v,w])</td>
</tr>
<tr>
<td>(7) (y,\bar{x},\bar{z}) ([v,u,w])</td>
<td>(\bar{y},x,\bar{z}) ([v,u,w])</td>
</tr>
<tr>
<td>4 f 2.. 0,0,z [0,0,w]</td>
<td>(1/2,1/2,z+1/2) ([0,0,w])</td>
</tr>
<tr>
<td>4 e 2.. 0,1/2,z [0,0,w]</td>
<td>(0,1/2,z+1/2) ([0,0,w])</td>
</tr>
<tr>
<td>4 d (\bar{a}) 1/4,1/4,3/4 ([u,v,w])</td>
<td>(3/4,3/4,1/4) ([\bar{u},v,w])</td>
</tr>
<tr>
<td>4 c (\bar{a}) 1/4,1/4,1/4 ([u,v,w])</td>
<td>(3/4,3/4,3/4) ([\bar{u},v,w])</td>
</tr>
<tr>
<td>2 b (\bar{a}) 0,0,1/2 [0,0,w]</td>
<td>(1/2,1/2,0) ([0,0,w])</td>
</tr>
<tr>
<td>2 a (\bar{a}) 0,0,0 [0,0,w]</td>
<td>(1/2,1/2,1/2) ([0,0,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) p4
 \(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \)
- Along \([1,0,0]\) p2'm'g
 \(a^* = b \) \(b^* = c \)
- Along \([1,1,0]\) p2'm'm'g
 \(a^* = -c \) \(b^* = (-a + b)/2 \)

Origin at 0,0,z
Origin at x,1/4,1/4
Origin at x,x,1/4
Origin at \(\bar{4} 1' \) at \(-1/4,-1/4,-1/4\) from \(\bar{1} 1' \)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \)

Symmetry Operations

For \(1 + \) set

- **(1)** \(1 \) (1 0 0,0)
 - (2) \(2 \) 0,0,z
 - \((2_z 0,0,0) \)
 - (3) \(4^* 0,0,1/2 \) 0,1/2,z
 - \((4_z 1/2,1/2,1/2) \)
 - (4) \(4' 0,0,1/2 \) 1/2,0,z
 - \((4_z^{-1} 1/2,1/2,1/2) \)
- **(5)** \(\bar{1} 1/4,1/4,1/4 \) (1 1/2,1/2,1/2)
 - (6) \(n (1/2,1/2,0) x,y,1/4 \)
 - \((m_z 1/2,1/2,1/2) \)
 - (7) \(\bar{4}^* 0,0,z; 0,0,0 \)
 - \((4_z 0,0,0) \)
 - (8) \(\bar{4} \) 0,0,z; 0,0,0
 - \((4_z^{-1} 0,0,0) \)

For \(1' + \) set

- **(1)** \(1' \) (1 0 0,0')
 - (2) \(2' 0,0,z \)
 - \((2_z 0,0,0)' \)
 - (3) \(4'^* 0,0,1/2 \) 0,1/2,z
 - \((4_z 1/2,1/2,1/2)' \)
 - (4) \(4'\) 0,0,1/2 \) 1/2,0,z
 - \((4_z^{-1} 1/2,1/2,1/2)' \)
- **(5)** \(\bar{1}' 1/4,1/4,1/2 \) (1 1/2,1/2,1/2')
 - (6) \(n' (1/2,1/2,0) x,y,0 \)
 - \((m_z 1/2,1/2,1/2)' \)
 - (7) \(\bar{4}'^* 0,0,z; 0,0,0 \)
 - \((4_z 0,0,0)' \)
 - (8) \(\bar{4}' \) 0,0,z; 0,0,0
 - \((4_z^{-1} 0,0,0)' \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinates</td>
</tr>
<tr>
<td>1 + 1' +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 g 11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>2) (\bar{x},\bar{y},z) [0,0,0]</td>
</tr>
<tr>
<td>3) (\bar{y}+1/2,x+1/2,z+1/2) [0,0,0]</td>
</tr>
<tr>
<td>4) (y+1/2,\bar{x}+1/2,z+1/2) [0,0,0]</td>
</tr>
<tr>
<td>5) (\bar{x}+1/2,\bar{y}+1/2,z+1/2) [0,0,0]</td>
</tr>
<tr>
<td>6) (x+1/2,y+1/2,\bar{z}+1/2) [0,0,0]</td>
</tr>
<tr>
<td>7) (y,\bar{x},z) [0,0,0]</td>
</tr>
<tr>
<td>8) (\bar{y},x,z) [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 f 2...1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>1/2,1/2,\bar{z}+1/2 [0,0,0]</td>
</tr>
<tr>
<td>0,0,\bar{z} [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 e 2...1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1/2,z [0,0,0]</td>
</tr>
<tr>
<td>0.1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>1/2,0,\bar{z}+1/2 [0,0,0]</td>
</tr>
<tr>
<td>1/2,0,\bar{z} [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 d (\bar{1}')</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>3/4,3/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>1/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>3/4,1/4,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 c (\bar{1}')</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>3/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>1/4,3/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>3/4,1/4,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 b (\bar{4}...1')</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 a (\bar{4}...1')</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p41'</th>
<th>Along [1,0,0] p2mg1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = (a-b)/2) (b^* = (a+b)/2)</td>
<td>(a^* = b) (b^* = c)</td>
</tr>
</tbody>
</table>
-Origin at 0,0,z | Origin at x,1/4,1/4|

<table>
<thead>
<tr>
<th>Along [1,1,0] p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = -(a+b)/2) (b^* = c)</td>
</tr>
</tbody>
</table>
Origin at $\bar{4}$ at $-1/4,-1/4,-1/4$ from $\bar{1}$

Asymmetric unit: $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4$

Symmetry Operations:

1. 1
 \((1|0,0,0) \)

2. 2 0,0,z
 \((2|0,0,0) \)

3. 4^{-} (0,0,1/2) 0,1/2,z
 \((4_{z}|1/2,1/2,1/2) \)

4. 4^{-} (0,0,1/2) 1/2,0,z
 \((4_{z}^{-1}|1/2,1/2,1/2) \)

5. $\bar{4}$ 1/4,1/4,1/4
 \((\bar{1}|1/2,1/2,1/2) \)

6. n (1/2,1/2,0) x,y,1/4
 \((m_{z}|1/2,1/2,1/2) \)

7. 4^{-} 0,0,z; 0,0,0
 \((4_{z}|0,0,0) \)

8. $\bar{4}$ 0,0,z; 0,0,0
 \((\bar{4}_{z}|0,0,0) \)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
</tbody>
</table>

4 f 2..	0,0,z [0,0,0]
	1/2,1/2,z+1/2 [0,0,0]
	1/2,1/2,z+1/2 [0,0,0]
	0,0,z [0,0,0]

4 e 2..	0,1/2,z [0,0,0]
	1/2,0,z+1/2 [0,0,0]
	1/2,0,z+1/2 [0,0,0]
	0,1/2,z [0,0,0]

4 d 1/2..	1/4,1/4,3/4 [u,v,w]
	3/4,3/4,3/4 [u,v,w]
	3/4,3/4,1/4 [v,u,w]
	1/4,3/4,1/4 [v,u,w]

4 c 1/2..	1/4,1/4,1/4 [u,v,w]
	1/4,3/4,1/4 [v,u,w]
	3/4,1/4,3/4 [v,u,w]

| 2 b 1/2.. | 0,0,1/2 [0,0,0] |
| | 1/2,1/2,0 [0,0,0] |

| 2 a 1/2.. | 0,0,0 [0,0,0] |
| | 1/2,1/2,1/2 [0,0,0] |

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^* = (a - b)/2$</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2'm'g</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^* = b$</td>
<td></td>
</tr>
<tr>
<td>$b^* = c$</td>
<td></td>
</tr>
<tr>
<td>Origin at x,1/4,1/4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p2mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^* = -c$</td>
<td></td>
</tr>
<tr>
<td>$b^* = (-a + b)/2$</td>
<td></td>
</tr>
<tr>
<td>Origin at x,x,1/4</td>
<td></td>
</tr>
</tbody>
</table>
Origin at $\bar{1}^*$ at -1/4,-1/4,-1/4 from $\bar{1}^*$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4$

Symmetry Operations

1. 1
2. $2 \begin{pmatrix} 0,0,z \\ (2_z) \end{pmatrix} \begin{pmatrix} 0,0,0 \\ 0,0,0 \\ \end{pmatrix}$
3. $4^* \begin{pmatrix} 0,0,1/2; 0,1/2,z \\ (4_z) \end{pmatrix} \begin{pmatrix} 0,1/2,1/2,1/2 \\ 1/2,0,z \\ \end{pmatrix}$
4. $4^- \begin{pmatrix} 0,0,1/2; 1/2,0,z \\ (4_z) \end{pmatrix} \begin{pmatrix} 0,1/2,1/2,1/2 \\ 1/2,0,z \\ \end{pmatrix}$
5. $T1^* 1/4,1/4,1/4$
6. $n' \begin{pmatrix} 1/2,1/2,0; x,y,1/4 \\ (m_z) \end{pmatrix} \begin{pmatrix} 1/2,1/2,1/2 \\ 1/2,1/2,1/2 \\ \end{pmatrix}$
7. 4^{**} \begin{pmatrix} 0,0,z; 0,0,0 \\ (4_z) \end{pmatrix} \begin{pmatrix} 0,0,0 \\ 0,0,0 \\ \end{pmatrix}$
8. $4^* \begin{pmatrix} 0,0,0; 0,0,0 \\ (4_z) \end{pmatrix} \begin{pmatrix} 0,0,0 \\ 0,0,0 \\ \end{pmatrix}$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>g</td>
</tr>
<tr>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
</tr>
<tr>
<td>2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
</tr>
<tr>
<td>2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
</tr>
<tr>
<td>1</td>
<td>1/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>4</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p, 4
a* = (a - b)/2 b* = (a + b)/2
Origin at 1/2,0,z

Along [1,0,0] p2m'g
a* = b b* = c
Origin at x,1/4,1/4

Along [1,1,0] p2m'm'
a* = -(a + b)/2 b* = c
Origin at x,x,1/4
Origin at $\bar{4}$ at $-1/4, -1/4, -1/4$ from $\bar{1}'$.

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4$

Symmetry Operations

(1) 1
(2) $2 \quad 0,0,z$
(22) $0,0,0$
(3) $4^{+} \cdot (0,0,1/2) \quad 0,1/2,z$
(4) $4^{-} \cdot (0,0,1/2) \quad 1/2,0,z$
(5) $\bar{1} \cdot 1/4,1/4,1/4$
(6) $n' \cdot (1/2,1/2,0) \quad x,y,1/4$
(66) $1/2,1/2,1/2$
(7) $\bar{4}^{+} \cdot 0,0,z; \quad 0,0,0$
(8) $\bar{4}^{-} \cdot 0,0,z; \quad 0,0,0$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4 f 2..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,0 [0,0,w]</td>
</tr>
<tr>
<td>4 e 2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>4 d 1/4,1/4,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 c 1/4,1/4,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 b 0,0,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 a 0,0,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_c \cdot 4 \)
Along [1,0,0] \(p2m'g' \)
Along [1,1,0] \(p2m'm' \)

\(a^* = (a - b)/2 \)
\(b^* = (a + b)/2 \)
\(a^* = b \)
\(b^* = c \)
\(a^* = -a + b)/2 \)
\(b^* = c \)

Origin at 0,0,z
Origin at x,1/4,1/4
Origin at x,x,1/4
Origin at \(\frac{1}{4} \) at \(-1/4,-1/4,-1/4\) from \(\frac{1}{4} \)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \)

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)
 \((1,0,0,0)\)

2. \(2\)
 \((0,0,z)\)
 \((2z,0,0,0)\)

3. \(4^+\)
 \((0,0,1/2)\)
 \((0,1/2,z)\)
 \((4z,1/2,1/2,1/2)\)

4. \(4^-\)
 \((0,0,1/2)\)
 \((1/2,0,z)\)
 \((4z^{-1},1/2,1/2,1/2)\)

5. \(\bar{T}\)
 \((1/4,1/4,1/4)\)
 \((1/4,1/4,1/4)\)

6. \(n\)
 \((1/2,1/2,0)\)
 \((mz,1/2,1/2,1/2)\)

7. \(4^+\)
 \((0,0,z; 0,0,0)\)
 \((4z,0,0,0)\)

8. \(4^-\)
 \((0,0,z; 0,0,0)\)
 \((4z^{-1},0,0,0)\)

For \((1,0,0)'\) + set

1. \(t'\)
 \((1,0,0,0)\)'

2. \(2'\)
 \((1/2,0,z)\)
 \((2z,1,0,0)\)'

3. \(4'^+\)
 \((0,0,1/2)\)
 \((1/2,0,z)\)
 \((4z,3/2,1/2,1/2)\)'

4. \(4'^-\)
 \((0,0,1/2)\)
 \((0,1/2,z)\)
 \((4z^{-1},3/2,1/2,1/2)\)'

5. \(\bar{T}'\)
 \((3/4,1/4,1/2)\)
 \((1/2,1/2,1/2)\)'

6. \(n'\)
 \((3/2,1/2,0)\)
 \((mz,3/2,1/2,1/2)\)'

7. \(4'^+\)
 \((1/2,1/2,z; 1/2,2,0)\)
 \((4z,1,0,0)\)'

8. \(4'^-\)
 \((1/2,1/2,z; 1/2,2,0)\)
 \((4z^{-1},1,0,0)\)'

86.6.732 - 1 - 1456
Generators selected (1); t'(1,0,0); t'(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>(1,0,0)</td>
<td>(1,0,0) +</td>
</tr>
<tr>
<td>(2)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3)</td>
<td>y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(4)</td>
<td>y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(5)</td>
<td>x+1/2,y+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(6)</td>
<td>x+1/2,y+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(7)</td>
<td>y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(8)</td>
<td>y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p41'

a* = (a - b)/2 b* = (a + b)/2

Origin at 0,0,z

Along [1,0,0] p2mg1'

a* = b b* = c

Origin at x,1/4,1/4

Along [1,1,0] p2m1'm'

a* = -c b* = (-a + b)/2

Origin at x,x,1/4
Origin at center (4/m)

Asymmetric unit: \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4\)

Symmetry Operations

For (0,0,0) + set:

1. \(1\)
 \((1, 0, 0, 0)\)
2. \(2\)
 \((0, 0, z)\)
 \((2z, 0, 0, 0)\)
3. \(4^+\)
 \((0, 0, z)\)
 \((4z, 0, 0, 0)\)
4. \(4^{-}\)
 \((0, 0, z)\)
 \((4z, 0, 0, 0)\)

For (1/2,1/2,1/2) + set:

1. \(t\)
 \((1/2,1/2,1/2)\)
 \((1,1/2,1/2,1/2)\)
2. \(2\)
 \((0,0,1/2)\)
 \(1/4,1/4,z\)
 \((2z,1/2,1/2,1/2)\)
3. \(4^+\)
 \((0,0,1/2)\)
 \(0,1/2,z\)
 \((4z,1/2,1/2,1/2)\)
4. \(4^{-}\)
 \((0,0,1/2)\)
 \(1/2,0,z\)
 \((4z,1/2,1/2,1/2)\)

5. \(1/4,1/4,1/4\)
 \((1/2,1/2,1/2)\)
 \((1/2,1,2,1/2)\)
6. \(n\)
 \((1/2,1/2,0)\)
 \(x,y,1/4\)
 \((mz,1/2,1/2,1/2)\)
7. \(4^+\)
 \(1/2,0,z\)
 \(1/2,0,1/4\)
 \((4z,1/2,1/2,1/2)\)
8. \(4^{-}\)
 \(0,1/2,z\)
 \(0,1/2,1/4\)
 \((4z,1/2,1/2,1/2)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 h m..</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 g 2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 f 1</td>
<td>1/4,1/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,1/4 [v,u,w]</td>
</tr>
<tr>
<td>4 e 4..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 d 4..</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td>4 c 2/m..</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>2 b 4/m..</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a 4/m..</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4 Along [1,0,0] c2'mm' Along [1,1,0] p2'mm'
\(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \) \(a^* = -c \) \(b^* = b \) \(a^* = -c/2 \) \(b^* = (-a + b)/2 \)
Origin at 0,0,z Origin at x,0,0 Origin at x,x,0
Origin at center \((4/m1')\)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4\)

Symmetry Operations

For \((0,0,0) + \text{ set}\)

1. \(1\)
2. \(\tilde{1}\)
3. \(2\)
4. \(4^+\)

For \((1/2,1/2,1/2) + \text{ set}\)

5. \(1\)
6. \(m\)
7. \(4^+\)
8. \(4^+\)
Continued 87.2.734 I4/m1'

For (0,0,0)′ + set

(1) 1′ (1) 0,0,0)′
(2) 2′ 0,0,z (2) 0,0,0)
(3) 4′ 0,0,z (3) 0,0,0)
(4) 4′ 0,0,z (4) 0,0,0)

(5) T′ 0,0,0 (5) 0,0,0)
(6) m′ x,y,0 (6) 0,0,0)
(7) 4′ 0,0,z; 0,0,0 (7) 0,0,0)
(8) 4′ 0,0,z; 0,0,0 (8) 0,0,0)

For (1/2,1,2,1/2)′ + set

(1) t′ (1/2,1/2,1/2) (1) 1/2,1/2,1/2)
(2) 2′ (0,0,1/2; 1/2,1/2,1/2)′ (2) 1/2,1/2,1/2)
(3) 4′ (0,0,1/2; 1/2,1/2,1/2)′ (3) 1/2,1/2,1/2)
(4) 4′ (0,0,1/2; 1/2,1/2,1/2)′ (4) 1/2,1/2,1/2)

(5) T′ (1/4,1/4,1/4) (5) 1/2,1/2,1/2)
(6) n′ (1/2,1/2,0) (6) 1/2,1/2,1/2)
(7) 4′ (1/2,0,1/4; 1/2,0,1/4) (7) 1/2,1/2,1/2)
(8) 4′ (0,1/2,0; 0,1/2,1/4) (8) 1/2,1/2,1/2)

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); 1′.

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

\[
\begin{array}{cccc}
\text{Coordinates} & \text{Site Symmetry} \\
(0,0,0) + & \text{0,0,0) +} \\
(1/2,1/2,1/2') & \text{(1/2,1/2,1/2') +} \\
\hline
16 & \text{i} & 11' & \text{(1) x,y,z [0,0,0]} \\
(5) & \text{x,} & \text{y,} & \text{z [0,0,0]} \\
8 & \text{h} & \text{m}.1' & \text{x,y,0 [0,0,0]} \\
(6) & \text{x,} & \text{y,} & \text{z [0,0,0]} \\
8 & \text{g} & \text{2..1'} & \text{1/2,0,z [0,0,0]} \\
(7) & \text{y,} & \text{x,} & \text{z [0,0,0]} \\
8 & \text{f} & \text{1..1'} & \text{1/4,1/4,1/4 [0,0,0]} \\
(8) & \text{y,} & \text{x,} & \text{z [0,0,0]} \\
4 & \text{e} & \text{4..1'} & \text{0,0,z [0,0,0]} \\
(4) & \text{y,} & \text{x,} & \text{z [0,0,0]} \\
4 & \text{d} & \text{4..1'} & \text{0,1/2,0 [0,0,0]} \\
(1/2,0,1/4 [0,0,0]} \\
4 & \text{c} & \text{2/m..1'} & \text{0,1/2,0 [0,0,0]} \\
(1/2,0,1/4 [0,0,0]} \\
2 & \text{b} & \text{4/m..1'} & \text{0,0,1/2 [0,0,0]} \\
2 & \text{a} & \text{4/m..1'} & \text{0,0,0 [0,0,0]} \\
\end{array}
\]

Symmetry of Special Projections

Along [0,0,1] p41′
\[a^* = \frac{(a - b)}{2}, \quad b^* = \frac{(a + b)}{2}\]
Origin at 0,0,z

Along [1,0,0] c2mm1′
\[a^* = b, \quad b^* = c\]
Origin at x,0,0

Along [1,1,0] p2mm1′
\[a^* = \frac{(-a + b)}{2}, \quad b^* = \frac{c}{2}\]
Origin at x,x,0
I4'/m 4'/m Tetragonal

Origin at center (4'/m)

Asymmetric unit

\[0 \leq x < 1/2; \quad 0 \leq y < 1/2; \quad 0 \leq z < 1/4 \]

Symmetry Operations

For \((0,0,0)\) + set

1. \((1, 0, 0, 0)\)
2. \((2, 0, 0, z)\)
3. \((4^{+}, 0, 0, z)\)
4. \((4^{-}, 0, 0, z)\)
5. \((1/2, 1/2, 1/2)\)
6. \((x, y, 0)\)
7. \((4^{+}, 0, 0, z; 0,0,0)\)
8. \((4^{-}, 0,0,0)\)

For \((1/2,1/2,1/2)\) + set

1. \((1/2,1/2,1/2)\)
2. \((2, 0, 0, 1/2)\)
3. \((4^{+}, 0, 0, 1/2)\)
4. \((4^{-}, 0, 0, 1/2)\)
5. \((1/4,1/4,1/4)\)
6. \((x, y, 1/4)\)
7. \((4^{+}, 1/2,0, z; 1/2,0,1/4)\)
8. \((4^{-}, 1/2,0,1/4)\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4' Along [1,0,0] c2mm' Along [1,1,0] p2mm'
a* = (a - b)/2 b* = (a + b)/2 a* = -c b* = b a* = -c/2 b* = (-a + b)/2
Origin at 0,0,z Origin at x,0,0 Origin at x,x,0
Origin at center (4/m’)

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{4} \]

Symmetry Operations

For \((0,0,0) + \) set

1. \(1\)
 \((1,0,0,0) \)

2. \(2\)
 \((2,0,0,z) \)
 \((2z,0,0,0) \)

3. \(4^+\)
 \((0,0,z) \)
 \((4z,0,0,0) \)

4. \(4\)
 \((0,0,z) \)
 \((4z^{-1},0,0,0) \)

5. \(T_1\)
 \((0,0,0) \)
 \((1,0,0,0') \)

6. \(m_1\)
 \(x,y,0 \)
 \((mz,0,0,0) \)

7. \(4^+\)
 \((0,0,z) \)
 \((4z,0,0,0) \)

8. \(4^+\)
 \((0,0,z) \)
 \((4z^{-1},0,0,0) \)

For \((1/2,1/2,1/2) + \) set

1. \(t\)
 \((1/2,1/2,1/2,1/2) \)
 \((1/2,1/2,1/2,1/2) \)

2. \(2\)
 \((0,0,1/2) \)
 \((1/4,1/4,z) \)
 \((2z,1/2,1/2,1/2) \)

3. \(4^+\)
 \((0,0,1/2) \)
 \((1/2,1/2,1/2) \)
 \((4z,1/2,1/2,1/2) \)

4. \(4^+\)
 \((0,0,1/2) \)
 \((1/2,0,0) \)
 \((4z^{-1},1/2,1/2,1/2) \)

5. \(T_1\)
 \((1/4,1/4,1/4) \)
 \((1/2,1/2,1/2) \)

6. \(n'\)
 \((1/2,1/2,0) \)
 \(x,y,1/4 \)
 \((mz,1/2,1/2,1/2) \)

7. \(4^+\)
 \((1/2,0,1/4) \)
 \((1/2,0,1/4) \)
 \((4z,1/2,1/2,1/2) \)

8. \(4^+\)
 \((1/2,0,1/4) \)
 \((1/2,0,1/4) \)
 \((4z^{-1},1/2,1/2,1/2) \)
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>16 i</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 h</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>8 g</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 f</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 e</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 d</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 c</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [1,1,0]</th>
<th>Along [1,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>p41′</td>
<td>a′ = (a - b)/2</td>
<td>b′ = (a + b)/2</td>
<td>a′ = b</td>
<td>b′ = c</td>
</tr>
<tr>
<td>c2m′</td>
<td>a′ = b</td>
<td>b′ = c</td>
<td>a′ = (-a + b)/2</td>
<td>b′ = c/2</td>
</tr>
<tr>
<td>p2m′</td>
<td>a′ = (-a + b)/2</td>
<td>b′ = c/2</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>

Origin at 0,0,z

87.4.736 - 2 - 1465
Origin at center (4'/m')

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

For \((0,0,0) + \) set

1. \(1\)
 1
 (1|0,0,0)

2. \(2\)
 2
 0,0,z (2z|0,0,0)

3. \(4^+\)
 4^+
 0,0,z
 (4z|0,0,0)

4. \(4^-\)
 4^-
 0,0,z
 (4z^-1|0,0,0)

5. \(\overline{1}\)
 \(\overline{1}\)
 0,0,0
 (1|0,0,0)

6. \(m\)
 \(m\)
 x,y,0
 (mz|0,0,0)

7. \(4^+\)
 4^+
 0,0,z; 0,0,0
 (4z|0,0,0)

8. \(4^-\)
 4^-
 0,0,z; 0,0,0
 (4z^-1|0,0,0)

For \((1/2,1/2,1/2) + \) set

1. \(t\)
 (1/2,1/2,1/2)

2. \(2\)
 2
 (0,0,1/2) 1/4,1/4,z
 (2z|1/2,1/2,1/2)

3. \(4^+\)
 4^+
 (0,0,1/2) 0,1/2,z
 (4z|1/2,1/2,1/2)

4. \(4^-\)
 4^-
 (0,0,1/2) 1/2,0,z
 (4z^-1|1/2,1/2,1/2)

5. \(\overline{1}\)
 \(\overline{1}\)
 1/4,1/4,1/4
 (1|0,0,0)

6. \(n\)
 \(n\)
 (1/2,1/2,0) x,y,1/4
 (mz|1/2,1/2,1/2)

7. \(4^+\)
 4^+
 1/2,0,z; 1/2,0,1/4
 (4z|1/2,1/2,1/2)

8. \(4^-\)
 4^-
 0,1/2,z; 0,1/2,1/4
 (4z^-1|1/2,1/2,1/2)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 h m'..</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>8 g 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 f 1/4</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 e 4'..</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 d 4'..</td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>1/2,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td>4 c 2/m'..</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b 4/m'..</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 4/m'..</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p41' Along [1,0,0] c2m'm' Along [1,1,0] p2m'm'
\(a^* = -b^*/2 \quad b^* = (a+b)/2 \)

Origin at 0,0,0
Origin at center (4/m)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4\]

Symmetry Operations

For \((0,0,0) + \) set

1. \(1\)
2. \(2 \quad 0,0,z\)
3. \(4^+ \quad 0,0,z\)
4. \(4^- \quad 0,0,z\)

For \((1/2,1/2,1/2)\) set

5. \(T \quad 0,0,0\)
6. \(m \quad x,y,0\)
7. \(4^+ \quad 0,0,z; 0,0,0\)
8. \(4^- \quad 0,0,0; 0,0,0\)

For \((1/2,1/2,1/2)\)' set

9. \(t' \quad 1/2,1/2,1/2\)
10. \(2' \quad 0,0,1/2\)
11. \(4^+ \quad 0,0,1/2\)
12. \(4^- \quad 0,0,1/2\)

13. \(T' \quad 1/4,1/4,1/4\)
14. \(n' \quad 1/2,1/2,0\)
15. \(4^+ \quad 1/2,0,1/2\)
16. \(4^- \quad 1/2,0,1/2\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16 i 1 x,y,z [u,v,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
<td></td>
</tr>
<tr>
<td>8 h m.. x,y,0 [0,0,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 g 2.. 0,1/2,z [0,0,w]</td>
<td>(3) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 f 1/4,1/4,1/4 [0,0,0]</td>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>4 e 4.. 0,0,z [0,0,w]</td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 d 1/2,1/4 [0,0,w]</td>
<td>(6) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 c 2/m.. 0,1/2,0 [0,0,w]</td>
<td>(7) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>2 b 4/m.. 0,0,1/2 [0,0,w]</td>
<td>(8) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>2 a 4/m.. 0,0,0 [0,0,w]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p..4 Along [1,0,0] c..2'mm' Along [1,1,0] p..2m'm'

\[a^* = (a - b)/2 \; b^* = (a + b)/2 \]

Origin at 0,0,z

Along [1,0,0] c..2'mm'

\[a^* = -c \; b^* = b \]

Origin at x,0,0

Along [1,1,0] p..2m'm'

\[a^* = -c/2 \; b^* = (-a + b)/2 \]

Origin at x,x,1/4

87.6.738 - 2 - 1469
Origin at center (4'/m)

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2 0,0,z
(2_1 | 0,0,0)

(5) m 0,0,0
(1 | 0,0,0)

(6) m x,y,0
(m_1 | 0,0,0)

(3) 4^+ 0,0,z
(4_1 | 0,0,0)'

(4) 4^- 0,0,z
(4_1^- | 0,0,0)'

For (1/2,1/2,1/2)' + set

(1) t' (1/2,1/2,1/2)
(1 | 1/2,1/2,1/2)'

(2) 2' (0,0,1/2) 1/4,1/4,z
(2_2 | 1/2,1/2,1/2)'

(5) n' (1/2,1/2,0) x,y,1/4
(m_2 | 1/2,1/2,1/2)'

(6) n' (1/2,1/2,0) x,y,1/4
(m_2 | 1/2,1/2,1/2)'

(3) 4^+ (0,0,1/2) 0,1/2,z
(4_2 | 1/2,1/2,1/2)

(4) 4^- (0,0,1/2) 1/2,0,z
(4_2^- | 1/2,1/2,1/2)

(7) 4^+ 1/2,0,z; 1/2,0,1/4
(4_2 | 1/2,1/2,1/2)

(8) 4^- 0,1/2,z; 0,1/2,1/4
(4_2^- | 1/2,1/2,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>i</th>
<th>1</th>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) (\bar{x},\bar{y},z [u,v,w])</th>
<th>(3) (y,x,z [v,u,w])</th>
<th>(4) (y,\bar{x},z [v,u,w])</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>h</td>
<td>1</td>
<td>x,y,0 [0,0,w]</td>
<td>(\bar{x},\bar{y},0 [0,0,w])</td>
<td>(y,x,0 [0,0,w])</td>
<td>(y,\bar{x},0 [0,0,w])</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>2</td>
<td>0,1/2,2 [0,0,w]</td>
<td>1/2,0,2 [0,0,w]</td>
<td>0,1/2,(\bar{z} [0,0,w])</td>
<td>1/2,0,(\bar{z} [0,0,w])</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>1</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,1/4 [0,0,0]</td>
<td>3/4,1/4,1/4 [0,0,0]</td>
<td>1/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>4</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,(\bar{z} [0,0,0])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>4</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>2</td>
<td>0,1/2,2 [0,0,w]</td>
<td>1/2,0,2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] (p_\sigma 4)</th>
<th>Along [1,0,0] (c_\sigma 2'an)</th>
<th>Along [1,1,0] (p_{2\alpha} 2'm'm')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = (a-b)/2) (b^* = (a+b)/2)</td>
<td>(a^* = -c) (b^* = b)</td>
<td>(a^* = -c/2) (b^* = (-a+b)/2)</td>
</tr>
<tr>
<td>Origin at 1/2,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,1/4</td>
</tr>
</tbody>
</table>
Origin at center (4/m')

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(5) 1/2,1/2,1/2' + set

(1) t' (1/2,1/2,1/2)
(1/2,1/2,1/2')

(6) n (1/2,1/2,0)
(1/2,1/2,1/2)

(4) 4' 0,0,0
(4 | 0,0,0)

(4) 4' 0,0,0
(4 | 0,0,0)

(4) 4' 0,0,0
(4 | 0,0,0)

(5) 1/2,1/2,1/2' + set

(1) t' (1/2,1/2,1/2)
(1/2,1/2,1/2')

(6) n (1/2,1/2,0)
(1/2,1/2,1/2)

(4) 4' 1/2,0,0
(4 | 1/2,1/2,1/2)

(4) 4' 1/2,0,0
(4 | 1/2,1/2,1/2)

(4) 4' 1/2,0,0
(4 | 1/2,1/2,1/2)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 i 1</td>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>16 i 1</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 i 1</td>
<td>(1/2,1/2,1/2)</td>
</tr>
<tr>
<td>16 i 1</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>16 i 1</td>
<td>(v,u,w)</td>
</tr>
</tbody>
</table>

8 h m'..	x,y,0 [u,v,0]
8 h m'..	x,y,0 [u,v,0]
8 h m'..	y,x,0 [v,u,0]
8 h m'..	y,x,0 [v,u,0]
8 g 2..	0,1/2,z [0,0,w]
8 g 2..	1/2,0,z [0,0,w]
8 g 2..	0,1/2,z [0,0,w]
8 g 2..	1/2,0,z [0,0,w]
8 f 1	1/4,1/4,1/4 [u,v,w]
8 f 1	3/4,3/4,1/4 [u,v,w]
8 f 1	3/4,1/4,1/4 [v,u,w]
8 f 1	1/4,3/4,1/4 [v,u,w]
4 e 4..	0,0,z [0,0,w]
4 e 4..	0,0,z [0,0,w]
4 e 4..	0,0,z [0,0,w]
4 d 4'..	0,1/2,1/4 [0,0,0]
4 d 4'..	1/2,0,1/4 [0,0,0]
4 c 2/m'..	0,1/2,0 [0,0,0]
4 c 2/m'..	1/2,0,0 [0,0,0]
2 b 4/m'..	0,0,1/2 [0,0,0]
2 b 4/m'..	0,0,0 [0,0,0]
2 a 4/m'..	0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1]
a = (a - b)/2
b = (a + b)/2
Origin at 0,0,z

Along [1,0,0]
c = 2m'm'
a = b
b = c
Origin at x,0,0

Along [1,1,0]
p = 2m'm'
a = -c/2
b = (-a + b)/2
Origin at x,x,0
Origin at center (4'/m')

Asymmetric unit

\[
0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4
\]

Symmetry Operations

For \((0,0,0)\) + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1))</td>
<td>((0,0,0))</td>
</tr>
<tr>
<td>((2))</td>
<td>((0,0,z))</td>
</tr>
<tr>
<td>((3))</td>
<td>((0,0,z))</td>
</tr>
<tr>
<td>((4))</td>
<td>((0,0,z))</td>
</tr>
<tr>
<td>((5))</td>
<td>((0,0,0))</td>
</tr>
<tr>
<td>((6))</td>
<td>((x,y,0))</td>
</tr>
<tr>
<td>((7))</td>
<td>((0,0,z))</td>
</tr>
<tr>
<td>((8))</td>
<td>((0,0,z))</td>
</tr>
</tbody>
</table>

For \((1/2,1/2,1/2)\) + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1))</td>
<td>((1/2,1/2,1/2))</td>
</tr>
<tr>
<td>((2))</td>
<td>((0,0,1/2))</td>
</tr>
<tr>
<td>((3))</td>
<td>((0,0,1/2))</td>
</tr>
<tr>
<td>((4))</td>
<td>((0,0,1/2))</td>
</tr>
<tr>
<td>((5))</td>
<td>((1/4,1/4,1/4))</td>
</tr>
<tr>
<td>((6))</td>
<td>((1/2,1/2,0))</td>
</tr>
<tr>
<td>((7))</td>
<td>((1/2,0,1/2))</td>
</tr>
<tr>
<td>((8))</td>
<td>((0,1/2,0))</td>
</tr>
</tbody>
</table>
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2)'+</td>
</tr>
<tr>
<td>16 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(3) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(6) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(8) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 h m'..</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>(9) x,y,0 [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>(10) y,x,0 [v,u,0]</td>
<td></td>
</tr>
<tr>
<td>(11) y,x,0 [v,u,0]</td>
<td></td>
</tr>
<tr>
<td>8 g 2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>1/2,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>0,1/2,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>1/2,0,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 f 1</td>
<td>1/4,1/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td>3/4,3/4,1/4 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>3/4,1/4,1/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>3/4,3/4,1/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>4 e 4'..</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>0,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 d 4'..</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>1/2,0,1/4 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 c 2/m'..</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>1/2,0,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 b 4'/m'..</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 4'/m'..</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p41' Along [1,0,0] c₉ 2m'm' Along [1,1,0] p₂a 2m'm'

\[a^* = (a - b)/2 \]
\[b^* = (a + b)/2 \]

Origin at 0,0,z Origin at x,0,0 Origin at x,x,0
I4₁/a
 origin at -4 at 0,-1/4,-1/8 from 1
 asymmetric unit 0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1
 symmetry operations
 for (0,0,0) set
 (1) 1
 (2) 2 0,0,z
 (3) 4⁺ (0,0,1/4) -1/4,1/4,z
 (4) 4⁻ (0,0,1/4) 1/4,1/4,z
 (5) 1/4,0,1/8
 (6) b (0,1/2,0) x,y,1/8
 (7) 4⁺ 0,0,z; 0,0,0
 (8) 4⁻ 0,0,z; 0,0,0
 for (1/2,1/2,1/2) set
 (1) 1
 (2) 2 (0,0,1/2) 1/4,1/4,z
 (3) 4⁺ (0,0,3/4) 1/4,1/4,z
 (4) 4⁻ (0,0,3/4) 1/4,-1/4,z
 (5) 1/4,0,3/8
 (6) a (1/2,0,0) x,y,3/8
 (7) 4⁺ 1/2,0,z; 1/2,0,1/4
 (8) 4⁻ 0,1/2,z; 0,1/2,1/4
 88.1.742 - 1 - 1476
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) y,x+1/2,z+1/4 [v,u,w]</td>
<td>(4) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td>(5) x,y+1/2,z+1/4 [u,v,w]</td>
<td>(6) x,y+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
</tbody>
</table>

8 e 2	0,0,z [0,0,w]	0,0,z [0,0,w]	0,1/2,z+1/4 [0,0,w]	0,1/2,z+1/4 [0,0,w]
8 d 1	0,1/4,5/8 [u,v,w]	0,3/4,5/8 [u,v,w]	1/4,0,3/8 [u,v,w]	3/4,0,3/8 [u,v,w]
8 c 1	0,1/4,1/8 [u,v,w]	0,3/4,1/8 [u,v,w]	1/4,0,7/8 [u,v,w]	3/4,0,7/8 [u,v,w]
4 b 4..	0,0,1/2 [0,0,w]	0,1/2,3/4 [0,0,w]		
4 a 4..	0,0,0 [0,0,w]	0,1/2,1/4 [0,0,w]		

Symmetry of Special Projections

Along [0,0,1] p4
\[a^* = a / 2 \quad b^* = b / 2 \]
Origin at 0,0,z

Along [1,0,0] c2' mm'
\[a^* = -c \quad b^* = b \]
Origin at x,0,3/8

Along [1,1,0] p2'm'g
\[a^* = (a + b) / 2 \quad b^* = c / 2 \]
Origin at x,x+1/4,1/8
I4₁/a₁′

88.2.743

Tetragonal

Origin at 1' at 0,-1/4,-1/8 from 1 1'

Asymmetric unit
0 ≤ x ≤ 1/4; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1

Symmetry Operations

For (0,0,0) + set

(1) 1 (1	0,0,0)
(2) 2 0,0,z (2z	0,0,0)
(3) 4* (0,0,1/4) -1/4,1/4,z (4z	0,1/2,1/4)
(4) 4' (0,0,1/4) 1/4,1/4,z (4z⁻¹	0,1/2,1/4)

(5) 0,1/4,1/8 (1 | 0,1/2,1/4)

(6) b (0,1/2,0) x,y,1/8 (mz | 0,1/2,1/4)

(7) 4* 0,0,z; 0,0,0 (4z | 0,0,0)

(8) 4' 0,0,z; 0,0,0 (4z⁻¹ | 0,0,0)

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2) (1	1/2,1/2,1/2)
(2) 2 (0,0,1/2) 1/4,1/4,z (2z	1/2,1/2,1/2)
(3) 4* (0,0,3/4) 1/4,1/4,z (4z	1/2,0,3/4)
(4) 4' (0,0,3/4) 1/4,1/4,z (4z⁻¹	1/2,0,3/4)

(5) 1/4,0,3/8 (1 | 1/2,0,3/4)

(6) a (1/2,0,0) x,y,3/8 (mz | 1/2,0,3/4)

(7) 4* 1/2,0,z; 1/2,0,1/4 (4z | 1/2,1/2,1/2)

(8) 4' 0,1/2,z; 0,1/2,1/4 (4z⁻¹ | 1/2,1/2,1/2)
Continued

For \((0,0,0)\)' + set

\begin{align*}
(1) & \quad \text{1'}\, (0,0,0)' \\
(2) & \quad 2'\, 0,0,z \\
(3) & \quad 4'^+ (0,0,1/4) -1/4,1/4,z \\
(4) & \quad 4'\, (0,0,1/4) 1/4,1/4,z \quad (4_z' 0,1/2,1/4)' \\
(5) & \quad 1', 0,1/4,1/8 \\
& \quad (1, 0,1/4,1/8)' \\
& \quad (2, 0,1/4,1/8)' \\
& \quad (3, 0,1/4,1/8)' \\
& \quad (4, 0,1/4,1/8)' \\
(6) & \quad b' (0,1/2,0) \quad x,y,1/8 \\
& \quad (m_z, 0,1/2,1/4)' \\
(7) & \quad 4'^- 0,0,z; 0,0,0 \\
& \quad (4_z, 0,0,0)' \\
(8) & \quad 4^- 0,0,z; 0,0,0 \\
& \quad (4_z, 0,0,0)' \\
(1) & \quad t' (1/2,1/2,1/2) \\
& \quad (1, 1/2,1/2,1/2)' \\
(2) & \quad 2' (0,0,1/2) \quad 1/4,1/4,z \\
& \quad (2, 1/2,1/2,1/2)' \\
(3) & \quad 4'^+ (0,0,3/4) 1/4,1/4,z \\
& \quad (4_z, 1/2,0,3/4)' \\
(4) & \quad 4'\, (0,0,3/4) 1/4,-1/4,z \\
& \quad (4_z, 1/2,0,3/4)' \\
(5) & \quad 1'/4,0,3/8 \\
& \quad (1, 1/2,0,3/4)' \\
& \quad (2, 1/2,0,3/4)' \\
& \quad (3, 1/2,0,3/4)' \\
& \quad (4, 1/2,0,3/4)' \\
(6) & \quad a' (1/2,0,0) \quad x,y,3/8 \\
& \quad (m_z, 1/2,0,3/4)' \\
(7) & \quad 4'^+ 1/2,0,z; 1/2,0,1/4 \\
& \quad (4_z, 1/2,1/2,1/2)' \\
(8) & \quad 4^- 0,1/2,z; 0,1/2,1/4 \\
& \quad (4_z, 1/2,1/2,1/2)' \\
\end{align*}

Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); 1'. \)

Positions

\begin{tabular}{llll}
\textbf{Multiplicity} & \textbf{Wyckoff letter} & \textbf{Site Symmetry} \\
16 & f & 11' & (1) x,y,z [0,0,0] \\
 & & & (2) x,y,z [0,0,0] \\
 & & & (3) y,x+1/2,z+1/4 [0,0,0] \\
 & & & (4) y,x+1/2,z+1/4 [0,0,0] \\
 & & & (5) x,y+1/2,z+1/4 [0,0,0] \\
 & & & (6) x,y+1/2,z+1/4 [0,0,0] \\
 & & & (7) y,x,z [0,0,0] \\
 & & & (8) y,x,z [0,0,0] \\
8 & e & 21' & 0,0,z [0,0,0] \\
 & & & 0,0,z [0,0,0] \\
 & & & 0,1/2,z+1/4 [0,0,0] \\
 & & & 0,1/2,z+1/4 [0,0,0] \\
8 & d & 11' & 0,1/4,5/8 [0,0,0] \\
 & & & 0,3/4,5/8 [0,0,0] \\
 & & & 1/4,0,3/8 [0,0,0] \\
 & & & 3/4,0,3/8 [0,0,0] \\
8 & c & 11' & 0,1/4,1/8 [0,0,0] \\
 & & & 0,3/4,1/8 [0,0,0] \\
 & & & 1/4,0,7/8 [0,0,0] \\
 & & & 3/4,0,7/8 [0,0,0] \\
4 & b & 4..1' & 0,0,1/2 [0,0,0] \\
 & & & 0,1/2,3/4 [0,0,0] \\
4 & a & 4..1' & 0,0,0 [0,0,0] \\
 & & & 0,1/2,1/4 [0,0,0] \\
\end{tabular}

Symmetry of Special Projections

\begin{align*}
\text{Along } [0,0,1] & \quad \text{p41}^* \\
\text{Along } [1,0,0] & \quad \text{c2mm}^1 \\
\text{Along } [1,1,0] & \quad \text{p2mg}^1 \\
\text{Origin at } 0,0,z & \quad \text{Origin at } x,0,3/8 \\
\text{Origin at } x+1/4,1/8 & \quad \text{Origin at } x, x+1/4,1/8 \\
\end{align*
Origin at $\bar{4}$ at $0,-1/4,-1/8$ from $\bar{1}$

Asymmetric unit
$0 \leq x < 1/4$;
$0 \leq y < 1/4$;
$0 \leq z < 1$

Symmetry Operations

For $(0,0,0) + \text{ set}$

(1) 1
$1 \ 0,0,0$
(2) $2 \ 0,0,z$
$2_z \ 0,0,0$
(3) $4^{+}\ (0,0,1/4) \ -1/4,1/4,z$
$4_z \ 0,1/2,1/4'$
(4) $4^{-}\ (0,0,1/4) \ 1/4,1/4,z$
$4_{z^{-1}} \ 0,1/2,1/4'$

(5) $\bar{1} \ 0,1/4,1/8$
$1 \ 0,1/2,1/4$
(6) $b \ (0,1/2,0) \ x,y,1/8$
$m_z \ 0,1/2,1/4$
(7) $\bar{4}^{+}\ 0,0,z; 0,0,0$
$4_z \ 0,0,0'$
(8) $\bar{4}^{-}\ 0,0,z; 0,0,0$
$4_{z^{-1}} \ 0,0,0'$

For $(1/2,1/2,1/2) + \text{ set}$

(1) $t \ (1/2,1/2,1/2)$
$1 \ 1/2,1/2,1/2$
(2) $2 \ (0,0,1/2) \ 1/4,1/4,z$
$2_z \ 1/2,1/2,1/2$
(3) $4^{+}\ (0,0,3/4) \ 1/4,1/4,z$
$4_z \ 1/2,0,3/4'$
(4) $4^{-}\ (0,0,3/4) \ 1/4,-1/4,z$
$4_{z^{-1}} \ 1/2,0,3/4'$

(5) $\bar{1} \ 1/4,0,3/8$
$1 \ 1/2,0,3/4$
(6) $a \ (1/2,0,0) \ x,y,3/8$
$m_z \ 1/2,0,3/4$
(7) $\bar{4}^{+}\ 1/2,0,z; 1/2,0,1/4$
$4_z \ 1/2,1/2,1/2'$
(8) $\bar{4}^{-}\ 0,1/2,z; 0,1/2,1/4$
$4_{z^{-1}} \ 1/2,1/2,1/2'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16 f</td>
<td>1 (1) x,y,z [u,v,w]</td>
<td></td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x,y+1/2,z+1/4 [v,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x+1/2,z+1/4 [v,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y+1/2,z+1/4 [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) y,x+1/2,z+1/4 [v,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 e</td>
<td>2</td>
<td>0,0,z [0,0,w]</td>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z+1/4 [0,0,w]</td>
<td></td>
<td>0,1/2,z+1/4 [0,0,w]</td>
</tr>
<tr>
<td>8 d</td>
<td>1</td>
<td>0,1/4,5/8 [u,v,w]</td>
<td></td>
<td>0,3/4,5/8 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4,0,3/8 [v,u,w]</td>
<td></td>
<td>3/4,0,3/8 [v,u,w]</td>
</tr>
<tr>
<td>8 c</td>
<td>1</td>
<td>0,1/4,1/8 [u,v,w]</td>
<td></td>
<td>0,3/4,1/8 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4,0,7/8 [v,u,w]</td>
<td></td>
<td>3/4,0,7/8 [v,u,w]</td>
</tr>
<tr>
<td>4 b</td>
<td>4'..</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 a</td>
<td>4'..</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'
Along [1,0,0] c2'mm'
Along [1,1,0] p2'm'g

\(a^* = a/2 \quad b^* = b/2\)
\(a^* = -c \quad b^* = b\)
\(a^* = -(a+b)/2 \quad b^* = c/2\)

Origin at 0,0,z
Origin at x,0,3/8
Origin at x,x+1/4,1/8
Symmetry Operations

For $(0,0,0)$ set:

1. $I \cdot 0,0,0$
2. $2 \cdot 0,0,z$
3. $4^+ \cdot (0,0,1/4) \cdot -1/4,1/4,z$
4. $4^- \cdot (0,0,1/4) \cdot 1/4,1/4,z$
5. $I \cdot 1/4,0,3/8$
6. $b' \cdot (0,1/2,0) \cdot x,y,1/8$
7. $4^+ \cdot 0,0,z \cdot 0,0,0$
8. $4^- \cdot 0,0,z \cdot 0,0,0$

For $(1/2,1/2,1/2)$ set:

1. $t \cdot (1/2,1/2,1/2)$
2. $2 \cdot (0,0,1/2) \cdot 1/4,1/4,z$
3. $4^+ \cdot (0,0,3/4) \cdot 1/4,1/4,z$
4. $4^- \cdot (0,0,3/4) \cdot 1/4,1/4,z$
5. $T \cdot 1/4,0,3/8$
6. $a' \cdot (1/2,0,0) \cdot x,y,3/8$
7. $4^+ \cdot 1/2,0,z \cdot 1/2,0,1/4$
8. $4^- \cdot 1/2,0,z \cdot 1/2,0,1/4$
Generators selected \((1) \); \(t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f 1</td>
<td>((1) x,y,z [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>((2) \bar{x},\bar{y},z [\bar{u},\bar{v},w])</td>
</tr>
<tr>
<td></td>
<td>((3) y,x+1/2,z+1/4 [\bar{v},u,w])</td>
</tr>
<tr>
<td></td>
<td>((4) \bar{y},x+1/2,z+1/4 [v,\bar{u},w])</td>
</tr>
<tr>
<td></td>
<td>((5) x,y+1/2,\bar{z}+1/4 [u,v,\bar{w}])</td>
</tr>
<tr>
<td></td>
<td>((6) y,\bar{x},\bar{z} [v,\bar{u},\bar{w}])</td>
</tr>
<tr>
<td></td>
<td>((7) y,\bar{x},\bar{z} [v,\bar{u},\bar{w}])</td>
</tr>
<tr>
<td></td>
<td>((8) \bar{y},x,z [v,u,w])</td>
</tr>
<tr>
<td>8 e 2</td>
<td>((0,0,0) + (1/2,1/2,1/2) + (0,0,z [0,0,w] 0,0,\bar{z} [0,0,\bar{w}] 0,1/2,z+1/4 [0,0,w] 0,1/2,\bar{z}+1/4 [0,0,\bar{w}])</td>
</tr>
<tr>
<td>8 d (\bar{1})</td>
<td>((0,1/4,5/8 [0,0,0] 0,3/4,5/8 [0,0,0] 1/4,0,3/8 [0,0,0] 3/4,0,3/8 [0,0,0])</td>
</tr>
<tr>
<td>8 c (\bar{1})</td>
<td>((0,1/4,1/8 [0,0,0] 0,3/4,1/8 [0,0,0] 1/4,0,7/8 [0,0,0] 3/4,0,7/8 [0,0,0])</td>
</tr>
<tr>
<td>4 b (\bar{4})</td>
<td>((0,0,1/2 [0,0,0] 0,1/2,3/4 [0,0,0])</td>
</tr>
<tr>
<td>4 a (\bar{4})</td>
<td>((0,0,0 [0,0,0] 0,1/2,1/4 [0,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1] \) p4 \(\text{Along} [1,0,0] \) c2m'm' \(\text{Along} [1,1,0] \) p2m'g'
 - \(a^* = a/2 \) \(b^* = b/2 \) \(a^* = b \) \(b^* = c \) \(a^* = (-a + b)/2 \) \(b^* = c/2 \)
- Origin at \(1/2,-1/2,z\) \(\text{Origin at } x,0,3/8\) \(\text{Origin at } x,x+1/4,1/8\)
Origin at \(\bar{4} \) at -1/4,-1/8 from \(\bar{1} \).

Asymmetric unit \(0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1 \)

Symmetry Operations

For \((0,0,0) + \) set

\begin{align*}
(1) \quad & \mathbf{1} \\
(1) & (0,0,0) \\
(5) \quad & \bar{1} (0,1/4,1/8) \\
(5) & (1 \mid 0,1/2,1/4)' \\
(6) \quad & \mathbf{b}' (0,1/2,0) x,y,1/8 \\
(6) & (m_x,0,1/2,1/4)' \\
(7) \quad & \mathbf{4}^+ (0,0,0) z; 0,0,0 \\
(7) & (4_z,0,0,0) \\
(8) \quad & \mathbf{4}^- (0,0,0) z; 0,0,0 \\
(8) & (4_z^-|0,0,0) \\
\end{align*}

For \((1/2,1/2,1/2) + \) set

\begin{align*}
(1) \quad & t (1/2,1/2,1/2) \\
(1) & (1/2,1/2,1/2) \\
(5) \quad & \bar{1} (1/4,0,3/8) \\
(5) & (1/2,0,3/4)' \\
(6) \quad & a'(1/2,0,0) x,y,3/8 \\
(6) & (m_x,1/2,0,3/4)' \\
(7) \quad & \mathbf{4}^- (1/2,0,0) z; 1/2,0,1/4 \\
(7) & (4_z^-|1/2,1/2,1/2) \\
(8) \quad & \mathbf{4}^- (0,1/2,0) z; 0,1/2,1/4 \\
(8) & (4_z^-|1/2,1/2,1/2) \\
\end{align*}
Continued

88.5.746

I4, 'l,a'

Generators selected
(1); \(t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).**

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f</td>
<td>(1) (x, y, z [u, v, w])</td>
</tr>
<tr>
<td></td>
<td>(3) (\bar{y}, x+1/2, z+1/4 [v, u, w])</td>
</tr>
<tr>
<td></td>
<td>(5) (x, \bar{y}+1/2, \bar{z}+1/4 [u, \bar{v}, \bar{w}])</td>
</tr>
<tr>
<td></td>
<td>(7) (y, x, \bar{z} [v, u, w])</td>
</tr>
</tbody>
</table>

8 e 2	0,0,z [0,0,w]	0,0,z [0,0,w]	0,1/2,z+1/4 [0,0,\(w\)]	0,1/2,z+1/4 [0,0,\(w\)]	1/4,0,3/8 [0,0,0]	3/4,0,3/8 [0,0,0]
8 d \(\bar{1}\)	0,1/4,5/8 [0,0,0]	0,3/4,5/8 [0,0,0]	1/4,0,3/8 [0,0,0]	3/4,0,3/8 [0,0,0]		
8 c \(\bar{1}\)	0,1/4,1/8 [0,0,0]	0,3/4,1/8 [0,0,0]	1/4,0,7/8 [0,0,0]	3/4,0,7/8 [0,0,0]		
4 b \(\bar{4}\)	0,0,1/2 [0,0,w]	0,1/2,3/4 [0,0,w]				
4 a \(\bar{4}\)	0,0,0 [0,0,w]	0,1/2,1/4 [0,0,w]				

Symmetry of Special Projections

- Along [0,0,1] \(p_2\).4
 - \(a^* = a / 2\) \(b^* = b / 2\)

- Along [1,0,0] \(c2m'\)m'
 - \(a^* = b\) \(b^* = c\)

- Along [1,1,0] \(p2m'\)g'
 - \(a^* = (-a + b) / 2\) \(b^* = c / 2\)

Origin at 0,0,z
Origin at x,0,3/8
Origin at x,x+1/4,1/8
Origin on 422

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \)

Symmetry Operations

1. \(1 \)
 \[(1|0,0,0) \]

2. \(2 \)
 \[(2|0,0,z) \]
 \[(2_z|0,0,0) \]

3. \(4^+ \)
 \[(4|0,0,z) \]
 \[(4_z|0,0,0) \]

4. \(4^- \)
 \[(4|0,0,z) \]
 \[(4_z^{-1}|0,0,0) \]

5. \(2 \)
 \[(5|0,y,0) \]
 \[(2_y|0,0,0) \]

6. \(2 \)
 \[(6|x,0,0) \]
 \[(2_x|0,0,0) \]

7. \(2 \)
 \[(7|x,x,0) \]
 \[(2_x|x,0) \]

8. \(2 \)
 \[(8|x,x,0) \]
 \[(2_x|x,0) \]

89.1.747

P422

422

Tetragonal
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 p 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 o .2.</td>
<td>x,1/2,0 [u,0,0]</td>
<td>1/2,x,0 [0,u,0]</td>
</tr>
<tr>
<td>4 n .2.</td>
<td>x,0,1/2 [u,0,0]</td>
<td>0,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td>4 m .2.</td>
<td>x,1/2,1/2 [u,0,0]</td>
<td>1/2,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td>4 l .2.</td>
<td>x,0,0 [u,0,0]</td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td>4 k ..2</td>
<td>x,x,1/2 [u,u,0]</td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td>4 j ..2</td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>4 i 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 h 4..</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 g 4..</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 f 222.</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 e 222.</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>1 d 422</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 c 422</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>1 b 422</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 a 422</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** p4m'm'
 - a* = a b* = b
 - Origin at 0,0,z

- **Along [1,0,0]** p2mm'
 - a* = -c b* = b
 - Origin at x,0,0

- **Along [1,1,0]** p2m'm'
 - a* = (-a + b)/2 b* = c
 - Origin at x,x,0
Origin on 4221'

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

For 1 + set

\[(1) \begin{array}{c} 1 \\ (1,0,0,0) \end{array}
\]

\[(2) \begin{array}{c} 2 \quad 0,0,z \\ (2z,0,0,0) \end{array}
\]

\[(3) \begin{array}{c} 4^+ \quad 0,0,z \\ (4z,0,0,0) \end{array}
\]

\[(4) \begin{array}{c} 4^- \quad 0,0,z \\ (4z^{-1},0,0,0) \end{array}
\]

\[(5) \begin{array}{c} 2 \quad 0,y,0 \\ (2z,0,0,0) \end{array}
\]

\[(6) \begin{array}{c} 2 \quad x,0,0 \\ (2z,0,0,0) \end{array}
\]

\[(7) \begin{array}{c} 2 \quad x,x,0 \\ (2z_y,0,0,0) \end{array}
\]

\[(8) \begin{array}{c} 2 \quad x,x,0 \\ (2z_y,0,0,0)' \end{array}
\]

For 1' + set

\[(1') \begin{array}{c} 1' \\ (1,0,0,0)' \end{array}
\]

\[(2') \begin{array}{c} 2' \quad 0,0,z \\ (2z,0,0,0)' \end{array}
\]

\[(3') \begin{array}{c} 4^+ \quad 0,0,z \\ (4z,0,0,0)' \end{array}
\]

\[(4') \begin{array}{c} 4^- \quad 0,0,z \\ (4z^{-1},0,0,0)' \end{array}
\]

\[(5') \begin{array}{c} 2' \quad 0,y,0 \\ (2z,0,0,0)' \end{array}
\]

\[(6') \begin{array}{c} 2' \quad x,0,0 \\ (2z,0,0,0)' \end{array}
\]

\[(7') \begin{array}{c} 2' \quad x,x,0 \\ (2z_y,0,0,0)' \end{array}
\]

\[(8') \begin{array}{c} 2' \quad x,x,0 \\ (2z_y,0,0,0)' \end{array}
\]
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
<td></td>
<td></td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>1' +</td>
<td></td>
<td></td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>8 p</td>
<td>11'</td>
<td></td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) y,x,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) y,x,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) y,x,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8) y,x,z [0,0,0]</td>
</tr>
<tr>
<td>4 o</td>
<td>.2.1'</td>
<td></td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,x,0 [0,0,0]</td>
</tr>
<tr>
<td>4 n</td>
<td>.2.1'</td>
<td></td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 m</td>
<td>.2.1'</td>
<td></td>
<td>x,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 l</td>
<td>.2.1'</td>
<td></td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td>4 k</td>
<td>.2.1'</td>
<td></td>
<td>x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 j</td>
<td>.2.1'</td>
<td></td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td>4 i</td>
<td>2..1'</td>
<td></td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 h</td>
<td>4..1'</td>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 g</td>
<td>4..1'</td>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 f</td>
<td>222.1'</td>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 e</td>
<td>222.1'</td>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>1 d</td>
<td>4221'</td>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 c</td>
<td>4221'</td>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>1 b</td>
<td>4221'</td>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 a</td>
<td>4221'</td>
<td></td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1' Along [1,0,0] p2mm1' Along [1,1,0] p2mm1'

a* = a b* = b a* = b b* = c a* = (-a + b)/2 b* = c

Origin at 0,0,z Origin at x,0,0 Origin at x,x,0
Origin on 4\'22'

Asymmetric unit \[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\]

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2 \(0,0,z\)
\((2_z | 0,0,0)\)

(3) \(4'\) \(0,0,z\)
\((4_z | 0,0,0)'\)

(4) \(4'\) \(0,0,z\)
\((4_z^{-1} | 0,0,0)'\)

(5) 2 \(0,y,0\)
\((2_y | 0,0,0)\)

(6) 2 \(x,0,0\)
\((2_x | 0,0,0)\)

(7) \(2'\) \(x,x,0\)
\((2_{xy} | 0,0,0)'\)

(8) \(2'\) \(x,x,0\)
\((2_{xy} | 0,0,0)'\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 p 1</td>
<td>x,y,z [u,v,w]</td>
<td>(1)</td>
</tr>
<tr>
<td>5</td>
<td>x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 o .2.</td>
<td>x,1/2,0 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 n .2.</td>
<td>x,0,1/2 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 m .2.</td>
<td>x,1/2,1/2 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 l .2.</td>
<td>x,0,0 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 k ..2'</td>
<td>x,x,1/2 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>4 j ..2'</td>
<td>x,x,0 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>4 i 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 h 4'..</td>
<td>1/2,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 g 4'..</td>
<td>0,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 f 222.</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 e 222.</td>
<td>1/2,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 d 4'2'</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 c 4'2'</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 b 4'2'</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 a 4'2'</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin at 0,0,z</th>
<th>Origin at x,0,0</th>
<th>Origin at x,x,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>a* = b</td>
<td>a* = -c</td>
</tr>
<tr>
<td>b* = b</td>
<td>b* = c</td>
<td>b* = (-a + b)/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin on 42'2'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

1. \(1 \)
 \[(1|0,0,0) \]
2. \(2 \)
 \[0,0,z \]
 \[(2_z|0,0,0) \]
3. \(4' \)
 \[0,0,z \]
 \[(4_z|0,0,0) \]
4. \(4' \)
 \[0,0,z \]
 \[(4_z^{-1}|0,0,0) \]
5. \(2' \)
 \[0,y,0 \]
 \[(2_y|0,0,0) \]
6. \(2' \)
 \[x,0,0 \]
 \[(2_x|0,0,0) \]
7. \(2' \)
 \[x,x,0 \]
 \[(2_{xy}|0,0,0) \]
8. \(2' \)
 \[x,x,0 \]
 \[(2_{xy}|0,0,0) \]

89.4.750 - 1 - 1492
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Position</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 p 1 (1)</td>
<td>x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4 o .2'</td>
<td>x,1/2,0 [u,0,w]</td>
<td>x,1/2,0 [u,0,w]</td>
<td>1/2,x,0 [0,u,w]</td>
</tr>
<tr>
<td>4 n .2'</td>
<td>x,0,1/2 [u,0,w]</td>
<td>x,0,1/2 [u,0,w]</td>
<td>0,x,1/2 [0,u,w]</td>
</tr>
<tr>
<td>4 m .2'</td>
<td>x,1/2,1/2 [u,0,w]</td>
<td>x,1/2,1/2 [u,0,w]</td>
<td>1/2,x,1/2 [0,u,w]</td>
</tr>
<tr>
<td>4 l .2'</td>
<td>x,0,0 [u,0,w]</td>
<td>x,0,0 [u,0,w]</td>
<td>0,x,0 [0,u,w]</td>
</tr>
<tr>
<td>4 k .2'</td>
<td>x,x,1/2 [u,u,w]</td>
<td>x,x,1/2 [u,u,w]</td>
<td>x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td>4 j .2'</td>
<td>x,x,0 [u,u,w]</td>
<td>x,x,0 [u,u,w]</td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td>4 i 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 h 4..</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 f 22'2'</td>
<td>1/2,0,1/2 [0,0,w]</td>
<td>0,1/2,1/2 [0,0,w]</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 e 22'2'</td>
<td>1/2,0,0 [0,0,w]</td>
<td>1/2,0,0 [0,0,w]</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>1 d 42'2'</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1 c 42'2'</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1 b 42'2'</td>
<td>0,0,1/2 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1 a 42'2'</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm
a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p2'2'm'
a* = -c b* = b
Origin at x,0,0

Along [1,1,0] p2'2'm'
a* = -c b* = (-a + b)/2
Origin at x,x,0
Origin on 4'2'2

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

(1) 1
 (1|0,0,0)

(2) 2’ 0,0,z
 (2_z|0,0,0)

(3) 4’’’ 0,0,z
 (4_z|0,0,0)'

(4) 4’’’ 0,0,z
 (4_z|0,0,0)'

(5) 2’ 0,y,0
 (2_y|0,0,0)'

(6) 2’’ x,0,0
 (2_x|0,0,0)'

(7) 2’ x,x,0
 (2_y|x,0,0)

(8) 2’’’ x,x,0
 (2_y|x,0,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

8 p 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z [v,u,w] (4) y,x,z [v,u,w]
(5) x,y,z [u,v,w] (6) x,y,z [u,v,w] (7) y,x,z [v,u,w] (8) y,x,z [v,u,w]

4 o .2'. x,1/2,0 [0,v,w] x,1/2,0 [0,v,w] 1/2,x,0 [v,0,w] 1/2,x,0 [v,0,w]
4 n .2'. x,0,1/2 [0,v,w] x,0,1/2 [0,v,w] 0,x,1/2 [v,0,w] 0,x,1/2 [v,0,w]
4 m .2'. x,1/2,1/2 [0,v,w] x,1/2,1/2 [0,v,w] 1/2,x,1/2 [v,0,w] 1/2,x,1/2 [v,0,w]
4 l .2'. x,0,0 [0,v,w] x,0,0 [0,v,w] 0,x,0 [v,0,w] 0,x,0 [v,0,w]
4 k ..2 x,x,1/2 [u,u,0] x,x,1/2 [u,u,0] x,x,1/2 [u,u,0] x,x,1/2 [u,u,0]
4 j ..2 x,x,0 [u,u,0] x,x,0 [u,u,0] x,x,0 [u,u,0] x,x,0 [u,u,0]
4 i 2.. 0,1/2,z [0,0,w] 1/2,0,z [0,0,w] 1/2,0,z [0,0,w] 1/2,0,z [0,0,w]
2 h 4'.. 1/2,1/2,z [0,0,0] 1/2,1/2,z [0,0,0] 0,0,z [0,0,0] 0,0,z [0,0,0]
2 g 4'.. 0,0,z [0,0,0] 0,0,z [0,0,0] 1/2,0,1/2 [0,0,w] 1/2,0,1/2 [0,0,w]
2 f 22'2'. 1/2,0,1/2 [0,0,w] 0,1/2,1/2 [0,0,w] 0,1/2,1/2 [0,0,w] 0,1/2,1/2 [0,0,w]
2 e 22'2'. 1/2,0,0 [0,0,w] 0,1/2,0 [0,0,w] 0,1/2,0 [0,0,w] 0,1/2,0 [0,0,w]
1 d 4'2' 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]
1 c 4'2' 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]
1 b 4'2' 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0]
1 a 4'2' 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4'm'm
a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p2'mm'
a* = -c b* = b
Origin at x,0,0

Along [1,1,0] p2'mm'
a* = -c b* = (-a + b)/2
Origin at x,x,0
Origin on 422

Asymmetric unit: $0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0) +$ set

1. 1
2. $2 \cdot 0,0,z$
3. $4^+ \cdot 0,0,z$
4. $4^- \cdot 0,0,z$
5. $2 \cdot 0,y,0$
6. $2 \cdot x,0,0$
7. $2 \cdot x,x,0$
8. $2 \cdot x,x,0$

For $(0,0,1)' +$ set

1. $1'$
2. $2' \cdot 0,0,1'$
3. $4^+ \cdot (0,0,1)' 0,0,1'$
4. $4^- \cdot (0,0,1)' 0,0,1'$
5. $2' \cdot 0,y,1/2$
6. $2' \cdot x,0,1/2$
7. $2' \cdot x,x,1/2$
8. $2' \cdot x,x,1/2$
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 p 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z [v,u,w] (4) y,x,z [v,u,w] (5) x,y,z [u,v,w] (6) x,y,z [u,v,w] (7) y,x,z [v,u,w] (8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 o .2.</td>
<td>x,1/2,0 [u,0,0] x,1/2,0 [u,0,0] 1/2,x,0 [0,u,0] 1/2,x,0 [0,u,0]</td>
</tr>
<tr>
<td>8 n .2'</td>
<td>x,0,1/2 [0,v,w] x,0,1/2 [0,v,w] 0,x,1/2 [v,0,w] 0,x,1/2 [v,0,w]</td>
</tr>
<tr>
<td>8 m .2'</td>
<td>x,1/2,1/2 [0,v,w] x,1/2,1/2 [0,v,w] 1/2,x,1/2 [v,0,w] 1/2,x,1/2 [v,0,w]</td>
</tr>
<tr>
<td>8 l .2.</td>
<td>x,0,0 [u,0,0] x,0,0 [u,0,0] 0,x,0 [0,u,0] 0,x,0 [0,u,0]</td>
</tr>
<tr>
<td>8 k ..2'</td>
<td>x,x,1/2 [u,u,w] x,x,1/2 [u,u,w] x,x,1/2 [u,u,w] x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td>8 j ..2</td>
<td>x,x,0 [u,u,0] x,x,0 [u,u,0] x,x,0 [u,u,0] x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>8 i 2..</td>
<td>0,1/2,0 [0,0,w] 1/2,0,z [0,0,w] 1/2,0,z [0,0,w] 1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 h 4..</td>
<td>1/2,1/2,2 [0,0,w] 1/2,1/2,2 [0,0,w] 1/2,1/2,2 [0,0,w] 1/2,1/2,2 [0,0,w]</td>
</tr>
<tr>
<td>4 g 4..</td>
<td>0,0,2 [0,0,w] 0,0,2 [0,0,w] 0,0,2 [0,0,w] 0,0,2 [0,0,w]</td>
</tr>
<tr>
<td>4 f 22'2'.</td>
<td>1/2,0,1/2 [0,0,w] 1/2,0,1/2 [0,0,w] 1/2,0,1/2 [0,0,w] 1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 e 222.</td>
<td>1/2,0,0 [0,0,0] 1/2,0,0 [0,0,0] 1/2,0,0 [0,0,0] 1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 d 42'2'</td>
<td>1/2,1/2,1/2 [0,0,w] 1/2,1/2,1/2 [0,0,w] 1/2,1/2,1/2 [0,0,w] 1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 c 422</td>
<td>1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b 42'2'</td>
<td>0,0,1/2 [0,0,w] 0,0,1/2 [0,0,w] 0,0,1/2 [0,0,w] 0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a 422</td>
<td>0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1] p4mm1'</td>
<td>a* = a b* = b</td>
</tr>
<tr>
<td>Along [1,0,0] p2a'2m'm'</td>
<td>a* = c b* = b</td>
</tr>
<tr>
<td>Along [1,1,0] p2a'2m'm'</td>
<td>a* = c b* = (-a + b)/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,0,0] p2a'2m'm'</td>
<td>a* = c b* = b</td>
</tr>
<tr>
<td>Along [1,1,0] p2a'2m'm'</td>
<td>a* = c b* = (-a + b)/2</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Origin on 422

Asymmetric unit $0 \leq x \leq 1/2$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0)$ + set

1. 1
2. 2, 0, 0, z
 - $(2z, 0, 0, 0)$
3. 4*, 0, 0, z
 - $(4z, 0, 0, 0)$
4. 4*, 0, 0, z
 - $(4z^{-1}, 0, 0, 0)$

For $(1,0,0)'$ + set

1. $(1,0,0)'$
2. $2', 1/2, 0, z$
 - $(2z, 1, 0, 0)^r$
3. $4', 1/2, 1/2, z$
 - $(4z, 1, 0, 0)^r$
4. $4', 1/2, -1/2, z$
 - $(4z^{-1}, 1, 0, 0)^r$
Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 p</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 o</td>
<td>.2'</td>
<td>x,1/2,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,1/2,0 [0,v,w]</td>
</tr>
<tr>
<td>8 n</td>
<td>.2</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 m</td>
<td>.2'</td>
<td>x,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) x,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 l</td>
<td>.2</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>8 k</td>
<td>.2</td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td>8 j</td>
<td>.2</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>8 i</td>
<td>2'</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) 0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>4 h</td>
<td>4'</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) 1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 g</td>
<td>4</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14) 0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 f</td>
<td>2'22'</td>
<td>1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) 1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 e</td>
<td>2'22'</td>
<td>1/2,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16) 1/2,0,0 [u,0,0]</td>
</tr>
<tr>
<td>2 d</td>
<td>4'2'</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c</td>
<td>4'2'</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b</td>
<td>422</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a</td>
<td>422</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>(0,0,0) +</th>
<th>(1,0,0)' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,y,z</td>
<td>x,y,z</td>
</tr>
<tr>
<td>x,y,z</td>
<td>x,y,z</td>
</tr>
<tr>
<td>y,x,z</td>
<td>y,x,z</td>
</tr>
<tr>
<td>y,x,z</td>
<td>y,x,z</td>
</tr>
<tr>
<td>x,y,z</td>
<td>x,y,z</td>
</tr>
<tr>
<td>x,1/2,0</td>
<td>1/2,x,0</td>
</tr>
<tr>
<td>0,x,1/2</td>
<td>0,x,1/2</td>
</tr>
<tr>
<td>x,1/2,1/2</td>
<td>1/2,x,1/2</td>
</tr>
<tr>
<td>0,x,0</td>
<td>0,x,0</td>
</tr>
<tr>
<td>x,x,1/2</td>
<td>x,x,1/2</td>
</tr>
<tr>
<td>x,x,0</td>
<td>x,x,0</td>
</tr>
<tr>
<td>0,1/2,z</td>
<td>0,1/2,z</td>
</tr>
<tr>
<td>0,1/2,z</td>
<td>1/2,0,z</td>
</tr>
<tr>
<td>0,0,z</td>
<td>0,0,z</td>
</tr>
<tr>
<td>0,1/2,z</td>
<td>1/2,0,z</td>
</tr>
<tr>
<td>0,1/2,z</td>
<td>1/2,0,z</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin at 0,1/2,z</th>
<th>Origin at x,0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>a* = b</td>
</tr>
<tr>
<td>b* = b</td>
<td>b* = c</td>
</tr>
<tr>
<td>a* = (-a + b)/2</td>
<td>a* = b</td>
</tr>
<tr>
<td>b* = c</td>
<td>b* = b</td>
</tr>
</tbody>
</table>
Origin on 422

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)
 \((1|0,0,0)\)
2. \(2\) 0,0,z
 \((2_z|0,0,0)\)
3. \(4^+\) 0,0,z
 \((4_z|0,0,0)\)
4. \(4^-\) 0,0,z
 \((4_z^{-1}|0,0,0)\)
5. 2 0,y,0
 \((2_y|0,0,0)\)
6. 2 x,0,0
 \((2_x|0,0,0)\)
7. 2 x,x,0
 \((2_{xy}|0,0,0)\)
8. 2 x,\(\bar{x}\),0
 \((2_{xy}|0,0,0)\)

For \((1,0,0)\)' + set

1. \(t'\) (1,0,0)
 \((1|0,0,0)\)'
2. \(2'\) 1/2,0,z
 \((2_z|1,0,0)\)'
3. \(4'^+\) 1/2,1/2,z
 \((4_z|1,0,0)\)'
4. \(4'^-\) 1/2,-1/2,z
 \((4_z^{-1}|1,0,0)\)'
5. 2' 1/2,y,0
 \((2_y|1,0,0)\)'
6. 2' (1,0,0) x,0,0
 \((2_z|1,0,0)\)'
7. 2' (1/2,1/2,0) x+1/2,x,0
 \((2_{xy}|1,0,0)\)'
8. 2' (1/2,-1/2,0) x+1/2,\(\bar{x}\),0
 \((2_{xy}|1,0,0)\)'
Generators selected
(1); t'(1,0,0); t'(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0) +</td>
<td></td>
</tr>
<tr>
<td>16 p 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 o .2'</td>
<td>x,1/2,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 n .2'</td>
<td>x,1/2,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 m .2</td>
<td>x,1/2,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 l .2</td>
<td>x,1/2,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 k .2'</td>
<td>x,1/2,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 j .2</td>
<td>x,1/2,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 i .2</td>
<td>x,1/2,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 h 4'</td>
<td>x,1/2,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 g 4'</td>
<td>x,1/2,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 f 2'</td>
<td>x,1/2,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 e 2'</td>
<td>x,1/2,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>2 d 2'</td>
<td>x,1/2,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>2 c 2'</td>
<td>x,1/2,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>2 b 2'</td>
<td>x,1/2,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>2 a 2'</td>
<td>x,1/2,0 [0,v,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p4mm1'</th>
<th>Along [1,0,0] p2mm1'</th>
<th>Along [1,1,0] p–2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = (-a + b)/2</td>
</tr>
<tr>
<td>Origin at 0,0,0</td>
<td>Origin at x,0,0</td>
<td>Origin at x-1/4,x+1/4,1/2</td>
</tr>
</tbody>
</table>
Origin on 4'22'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

1. 1
 (1 | 0,0,0)
2. 2 0,0,z
 (2z | 0,0,0)
3. 4' 0,0,z
 (4z | 0,0,0)'
4. 4' 0,0,z
 (4z⁻¹ | 0,0,0)'
5. 2 0,y,0
 (2y | 0,0,0)
6. 2 x,0,0
 (2x | 0,0,0)
7. 2' x,x,0
 (2xy | 0,0,0)'
8. 2' x,x,0
 (2xy | 0,0,0)'

For (0,0,1) + set

1'. (0,0,1)
 (1 | 0,0,1)'
2'. (0,0,1) 0,0,z
 (2z | 0,0,1)'
3. 4' (0,0,1) 0,0,z
 (4z | 0,0,1)
4. 4' (0,0,1) 0,0,z
 (4z⁻¹ | 0,0,1)
5'. 0,y,1/2
 (2y | 0,0,1)'
6'. x,0,1/2
 (2x | 0,0,1)'
7. 2' x,x,1/2
 (2xy | 0,0,1)
8. 2' x,x,1/2
 (2xy | 0,0,1)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,0,1') +</td>
<td></td>
</tr>
<tr>
<td>16 p 1 (1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(4) y,x,z [v,u,w]</td>
<td>(0,0,0) + (0,0,1') +</td>
</tr>
<tr>
<td>8 o .2. x,1/2,0 [u,0,0]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 n .2'. x,0,1/2 [0,v,w]</td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 m .2'. x,1/2,1/2 [0,v,w]</td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 l .2. x,0,0 [u,0,0]</td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 k .2 x,x,1/2 [u,u,0]</td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 j .2' x,x,0 [u,u,w]</td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 i 2.. 0,1/2,z [0,0,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4 h .2' 1/2,1/2,z [0,0,0]</td>
<td>(0,0,0) + (0,0,1') +</td>
</tr>
<tr>
<td>4 g .2' 0,0,z [0,0,0]</td>
<td>(0,0,0) + (0,0,1') +</td>
</tr>
<tr>
<td>4 f 22'2'. 1/2,0,1/2 [0,0,0]</td>
<td>(0,0,0) + (0,0,1') +</td>
</tr>
<tr>
<td>4 e 222'. 1/2,0,0 [0,0,0]</td>
<td>(0,0,0) + (0,0,1') +</td>
</tr>
<tr>
<td>2 d 4'22' 1/2,1/2,1/2 [0,0,0]</td>
<td>(0,0,0) + (0,0,1') +</td>
</tr>
<tr>
<td>2 c 4'22' 1/2,1/2,0 [0,0,0]</td>
<td>(0,0,0) + (0,0,1') +</td>
</tr>
<tr>
<td>2 b 4'22' 0,0,1/2 [0,0,0]</td>
<td>(0,0,0) + (0,0,1') +</td>
</tr>
<tr>
<td>2 a 4'22' 0,0,0 [0,0,0]</td>
<td>(0,0,0) + (0,0,1') +</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = a</td>
<td>b' = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p_2c 2mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a'^* = -c</td>
<td>b'^* = b</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p_2c 2mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a'^* = -c</td>
<td>b'^* = (-a + b)/2</td>
</tr>
<tr>
<td>Origin at x,x,1/2</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 4'22'

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0)$ + set

1. $(1,0,0)$
2. $2 \cdot 0,0,z$
3. $4' \cdot 0,0,z$
4. $4' \cdot 0,0,z$

For $(1,0,0)'$ + set

1. $t'(1,0,0)$
2. $2' \cdot 1/2,0,z$
3. $4' \cdot 1/2,1/2,z$
4. $4' \cdot 1/2,-1/2,z$

5. $2' \cdot 1/2,y,0$
6. $2' \cdot (1,0,0)$
7. $2 (1/2,1/2,0)$
8. $2 (1/2,-1/2,0)$

$P_\text{p}4'22'$

4221'

Tetragonal

89.10.756

$P_\text{p}4'22'$

89.10.756 - 1 - 1504
Generators selected
(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 p</td>
<td>1</td>
<td>((1)) (x,y,z) [(u,v,w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((2)) (x',y',z) [(u',v',w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((3)) (y,x,z) [(v,u,w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((4)) (y',x,z) [(v',u,w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((5)) (x,y,z) [(u,v,w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((6)) (x,y,z) [(u,v,w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((7)) (y,x,z) [(v,u,w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>((8)) (y,x,z) [(v,u,w)]</td>
</tr>
</tbody>
</table>

Coordinates

\[(0,0,0) + (1,0,0)' + (0,0,1)\]

\[\begin{array}{llll}
8 o & .2'. & x,1/2,0 & [0,v,w] \\
8 n & .2. & x,0,1/2 & [u,0,0] \\
8 m & .2'. & x,1/2,1/2 & [v,w] \\
8 l & .2. & x,0,0 & [u,0,0] \\
8 k & .2'. & x,x,1/2 & [u,u,0] \\
8 j & .2'. & x,x,0 & [u,u,0] \\
8 i & .2'.. & 0,1/2,z & [v,u,0] \\
4 h & .4.. & 1/2,1/2,z & [0,0,w] \\
4 g & .4'.. & 0,0,z & [0,0,0] \\
4 f & 2'22' & 1/2,0,1/2 & [u,0,0] \\
4 e & 2'22' & 1/2,0,0 & [u,0,0] \\
2 d & 42'2' & 1/2,1/2,1/2 & [0,0,w] \\
2 c & 42'2' & 1/2,1/2,0 & [0,0,w] \\
2 b & 4'22' & 0,0,1/2 & [0,0,0] \\
2 a & 4'22' & 0,0,0 & [0,0,0] \\
\end{array}\]

Symmetry of Special Projections

Along [0,0,1] \(p_{p^*4mm}\)
Along [1,0,0] \(p2mm1'\)
Along [1,1,0] \(p_{2a^*2mm}\)

\[\begin{array}{lll}
a^* = a & b^* = b & \text{Origin at } 1/2,1/2,z \\
a^* = b & b^* = c & \text{Origin at } x,0,0 \\
a^* = (-a + b)/2 & b^* = c & \text{Origin at } x-1/4,x+1/4,0 \\
\end{array}\]
Origin at 222 at 212

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2 \(0,0,z\)
(2 \(z\) | 0,0,0)

(3) 4 \(z\) \(0,1/2,z\)
(4 \(z\) | 1/2,1/2,0)

(4) 4 \(z\) \(1/2,0,z\)
(4 \(z\) | 1/2,1/2,0)

(5) 2 \(0,1/2,0\) \(1/4,y,0\)
(2 \(y\) | 1/2,1/2,0)

(6) 2 (1/2,0,0) \(x,1/4,0\)
(2 \(x\) | 1/2,1/2,0)

(7) 2 \(x,x,0\)
(2 \(x\) | 0,0,0)

(8) 2 \(x,x,0\)
(2 \(x\) | 0,0,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y+1/2,x+1/2,z [v,u,w] (4) y+1/2,x+1/2,z [v,u,w] (5) x+1/2,y+1/2,z [u,v,w] (6) x+1/2,y+1/2,z [u,v,w] (7) y,x,z [v,u,w] (8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4 f .2</td>
<td>x,x,1/2 [u,u,0] x,x,1/2 [u,u,0] x+1/2,x+1/2,1/2 [u,u,0] x+1/2,x+1/2,1/2 [u,u,0] x+1/2,x+1/2,1/2 [u,u,0] x+1/2,x+1/2,1/2 [u,u,0] x+1/2,x+1/2,1/2 [u,u,0] x+1/2,x+1/2,1/2 [u,u,0]</td>
</tr>
<tr>
<td>4 e .2</td>
<td>x,x,0 [u,u,0] x,x,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0]</td>
</tr>
<tr>
<td>4 d .2</td>
<td>0,0,z [0,0,w] 1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w] 0,0,z [0,0,w] 0,0,z [0,0,w] 0,0,z [0,0,w] 0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 c 4..</td>
<td>0,1/2,z [0,0,w] 0,1/2,z [0,0,w] 1/2,0,1/2 [0,0,w] 1/2,0,1/2 [0,0,w] 1/2,0,1/2 [0,0,w] 1/2,0,1/2 [0,0,w] 1/2,0,1/2 [0,0,w] 1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 b 2.22</td>
<td>0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 2.22</td>
<td>0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4g'm' Along [1,0,0] p2m'g' Along [1,1,0] p2m'm'
\(a^* = a \quad b^* = b\) \(a^* = b \quad b^* = c\) \(a^* = (-a + b)/2 \quad b^* = c\)
Origin at 0,1/2,z Origin at x,1/4,0 Origin at x,x,0
Origin at 2221' at 2121'

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2} \]

Symmetry Operations

For \(1 + \) set

1. \(1 \) \((1 | 0,0,0) \)
2. \(2 \) \(0,0,z \) \((2_z | 0,0,0) \)
3. \(4^+ \) \(0,1/2,z \) \((4_z | 1/2,1/2,0) \)
4. \(4^- \) \(1/2,0,z \) \((4_z^{-1} | 1/2,1/2,0) \)
5. \(2 \) \((0,1/2,0) \) \(1/4,y,0 \) \((2_y | 1/2,1/2,0) \)
6. \(2 \) \((1/2,0,0) \) \(x,1/4,0 \) \((2_x | 1/2,1/2,0) \)
7. \(2 \) \(x,x,0 \) \((2_{xy} | 0,0,0) \)
8. \(2 \) \(x,0,0 \) \((2_{xy} | 0,0,0) \)

For \(1' + \) set

1. \(1' \) \((1 | 0,0,0)' \)
2. \(2' \) \(0,0,z \) \((2_z | 0,0,0)' \)
3. \(4'^+ \) \(0,1/2,z \) \((4_z | 1/2,1/2,0)' \)
4. \(4'^- \) \(1/2,0,z \) \((4_z^{-1} | 1/2,1/2,0)' \)
5. \(2' \) \((0,1/2,0) \) \(1/4,y,0 \) \((2_y | 1/2,1/2,0)' \)
6. \(2' \) \((1/2,0,0) \) \(x,1/4,0 \) \((2_x | 1/2,1/2,0)' \)
7. \(2' \) \(x,x,0 \) \((2_{xy} | 0,0,0)' \)
8. \(2' \) \(x,0,0 \) \((2_{xy} | 0,0,0)' \)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) x',y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z [0,0,0]</td>
<td>(4) y+1/2,x+1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [0,0,0]</td>
<td>(6) x+1/2,y+1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [0,0,0]</td>
<td>(8) y,x,z [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 f .21'</td>
<td>x,x,1/2 [0,0,0]</td>
<td>x',x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/2 [0,0,0]</td>
<td>x',x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/2 [0,0,0]</td>
<td>x+1/2,x+1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1] p4gm1'</td>
</tr>
<tr>
<td>a* = a b* = b</td>
</tr>
<tr>
<td>Origin at 0,1/2,z</td>
</tr>
<tr>
<td>Along [1,0,0] p2mg1'</td>
</tr>
<tr>
<td>a* = b b* = c</td>
</tr>
<tr>
<td>Origin at x,1/4,0</td>
</tr>
<tr>
<td>Along [1,1,0] p2mm1'</td>
</tr>
<tr>
<td>a* = (-a + b)/2 b* = c</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Origin at 22'2' at 212'

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

(1) 1
(2) 2 0,0,z
 (2z 0,0,0)
(3) 4' 0,1/2,z
 (4z 1/2,1/2,0')
(4) 4' 1/2,0,z
 (4z -1 1/2,1/2,0')
(5) 2 (0,1/2,0) 1/4,y,0
 (2y 1/2,1/2,0)
(6) 2 (1/2,0,0) x,1/4,0
 (2x 1/2,1/2,0)
(7) 2' x,x,0
 (2xy 0,0,0')
(8) 2' x,x,0
 (2xy 0,0,0')
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) y,x+1/2,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) y,x+1/2,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

4 f ..2'	x,x,1/2 [u,u,w]	
4 e ..2'	x,x,0 [u,u,w]	
4 d 2..	0,0,z [0,0,w]	
2 c 4'..	0,1/2,z [0,0,0]	
2 b 2.2'2'	0,0,1/2 [0,0,w]	
2 a 2.2'2'	0,0,0 [0,0,w]	

Symmetry of Special Projections

- Along [0,0,1] p4'g'm
- Along [1,0,0] p2m'g'
- Along [1,1,0] p2m'm'

a* = a b* = b

Origin at 0,1/2,z

a* = b b* = c

Origin at x,1/4,0

a* = (-a + b)/2 b* = c

Origin at x,x,0
Origin at $22'2'$ at $212'$

Asymmetric unit $0 \leq x < 1/2; \quad 0 \leq y < 1/2; \quad 0 \leq z < 1/2$

Symmetry Operations

(1) 1
(1) $0,0,0$

(2) $2 \cdot 0,0,z$
(2) $z_{z}0,0,0$

(3) $4^* \cdot 0,1/2,z$
(3) $z_{z}1/2,1/2,0$

(4) $4^* \cdot 1/2,0,z$
(4) $z_{z}1/2,1/2,0$

(5) $2' \cdot 0,1/2,0$
(5) $x,y,0$

(6) $2' (1/2,0,0)$
(6) $x,1/4,0$

(7) $2' \cdot x,x,0$
(7) $x,0,0$

(8) $2' \cdot x,x,0$
(8) $x,0,0$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x+1/2,y+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>f ..2' x,x,1/2 [u,u,w]</td>
<td>x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x+1/2,1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x+1/2,1/2 [u,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>e ..2' x,x,0 [u,u,w]</td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x+1/2,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x+1/2,0 [u,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>d 2.. 0,0,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>c 4.. 0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b 2.2'2' 0,0,1/2 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a 2.2'2' 0,0,0 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm Along [1,0,0] p2m'g' Along [1,1,0] p2mm'
\(a^* = a \) \(b^* = b \) \(a^* = -c \ \) \(b^* = (-a + b)/2 \)
Origin at 0,1/2,z Origin at x,1/4,0 Origin at x,x,0
Origin at 222 at 212

Asymmetric unit: $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations:

1. 1

2. $2 \quad 0,0,z$

3. $4' \quad 0,1/2,z$

4. $4' \quad 1/2,0,z$

5. $2' (0,1/2,0) \quad 1/4,y,0$

6. $2' (1/2,0,0) \quad x,1/4,0$

7. $2 \quad x,x,0$

8. $2 \quad x,x,0$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordination</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z [v,u,w]</td>
<td>(4) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4 f 2</td>
<td>x,x,1/2 [u,u,0]</td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/2 [u,u,0]</td>
<td>x+1/2,x+1/2,1/2 [u,u,0]</td>
</tr>
<tr>
<td>4 e 2</td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,0 [u,u,0]</td>
<td>x+1/2,x+1/2,0 [u,u,0]</td>
</tr>
<tr>
<td>4 d 2</td>
<td>0,0,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 c 4'</td>
<td>0,1/2,z [0,0,0]</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 b 2.22</td>
<td>0,0,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 2.22</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: p4'gm'
 \[a^* = a \quad b^* = b \]
 Origin at 0,1/2,z

- **Along [1,0,0]**: p2m'g'
 \[a^* = b \quad b^* = c \]
 Origin at x,1/4,0

- **Along [1,1,0]**: p2mm'
 \[a^* = -c \quad b^* = (-a + b)/2 \]
 Origin at x,x,0
Origin at 222 at 212

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

For \((0,0,0)\) + set

1. \((1,0,0,0)\)
2. \((2,0,0,z)\) \((2z,0,0,0)\)
3. \((4,0,1/2,z)\) \((4z,1/2,1/2,0)\)
4. \((4,1/2,0,z)\) \((4z^{-1},1/2,1/2,0)\)

For \((0,0,1)\) + set

1. \((t,0,0,1)\) \((t,0,0,1)'\)
2. \((2',0,0,1)\) \((2z,0,0,1)'\)
3. \((4\,4',0,0,1)\) \((0,1/2,z)\) \((4z,1/2,1/2,0)\)
4. \((4\,4',0,0,1)\) \((0,1/2,0,z)\) \((4z^{-1},1/2,1/2,0)\)
Continued

90.6.762

\[\text{P}_{\text{2c}} \ 421, \ 2 \]

Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g (1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td>(2) (x,\bar{y},z) [\bar{u},\bar{v},w]</td>
<td></td>
</tr>
<tr>
<td>(3) (y+1/2,x+1/2,z) [\bar{v},u,w]</td>
<td></td>
</tr>
<tr>
<td>(4) (y+1/2,x+1/2,z) [v,\bar{u},w]</td>
<td></td>
</tr>
<tr>
<td>(5) (x+1/2,y+1/2,z) [u,\bar{v},w]</td>
<td></td>
</tr>
<tr>
<td>(6) (x+1/2,y+1/2,z) [u,v,\bar{w}]</td>
<td></td>
</tr>
<tr>
<td>(7) (y,x,z) [v,u,\bar{w}]</td>
<td></td>
</tr>
<tr>
<td>(8) (y,x,z) [v,\bar{u},w]</td>
<td></td>
</tr>
</tbody>
</table>

8 f '..2' x,x,1/2 \[u,u,w\]
8 e '..2 x,x,0 \[u,u,0\]
8 d 2.. 0,0,z \[0,0,w\]
4 c 4.. 0,1/2,z \[0,0,w\]
4 b 2.2'2' 0,0,1/2 \[0,0,w\]
4 a 2.22 0,0,0 \[0,0,0\]

Symmetry of Special Projections

- **Along [0,0,1]** p4gm1'
 \(a^* = a \quad b^* = b \)
 Origin at 0,1/2,z

- **Along [1,0,0]** p2m'g'
 \(a^* = b \quad b^* = c \)
 Origin at x,1/4,0

- **Along [1,1,0]** P_{2c'} 2m'm'
 \(a^* = -c \quad b^* = (-a + b)/2 \)
 Origin at x,x,0
Origin at 222 at 212

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For (0,0,0) + set

1. 1
2. $2' \ (0,0,0) \quad 0,0,z$
3. $4' \ (0,0,0) \quad 0,0,z$
4. $4' \ (0,0,0) \quad 0,0,z$

5. $2' \ (0.1/2,0) \quad 1/4,y,0$
6. $2' \ (1/2,0,0) \quad x,1/4,0$
7. $2 \ (0,1/2,0) \quad 1/4,y,0$
8. $2 \ (1/2,0,0) \quad x,1/4,0$

For (0,0,1)' + set

1. $t' \ (0,0,1)$
2. $2' \ (0,0,1) \quad 0,0,z$
3. $4' \ (0,0,1) \quad 0,1/2,z$
4. $4' \ (0,0,1) \quad 0,1/2,z$

5. $2 \ (0.1/2,0) \quad 1/4,y,1/2$
6. $2 \ (1/2,0,0) \quad x,1/4,1/2$
7. $2' \ (0,0,1)' \quad 0,0,z$
8. $2' \ (0,0,1)' \quad 0,0,z$
Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g</td>
<td>1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y+1/2,x+1/2,z [v,u,w] (4) y+1/2,x+1/2,z [v,u,w] (5) x+1/2,y+1/2,z [u,v,w] (6) x+1/2,y+1/2,z [u,v,w] (7) y,x,z [v,u,w] (8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 f</td>
<td>.2'</td>
<td>x,x,1/2 [u,u,w] x,x,1/2 [u,u,w] x+1/2,x+1/2,1/2 [u,u,w] x+1/2,x+1/2,1/2 [u,u,w] x+1/2,x+1/2,1/2 [u,u,w]</td>
</tr>
<tr>
<td>8 e</td>
<td>.2</td>
<td>x,x,0 [u,u,0] x,x,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0]</td>
</tr>
<tr>
<td>8 d</td>
<td>2..</td>
<td>0,0,z [0,0,w] 1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w] 0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 c</td>
<td>4'..</td>
<td>0,1/2,z [0,0,0] 1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>2.2'2'</td>
<td>0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>2.22</td>
<td>0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm1' a* = a b* = b
Along [1,0,0] p2m'g' a* = b b* = c
Along [1,1,0] p222 2m'm' a* = -c b* = (-a + b)/2
Origin at 0,1/2,z Origin at x,1/4,0 Origin at x,x,0
Origin on 2 [0 1 0] at 4, (1,2) 1

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/8

Symmetry Operations

(1) 1 (1) 0,0,0
(1) 0,0,0

(2) 2 (0,0,1/2) 0,0,z
(2) 0,0,1/2

(3) 4^+ (0,0,1/4) 0,0,z
(4) 4^- (0,0,1/4) 0,0,z

(4)^- (0,0,3/4) 0,0,z
(4)^+ (0,0,3/4)

(5) 2 0,y,0
(2z|0,0,0)

(6) 2 x,0,1/4
(2z|0,0,1/2)

(7) 2 x,x,3/8
(2xy|0,0,3/4)

(8) 2 x,x,1/8
(2xy|0,0,1/4)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+3/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+3/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z+1/4 [v,u,w]</td>
</tr>
</tbody>
</table>

4 c ..2	x,x,7/8 [u,u,0]
	x,x,5/8 [u,u,0]
	x,x,1/8 [u,u,0]

4 b .2	1/2,y,0 [0,v,0]
	1/2,y,1/2 [0,v,0]
	y,1/2,1/4 [v,0,0]
	y,1/2,3/4 [v,0,0]

4 a .2	0,y,0 [0,v,0]
	0,y,1/2 [0,v,0]
	y,0,1/4 [v,0,0]
	y,0,3/4 [v,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2m'g'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -c</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at x,0,1/4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p2m'g'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -c</td>
<td>b* = (-a + b)/2</td>
</tr>
<tr>
<td>Origin at x,x,3/8</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 21' [0 1 0] at 4, (1,2) 11'

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/8

Symmetry Operations

For 1 + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Transformation</th>
<th>Symmetry Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
<td>(1</td>
<td>0,0,0)</td>
</tr>
<tr>
<td>(2) 2</td>
<td>(0,0,1/2) 0,0,z</td>
<td></td>
</tr>
<tr>
<td>(3) 4'</td>
<td>(0,0,1/4) 0,0,z</td>
<td></td>
</tr>
<tr>
<td>(4) 4''</td>
<td>(0,0,1/4) 0,0,z</td>
<td></td>
</tr>
<tr>
<td>(5) 2'</td>
<td>(0,0,0)</td>
<td>(2y</td>
</tr>
<tr>
<td>(6) 2''</td>
<td>x,0,1/4</td>
<td>(2y</td>
</tr>
<tr>
<td>(7) 2'''</td>
<td>x,x,3/8</td>
<td>(2y</td>
</tr>
<tr>
<td>(8) 2''''</td>
<td>x,x,1/8</td>
<td>(2y</td>
</tr>
</tbody>
</table>

For 1' + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Transformation</th>
<th>Symmetry Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1'</td>
<td>(1</td>
<td>0,0,0)'</td>
</tr>
<tr>
<td>(2) 2'</td>
<td>(0,0,1/2) 0,0,z</td>
<td></td>
</tr>
<tr>
<td>(3) 4''</td>
<td>(0,0,1/4) 0,0,z</td>
<td></td>
</tr>
<tr>
<td>(4) 4'''</td>
<td>(0,0,1/4) 0,0,z</td>
<td></td>
</tr>
<tr>
<td>(5) 2''</td>
<td>(0,0,0)'</td>
<td>(2y</td>
</tr>
<tr>
<td>(6) 2'''</td>
<td>x,0,1/4</td>
<td>(2y</td>
</tr>
<tr>
<td>(7) 2''''</td>
<td>x,x,3/8</td>
<td>(2y</td>
</tr>
<tr>
<td>(8) 2''''</td>
<td>x,x,1/8</td>
<td>(2y</td>
</tr>
</tbody>
</table>
Generators selected
(1): t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z+1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 c .21'</td>
<td>x,x,3/8 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x,7/8 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x,5/8 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x,1/8 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 b .21'</td>
<td>1/2,y,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,y,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,1/2,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,1/2,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 a .21'</td>
<td>0,y,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,y,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,0,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,0,3/4 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1' Along [1,0,0] p2mg1' Along [1,1,0] p2mg1'
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
\(\mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = (-\mathbf{a} + \mathbf{b})/2 \)

Origin at 0,0,z Origin at x,0,1/4 Origin at x,x,3/8
Origin on $\mathbf{2}$ [0 1 0] at $\mathbf{4}$, (1,2) 1

Asymmetric unit $0 \leq x \leq 1; 0 \leq y \leq 1; 0 \leq z \leq 1/8$

Symmetry Operations

1. $\mathbf{1}$
2. $\mathbf{2}$ (0, 0, 1/2) 0, 0, z
 $\mathbf{2}_z$ (0, 0, 1/2)
3. $\mathbf{4}$** (0, 0, 1/4) 0, 0, z
 $\mathbf{4}_z$ (0, 0, 1/4)
4. $\mathbf{4}$** (0, 0, 3/4) 0, 0, z
 $\mathbf{4}_z$ (0, 0, 3/4)
5. $\mathbf{2}$ 0, y, 0
 $\mathbf{2}_y$ (0, 0, 0)
6. $\mathbf{2}$ x, 0, 1/4
 $\mathbf{2}_x$ (0, 0, 1/2)
7. $\mathbf{2}$** x, x, 3/8
 $\mathbf{2}_x$ (0, 0, 3/4)
8. $\mathbf{2}$** x, x, 1/8
 $\mathbf{2}_x$ (0, 0, 1/4)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>8</th>
<th>d</th>
<th>1</th>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) x,y,z+1/2 [u,v,w]</th>
<th>(3) y,x,z+1/4 [v,u,w]</th>
<th>(4) y,x,z+3/4 [v,u,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>..2'</td>
<td>x,x,3/8 [u,u,w]</td>
<td>x,x,7/8 [u,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>.2</td>
<td>1/2,y,0 [0,v,0]</td>
<td>1/2,y,1/2 [0,v,0]</td>
<td>y,1/2,1/4 [v,0,0]</td>
<td>y,1/2,3/4 [v,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>.2</td>
<td>0,y,0 [0,v,0]</td>
<td>0,y,1/2 [0,v,0]</td>
<td>y,0,1/4 [v,0,0]</td>
<td>y,0,3/4 [v,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4\nw'\n\n\n\na^* = a \quad b^* = b \\
\nOrigin at 0,0,z

Along [1,0,0] p2m'g'

\n\n\n\na^* = -c \quad b^* = b \\
\nOrigin at x,0,1/4

Along [1,1,0] p2'mg'

\n\n\n\na^* = -c \quad b^* = (-a + b)/2 \\
\nOrigin at x,x,3/8
Origin on $2' [0 1 0]$ at $4_1 (1, 2') 1$

Asymmetric unit $0 \leq x \leq 1; 0 \leq y \leq 1; 0 \leq z \leq 1/8$

Symmetry Operations

1. 1
2. $2 (0,0,1/2) 0,0,z$
3. $4' (0,0,1/4) 0,0,z$
4. $4' (0,0,3/4) 0,0,z$
5. $2' 0,y,0$
6. $2' x,0,1/4$
7. $2' x,x,3/8$
8. $2' x,x,1/8$

$P4,2'2'$
$91.4.767$

$42'2'$
$P4,2'2'$

Tetragonal
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+3/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+3/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td>4 c .2'</td>
<td>x,x,3/8 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,7/8 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,5/8 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/8 [u,u,w]</td>
</tr>
<tr>
<td>4 b .2'</td>
<td>1/2,y,0 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>y,1/2,1/4 [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>y,1/2,3/4 [0,u,w]</td>
</tr>
<tr>
<td>4 a .2'</td>
<td>0,y,0 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>y,0,1/4 [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>y,0,3/4 [0,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] p2'mg'
\(a^* = -c \quad b^* = b \)
Origin at x,0,1/4

Along [1,1,0] p2'mg'
\(a^* = -c \quad b^* = (-a + b)/2 \)
Origin at x,x,3/8
Origin on 2' [0 1 0] at 4' (1,2') 1

Asymmetric unit
0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/8

Symmetry Operations

(1) \begin{align*}
1 \\
1' (0,0,0)
\end{align*}

(1) \begin{align*}
1 \\
1' (0,0,0)
\end{align*}

(2) \begin{align*}
2' (0,0,1/2) \\
2' (0,0,1/2)
\end{align*}

(2) \begin{align*}
2' (0,0,1/2) \\
2' (0,0,1/2)
\end{align*}

(3) \begin{align*}
4' (0,0,1/4) \\
4' (0,0,1/4)
\end{align*}

(3) \begin{align*}
4' (0,0,1/4) \\
4' (0,0,1/4)
\end{align*}

(4) \begin{align*}
4'' (0,0,3/4) \\
4'' (0,0,3/4)
\end{align*}

(4) \begin{align*}
4'' (0,0,3/4) \\
4'' (0,0,3/4)
\end{align*}

(5) \begin{align*}
2' (0,y,0) \\
2' (0,y,0)
\end{align*}

(5) \begin{align*}
2' (0,y,0) \\
2' (0,y,0)
\end{align*}

(6) \begin{align*}
2 (x,0,1/4) \\
2 (x,0,1/4)
\end{align*}

(6) \begin{align*}
2 (x,0,1/4) \\
2 (x,0,1/4)
\end{align*}

(7) \begin{align*}
2 (x,x,3/8) \\
2 (x,x,3/8)
\end{align*}

(7) \begin{align*}
2 (x,x,3/8) \\
2 (x,x,3/8)
\end{align*}

(8) \begin{align*}
2 (x,x,1/8) \\
2 (x,x,1/8)
\end{align*}

(8) \begin{align*}
2 (x,x,1/8) \\
2 (x,x,1/8)
\end{align*}
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z+1/2 [u,v,w] (3) y,x,z+1/4 [v,u,w] (4) y,x,z+3/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w] (6) x,y,z+1/2 [u,v,w] (7) y,x,z+3/4 [v,u,w] (8) y,x,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td>4 c -2</td>
<td>x,x,3/8 [u,u,0] x,x,7/8 [u,u,0] x,x,5/8 [u,u,0] x,x,1/8 [u,u,0]</td>
</tr>
<tr>
<td>4 b 2'</td>
<td>1/2,y,0 [u,0,w] 1/2,y,1/2 [u,0,w] y,1/2,1/4 [0,u,w] y,1/2,3/4 [0,u,w]</td>
</tr>
<tr>
<td>4 a 2'</td>
<td>0,y,0 [u,0,w] 0,y,1/2 [u,0,w] y,0,1/4 [0,u,w] y,0,3/4 [0,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p4'mm'
 \(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
 Origin at 0,0,z

- Along [1,0,0] p2'mg'
 \(\mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = \mathbf{b} \)
 Origin at x,0,1/4

- Along [1,1,0] p2m'g'
 \(\mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = (-\mathbf{a} + \mathbf{b})/2 \)
 Origin at x,x,3/8
Origin on 2 [0 1 0] at 4, (1,2) 1

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/8

Symmetry Operations

For (0,0,0) + set

(1) 1
(1) 0,0,0

(2) 2 (0,0,1/2) 0,0,z
(2) 0,0,1/2

(3) 4’ (0,0,1/4) 0,0,z
(4) 0,0,1/4

(4) 4’ (0,0,3/4) 0,0,z
(4) 0,0,3/4

(5) 2' y,0,0
(2,0,0,0)

(6) 2' 0,0,1/4
(2,0,0,1/2)

(7) 2' x,x,3/8
(2,x,0,3/4)

(8) 2' x,y,1/8
(2,y,0,1/4)

For (1,0,0)' + set

(1) t' (1,0,0)
(1) 1,0,0'

(2) 2' (0,0,1/2) 1/2,0,z
(2) 1,0,1/2'

(3) 4’’ (0,0,1/4) 1/2,1/2,z
(4) 1,0,1/4’’

(4) 4’’ (0,0,3/4) 1/2,-1/2,z
(4) 1,0,3/4’’

(5) 2' 1/2,y,0
(2) 1/2,0,0'

(6) 2' (1,0,0) x,0,1/4
(2,1,0,1/2')

(7) 2' (1/2,1/2,0) x+1/2,x,3/8
(2,x,1,0,3/4’’)

(8) 2' (1/2,-1/2,0) x+1/2,x,1/8
(2,x,1,0,1/4’’)

91.6.769 - 1 - 1530
Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

\begin{align*}
\text{Coordinates} & \\
(0,0,0) & \quad + & (1,0,0)' & \quad + \\
16 & d & 1 & (1) \begin{array}{c} x,y,z \ [u,v,w] \end{array} & (2) \begin{array}{c} \bar{x},\bar{y},\bar{z}+1/2 \ [\bar{u},\bar{v},\bar{w}] \end{array} & (3) \begin{array}{c} y,\bar{x},z+1/4 \ [\bar{v},u,w] \end{array} & (4) \begin{array}{c} y,\bar{x},z+3/4 \ [v,u,w] \end{array} \\
& & & (5) \begin{array}{c} \bar{x},\bar{y},\bar{z} \ [\bar{u},\bar{v},\bar{w}] \end{array} & (6) \begin{array}{c} x,\bar{y},\bar{z}+1/2 \ [u,\bar{v},\bar{w}] \end{array} & (7) \begin{array}{c} y,\bar{x},z+3/4 \ [v,u,\bar{w}] \end{array} & (8) \begin{array}{c} \bar{y},\bar{x},z+1/4 \ [\bar{v},u,\bar{w}] \end{array} \\
8 & c & .2 & x,x,3/8 \ [u,u,0] & \bar{x},\bar{x},7/8 \ [\bar{u},u,0] & \bar{x},x,5/8 \ [\bar{u},u,0] & x,\bar{x},1/8 \ [u,u,0] \\
8 & b & .2' & 1/2,y,0 \ [u,0,w] & 1/2,\bar{y},1/2 \ [u,0,w] & \bar{y},1/2,1/4 \ [0,u,w] & y,1/2,3/4 \ [0,u,\bar{w}] \\
8 & a & .2 & 0,y,0 \ [0,v,0] & 0,\bar{y},1/2 \ [0,v,0] & \bar{y},0,1/4 \ [\bar{v},0,0] & y,0,3/4 \ [v,0,0] \\
\end{align*}

Symmetry of Special Projections

\begin{align*}
\text{Along } [0,0,1] & \quad p_\varphi,4m'm' & \text{Along } [1,0,0] & \quad p2m1' & \text{Along } [1,1,0] & \quad p_{2\varphi},2m'g' \\
a^* = a & \quad b^* = b & \quad a^* = -c & \quad b^* = b & \quad a^* = -c & \quad b^* = (-a + b)/2 \\
\text{Origin at } 0,0,z & \quad \text{Origin at } x,0,1/4 & \quad \text{Origin at } x,x,3/8 \\
\end{align*}
Origin on 2 [0 1 0] at 4, (1,2) 1

Asymmetric unit
0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/8

Symmetry Operations

For (0,0,0) + set

1. 1 (0,0,0)
2. 2 (0,0,1/2) 0,0,z (2z,0,0,1/2)
3. 4' (0,0,1/4) 0,0,z (4z,0,0,1/4)'
4. 4' (0,0,3/4) 0,0,z (4z,0,0,3/4)'

For (1,0,0)' + set

1'. (1,0,0)
2' (0,0,1/2) 1/2,0,z (2z,1,0,1/2)'
3'. (0,0,1/4) 1/2,1/2,z (4z,1,0,1/4)
4'. (0,0,3/4) 1/2,-1/2,z (4z,1,0,3/4)

For (1,0,0)' + set

1. 1' (1,0,0)
2' (0,0,1/2) 1/2,0,z (2z,1,0,1/2)'
3. 4' (0,0,1/4) 1/2,1/2,z (4z,1,0,1/4)
4. 4' (0,0,3/4) 1/2,-1/2,z (4z,1,0,3/4)

91.7.770 - 1 - 1532
Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z+1/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+3/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 c .2'</td>
<td>x,x,3/8 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x,7/8 [u,u,w]</td>
<td>u,v,w</td>
</tr>
<tr>
<td></td>
<td>x,x,5/8 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 b .2'</td>
<td>1/2,y,0 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/4 [0,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 a .2</td>
<td>0,y,0 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,y,1/2 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,y,1/4 [v,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'mmm'
\(a^* = a \quad b^* = b \)

Along [1,0,0] p2mg'
\(a^* = -c \quad b^* = b \)

Along [1,1,0] p2g* 2'mg'
\(a^* = -c \quad b^* = (-a + b)/2 \)

Origin at 0,0,z
Origin at x,0,1/4
Origin at x,x,3/8
Origin on 2[1 1 0] at 2,1(1,2)

Asymmetric unit $0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/8$

Symmetry Operations

1. 1
 (1) 0,0,0
 (2) 0,0,1/2
 (3) 0,1/2,0
 (4) 1/2,0,0
 (5) 1/2,1/2,1/2
 (6) 1/2,1/2,1/4
 (7) 1/2,1/2,3/4
 (8) 1/2,1/2,3/4

2. 2
 (1) 0,0,1/2
 (2) 0,0,1/2
 (3) 0,0,1/2
 (4) 0,0,1/2

3. 4
 (1) 0,0,1/4
 (2) 0,0,1/4
 (3) 0,0,1/2
 (4) 0,0,1/4

4. 4
 (1) 1/2,1/2,1/2
 (2) 1/2,1/2,1/2
 (3) 1/2,1/2,1/4
 (4) 1/2,1/2,3/4

5. 4
 (1) 1/2,1/2,1/2
 (2) 1/2,1/2,1/2
 (3) 1/2,1/2,1/4
 (4) 1/2,1/2,3/4

6. 4
 (1) 1/2,1/2,1/2
 (2) 1/2,1/2,1/2
 (3) 1/2,1/2,1/4
 (4) 1/2,1/2,3/4
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y+1/2,x+1/2,z+3/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z+3/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

4 a ..2 | x,x,0 [u,u,0] |
	x,x,1/2 [u,u,0]
	x+1/2,x+1/2,1/4 [u,u,0]
	x+1/2,x+1/2,3/4 [u,u,0]

Symmetry of Special Projections

Along [0,0,1] p4g'm' Along [1,0,0] p2g'g' Along [1,1,0] p2'mg'
\(a^* = a \) \quad b^* = b \) \(a^* = b \) \quad b^* = c \) \(a^* = -c \) \quad b^* = (-a + b)/2
Origin at 0,1/2,z Origin at x,1/4,3/8 Origin at x,x,0
Origin on 2 [1 1 0]1' at 2,1(1,2)1'

Asymmetric unit

\[0 \leq x < 1; \quad 0 \leq y < 1; \quad 0 \leq z < 1/8\]

Symmetry Operations

For 1 + set

(1) \(1\)
(1 | 0, 0, 0)

(5) \(2\) (0, 1/2, 0) \(1/4, y, 1/8\)
\((2, 1/2, 1/2, 1/4)\)

(6) \(2\) (1/2, 0, 0) \(x, 1/4, 3/8\)
\((2, 1/2, 1/2, 3/4)\)

(7) \(2\) \(x, x, 0\)
\((2, x, 0, 0, 0)\)

(8) \(2\) \(x, x, 1/4\)
\((2, x, 0, 0, 1/2)\)

For 1' + set

(1) \(1'\)
(1 | 0, 0, 0)'

(5) \(2'\) (0, 1/2, 0) \(1/4, y, 1/8\)
\((2, 1/2, 1/2, 1/4)'\)

(6) \(2'\) (1/2, 0, 0) \(x, 1/4, 3/8\)
\((2, 1/2, 1/2, 3/4)'\)

(7) \(2'\) \(x, x, 0\)
\((2, x, 0, 0, 0)'\)

(8) \(2'\) \(x, x, 1/4\)
\((2, x, 0, 0, 1/2)'\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1'</td>
<td></td>
</tr>
<tr>
<td>8 b 11'</td>
<td></td>
</tr>
<tr>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) x,y,z+1 [0,0,0]</td>
</tr>
<tr>
<td>(3) y+1/2,x+1/2,z+1/4 [0,0,0]</td>
<td>(4) y+1/2,x+1/2,z+1/4 [0,0,0]</td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z+1/4 [0,0,0]</td>
<td>(6) x+1/2,y+1/2,z+1/4 [0,0,0]</td>
</tr>
<tr>
<td>(7) y,x,z [0,0,0]</td>
<td>(8) y,x,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm1'
\[a^* = a \quad b^* = b \]
Origin at 0,1/2,z

Along [1,0,0] p2gg1'
\[a^* = b \quad b^* = c \]
Origin at 1/4,3/8

Along [1,1,0] p2mg1'
\[a^* = -c \quad b^* = (-a + b)/2 \]
Origin at x,x,0
Origin on 2' [1 1 0] at 2,1(1,2')

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/8 \]

Symmetry Operations

1. \((1) 1 \)
 - \((0,0,0) \)

2. \((2) 2 \) \((0,0,1/2) \) \(0,0,z \)
 - \((2_z \ 0,0,1/2) \)

3. \((3) 4^{+} \) \((0,0,1/4) \) \(0,1/2,0 \)
 - \((4_{z} \ 1/2,1/2,1/4) \)

4. \((4) 4^{-} \) \((0,0,3/4) \) \(1/2,0,z \)
 - \((4_{z}^{-} \ 1/2,1/2,3/4) \)

5. \((5) 2 \) \((0,1/2,0) \) \(1/4,y,1/8 \)
 - \((2_{y} \ 1/2,1/2,1/4) \)

6. \((6) 2 \) \((1/2,0,0) \) \(x,1/4,3/8 \)
 - \((2_{x} \ 1/2,1/2,3/4) \)

7. \((7) 2' \) \(x,x,0 \)
 - \((2_{x} \ 0,0,0') \)

8. \((8) 2' \) \(x,x,1/4 \)
 - \((2_{x} \ 0,0,1/2') \)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y+1/2,x+1/2,z+3/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z+3/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 a ..2'</td>
<td>x,x,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,3/4 [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'gm'
Along [1,0,0] p2g'g'
Along [1,1,0] p2m'g'

a* = a b* = b
Origin at 0,1/2,z

a* = b b* = c
Origin at x,1/4,3/8

a* = -c b* = (-a + b)/2
Origin at x,x,0
Origin on 2′ [1 1 0] at 2(1,1,2′)

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/8\]

Symmetry Operations

1. 1
 (1) 0,0,0
 (2) 2′ (0,0,1/2) 0,0,z
 (2′ z 0,0,1/2)
 (3) 4′ (0,0,1/4) 0,1/2,z
 (4′ z 1/2,1/2,1/4)
 (4) 4′ (0,0,3/4) 1/2,0,z
 (4′ z 1/2,1/2,3/4)

2. 2′ (0,1/2,0) 1/4,y,1/8
 (2′ z 1/2,1/2,1/4)

3. 2′ (1/2,0,0) x,1/4,3/8
 (2′ x 1/2,1/2,3/4)

4. 2′ x,x,0
 (2′ x 0,0,0)

5. 2′ (0,1/2,0) 1/4,y,1/8
 (2′ z 1/2,1/2,1/4)

6. 2′ (1/2,0,0) x,1/4,3/8
 (2′ x 1/2,1/2,3/4)

7. 2′ x,x,0
 (2′ x 0,0,0)

8. 2′ x,x,1/4
 (2′ x 0,0,1/2)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/4 [v,u,w]</td>
<td>(4) y+1/2,x+1/2,z+3/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/4 [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z+3/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 a .2'</td>
<td>x,x,0 [u,u,w]</td>
<td>x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/4 [u,u,w]</td>
<td>x+1/2,x+1/2,3/4 [u,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: p4gm
 - \(a^* = \mathbf{a} \quad b^* = \mathbf{b} \)
- **Along [1,0,0]**: p2'gg'
 - \(a^* = -\mathbf{c} \quad b^* = \mathbf{b} \)
- **Along [1,1,0]**: p2'mg'
 - \(a^* = -\mathbf{c} \quad b^* = (-\mathbf{a} + \mathbf{b})/2 \)

Origin at 0,1/2,z
Origin at x,1/4,3/8
Origin at x,x,0
P4,'2','2

92.5.775

P4,'2','2

Tetragonal

Origin on 2 [1 1 0] at 2,1(1,2)

Asymmetric unit

0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/8

Symmetry Operations

(1) 1
(1) 0,0,0

(2) 2 (0,0,1/2) 0,0,z
(2z 0,0,1/2)

(3) 4+(0,0,1/4) 0,1/2,z
(4z 1/2,1/2,1/4)*

(4) 4- (0,0,3/4) 1/2,0,z
(4z-1)* 1/2,1/2,3/4)*

(5) 2'(0,1/2,0) 1/4,y,1/8
(2y 1/2,1/2,1/4)*

(6) 2' (1/2,0,0) x,1/4,3/8
(2x 1/2,1/2,3/4)*

(7) 2 x,x,0
(2xy 0,0,0)

(8) 2 x,x,1/4
(2xy 0,0,1/2)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

\[
\begin{array}{cccc}
8 & b & 1 & (1) x,y,z [u,v,w] \\
 & & & (2) x,y,z+1/2 [u,v,w] \\
 & & & (3) y+1/2,x+1/2,z+1/4 [v,u,w] \\
 & & & (4) y+1/2,x+1/2,z+3/4 [v,u,w] \\
 & & & (5) x+1/2,y+1/2,z+1/4 [u,v,w] \\
 & & & (6) x+1/2,y+1/2,z+3/4 [u,v,w] \\
 & & & (7) y,x,z [v,u,w] \\
 & & & (8) y,x,z+1/2 [v,u,w] \\
4 & a & .2 & x,x,0 [u,u,0] \\
 & & & x,x,1/2 [u,u,0] \\
 & & & x+1/2,x+1/2,1/4 [u,u,0] \\
 & & & x+1/2,x+1/2,3/4 [u,u,0] \\
\end{array}
\]

Symmetry of Special Projections

Along [0,0,1] \quad p4'g'm \\
Along [1,0,0] \quad p2g'g' \\
Along [1,1,0] \quad p2m'g'

\[\begin{align*}
a^* &= a & b^* &= b \\
a^* &= b & b^* &= c \\
a^* &= -c & b^* &= (-a + b)/2 \\
\text{Origin at } 0,1/2,z & \quad \text{Origin at } x,1/4,3/8 & \quad \text{Origin at } x,x,0
\end{align*}\]
Origin at 222 at 421

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \)

Symmetry Operations

1. \((1)\ 1 \quad (1\ 0,0,0)\)
2. \((2)\ 2\ 0,0,z \quad (2z\ 0,0,0)\)
3. \((3)\ 4^+\ (0,0,1/2)\ 0,0,z \quad (4z\ 0,0,1/2)\)
4. \((4)\ 4^-\ (0,0,1/2)\ 0,0,z \quad (4z^-1\ 0,0,1/2)\)
5. \((5)\ 2\ 0,y,0 \quad (2z\ 0,0,0)\)
6. \((6)\ 2\ x,0,0 \quad (2x\ 0,0,0)\)
7. \((7)\ 2\ x,x,1/4 \quad (2xy\ 0,0,1/2)\)
8. \((8)\ 2\ x,x,1/4 \quad (2xy\ 0,0,1/2)\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 p 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x',y',z' [u',v',w']</td>
</tr>
<tr>
<td></td>
<td>(5) x',y',z' [u',v',w']</td>
<td>(3) y',x',z'+1/2 [v',u',w']</td>
</tr>
<tr>
<td></td>
<td>(7) y',x',z'+1/2 [v',u',w']</td>
<td>(8) y',x',z'+1/2 [v',u',w']</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 o ...2</td>
<td>x,x,3/4 [u,u,0]</td>
<td>x',x,3/4 [u',u,0]</td>
</tr>
<tr>
<td></td>
<td>x',x,1/4 [u',u,0]</td>
<td>x',x,3/4 [u',u,0]</td>
</tr>
<tr>
<td>4 m ...2</td>
<td>x,1/2,0 [u,0,0]</td>
<td>1/2,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>x',x,1/2 [u',0,0]</td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td>4 l ...2</td>
<td>x,0,1/2 [u,0,0]</td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>x',0,1/2 [u',0,0]</td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td>4 k ...2</td>
<td>x,1/2,1/2 [u,0,0]</td>
<td>1/2,x,0 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>x',1/2,1/2 [u',0,0]</td>
<td>0,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td>4 j ...2</td>
<td>x,0,0 [u,0,0]</td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>x',0,0 [u',0,0]</td>
<td>0,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td>4 i ...2</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 h ...2</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 g ...2</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 f 2.22</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 e 2.22</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 d 222.</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 c 222.</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b 222.</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 222.</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4m'm'

\[a^* = a \quad b^* = b\]

Origin at 0,0,z

Along [1,0,0] p2m'm'

\[a^* = b \quad b^* = c\]

Origin at x,0,0

Along [1,1,0] p2m'm'

\[a^* = (-a + b)/2 \quad b^* = c\]

Origin at x,x,1/4
Origin at 222 at 4z21

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4

Symmetry Operations

For 1 + set

1. \(1 (1 0,0,0)
2. \(2 0,0,z (2z 0,0,0)
3. \(4^* (0,0,1/2) 0,0,z (4z 0,0,1/2)
4. \(4^- (0,0,1/2) 0,0,z (4z^-1 0,0,1/2)
5. \(2 0,y,0 (2y 0,0,0)
6. \(2 x,0,0 (2x 0,0,0)
7. \(2 x,x,1/4 (2x 0,0,1/2)
8. \(2 x,x,1/4 (2x 0,0,1/2)

For 1' + set

1. \(1' (1 0,0,0)'
2. \(2' 0,0,z (2z 0,0,0)'
3. \(4'^* (0,0,1/2) 0,0,z (4z 0,0,1/2)'
4. \(4'^- (0,0,1/2) 0,0,z (4z^-1 0,0,1/2)'
5. \(2' 0,y,0 (2y 0,0,0)'
6. \(2' x,0,0 (2x 0,0,0)'
7. \(2' x,x,1/4 (2x 0,0,1/2)'
8. \(2' x,x,1/4 (2x 0,0,1/2)'

93.2.777 - 1 - 1546
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions
Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>1 +</th>
<th>1' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 p 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 o .21'</td>
<td>x,x,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 n .21'</td>
<td>x,x,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 m .21'</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 l .21'</td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td>4 k .21'</td>
<td>x,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,0 [0,0,0]</td>
</tr>
<tr>
<td>4 j .21'</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 i .21'</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 h .21'</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 g .21'</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 f 2221'</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 e 2221'</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 d 2221'</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 c 2221'</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b 2221'</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 2221'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections
Along [0,0,1] p4mm1'
Along [1,0,0] p2mm1'
Along [1,1,0] p2mm1'
\(a^* = a\) \(b^* = b\)
\(a^* = b\) \(b^* = c\)
\(a^* = (-a + b)/2\) \(b^* = c\)
Origin at 0,0,z
Origin at x,0,0
Origin at x,x,1/4
Origin at 222 at 4'21

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \)

Symmetry Operations

1. \(1 \)
2. \(0,0,z \)
3. \(4^+ \cdot (0,0,1/2) \) \(0,0,z \)
4. \(4^- \cdot (0,0,1/2) \) \(0,0,z \)
5. \(0,y,0 \)
6. \(x,0,0 \)
7. \(2^- \cdot x,x,1/4 \)
8. \(2^+ \cdot x,x,1/4 \)

\((1|0,0,0) \)
\((2|0,0,0) \)
\((4|0,0,1/2) \)
\((4|0,0,1/2) \)
\((2|0,0,0) \)
\((2|x,0,0) \)
\((2|x,0,0) \)
\((2|x,0,0) \)

\((2|0,0,0) \)
\((2|x,0,0) \)
\((2|x,0,0) \)
Continued 93.3.778 P4_{22'}

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Positions</th>
<th>Coordinates</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 p 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 o .2'</td>
<td>x,x,3/4 [u,u,w]</td>
<td>x,x,3/4 [u,u,w]</td>
<td>x,x,1/4 [u,u,w]</td>
<td>x,x,1/4 [u,u,w]</td>
</tr>
<tr>
<td>4 n .2'</td>
<td>x,x,1/4 [u,u,w]</td>
<td>x,x,1/4 [u,u,w]</td>
<td>x,x,3/4 [u,u,w]</td>
<td>x,x,3/4 [u,u,w]</td>
</tr>
<tr>
<td>4 m .2'</td>
<td>x,1/2,0 [u,0,0]</td>
<td>x,1/2,0 [u,0,0]</td>
<td>1/2,x,1/2 [0,u,0]</td>
<td>1/2,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td>4 l .2'</td>
<td>x,0,1/2 [u,0,0]</td>
<td>x,0,1/2 [u,0,0]</td>
<td>0,x,0 [0,u,0]</td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td>4 k .2'</td>
<td>x,1/2,1/2 [u,0,0]</td>
<td>x,1/2,1/2 [u,0,0]</td>
<td>1/2,x,0 [0,u,0]</td>
<td>1/2,x,0 [0,u,0]</td>
</tr>
<tr>
<td>4 j .2'</td>
<td>x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
<td>0,x,1/2 [0,u,0]</td>
<td>0,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td>4 i .2''</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 h .2''</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 g .2''</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 f 2.2'2'</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
<td>1/2,1/2,3/4 [0,0,w]</td>
<td>1/2,1/2,3/4 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 e 2.2'2'</td>
<td>0,0,1/4 [0,0,w]</td>
<td>0,0,3/4 [0,0,w]</td>
<td>0,0,3/4 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 d 222.</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 c 222.</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 b 222.</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 222.</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'mm'
Along [1,0,0] p2m'm'
Along [1,1,0] p2'm'm'

\[
a^* = a \quad b^* = b \\
\text{Origin at 0,0,0}
\]

\[
a^* = b \quad b^* = c \\
\text{Origin at x,0,0}
\]

\[
a^* = -c \quad b^* = (-a + b)/2 \\
\text{Origin at x,x,1/4}
\]
Origin at 22'2' at 42'2'1

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4\)

Symmetry Operations

1. \(1\), \(0,0,0\)
2. \(2\), \(0,0,z\)
3. \(2'\), \(0,0,1/2\)
4. \(4'\), \(0,0,0\)
5. \(2'\), \(0,y,0\)
6. \(2'\), \(0,0,0\)
7. \(2'\), \(x,0,1/4\)
8. \(2'\), \(x,0,0\)

\(2'\), \(y,0,0\)
\(2'\), \(0,0,0\)
\(2'\), \(x,x,1/4\)
\(2'\), \(0,0,1/2\)
Continued 93.4.779 P4₂₂'²

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 p 1</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 o .2'</td>
<td>x,x,3/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/4 [u,u,w]</td>
</tr>
<tr>
<td>4 n .2'</td>
<td>x,x,1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [u,u,w]</td>
</tr>
<tr>
<td>4 m .2'</td>
<td>x,1/2,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,0 [0,v,w]</td>
</tr>
<tr>
<td>4 l .2'</td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 k .2'</td>
<td>x,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 j .2'</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>4 i 2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 h 2..</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 g 2..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 f 2.2'²</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>2 e 2.2'²</td>
<td>0,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,3/4 [0,0,w]</td>
</tr>
<tr>
<td>2 d 22'²'</td>
<td>0,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 c 22'²'</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 b 22'²'</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 a 22'²'</td>
<td>0,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm
a⁺ = a b⁺ = b
Origin at 0,0,z

Along [1,0,0] p2'mm'
a⁺ = -c b⁺ = b
Origin at x,0,0

Along [1,1,0] p2'mm'
a⁺ = -c b⁺ = (-a + b)/2
Origin at x,x,1/4

93.4.779 - 2 - 1551
Origin at 2\(\overline{2}\)\(\overline{2}\) at 4\(\overline{2}\)\(\overline{2}\)

Asymmetric unit:
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4\]

Symmetry Operations:

1. \((1)\) \(1\)

 \(1\) \(0,0,0)\)

2. \((2)\) \(2\)

 \(2\) \(0,0,z\)

 \(2\) \(0,0,0)\)

3. \((3)\) \(4^+\)

 \(4^+\) \((0,0,1/2)\)

 \(4^+\) \(0,0,1/2)\)

4. \((4)\) \(4^-\)

 \(4^-\) \((0,0,1/2)\)

 \(4^-\) \(0,0,1/2)\)

5. \((5)\) \(2'\)

 \(2'\) \(0,y,0\)

 \(2'\) \(0,0,0)\)

6. \((6)\) \(2'\)

 \(2'\) \(x,0,0\)

 \(2'\) \(0,0,0)\)

7. \((7)\) \(2\)

 \(2\) \(x,x,1/4\)

 \(2\) \(0,0,1/2)\)

8. \((8)\) \(2\)

 \(2\) \(x,x,1/4\)

 \(2\) \(0,0,1/2)\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 p 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 o .2</td>
<td>x,x,3/4 [u,u,0]</td>
</tr>
<tr>
<td>4 n .2</td>
<td>x,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td>4 m .2'</td>
<td>x,1/2,0 [0,v,w]</td>
</tr>
<tr>
<td>4 l .2'</td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4 j .2'</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>4 i 2..</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 h 2..</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 g 2..</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'm'm' Along [1,0,0] p2'm'm' Along [1,1,0] p2m'm'

\[a^* = a \] \[b^* = b \] \[a^* = -c \] \[b^* = b \] \[a^* = (-a + b)/2 \] \[b^* = c \]

Origin at 0,0,z Origin at x,0,0 Origin at x,x,1/4
Origin at 2'22' at 4_2(22')1

Asymmetric unit \[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4\]

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)
 \[(1)\ (0,0,0)\]
2. \(2'\)
 \[(2)\ 0,0,z\]
 \[(2z_1)\ 0,0,0)\]
3. \(4^*\)
 \[(3)\ (0,0,1/2)\ 0,0,z\]
 \[
 (4z_1)\ 0,0,1/2)\]
4. \(4^-\)
 \[(4)\ (0,0,1/2)\ 0,0,z\]
 \[
 (4z_1)\ 0,0,1/2)\]
5. \(2'\)
 \[(5)\ 0,y,0\]
 \[(2z_1)\ 0,0,0)\]
6. \(2\)
 \[(6)\ x,0,0\]
 \[
 (2z_1)\ 0,0,0)\]
7. \(2\)
 \[(7)\ x,x,1/4\]
 \[
 (2xy)\ 0,0,1/2)\]
8. \(2'\)
 \[(8)\ x,x,1/4\]
 \[
 (2xy)\ 0,0,1/2)\]

For \((0,0,1)\) + set

1. \(t'\)
 \[(1)\ (0,0,1)\]
 \[(1)\ 0,0,1)\]
2. \(2\)
 \[(2)\ (0,0,1)\ 0,0,z\]
 \[
 (2z_1)\ 0,0,1)\]
3. \(4^*\)
 \[(3)\ (0,0,3/2)\ 0,0,z\]
 \[
 (4z_1)\ 0,0,3/2)\]
4. \(4^-\)
 \[(4)\ (0,0,3/2)\ 0,0,z\]
 \[
 (4z_1)\ 0,0,3/2)\]
5. \(2\)
 \[(5)\ 0,y,1/2\]
 \[
 (2z_1)\ 0,0,1)\]
6. \(2'\)
 \[(6)\ x,0,1/2\]
 \[
 (2z_1)\ 0,0,1)\]
7. \(2'\)
 \[(7)\ x,x,3/4\]
 \[
 (2xy)\ 0,0,3/2)\]
8. \(2\)
 \[(8)\ x,x,3/4\]
 \[
 (2xy)\ 0,0,3/2)\]
Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

Continued

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 p</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) y,x,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 o</td>
<td>x,x,3/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 n</td>
<td>x,x,1/4 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>8 m</td>
<td>x,1/2,0 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 l</td>
<td>x,0,1/2 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 k</td>
<td>x,1/2,1/2 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 j</td>
<td>x,0,0 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 i</td>
<td>0,1/2,z [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 h</td>
<td>1/2,1/2,z [v,u,0]</td>
<td></td>
</tr>
<tr>
<td>4 g</td>
<td>0,0,0 [v,u,0]</td>
<td></td>
</tr>
<tr>
<td>4 f</td>
<td>1/2,1/2,1/4 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>4 e</td>
<td>0,0,1/4 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>4 d</td>
<td>0,1/2,1/2 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 c</td>
<td>0,1/2,0 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 b</td>
<td>1/2,1/2,0 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,0 [u,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1'
Along [1,0,0] p2a'2mm
Along [1,1,0] p2a'2mm

a* = a b* = b
a* = -c b* = b
a* = -c b* = (-a + b)/2

Origin at 0,0,0
Origin at x,0,0
Origin at x,x,1/4
Origin at 222 at 4\textsubscript{2}1

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4$

Symmetry Operations

For $(0,0,0)$ + set

(1) 1
(1) 0,0,0

(2) 1 0,0,z
(2\textsubscript{x} 0,0,0)

(3) 4* (0,0,1/2) 0,0,z
(4\textsubscript{x} 0,0,1/2)

(4) 4* (0,0,1/2) 0,0,z
(4\textsubscript{x} 0,0,1/2)

For $(1,0,0)' + set

(1) t' (1,0,0)
(1) 1,0,0)

(2) 2' 1/2,0,z
(2\textsubscript{x} 1,0,0)

(3) 4*' (0,0,1/2) 1/2,1/2,z
(4\textsubscript{x} 1,0,1/2)

(4) 4*' (0,0,1/2) 1/2,-1/2,z
(4\textsubscript{x} 1,0,1/2)

For $(1,0,0)' + set

(1) t' (1,0,0)
(1) 1,0,0)

(2) 2' 1/2,0,z
(2\textsubscript{x} 1,0,0)

(3) 4*' (0,0,1/2) 1/2,1/2,z
(4\textsubscript{x} 1,0,1/2)

(4) 4*' (0,0,1/2) 1/2,-1/2,z
(4\textsubscript{x} 1,0,1/2)
Generators selected (1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 p</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x',y',z' [u',v',w']</td>
</tr>
<tr>
<td>8 o</td>
<td>x,x,3/4 [u,u,0]</td>
<td>x',x,1/4 [u',u,0]</td>
</tr>
<tr>
<td>8 n</td>
<td>x,x,1/4 [u,u,0]</td>
<td>x',x,3/4 [u',u,0]</td>
</tr>
<tr>
<td>8 m</td>
<td>x,1/2,0 [0,v,w]</td>
<td>x',1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 l</td>
<td>x,0,1/2 [u,0,0]</td>
<td>x',0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 k</td>
<td>x,1/2,1/2 [0,v,w]</td>
<td>x',1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 j</td>
<td>x,0,0 [u,0,0]</td>
<td>x',0,0 [u,0,0]</td>
</tr>
<tr>
<td>8 i</td>
<td>0,1/2,z [u,v,0]</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>8 h</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>8 g</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 f</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 e</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 d</td>
<td>0,1/2,1/2 [0,v,0]</td>
<td>0,1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 c</td>
<td>0,1/2,0 [0,v,0]</td>
<td>0,1/2,0 [0,v,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] \(p_0 \): 4m'm'
 \(a^* = a \quad b^* = b \)
 Origin at 0,0,z

- Along [1,0,0] \(p_{2mm} \): 1'1'
 \(a^* = b \quad b^* = c \)
 Origin at x,0,0

- Along [1,1,0] \(p_{2a} \): 2m'm'
 \(a^* = (-a + b)/2 \quad b^* = c \)
 Origin at x,x,1/4

93.7.782 - 2 - 1557
Origin at 2'22' at 42 (2,2')1

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

For (0,0,0) + set

(1) \(\mathbf{1} \)
(1) \((0,0,0) \)
(2) \(2' \; 0,0,z \)
(2) \((2z,0,0) \)
(3) \(4' \; (0,0,1/2) \; 0,0,z \)
(3) \((4z,0,0,1/2) \)
(4) \(4' \; (0,0,1/2) \; 0,0,z \)
(4) \((4z,0,0,1/2) \)

For (1,0,0)' + set

(1) \(t' \; (1,0,0) \)
(1) \((1,0,0)' \)
(2) \(2 \; 1/2,0,z \)
(2) \((2z,1,0,0) \)
(3) \(4' \; (0,0,1/2) \; 1/2,1/2,z \)
(3) \((4z,1,0,1/2) \)
(4) \(4' \; (0,0,1/2) \; 1/2,-1/2,z \)
(4) \((4z,1,0,1/2) \)

Generators selected

(1); \(t'(1,0,0) \); \(t'(0,1,0) \); \(t'(0,0,1) \); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[(0,0,0) + \quad (1,0,0)' + \]

\[16 \quad p \quad 1 \]

(1) \(x,y,z \; [u,v,w] \)
(2) \(x,y,z \; [u,v,w] \)
(3) \(y,x,z+1/2 \; [v,u,w] \)
(4) \(y,x,z+1/2 \; [v,u,w] \)

(5) \(x,y,z \quad [u,v,w] \)
(6) \(x,y,z \quad [u,v,w] \)
(7) \(y,x,z+1/2 \; [v,u,w] \)
(8) \(y,x,z+1/2 \; [v,u,w] \)

\[8 \quad o \quad .2' \]

(1) \(x,x,3/4 \; [u,u,w] \)
(2) \(x,x,3/4 \; [u,u,w] \)
(3) \(x,x,3/4 \; [v,u,w] \)
(4) \(x,x,3/4 \; [v,u,w] \)

\[8 \quad n \quad .2 \]

(1) \(x,x,1/4 \; [u,u,0] \)
(2) \(x,x,1/4 \; [u,u,0] \)
(3) \(x,x,1/4 \; [v,u,0] \)
(4) \(x,x,1/4 \; [v,u,0] \)

\[8 \quad m \quad .2' \]

(1) \(x,1/2,0 \; [0,v,w] \)
(2) \(x,1/2,0 \; [0,v,w] \)
(3) \(x,1/2,0 \; [0,v,w] \)
(4) \(x,1/2,0 \; [0,v,w] \)

\[8 \quad l \quad .2' \]

(1) \(x,0,1/2 \; [0,v,w] \)
(2) \(x,0,1/2 \; [0,v,w] \)
(3) \(x,0,1/2 \; [0,v,w] \)
(4) \(x,0,1/2 \; [0,v,w] \)

\[8 \quad k \quad .2 \]

(1) \(x,1/2,1/2 \; [u,0,0] \)
(2) \(x,1/2,1/2 \; [u,0,0] \)
(3) \(x,1/2,1/2 \; [u,0,0] \)
(4) \(x,1/2,1/2 \; [u,0,0] \)

\[8 \quad j \quad .2 \]

(1) \(x,0,0 \; [u,0,0] \)
(2) \(x,0,0 \; [u,0,0] \)
(3) \(x,0,0 \; [u,0,0] \)
(4) \(x,0,0 \; [u,0,0] \)

\[8 \quad i \quad .2' \]

(1) \(0,1/2,z \; [0,0,w] \)
(2) \(0,1/2,z \; [0,0,w] \)
(3) \(0,1/2,z \; [0,0,w] \)
(4) \(0,1/2,z \; [0,0,w] \)

\[8 \quad h \quad .2' \]

(1) \(1/2,1/2,z \; [v,u,0] \)
(2) \(1/2,1/2,z \; [v,u,0] \)
(3) \(1/2,1/2,z \; [v,u,0] \)
(4) \(1/2,1/2,z \; [v,u,0] \)

\[8 \quad g \quad .2' \]

(1) \(0,0,z \; [u,v,0] \)
(2) \(0,0,z \; [u,v,0] \)
(3) \(0,0,z \; [u,v,0] \)
(4) \(0,0,z \; [u,v,0] \)

\[4 \quad f \quad .2',22' \]

(1) \(1/2,1,2,1/4 \; [u,u,0] \)
(2) \(1/2,1,2,1/4 \; [u,u,0] \)
(3) \(1/2,1,2,1/4 \; [u,u,0] \)
(4) \(1/2,1,2,3/4 \; [u,u,0] \)

\[4 \quad e \quad .2',22' \]

(1) \(0,0,1/4 \; [u,u,0] \)
(2) \(0,0,1/4 \; [u,u,0] \)
(3) \(0,0,1/4 \; [u,u,0] \)
(4) \(0,0,1/4 \; [u,u,0] \)
Symmetry of Special Projections

Along [0,0,1] p4mm1’
\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along [1,0,0] p2mm1’
\[\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,0,0

Along [1,1,0] p_\infty 2mm
\[\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,x,1/4
Origin at 2'22' at 42'21

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

For (0,0,0) + set

1. \(\{1\} \)
2. \(\{2'\} 0,0,z \) \((2_z|0,0,0)' \)
3. \(\{4'\} (0,0,1/2) 0,0,z \) \((4_z|0,0,1/2)' \)
4. \(\{4'\} (0,0,1/2) 0,0,z \) \((4_z^{-1}|0,0,1/2) \)
5. \(\{2'\} 0,y,0 \) \((2_y|0,0,0)' \)
6. \(\{2\} x,0,0 \) \((2_x|0,0,0) \)
7. \(\{2'\} x,x,1/4 \) \((2_{xy}|0,0,1/2)' \)
8. \(\{2\} x,x,1/4 \) \((2_{xy}|0,0,1/2) \)

For (0,0,1) + set

1. \(\{t'\} (0,0,1) \)
2. \(\{2\} (0,0,1) 0,0,z \) \((2_z|0,0,1) \)
3. \(\{4'\} (0,0,3/2) 0,0,z \) \((4_z|0,0,3/2) \)
4. \(\{4'\} (0,0,3/2) 0,0,z \) \((4_z^{-1}|0,0,3/2)' \)
5. \(\{2\} 0,y,1/2 \) \((2_y|0,0,1) \)
6. \(\{2'\} x,0,1/2 \) \((2_x|0,0,1)' \)
7. \(\{2\} x,x,3/4 \) \((2_{xy}|0,0,3/2) \)
8. \(\{2'\} x,x,3/4 \) \((2_{xy}|0,0,3/2)' \)
Generators selected: (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 p</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,-y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 o</td>
<td>.2</td>
<td>x,x,3/4 [u,u,0]</td>
<td>x,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td>8 n</td>
<td>.2'</td>
<td>x,x,1/4 [u,u,w]</td>
<td>x,x,3/4 [u,u,w]</td>
</tr>
<tr>
<td>8 m</td>
<td>.2</td>
<td>x,1/2,0 [u,0,0]</td>
<td>1/2,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td>8 l</td>
<td>.2'</td>
<td>x,0,1/2 [0,v,w]</td>
<td>0,x,0 [v,0,w]</td>
</tr>
<tr>
<td>8 k</td>
<td>.2'</td>
<td>x,1/2,1/2 [0,v,w]</td>
<td>1/2,x,0 [v,0,w]</td>
</tr>
<tr>
<td>8 j</td>
<td>.2</td>
<td>x,0,0 [u,0,0]</td>
<td>0,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td>8 i</td>
<td>.2'</td>
<td>0,1/2,z [u,v,0]</td>
<td>1/2,0,z+1/2 [v,u,0]</td>
</tr>
<tr>
<td>8 h</td>
<td>.2'</td>
<td>1/2,1/2,z [u,v,0]</td>
<td>1/2,1/2,z [v,u,0]</td>
</tr>
<tr>
<td>8 g</td>
<td>.2'</td>
<td>0,0,z [u,v,0]</td>
<td>0,0,z+1/2 [v,u,0]</td>
</tr>
<tr>
<td>4 f</td>
<td>2',2'</td>
<td>1/2,1/2,1/4 [u,u,0]</td>
<td>1/2,1/2,3/4 [u,u,0]</td>
</tr>
<tr>
<td>4 e</td>
<td>2',2'</td>
<td>0,0,1/4 [u,u,0]</td>
<td>0,0,3/4 [u,u,0]</td>
</tr>
<tr>
<td>4 d</td>
<td>2',2'</td>
<td>0,1/2,1/2 [0,v,0]</td>
<td>1/2,0,0 [v,0,0]</td>
</tr>
<tr>
<td>4 c</td>
<td>2',2'</td>
<td>0,1/2,0 [u,0,0]</td>
<td>1/2,0,1/2 [0,u,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>2',2'</td>
<td>1/2,1/2,0 [u,0,0]</td>
<td>1/2,1/2,1/2 [0,u,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>2',2'</td>
<td>0,0,0 [u,0,0]</td>
<td>0,0,1/2 [0,u,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1'

a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p2a* 2mm

a* = -c b* = b
Origin at x,0,0

Along [1,1,0] p2a* 2mm

a* = -c b* = (-a + b)/2
Origin at x,x,3/4
Origin at 222 at 4'21

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

For \((0,0,0) + \) set

<table>
<thead>
<tr>
<th>Number</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((1,0,0))</td>
</tr>
<tr>
<td>(1) 1</td>
<td>((0,0,0))</td>
</tr>
<tr>
<td>(2) 2</td>
<td>(0,0,z)</td>
</tr>
<tr>
<td>(2) 2</td>
<td>((2_z,0,0,0))</td>
</tr>
<tr>
<td>(3) 4'</td>
<td>((0,0,1/2),0,0,z)</td>
</tr>
<tr>
<td>(4) 4'</td>
<td>((0,0,1/2),0,0,z)</td>
</tr>
</tbody>
</table>

For \((1,0,0)' + \) set

<table>
<thead>
<tr>
<th>Number</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t'</td>
<td>((1,0,0))</td>
</tr>
<tr>
<td>(1) t'</td>
<td>((1,1,0,0))</td>
</tr>
<tr>
<td>(2) 2'</td>
<td>(1/2,0,0)</td>
</tr>
<tr>
<td>(2) 2'</td>
<td>((2_z,1,0,0))</td>
</tr>
<tr>
<td>(3) 4'</td>
<td>((0,0,1/2),1/2,1/2,z)</td>
</tr>
<tr>
<td>(4) 4'</td>
<td>((0,0,1/2),1/2,1/2,z)</td>
</tr>
</tbody>
</table>

The diagram illustrates the Crystal System P\(_p\) 4'22' with unit cell parameters and symmetry operations. The asymmetric unit and origin are marked, and the symmetry operations are listed for both \((0,0,0)\) and \((1,0,0)\) sets.
Generators selected
(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinantes

\[(0,0,0) + \ (1,0,0)'+ \]

\[
\begin{array}{cccc}
16 & p & 1 & (1) \ x,y,z \ [u,v,w] \\
 & & & (2) \bar{x},y,z \ [\bar{u},v,w] \\
 & & & (3) \ y,x,z+1/2 \ [v,\bar{u},\bar{w}] \\
 & & & (4) \ y,x,z+1/2 \ [v,\bar{u},\bar{w}] \\
 & & & (5) \bar{x},y,z \ [\bar{u},v,w] \\
8 & o & ..2' & x,x,3/4 \ [u,\bar{u},w] \\
 & & & \bar{x},\bar{x},3/4 \ [\bar{u},u,w] \\
8 & n & ..2' & x,x,1/4 \ [u,\bar{u},w] \\
 & & & \bar{x},\bar{x},1/4 \ [\bar{u},u,w] \\
8 & m & .2' & x,1/2,0 \ [0,v,w] \\
 & & & \bar{x},1/2,0 \ [\bar{v},u,w] \\
8 & l & .2 & x,0,1/2 \ [u,0,0] \\
 & & & \bar{x},0,1/2 \ [\bar{u},0,0] \\
8 & k & .2' & x,1/2,1/2 \ [0,v,w] \\
 & & & \bar{x},1/2,1/2 \ [\bar{v},0,w] \\
8 & j & .2 & x,0,0 \ [u,0,0] \\
 & & & \bar{x},0,0 \ [\bar{u},0,0] \\
8 & i & ..2' & 0,1/2,z \ [u,v,0] \\
 & & & 1/2,0,z+1/2 \ [\bar{v},0,w] \\
8 & h & .2 & 1/2,1/2,z \ [0,0,w] \\
 & & & 1/2,1/2,z \ [0,0,w] \\
8 & g & .2 & 0,0,z \ [0,0,w] \\
 & & & 0,z+1/2 \ [0,0,w] \\
4 & f & 2.2' & 1/2,1/2,1/4 \ [0,0,w] \\
 & & & 1/2,1/2,3/4 \ [0,0,w] \\
4 & e & 2.2' & 0,0,1/4 \ [0,0,w] \\
 & & & 0,3/4 \ [0,0,w] \\
4 & d & 22' & 0,1/2,1/2 \ [0,v,0] \\
 & & & 1/2,0,0 \ [\bar{v},0,w] \\
4 & c & 22' & 0,1/2,0 \ [0,v,0] \\
 & & & 1/2,0,1/2 \ [\bar{v},0,w] \\
4 & b & 22' & 1/2,1/2,0 \ [0,0,w] \\
 & & & 1/2,1/2,1/2 \ [0,0,w] \\
4 & a & 222 & 0,0,0 \ [0,0,0] \\
 & & & 0,1/2 \ [0,0,0] \\
\end{array}
\]

Symmetry of Special Projections

Along [0,0,1] \(p_r \), 4mm
\(a^* = a \ \ b^* = b \)
Origin at 1/2,1/2,z

Along [1,0,0] \(p2mm1' \)
\(a^* = b \ \ b^* = c \)
Origin at x,0,0

Along [1,1,0] \(p_{2e} \), 2mm
\(a^* = (-a + b)/2 \ \ b^* = c \)
Origin at x-1/4,x+1/4,1/4
P4₂ 2₁ 2₁
94.1.786

P4₂ 2₁ 2₁
422

Tetragonal

Origin on 222 at 212

Asymmetric unit

\[
0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2
\]

Symmetry Operations

(1) 1
(2) 2 0,0,0
(3) 4⁺ (0,0,1/2) 0,1/2,z
(4) 4⁻ (0,0,1/2 1/2,0,z

(5) 2 (0,1/2,0) 1/4,y,1/4
(2₁ 1/2,1/2,1/2)
(6) 2 (1/2,0,0) x,1/4,1/4
(2₁ 1/2,1/2,1/2)
(7) 2 x,x,0
(2ₓ 0,0,0)
(8) 2 x,0,0
(2ₓ 0,0,0)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w] (4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w] (6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w] (8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4 f .2</td>
<td>x,x,1/2 [u,u,0] x,x,1/2 [u,u,0] x+1/2,x+1/2,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0]</td>
</tr>
<tr>
<td>4 e .2</td>
<td>x,x,0 [u,u,0] x,x,0 [u,u,0] x+1/2,x+1/2,1/2 [u,u,0] x+1/2,x+1/2,1/2 [u,u,0]</td>
</tr>
<tr>
<td>4 d 2..</td>
<td>0,1/2,z [0,0,w] 0,1/2,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 c 2..</td>
<td>0,0,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 b 2.22</td>
<td>0,0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 a 2.22</td>
<td>0,0,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4g'm'
Along [1,0,0] p2m'g'
Along [1,1,0] p2m'm'

\[\mathbf{a}^* = \mathbf{a} \]
\[\mathbf{b}^* = \mathbf{b} \]
\[\mathbf{a}^* = \mathbf{b} \]
\[\mathbf{b}^* = \mathbf{c} \]
\[\mathbf{a}^* = \mathbf{a} + \mathbf{b} \]
\[\mathbf{b}^* = \mathbf{c} \]
\[\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \]
\[\mathbf{b}^* = \mathbf{c} \]

Origin at 0,1/2,z
Origin at x,1/4,1/4
Origin at x,x,0
Origin on $2221'$ at $2121'$

Asymmetric unit $0 \leq x \leq 1/2$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1/2$

Symmetry Operations

For 1 + set

(1) 1
(1) 0,0,0

(2) 2 0,0,z
(2) $0,0,0$

(3) 4' (0,0,1/2) 0,1/2,z
(4) $4,1/2,1/2,1/2,1/2$

(4) $4,1/2,1/2,1/2,1/2$

For 1' + set

(1) 1'
(1) 0,0,0'

(2) 2' 0,0,z
(2) $0,0,0'$

(3) 4'' (0,0,1/2) 0,1/2,z
(4) $4,1/2,1/2,1/2,1/2$

(4) $4,1/2,1/2,1/2,1/2$

(5) 2' (0,1/2,0) 1/4,y,1/4
(5) $1/2,1/2,1/2$

(6) 2' (1/2,0,0) x,1/4,1/4
(6) $2x,1/2,1/2,1/2$

(7) 2' x,x,0
(7) $2x,0,0,0$

(8) 2' x,x,0
(8) $2x,0,0,0$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 11' (1) x,y,z [0,0,0] (2) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(3) y+1/2,x+1/2,z+1/2 [0,0,0] (4) y+1/2,x+1/2,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z+1/2 [0,0,0] (6) x+1/2,y+1/2,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(7) y,x,z [0,0,0] (8) y,x,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 f .21' x,x,1/2 [0,0,0] x,x,1/2 [0,0,0] x+1/2,x+1/2,0 [0,0,0] x+1/2,x+1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 e .21' x,x,0 [0,0,0] x,x,0 [0,0,0] x+1/2,x+1/2,1/2 [0,0,0] x+1/2,x+1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 d 2.1' 0,1/2,z [0,0,0] 0,1/2,z+1/2 [0,0,0] 1/2,0,z+1/2 [0,0,0] 1/2,0,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 c 2.1' 0,0,z [0,0,0] 1/2,1/2,z+1/2 [0,0,0] 1/2,1/2,z+1/2 [0,0,0] 0,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 b 2.221' 0,0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 2.221' 0,0,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin at 0,1/2,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1] p4gm1' a* = a b* = b</td>
</tr>
<tr>
<td>Along [1,0,0] p2mg1' a* = b b* = c</td>
</tr>
<tr>
<td>Along [1,1,0] p2mm1' a* = (-a + b)/2 b* = c</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
</tr>
<tr>
<td>Along [1,0,0] p2mg1' a* = b b* = c</td>
</tr>
<tr>
<td>Along [1,1,0] p2mm1' a* = (-a + b)/2 b* = c</td>
</tr>
<tr>
<td>Origin at x,1/4,1/4</td>
</tr>
<tr>
<td>Along [1,0,0] p2mg1' a* = b b* = c</td>
</tr>
<tr>
<td>Along [1,1,0] p2mm1' a* = (-a + b)/2 b* = c</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Origin on 22'2' at 212'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

(1) 1
 (1) 0,0,0
(2) 2 0,0,z
 (2) z 0,0,0
(3) 4+ ' (0,0,1/2) 0,1/2,z
 (3z) 1/2,1/2,1/2
(4) 4- ' (0,0,1/2) 1/2,0,z
 (4z) -1 1/2,1/2,1/2
(5) 2 (0,1/2,0) 1/4,y,1/4
 (5z) 1/2,1/2,1/2
(6) 2 (1/2,0,0) x,1/4,1/4
 (6z) 1/2,1/2,1/2
(7) 2' x,x,0
 (7z) 0,0,0
(8) 2' x,x,0
 (8z) 0,0,0

P4₁'2', 2'

94.3.788

P4₁'2', 2'

Tetragonal
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w] (4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w] (6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w] (8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4 f ..2'</td>
<td>x,x,1/2 [u,u,w] x,x,1/2 [u,u,w] x+1/2,x+1/2,0 [u,u,w] x+1/2,x+1/2,0 [u,u,w]</td>
</tr>
<tr>
<td>4 e ..2'</td>
<td>x,x,0 [u,u,w] x,x,0 [u,u,w] x+1/2,x+1/2,1/2 [u,u,w] x+1/2,x+1/2,1/2 [u,u,w]</td>
</tr>
<tr>
<td>4 d 2'</td>
<td>0,1/2,z [0,0,w] 0,1/2,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 c 2'</td>
<td>0,0,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 b 2.2'</td>
<td>0,0,1/2 [0,0,w] 1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 a 2.2'</td>
<td>0,0,0 [0,0,w] 1/2,1/2,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** p4g'm'
 - \(a^* = a \) \(b^* = b \)
 - Origin at 0,1/2,z

- **Along [1,0,0]** p2m'g'
 - \(a^* = b \) \(b^* = c \)
 - Origin at x,1/4,1/4

- **Along [1,1,0]** p2'mm'
 - \(a^* = -c \) \(b^* = (-a + b)/2 \)
 - Origin at x,x,0
Origin on 22'2' at 212'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

1. \(1 \)

 \[
 (1) \begin{cases}
 0,0,0 \\
 (1,0,0,0)
 \end{cases}
 \]

2. \(2 \)

 \[
 (2) 2 \quad (0,0,z) \\
 (2_x 0,0,0)
 \]

3. \(4' \)

 \[
 (3) 4' (0,0,1/2) \quad 0,1/2,z \\
 (4_z 1/2,1/2,1/2)
 \]

4. \(4' \)

 \[
 (4) 4' (0,0,1/2) \quad 1/2,0,z \\
 (4_z^{-1} 1/2,1/2,1/2)
 \]

5. \(2' \)

 \[
 (5) 2' (0,1/2,0) \quad 1/4,y,1/4 \\
 (2_y 1/2,1/2,1/2)
 \]

6. \(2' \)

 \[
 (6) 2' (1/2,0,0) \quad x,1/4,1/4 \\
 (2_x 1/2,1/2,1/2)
 \]

7. \(2' \)

 \[
 (7) 2' x,x,0 \\
 (2_x 0,0,0)
 \]

8. \(2' \)

 \[
 (8) 2' x,x,0 \\
 (2_x 0,0,0)
 \]

\[94.4.789 - 1 - 1571 \]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 f ..2'</td>
<td>x,x,1/2 [u,u,w]</td>
<td>x,x,1/2 [u,u,w]</td>
<td>x+1/2,x+1/2,0 [u,u,w]</td>
</tr>
<tr>
<td>4 e ..2'</td>
<td>x,x,0 [u,u,w]</td>
<td>x,x,0 [u,u,w]</td>
<td>x+1/2,x+1/2,1/2 [u,u,w]</td>
</tr>
<tr>
<td>4 d .2'</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 c .2'</td>
<td>0,0,z [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 b 2.2'2'</td>
<td>0,0,1/2 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 a 2.2'2'</td>
<td>0,0,0 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm | Along [1,0,0] p2'mg' | Along [1,1,0] p2'mm'
\(a^* = a\) \(b^* = b\) | \(a^* = b\) \(b^* = c\) | \(a^* = -c\) \(b^* = (-a + b)/2\)
Origin at 0,1/2,z | Origin at x,1/4,1/4 | Origin at x,x,0
Origin on 222 at 212

Asymmetric unit \(0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1/2\)

Symmetry Operations

1. \(1\)
 \(1|0,0,0\)

2. \(2\)
 \(0,0,z\)
 \(2_z|0,0,0\)

3. \(4^+\)
 \((0,0,1/2)\)
 \(0,1/2,z\)
 \(4_z |1/2,1/2,1/2\)

4. \(4^-\)
 \((0,0,1/2)\)
 \(1/2,0,z\)
 \(4_z^- |1/2,1/2,1/2\)

5. \(2^+\)
 \((0,1/2,0)\)
 \(1/4,y,1/4\)
 \((2_y |1/2,1/2,1/2)\)

6. \(2^-\)
 \((1/2,0,0)\)
 \(x,1/4,1/4\)
 \((2_x |1/2,1/2,1/2)\)

7. \(2\)
 \(x,x,0\)
 \((2_{xy} |0,0,0)\)

8. \(2\)
 \(x,x,0\)
 \((2_{xy} |0,0,0)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4 f .2</td>
<td>x,x,1/2 [u,u,0]</td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,0 [u,0,0]</td>
<td>x+1/2,x+1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4 e .2</td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/2 [u,u,0]</td>
<td>x+1/2,x+1/2,1/2 [u,u,0]</td>
</tr>
<tr>
<td>4 d 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 c 2..</td>
<td>0,0,z [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 b 2.22</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 2.22</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p4g'm'
 \[\mathbf{a}^* = \mathbf{a}, \quad \mathbf{b}^* = \mathbf{b} \]
- Along [1,0,0] p2m'g'
 \[\mathbf{a}^* = \mathbf{b}, \quad \mathbf{b}^* = \mathbf{c} \]
- Along [1,1,0] p2m'm'
 \[\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2, \quad \mathbf{b}^* = \mathbf{c} \]

Origin at 0,1/2,z
Origin at x,1/4,1/4
Origin at x,x,0
Origin on 2'22 at 2'12

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set:

1. \(1\)

2. \(2'\) 0,0,z
 \((2_z 0,0,0)\)

3. \(4^*\) (0,0,1/2) 0,1/2,z
 \((4_z 1/2,1/2,1/2)\)

4. \(4^{-1}\) (0,0,1/2) 1/2,0,z
 \((4_z^{-1} 1/2,1/2,1/2)\)

For (0,0,1') + set:

1. \(t'\) (0,0,1)
 \((1 0,0,1)\)

2. \(2\) (0,0,1) 0,0,z
 \((2_z 0,0,1)\)

3. \(4^*\) (0,0,3/2) 0,1/2,z
 \((4_z 1/2,1/2,3/2)\)

4. \(4^{-1}\) (0,0,3/2) 1/2,0,z
 \((4_z^{-1} 1/2,1/2,3/2)\)

For (0,1,0) + set:

5. \(2\) (0,1/2,0) 1/4,y,1/4
 \((2_y 1/2,1/2,1/2)\)

6. \(2'\) (1/2,0,0) x,1/4,1/4
 \((2_x 1/2,1/2,1/2)\)

7. \(2'\) x,x,0
 \((2_{xy} 0,0,0)\)

8. \(2\) x,x,0
 \((2_{xy} 0,0,0)\)

9. \(94.6.791 - 1 - 1575\)
Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g 1</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td>16 g 2</td>
<td>16 g 3</td>
</tr>
<tr>
<td>16 g 4</td>
<td>16 g 5</td>
</tr>
<tr>
<td>16 g 6</td>
<td>16 g 7</td>
</tr>
<tr>
<td>16 g 8</td>
<td>16 g 9</td>
</tr>
</tbody>
</table>

8 f ..2	x,x,1/2 [u,u,0]
8 e ..2'	x,x,0 [u,u,0]
8 d 2'	1/2,0,z+1/2 [v,u,0]
8 c 2'	1/2,1/2,z+1/2 [v,u,0]
4 b 2'2'	0,0,1/2 [u,u,0]
4 a 2'2'2	0,0,0 [u,u,0]

Symmetry of Special Projections

Along [0,0,1] \(\text{p4gm1'} \)
\(a^* = a \quad b^* = b \)
Origin at 0,1/2,z

Along [1,0,0] \(\text{p}_{2a} \) \(\text{2mg} \)
\(a^* = b \quad b^* = c \)
Origin at x,1/4,1/4

Along [1,1,0] \(\text{p}_{2a} \) \(\text{2mm} \)
\(a^* = -c \quad b^* = (-a + b)/2 \)
Origin at x,x,1/2
Origin on $2'2'2'$ at $2(1,2')(2',1)$

Asymmetric unit

\[0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/2\]

Symmetry Operations

For $(0,0,0)$ + set

1. 1
 - \[(0,0,0)\]

2. $2' \ 0,0,z$
 - \[(2_z,0,0,0)\]

3. $4^+ \ (0,0,1/2) \ 0,1/2,z$
 - \[(4_z|1/2,1/2,1/2)'\]

4. $4^- \ (0,0,1/2) \ 1/2,0,z$
 - \[(4_z^{-1}|1/2,1/2,1/2)\]

For $(0,0,1)'$ + set

1. $t' \ (0,0,1)$
 - \[(1,0,0,1)\]

2. $2 \ (0,0,1) \ 0,0,z$
 - \[(2_z,0,0,1)\]

3. $4^+ \ (0,0,3/2) \ 0,1/2,z$
 - \[(4_z|1/2,1/2,3/2)\]

4. $4^- \ (0,0,3/2) \ 1/2,0,z$
 - \[(4_z^{-1}|1/2,1/2,3/2)'\]

For $(0,1,1)$ + set

5. $2' \ (0,1/2,0) \ 1/4,y,1/4$
 - \[(2_y|1/2,1/2,1/2)'\]

6. $2' \ (1/2,0,0) \ x,1/4,1/4$
 - \[(2_x|1/2,1/2,1/2)'\]

7. $2' \ x,x,0$
 - \[(2_x|x,0,0)'\]

8. $2 \ x,x,0$
 - \[(2_x|x,0,0)'\]
Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g 1</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td>(1) x,y,z</td>
<td>(2) x,y,z</td>
</tr>
<tr>
<td>(3) y+1/2,x+1/2,z+1/2</td>
<td>(4) y+1/2,x+1/2,z+1/2</td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z+1/2</td>
<td>(6) x+1/2,y+1/2,z+1/2</td>
</tr>
<tr>
<td>(7) y,x,z</td>
<td>(8) y,x,z</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm1'
Along [1,0,0] p2a' 2mg
Along [1,1,0] p2a' 2mm

\[a^* = a \quad b^* = b \]
Origin at 0,1/2,z

\[a^* = b \quad b^* = c \]
Origin at x,1/4,3/4

\[a^* = -c \quad b^* = (-a + b)/2 \]
Origin at x,x,1/2
Origin on 2 [0,1,0] at 43 (1,2) 1

Asymmetric unit
0 ≤ x ≤ 1;
0 ≤ y ≤ 1;
0 ≤ z ≤ 1/8

Symmetry Operations

(1) 1
(1|0,0,0)

(2) 2 (0,0,1/2) 0,0,z
(2z|0,0,1/2)

(3) 4+ (0,0,3/4) 0,0,z
(4z|0,0,3/4)

(4) 4- (0,0,1/4) 0,0,z
(4z⁻¹|0,0,1/4)

(5) 2 0,y,0
(2|0,0,0)

(6) 2 x,0,1/4
(2x|0,0,1/2)

(7) 2 x,x,1/8
(2xx|0,0,1/4)

(8) 2 x,x,3/8
(2xx|0,0,3/4)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions
Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>5 x,y,z [u,v,w]</td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 c ..2</td>
<td>x,x,5/8 [u,u,0]</td>
<td>x,x,1/8 [u,u,0]</td>
</tr>
<tr>
<td>4 b .2</td>
<td>1/2,y,0 [0,v,0]</td>
<td>1/2,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4 a .2</td>
<td>0,y,0 [0,v,0]</td>
<td>0,y,1/2 [0,v,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections
Along [0,0,1] p4m'm'
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] p2m'g'
\(a^* = -c \quad b^* = b \)
Origin at x,0,1/4

Along [1,1,0] p2m'g'
\(a^* = -c \quad b^* = (-a + b)/2 \)
Origin at x,x,1/8
Origin on $2 \{0,1,0\} 1'$ at $4_3 (1,2) 11'$

Asymmetric unit $\quad 0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/8$

Symmetry Operations

For 1 + set

(1) 1
 (1) $0,0,0$

(2) 2 $\{0,0,1/2\}$ $0,0,z$
 (2) $z,0,0,1/2$

(3) $4^+ (0,0,3/4)$ $0,0,z$
 (4) $4^+ (0,0,1/4)$ $0,0,z$
 (4) $z,0,0,1/4$

(5) 2 $0,y,0$
 (2) $0,0,0$

(6) 2 $x,0,1/4$
 (6) $z,0,0,1/2$

(7) 2 $x,x,1/8$
 (7) $x,x,0,0,1/4$

(8) 2 $x,x,3/8$
 (8) $z,x,0,0,3/4$

For 1' + set

(1) $1'$
 (1) $0,0,0'$

(2) 2 $\{0,0,1/2\}'$ $0,0,z$
 (2) $z,0,0,1/2'$

(3) $4^+ (0,0,3/4)'$ $0,0,z$
 (4) $4^+ (0,0,1/4)'$ $0,0,z$
 (4) $z,0,0,1/4'$

(5) 2' $0,y,0$
 (2) $0,0,0'$

(6) 2 $x,0,1/4$
 (6) $z,0,0,1/2'$

(7) 2 $x,x,1/8$
 (7) $x,x,0,0,1/4'$

(8) 2 $x,x,3/8$
 (8) $z,x,0,0,3/4'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>d 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z+3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z+1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z+1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x,z+3/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>c .21'</td>
<td>x,x,5/8 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,1/8 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,3/8 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,7/8 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>b .2.1'</td>
<td>1/2,y,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>a .2.1'</td>
<td>0,y,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,0,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1' a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p2mg1' a* = -c b* = b
Origin at x,0,1/4

Along [1,1,0] p2mg1' a* = -c b* = (-a + b)/2
Origin at x,x,1/8
Origin on 2 [0,1,0] at 4 \(\frac{3}{4}\) (1,2) 1

Asymmetric unit \(0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq \frac{1}{8}\)

Symmetry Operations

\begin{align*}
(1) & \quad 1 \\
(1) & \quad 0,0,0 \\
(2) & \quad 0,0,1/2 \\
(2) & \quad (0,0,1/2) \\
(2) & \quad 0,0,0 \\
(2) & \quad (0,0,1/2) \\
(2) & \quad 0,0,0 \\
(2) & \quad (0,0,1/2) \\
(3) & \quad 4^+ \cdot (0,0,3/4) \\
(3) & \quad 0,0,z \\
(3) & \quad (4_z,0,0,3/4) \\
(3) & \quad 0,0,3/4 \\
(3) & \quad (4_z,0,0,3/4) \\
(4) & \quad 4^+ \cdot (0,0,1/4) \\
(4) & \quad 0,0,z \\
(4) & \quad (4_z,0,0,1/4) \\
(4) & \quad 0,0,1/4 \\
(5) & \quad 2^\times \cdot (0,0,0) \\
(5) & \quad 0,y,0 \\
(5) & \quad (2_z,0,0,0) \\
(5) & \quad 0,y,0 \\
(5) & \quad (2_z,0,0,0) \\
(5) & \quad (2_z,0,0,0) \\
(6) & \quad x,0,1/4 \\
(6) & \quad (2_x,0,0,1/2) \\
(6) & \quad x,0,1/4 \\
(6) & \quad (2_x,0,0,1/2) \\
(7) & \quad 2^+ \cdot x,x,1/8 \\
(7) & \quad (2_{xy},0,0,1/4) \\
(7) & \quad 2^+ \cdot x,x,1/8 \\
(7) & \quad (2_{xy},0,0,1/4) \\
(8) & \quad 2^+ \cdot x,x,3/8 \\
(8) & \quad (2_{xy},0,0,3/8) \\
(8) & \quad x,x,3/8 \\
(8) & \quad (2_{xy},0,0,3/8) \\
\end{align*}
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x',y',z+1/2 [u',v',w]</td>
</tr>
<tr>
<td></td>
<td>(3) y',x',z+3/4 [v',u',w]</td>
</tr>
<tr>
<td></td>
<td>(4) y',x',z+1/4 [v',u',w]</td>
</tr>
<tr>
<td></td>
<td>(5) x',y',z [u',v',w]</td>
</tr>
<tr>
<td></td>
<td>(6) x',y',z+1/2 [u',v',w]</td>
</tr>
<tr>
<td></td>
<td>(7) y',x',z+1/4 [v',u',w]</td>
</tr>
<tr>
<td></td>
<td>(8) y',x',z+3/4 [v',u',w]</td>
</tr>
<tr>
<td>4 c .2'</td>
<td>x,x,1/8 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,3/8 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,7/8 [u,u,w]</td>
</tr>
<tr>
<td>4 b .2.</td>
<td>1/2,y,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y',1/2 [0,v',0]</td>
</tr>
<tr>
<td></td>
<td>y',1/2,3/4 [v,0,0]</td>
</tr>
<tr>
<td></td>
<td>y,1/2,1/4 [v,0,0]</td>
</tr>
<tr>
<td>4 a .2.</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,y',1/2 [0,v',0]</td>
</tr>
<tr>
<td></td>
<td>y',0,3/4 [v,0,0]</td>
</tr>
<tr>
<td></td>
<td>y,0,1/4 [v,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'm'm
\[\mathbf{a}^* = \mathbf{a}, \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along [1,0,0] p2'm'g'
\[\mathbf{a}^* = -\mathbf{c}, \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,1/4

Along [1,1,0] p2'mg'
\[\mathbf{a}^* = -\mathbf{c}, \quad \mathbf{b}^* = (-\mathbf{a} + \mathbf{b})/2 \]
Origin at x,x,1/8
Origin on $2' \begin{bmatrix} 0,1,0 \end{bmatrix}$ at $4_3 \begin{bmatrix} 1,2' \end{bmatrix} 1$

Asymmetric unit $0 \leq x \leq 1$; $0 \leq y \leq 1$; $0 \leq z \leq 1/8$

Symmetry Operations

1. 1

2. $2 \begin{bmatrix} 0,0,1/2 \end{bmatrix}$ $0,0,z$
 $2_z \begin{bmatrix} 0,0,1/2 \end{bmatrix}$

3. $4^+ \begin{bmatrix} 0,0,3/4 \end{bmatrix}$ $0,0,z$
 $4_z \begin{bmatrix} 0,0,3/4 \end{bmatrix}$

4. $4^- \begin{bmatrix} 0,0,1/4 \end{bmatrix}$ $0,0,z$
 $4_z^{-1} \begin{bmatrix} 0,0,1/4 \end{bmatrix}$

5. $2', 0,y,0$
 $2_z \begin{bmatrix} 0,0,0 \end{bmatrix}$

6. $2', x,0,1/4$
 $2_x \begin{bmatrix} 0,0,1/2 \end{bmatrix}$

7. $2', x,x,1/8$
 $2_{xy} \begin{bmatrix} 0,0,1/4 \end{bmatrix}$

8. $2', x,x,3/8$
 $2_{xy} \begin{bmatrix} 0,0,3/4 \end{bmatrix}$
Generators selected

(1): t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 c .2'</td>
<td>x,x,5/8 [u,u,w]</td>
</tr>
<tr>
<td>4 b .2'</td>
<td>1/2,y,0 [u,0,w]</td>
</tr>
<tr>
<td>4 a .2'</td>
<td>0,y,0 [u,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4mm</th>
<th>Along [1,0,0]</th>
<th>p2'mg'</th>
<th>Along [1,1,0]</th>
<th>p2m'g'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{a}^* = \mathbf{a}) \quad \mathbf{b}^* = \mathbf{b}</td>
<td>(\mathbf{a}^* = -\mathbf{c}) \quad \mathbf{b}^* = \mathbf{b}</td>
<td>(\mathbf{a}^* = -\mathbf{c}) \quad \mathbf{b}^* = (-\mathbf{a} + \mathbf{b})/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,1/4</td>
<td>Origin at x,x,1/8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin on 2 [0,1,0] at 4_3 (1,2) 1

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/8

Symmetry Operations

1. 1
2. 2 \(0,0,1/2\) 0,0,z
3. 4' \(0,0,3/4\) 0,0,z
4. 4' \(0,0,1/4\) 0,0,z
5. 2' 0,y,0
6. 2' \(x,0,1/4\)
7. 2 \(x,x,1/8\)
8. 2 \(x,x,3/8\)

P4_3 '2'2

95.5.797

P4_3 '2'2
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z</td>
<td>[u,v,w]</td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 c ..2</td>
<td>x,x,5/8 [u,u,0]</td>
<td>x,x,1/8 [u,u,0]</td>
</tr>
<tr>
<td>4 b ..2'</td>
<td>1/2,y,0 [u,0,w]</td>
<td>1/2,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>4 a ..2'</td>
<td>0,y,0 [u,0,w]</td>
<td>0,y,1/2 [u,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4'm'm</th>
<th>Along [1,0,0]</th>
<th>p2'mg'</th>
<th>Along [1,1,0]</th>
<th>p2m'g'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = -c</td>
<td>b* = b</td>
<td>a* = -c</td>
<td>b* = (-a + b)/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,1/4</td>
<td></td>
<td>Origin at x,x,1/8</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 2 [0,1,0] at 4$_3$ (1,2) 1

Asymmetric unit \(0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/8\)

Symmetry Operations

For \((0,0,0) + \text{ set}\)

1. \((1) 1 (1,0,0,0)\)
2. \((2) 2 (0,0,1/2) \quad 0,0,z\)
3. \((3) 4^+ (0,0,3/4) \quad 0,0,z\)
4. \((4) 4^- (0,0,1/4) \quad 0,0,z\)
5. \((5) 2 \quad 0,y,0\) \(\begin{array}{c}
(2_1,0,0,0) \\

\end{array}\)
6. \((6) 2 \quad x,0,1/4\) \(\begin{array}{c}
(2 \times 0,0,1/2) \\

\end{array}\)
7. \((7) 2 \quad x,x,1/8\) \(\begin{array}{c}
(2 \times 0,0,1/4) \\

\end{array}\)
8. \((8) 2 \quad x,x,3/8\) \(\begin{array}{c}
(2 \times 0,0,3/4) \\

\end{array}\)

For \((1,0,0)^' + \text{ set}\)

1. \((1) t' (1,0,0)^'\) \(\begin{array}{c}
(1,1,0,0)^' \\

\end{array}\)
2. \((2) 2 (0,0,1/2) \quad 1/2,0,z\) \(\begin{array}{c}
(2 \times 1,0,1/2)^' \\

\end{array}\)
3. \((3) 4^+ (0,0,3/4) \quad 1/2,1/2,z\) \(\begin{array}{c}
(4 \times 1,0,3/4)^' \\

\end{array}\)
4. \((4) 4^- (0,0,1/4) \quad 1/2,-1/2,z\) \(\begin{array}{c}
(4 \times 1,0,1/4)^' \\

\end{array}\)
5. \((5) 2^' \quad 1/2,y,0\) \(\begin{array}{c}
(2_1,1,0,0)^' \\

\end{array}\)
6. \((6) 2^' (1,0,0) \quad x,0,1/4\) \(\begin{array}{c}
(2 \times 1,0,1/2)^' \\

\end{array}\)
7. \((7) 2^' (1/2,1/2,0) \quad x+1/2,x,1/8\) \(\begin{array}{c}
(2 \times 1,0,1/4)^' \\

\end{array}\)
8. \((8) 2^' (1/2,-1/2,0) \quad x+1/2,x,3/8\) \(\begin{array}{c}
(2 \times 1,0,3/4)^' \\

\end{array}\)
Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>16 1</td>
<td></td>
</tr>
<tr>
<td>16 1 d</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 1 d</td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>16 1 d</td>
<td>(3) y,x,z+3/4 [v,u,w]</td>
</tr>
<tr>
<td>16 1 d</td>
<td>(4) y,x,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td>16 1 x</td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 1 x</td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>16 1 x</td>
<td>(7) y,x,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td>16 1 x</td>
<td>(8) y,x,z+3/4 [v,u,w]</td>
</tr>
<tr>
<td>8 c</td>
<td>x,x,5/8 [u,u,0]</td>
</tr>
<tr>
<td>8 c .2</td>
<td>x,x,1/8 [u,u,0]</td>
</tr>
<tr>
<td>8 c .2</td>
<td>x,x,3/8 [u,u,0]</td>
</tr>
<tr>
<td>8 c .2</td>
<td>x,x,7/8 [u,u,0]</td>
</tr>
<tr>
<td>8 b .2'</td>
<td>1/2,y,0 [u,0,w]</td>
</tr>
<tr>
<td>8 b .2'</td>
<td>1/2,y,1/2 [u,0,w]</td>
</tr>
<tr>
<td>8 b .2'</td>
<td>y,1/2,3/4 [0,u,w]</td>
</tr>
<tr>
<td>8 b .2'</td>
<td>y,1/2,1/4 [0,u,w]</td>
</tr>
<tr>
<td>8 a .2</td>
<td>0,y,0 [0,v,0]</td>
</tr>
<tr>
<td>8 a .2</td>
<td>0,y,1/2 [0,v,0]</td>
</tr>
<tr>
<td>8 a .2</td>
<td>y,0,3/4 [v,0,0]</td>
</tr>
<tr>
<td>8 a .2</td>
<td>y,0,1/4 [v,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_c 4mm' a[*] = a b[*] = b

Along [1,0,0] p2mg1' a[*] = -c b[*] = b

Along [1,1,0] p_{2v} 2m'g' a[*] = -c b[*] = (-a + b)/2

Origin at 0,0,z

Origin at x,0,1/4

Origin at x,x,1/8
Origin on \([0,1,0]\) at \(4_3\) \((1,2) 1\)

Asymmetric unit \(0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/8\)

Symmetry Operations

For \((0,0,0) + \) set

(1) \(1 \quad (1|0,0,0)\)
(2) \(2 (0,0,1/2) \quad 0,0,z \quad (2_z|0,0,1/2)\)
(3) \(4^+ \cdot (0,0,3/4) \quad 0,0,z \quad (4_z|0,0,3/4)\)
(4) \(4^- \cdot (0,0,1/4) \quad 0,0,z \quad (4_z^-|0,0,1/4)\)

For \((1,0,0) + \) set

(1) \(t' (1,0,0) \quad (1|1,0,0)\)
(2) \(2' (0,0,1/2) \quad 1/2,0,z \quad (2_z|1,0,1/2)\)
(3) \(4^+ (0,0,3/4) \quad 1/2,1/2,z \quad (4_z|1,0,3/4)\)
(4) \(4^- (0,0,1/4) \quad 1/2,-1/2,z \quad (4_z^-|1,0,1/4)\)

(5) \(2' 1/2,y,0 \quad (2_z|1,0,0)\)
(6) \(2' (1,0,0) \quad x,0,1/4 \quad (2_x|1,0,1/2)\)
(7) \(2 x+1/2,x,1/8 \quad (2_{xy}|1,0,1/4)\)
(8) \(2 x+1/2,x,3/8 \quad (2_{xy}|1,0,3/4)\)
Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>16 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x, y, z + 1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(3) y, x, z + 3/4 [v, u, w]</td>
</tr>
<tr>
<td></td>
<td>(4) y, x, z + 1/4 [v, u, w]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(6) x, y, z + 1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(7) y, x, z + 1/4 [v, u, w]</td>
</tr>
<tr>
<td></td>
<td>(8) y, x, z + 3/4 [v, u, w]</td>
</tr>
<tr>
<td>8 c ..2'</td>
<td>x, x, 5/8 [u, u, w]</td>
</tr>
<tr>
<td></td>
<td>x, x, 1/8 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>x, x, 3/8 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>x, 7/8 [u, u, w]</td>
</tr>
<tr>
<td>8 b .2'</td>
<td>1/2, y, 0 [u, 0, w]</td>
</tr>
<tr>
<td></td>
<td>1/2, y, 1/2 [u, 0, w]</td>
</tr>
<tr>
<td></td>
<td>y, 1/2, 3/4 [0, u, w]</td>
</tr>
<tr>
<td></td>
<td>y, 1/2, 1/4 [0, u, w]</td>
</tr>
<tr>
<td>8 a .2.</td>
<td>0, y, 0 [0, v, 0]</td>
</tr>
<tr>
<td></td>
<td>0, y, 1/2 [0, v, 0]</td>
</tr>
<tr>
<td></td>
<td>y, 0, 3/4 [v, 0, 0]</td>
</tr>
<tr>
<td></td>
<td>y, 0, 1/4 [v, 0, 0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] pₜₜ 4m'm'

a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p2mg1'

a* = -c b* = b
Origin at x,0,1/4

Along [1,1,0] p₂ᵥ₂ 2mg

a* = -c b* = (-a + b)/2
Origin at x,x,1/8
Origin on 2 [1,1,0] at 2, 1 (1,2)

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/8

Symmetry Operations

1. 1 (0,0,0)
 (1) 0,0,0

2. 2 (0,0,1/2) 0,0,z
 (2) 0,0,1/2
 (3) 4+ (0,0,3/4) 0,1/2,z
 (4) 4- (0,0,1/4) 1/2,0,z
 (4-z) 1/2,1/2,3/4
 (4-z) 1/2,1/2,1/4

3. 2 (1/2,0,0) x,1/4,1/8
 (5) 1/2,1/2,1/2,1/4
 (6) 1/2,1/2,3/4

4. 2 x,x,0
 (x) 0,0,0
 (7) x,x,0
 (2x) 0,0,1/2

5. 2 (0,1/2,0) 1/4,y,3/8
 (2y) 1/2,1/2,1/4

6. 2 (1/2,1/2,1/2) 0,0,0
 (xy) 0,0,1/2

Tetragonal

P4₁₂₂
96.1.800
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+3/4 [v,w]</td>
<td>(4) y+1/2,x+1/2,z+1/4 [v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+3/4 [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 a .2</td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,3/4 [u,u,0]</td>
<td>x+1/2,x+1/2,1/4 [u,u,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4g'm'
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 0,1/2,z

Along [1,0,0] p2'gg'
\(\mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at x,1/4,1/8

Along [1,1,0] p2m'g'
\(\mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = (-\mathbf{a} + \mathbf{b})/2 \)
Origin at x,x,0
Origin on 2 $[1,1,0]1'$ at 2, 1 $(1,2)1'$

Asymmetric unit $0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/8$

Symmetry Operations

For $1 +$ set

1. 1
 1. $0,0,0$

5. $2 (0,1/2,0) \quad 1/4,y,3/8$
 2. $(2_y,1/2,1/2,3/4)$

For $1' +$ set

1. $1'$
 1. $0,0,0'$

5. $2' (0,1/2,0) \quad 1/4,y,3/8$
 2. $(2_y,1/2,1/2,3/4)'$
Generators selected

(1): t(1,0,0); t(0,1,0); t(0,0,1); (2): (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1' +</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>b</th>
<th>11'</th>
<th>(1) x,y,z [0,0,0]</th>
<th>(2) x,y,z+1/2 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) y+1/2,x+1/2,z+3/4 [0,0,0]</td>
<td>(4) x+1/2,y+1/2,z+1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z+3/4 [0,0,0]</td>
<td>(6) y+1/2,x+1/2,z+1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) y,x, 0 [0,0,0]</td>
<td>(8) y,x, z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>a</th>
<th>.21'</th>
<th>(1) x,x,0 [0,0,0]</th>
<th>(2) x,x,1/2 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/2,x+1/2,3/4 [0,0,0]</td>
<td>x+1/2,x+1/2,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p4gm1'
 - $a^* = a$ $b^* = b$
- Along [1,0,0] p2gg1'
 - $a^* = b$ $b^* = c$
- Along [1,1,0] p2mg1'
 - $a^* = -c$ $b^* = (-a + b)/2$

Origin at $0,1/2,z$
 Origin at $x,1/4,1/8$
 Origin at $x,x,0$
Origin on 2' [1,1,0] at 2, 1 (1,2')

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/8

Symmetry Operations

(1) 1
(1') 0,0,0

(2) 2 (0,0,1/2) 0,0,z
(2') 0,0,1/2

(3) 4' (0,0,3/4) 0,1/2,z
(4' y) 1/2,1/2,1/4

(4) 4' (0,0,1/4) 1/2,0,z
(4' z) 1/2,1/2,1/4

(5) 2 (0,1/2,0) 1/4,y,3/8
(5') 1/2,1/2,3/4

(6) 2 (1/2,0,0) x,1/4,1/8
(6') 1/2,1/2,1/4

(7) 2' x,x,0
(7') 0,0,0'

(8) 2' x,x,1/4
(8') 0,0,1/2'
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+3/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+3/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+3/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 a .2'</td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,3/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/4 [u,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** p4'gm'
 \(a^* = a \quad b^* = b \)

- **Along [1,0,0]** p2g'g'
 \(a^* = b \quad b^* = c \)

- **Along [1,1,0]** p2m'g'
 \(a^* = -c \quad b^* = (-a + b)/2 \)

Origin at 0,1/2,z
Origin at x,1/4,1/8
Origin at x,x,0
Origin on 2' [1,1,0] at 2, 1 (1,2')

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/8 \]

Symmetry Operations

1. \(1 \)
 \[\begin{array}{c} (1) \ 1 \\ (1) \ 0,0,0 \end{array} \]

2. \(2 \)
 \[\begin{array}{c} (2) \ 2 \ (0,0,1/2) \ 0,0,z \\ (2) \ 0,0,1/2 \end{array} \]

3. \(4' \)
 \[\begin{array}{c} (3) \ 4' \ (0,0,3/4) \ 0,1/2,z \\ (4z) \ |1/2,1/2,3/4| \end{array} \]

4. \(4 \)
 \[\begin{array}{c} (4) \ 4' \ (0,0,1/4) \ 1/2,0,z \\ (4z^{-1}) \ |1/2,1/2,1/4| \end{array} \]

5. \(2' \)
 \[\begin{array}{c} (5) \ 2' \ (0,1/2,0) \ 1/4,y,3/8 \\ (2y) \ |1/2,1/2,3/4|' \end{array} \]

6. \(2' \)
 \[\begin{array}{c} (6) \ 2' \ (1/2,0,0) \ x,1/4,1/8 \\ (2x) \ |1/2,1/2,1/4|' \end{array} \]

7. \(2' \)
 \[\begin{array}{c} (7) \ 2' \ x,x,0 \\ (2xy) \ |0,0,0|' \end{array} \]

8. \(2' \)
 \[\begin{array}{c} (8) \ 2' \ x,x,1/4 \\ (2xy) \ |0,0,1/2|' \end{array} \]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>x,y,z [u,v,w]</td>
<td>(2) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(3) y+1/2,x+1/2,z+3/4 [u,v,w]</td>
<td>(4) y+1/2,x+1/2,z+1/4 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z+3/4 [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z+1/4 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4g'm'

- a^* = a
- b^* = b

Origin at 0,1/2,z

Along [1,0,0] p2g'g'

- a^* = b
- b^* = c

Origin at x,1/4,1/8

Along [1,1,0] p2'mg'

- a^* = -c
- b^* = (-a + b)/2

Origin at x,x,0
Origin on 2 [1,1,0] at 2, 1 (1,2)

Asymmetric unit $0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/8$

Symmetry Operations

1. 1
2. $2 (0,0,1/2) \quad 0,0,z$
3. $4' (0,0,3/4) \quad 0,1/2,z$
4. $4' (0,0,1/4) \quad 1/2,0,z$
5. $2' (0,1/2,0) \quad 1/4,y,3/8$
6. $2' (1/2,0,0) \quad x,1/4,1/8$
7. $x,x,0$
8. $x,x,1/4$

σ-operation:

1. $(1|0,0,0)$
2. $(2_1|0,0,1/2)$
3. $(4_z|1/2,1/2,3/4)^*$
4. $(4_z^{-1}|1/2,1/2,1/4)^*$
5. $(2_2|1/2,1/2,3/4)^*$
6. $(2_1|1/2,1/2,1/4)^*$
7. $(2_{xy}|0,0,0)$
8. $(2_{xy}|0,0,1/2)$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 b 1</td>
<td>(1) $x,y,z [u,v,w]$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) $x,y,z+1/2 [u,v,w]$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) $y+1/2,x+1/2,z+3/4 [v,u,w]$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) $y+1/2,x+1/2,z+1/4 [v,u,w]$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) $x+1/2,y+1/2,z+3/4 [u,v,w]$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) $x+1/2,y+1/2,z+1/4 [u,v,w]$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) $y,x,z [v,u,w]$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) $y,x,z+1/2 [v,u,w]$</td>
<td></td>
</tr>
<tr>
<td>4 a ..2</td>
<td>$x,x,0 [u,u,0]$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x,x,1/2 [u,u,0]$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x+1/2,x+1/2,3/4 [u,u,0]$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$x+1/2,x+1/2,1/4 [u,u,0]$</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'g'm
\(\mathbf{a}^* = \mathbf{a} \) \(\mathbf{b}^* = \mathbf{b} \)
Origin at 0,1/2,z

Along [1,0,0] p2'gg'
\(\mathbf{a}^* = -\mathbf{c} \) \(\mathbf{b}^* = \mathbf{b} \)
Origin at x,1/4,1/8

Along [1,1,0] p2m'g'
\(\mathbf{a}^* = -\mathbf{c} \) \(\mathbf{b}^* = (-\mathbf{a} + \mathbf{b})/2 \)
Origin at x,x,0
Origin on 422

Asymmetric unit
\[0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{4} \]

Symmetry Operations

For \((0,0,0) + \) set

1. \((1)\) \(1\)
 \((1,0,0,0)\)

2. \((2)\) 0,0,z
 \((2_z,0,0,0)\)

3. \((4)\) 0,0,z
 \((4_z,0,0,0)\)

4. \((4)\) 0,0,z
 \((4_z^{-1},0,0,0)\)

5. \((5)\) 0,y,0
 \((2_y,0,0,0)\)

6. \((6)\) x,0,0
 \((2_x,0,0,0)\)

7. \((7)\) x,x,0
 \((2_{xx},0,0,0)\)

8. \((8)\) x,x,0
 \((2_{xx},0,0,0)\)

For \((1/2,1/2,1/2) + \) set

1. \((1)\) t (1/2,1/2,1/2)
 \((1,1/2,1/2,1/2)\)

2. \((2)\) 0,0,1/2
 \((2_z,1/2,1/2,1/2)\)

3. \((3)\) 0,0,1/2
 \((4_z,1/2,1/2,1/2)\)

4. \((4)\) 0,0,1/2
 \((4_z^{-1},1/2,1/2,1/2)\)

5. \((5)\) (0,1/2,0)
 \((2_y,1/2,1/2,1/2)\)

6. \((6)\) 1/4,1/4,0
 \((2_x,1/2,1/2,1/2)\)

7. \((7)\) 1/4,1/4,0
 \((2_{xy},1/2,1/2,1/2)\)

8. \((8)\) 1/4,1/4,0
 \((2_{xy},1/2,1/2,1/2)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Positions</th>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [v,u,w]</td>
<td>(4) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z [v,u,w]</td>
<td>(8) x,y,z [v,u,w]</td>
</tr>
<tr>
<td>8 j .2</td>
<td>x,x+1/2,1/4 [u,u,0]</td>
<td>x,x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,1/4 [u,u,0]</td>
<td>x+1/2,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td>8 i .2</td>
<td>x,0,1/2 [u,0,0]</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,1/2 [0,u,0]</td>
<td>0,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td>8 h .2</td>
<td>x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,0 [0,u,0]</td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td>8 g .2</td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>8 f 2.</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 e 4.</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 d 2.22</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 c 222.</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b 422</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 422</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4m'm'
Along [1,0,0] c2m'm'
Along [1,1,0] p2m'm'
a* = (a - b)/2 b* = (a + b)/2
a* = b b* = c
a* = - (a + b)/2 b* = c/2
Origin at 0,0,z
Origin at x,0,0
Origin at x,x,0
Origin on 4221'

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4\)

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad \begin{pmatrix} 0 \ 0 \ 0 \end{pmatrix} \\
(3) & \quad \begin{pmatrix} 0 \ 0 \ z \end{pmatrix} \\
(4) & \quad \begin{pmatrix} 0 \ 0 \ -z \end{pmatrix} \\
(5) & \quad \begin{pmatrix} 0 \ y \ 0 \end{pmatrix} \\
(6) & \quad \begin{pmatrix} x \ 0 \ 0 \end{pmatrix} \\
(7) & \quad \begin{pmatrix} x \ x \ 0 \end{pmatrix} \\
(8) & \quad \begin{pmatrix} x \ y \ 0 \end{pmatrix}
\end{align*}
\]

For \((1/2,1/2,1/2)\) + set

\[
\begin{align*}
(1) & \quad t \begin{pmatrix} 1/2 \ 1/2 \ 1/2 \end{pmatrix} \\
(2) & \quad \begin{pmatrix} 0 \ 0 \ 1/2 \end{pmatrix} \\
(3) & \quad \begin{pmatrix} 0 \ 0 \ 1/2 \end{pmatrix} \\
(4) & \quad \begin{pmatrix} 0 \ 0 \ 1/2 \end{pmatrix} \\
(5) & \quad \begin{pmatrix} 0 \ y \ 0 \end{pmatrix} \\
(6) & \quad \begin{pmatrix} 1/4 \ 1/4 \ 0 \end{pmatrix} \\
(7) & \quad \begin{pmatrix} 1/4 \ 1/4 \ 0 \end{pmatrix} \\
(8) & \quad \begin{pmatrix} x \ x \ 1/4 \end{pmatrix}
\end{align*}
\]
Continued

For (0,0,0)' + set

(1) \(1'\) \((0,0,0)\) \(1'\)
(2) \(2'\) 0,0,0
(3) \(4'\) 0,0,0
(4) \(4'\) 0,0,0

(5) \(2'\) 0,y,0
(6) \(2'\) x,0,0
(7) \(2'\) x,x,0
(8) \(2'\) x,x,0

For (1/2,1/2,1/2)' + set

(1) \(t(1/2,1/2,1/2)\) \(t(1/2,1/2,1/2)\)
(2) \(2'(1/2,0,0)\) x,1/4,1/4
(3) \(2'(1/2,1/2,0)\) x,x,1/4
(4) \(2'(1/2,1/2,1/2)\) x,x,1/4

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); 1'.

Positions

Multiplicity Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>8 j .21'</td>
<td>(5) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>8 i .21'</td>
<td>(9) x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(10) x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(11) x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(12) x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 h .21'</td>
<td>(13) x,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(14) x,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(15) x,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(16) x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>8 g .21'</td>
<td>(17) x,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(18) x,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(19) x,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(20) x,x,0 [0,0,0]</td>
</tr>
<tr>
<td>8 f .21'</td>
<td>(21) 0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(22) 0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(23) 0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(24) 0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 e .1'</td>
<td>(25) 0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(26) 0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(27) 0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(28) 0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 d 2.221'</td>
<td>(29) 0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(30) 0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(31) 0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(32) 0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 c 222.1'</td>
<td>(33) 0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(34) 0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(35) 0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(36) 0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b 4221'</td>
<td>(37) 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(38) 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(39) 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(40) 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 4221'</td>
<td>(41) 0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(42) 0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(43) 0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(44) 0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4mm1'</th>
<th>Along [1,0,0]</th>
<th>c2mm1'</th>
<th>Along [1,1,0]</th>
<th>p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (a - b)/2</td>
<td>b* = (a + b)/2</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = -(a + b)/2</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
<td>Origin at x,x,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin on 4'22'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \quad 0,0,z \\
(3) & \quad 4^+ \quad 0,0,z \\
(4) & \quad 4^- \quad 0,0,z
\end{align*}
\]

\[
\begin{align*}
(1) & \quad (1,0,0,0) \\
(2) & \quad (2,0,0) \\
(3) & \quad (4_z,0,0,0) \\
(4) & \quad (4_z^{-1},0,0,0)
\end{align*}
\]

\[
\begin{align*}
(5) & \quad 2 \quad 0,y,0 \\
(6) & \quad 2 \quad x,0,0 \\
(7) & \quad 2' \quad x,x,0 \\
(8) & \quad 2' \quad x,0,0,0
\end{align*}
\]

\[
\begin{align*}
(5) & \quad (2,0,0,0) \\
(6) & \quad (2,0,0,0) \\
(7) & \quad (2,0,0,0) \\
(8) & \quad (2,0,0,0)
\end{align*}
\]

For \((1/2,1/2,1/2) + \) set

\[
\begin{align*}
(1) & \quad t \quad (1/2,1/2,1/2) \\
(2) & \quad 2 \quad (0,0,1/2) \quad 1/4,1/4,z \\
(3) & \quad 4^+ \quad (0,0,1/2) \quad 0,1/2,z \\
(4) & \quad 4^- \quad (0,0,1/2) \quad 1/2,0,z
\end{align*}
\]

\[
\begin{align*}
(5) & \quad (1/2,1/2,1/2) \\
(6) & \quad (1/2,0,0) \quad x,1/4,1/4 \\
(7) & \quad 2' \quad (1/2,1/2,0) \quad x,x,1/4 \\
(8) & \quad 2' \quad x,x + 1/2,1/4
\end{align*}
\]

\[
\begin{align*}
(5) & \quad (1/2,1/2,1/2) \\
(6) & \quad (1/2,1/2,1/2) \\
(7) & \quad (1/2,1/2,1/2) \\
(8) & \quad (1/2,1/2,1/2)
\end{align*}
\]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>k</td>
<td>1</td>
</tr>
</tbody>
</table>

Coordinates

(0,0,0) + (1/2,1/2,1/2) +

(1) x,y,z [u,v,w] (2) x,y,z [v,u,w] (3) y,x,z [v,u,w] (4) y,x,z [v,u,w]

8 j .2' x,x+1/2,1/4 [u,u,w] x+1/2,x,1/4 [u,u,w] x+1/2,x,1/4 [u,u,w]

8 i .2' x,0,1/2 [u,0,0] 0,x,1/2 [0,u,0] 0,x,1/2 [0,u,0]

8 h .2' x,0,0 [u,0,0] 0,x,0 [0,u,0] 0,x,0 [0,u,0]

8 g .2' x,x,0 [u,u,w] x,x,0 [u,u,w] x,x,0 [u,u,w]

8 f .2' 0,1/2,z [0,0,w] 0,1/2,z [0,0,w] 0,1/2,z [0,0,w]

4 e .4' 0,0,z [0,0,0] 0,0,z [0,0,0]

4 d 2.2' 0,1/2,1/4 [0,0,w] 1/2,0,1/4 [0,0,w]

4 c 222. 0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0]

2 b 4'22' 0,0,1/2 [0,0,0]

2 a 4'22' 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4m'm' Along [1,0,0] c2m'm' Along [1,1,0] p2mm'

\(a^* = (a - b)/2 \quad b^* = (a + b)/2 \)

Origin at 0,0,z

\(a^* = b \quad b^* = c \)

Origin at x,0,0

\(a^* = -c/2 \quad b^* = (-a + b)/2 \)

Origin at x,x,0
Origin on 42'2'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1 (1|0,0,0)
(2) 2 0,0,z (2z|0,0,0)
(3) 4' 0,0,z (4z|0,0,0)
(4) 4' 0,0,z (4z'|0,0,0)
(5) 2' 0,y,0 (2y|0,0,0)
(6) 2' x,0,0 (2x|0,0,0)
(7) 2' x,x,0 (2x|0,0,0)
(8) 2' x,x,0 (2x|0,0,0)

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2) (1|1/2,1/2,1/2)
(2) 2 (0,0,1/2) 1/4,1/4,z (2z|1/2,1/2,1/2)
(3) 4' (0,0,1/2) 0,1/2,z (4z|1/2,1/2,1/2)
(4) 4' (0,0,1/2) 1/2,0,z (4z'|1/2,1/2,1/2)
(5) 2' (0,1/2,0) 1/4,y,1/4 (2y|1/2,1/2,1/2)
(6) 2' (1/2,0,0) x,1/4,1/4 (2x|1/2,1/2,1/2)
(7) 2' (1/2,1/2,0) x,x,1/4 (2x|1/2,1/2,1/2)
(8) 2' x,x+1/2,1/4 (2x|1/2,1/2,1/2)
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 j .2'</td>
<td>x,x+1/2,1/4 [u,u,w]</td>
<td>x,x+1/2,1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,1/4 [u,u,w]</td>
<td>x,x+1/2,1/4 [u,u,w]</td>
</tr>
<tr>
<td>8 i .2'</td>
<td>x,0,1/2 [0,v,w]</td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [0,v,w]</td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 h .2'</td>
<td>x,0,0 [0,v,w]</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [0,v,w]</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>8 g .2'</td>
<td>x,x,0 [u,u,w]</td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,w]</td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td>8 f 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 e 4..</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 d 2.2'</td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>4 c 22'2'</td>
<td>0,1/2,0 [0,0,w]</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,w]</td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>2 b 42'2'</td>
<td>0,0,1/2 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a 42'2'</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm

Along [1,0,0] c2'mm'

Along [1,1,0] p2'mm'

\[
a^* = \frac{(a - b)}{2} \quad b^* = \frac{(a + b)}{2}
\]

Origin at 0,0,z

\[
a^* = -c/b \quad b^* = b
\]

Origin at x,0,0

\[
a^* = -c/2 \quad b^* = (-a + b)/2
\]

Origin at x,x,0
Origin on 4'2'2

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

For \((0,0,0) + \) set

1. \(1(0,0,0)\)
2. \(r,0,0\)
3. \(4,0,0\)
4. \(4,0,0\)
5. \(2,0,0\)
6. \(2,0,0\)
7. \(2,0,0\)
8. \(2,0,0\)

For \((1/2,1/2,1/2) + \) set

1. \(1(1/2,1/2,1/2)\)
2. \(2(1/2,1/2,1/2)\)
3. \(4,0,0\)
4. \(4,0,0\)
5. \(2,0,0\)
6. \(2,0,0\)
7. \(2,0,0\)
8. \(2,0,0\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>k</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>j</td>
<td>x,x+1/2,1/4 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i</td>
<td>x,0,1/2 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>x,0,0 [0,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g</td>
<td>x,0,0 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>0,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>0,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>0,1/2,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm'
\[a^* = (a - b)/2 \quad \text{and} \quad b^* = (a + b)/2 \]
Origin at 0,0,z

Along [1,0,0] c2mm'
\[a^* = -c \quad \text{and} \quad b^* = b \]
Origin at x,0,0

Along [1,1,0] p2m'm'
\[a^* = -(a + b)/2 \quad \text{and} \quad b^* = c/2 \]
Origin at x,x,0
Origin on 422

Asymmetric unit \(0 \leq x \leq \frac{1}{2}; \ 0 \leq y \leq \frac{1}{2}; \ 0 \leq z \leq \frac{1}{4} \)

Symmetry Operations

For \((0,0,0) + \) set

1. \((1) \ 1 (0,0,0)\)
2. \((2) \ 0,0,z \)
 \((2z) (0,0,0) \)
3. \((3) \ 4^+ 0,0,z \)
 \((4z) (0,0,0) \)
4. \((4) \ 4^- 0,0,z \)
 \((4z^-1) (0,0,0) \)

For \((1/2,1/2,1/2)' + \) set

1. \((1) \ t' (1/2,1/2,1/2) \)
 \((1/2,1/2,1/2)' \)
2. \((2) \ 2' (0,0,1/2) \)
 \(1/4,1/4,z \)
 \((2z) (1/2,1/2,1/2)' \)
3. \((3) \ 4'^+ (0,0,1/2) \)
 \(0,1/2,z \)
 \((4z) (1/2,1/2,1/2)' \)
4. \((4) \ 4'^- (0,0,1/2) \)
 \(1/2,0,z \)
 \((4z^-1) (1/2,1/2,1/2)' \)

For \((1/2,1/2,1/2)' + \) set

1. \((1) \ t' (1/2,1/2,1/2) \)
 \((1/2,1/2,1/2)' \)
2. \((2) \ 2' (1/2,0,0) \)
 \(x,1/4,1/4 \)
 \((2z) (1/2,1/2,1/2)' \)
3. \((3) \ 4'^+ (1/2,1/2,2,0) \)
 \(x,x,1/4 \)
 \((2z) (1/2,1/2,1/2)' \)
4. \((4) \ 4'^- (1/2,1/2,2,0) \)
 \(x,\bar{x}+1/2,1/4 \)
 \((2z) (1/2,1/2,1/2)' \)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2)′ +</td>
</tr>
<tr>
<td>16 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 j .2'</td>
<td>x,x+1/2,1/4 [u,u,w]</td>
</tr>
<tr>
<td>8 i .2.</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 h .2.</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>8 g .2</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>8 f .2.</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 e 4..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 d 2.2′2′</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>4 c 222.</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b 422</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 422</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_p 4m'm' \) \(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \)
Origin at 0,0,z

Along [1,0,0] \(c_p 2m'm' \) \(a^* = b \) \(b^* = c \)
Origin at x,0,0

Along [1,1,0] \(p_{2c} 2m'm' \) \(a^* = -c/2 \) \(b^* = (-a + b)/2 \)
Origin at x,x,0
Origin on 4'22'

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \)

Symmetry Operations

For \((0,0,0) + \) set

(1) 1
(1 \(0,0,0\))

(2) \(2 \quad 0,0,z\)
(2\(z\) \(0,0,0\))

(3) \(4^+ \quad 0,0,z\)
(4\(z\) \(0,0,0\)')

(4) \(4^- \quad 0,0,z\)
(4\(z\) \(-1\) \(0,0,0\)')

(5) \(2' \quad 0,y,0\)
(2\(y\) \(0,0,0\))

(6) \(2' \quad x,0,0\)
(2\(x\) \(0,0,0\))

(7) \(2' \quad x,x,0\)
(2\(xy\) \(0,0,0\)')

(8) \(2' \quad x,x,0\)
(2\(xy\) \(0,0,0\)')

For \((1/2,1/2,1/2)' + \) set

(1) \(t' \quad (1/2,1/2,1/2)\)
(1 \(1/2,1/2,1/2\)')

(2) \(2' \quad (0,0,1/2)\)
(2\(z\) \(1/2,1/2,1/2\)')

(3) \(4^+ \quad (0,0,1/2)\)
(4\(z\) \(1/2,1/2,1/2\)')

(4) \(4^- \quad (0,0,1/2)\)
(4\(z\) \(-1\) \(1/2,1/2,1/2\)')

(5) \(2' \quad (0,1/2,0)\)
(2\(y\) \(1/2,1/2,1/2\))

(6) \(2' \quad (1/2,0,0)\)
(2\(x\) \(1/2,1/2,1/2\)')

(7) \(2 \quad (1/2,1/2,0)\)
(2\(xy\) \(1/2,1/2,1/2\)')

(8) \(2 \quad x,x+1/2,1/4\)
(2\(xy\) \(1/2,1/2,1/2\)')

97.7.811 - 1 - 1615
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'((1/2,1/2,1/2)); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Generators</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td>(1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 j</td>
<td>2</td>
<td>x,x+1/2,1/4 [u,u,0]</td>
<td>x+1/2,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td>8 i</td>
<td>2</td>
<td>x,0,1/2 [u,0,0]</td>
<td>0,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td>8 h</td>
<td>2</td>
<td>x,0,0 [u,0,0]</td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td>8 g</td>
<td>2</td>
<td>x,x,0 [u,u,w]</td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td>8 f</td>
<td>2</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 e</td>
<td>4'</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 d</td>
<td>22.2</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 c</td>
<td>222.</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b</td>
<td>4'22'</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a</td>
<td>4'22'</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p\textsubscript{\textgamma} 4m\textgamma m'

\(\mathbf{a}^* = \frac{(a - b)}{2} \quad \mathbf{b}^* = \frac{(a + b)}{2} \)

Origin at 0,1/2,z

Along [1,0,0] c\textsubscript{\textgamma} 2m\textgamma m'

\(\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \)

Origin at x,0,0

Along [1,1,0] p\textsubscript{2\textgamma} 2m\textgamma m'

\(\mathbf{a}^* = -\frac{c}{2} \quad \mathbf{b}^* = \frac{-(a + b)}{2} \)

Origin at x,x,1/4
Origin on 42’2’

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2' 0,0,z
(3) 4+ 0,0,0
(4) 4' 0,0,z

(5) 2' 0,y,0
(6) 2' x,0,0
(7) 2' x,x,0
(8) 2' x,x,0

For (1/2,1/2,1/2)’ + set

(1) t' (1/2,1/2,1/2)’
(2) 2' (0,0,1/2) 1/4,1/4,z
(3) 4+’ (0,0,1/2) 0,1/2,z
(4) 4’ (0,0,1/2) 1/2,0,z

(5) 2 (0,1/2,0) 1/4,y,1/4
(6) 2 (1/2,0,0) x,1/4,1/4
(7) 2 (1/2,1/2,0) x,x,1/4
(8) 2 x,x+1/2,1/4

97.8.812 - 1 - 1617
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>(1/2,1/2,1/2)'</td>
</tr>
</tbody>
</table>

Positions Table

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 j</td>
<td>.2</td>
<td>x,x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td>8 i</td>
<td>.2'</td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 h</td>
<td>.2'</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>8 g</td>
<td>.2'</td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td>8 f</td>
<td>.2'</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 e</td>
<td>4'</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 d</td>
<td>2,2'</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 c</td>
<td>22'</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>2 b</td>
<td>42'</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a</td>
<td>42'</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** $p_{\text{p'}}4\text{mm}$
 - $a^* = (a - b)/2$
 - $b^* = (a + b)/2$
- **Along [1,0,0]** $c_{\text{p'}}2\text{mm'}$
 - $a^* = -c$
 - $b^* = b$
- **Along [1,1,0]** $p_{2\text{c}}2\text{m'm'}$
 - $a^* = -c/2$
 - $b^* = (-a + b)/2$

Origin at 0,0,z

Origin at x,0,0

Origin at x,x,1/4
Origin on 4'2'2

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. \((1) 1 \quad (1 | 0,0,0)\)
2. \((2) \quad 0,0,z \quad (2 | 0,0,0)\)
3. \((3) \quad 4^* \quad 0,0,z \quad (4 | 0,0,0)'\)
4. \((4) \quad 4^- \quad 0,0,z \quad (4 | 0,0,0)'\)

For \((1/2,1/2,1/2)' + \text{set}\)

1. \((1) 1' \quad (1/2,1/2,1/2)'\)
2. \((2) \quad 0,0,1/2 \quad 1/4,1/4,z \quad (2 | 1/2,1/2,1/2)'\)
3. \((3) \quad 4^* \quad 0,0,1/2 \quad 0,1/2,z \quad (4 | 1/2,1/2,1/2)'\)
4. \((4) \quad 4^- \quad 0,0,1/2 \quad 1/2,0,z \quad (4 | 1/2,1/2,1/2)'\)

For \((1/2,1/2,1/2)' + \text{set}\)

1. \((5) 2' \quad 0,y,0 \quad (2 | 0,0,0)'\)
2. \((6) \quad x,0,0 \quad (2 | 0,0,0)'\)
3. \((7) \quad 2' \quad x,x,0 \quad (2 | 0,0,0)'\)
4. \((8) \quad 2' \quad x,x,0 \quad (2 | 0,0,0)'\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>8 j .2'</td>
<td>x,x+1/2,1/4 [u,u,w]</td>
<td>x,x+1/2,1/4 [u,u,w]</td>
</tr>
<tr>
<td>8 i .2'</td>
<td>x,0,1/2 [0,v,w]</td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 h .2'</td>
<td>x,0,0 [u,u,0]</td>
<td>x,0,0 [u,u,0]</td>
</tr>
<tr>
<td>8 g .2</td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>8 f 2..</td>
<td>0,1/2, z [0,0,w]</td>
<td>1/2,0, z [0,0,w]</td>
</tr>
<tr>
<td>4 e 4'..</td>
<td>0,0, z [0,0,0]</td>
<td>0,0, z [0,0,0]</td>
</tr>
<tr>
<td>4 d 2.2'</td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>1/2,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td>4 c 22'</td>
<td>0,1/2,0 [0,0,w]</td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>2 b 4'2'</td>
<td>0,0, 1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 4'2'</td>
<td>0,0, 0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_4' 4m'm'
\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]
Origin at 0,1/2, z

Along [1,0,0] c_p 2mm'
\[a^* = -c \quad b^* = b \]
Origin at x,0,0

Along [1,1,0] p_2c 2m'm'
\[a^* = -c/2 \quad b^* = -(a + b)/2 \]
Origin at x,x,0
Origin at 222 at 212

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/8\)

Symmetry Operations

For \((0,0,0) + \) set

1. \(1\)
2. \((0,0,0)\)
3. \((0,0,1/4)\)
4. \((0,0,1/4)\)

For \((1/2,1/2,1/2) + \) set

1. \(t\)
2. \((1/2,0,1/2)\)
3. \((1/2,0,1/2)\)
4. \((1/2,0,1/2)\)

For \((1/2,1/2,1/2) + \) set

1. \(t\)
2. \((1/2,0,1/2)\)
3. \((1/2,0,1/2)\)
4. \((1/2,0,1/2)\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g</td>
<td>(1) x,y,z [u,v,w] (2) x, y, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y, x+1/2, z+1/4 [v,u,w] (4) y, x+1/2, z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y+1/2, z+1/4 [u,v,w] (6) x, y+1/2, z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y, x, z [v,u,w] (8) y, x, z [v,u,w]</td>
</tr>
</tbody>
</table>

8 f .2. x,1/4,1/8 [u,0,0] x,3/4,1/8 [u,0,0] 1/4,x,7/8 [0,u,0] 3/4,x,7/8 [0,u,0] |

8 e ..2 x,x,0 [u,u,0] x,x,0 [u,u,0] x,x+1/2,1/4 [u,u,0] x,x+1/2,1/4 [u,u,0] |

8 d ..2 x,x,0 [u,u,0] x,x,0 [u,u,0] x,x+1/2,1/4 [u,u,0] x,x+1/2,1/4 [u,u,0] |

8 c 2.. 0,0,z [0,0,w] 0,0,z [0,0,w] 0,1/2,z+1/4 [0,0,w] 0,1/2,z+1/4 [0,0,w] |

4 b 2.22 0,0,1/2 [0,0,0] 0,1/2,3/4 [0,0,0] |

4 a 2.22 0,0,0 [0,0,0] 0,1/2,1/4 [0,0,0] |

Symmetry of Special Projections

Along [0,0,1] p4mm
a* = (a - b)/2 b* = (a + b)/2
Origin at 1/4,1/4,z

Along [1,0,0] c2m'm'
a* = b b* = c
Origin at x,0,3/8

Along [1,1,0] p2m'm'
a* = -(a + b)/2 b* = c/2
Origin at x,x,0
Origin at 2221' at 2121'

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/8$

Symmetry Operations

For $(0,0,0)$ + set

1. 1
 (0,0,0)

2. $2 \cdot 0,0,z$
 $(2_z \cdot 0,0,0)$

3. $4^+ (0,0,1/4) -1/4,1/4,z$
 $(4_z \cdot 0,1/2,1/4)$

4. $4^- (0,0,1/4) 1/4,1/4,z$
 $(4_z^{-1} \cdot 0,1/2,1/4)$

5. $2 (0,1/2,0) 0,y,1/8$
 $(2_y \cdot 0,1/2,1/4)$

6. $2 \cdot x,1/4,1/8$
 $(2_x \cdot 0,1/2,1/4)$

7. $2 \cdot x,x,0$
 $(2_{xy} \cdot 0,0,0)$

8. $2 \cdot x,x,0$
 $(2_{xy} \cdot 0,0,0)$

For $(1/2,1/2,1/2)$ + set

1. $t (1/2,1/2,1/2)$
 $(1 \cdot 1/2,1/2,1/2)$

2. $2 \cdot (0,0,1/2) 1/4,1/4,z$
 $(2_x \cdot 1/2,1/2,1/2)$

3. $4^+ (0,0,3/4) 1/4,1/4,z$
 $(4_z \cdot 1/2,0,3/4)$

4. $4^- (0,0,3/4) 1/4,-1/4,z$
 $(4_z^{-1} \cdot 1/2,0,3/4)$

5. $2 \cdot 1/4,y,3/8$
 $(2_y \cdot 1/2,0,3/4)$

6. $2 \cdot (1/2,0,0) x,0,3/8$
 $(2_x \cdot 1/2,0,3/4)$

7. $2 \cdot (1/2,1/2,0) x,x,1/4$
 $(2_{xy} \cdot 1/2,1/2,1/2)$

8. $2 \cdot x,\bar{x},+1/2,1/4$
 $(2_{xy} \cdot 1/2,1/2,1/2)$
Continued

For (0,0,0)' + set

(1) 1' (1 0,0,0)'
(2) 2' 0,0,z
(2z 0,0,0)'
(3) 4' (0,0,1/4) -1/4,1/4,z
(4z 0,1/2,1/4)'
(4) 4' (0,0,1/4) 1/4,1/4,z
(4z' 0,1/2,1/4)'

(5) 2' (0,1/2,0) 0,y,1/8
(2y 0,1/2,1/4)'
(6) 2' x,1/4,1/8
(2x 0,1/2,1/4)'
(7) 2' x,x,0
(2xy 0,0,0)'
(8) 2' x,x,0
(2xy' 0,0,0)'

For (1/2,1/2,1/2)' + set

(1) t' (1/2,1/2,1/2)
(1/2,1/2,1/2)'
(2) 2' (0,1/2) 1/4,1/4,z
(2z 1/2,1/2,1/2)'
(3) 4' (0,0,3/4) 1/4,1/4,z
(4z 1/2,0,3/4)'
(4) 4' (0,0,3/4) 1/4,-1/4,z
(4z' 1/2,0,3/4)'

(5) 2' (1/2,0,0) x,0,3/8
(2x 1/2,0,3/4)'
(6) 2' (1/2,1/2,0) x,x,1/4
(2xy 1/2,1/2,1/2)'
(7) 2' (1/2,1/2,0) x,x,1/4
(2xy' 1/2,1/2,1/2)'
(8) 2' x,x+1/2,1/4
(2xy' 1/2,1/2,1/2)'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

(0,0,0) + (1/2,1/2,1/2) +

16 g 11' (1) x,y,z [0,0,0]
(2) x,y,z [0,0,0]
(3) y,x+1/2,z+1/4 [0,0,0]
(4) y,x+1/2,z+1/4 [0,0,0]
(5) x,y+1/2,z+1/4 [0,0,0]
(6) x,y+1/2,z+1/4 [0,0,0]
(7) y,x,z [0,0,0]
(8) y,x,z [0,0,0]

8 f .2.1' x,1/4,1/8 [0,0,0]
(2) x,3/4,1/8 [0,0,0]
(3) 1/4,x,7/8 [0,0,0]
(4) 3/4,x,7/8 [0,0,0]

8 e ..21' x,x,0 [0,0,0]
(2) x,x,0 [0,0,0]
(3) x,x+1/2,1/4 [0,0,0]
(4) x,x+1/2,1/4 [0,0,0]

8 d ..21' x,x,0 [0,0,0]
(2) x,x,0 [0,0,0]
(3) x,x+1/2,1/4 [0,0,0]
(4) x,x+1/2,1/4 [0,0,0]

8 c 2..1' 0,0,z [0,0,0]
(2) 0,0,z [0,0,0]
(3) 0,1/2,z+1/4 [0,0,0]
(4) 0,1/2,z+1/4 [0,0,0]

4 b 2.221' 0,0,1/2 [0,0,0]
(2) 0,1/2,3/4 [0,0,0]
(3) 0,1/2,3/4 [0,0,0]

4 a 2.221' 0,0,0 [0,0,0]
(2) 0,1/2,1/4 [0,0,0]
(3) 0,1/2,1/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm1'
Along [1,0,0] c2mm1'
Along [1,1,0] p2mm1'

\[a^* = \frac{(a - b)}{2} \]
\[b^* = \frac{(a + b)}{2} \]

Origin at 1/4,1/4,z

\[a^* = b \quad b^* = c \]

Origin at x,0,3/8

\[a^* = \frac{-(a + b)}{2} \quad b^* = c/2 \]

Origin at x,x,0
I4₁,2₂’
98.3.816

Tetragonal

Origin at 2₂’₂’ at 2₁₂’

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/8

Symmetry Operations

For (0,0,0) + set

1
(1) 1
(1 | 0,0,0)

2
(2) 0,0,z
(2 | 0,0,0)

4
(3) 4⁺ (0,0,1/4) -1/4,1/4,z
(4 | 0,1/2,1/4)⁺

4⁻⁻ (0,0,1/4) 1/4,1/4,z
(4⁻⁻ | 0,1/2,1/4)⁻⁻

For (1/2,1/2,1/2) + set

1
(1) t (1/2,1/2,1/2)
(1 | 1/2,1/2,1/2)

2
(2) 0,0,1/2
(2 | 1/2,1/2,1/2)

4
(3) 4⁺⁺ (0,0,3/4) 1/4,1/4,z
(4 | 1/2,0,3/4)⁺⁺

4⁻⁻ (0,0,3/4) 1/4,-1/4,z
(4⁻⁻ | 1/2,0,3/4)⁻⁻

For (1/2,1/2,1/2) + set

2
(5) 1/4,y,3/8
(2 | 1/2,0,3/4)

2
(6) 1/2,0,0
(2 | 1/2,0,3/4)

4
(7) 2’ (1/2,1/2,0) x,x,1/4
(2 | 1/2,1/2,1/2)’

4⁻⁻ (0,0,1/4) 1/4,1/4,z
(4⁻⁻ | 1/2,0,3/4)⁻⁻

For (1/2,1/2,1/2) + set

2
(8) x,x +1/2,1/4
(2 | 1/2,1/2,1/2)’
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x, y, z [u,v,w]</td>
</tr>
<tr>
<td>(3) y,x+1/2,z+1/4 [v,u,w]</td>
<td>(4) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td>(5) x,y+1/2,z+1/4 [u,v,w]</td>
<td>(6) x,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 f .2. x,1/4,1/8 [u,0,0]</td>
<td>x,3/4,1/8 [u,0,0]</td>
</tr>
<tr>
<td>8 e .2' x,x,0 [u,u,w]</td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td>8 d .2' x,x,0 [u,u,w]</td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td>8 c 2. 0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 b 2.2' 0,0,1/2 [0,0,w]</td>
<td>0,1/2,3/4 [0,0,w]</td>
</tr>
<tr>
<td>4 a 2.2' 0,0,0 [0,0,w]</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4m'm' Along [1,0,0] c2m'm' Along [1,1,0] p2mm'
a* = (a - b)/2 b* = (a + b)/2 a* = b b* = c a* = -c/2 b* = (-a + b)/2
Origin at 1/4,1/4,z Origin at x,0,3/8 Origin at x,x,0

98.3.816 - 2 - 1626
I4₁,2'2'
98.4.817

42'2'
I4₁,2'2'

Tetragonal

Origin at 22'2' at 212'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/8

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 0,0,0)

(2) 2 0,0,z
(2z 0,0,0)

(3) 4⁺ (0,0,1/4) -1/4,1/4,z
(4z 0,1/2,1/4)

(4) 4⁻ (0,0,1/4) 1/4,1/4,z
(4z⁻¹ 0,1/2,1/4)

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(1 1/2,1/2,1/2)

(2) 2 (0,0,1/2) 1/4,1/4,z
(2z 1/2,1/2,1/2)

(3) 4⁺ (0,0,3/4) 1/4,1/4,z
(4z 1/2,0,3/4)

(4) 4⁻ (0,0,3/4) 1/4,-1/4,z
(4z⁻¹ 1/2,0,3/4)

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(1 1/2,1/2,1/2)

(2) 2 (0,0,1/2) 1/4,1/4,z
(2z 1/2,1/2,1/2)

(3) 4⁺ (0,0,3/4) 1/4,1/4,z
(4z 1/2,0,3/4)

(4) 4⁻ (0,0,3/4) 1/4,-1/4,z
(4z⁻¹ 1/2,0,3/4)
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Positions</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 g</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) (\bar{x}, \bar{y}, \bar{z} [\bar{u}, \bar{v}, \bar{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) (y, x+1/2, z+1/4 [v, \bar{u}, \bar{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y+1/2,(\bar{z} +1/4 [u, \bar{v}, \bar{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,(y+1/2, \bar{z} +1/4 [u, v, w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,(\bar{z} [v, u, w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) (\bar{y}, x, z [v, u, w])</td>
</tr>
<tr>
<td>8 f</td>
<td>.2'</td>
<td>x,1/4,1/8 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,3/4,1/8 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4,x,7/8 [(\bar{v}, 0, w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4,x,7/8 [v,0,w]</td>
</tr>
<tr>
<td>8 e</td>
<td>.2'</td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [(u, \bar{v}, u, w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x+1/2,1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x+1/2,1/4 [u,u,w]</td>
</tr>
<tr>
<td>8 d</td>
<td>.2'</td>
<td>x,x,0 [(u, u, w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [(u, \bar{u}, w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x+1/2,1/4 [(u, u, w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x+1/2,1/4 [(u, u, w)]</td>
</tr>
<tr>
<td>8 c</td>
<td>2'</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z+1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z+1/4 [0,0,w]</td>
</tr>
<tr>
<td>4 b</td>
<td>2.2'</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,3/4 [0,0,w]</td>
</tr>
<tr>
<td>4 a</td>
<td>2.2'</td>
<td>0,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p4m'm'
 - \(a^* = (a - b)/2 \)
 - \(b^* = (a + b)/2 \)
- Origin at 1/4,1/4,z

- Along [1,0,0] c2m'm'
 - \(a^* = -c \)
- Origin at x,0,3/8

- Along [1,1,0] p2mm'
 - \(a^* = -c/2 \)
 - \(b^* = (-a + b)/2 \)
- Origin at x,x,0
Origin at 222 at 212

Asymmetric unit: \(0 \leq x \leq 1/2;\) \(0 \leq y \leq 1;\) \(0 \leq z \leq 1/8\)

Symmetry Operations

For \((0,0,0)\) + set

1. \((1,0,0,0)\)
2. \((2,0,0,z)\) \((2_z,0,0,0)\)
3. \((4^+, (0,0,1/4), -1/4,1/4,z)\) \((4_z,0,1/2,1/4)\)
4. \((4^-, (0,0,1/4), 1/4,1/4,z)\) \((4_z^{-1},0,1/2,1/4)\)
5. \((2', (0,1/2,0), 0,y,1/8)\) \((2_z',0,1/2,1/4)\)
6. \((2', x,1/4,1/8)\) \((2_z',0,1/2,1/4)\)
7. \((2, x,x,0)\) \((2_x,0,0,0)\)
8. \((2, x,x,0)\) \((2_x,0,0,0)\)

For \((1/2,1/2,1/2)\) + set

1. \((1/2,1/2,1/2)\)
2. \((2, (0,0,1/2), 1/4,1/4,z)\) \((2_z,1/2,1/2,1/2)\)
3. \((4^+, (0,0,3/4), 1/4,1/4,z)\) \((4_z,1/2,0,3/4)\)
4. \((4^-, (0,0,3/4), 1/4,-1/4,z)\) \((4_z^{-1},1/2,0,3/4)\)
5. \((2', 1/4,y,3/8)\) \((2_z',1/2,0,3/4)\)
6. \((2', (1/2,0,0), x,0,3/8)\) \((2_z',1/2,0,3/4)\)
7. \((2, (1/2,1/2,0), x,x,1/4)\) \((2_x,1/2,1/2,1/2)\)
8. \((2, x,x+1/2,1/4)\) \((2_x,1/2,1/2,1/2)\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x+1/2,z+1/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x+1/2,z+1/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) y,x+1/2,z+1/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) y,x+1/2,z+1/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 f</td>
<td>.2'</td>
<td>x,1/4,1/8 [0,v,w]</td>
<td>x,3/4,1/8 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4,x,7/8 [v,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4,x,7/8 [v,0,w]</td>
<td></td>
</tr>
<tr>
<td>8 e</td>
<td>.2</td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x+1/2,1/4 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x+1/2,1/4 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>8 d</td>
<td>.2</td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x+1/2,1/4 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x+1/2,1/4 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>8 c</td>
<td>2..</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z+1/4 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z+1/4 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 b</td>
<td>2.22</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>2.22</td>
<td>0,0,0 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [1,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>p4'm'm</td>
<td>a* = (a - b)/2</td>
<td>b* = (a + b)/2</td>
<td>a* = (a - b)/2</td>
</tr>
<tr>
<td>c2'm'm'</td>
<td>a* = -c</td>
<td>b* = b</td>
<td>a* = -c</td>
</tr>
<tr>
<td>p2m'm'</td>
<td>a* = -(a + b)/2</td>
<td>b* = c/2</td>
<td>a* = -(a + b)/2</td>
</tr>
</tbody>
</table>

Origin at 1/4,1/4,z

Origin at x,0,3/8

Origin at x,x,0
Symmetry Operations

For (0,0,0) + set

1. I, $(0,0,0)$
2. $2', (0,0,0)$
3. $4^*, (0,0,1/4)$
4. $4^* (0,0,1/4)$
5. $2' (0,1/2,0)$
6. $2 x, 1/4, 1/8$
7. $2', x, x, 0$
8. $2 x, x, 0$

For $(1/2,1/2,1/2)' + set

1. $t' (1/2,1/2,1/2)$
2. $2 (0,0,1/2)$
3. $4^* (0,0,3/4)$
4. $4^* (0,0,3/4)$
5. $2 (1/2,0,0)$
6. $2' (1/2,0,0)$
7. $2 (1/2,1/2,0)$
8. $2' x, x + 1/2, 1/4$

Origin

At $2'2'2$ at $2'1(2',2)$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/8$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g 1</td>
<td>(0,0,0) + (1/2,1/2,1/2)'+ +</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(3) y,x+1/2,z+1/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(4) y,x+1/2,z+1/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(5) x,y+1/2,z+1/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(6) x,y+1/2,z+1/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(8) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 f .2. x,1/4,1/8 [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 e .2 x,x,0 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>8 d .2' x,x,0 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 c 2'.. 0,0,z [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>4 b 2'.2' 0,0,1/2 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>4 a 2'.2' 0,0,0 [u,u,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_c; 4mm
a* = (a - b)/2
b* = (a + b)/2
Origin at 1/4,-1/4,z

Along [1,0,0] c_p; 2mm'
a* = b
b* = c
Origin at x,0,3/8

Along [1,1,0] p_2x; 2mm
a* = -c/2
b* = (-a + b)/2
Origin at x,x,1/4
Origin at $2'22'$ at $2'1(2,2')$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/8$

Symmetry Operations

For $(0,0,0) + \text{set}$

1. $(1) \quad 1$

 \begin{align*}
 (1 | 0,0,0)
 \end{align*}

2. $(2) \quad 2' \quad 0,0,z$

 \begin{align*}
 (2_1 | 0,0,0)'
 \end{align*}

3. $(3) \quad 4^* \cdot (0,0,1/4) \quad -1/4,1/4,z$

 \begin{align*}
 (4_1 | 0,1/2,1/4)'
 \end{align*}

4. $(4) \quad 4^* \cdot (0,0,1/4) \quad 1/4,1/4,z$

 \begin{align*}
 (4_1^{-1} | 0,1/2,1/4)
 \end{align*}

5. $(5) \quad 2' \quad (0,1/2,0) \quad 0,y,1/8$

 \begin{align*}
 (2_1 | 0,1/2,1/4)'
 \end{align*}

6. $(6) \quad 2 \quad x,1/4,1/8$

 \begin{align*}
 (2_1 | 0,1/2,1/4)
 \end{align*}

7. $(7) \quad 2 \quad x,x,0$

 \begin{align*}
 (2_{xy} | 0,0,0)
 \end{align*}

8. $(8) \quad 2' \quad x,x,0$

 \begin{align*}
 (2_{xy}^{-1} | 0,0,0)'
 \end{align*}

For $(1/2,1/2,1/2') + \text{set}$

1. $(1) \quad t' \quad (1/2,1/2,1/2)$

 \begin{align*}
 (1 | 1/2,1/2,1/2)'
 \end{align*}

2. $(2) \quad 2 \quad (0,0,1/2) \quad 1/4,1/4,z$

 \begin{align*}
 (2_1 | 1/2,1/2,1/2)
 \end{align*}

3. $(3) \quad 4^* \cdot (0,0,3/4) \quad 1/4,1/4,z$

 \begin{align*}
 (4_1 | 1/2,0,3/4)
 \end{align*}

4. $(4) \quad 4^* \cdot (0,0,3/4) \quad 1/4,-1/4,z$

 \begin{align*}
 (4_1^{-1} | 1/2,0,3/4)'
 \end{align*}

5. $(5) \quad 2 \quad 1/4,y,3/8$

 \begin{align*}
 (2_1 | 1/2,0,3/4)
 \end{align*}

6. $(6) \quad 2' \quad (1/2,0,0) \quad x,0,3/8$

 \begin{align*}
 (2_1 | 1/2,0,3/4)'
 \end{align*}

7. $(7) \quad 2' \quad (1/2,1/2,0) \quad x,x,1/4$

 \begin{align*}
 (2_{xy} | 1/2,1/2,1/2)'
 \end{align*}

8. $(8) \quad 2 \quad x,x+1/2,1/4$

 \begin{align*}
 (2_{xy} | 1/2,1/2,1/2)
 \end{align*}
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t’(1/2,1/2,1/2); (2); (3); (5).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplici</td>
</tr>
<tr>
<td>Wyckoff letter</td>
</tr>
<tr>
<td>Site Symmetry</td>
</tr>
<tr>
<td>Coordinates</td>
</tr>
<tr>
<td>Continued</td>
</tr>
<tr>
<td>Continued</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Generators selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1); t(1,0,0); t(0,1,0); t(0,0,1); t’(1/2,1/2,1/2); (2); (3); (5).</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Generators selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1); t(1,0,0); t(0,1,0); t(0,0,1); t’(1/2,1/2,1/2); (2); (3); (5).</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity</td>
</tr>
<tr>
<td>Wyckoff letter</td>
</tr>
<tr>
<td>Site Symmetry</td>
</tr>
<tr>
<td>Coordinates</td>
</tr>
<tr>
<td>Continued</td>
</tr>
<tr>
<td>Continued</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity</td>
</tr>
<tr>
<td>Wyckoff letter</td>
</tr>
<tr>
<td>Site Symmetry</td>
</tr>
<tr>
<td>Coordinates</td>
</tr>
<tr>
<td>Continued</td>
</tr>
<tr>
<td>Continued</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
</tr>
<tr>
<td>p_4c: 4mm</td>
</tr>
<tr>
<td>a^ = (a - b)/2*</td>
</tr>
<tr>
<td>b^ = (a + b)/2*</td>
</tr>
<tr>
<td>Origin at 1/4,1/4,z</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,0,0]</td>
</tr>
<tr>
<td>c_4: 2mm</td>
</tr>
<tr>
<td>a^ = b*</td>
</tr>
<tr>
<td>b^ = c*</td>
</tr>
<tr>
<td>Origin at x,0,3/8</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,1,0]</td>
</tr>
<tr>
<td>p_{2z2}: 2mm</td>
</tr>
<tr>
<td>a^ = -c/2*</td>
</tr>
<tr>
<td>b^ = (-a + b)/2*</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
</tr>
<tr>
<td>p_4c: 4mm</td>
</tr>
<tr>
<td>a^ = (a - b)/2*</td>
</tr>
<tr>
<td>b^ = (a + b)/2*</td>
</tr>
<tr>
<td>Origin at 1/4,1/4,z</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,0,0]</td>
</tr>
<tr>
<td>c_4: 2mm</td>
</tr>
<tr>
<td>a^ = b*</td>
</tr>
<tr>
<td>b^ = c*</td>
</tr>
<tr>
<td>Origin at x,0,3/8</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,1,0]</td>
</tr>
<tr>
<td>p_{2z2}: 2mm</td>
</tr>
<tr>
<td>a^ = -c/2*</td>
</tr>
<tr>
<td>b^ = (-a + b)/2*</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
</tr>
<tr>
<td>p_4c: 4mm</td>
</tr>
<tr>
<td>a^ = (a - b)/2*</td>
</tr>
<tr>
<td>b^ = (a + b)/2*</td>
</tr>
<tr>
<td>Origin at 1/4,1/4,z</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,0,0]</td>
</tr>
<tr>
<td>c_4: 2mm</td>
</tr>
<tr>
<td>a^ = b*</td>
</tr>
<tr>
<td>b^ = c*</td>
</tr>
<tr>
<td>Origin at x,0,3/8</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,1,0]</td>
</tr>
<tr>
<td>p_{2z2}: 2mm</td>
</tr>
<tr>
<td>a^ = -c/2*</td>
</tr>
<tr>
<td>b^ = (-a + b)/2*</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
</tr>
<tr>
<td>p_4c: 4mm</td>
</tr>
<tr>
<td>a^ = (a - b)/2*</td>
</tr>
<tr>
<td>b^ = (a + b)/2*</td>
</tr>
<tr>
<td>Origin at 1/4,1/4,z</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,0,0]</td>
</tr>
<tr>
<td>c_4: 2mm</td>
</tr>
<tr>
<td>a^ = b*</td>
</tr>
<tr>
<td>b^ = c*</td>
</tr>
<tr>
<td>Origin at x,0,3/8</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,1,0]</td>
</tr>
<tr>
<td>p_{2z2}: 2mm</td>
</tr>
<tr>
<td>a^ = -c/2*</td>
</tr>
<tr>
<td>b^ = (-a + b)/2*</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
</tr>
<tr>
<td>p_4c: 4mm</td>
</tr>
<tr>
<td>a^ = (a - b)/2*</td>
</tr>
<tr>
<td>b^ = (a + b)/2*</td>
</tr>
<tr>
<td>Origin at 1/4,1/4,z</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,0,0]</td>
</tr>
<tr>
<td>c_4: 2mm</td>
</tr>
<tr>
<td>a^ = b*</td>
</tr>
<tr>
<td>b^ = c*</td>
</tr>
<tr>
<td>Origin at x,0,3/8</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,1,0]</td>
</tr>
<tr>
<td>p_{2z2}: 2mm</td>
</tr>
<tr>
<td>a^ = -c/2*</td>
</tr>
<tr>
<td>b^ = (-a + b)/2*</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
</tr>
<tr>
<td>p_4c: 4mm</td>
</tr>
<tr>
<td>a^ = (a - b)/2*</td>
</tr>
<tr>
<td>b^ = (a + b)/2*</td>
</tr>
<tr>
<td>Origin at 1/4,1/4,z</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,0,0]</td>
</tr>
<tr>
<td>c_4: 2mm</td>
</tr>
<tr>
<td>a^ = b*</td>
</tr>
<tr>
<td>b^ = c*</td>
</tr>
<tr>
<td>Origin at x,0,3/8</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,1,0]</td>
</tr>
<tr>
<td>p_{2z2}: 2mm</td>
</tr>
<tr>
<td>a^ = -c/2*</td>
</tr>
<tr>
<td>b^ = (-a + b)/2*</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
</tr>
<tr>
<td>p_4c: 4mm</td>
</tr>
<tr>
<td>a^ = (a - b)/2*</td>
</tr>
<tr>
<td>b^ = (a + b)/2*</td>
</tr>
<tr>
<td>Origin at 1/4,1/4,z</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,0,0]</td>
</tr>
<tr>
<td>c_4: 2mm</td>
</tr>
<tr>
<td>a^ = b*</td>
</tr>
<tr>
<td>b^ = c*</td>
</tr>
<tr>
<td>Origin at x,0,3/8</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,1,0]</td>
</tr>
<tr>
<td>p_{2z2}: 2mm</td>
</tr>
<tr>
<td>a^ = -c/2*</td>
</tr>
<tr>
<td>b^ = (-a + b)/2*</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
</tr>
<tr>
<td>p_4c: 4mm</td>
</tr>
<tr>
<td>a^ = (a - b)/2*</td>
</tr>
<tr>
<td>b^ = (a + b)/2*</td>
</tr>
<tr>
<td>Origin at 1/4,1/4,z</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,0,0]</td>
</tr>
<tr>
<td>c_4: 2mm</td>
</tr>
<tr>
<td>a^ = b*</td>
</tr>
<tr>
<td>b^ = c*</td>
</tr>
<tr>
<td>Origin at x,0,3/8</td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,1,0]</td>
</tr>
<tr>
<td>p_{2z2}: 2mm</td>
</tr>
<tr>
<td>a^ = -c/2*</td>
</tr>
<tr>
<td>b^ = (-a + b)/2*</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Origin at 2'2'2' at 2'1(2,2')

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/8$

Symmetry Operations

For $(0,0,0) +$ set

1. $1 \quad (1|0,0,0)
2. 2' \quad (2|0,0,z)
 \quad (2x|0,0,0)'
3. 4' \quad (0,0,1/4) \quad -1/4,1/4,z
 \quad (4z|0,1/2,1/4)
4. 4' \quad (0,0,1/4) \quad 1/4,1/4,z
 \quad (4z^{-1}|0,1/2,1/4)'
5. 2 \quad (0,1/2,0) \quad 0,y,1/8
 \quad (2x|0,1/2,1/4)'
6. 2' \quad x,1/4,1/8
 \quad (2x|0,1/2,1/4)'
7. 2 \quad x,x,0
 \quad (2x|0,0,0)
8. 2' \quad x,x,0
 \quad (2x|0,0,0)'

For $(1/2,1/2,1/2)' +$ set

1. $t' \quad (1/2,1/2,1/2) \quad (1|1/2,1/2,1/2)'
2. 2 (0,0,1/2) \quad 1/4,1/4,z
 \quad (2z|1/2,1/2,1/2)
3. 4' \quad (0,0,3/4) \quad 1/4,1/4,z
 \quad (4z|1/2,0,3/4)'
4. 4' \quad (0,0,3/4) \quad 1/4,-1/4,z
 \quad (4z^{-1}|1/2,0,3/4)
5. 2' \quad 1/4,y,3/8
 \quad (2z|1/2,0,3/4)'
6. 2 (1/2,0,0) \quad x,0,3/8
 \quad (2z|1/2,0,3/4)
7. 2' \quad (1/2,1/2,0) \quad x,x,1/4
 \quad (2xy|1/2,1/2,1/2)'
8. 2 \quad x,\bar{x}+1/2,1/4
 \quad (2x|1/2,1/2,1/2)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>g</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
</tbody>
</table>

8	f .2'	x,1/4,1/8 [0,v,w]
		x,3/4,1/8 [0,v,w]
		1/4,x,7/8 [v,0,w]
		3/4,x,7/8 [v,0,w]
8	e ..2'	x,x,0 [u,u,w]
		x,x,0 [u,u,w]
		x,x+1/2,1/4 [u,u,w]
		x,x+1/2,1/4 [u,u,w]
8	d ..2	x,x,0 [u,u,0]
		x,x,0 [u,u,0]
		x,x+1/2,1/4 [u,u,0]
		x,x+1/2,1/4 [u,u,0]
8	c 2'..	0,0,z [u,v,0]
		0,0,z [v,u,0]
		0,1/2,z+1/4 [v,u,0]
		0,1/2,z+1/4 [v,u,0]
4	b 2'.22'	0,0,1/2 [u,u,0]
		0,1/2,3/4 [u,u,0]
4	a 2'.22'	0,0,0 [u,u,0]
		0,1/2,1/4 [u,u,0]

Symmetry of Special Projections

Along [0,0,1] p\textsubscript{c}, 4mmm'
\textbf{a}' = (a - b)/2 \textbf{b}' = (a + b)/2
Origin at 1/4,-1/4,z

Along [1,0,0] c\textsubscript{p}, 2mm
\textbf{a}' = -c \textbf{b}' = b
Origin at x,0,3/8

Along [1,1,0] p\textsubscript{2x}, 2mm
\textbf{a}' = -c/2 \textbf{b}' = (-a + b)/2
Origin at x,x,0
Origin at 2'2'2 at 2'1(2',2)

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/8 \]

Symmetry Operations

For \((0,0,0) +\) set

1. \(1\)
 \(1; 0,0,0\)

2. \(2'\)
 \((2z; 0,0,0)'\)

5. \(2\) \((0,1/2,0)\)
 \(0, y^{1/8}\)
 \((2y; 0,1/2,1/4)\)

For \((1/2,1/2,1/2)' +\) set

1. \(t\) \((1/2,1/2,1/2)\)
 \((1; 1/2,1/2,1/2)'\)

5. \(2'\) \(1/4,y,3/8\)
 \((2y; 1/2,0,3/4)'\)

\(l_p 4', 2'2\)

\[98.9.822 \]

4221'

\[98.9.822 \]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 f .2'</td>
<td>x,1/4,1/8 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,3/4,1/8 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,x,7/8 [v,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,x,7/8 [v,0,w]</td>
</tr>
<tr>
<td>8 e .2</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td>8 d .2'</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td>8 c .2'</td>
<td>0,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [v,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/4 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/4 [v,u,0]</td>
</tr>
<tr>
<td>4 b 2'.2'2</td>
<td>0,0,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,3/4 [u,u,0]</td>
</tr>
<tr>
<td>4 a 2'.2'2</td>
<td>0,0,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/4 [u,u,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_b, 4mm
a* = (a - b)/2 b* = (a + b)/2
Origin at 1/4,1/4,z

Along [1,0,0] c_p, 2mm'
a* = b b* = c
Origin at x,0,3/8

Along [1,1,0] p_{2x}, 2mm
a* = -c/2 b* = (-a + b)/2
Origin at x,x,0
Origin on 4mm

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq 1; \quad x \leq y \]

Symmetry Operations

1. \(1 \) (1|0,0,0)
2. \(2 \) 0,0,z (2|z|0,0,0)
3. \(4^+ \) 0,0,z (4|z|0,0,0)
4. \(4^- \) 0,0,z (4|z|0,0,0)
5. \(m \) x,0,z (m|x|0,0,0)
6. \(m \) 0,y,z (m|y|0,0,0)
7. \(m \) x,x,z (m|x|0,y,0)
8. \(m \) x,x,z (m|x|0,y,0)

Tetragonal

P4mm

|99.1.823| 4mm
P4mm

273x38 99.1.823 - 1 - 1639
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Coordinates</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>g</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>f .m.</td>
<td>x,1/2,z [0,v,0]</td>
<td>x,1/2,z [0,v,0]</td>
<td>1/2,x,z [v,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>e .m.</td>
<td>x,0,z [0,v,0]</td>
<td>x,0,z [0,v,0]</td>
<td>0,x,z [v,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>d .m</td>
<td>x,x,z [u,u,0]</td>
<td>x,x,z [u,u,0]</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>2</td>
<td>c 2mm.</td>
<td>1/2,0,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>b 4mm</td>
<td>1/2,1/2,z [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>a 4mm</td>
<td>0,0,z [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm

<table>
<thead>
<tr>
<th>a* = a</th>
<th>b* = b</th>
</tr>
</thead>
</table>

Origin at 0,0,z

Along [1,0,0] p1m11'

<table>
<thead>
<tr>
<th>a* = b</th>
<th>b* = c</th>
</tr>
</thead>
</table>

Origin at x,0,0

Along [1,1,0] p1m11'

<table>
<thead>
<tr>
<th>a* = (-a + b)/2</th>
<th>b* = c</th>
</tr>
</thead>
</table>

Origin at x,x,0

99.1.823 - 2 - 1640
Origin on 4mm1'

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x < y \]

Symmetry Operations

For 1 + set

1. \((1)\ 1 \)
2. \((2)\ 2\ 0,0,z \)
3. \((3)\ 4^+\ 0,0,z \)
4. \((4)\ 4^+\ 0,0,z \)

(1) \((1 \ 0,0,0) \)
(2) \((2 \ 0,0,0') \)
(3) \((3 \ 0,0,0') \)
(4) \((4 \ 0,0,0') \)

(5) \(m\ x,0,z \)
(5) \(m\ x,0,0 \)
(7) \(m\ x,0,z \)
(7) \(m\ x,0,0 \)

For 1' + set

1. \((1')\ 1' \)
2. \((2')\ 2'\ 0,0,z \)
3. \((3')\ 4'^+\ 0,0,z \)
4. \((4')\ 4'^+\ 0,0,z \)

(1) \((1' \ 0,0,0') \)
(2) \((2' \ 0,0,0') \)
(3) \((3' \ 0,0,0') \)
(4) \((4' \ 0,0,0') \)

(5) \(m'\ x,0,z \)
(5) \(m'\ x,0,0 \)
(7) \(m'\ x,0,z \)
(7) \(m'\ x,0,0 \)
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1'</td>
<td>(1) x,y,z [0,0,0] (2) x̅,y̅,z [0,0,0] (3) y̅,x̅,z [0,0,0]</td>
</tr>
<tr>
<td>(5) x̅,y̅,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(6) x̅,y̅,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(7) y̅,x̅,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(8) y̅,x̅,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 f .m.1'</td>
<td>(4) x,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>x,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>x,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1/2,x,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1/2,x,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 e .m.1'</td>
<td>(5) x,0,z [0,0,0]</td>
</tr>
<tr>
<td>x,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>x,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,x,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,x,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 d ..m1'</td>
<td>(6) x,x,z [0,0,0]</td>
</tr>
<tr>
<td>x,x,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>x,x,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>x,x,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 c 2mm.1'</td>
<td>(7) 0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>1/2,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1/2,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 b 4mm1'</td>
<td>(8) 0,0,z [0,0,0]</td>
</tr>
<tr>
<td>1/2,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 a 4mm1'</td>
<td></td>
</tr>
<tr>
<td>0,0,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p4mm1'</th>
<th>Along [1,0,0] p1m11'</th>
<th>Along [1,1,0] p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = b b* = c</td>
<td>a* = (-a + b)/2 b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Origin on 4'm'm

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq 1; \quad x \leq y \]

Symmetry Operations

1. \(1 \)

 \[
 (1|0,0,0)
 \]

2. \(2 \quad 0,0,z \)

 \[
 (2_z|0,0,0)
 \]

3. \(4^+ \quad 0,0,z \)

 \[
 (4_z|0,0,0)'
 \]

4. \(4^- \quad 0,0,z \)

 \[
 (4_z^{-1}|0,0,0)'
 \]

5. \(m' \quad x,0,z \)

 \[
 (m_x|0,0,0)'
 \]

6. \(m' \quad y,0,z \)

 \[
 (m_y|0,0,0)'
 \]

7. \(m \quad x,x,z \)

 \[
 (m_x|0,0,0)
 \]

8. \(m \quad x,x,z \)

 \[
 (m_y|0,0,0)
 \]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>g</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>f .m'</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,x,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,x,z [0,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>e .m'</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,z [0,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>d .m</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>2</td>
<td>c 2m'm'</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>b 4'm'm</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>a 4'm'm</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p4'm'm</th>
<th>Along [1,0,0] p1m1'</th>
<th>Along [1,1,0] p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = b b* = c</td>
<td>a* = (-a + b)/2 b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Origin on 4'\text{mm}'

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y\)

Symmetry Operations

\begin{align*}
(1) \quad & \begin{array}{c} 1 \\ (1|0,0,0) \end{array} \\
(2) \quad & \begin{array}{c} 2 \ 0,0,z \\ (2_z|0,0,0) \end{array} \\
(3) \quad & \begin{array}{c} 4'\times \ 0,0,z \\ (4_z|0,0,0)' \end{array} \\
(4) \quad & \begin{array}{c} 4' \times \ 0,0,z \\ (4_z^{-1}|0,0,0)' \end{array} \\
(5) \quad & \begin{array}{c} m \ x,0,z \\ (m_y|0,0,0) \end{array} \\
(6) \quad & \begin{array}{c} m \ 0,y,z \\ (m_x|0,0,0) \end{array} \\
(7) \quad & \begin{array}{c} m' \ x,x,z \\ (m_{xy}|0,0,0)' \end{array} \\
(8) \quad & \begin{array}{c} m' \ x,x,z \\ (m_{xy}|0,0,0)' \end{array}
\end{align*}
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 f .m.</td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>4 e .m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>4 d .m'</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>2 c 2mm.</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>1 b 4'mm'</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>1 a 4'mm'</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'mm'
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p1m11'
\[a^* = b \quad b^* = c \]
Origin at x,0,0

Along [1,1,0] p1m1'
\[a^* = (-a+b)/2 \quad b^* = c \]
Origin at x,x,0
Origin on 4m' m'

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y\)

Symmetry Operations

1. \(1\)
 - \((0,0,0)\)
2. \(2\)
 - \((0,0,z)\)
 - \((2z,0,0)\)
3. \(4^+\)
 - \((0,0,z)\)
 - \((4z,0,0)\)
4. \(4^-\)
 - \((0,0,z)\)
 - \((4z^-1,0,0)\)
5. \(m'\)
 - \((x,0,z)\)
 - \((m_y,0,0)\)'
6. \(m'\)
 - \((0,y,z)\)
 - \((m_x,0,0)\)'
7. \(m'\)
 - \((x,x,z)\)
 - \((m_{xy},0,0)\)'
8. \(m'\)
 - \((x,x,z)\)
 - \((m_{xy},0,0)\)'

P4m' m'

99.5.827

Tetragonal

P4m' m'
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 g 1</td>
<td>1</td>
<td>(1) x, y, z [u, v, w]</td>
</tr>
<tr>
<td>4 f m'</td>
<td>1</td>
<td>x, 1/2, z [u, 0, w]</td>
</tr>
<tr>
<td>4 e m'</td>
<td>1</td>
<td>x, 0, z [u, 0, w]</td>
</tr>
<tr>
<td>4 d m'</td>
<td>1</td>
<td>x, x, z [u, u, w]</td>
</tr>
<tr>
<td>2 c m'</td>
<td>1</td>
<td>1/2, 0, z [0, 0, w]</td>
</tr>
<tr>
<td>1 b m'</td>
<td>1</td>
<td>1/2, 1/2, z [0, 0, w]</td>
</tr>
<tr>
<td>1 a m'</td>
<td>1</td>
<td>0, 0, z [0, 0, w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4m' m'
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] p1m'
\(\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \)
Origin at x,0,0

Along [1,1,0] p1m'
\(\mathbf{a}^* = (\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c} \)
Origin at x,x,0
Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)
2. \(2\) 0,0,z
3. \(4^+\) 0,0,z
4. \(4^-\) 0,0,z
5. \(m\) x,0,z
6. \(m\) 0,y,z
7. \(m\) x,x,z
8. \(m\) x,x,z

For \((0,0,1)\) + set

1. \(t\) (0,0,1)
2. \(2^\prime\) (0,0,1) 0,0,z
3. \(4^+\) (0,0,1) 0,0,z
4. \(4^-\) (0,0,1) 0,0,z
5. \(c\) (0,0,1) x,0,z
6. \(c^\prime\) (0,0,1) 0,y,z
7. \(c\) (0,0,1) x,x,z
8. \(c^\prime\) (0,0,1) x,x,z

Origin on 4mm

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y\]
Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>g</td>
<td>1</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,0,1)’ +</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>.m.</td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>8</td>
<td>e</td>
<td>.m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>8</td>
<td>d</td>
<td>.m.</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>2mm.</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4mm</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4mm</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1'
Along [1,0,0] p1m11'
Along [1,1,0] p1m11'

\[a^* = a \quad b^* = b \]
\[a^* = b \quad b^* = c \]
\[a^* = (a + b)/2 \quad b^* = c \]

Origin at 0,0,z
Origin at x,0,0
Origin at x,x,0
Origin on 4mm

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq 1; \quad x \leq y \]

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)
 \(1\) \(0,0,0\)
2. \(2 \times 0,0,z\)
 \(2_{z} \times 0,0,0\)
3. \(4^* \times 0,0,z\)
 \(4_{z} \times 0,0,0\)
4. \(4^* \times 0,0,z\)
 \(4_{z}^{-1} \times 0,0,0\)
5. \(m \times x,0,z\)
 \(m_{y} \times 0,0,0\)
6. \(m \times y,0,z\)
 \(m_{x} \times 0,0,0\)
7. \(m \times x,0,z\)
 \(m_{x} \times 0,0,0\)
8. \(m \times x,z\)
 \(m_{x} \times 0,0,0\)

For \((1,0,0)' + set\)

1. \(t'(1,0,0)\)
 \(1_{1} \times 1,0,0\)
2. \(2' \times 1/2,0,z\)
 \(2_{z} \times 1,0,0\)
3. \(4^* ' \times 1/2,1/2,z\)
 \(4_{z} \times 1,0,0\)
4. \(4^* ' \times 1/2,-1/2,z\)
 \(4_{z}^{-1} \times 1,0,0\)
5. \(a'(1,0,0) \times x,0,z\)
 \(m_{y} \times 1,0,0\)
6. \(m' \times 1/2,y,z\)
 \(m_{x} \times 1,0,0\)
7. \(g'(1/2,-1/2,0) \times x+1/2,y,z\)
 \(m_{y} \times 1,0,0\)
8. \(g'(1/2,1/2,0) \times x+1/2,x,z\)
 \(m_{y} \times 1,0,0\)
Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>16 g</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [v,u,w]</td>
</tr>
<tr>
<td>8 f.m'</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,z [0,u,w]</td>
</tr>
<tr>
<td>8 e.m</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,z [v,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,z [v,0,0]</td>
</tr>
<tr>
<td>8 d.m</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>4 c'</td>
<td>2',0,z [v,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [v,0,0]</td>
</tr>
<tr>
<td>2 b'</td>
<td>4',0,z [0,0,0]</td>
</tr>
<tr>
<td>2 a</td>
<td>4mm</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p₁m₁1' a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p₁m₁1' a* = b b* = c
Origin at x,0,0

Along [1,1,0] p₁m₁1' a* = (-a + b)/2 b* = c
Origin at x,x,0

Pₚ, 4mm
Origin on 4mm

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y\)

Symmetry Operations

For \((0,0,0)\) + set

\((1) 1 \quad (2) 2 \quad (3) 4^* \quad (4) 4^*\)

\((1) 0,0,0 \quad (2) 0,0,z \quad (3) 0,0,0 \quad (4) 0,0,0\)

\((5) m \quad (6) m \quad (7) m \quad (8) m\)

\((5) x,0,z \quad (6) 0,y,z \quad (7) x,x,z \quad (8) x,x,z\)

\((5) (m_x|0,0,0) \quad (6) (m_y|0,0,0) \quad (7) (m_x|0,0,0) \quad (8) (m_y|0,0,0)\)

For \((1,0,0)\)' + set

\((1) t' \quad (2) 2' \quad (3) 4^* \quad (4) 4^*\)

\((1) (1,0,0) \quad (2) 1/2,0,z \quad (3) 1/2,1/2,z \quad (4) 1/2,-1/2,z\)

\((5) a' \quad (6) m' \quad (7) g' \quad (8) g'\)

\((5) x,0,z \quad (6) 1/2,y,z \quad (7) x,x+z \quad (8) x,x+z\)

\((5) (m_y|1,0,0) \quad (6) (m_x|1,0,0) \quad (7) (m_x|1,0,0) \quad (8) (m_x|1,0,0)\)

Generators selected \((1); t'(1,0,0); t'(0,1,0); t'(0,0,1); (2); (3); (5)\).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

\(16 \quad g \quad 1 \quad (1) x,y,z \quad [u,v,w] \quad (2) x,y,z \quad [v,u,w] \quad (3) y,x,z \quad [v,u,w] \quad (4) y,x,z \quad [v,u,w]\)

\(8 \quad f \quad .m. \quad x,1/2,z \quad [u,0,w] \quad x,1/2,z \quad [u,0,w] \quad 1/2,x,z \quad [0,u,w] \quad 1/2,x,z \quad [0,u,w]\)

\(8 \quad e \quad .m. \quad x,0,z \quad [0,v,0] \quad x,0,z \quad [v,0,0] \quad 0,x,z \quad [v,0,0] \quad 0,x,z \quad [v,0,0]\)

\(8 \quad d \quad .m. \quad x,x,z \quad [0,0,u] \quad 0,x,z \quad [v,u,0] \quad x,x,z \quad [u,0,0] \quad x,x,z \quad [u,0,0]\)

\(4 \quad c \quad 2'm'm. \quad 1/2,0,z \quad [v,0,0] \quad 0,1/2,z \quad [v,0,0]\)

\(2 \quad b \quad 4'm'm \quad 1/2,1/2,z \quad [0,0,0]\)

\(2 \quad a \quad 4mm \quad 0,0,z \quad [0,0,0]\)

Symmetry of Special Projections

Along \([0,0,1]\) \quad p4mm1' \quad Along \([1,0,0]\) \quad p1m11' \quad Along \([1,1,0]\) \quad p1m11'
a^* = a \quad b^* = b \quad a^* = b \quad b^* = c \quad a^* = (-a + b)/2 \quad b^* = c

Origin at \(0,0,z\) \quad Origin at \(x,0,0\) \quad Origin at \(x,x,0\)
Origin on 4'm'm

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1; \ x \leq y$

Symmetry Operations

For $(0,0,0)$ + set

1. 1
2. $2\ 0,0,z$
3. $4'\ 0,0,z$
4. $4''\ 0,0,z$
5. $m'\ x,0,z$
6. $m'\ 0,y,z$
7. $m\ x,x,z$
8. $m\ x,x,z$

For $(0,0,1)$ + set

1. $t'\ (0,0,1)$
2. $2'\ (0,0,1)\ 0,0,z$
3. $4'\ (0,0,1)\ 0,0,z$
4. $4''\ (0,0,1)\ 0,0,z$
5. $c\ (0,0,1)\ x,0,z$
6. $c\ (0,0,1)\ 0,y,z$
7. $c'\ (0,0,1)\ x,x,z$
8. $c'\ (0,0,1)\ x,x,z$
Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td>g</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>f .m'. x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,z [0,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>e .m'. x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,x,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>0,x,z [0,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>d .m x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>c 2m'm'. 1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b 4'm'm 1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a 4'm'm 0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** p4mm1'
 a* = a b* = b
 Origin at 0,0,z

- **Along [1,0,0]** p3b1'm1
 a* = b b* = c
 Origin at x,0,0

- **Along [1,1,0]** p1m11'
 a* = (-a + b)/2 b* = c
 Origin at x,x,0
Origin on 4'mm'

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y$

Symmetry Operations

For (0,0,0) + set

1. 1
2. $2' 0,0,z (2z \mid 0,0,0)$
3. $4' 0,0,z (4z \mid 0,0,0)'$
4. $4' 0,0,z (4z^{-1} \mid 0,0,0)'$
5. $m x,0,z (m_y \mid 0,0,0)$
6. $m 0,y,z (m_x \mid 0,0,0)$
7. $m' x,x,z (m_{xy} \mid 0,0,0)'$
8. $m' x,x,z (m_{xy}^{-1} \mid 0,0,0)'$

For (0,0,1) + set

1. $t' (0,0,1)$
2. $2' (0,0,1) 0,0,z (2z \mid 0,0,1)'$
3. $4' (0,0,1) 0,0,z (4z \mid 0,0,1)$
4. $4' (0,0,1) 0,0,z (4z^{-1} \mid 0,0,1)$
5. $c' (0,0,1) x,0,z (m_x \mid 0,0,1)'$
6. $c' (0,0,1) 0,y,z (m_y \mid 0,0,1)'$
7. $c (0,0,1) x,x,z (m_{xy} \mid 0,0,1)$
8. $c (0,0,1) x,x,z (m_{xy}^{-1} \mid 0,0,1)$
Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>g 1</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,1)' +</td>
</tr>
<tr>
<td></td>
<td>(2) x',y,z [u',v',w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u',v',w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u',v',w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>f .m. x,1/2,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x',1/2,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,x,z [v,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,x,z [v,0,0]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>e .m. x,0,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x',0,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,x,z [v,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,x,z [v,0,0]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>d ..m' x,x,z [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x',x,z [u',u',w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c 2mm. 1/2,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b 4'mm' 1/2,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a 4'mm' 0,0,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p4mm1'
 \(\mathbf{a}^* = \mathbf{a}, \mathbf{b}^* = \mathbf{b} \)
- Along [1,0,0] p1m11'
 \(\mathbf{a}^* = \mathbf{b}, \mathbf{b}^* = \mathbf{c} \)
- Along [1,1,0] \(p_{2c} \cdot 1m' \)
 \(\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2, \mathbf{b}^* = \mathbf{c} \)

Origin at 0,0,z
Origin at x,0,0
Origin at x,x,0
Symmetry Operations

For $(0,0,0)$ + set

1. 1
 - $(0,0,0)$
2. $2 \cdot 0,0,z$
 - $(2z,0,0,0)$
3. $4^+ \cdot 0,0,z$
 - $(4z,0,0,0)$
4. $4^- \cdot 0,0,z$
 - $(4z^{-1},0,0,0)$
5. $m' \cdot x,0,z$
 - $(m_y,0,0,0)'$
6. $m' \cdot 0,y,z$
 - $(m_x,0,0,0)'$
7. $m' \cdot x,x,z$
 - $(m_{x+y},0,0,0)'$
8. $m' \cdot x,x,z$
 - $(m_{x+y},0,0,0)'$

For $(0,0,1)$ + set

1. $t' \cdot (0,0,1)$
 - $(1,0,0,1)'$
2. $2' \cdot (0,0,1)$
 - $(2z,0,0,1)'$
3. $4^+ \cdot (0,0,1)$
 - $(4z,0,0,1)'$
4. $4^- \cdot (0,0,1)$
 - $(4z^{-1},0,0,1)'$
5. $c \cdot (0,0,1)$
 - $(m_y,0,0,1)$
6. $c \cdot (0,0,1)$
 - $(m_x,0,0,1)$
7. $c \cdot (0,0,1)$
 - $(m_{x+y},0,0,1)$
8. $c \cdot (0,0,1)$
 - $(m_{x+y},0,0,1)$
Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>g 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
</tbody>
</table>

f 8.m'	x,1/2,z [u,0,w]
	x,1/2,z [u,0,w]
	1/2,x,z [0,u,w]
	1/2,x,z [0,u,w]

e 8.m'	x,0,z [u,0,w]
	x,0,z [u,0,w]
	0,x,z [0,u,w]
	0,x,z [0,u,w]

d 8.m'	x,x,z [u,u,w]
	x,x,z [u,u,w]
	x,x,z [u,u,w]

| c 4m'4m' | 1/2,0,z [0,0,w] |
| | 0,1/2,z [0,0,w] |

| b 4m'4m' | 1/2,1/2,z [0,0,w] |

| a 4m'4m' | 0,0,z [0,0,w] |

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p4mm1'</th>
<th>Along [1,0,0] p2b'1m1'</th>
<th>Along [1,1,0] p2b'1m1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = (a + b)/2</td>
</tr>
<tr>
<td>b* = b</td>
<td>c</td>
<td>b* = c</td>
</tr>
</tbody>
</table>

Origin at 0,0,z

Origin at x,0,0

Origin at x,x,0
Origin on $4'mm'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y$

Symmetry Operations

For $(0,0,0) +$ set

(1) 1 \\
(2) 2 0,0,z \\
(3) 4+ 0,0,z \\
(4) 4- 0,0,z \\
(5) m x,0,z \\
(6) m 0,y,z \\
(7) m' x,x,z \\
(8) m' x,x,z

For $(1,0,0)' +$ set

(1) t' (1,0,0) \\
(2) 2' 1/2,0,z \\
(3) 4+ 1/2,1/2,z \\
(4) 4- 1/2,-1/2,z \\
(5) a' (1,0,0) x,0,z \\
(6) m' 1/2,y,z \\
(7) g (1/2,-1/2,0) x+1/2,x,z \\
(8) g (1/2,1/2,0) x+1/2,x,z

99.12.834 - 1 - 1661
Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)'+</td>
</tr>
<tr>
<td>16</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 f .m'</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>8 e .m</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>8 d ..m'</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>4 c 2'm'</td>
<td>1/2,0,z [0,v,0]</td>
</tr>
<tr>
<td>2 b 4'm'</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 a 4'm'</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] pₚ,4m'm'
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 1/2,1/2,z

Along [1,0,0] p1m11'
\(\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \)
Origin at x,0,0

Along [1,1,0] pₚ.1m1
\(\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c} \)
Origin at x-1/4,x+1/4,0
Origin on 4mm

Asymmetric unit \[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y\]

Symmetry Operations

For \((0,0,0)\) + set

1. \((1,0,0,0)\)
2. \((2) \quad 0,0,z\)
3. \((3) \quad 4^* \quad 0,0,z\)
4. \((4) \quad 4^* \quad 0,0,z\)

For \((1,0,0)\)' + set

1. \((1) \quad (1,0,0,0)\)
2. \((2) \quad 1/2,0,z\)
3. \((3) \quad 4^* \quad 1/2,1/2,z\)
4. \((4) \quad 4^* \quad 1/2,-1/2,z\)

Generators selected

1; \(t'(1,0,0); t'(0,1,0); t'(0,0,1)\); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

Coordinates

\[(0,0,0) + \quad (1,0,0)' +\]

16 \(g\)

1. \((1) \quad x,y,z [u,v,w]\)
2. \((2) \quad x,y,z [u,v,w]\)
3. \((3) \quad x,y,z [u,v,w]\)
4. \((4) \quad x,y,z [u,v,w]\)

8 \(f\)

1. \((5) \quad x,y,z [u,v,w]\)
2. \((6) \quad x,y,z [u,v,w]\)
3. \((7) \quad x,y,z [u,v,w]\)
4. \((8) \quad x,y,z [u,v,w]\)

8 \(e\)

1. \((9) \quad x,0,z [u,0,w]\)
2. \((10) \quad x,0,z [u,0,w]\)
3. \((11) \quad x,0,z [u,0,w]\)
4. \((12) \quad x,0,z [u,0,w]\)

4 \(c\)

1. \((13) \quad 2'mm'. \quad 1/2,0,z [u,0,0]\)
2. \((14) \quad 2'mm'. \quad 1/2,0,z [u,0,0]\)
3. \((15) \quad 2'mm'. \quad 1/2,0,z [u,0,0]\)
4. \((16) \quad 2'mm'. \quad 1/2,0,z [u,0,0]\)

Symmetry of Special Projections

Along \([0,0,1]\) \quad \(P_{4mm1}'\) \quad Along \([1,0,0]\) \quad \(p1m11'\) \quad Along \([1,1,0]\) \quad \(p_{1cm1}\)

\(\mathbf{a}^* = \mathbf{a}\) \quad \(\mathbf{b}^* = \mathbf{b}\) \quad \(\mathbf{a}^* = \mathbf{b}\) \quad \(\mathbf{b}^* = \mathbf{c}\)

Origin at \(0,0,0\) \quad \text{Origin at} \(x,0,0\) \quad \text{Origin at} \(-x+1/4,x+1/4,0\)
Origin on 41g

Asymmetric unit $0 \leq x \leq 1/2$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1$; $y \leq 1/2-x$

Symmetry Operations

1. 1
 - $0,0,0$
 - $1/2,0,0$

2. 2 $0,0,z$
 - $0,0,0$
 - $2z,0,0$

3. 4^+ $0,0,z$
 - $0,0,0$
 - $4z,0,0$

4. 4^- $0,0,z$
 - $0,0,0$
 - $4^{-1}z,0,0$

5. a $(1/2,0,0)$ $x,1/4,z$
 - $(1/2,0,0)$ $x,1/4,z$
 - $(1/2,1/2,0)$ $m_y,1/2,1/2,z$

6. b $(0,1/2,0)$ $1/4,y,z$
 - $(0,1/2,0)$ $1/4,y,z$
 - $(1/2,1/2,0)$ $m_x,1/2,1/2,z$

7. m $x+1/2,x,z$
 - $x+1/2,x,z$
 - $1/2,1/2,z$

8. g $(1/2,1/2,0)$ x,x,z
 - $(1/2,1/2,0)$ x,x,z
 - $(1/2,1/2,0)$ $m_{xy},1/2,1/2,z$
Generators selected

(1): t(1,0,0); t(0,1,0); t(0,0,1); (2): (3): (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>4 c .m</td>
<td>x,x+1/2,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,0]</td>
</tr>
<tr>
<td>2 b 2.mm</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 a 4..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm

\(a^* = a \quad b^* = b \)

Origin at 0,0,z

Along [1,0,0] \(p_{2a}^{-1}m1 \)

\(a^* = b/2 \quad b^* = c \)

Origin at x,1/4,0

Along [1,1,0] \(p1m11' \)

\(a^* = -(a + b)/2 \quad b^* = c \)

Origin at x,x,0
P4bm1'

4mm1'

Tetragonal

100.2.837

P4bm1'

Origin on 41g1'

Asymmetric unit

\[
0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad y \leq 1/2-x
\]

Symmetry Operations

For 1 + set

1. \(\begin{aligned} (1) \ 1 \\
(1) 0,0,0 \end{aligned} \)

2. \(\begin{aligned} (2) \ 0,0,z \\
(2z) 0,0,0 \end{aligned} \)

3. \(\begin{aligned} (3) \ 4^+ \ 0,0,z \\
(4z) 0,0,0 \end{aligned} \)

4. \(\begin{aligned} (4) \ 4^- \ 0,0,z \\
(4z^{-1}) 0,0,0 \end{aligned} \)

5. \(\begin{aligned} (5) \ a \ (1/2,0,0) \\
(m_x, 1/2,1/2,0) \end{aligned} \)

6. \(\begin{aligned} (6) \ b \ (0,1/2,0) \\
(m_x, 1/2,1/2,0) \end{aligned} \)

7. \(\begin{aligned} (7) \ m \ x+1/2, x, z \\
(m_{xy}, 1/2,1/2,0) \end{aligned} \)

8. \(\begin{aligned} (8) \ g \ (1/2,1/2,0) \\
(m_{xy}, 1/2,1/2,0) \end{aligned} \)

For 1' + set

1. \(\begin{aligned} (1) \ 1' \\
(1) 0,0,0' \end{aligned} \)

2. \(\begin{aligned} (2) \ 0,0,z' \\
(2z) 0,0,0' \end{aligned} \)

3. \(\begin{aligned} (3) \ 4^+ \ 0,0,z' \\
(4z) 0,0,0' \end{aligned} \)

4. \(\begin{aligned} (4) \ 4^- \ 0,0,z' \\
(4z^{-1}) 0,0,0' \end{aligned} \)

5. \(\begin{aligned} (5) \ a' \ (1/2,0,0) \\
(m_x, 1/2,1/2,0)' \end{aligned} \)

6. \(\begin{aligned} (6) \ b' \ (0,1/2,0) \\
(m_x, 1/2,1/2,0)' \end{aligned} \)

7. \(\begin{aligned} (7) \ m' \ x+1/2, x, z' \\
(m_{xy}, 1/2,1/2,0)' \end{aligned} \)

8. \(\begin{aligned} (8) \ g' \ (1/2,1/2,0) \\
(m_{xy}, 1/2,1/2,0)' \end{aligned} \)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1' +</td>
<td></td>
</tr>
<tr>
<td>8 d 11' (1) x,y,z [0,0,0]</td>
<td>(2) (\bar{x},\bar{y},z) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) (y,x,z) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) (y,\bar{x},z) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) (x+1/2,\bar{y}+1/2,z) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(6) (\bar{x}+1/2,y+1/2,z) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) (\bar{y}+1/2,\bar{x}+1/2,z) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(8) (y+1/2,\bar{x}+1/2,z) [0,0,0]</td>
</tr>
<tr>
<td>4 c ..m1' x,x+1/2,z [0,0,0]</td>
<td>(\bar{x},\bar{x}+1/2,z) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(\bar{x}+1/2,\bar{x},z) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(x+1/2,\bar{x},z) [0,0,0]</td>
</tr>
<tr>
<td>2 b 2.mm1' 1/2,0,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 a 4..1' 0,0,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p4gm1'</th>
<th>Along [1,0,0] p1m11'</th>
<th>Along [1,1,0] p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a) (b^* = b)</td>
<td>(a^* = b/2) (b^* = c)</td>
<td>(a^* = -(a + b)/2) (b^* = c)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Origin on 4'1g

Asymmetric unit: \(0 \leq x < \frac{1}{2}; \quad 0 \leq y < \frac{1}{2}; \quad 0 \leq z < 1; \quad y < \frac{1}{2} - x\)

Symmetry Operations

1. \(1\) \(0,0,0\)
2. \(2\) \(0,0,z\) \(2z,0,0\)
3. \(4'\) \(0,0,z\) \(4z,0,0'\)
4. \(4''\) \(0,0,z\) \(4z,0,0'\)
5. \(a'\) \((1/2,0,0)\) \(x,1/4,z\) \((m_y|x/2,1/2,0)'\)
6. \(b'\) \((0,1/2,0)\) \(1/4,y,z\) \((m_x|x/2,1/2,0)'\)
7. \(m\) \(x+1/2,x,z\) \((m_x|x/2,1/2,0)\)
8. \(g\) \((1/2,1/2,0)\) \(x,x,z\) \((m_x|x/2,1/2,0)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>d 1</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>c m</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,0]</td>
</tr>
<tr>
<td>2</td>
<td>b 2.mm</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a 4'..</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4'g'm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (-a + b)/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
P4’bm’ 4’mm’ Tetragonal

Origin on 4’1g’

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq 1; \quad y \leq \frac{1}{2} - x \]

Symmetry Operations

1. \((1)\) 1

2. \((2)\) 2 0,0,z

3. \((3)\) 4’+ 0,0,z

4. \((4)\) 4’- 0,0,z

5. \((5)\) a (1/2,0,0) x,1/4,z

6. \((6)\) b (0,1/2,0) 1/4,y,z

7. \((7)\) m’ x+1/2,0,0,z

8. \((8)\) g’ (1/2,1/2,0) x,x,z
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>d 1</td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>c .m'</td>
<td></td>
<td>x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td>2</td>
<td>b 2.m'm'</td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a 4'..</td>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p4'gm'
 \(a^* = a \quad b^* = b \)
 Origin at 0,0,z

- Along [1,0,0] p2a1m1
 \(a^* = b/2 \quad b^* = c \)
 Origin at x,1/4,0

- Along [1,1,0] p1m1
 \(a^* = (-a + b)/2 \quad b^* = c \)
 Origin at x,x,0
Origin on 41g'

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad y \leq 1/2-x$

Symmetry Operations

1. 1
 (1) 0,0,0
 (2) $z_0,0,0$

2. 2^{+}
 (1) $z_0,0,0$
 (2) $z_0,0,0$
 (4) $z_0,0,0$

3. a'
 (1) $1/2,0,0$
 (6) $1/2,1/2,0$

4. b'
 (1) $1/2,0,0$
 (6) $1/2,1/2,0$

5. m'
 (1) $1/2,1/2,0$
 (6) $1/2,1/2,0$

6. g'
 (1) $1/2,1/2,0$
 (6) $1/2,1/2,0$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w] (4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w] (6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z [v,u,w] (8) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>4 c ..m'</td>
<td>x,x+1/2,z [u,u,w] x,x+1/2,z [u,u,w] x+1/2,x,z [u,u,w] x+1/2,x,z [u,u,w]</td>
</tr>
<tr>
<td>2 b 2.m'</td>
<td>1/2,0,z [0,0,w] 0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 a 4..</td>
<td>0,0,z [0,0,w] 1/2,1/2,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4g'm'</th>
<th>Along [1,0,0]</th>
<th>p1m'1</th>
<th>Along [1,1,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b/2</td>
<td>b* = c</td>
<td>a* = (-a + b)/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>

Continued
Origin on 41g

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1; y ≤ 1/2-x

Symmetry Operations

For (0,0,0) + set

(1) 1
(1) 0,0,0

(2) 2 0,0,z
(2z 0,0,0)

(3) 4+ 0,0,z
(4z 0,0,0)

(4) 4- 0,0,z
(4z-1 0,0,0)

(5) a 1/2,0,0 x,1/4,z
(my 1/2,1/2,0)

(6) b (0,1/2,0) 1/4,y,z
(mx 1/2,1/2,0)

(7) m x+1/2,x,z
(mx 1/2,1/2,0)

(8) g (1/2,1/2,0) x,x,z
(my 1/2,1/2,0)

For (0,0,1)' + set

(1) t' (0,0,1)
(1) 0,0,1'

(2) 2' (0,0,1) 0,0,z
(2z 0,0,1')

(3) 4+ ' (0,0,1) 0,0,z
(4z 0,0,1')

(4) 4- ' (0,0,1) 0,0,z
(4z-1 0,0,1')

(5) n' (1/2,0,1) x,1/4,z
(mx 1/2,1/2,1)

(6) n' (0,1/2,1) 1/4,y,z
(mx 1/2,1/2,1')

(7) c' (0,0,1) x+1/2,x,z
(mx 1/2,1/2,1')

(8) n' (1/2,1/2,1) x,x,z
(mx 1/2,1/2,1')
Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 d 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w] (4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w] (6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z [v,u,w] (8) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>8 c .m</td>
<td>x,x+1/2,z [u,u,0] x,x+1/2,z [u,u,0] x+1/2,x,z [u,u,0] x+1/2,x,z [u,u,0]</td>
</tr>
<tr>
<td>4 b 2.mm</td>
<td>1/2,0,z [0,0,0] 0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 a 4..</td>
<td>0,0,z [0,0,w] 1/2,1/2,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm1’

\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]

Origin at 0,0,z

Along [1,1,0] p1m11’

\[\mathbf{a}^* = \mathbf{-a} + \mathbf{b}/2 \quad \mathbf{b}^* = \mathbf{c} \]

Origin at x,x,0

Along [1,0,0] p1m1m1

\[\mathbf{a}^* = \mathbf{b}/2 \quad \mathbf{b}^* = \mathbf{c} \]

Origin at x,1/4,0
Origin on 4’1g

Asymmetric unit: \(0 < x < \frac{1}{2}; \ 0 < y < \frac{1}{2}; \ 0 < z < 1; \ y < \frac{1}{2} - x\)

Symmetry Operations

For \((0,0,0) + \) set

1. \(1 \ (1) \ 0,0,0\)
2. \(2 \ (0,0,z) \ (2z,0,0,0)\)
3. \(4^{+} \ 0,0,z \ (4z,0,0,0)'\)
4. \(4^{-} \ 0,0,z \ (4z^{-1},0,0,0)'\)

5. \(a' \ (1/2,0,0) \ x,1/4,z \ (m_{y},1/2,1/2,0)\)
6. \(b' \ (0,1/2,0) \ 1/4,y,z \ (m_{x},1/2,1/2,0)'\)
7. \(m \ x+1/2,x,z \ (m_{x},1/2,1/2,0)'\)
8. \(g \ (1/2,1/2,0) \ x,x,z \ (m_{y},1/2,1/2,0)'\)

For \((0,0,1)' + \) set

1. \(t' \ (0,0,1) \ (1,0,0,1)\)
2. \(2' \ (0,0,1) \ 0,0,z \ (2z,0,0,1)'\)
3. \(4' \ (0,0,1) \ 0,0,z \ (4z,0,0,1)\)
4. \(4' \ (0,0,1) \ 0,0,z \ (4z^{-1},0,0,1)'\)

5. \(n \ (1/2,0,1) \ x,1/4,z \ (m_{y},1/2,1/2,1)\)
6. \(n \ (0,1/2,1) \ 1/4,y,z \ (m_{x},1/2,1/2,1)'\)
7. \(c' \ (0,0,1) \ x+1/2,x,z \ (m_{y},1/2,1/2,1)'\)
8. \(n' \ (1/2,1/2,1) \ x,x,z \ (m_{y},1/2,1/2,1)'\)
Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

Multiplicities,
Wyckoff letters,
Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,0,1)' +</td>
<td>(0,0,0)</td>
<td>16</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>d</td>
</tr>
<tr>
<td>(3) y,x,z [v,u,w]</td>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(7) y+1/2,x+1/2,z [v,u,w]</td>
<td>(8) y+1/2,x+1/2,z [v,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm1'
\(a^* = a \quad b^* = b\)
Origin at 0,0,z

Along [1,0,0] p1m1m'1
\(a^* = b/2 \quad b^* = c\)
Origin at x,0,0

Along [1,1,0] p1m11'
\(a^* = (-a + b)/2 \quad b^* = c\)
Origin at x,x,0
Origin on 4'1g'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad y \leq 1/2-x\]

Symmetry Operations

For (0,0,0) + set

1. \(1 \quad 1\)
 \(1 \quad 0,0,0\)
2. \(2 \quad 0,0,z\)
 \(2_z \quad 0,0,0\)
3. \(4^+ \quad 0,0,z\)
 \(4_z \quad 0,0,0\)
4. \(4^- \quad 0,0,z\)
 \(4_z^{-1} \quad 0,0,0\)

5. \(a \quad (1/2,0,0)\)
 \(x,1/4,z\)
 \(m_y \quad 1/2,1/2,0\)

6. \(b \quad (0,1/2,0)\)
 \(1/4,y,z\)
 \(m_x \quad 1/2,1/2,0\)

7. \(m' \quad x+1/2,x,z\)
 \(m_{xy} \quad 1/2,1/2,0\)

8. \(g' \quad (1/2,1/2,0)\)
 \(x,x,z\)
 \(m_{xy} \quad 1/2,1/2,0\)

For (0,0,1)' + set

1. \(t' \quad (0,0,1)\)
 \(1 \quad 0,0,1\)

2. \(2' \quad (0,0,1)\)
 \(0,0,z\)
 \(2_z \quad 0,0,1\)

3. \(4^+ \quad (0,0,1)\)
 \(0,0,z\)
 \(4_z \quad 0,0,1\)

4. \(4^- \quad (0,0,1)\)
 \(0,0,z\)
 \(4_z^{-1} \quad 0,0,1\)

5. \(n' \quad (1/2,0,1)\)
 \(x,1/4,z\)
 \(m_y \quad 1/2,1/2,1\)

6. \(n' \quad (0,1/2,1)\)
 \(1/4,y,z\)
 \(m_x \quad 1/2,1/2,1\)

7. \(c \quad (0,0,1)\)
 \(x+1/2,x,z\)
 \(m_{xy} \quad 1/2,1/2,1\)

8. \(n \quad (1/2,1/2,1)\)
 \(x,x,z\)
 \(m_{xy} \quad 1/2,1/2,1\)
Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 d 1</td>
<td>1</td>
<td>(0,0,0) + (0,0,1) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4gm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
</tbody>
</table>

Along [1,0,0] | p4,1m1

| a* = b/2 | b* = c |

Along [1,1,0] | p2c,1m1

| a* = (-a + b)/2 | b* = c |

Origin at 0,0,z
Origin at x,1/4,0
Origin at x,x,0
Origin on 41g'

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad y \leq 1/2-x\)

Symmetry Operations

For \((0,0,0) + \text{ set}\)

1. \(1\) \(1,0,0,0\)
2. \(2\) \(0,0,z\)\(2_{z},0,0,0\)
3. \(4^{+}\) \(0,0,z\)\(4_{z},0,0,0\)
4. \(4^{-}\) \(0,0,z\)\(4_{z}^{-},0,0,0\)
5. \(a' (1/2,0,0)\) \(x,1/4,z\)\(m_{y}|1/2,1/2,0'\)
6. \(b' (0,1/2,0)\) \(1/4,y,z\)\(m_{x}|1/2,1/2,0'\)
7. \(m' x+1/2,\overline{x},z\)\(m_{x}|1/2,1/2,0'\)
8. \(g' (1/2,1/2,0)\) \(x,x,z\)\(m_{y} | 1/2,1/2,2,0'\)

For \((0,0,1') + \text{ set}\)

1. \(t' (0,0,1)\) \(1,0,0,1'\)
2. \(2' (0,0,1)\) \(0,0,z\)\(2_{z},0,0,1'\)
3. \(4^{+} (0,0,1)\) \(0,0,z\)\(4_{z},0,0,1'\)
4. \(4^{-} (0,0,1)\) \(0,0,z\)\(4_{z}^{-},0,0,1'\)
5. \(n (1/2,0,1)\) \(x,1/4,z\)\(m_{y}|1/2,1/2,0'\)
6. \(n (0,1/2,1)\) \(1/4,y,z\)\(m_{x}|1/2,1/2,1\)
7. \(c (0,0,1)\) \(x+1/2,\overline{x},z\)\(m_{y} | 1/2,1/2,2,1\)
8. \(n (1/2,1/2,1)\) \(x,x,z\)\(m_{y} | 1/2,1/2,2,1\)
Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>d 1</td>
<td>(0,0,0) + (0,0,1) +</td>
</tr>
<tr>
<td>16</td>
<td>c ..m'</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>b 2.m'm'</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>a 4..</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p4gm1' \)
\(a^* = a \) \(b^* = b \)
Origin at 0,0,z

Along [1,0,0] \(p2b.^1m'1 \)
\(a^* = b/2 \) \(b^* = c \)
Origin at x,0,0

Along [1,1,0] \(p2b.^1m'1 \)
\(a^* = (-a + b)/2 \) \(b^* = c \)
Origin at x,x,0
Origin on 2mm on 4\textsubscript{2} cm

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y \]

Symmetry Operations

1. \(1\)
 \[
 (1)\, (0,0,0)
 \]

2. \(2\) \(0,0,z\)
 \[
 (2)\, (z,0,0,0)
 \]

3. \(4^+ (0,0,1/2) 0,0,z\)
 \[
 (3)\, (4_z,0,0,1/2)
 \]

4. \(4^- (0,0,1/2) 0,0,z\)
 \[
 (4)\, (4_z^{-1},0,0,1/2)
 \]

5. \(c (0,0,1/2) x,0,z\)
 \[
 (5)\, (c,0,0,1/2)
 \]

6. \(c (0,0,1/2) 0,y,z\)
 \[
 (6)\, (c,0,0,1/2)
 \]

7. \(m x,x,z\)
 \[
 (7)\, (m x,0,0,0)
 \]

8. \(m x,x,z\)
 \[
 (8)\, (m_x,0,0,0)
 \]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>e 1</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>d ..m</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z+1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z+1/2 [u,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>c 2..</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b 2.mm</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a 2.mm</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin at 0,0,z</th>
<th>Origin at x,0,0</th>
<th>Origin at x,x,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>p4mm</td>
<td>p1m'1</td>
<td>p1m11'</td>
</tr>
<tr>
<td>a* = a</td>
<td>a* = b</td>
<td>a* = (-a + b)/2</td>
</tr>
<tr>
<td>b* = b</td>
<td>b* = c</td>
<td>b* = c</td>
</tr>
</tbody>
</table>
Symmetry Operations

For 1 + set

1. 1
 1^{1}
 2 $0,0,z$
 $(2_{x}0,0,0)$

5. $c(0,0,1/2)$ $x,0,z$
 $(m_{y}0,0,1/2)$

6. $c(0,0,1/2)$ $y,0,z$
 $(m_{x}0,0,1/2)$

7. m x,x,z
 $(m_{xy}0,0,0)$

For 1^{1} + set

1. 1^{1}
 $(1|0,0,0)^{1}$

2. 2^{1} $0,0,z$
 $(2_{x}0,0,0)^{1}$

5. $c^{1}(0,0,1/2)$ $x,0,z$
 $(m_{y}0,0,1/2)^{1}$

6. $c^{1}(0,0,1/2)$ $y,0,z$
 $(m_{x}0,0,1/2)^{1}$

7. m^{1} x,x,z
 $(m_{xy}0,0,0)^{1}$

Origin on 2mm1' on 42 cm1'

Asymmetric unit
$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y$

Tetragonal
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
<td></td>
</tr>
<tr>
<td>1' +</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>e</th>
<th>11'</th>
<th>(1) x,y,z [0,0,0]</th>
<th>(2) x,y,z [0,0,0]</th>
<th>(3) y,x,z+1/2 [0,0,0]</th>
<th>(4) y,x,z+1/2 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) x,y,z+1/2 [0,0,0]</td>
<td>(6) x,y,z+1/2 [0,0,0]</td>
<td>(7) y,x,z [0,0,0]</td>
<td>(8) y,x,z [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>d</th>
<th>..m1'</th>
<th>x,x,z [0,0,0]</th>
<th>x,x,z [0,0,0]</th>
<th>x,x,z+1/2 [0,0,0]</th>
<th>x,x,z+1/2 [0,0,0]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>c</th>
<th>2..1'</th>
<th>0,1/2,z [0,0,0]</th>
<th>1/2,0,z+1/2 [0,0,0]</th>
<th>0,1/2,z+1/2 [0,0,0]</th>
<th>1/2,0,z [0,0,0]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>b</th>
<th>2.mm1'</th>
<th>1/2,1/2,z [0,0,0]</th>
<th>1/2,1/2,z+1/2 [0,0,0]</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>a</th>
<th>2.mm1'</th>
<th>0,0,z+1/2 [0,0,0]</th>
<th>0,0,z+1/2 [0,0,0]</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1'
Conclusion of origins in [0,0,0] and [0,0,z]

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p1m11'</th>
<th>Along [1,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 2mm on $4'_{2}$c'm

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y$

Symmetry Operations

(1) 1

(1) 1

(1) 1

(1) 1

(1) 1

(1) 1

(1) 1

(1) 1

(2) $2 \ 0,0,z$

(3) $4' \ (0,0,0)$

(3) $4' \ (0,0,0)$

(3) $4' \ (0,0,0)$

(3) $4' \ (0,0,0)$

(3) $4' \ (0,0,0)$

(3) $4' \ (0,0,0)$

(3) $4' \ (0,0,0)$

(3) $4' \ (0,0,0)$

(4) $4' \ (0,0,1/2)$

(4) $4' \ (0,0,1/2)$

(4) $4' \ (0,0,1/2)$

(4) $4' \ (0,0,1/2)$

(4) $4' \ (0,0,1/2)$

(4) $4' \ (0,0,1/2)$

(4) $4' \ (0,0,1/2)$

(4) $4' \ (0,0,1/2)$

(5) $c' \ (0,0,1/2) \ x,0,z$

(6) $c' \ (0,0,1/2) \ 0,y,z$

(7) $m \ x,x.z$

(8) $m \ x,x,z$

(8) $m \ x,x,z$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

8	e	1	(1) x,y,z [u,v,w]	(2) x,y,z [u,v,w]	(3) x,x,z+1/2 [v,u,w]	(4) y,x,z+1/2 [v,u,w]
4	d	m	x,x,z [u,u,0]	x,x,z [u,u,0]	x,x,z+1/2 [u,u,0]	x,x,z+1/2 [u,u,0]
4	c	2..	0,1/2,z [0,0,0]	1/2,0,z+1/2 [0,0,w]	0,1/2,z+1/2 [0,0,w]	1/2,0,z [0,0,w]
2	b	2.mm	1/2,1/2,z [0,0,0]	1/2,1/2,z+1/2 [0,0,0]	1/2,1/2,z+1/2 [0,0,0]	1/2,1/2,z+1/2 [0,0,0]
2	a	2.mm	0,0,z [0,0,0]	0,0,z+1/2 [0,0,0]	0,0,z+1/2 [0,0,0]	0,0,z+1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4' mm1

a* = -b b* = a

Origin at 0,0,z

Along [1,0,0] p1m'1

a* = b b* = c/2

Origin at x,0,0

Along [1,1,0] p1m11'

a* = -(a + b)/2 b* = c

Origin at x,x,0
Origin on 2/m’m’ on 4_1 cm’

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y\)

Symmetry Operations

1. \((1,0,0,0)\)
2. \(2 \cdot 0,0,z\)
3. \(4^+ \cdot (0,0,1/2) \quad 0,0,z\)
4. \(4^- \cdot (0,0,1/2) \quad 0,0,z\)
5. \(c \cdot (0,0,1/2) \quad x,0,z\)
6. \(c \cdot (0,0,1/2) \quad 0,y,z\)
7. \(m' \cdot x,x,z\)
8. \(m' \cdot x,x,z\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z+1/2 [v,u,w] (4) y,x,z+1/2 [v,u,w] (5) x,y,z+1/2 [u,v,w] (6) x,y,z+1/2 [u,v,w] (7) y,x,z [v,u,w] (8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4 d ...m'</td>
<td>x,x,z [u,u,w] x,x,z [u,u,w] x,x,z+1/2 [u,u,w] x,x,z+1/2 [u,u,w]</td>
</tr>
<tr>
<td>4 c 2..</td>
<td>0,1/2,z [0,0,w] 1/2,0,z+1/2 [0,0,w] 0,1/2,z+1/2 [0,0,w] 1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 b 2.m'm'</td>
<td>1/2,1/2,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a 2.m'm'</td>
<td>0,0,z [0,0,w] 0,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'mmm' Along [1,0,0] p4m1 Along [1,1,0] p41
a* = a b* = b a* = b b* = c/2 a* = (a + b)/2 b* = c
Origin at 0,0,z Origin at x,0,0 Origin at x,x,0
Origin on 2m'm' on 42 c'm'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y \]

Symmetry Operations

1. \(1 \)
 \((1) \) 0,0,0

2. \(2 \)
 \((2) \) 0,0,z
 \((2_z) 0,0,0 \)

3. \(4^+ \)
 \((3) \) (0,0,1/2) 0,0,z
 \((4_z) 0,0,1/2 \)

4. \(4^- \)
 \((4) \) (0,0,1/2) 0,0,z
 \((4_z^-) 0,0,1/2 \)

5. \(c' \)
 \((5) \) (0,0,1/2) x,0,z
 \((m_y) 0,0,1/2' \)

6. \(c' \)
 \((6) \) (0,0,1/2) 0,y,z
 \((m_x) 0,0,1/2' \)

7. \(m' \)
 \((7) \) x,x,z
 \((m_{xy}) 0,0,0' \)

8. \(m' \)
 \((8) \) x,x,z
 \((m_{xy}) 0,0,0' \)

P4₂ c’m’ 4m’m’ Tetragonal
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
</table>
| 8 e 1 | (1) x,y,z [u,v,w]
(2) x,y,z [u,v,w]
(3) y,x,z+1/2 [v,u,w]
(4) y,x,z+1/2 [v,u,w]
(5) x,y,z+1/2 [u,v,w]
(6) x,y,z+1/2 [u,v,w]
(7) y,x,z [v,u,w]
(8) y,x,z [v,u,w] |

| 4 d .m' | x,x,z [u,u,w]
 x,x,z [u,u,w]
 x,x,z+1/2 [u,u,w]
 x,x,z+1/2 [u,u,w] |

| 4 c 2.. | 0,1/2,z [0,0,w]
 1/2,0,z+1/2 [0,0,w]
 0,1/2,z+1/2 [0,0,w]
 1/2,0,z [0,0,w] |

| 2 b 2.m'm' | 1/2,1/2,z [0,0,w]
 1/2,1/2,z+1/2 [0,0,w] |

| 2 a 2.m'm' | 0,0,z [0,0,w]
 0,0,z+1/2 [0,0,w] |

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b b* = c/2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (-a + b)/2 b* = c</td>
<td></td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,0,0
Origin at x,x,0
Origin on 2mm on 4\textsubscript{2} cm

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y\)

Symmetry Operations

For \((0,0,0)\) + set

1. \((1')\) (0,0,0)
2. \((2)\) 0,0,z
 \(2_z\) 0,0,0
3. \((3)^*\) (0,0,1/2) 0,0,z
 \(4_z\) 0,0,1/2
4. \((4)^*\) (0,0,1/2) 0,0,z
 \(4_z^{-1}\) 0,0,1/2
5. \((5)\) c (0,0,1/2) x,0,z
 \(m_y\) 0,0,1/2
6. \((6)\) c (0,0,1/2) 0,y,z
 \(m_x\) 0,0,1/2
7. \((7)^*\) x,x,z
 \(m_y\) 0,0,0
8. \((8)^*\) x,x,z
 \(m_y\) 0,0,0

For \((1,0,0)'\) + set

1. \((1)^*\) (1,0,0)
 \(1',1,0,0)\)
2. \((2)'\) 1/2,0,z
 \(2_z\) 1,0,0\)
3. \((3)'\) (0,0,1/2) 1/2,1/2,z
 \(4_z\) 1,0,1/2\)
4. \((4)'\) (0,0,1/2) 1/2,-1/2,z
 \(4_z^{-1}\) 1,0,1/2\)
5. \((5)^*\) (1,0,1/2) x,0,z
 \(m_y\) 1,0,1/2\)
6. \((6)^*\) (0,0,1/2) 1/2,y,z
 \(m_x\) 1,0,1/2\)
7. \((7)^*\) (1/2,-1/2,0) x+1/2,y,z
 \(m_y\) 1,0,0\)
8. \((8)^*\) (1/2,1/2,0) x+1/2,y,z
 \(m_y\) 1,0,0\)
Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 e</td>
<td>1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z+1/2 [v,u,w] (4) y,x,z+1/2 [v,u,w] (5) x,y,z+1/2 [u,v,w] (6) x,y,z+1/2 [u,v,w] (7) y,x,z [v,u,w] (8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 d</td>
<td>..m</td>
<td>x,x,z [u,u,0] x,x,z [u,u,0] x,x,z+1/2 [u,u,0] x,x,z+1/2 [u,u,0]</td>
</tr>
<tr>
<td>8 c</td>
<td>2'</td>
<td>0,1/2,z [u,v,0] 0,1/2,z [u,v,0] 0,1/2,z+1/2 [u,v,0] 0,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>2.mm</td>
<td>1/2,1/2,z [0,0,0] 1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>2.mm</td>
<td>0,0,z [0,0,0] 0,0,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_{4mm} \) Along [1,0,0] \(p1m11' \) Along [1,1,0] \(p1m11' \)
\(a^* = a \quad b^* = b \quad a^* = b \quad b^* = c/2 \quad a^* = (-a + b)/2 \quad b^* = c \)
Origin at 0,0,z Origin at x,0,0 Origin at x,x,0
Origin on 2\textit{m}m' on 4\textit{m}1'

Asymmetric unit \[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y\]

Symmetry Operations

For (0,0,0) + set

(1) \text{1} \quad (1)\begin{array}{l} \text{1} \\ \text{1}
\end{array} \begin{array}{l} \text{0,0,0} \\ \text{0,0,0}
\end{array}

(2) \text{2} \quad 0,0,z
\begin{array}{l} \text{2} \\ \text{2}
\end{array} \begin{array}{l} 0,0,0 \\ 0,0,0
\end{array}

(3) 4\text{+}' \quad (0,0,1/2) \quad 0,0,z
\begin{array}{l} 4\text{+}' \\ 4\text{+}'
\end{array} \begin{array}{l} (0,0,1/2) \\ (0,0,1/2)
\end{array}

(4) 4\text{-}' \quad (0,0,1/2) \quad 0,0,z
\begin{array}{l} 4\text{-}' \\ 4\text{-}'
\end{array} \begin{array}{l} (0,0,1/2) \\ (0,0,1/2)
\end{array}

(5) c \quad (0,0,1/2) \quad x,0,z
\begin{array}{l} c \\ c
\end{array} \begin{array}{l} (0,0,1/2) \\ (0,0,1/2)
\end{array}

(6) c' \quad (0,0,1/2) \quad 0,y,z
\begin{array}{l} c' \\ c'
\end{array} \begin{array}{l} (0,0,1/2) \\ (0,0,1/2)
\end{array}

(7) m' \quad x,x,z
\begin{array}{l} m' \\ m'
\end{array} \begin{array}{l} x,x,z \\ (m_{xy}|0,0,0)
\end{array}

(8) m' \quad x,x,z
\begin{array}{l} m' \\ m'
\end{array} \begin{array}{l} x,x,z \\ (m_{xy}|0,0,0)
\end{array}

For (1,0,0)' + set

(1) \text{t}' \quad (1,0,0)
\begin{array}{l} \text{t}' \\ \text{t}'
\end{array} \begin{array}{l} (1,0,0) \\ (1,0,0)
\end{array}

(2) \text{2}' \quad 1/2,0,z
\begin{array}{l} \text{2}' \\ \text{2}'
\end{array} \begin{array}{l} 1/2,0,z \\ 1/2,0,z
\end{array}

(3) 4\text{+}' \quad (0,0,1/2) \quad 1/2,1/2,z
\begin{array}{l} 4\text{+}' \\ 4\text{+}'
\end{array} \begin{array}{l} (0,0,1/2) \\ (0,0,1/2)
\end{array}

(4) 4\text{-}' \quad (0,0,1/2) \quad 1/2,-1/2,z
\begin{array}{l} 4\text{-}' \\ 4\text{-}'
\end{array} \begin{array}{l} (0,0,1/2) \\ (0,0,1/2)
\end{array}

(5) n' \quad (1,0,1/2) \quad x,0,z
\begin{array}{l} n' \\ n'
\end{array} \begin{array}{l} (1,0,1/2) \\ (1,0,1/2)
\end{array}

(6) c' \quad (0,0,1/2) \quad 1/2,y,z
\begin{array}{l} c' \\ c'
\end{array} \begin{array}{l} (0,0,1/2) \\ (0,0,1/2)
\end{array}

(7) g \quad (1/2,-1/2,0) \quad x+1/2,x,z
\begin{array}{l} g \\ g
\end{array} \begin{array}{l} (1/2,-1/2,0) \\ (1/2,-1/2,0)
\end{array}

(8) g \quad (1/2,1/2,0) \quad x+1/2,x,z
\begin{array}{l} g \\ g
\end{array} \begin{array}{l} (1/2,1/2,0) \\ (1/2,1/2,0)
\end{array}
Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 e 1</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 (5)</td>
<td>x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8 d ..m'</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>8 c 2'..</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td>4 b 2.m'm'</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 a 2.m'm'</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Projection</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>p\text{\textprime}1m1'</td>
</tr>
<tr>
<td>[0,0,1]</td>
<td>p\text{\textprime}1m1'</td>
</tr>
<tr>
<td>[1,1,0]</td>
<td>p_2\text{\textprime}1m1</td>
</tr>
<tr>
<td>[0,0,2]</td>
<td>p\text{\textprime}1m1'</td>
</tr>
<tr>
<td>[0,0,0]</td>
<td>p\text{\textprime}1m1'</td>
</tr>
</tbody>
</table>

Origin at 0,0,z

Origin at x,0,0
Origin on 2mm on 21m

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y \)

Symmetry Operations

1. \((1)\ 1\ (0,0,0)\)
2. \((2)\ 0,0,z\ (0,0,0)\)
3. \((3)\ 0,0,1/2\ (0,1/2,1/2)\)
4. \((4)\ 0,1/2,1/2\ (1/2,0,z)\)
5. \((5)\ n\ (1/2,0,1/2)\ (x,1/4,z)\)
6. \((6)\ n\ (0,1/2,1/2)\ (1/4,y,z)\)
7. \((7)\ m\ x,x,z\ (m_{x}x,0,0)\)
8. \((8)\ m\ x,x,z\ (m_{y}y,0,0)\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>8</th>
<th>d</th>
<th>1</th>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) x,y,z [u,v,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>..m</td>
<td>x,x,z [u,u,0]</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/2,x+1/2,z+1/2 [u,u,0]</td>
<td>x+1/2,x+1/2,z+1/2 [u,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>2.mm</td>
<td>0,0,z [0,0,0]</td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm

\(a^* = a \quad b^* = b \)

Origin at 0,1/2,z

Along [1,0,0] c\(_{\text{p}}\)1m1

\(a^* = b \quad b^* = c \)

Origin at x,0,0

Along [1,1,0] p1m11'

\(a^* = (-a + b)/2 \quad b^* = c \)

Origin at x,x,0

Origin at x,0,0
Origin on 2mm1' on 21m1'

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq 1; \quad x \leq y\]

Symmetry Operations

For 1 + set

1. \((1)\) 1
2. \((2)\) 2 0,0,z
 \((2z) \) 0,0,0
3. \((3)\) 4* (0,0,1/2) 0,1/2,z
 \((4z) \) 1/2,1/2,1/2
4. \((4)\) 4' (0,0,1/2) 1/2,0,z
 \((4z) \) 1/2,1/2,1/2
5. \((5)\) n (1/2,0,1/2) \(x,1/4,z\)
6. \((6)\) n (0,1/2,1/2) 1/4,y,z
 \((m_x) \) 1/2,1/2,1/2
7. \((7)\) m \(x,x,z\)
 \((m_{xy}) \) 0,0,0
8. \((8)\) m \(x,x,z\)
 \((m_{xy}) \) 0,0,0

For 1' + set

1. \((1')\) 1'
2. \((2')\) 2' 0,0,z
 \((2z) \) 0,0,0
3. \((3')\) 4* (0,0,1/2) 0,1/2,z
 \((4z) \) 1/2,1/2,1/2
4. \((4')\) 4' (0,0,1/2) 1/2,0,z
 \((4z) \) 1/2,1/2,1/2
5. \((5')\) n' (1/2,0,1/2) \(x,1/4,z\)
6. \((6')\) n' (0,1/2,1/2) 1/4,y,z
 \((m_x) \) 1/2,1/2,1/2
7. \((7')\) m' \(x,x,z\)
 \((m_{xy}) \) 0,0,0
8. \((8')\) m' \(x,x,z\)
 \((m_{xy}) \) 0,0,0
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 11'</td>
<td>x,y,z [0,0,0]</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>x,y,z [0,0,0]</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>x,y,z [0,0,0]</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td>y+1/2,x+1/2,z+1/2 [0,0,0]</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>x+1/2,y+1/2,z+1/2 [0,0,0]</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td>y,x,z [0,0,0]</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>x,x,z [0,0,0]</td>
<td>(7)</td>
</tr>
<tr>
<td></td>
<td>y,x,z [0,0,0]</td>
<td>(8)</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4gm1'</th>
<th>Along [1,0,0]</th>
<th>c1m1'</th>
<th>Along [1,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = -(a + b)/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,1/2,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin on 2mm on 21m

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y\]

Symmetry Operations

1. \(1\)
 - \((0,0,0)\)
2. \(2\)
 - \(0,0,z\)
 - \((2z,0,0)\)
3. \(4^+\) \((0,0,1/2)\)
 - \((0,1/2,1/2)\)
 - \((1/2,1/2,1/2)\)
4. \(4^-\) \((0,0,1/2)\)
 - \((1/2,0,1/2)\)
 - \((1/2,1/2,1/2)\)
5. \(n'\) \((1/2,0,1/2)\)
 - \(x,1/4,z\)
 - \((m_y,1/2,1/2,1/2)\)
6. \(n'\) \((0,1/2,1/2)\)
 - \(1/4,y,z\)
 - \((m_x,1/2,1/2,1/2)\)
7. \(m\)
 - \(x,x,z\)
 - \((m_{xy},0,0)\)
8. \(m\)
 - \(x,x,z\)
 - \((m_{xy},0,0)\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
</tbody>
</table>

8	d	1	(1) x,y,z [u,v,w]	(2) x,y,z [u,v,w]
			(3) y+1/2,x+1/2,z+1/2 [v,u,w]	(4) y+1/2,x+1/2,z+1/2 [v,u,w]
			(5) x+1/2,y+1/2,z+1/2 [u,v,w]	(6) x+1/2,y+1/2,z+1/2 [u,v,w]
			(7) y,x,z [v,u,w]	(8) y,x,z [v,u,w]

| 4 | c | m | x,x,z [u,u,0] | x,x,z [u,u,0] |
| | | | x+1/2,x+1/2,z+1/2 [u,u,0] | x+1/2,x+1/2,z+1/2 [u,u,0] |

| 4 | b | 2.. | 0,1/2,z [0,0,w] | 0,1/2,z+1/2 [0,0,w] |
| | | | 1/2,0,z+1/2 [0,0,w] | 1/2,0,z+1/2 [0,0,w] |

| 2 | a | 2.mm | 0,0,z [0,0,0] | 1/2,1/2,z+1/2 [0,0,0] |

Symmetry of Special Projections

Along [0,0,1] p4'g'm

a* = a b* = b
Origin at 0,1/2,z

Along [1,0,0] c1m'1

a* = b b* = c
Origin at x,0,0

Along [1,1,0] p1m11'

a* = (a + b)/2 b* = c
Origin at x,x,0
Origin on 2m'm' on 21$m'\text{'}$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x < y$

Symmetry Operations

1. 1

 (1) $0,0,0$

2. 2 $0,0,z$

 (2) $2z,0,0,0$

3. $4'$ $(0,0,1/2) 0,1/2,z$

 (3) $4z,1/2,1/2,1/2'$

4. $4'$ $(0,0,1/2) 1/2,0,z$

 (4) $4z^{-1},1/2,1/2,1/2'$

5. $n (1/2,0,1/2) x,1/4,z$

 (5) $m_y (1/2,1/2,1/2)$

6. $n (0,1/2,1/2) 1/4,y,z$

 (6) $m_x (1/2,1/2,1/2)$

7. $m' x,x,z$

 (7) $m_{xy} (0,0,0)'$

8. $m' x,x,z$

 (8) $m_{xy} (0,0,0)'$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>d 1 (1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u.w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
</tbody>
</table>

4	c ..m’ x,x,z [u,u,w]
	x,x,z [u,u,w]
	+1/2,x+1/2,z+1/2 [u,u,w]
	+1/2,x+1/2,z+1/2 [u,u,w]
	0,1/2,z+1/2 [0,0,w]
	1/2,0,z+1/2 [0,0,w]
	1/2,0,z [0,0,w]

Symmetry of Special Projections

Along [0,0,1] p4'gm'
Along [1,0,0] c_p'1m'1
Along [1,1,0] p1m'1

\(a^* = a \quad b^* = b \quad a^* = b \quad b^* = c \quad a^* = (-a + b)/2 \quad b^* = c \)

Origin at 0,1/2,z
Origin at x,0,0
Origin at x,x,0
Origin on 2m'm' on 21m'

Asymmetric unit:

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y \]

Symmetry Operations:

1. 1
2. \(2 \cdot 0,0,z\) (2
3. \(4^+ (0,0,1/2) 0,1/2,z\)
4. \(4^- (0,0,1/2) 1/2,0,z\)
5. \(n' (1/2,0,1/2) x,1/4,z\)
6. \(n' (0,1/2,1/2) 1/4,y,z\)
7. \(m' x,x,z\)
8. \(m' x,x,z\)

\(m_y,1/2,1/2,1/2\)'

\(m_{xy},0,0,0\)'

102.5.856 - 1 - 1705
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>x,y,z [u,v,w]</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,y+1/2,z+1/2 [v,u,w]</td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(4) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(5) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(6) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>y,x,z [v,u,w]</td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4 c m'</td>
<td>x,z [u,u,w]</td>
<td>x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,z [u,u,w]</td>
<td>x,z [u,u,w]</td>
</tr>
<tr>
<td>4 b 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a m' m'</td>
<td>0,0,z [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p4g'm'
 - a* = a
 - b* = b

- Along [1,0,0] c1m'1
 - a* = b
 - b* = c

- Along [1,1,0] p1m'1
 - a* = (-a + b)/2
 - b* = c

Origin at 0,1/2,z
Origin at x,0,0
Origin at x,x,0
P4, nm
102.6.857
PI,4, nm

4mm1'
Tetragonal
Origin on 2mm on 21m

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y \]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \quad 0,0,z \\
(3) & \quad 4^* (0,0,1/2) \quad 0,1/2,z \\
(4) & \quad 4^* (0,0,1/2) \quad 1/2,0,z \\
(5) & \quad n \ (1/2,0,1/2) \quad x,1/2,z \\
(6) & \quad n \ (0,1/2,1/2) \quad 1/2,y,z \\
(7) & \quad m \ x,x,z \\
(8) & \quad m \ x,x,z \\
\end{align*}
\]

\[
\begin{align*}
(1)_* & \quad 0,0,0 \\
(2)_* & \quad 0,0,0 \\
(3)_* & \quad 0,0,0 \\
(4)_* & \quad 0,0,0 \\
(5)_* & \quad 1/2,1/2,1/2 \\
(6)_* & \quad 1/2,1/2,1/2 \\
(7)_* & \quad 0,0,0 \\
(8)_* & \quad 0,0,0 \\
\end{align*}
\]

For \((1,0,0)' + \) set

\[
\begin{align*}
(1) & \quad t' \ (1,0,0) \\
(2) & \quad 2' \quad 1/2,0,z \\
(3) & \quad 4^* (0,0,1/2) \quad -1/2,0,z \\
(4) & \quad 4^* (0,0,1/2) \quad 0,1/2,z \\
(5) & \quad n' \ (3/2,0,1/2) \quad x,1/4,z \\
(6) & \quad n' \ (0,1/2,1/2) \quad 3/4,y,z \\
(7) & \quad g' \ (1/2,-1/2,0) \quad x+1/2,x,z \\
(8) & \quad g' \ (1/2,1/2,0) \quad x+1/2,x,z \\
\end{align*}
\]

\[
\begin{align*}
(1)_* & \quad 1,0,0 \\
(2)_* & \quad 1,0,0 \\
(3)_* & \quad 3/2,1/2,1/2 \\
(4)_* & \quad 3/2,1/2,1/2 \\
(5)_* & \quad 3/2,1/2,1/2 \\
(6)_* & \quad 3/2,1/2,1/2 \\
(7)_* & \quad 0,0,0 \\
(8)_* & \quad 0,0,0 \\
\end{align*}
\]

Generators selected \((1); t'(1,0,0); t'(0,1,0); t'(0,0,1); (2); (3); (5).\)

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>((0,0,0) + (1,0,0)' +)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(c) ..m (x,x,z [u,u,0]) (x,x,z [u,u,0]) (x+1/2,x+1/2,z+1/2 [u,u,0] x+1/2,x+1/2,z+1/2 [u,u,0])</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(b) 2'.. (0,1/2,z [u,v,0]) (1/2,0,z+1/2 [u,v,0] 1/2,0,z+1/2 [u,v,0] 1/2,0,z [v,u,0])</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(a) 2.mm (0,0,z [0,0,0]) (1/2,1/2,z+1/2 [0,0,0])</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) \(p4gm1'\)
Along \([1,0,0]\) \(c1m11'\)
Along \([1,1,0]\) \(p1m11'\)
\(a^* = a \) \(b^* = b\)
\(a^* = b \) \(b^* = c\)
\(a^* = (a + b)/2 \) \(b^* = c\)
Origin at \(0,1/2,z\)
Origin at \(x,0,0\)
Origin at \(x,x,0\)
Origin on 2m’ on 21m’

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y\]

Symmetry Operations

For \((0,0,0) +\) set

\[(1) 1 \quad (2) 2 \quad (3) 4^* (0,0,1/2) \quad (4) 4^* (0,0,1/2) \quad (5) n' (1/2,0,1/2) \quad (6) n' (0,1/2,1/2) \quad (7) m' x,x,z \quad (8) m' x,x,z\]

For \((1,0,0)' +\) set

\[(1) t' (1,0,0) \quad (2) 2' \quad (3) 4^* (0,0,1/2) \quad (4) 4^* (0,0,1/2) \quad (5) n (3/2,0,1/2) \quad (6) n (0,1/2,1/2) \quad (7) g (1/2,-1/2,0) \quad (8) g (1/2,1/2,0)\]

Generators selected

\((1); t'(1,0,0); t'(0,1,0); t'(0,0,1); (2); (3); (5).\)

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[
\begin{array}{cccc}
\text{Multiplicity} & \text{Wyckoff letter} & \text{Site Symmetry} & \text{Coordinates} \\
16 & d & 1 & (0,0,0) + \\
8 & c & ..m' & (1,0,0)' + \\
8 & b & 2'.. & 0,1/2,z [u,v,0] \\
4 & a & 2.m'm' & 0,0,z [0,0,w] \\
\end{array}
\]

Symmetry of Special Projections

Along \([0,0,1]\)
\(p4gm1'\)
Along \([1,0,0]\)
\(c1m11'\)
Along \([1,1,0]\)
\(p_{1}c1m1\)

\(a^* = a \quad b^* = b\)

Origin at \(0,1/2,z\)

\(a^* = b \quad b^* = c\)

Origin at \(x,0,0\)

\(a^* = (-a + b)/2 \quad b^* = c\)

Origin at \(x,x,1/2\)
Origin on 4cc

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

1. \(1 \)
 \((1,0,0,0) \)

2. 2 0,0,z
 \((2_1,0,0,0) \)

3. 4 0,0,z
 \((4_z,0,0,0) \)

4. 4 0,0,z
 \((4_{-1},0,0,0) \)

5. c (0,0,1/2) x,0,z
 \((m_y,0,0,1/2) \)

6. c (0,0,1/2) 0,y,z
 \((m_x,0,0,1/2) \)

7. c (0,0,1/2) x,\bar{x},z
 \((m_{xy},0,0,1/2) \)

8. c (0,0,1/2) x,x,z
 \((m_{xy},0,0,1/2) \)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 c 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 b 4..</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a 4..</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm

\(a^* = a \) \hspace{1cm} \(b^* = b \)

Origin at 0,0,z

Along [1,0,0] \(p_{2b\cdot1m'1} \)

\(a^* = b \) \hspace{1cm} \(b^* = c/2 \)

Origin at x,0,0

Along [1,1,0] \(p_{2b\cdot1m'1} \)

\(a^* = (-a + b)/2 \) \hspace{1cm} \(b^* = c/2 \)

Origin at x,x,0
Origin on 4cc1'

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

For 1 + set

\begin{align*}
(1) & \quad 1 \quad (1 | 0,0,0) \\
(2) & \quad 2 \quad 0,0,z \quad (2_z | 0,0,0) \\
(3) & \quad 4' \quad 0,0,z \quad (4_z | 0,0,0) \\
(4) & \quad 4' \quad 0,0,z \quad (4_z^{-1} | 0,0,0) \\
(5) & \quad c (0,0,1/2) \quad x,0,z \quad (m_y | 0,0,1/2) \\
(6) & \quad c (0,0,1/2) \quad 0,y,z \quad (m_x | 0,0,1/2) \\
(7) & \quad c (0,0,1/2) \quad x,x,z \quad (m_{xy} | 0,0,1/2) \\
(8) & \quad c (0,0,1/2) \quad x,x,z \quad (m_{xy} | 0,0,1/2) \\
\end{align*}

For 1' + set

\begin{align*}
(1) & \quad 1' \quad (1 | 0,0,0) \\
(2) & \quad 2' \quad 0,0,z \quad (2_z | 0,0,0)' \\
(3) & \quad 4' \quad 0,0,z \quad (4_z | 0,0,0)' \\
(4) & \quad 4' \quad 0,0,z \quad (4_z^{-1} | 0,0,0)' \\
(5) & \quad c' (0,0,1/2) \quad x,0,z \quad (m_y | 0,0,1/2)' \\
(6) & \quad c' (0,0,1/2) \quad 0,y,z \quad (m_x | 0,0,1/2)' \\
(7) & \quad c' (0,0,1/2) \quad x,x,z \quad (m_{xy} | 0,0,1/2)' \\
(8) & \quad c' (0,0,1/2) \quad x,x,z \quad (m_{xy} | 0,0,1/2)' \\
\end{align*}
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
<td>1' +</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>d</td>
<td>11'</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4..1'</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>2..1'</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4..1'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
<td>1' +</td>
</tr>
<tr>
<td>(1) x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(2) x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(3) y,x,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(4) y,x,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(5) x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(6) x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(7) y,x,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(8) y,x,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(9) 0,1/2 ,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(10) 0,1/2 ,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(11) 0,1/2 ,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(12) 0,1/2 ,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(13) 0,1/2 ,z</td>
<td>[0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [1,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>p4mm1'</td>
<td>p1m11'</td>
<td>p1m11'</td>
</tr>
<tr>
<td>b* = b</td>
<td>a* = b</td>
<td>a* = (-a + b)/2</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 4'c'c

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

(1) 1
(1) $0,0,0$

(2) $2 \ 0,0,z$
(2) $z, 0,0,0$

(3) $4^{+} \quad 0,0,z$
(4) $z, 0,0,0'$

(4) $4^{-} \quad 0,0,z$
(4) $z^{-1}, 0,0,0$

(5) $c' \ (0,0,1/2) \ x,0,z$
(5) $m_y, 0,0,1/2$

(6) $c' \ (0,0,1/2) \ 0,y,z$
(6) $m_x, 0,0,1/2$

(7) $c \ (0,0,1/2) \ x,x,z$
(7) $m_{xy}, 0,0,1/2$

(8) $c \ (0,0,1/2) \ x,x,z$
(8) $m_{x+y}, 0,0,1/2$
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>c 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b 4'..</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'm'm

\[a^* = a \quad b^* = b \]

Origin at 0,0,z

Along [1,0,0] p1m'1

\[a^* = b \quad b^* = c/2 \]

Origin at x,0,0

Along [1,1,0] p_{21}.1m'1

\[a^* = (-a + b)/2 \quad b^* = c/2 \]

Origin at x,x,0
Origin on 4'cc'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

(1) 1
(1) 0,0,0

(2) 2 0,0,z
(2) 0,0,0

(3) 4* 0,0,z
(4) 0,0,0

(4) 4* 0,0,0'
(4) 0,0,0'

(5) c (0,0,1/2) x,0,z
(m_x|0,0,1/2)

(6) c (0,0,1/2) 0,y,z
(m_y|0,0,1/2)

(7) c' (0,0,1/2) x,x,z
(m_x|0,0,1/2)

(8) c' (0,0,1/2) x,x,z
(m_y|0,0,1/2)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>c 2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b 4</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a 4</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'mmm' Along [1,0,0] p2b*1m'1 Along [1,1,0] p1m'1
a* = a b* = b a* = b b* = c/2 a* = (-a + b)/2 b* = c/2
Origin at 0,0,z Origin at x,0,0 Origin at x,x,0
Origin on 4c'c'

Asymmetric unit
0 ≤ x ≤ 1/2;
0 ≤ y ≤ 1/2;
0 ≤ z ≤ 1/2

Symmetry Operations

(1) 1
(1) [0,0,0]

(2) 2 0,0,z
(2z) 0,0,0

(3) 4' 0,0,z
(4z) 0,0,0

(4) 4' 0,0,z
(4z') 0,0,0

(5) c' (0,0,1/2) x,0,z
(my) [0,0,1/2]'

(6) c' (0,0,1/2) 0,y,z
(mx) [0,0,1/2]'

(7) c' (0,0,1/2) x,0,z
(mz) [0,0,1/2]'

(8) c' (0,0,1/2) x,x,z
(mxy) [0,0,1/2]'
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) y,x,z [v,u,w]</td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>c 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b 4..</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a 4..</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin at 0,0,z</th>
<th>Along [0,0,1]</th>
<th>p4m' (\cdot) m'</th>
<th>Along [1,0,0]</th>
<th>p1m' (\cdot) 1</th>
<th>Along [1,1,0]</th>
<th>p1m' (\cdot) 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{a}^* = \mathbf{a}) (\mathbf{b}^* = \mathbf{b})</td>
<td>(\mathbf{a}^* = \mathbf{b}) (\mathbf{b}^* = \mathbf{c}/2)</td>
<td>(\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2) (\mathbf{b}^* = \mathbf{c}/2)</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Symmetry Operations

For \((0,0,0)\) + set

1. \((1,0,0)\)
2. \((2,0,0,z)\)
3. \((4^+, 0,0,z)\)
4. \((4^-, 0,0,z)\)

5. \((c, 0,0,1/2, x,0,z)\)
6. \((c, 0,0,1/2, 0,y,z)\)
7. \((c, 0,0,1/2, x,\bar{x},z)\)
8. \((c, 0,0,1/2, x,x,z)\)

For \((1,0,0)\)' + set

1. \((t', 1,0,0)\)
2. \((2', 1/2,0,z)\)
3. \((4'^+, 1/2,1/2,z)\)
4. \((4'^-, 1/2,-1/2,z)\)

5. \((n', 1,0,1/2, x,0,z)\)
6. \((c', 0,0,1/2, 1/2,y,z)\)
7. \((n', 1/2,-1/2,1/2, x+1/2,\bar{x},z)\)
8. \((n', 1/2,1/2,1/2, x+1/2,x,z)\)
Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>d</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>c</td>
<td>0,1/2,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>(2')</td>
<td>1/2,0,z [v,u,0]</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>0,1/2,z+1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>1/2,0,z+1/2 [v,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4')</td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_4mm \)

Along [1,0,0] \(p1m1 \)

Along [1,1,0] \(p_1m1 \)

\(a^* = a \quad b^* = b \)

\(a^* = b \quad b^* = c/2 \)

\(a^* = (-a + b)/2 \quad b^* = c/2 \)

Origin at 0,0,z

Origin at x,0,0

Origin at x-1/4,x+1/4,0
Origin on 4'cc'

Asymmetric unit \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1/2\)

Symmetry Operations

For \((0,0,0)\) + set

(1) \(1\)
 \((1\mid0,0,0)\)

(2) \(2\ 0,0,z\)
 \((2\z|0,0,0)\)

(3) \(4^*\ 0,0,z\)
 \((4\z|0,0,0)\)'

(4) \(4^*\ 0,0,z\)
 \((4\z^{-1}|0,0,0)\)'

(5) \(c\ (0,0,1/2)\) \(x,0,z\)
 \((m_y|0,0,1/2)\)

(6) \(c\ (0,0,1/2)\) \(0,y,z\)
 \((m_x|0,0,1/2)\)

(7) \(c'\ (0,0,1/2)\) \(x,x,z\)
 \((m_{xy}|0,0,1/2)\)'

(8) \(c'\ (0,0,1/2)\) \(x,x,z\)
 \((m_{xy}^{-1}|0,0,1/2)\)'

For \((1,0,0')\) + set

(1) \(t'\) \((1,0,0)\)
 \((1\mid1,0,0')\)

(2) \(2'\ 1/2,0,z\)
 \((2\z|1,0,0')\)

(3) \(4^*\ 1/2,1/2,z\)
 \((4\z|1,0,0)\)

(4) \(4^*\ 1/2,-1/2,z\)
 \((4\z^{-1}|1,0,0)\)

(5) \(n'\ (1,0,1/2)\) \(x,0,z\)
 \((m_y|1,0,1/2)\)

(6) \(c'\ (0,0,1/2)\) \(1/2,y,z\)
 \((m_x|1,0,1/2)\)'

(7) \(n\ (1/2,-1/2,1/2)\) \(x+1/2,x,z\)
 \((m_{xy}|1,0,1/2)\)

(8) \(n\ (1/2,1/2,1/2)\) \(x+1/2,x,z\)
 \((m_{xy}^{-1}|1,0,1/2)\)
Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 d 1</td>
<td>(0,0,0) +</td>
<td>p_4m'm'</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>a^* = a b^* = b</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td>a^* = b b^* = c/2</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
<td>a^* = (-a + b)/2 b^* = c/2</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
<td>Origin at 1/2,1/2,z</td>
</tr>
<tr>
<td>8 c 2'..</td>
<td>(1,0,0)' +</td>
<td>p_1m'1'</td>
</tr>
<tr>
<td>0,1/2,z [u,v,0]</td>
<td>1/2,0,z [v,u,0]</td>
<td>a^* = a b^* = b</td>
</tr>
<tr>
<td>4 b 4..</td>
<td></td>
<td>p_2x.1m1</td>
</tr>
<tr>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td>a^* = (-a + b)/2 b^* = c/2</td>
</tr>
<tr>
<td>4 a 4'..</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0,z [0,0,0]</td>
<td>0,0,z+1/2 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 41n

Asymmetric unit \[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\]

Symmetry Operations

(1) 1
(1') 0,0,0

(2) 2 \(0,0,z\)
(2') \(0,0,0\)

(3) 4' \(0,0,z\)
(4') \(0,0,0\)

(5) \(n\) \((1/2,0,1/2)\) \(x,1/4,z\)

(6) \(n\) \((0,1/2,1/2)\) \(1/4,y,z\)

(7) \(c\) \((0,0,1/2)\) \(x+1/2,\bar{x},z\)

(8) \(n\) \((1/2,1/2,1/2)\) \(x,x,z\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w] (4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w] (6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w] (8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 b 2..</td>
<td>0,1/2,z [0,0,w] 1/2,0,z [0,0,w] 1/2,0,z+1/2 [0,0,w] 0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a 4..</td>
<td>0,0,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm
\[
a^* = a \quad b^* = b
\]
Origin at 0,0,z

Along [1,0,0] c\(_p\)1m'1
\[
a^* = b \quad b^* = c
\]
Origin at x,0,0

Along [1,1,0] p\(_{21}\)1m'1
\[
a^* = (-a + b)/2 \quad b^* = c/2
\]
Origin at x,x,0
Origin on 41n1’

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\]

Symmetry Operations

For 1 + set

1. \(1\)
2. \(2\) 0,0,z
3. \(4^+\) 0,0,z
4. \(4^-\) 0,0,z
5. \(n\) (1/2,0,1/2) z,1/4,z
6. \(n’\) (0,1/2,1/2) 1/4,y,z
7. \(c\) (0,0,1/2) x+1/2,x,z
8. \(n\) (1/2,1/2,1/2) x,x,z

For 1’ + set

1. \(1’\)
2. \(2’\) 0,0,z
3. \(4^{+’}\) 0,0,z
4. \(4^{-’}\) 0,0,z
5. \(n’\) (1/2,0,1/2) z,1/4,z
6. \(n’\) (0,1/2,1/2) 1/4,y,z
7. \(c’\) (0,0,1/2) x+1/2,x,z
8. \(n’\) (1/2,1/2,1/2) x,x,z
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
<td>1' +</td>
</tr>
<tr>
<td>8 c 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) x̅,y̅,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) y̅,x,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) y̅,x̅,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2, y+1/2, z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(6) x̅+1/2, y̅+1/2, z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) y̅+1/2, x̅+1/2, z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(8) y+1/2, x+1/2, z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 b 2..1'</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 4..1'</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Along [0,0,1]</th>
<th>p4gm1'</th>
<th>Along [1,0,0]</th>
<th>c1m1'</th>
<th>Along [1,1,0]</th>
<th>p1m1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td></td>
<td></td>
<td>a* = b</td>
<td>c</td>
<td>a* = (-a + b)/2</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>b* = b</td>
<td></td>
<td></td>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 4'1n

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

1. (1) 1
 (1' | 0,0,0)
2. (2) 2 0,0,z
 (2z | 0,0,0)
3. (3) 4+ · 0,0,z
 (4z | 0,0,0)'
4. (4) 4+ · 0,0,z
 (4z⁻¹ | 0,0,0)'
5. (5) n' (1/2,0,1/2)
 x,1/4,z
 (m|y,1/2,1/2,1/2)'
6. (6) n' (0,1/2,1/2)
 1/4,y,z
 (m|x,1/2,1/2,1/2)'
7. (7) c (0,0,1/2)
 x+1/2,x,z
 (m|y,1/2,1/2,1/2)
8. (8) n (1/2,1/2,1/2)
 x,x,z
 (m|y,1/2,1/2,1/2)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1] p4'g'm</td>
</tr>
<tr>
<td>a* = a b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
</tr>
</tbody>
</table>
Origin on 4'1n'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

1. 1
 (1) [0,0,0]

2. 2 0,0,z
 (2) [0,0,0]

3. 4 0,0,z
 (3) [0,0,0]

4. 4 0,0,z
 (4) [0,0,0]

5. n (1/2,0,1/2) x,1/4,z
 (5) (1/2,0,1/2) x,1/4,z

6. n (0,1/2,1/2) 1/4,y,z
 (6) (0,1/2,1/2) 1/4,y,z

7. c' (0,0,1/2) x+1/2, x,z
 (7) (0,0,1/2) x+1/2, x,z

8. n' (1/2,1/2,1/2) x,x,z
 (8) (1/2,1/2,1/2) x,x,z

104.4.869 - 1 - 1731
Generators selected

1; t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 b 2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a 4''</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4'gm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>c_p,1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b b* = c</td>
<td></td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (-a + b)/2 b* = c/2</td>
<td></td>
</tr>
<tr>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 41n'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

1. \[1 \]
 \[(1|0,0,0) \]

2. \[2 \]
 \[(2z|0,0,0) \]

3. \[4^+ \]
 \[(4z|0,0,0) \]

4. \[4^- \]
 \[(4z^{-1}|0,0,0) \]

5. \[n' \]
 \[(1/2,0,1/2) \]
 \[x,1/4,z \]
 \[(m_y|1/2,1/2,1/2)' \]

6. \[n' \]
 \[(0,1/2,1/2) \]
 \[1/4,y,z \]
 \[(m_x|1/2,1/2,1/2)' \]

7. \[c' \]
 \[(0,0,1/2) \]
 \[x+1/2,x,z \]
 \[(m_{xy}|1/2,1/2,1/2)' \]

8. \[n' \]
 \[(1/2,1/2,1/2) \]
 \[x,x,z \]
 \[(m_{xy}|1/2,1/2,1/2)' \]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>c 1</td>
</tr>
<tr>
<td>(1)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3)</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(5)</td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(7)</td>
<td>y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

| 4 | b 2.. |
| 0,1/2,z [0,0,w] | 1/2,0,z [0,0,w] | 1/2,0,z+1/2 [0,0,w] | 0,1/2,z+1/2 [0,0,w] |

| 2 | a 4.. |
| 0,0,z [0,0,w] | 1/2,1/2,z+1/2 [0,0,w] |

Symmetry of Special Projections

Along [0,0,1] p4g'm' Along [1,0,0] c1m'1 Along [1,1,0] p1m'1
a* = a b* = b a* = b b* = c a* = (-a + b)/2 b* = c/2
Origin at 0,0,z Origin at x,0,0 Origin at x,x,0
Origin on 2mm on 4_2mc

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

1. \[1 \]
 \[1 | 0,0,0 \]

2. \[2 \]
 \[0,0,z \]
 \[(2_z | 0,0,0) \]

3. \[4^+ \]
 \[(0,0,1/2) \]
 \[0,0,z \]
 \[(4_z | 0,0,1/2) \]

4. \[4^- \]
 \[(0,0,1/2) \]
 \[0,0,z \]
 \[(4_z^{-1} | 0,0,1/2) \]

5. \[m \]
 \[x,0,z \]
 \[(m_y | 0,0,0) \]

6. \[m \]
 \[0,y,z \]
 \[(m_x | 0,0,0) \]

7. \[c \]
 \[(0,0,1/2) \]
 \[x,x,z \]
 \[(m_{xy} | 0,0,1/2) \]

8. \[c \]
 \[(0,0,1/2) \]
 \[x,x,z \]
 \[(m_{xy}^{-1} | 0,0,1/2) \]
Continued

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 e</td>
<td>x,1/2,z [0,v,0]</td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,z+1/2 [v,0,0]</td>
<td>1/2,x,z+1/2 [v,0,0]</td>
</tr>
<tr>
<td>4 d</td>
<td>x,0,z [0,v,0]</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,z+1/2 [v,0,0]</td>
<td>0,x,z+1/2 [v,0,0]</td>
</tr>
<tr>
<td>2 c</td>
<td>0,1/2,z [0,0,0]</td>
<td>1/2,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm

Along [1,0,0] p1m11'

Along [1,1,0] p21m1

Origin at 0,0,z

a = a **b** = b

Origin at x,0,0

a = b **b** = c
Origin on 2mm1' on $4_2\text{mc1}'$

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

For 1 + set

1. \(1\)
 1' \(0,0,0\)
 \(0,0,0\)'

2. \(2\)
 2' \(0,0,0\)
 \(0,0,0\)'

3. \(4^+ (0,0,1/2)\)
 \(4^+ (0,0,1/2)\)
 \(4z\|0,0,1/2\)
 \(4z^{-1} \|0,0,1/2\)

4. \(4^- (0,0,1/2)\)
 \(4^- (0,0,1/2)\)
 \(4z\|0,0,1/2\)
 \(4z^{-1} \|0,0,1/2\)

For 1' + set

5. \(m\) \(x,0,z\)
 \(m' \|0,0,0\)
 \(m' \|0,0,0\)'

6. \(m\) \(y,0,z\)
 \(m' \|0,0,0\)
 \(m' \|0,0,0\)'

7. \(c (0,0,1/2)\)
 \(c (0,0,1/2)\)
 \(m_{xy} \|0,0,1/2\)
 \(m_{xy} \|0,0,1/2\)'

8. \(c (0,0,1/2)\)
 \(c (0,0,1/2)\)
 \(m_{xy} \|0,0,1/2\)
 \(m_{xy} \|0,0,1/2\)'

105.2.872 - 1 - 1737
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
<td>1' +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>f 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [0,0,0]</td>
<td>(2) x,y,z [0,0,0]</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/2 [0,0,0]</td>
<td>(3) y,x,z+1/2 [0,0,0]</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+1/2 [0,0,0]</td>
<td>(4) y,x,z+1/2 [0,0,0]</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>e .m.1'</td>
<td>x,1/2,z [0,0,0]</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>x,1/2,z [0,0,0]</td>
<td>x,1/2,z [0,0,0]</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1/2,x,z+1/2 [0,0,0]</td>
<td>1/2,x,z+1/2 [0,0,0]</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1/2,x,z+1/2 [0,0,0]</td>
<td>1/2,x,z+1/2 [0,0,0]</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>c 2mm.1'</td>
<td>0,1/2,z [0,0,0]</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,0]</td>
<td>1/2,0,z+1/2 [0,0,0]</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>b 2mm.1'</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>a 2mm.1'</td>
<td>0,0,z [0,0,0]</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
<td>0,0,z+1/2 [0,0,0]</td>
<td>2</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1' Along [1,0,0] p1m11' Along [1,1,0] p1m11'
a* = a b* = b a* = b b* = c a* = -(a + b)/2 b* = c/2
Origin at 0,0,z Origin at x,0,0 Origin at x,x,0
Origin on 2m’m’ on 4_3’ m’c

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

1. \[(1) \quad 1 \quad (0,0,0)\]
2. \[(2) \quad 2 \quad 0,0,z \quad (2_2, 0,0,0)\]
3. \[(3) \quad 4^+ \quad (0,0,1/2) \quad 0,0,z \quad (4_4,0,0,1/2)\]
4. \[(4) \quad 4^+ \quad (0,0,1/2) \quad 0,0,z \quad (4_2^-1,0,0,1/2)\]
5. \[(5) \quad m' \quad x,0,z \quad (m_y,0,0,0)\]
6. \[(6) \quad m' \quad 0,y,z \quad (m_x,0,0,0)\]
7. \[(7) \quad c \quad (0,0,1/2) \quad x,x,z \quad (m_{xy},0,0,1/2)\]
8. \[(8) \quad c \quad (0,0,1/2) \quad x,x,z \quad (m_{xy},0,0,1/2)\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z+1/2 [v,u,w] (4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 e .m'</td>
<td>x,1/2,z [u,0,w] x,1/2,z [u,0,w] 1/2,x,z+1/2 [0,u,w] 1/2,x,z+1/2 [0,u,w]</td>
</tr>
<tr>
<td>4 d .m'</td>
<td>x,0,z [u,0,w] x,0,z [u,0,w] 0,x,z+1/2 [0,u,w] 0,x,z+1/2 [0,u,w]</td>
</tr>
<tr>
<td>2 c 2m'm'</td>
<td>0,1/2,z [0,0,w] 1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 b 2m'm'</td>
<td>1/2,1/2,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a 2m'm'</td>
<td>0,0,z [0,0,w] 0,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'm'm
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p1m'1
\[a^* = b \quad b^* = c \]
Origin at x,0,0

Along [1,1,0] p2\(\bar{1}\)m'1
\[a^* = -(a + b)/2 \quad b^* = c/2 \]
Origin at x,x,0

105.3.873 - 2 - 1740
Origin on 2mm on 42' mc'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

1. \[1 \]
2. \[2 0,0,z \]
3. \[4^+ \cdot (0,0,1/2) 0,0,z \]
4. \[4^- \cdot (0,0,1/2) 0,0,z \]
5. \[m x,0,z \]
6. \[m 0,y,z \]
7. \[c' (0,0,1/2) x,x,z \]
8. \[c' (0,0,1/2) x,x,z \]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

4 e .m.	x,1/2,z [0,v,0]
	x,1/2,z [0,v,0]
	1/2,x,z+1/2 [v,0,0]
	1/2,x,z+1/2 [v,0,0]

4 d .m.	x,0,z [0,v,0]
	x,0,z [0,v,0]
	0,x,z+1/2 [v,0,0]
	0,x,z+1/2 [v,0,0]

| 2 c 2mm. | 0,1/2,z [0,0,0] |
| | 1/2,0,z+1/2 [0,0,0] |

| 2 b 2mm. | 1/2,1/2,z [0,0,0] |
| | 1/2,1/2,z+1/2 [0,0,0] |

| 2 a 2mm. | 0,0,z [0,0,0] |
| | 0,0,z+1/2 [0,0,0] |

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4'mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a \ b* = b</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b \ b* = c</td>
<td></td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p1m1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (-a + b)/2 \ b* = c/2</td>
<td></td>
</tr>
<tr>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
P4₂ m'c'
105.5.875
Tetragonal

4m'm'
P4₂ m'c'

\[\text{Origin on } 2m'm' \text{ on } 4₂ m'c' \]

\[\text{Asymmetric unit} \quad 0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

\[\text{Symmetry Operations} \]

(1) 1
(1) 0,0,0
(2) 2 0,0,z
(2z) 0,0,0
(3) 4⁺ (0,0,1/2) 0,0,z
(4z) 0,0,1/2
(4) 4⁻ (0,0,1/2) 0,0,z
(4z⁻¹) 0,0,1/2

(5) m' x,0,z
(m_y 0,0,0)'
(6) m' 0,y,z
(m_x 0,0,0)'
(7) c' (0,0,1/2) x,x,z
(m_x 0,0,1/2)'
(8) c' (0,0,1/2) x,x,z
(m_y 0,0,1/2)'
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 e</td>
<td>.m' x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,z+1/2 [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,z+1/2 [0,u,w]</td>
</tr>
<tr>
<td>4 d</td>
<td>.m' x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,x,z+1/2 [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>0,x,z+1/2 [0,u,w]</td>
</tr>
<tr>
<td>2 c</td>
<td>2m'2m'. 0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 b</td>
<td>2m'2m'. 1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a</td>
<td>2m'2m'. 0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4/m'2m' Along [1,0,0] p1m'1
\(a^* = a \) \(b^* = b \)
Origin at 0,0,z

Along [1,1,0] p1m'1
\(a^* = b \) \(b^* = c \)
Origin at x,0,0

\(a^* = (\frac{-a+b}{2}) \) \(b^* = \frac{c}{2} \)
Origin at x,x,0
Origin on 2mm on 4\(_2\)mc

Asymmetric unit \(0 \leq x \leq 1/2;\quad 0 \leq y \leq 1/2;\quad 0 \leq z \leq 1/2\)

Symmetry Operations

For \((0,0,0)\) + set

1. \((1)\) \((1)\) \([0,0,0]\)
2. \((2)\) \(0,0,z\)
 \(\left(2_z\right)0,0,0\)
3. \((3)\) \(4^+ (0,0,1/2) 0,0,z\)
 \(\left(4_z\right)0,0,1/2\)
4. \((4)\) \(4^- (0,0,1/2) 0,0,z\)
 \(\left(4_z^{-1}\right)0,0,1/2\)
5. \((5)\) \(m \times 0,0,0\)
 \(m_y\) \(0,0,0\)
6. \((6)\) \(m \times 0,y,z\)
 \(m_x\) \(0,0,0\)
7. \((7)\) \(c (0,0,1/2) x,x,z\)
 \(m_{xy}\) \(0,0,1/2\)
8. \((8)\) \(c (0,0,1/2) x,x,z\)
 \(m_{xy}\) \(0,0,1/2\)

For \((1,0,0)\) + set

1. \((1)\) \((1)\) \((1,0,0)\)
2. \((2)\) \(1/2,0,z\)
 \(\left(2_z\right)1,0,0\)
3. \((3)\) \(4^+ (0,0,1/2) 1/2,1/2,z\)
 \(\left(4_z\right)1,0,1/2\)
4. \((4)\) \(4^- (0,0,1/2) 1/2,1/2,z\)
 \(\left(4_z^{-1}\right)1,0,1/2\)
5. \((5)\) \((5)\) \((1,0,0)\)
 \(m_y\) \((1,0,0)\)
6. \((6)\) \(1/2,y,z\)
 \(m_x\) \(1,0,0\)
7. \((7)\) \(n (1/2,-1/2,1/2) x+1/2,x,z\)
 \(m_{xy}\) \(1,0,1/2\)
8. \((8)\) \(n (1/2,1/2,1/2) x+1/2,x,z\)
 \(m_{xy}\) \(1,0,1/2\)
Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>16 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x',y',z' [u',v',w']</td>
</tr>
<tr>
<td></td>
<td>(3) y',x',z'+1/2 [v',u',w']</td>
</tr>
<tr>
<td></td>
<td>(4) y,x',z'+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x',y',z' [u',v',w']</td>
</tr>
<tr>
<td></td>
<td>(7) y',x',z'+1/2 [v',u',w']</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z'+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8 e .m'.</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x',1/2,z' [u,0,w']</td>
</tr>
<tr>
<td>8 d .m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x',0,z' [0,v',0]</td>
</tr>
<tr>
<td>4 c 2'mm'.</td>
<td>0,1/2,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z'+1/2 [0,u,0]</td>
</tr>
<tr>
<td>4 b 2m'm'.</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z'+1/2 [0,0,w']</td>
</tr>
<tr>
<td>4 a 2mm.</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z'+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_m 4mm
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] p1m11'
\(a^* = b \quad b^* = c \)
Origin at x,0,0

Along [1,1,0] p_c 1m1
\(a^* = (-a + b)/2 \quad b^* = c/2 \)
Origin at x-1/4,x+1/4,0
Origin on 2mm on 4' mc'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)
 - \((1)\) \(1\)
 - \((1)\) \((0,0,0)\)

2. \(2\)
 - \((2)\) \(0,0,z\)
 - \((2)\) \((0,0,0)\)

3. \(4\) *' \(0,0,1/2\)
 - \((3)\) \(0,0,z\)
 - \((3)\) \((4,0,0,1/2)\)

4. \(4\) *' \(0,0,1/2\)
 - \((4)\) \(0,0,z\)
 - \((4)\) \((4,0,0,1/2)\)

For \((1,0,0)\) + set

1. \(t'\)
 - \((1)\) \((1,0,0)\)

2. \(2'\)
 - \((2)\) \((1/2,0,z)\)
 - \((2)\) \((1,0,0)\)

3. \(4\) *' \(0,0,1/2\)
 - \((3)\) \((0,1/2,1/2)\)
 - \((3)\) \((1,0,1/2)\)

4. \(4\) *' \(0,0,1/2\)
 - \((4)\) \((1/2,0,1/2)\)
 - \((4)\) \((1,0,1/2)\)

For \((1,0,0)\) *' set

1. \(a'\)
 - \((5)\) \((1,0,0)\)
 - \((5)\) \((0,0,0)\)

2. \(m'\)
 - \((6)\) \((1/2,y,z)\)
 - \((6)\) \((1,0,0)\)

3. \(n\)
 - \((7)\) \((1/2,-1/2,1/2)\)
 - \((7)\) \((1,0,1/2)\)

4. \(n\)
 - \((8)\) \((1/2,1/2,1/2)\)
 - \((8)\) \((1,0,1/2)\)
Generators selected
(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f 1</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>15 g 1</td>
<td>(1,0,0) +</td>
</tr>
<tr>
<td>8 e .m'.</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 d .m.</td>
<td>(2) x',y',z'[u',v',w']</td>
</tr>
<tr>
<td>4 c 2'mm'</td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 b 2m'm'</td>
<td>(4) y',x',z+1/2 [v',u',w']</td>
</tr>
<tr>
<td>4 a 2mm.</td>
<td>(5) x',y',z'[u',v',w']</td>
</tr>
<tr>
<td></td>
<td>(6) x',y',z'[u',v',w']</td>
</tr>
<tr>
<td></td>
<td>(7) y',x',z+1/2 [v',u',w']</td>
</tr>
<tr>
<td></td>
<td>(8) y',x',z+1/2 [v',u',w']</td>
</tr>
<tr>
<td></td>
<td>(9) x',y',z'[u',v',w']</td>
</tr>
<tr>
<td></td>
<td>(10) y',x',z+1/2 [v',u',w']</td>
</tr>
<tr>
<td></td>
<td>(11) x',y',z'[u',v',w']</td>
</tr>
<tr>
<td></td>
<td>(12) y',x',z+1/2 [v',u',w']</td>
</tr>
<tr>
<td></td>
<td>(13) x',y',z'[u',v',w']</td>
</tr>
<tr>
<td></td>
<td>(14) y',x',z+1/2 [v',u',w']</td>
</tr>
<tr>
<td></td>
<td>(15) x',y',z'[u',v',w']</td>
</tr>
<tr>
<td></td>
<td>(16) y',x',z+1/2 [v',u',w']</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_{4c}4mm'
| a' = a | b' = b |
| Origin at 0,0,z |

Along [1,0,0] p1m11'
| a' = b | b* = c |
| Origin at x,0,0 |

Along [1,1,0] p_{2c}1m1
| a' = (a + b)/2 | b* = c/2 |
| Origin at x+1/4,x+1/4,0 |
Origin on 2 on $4_2\overline{1}n$

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1/2$

Symmetry Operations

(1) 1
(1) 1

(2) $2 \ 0,0,z$
(2) $z \ 0,0,z$

(3) $4^+ (0,0,1/2) \ 0,0,z$
(3) $4 \ 0,0,1/2$

(4) $4^- (0,0,1/2) \ 0,0,z$
(4) $4^- \ 0,0,1/2$

(5) a $(1/2,0,0) \ x,1/4,z$
(5) x,1/4,z

(6) b $(0,1/2,0) \ 1/4,y,z$
(6) $1/4,y,z$

(7) c $(0,0,1/2) \ x+1/2,x,z$
(7) $1/2,1/2,z$

(8) n $(1/2,1/2,1/2) \ x,x,z$
(8) $1/2,1/2,x$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 b 2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 a 2..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm

\[
\begin{align*}
\mathbf{a}^* &= \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \\
\text{Origin at 0,0,z}
\end{align*}
\]

Along [1,0,0] \(p_{2a'1m1} \)

\[
\begin{align*}
\mathbf{a}^* &= \mathbf{b}/2 \quad \mathbf{b}^* = \mathbf{c} \\
\text{Origin at x,1/4,0}
\end{align*}
\]

Along [1,1,0] \(p_{2b'1m'1} \)

\[
\begin{align*}
\mathbf{a}^* &= (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c}/2 \\
\text{Origin at x,x,0}
\end{align*}
\]
Origin on 21' on 4_2 1n1'

Asymmetric unit
0 ≤ x ≤ 1/2;
0 ≤ y ≤ 1/2;
0 ≤ z ≤ 1/2

Symmetry Operations

For 1 + set

(1) 1
(1 | 0, 0, 0)

(5) a (1/2, 0, 0) x 1/4, z
(m_y | 1/2, 1/2, 0)

(2) 2 0, 0, z
(2_z | 0, 0, 0)

(6) b (0, 1/2, 0) 1/4, y, z
(m_x | 1/2, 1/2, 0)

(3) 4^+ (0, 0, 1/2) 0, 0, z
(4_z | 0, 0, 1/2)

(7) c (0, 0, 1/2) x+1/2, x, z
(m_x | 1/2, 1/2, 1/2)

(4) 4^*- (0, 0, 1/2) 0, 0, z
(4_z^- | 0, 0, 1/2)

For 1' + set

(1) 1'
(1 | 0, 0, 0)'

(5) a' (1/2, 0, 0) x 1/4, z
(m_y | 1/2, 1/2, 0)'

(2) 2' 0, 0, z
(2_z | 0, 0, 0)'

(6) b' (0, 1/2, 0) 1/4, y, z
(m_x | 1/2, 1/2, 0)'

(3) 4^+* (0, 0, 1/2) 0, 0, z
(4_z | 0, 0, 1/2)'

(7) c' (0, 0, 1/2) x+1/2, x, z
(m_x | 1/2, 1/2, 1/2)'

(4) 4^-* (0, 0, 1/2) 0, 0, z
(4_z^- | 0, 0, 1/2)'

(8) n' (1/2, 1/2, 1/2) x, x, z
(m_x | 1/2, 1/2, 1/2)'

106.2.879 - 1 - 1751
Generators selected

$(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'$.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
<td>1' +</td>
</tr>
</tbody>
</table>

8	c	11'	1) x,y,z [0,0,0]	(2) x,y,z [0,0,0]
3	y+1/2,x+1/2,z [0,0,0]	(4) y,x,z+1/2 [0,0,0]		
4	b	2..1'	0,1/2,z [0,0,0]	1/2,0,z+1/2 [0,0,0]
4	a	2..1'	0,0,z [0,0,0]	0,0,z+1/2 [0,0,0]
4	b	2..1'	0,1/2,z [0,0,0]	0,0,z+1/2 [0,0,0]
4	a	2..1'	1/2,0,z [0,0,0]	0,1/2,z+1/2 [0,0,0]
4	a	2..1'	1/2,1/2,z+1/2 [0,0,0]	1/2,1/2,z+1/2 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4gm1'</th>
<th>Along [1,0,0]</th>
<th>p1m11'</th>
<th>Along [1,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b/2</td>
<td>b* = c</td>
<td>a* = (-a + b)/2</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin on 2 on 4_2_1n

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

1. (1) \[1 \]
 \[(1/0,0,0) \]

2. (2) \[z \]
 \[(2z/0,0,0) \]

3. (3) \[4_z^+ (0,0,1/2) 0,0,z \]
 \[(4z/0,0,1/2) \]

4. (4) \[4_z^- (0,0,1/2) 0,0,z \]
 \[(4z^-/0,0,1/2) \]

5. (5) \[a_x' (1/2,0,0) x,1/4,z \]
 \[(m_y/1/2,1/2,0) \]

6. (6) \[b' (0,1/2,0) 1/4,y,z \]
 \[(m_x/1/2,1/2,0) \]

7. (7) \[c (0,0,1/2) x+1/2,1/4,z \]
 \[(m_y/1/2,1/2,1/2) \]

8. (8) \[n (1/2,1/2,1/2) x,x,z \]
 \[(m_x/1/2,1/2,1/2) \]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x ,y ,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y' ,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y, x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y'+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 b 2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 a 2..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4g'm

\(a^* = a \quad b^* = b \)

Origin at 0,0,z

Along [1,0,0] p1m'1

\(a^* = b/2 \quad b^* = c \)

Origin at x,0,0

Along [1,1,0] p2v',1m'1

\(a^* = (-a + b)/2 \quad b^* = c/2 \)

Origin at x,x,0
Origin on $4'_{2}, 1n'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

(1) 1

(2) $2 \quad 0,0,0$

(5) $a\ (1/2,0,0)\ x,1/4,z$

(6) $b\ (0,1/2,0)\ 1/4,y,z$

(7) $c'\ (0,0,1/2)\ x+1/2,x,z$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1] p4'gm'**
 - $a^* = a$
 - $b^* = b$
 - Origin at 0,0,z

- **Along [1,0,0] p2a*1m1**
 - $a^* = b/2$
 - $b^* = c$
 - Origin at x,1/4,0

- **Along [1,1,0] p1m'1**
 - $a^* = (a + b)/2$
 - $b^* = c/2$
 - Origin at x,x,0
P4₂ b'c' 4m'm' Tetragonal

106.5.882 P4₂ b'c'

Origin on 2 on 4₂ 1n'

Asymmetric unit
\[0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2}\]

Symmetry Operations

1. 1

 \[(1) 0,0,0\]

2. 2 0,0,z
 \[(2) z,0,0,0\]

3. 4⁺ (0,0,1/2) 0,0,z
 \[(3) z,0,0,1/2\]

4. 4⁻ (0,0,1/2) 0,0,z
 \[(4) z,0,0,1/2\]

5. a' (1/2,0,0) x,1/4,z
 \[(5) m,1/2,1/2,0'\]

6. b' (0,1/2,0) 1/4,y,z
 \[(6) m,1/2,1/2,0'\]

7. c' (0,0,1/2) x+1/2,x,z
 \[(7) m,1/2,1/2,1/2'\]

8. n' (1/2,1/2,1/2) x,x,z
 \[(8) m,1/2,1/2,1/2'\]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>c 1</td>
</tr>
</tbody>
</table>

(1) x,y,z [u,v,w]

(2) x,y,z [u,v,w]

(3) y,x,z+1/2 [v,u,w]

(4) y,x,z+1/2 [v,u,w]

(5) x+1/2, y+1/2, z [u,v,w]

(6) x+1/2, y+1/2, z [u,v,w]

(7) y+1/2, x+1/2, z+1/2 [v,u,w]

(8) y+1/2, x+1/2, z+1/2 [v,u,w]

4 b 2.. 0,1/2,z [0,0,w]

1/2,0,z+1/2 [0,0,w]

1/2,0,z [0,0,w]

0,1/2,z+1/2 [0,0,w]

4 a 2.. 0,0,z [0,0,w]

0,0,z+1/2 [0,0,w]

1/2,1/2,z [0,0,w]

1/2,1/2,z+1/2 [0,0,w]

Symmetry of Special Projections

Along [0,0,1] p4g’m’

A* = a b* = b

Origin at 0,0,z

Along [1,0,0] p1m’1

A* = b/2 b* = c

Origin at x,0,0

Along [1,1,0] p1m’1

A* = (-a + b)/2 b* = c/2

Origin at x,x,0
I4mm 4mm Tetragonal

107.1.883

Origin on 4mm

Asymmetric unit: $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y$

Symmetry Operations

For $(0,0,0) + set$

1. $I \quad 0,0,0$
2. $2 \quad 0,0,z \quad (2z,0,0,0)$
3. $4^+ \quad 0,0,z \quad (4z,0,0,0)$
4. $4^- \quad 0,0,z \quad (4z^{-1},0,0,0)$
5. $m \quad x,0,z \quad (m_y,0,0,0)$
6. $m \quad 0,y,z \quad (m_x,0,0,0)$
7. $m \quad x,x,z \quad (m_{xy},0,0,0)$
8. $m \quad x,x,z \quad (m_{xy},0,0,0)$

For $(1/2,1/2,1/2) + set$

1. $t \quad (1/2,1/2,1/2) \quad 1/4,1/4,z \quad (2z,1/2,1/2,1/2)$
2. $2 \quad (0,0,1/2) \quad 0,1/2,z \quad (4z^{-1},1/2,1/2,1/2)$
3. $4^+ \quad (0,0,1/2) \quad 0,1/2,z \quad (4z^{-1},1/2,1/2,1/2)$
4. $4^- \quad (0,0,1/2) \quad 1/2,0,z \quad (4z^{-1},1/2,1/2,1/2)$
5. $n \quad (1/2,0,1/2) \quad x,1/4,z \quad (m_y,1/2,1/2,1/2)$
6. $n \quad (0,1/2,1/2) \quad 1/4,y,z \quad (m_x,1/2,1/2,1/2)$
7. $c \quad (0,0,1/2) \quad x+1/2,x,z \quad (m_{xy},1/2,1/2,1/2)$
8. $n \quad (1/2,1/2,1/2) \quad x,x,z \quad (m_{xy},1/2,1/2,1/2)$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 e 1</td>
<td>(1) x,y,z [u,v,w] (2) x' y' z [u',v',w'] (3) y' x' z [v,u,w] (4) y' x' z [v,u,w]</td>
</tr>
<tr>
<td>8 d .m.</td>
<td>x,0,z [0,v,0] x' ,0,z [0,v',0] 0,x,z [v,0,0] 0,x,z [v,0,0]</td>
</tr>
<tr>
<td>8 c .m.</td>
<td>x,x,z [u,u,0] x' ,x,z [u',u,0] 0,x,z [v,0,0] 0,x,z [u,0,0]</td>
</tr>
<tr>
<td>4 b 2mm.</td>
<td>0,1/2,z [0,0,0] 1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 a 4mm</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm
a* = (a - b)/2 b* = (a + b)/2
Origin at 0,0,z

Along [1,0,0] c1m1
a* = b b* = c
Origin at x,0,0

Along [1,1,0] p1m11'
a* = (-a + b)/2 b* = c/2
Origin at x,x,0
Origin on 4mm1'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y\]

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. \((1) 1\)
 - \((1) 0,0,0\)
2. \((2) 2 0,0,z\)
 - \((2_z, 0,0,0)\)
3. \((3) 4^+ 0,0,z\)
 - \((4_z, 0,0,0)\)
4. \((4) 4^- 0,0,z\)
 - \((4_z^{-1}, 0,0,0)\)

5. \((5) m x,0,z\)
 - \((m, x,0,0,0)\)
6. \((6) m 0,y,z\)
 - \((m, 0,y,0,0)\)
7. \((7) m x,x,z\)
 - \((m_{xy}, x,x,0,0)\)
8. \((8) m x,x,z\)
 - \((m_{xy}, x,x,0,0)\)

For \((1/2,1/2,1/2) + \text{set}\)

1. \((1) t (1/2,1/2,1/2)\)
 - \((1/2,1/2,1/2)\)
2. \((2) 2 (0,0,1/2) 1/4,1/4,z\)
 - \((2_z, 1/2,1/2,1/2)\)
3. \((3) 4^+ (0,0,1/2) 0,1/2,z\)
 - \((4_z, 1/2,1/2,1/2)\)
4. \((4) 4^- (0,0,1/2) 1/2,0,z\)
 - \((4_z^{-1}, 1/2,1/2,1/2)\)

5. \((5) n (1/2,0,1/2) x,1/4,z\)
 - \((m, 1/2,0,1/2)\)
6. \((6) n (0,1/2,1/2) 1/4,y,z\)
 - \((m, 1/2,1/2,1/2)\)
7. \((7) c (0,0,1/2) x+1/2,x,z\)
 - \((m_{xy}, x+1/2,x,0,0)\)
8. \((8) n (1/2,1/2,1/2) x,x,z\)
 - \((m_{xy}, x,x,0,0)\)
Continued

For (0,0,0)'+ set

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t'</td>
<td>(0,0,0)</td>
<td>e, [0,0,0]</td>
<td>(1) t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(2) 2'</td>
<td>(0,0,0)</td>
<td>[0,0,0]</td>
<td>(1) t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(3) 4'</td>
<td>(0,0,0)</td>
<td>[0,0,0]</td>
<td>(1) t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(4) 4'</td>
<td>(0,0,0)</td>
<td>[0,0,0]</td>
<td>(1) t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2)</td>
</tr>
</tbody>
</table>

For (1/2,1/2,1/2)'+ set

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5) n'</td>
<td>(0,0,0)</td>
<td>[0,0,0]</td>
<td>(1) t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(6) n'</td>
<td>(0,0,0)</td>
<td>[0,0,0]</td>
<td>(1) t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(7) n'</td>
<td>(0,0,0)</td>
<td>[0,0,0]</td>
<td>(1) t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(8) n'</td>
<td>(0,0,0)</td>
<td>[0,0,0]</td>
<td>(1) t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2)</td>
</tr>
</tbody>
</table>

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 e</td>
<td>(0,0,0)</td>
<td>[0,0,0]</td>
<td>(1) t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2)'+</td>
<td>[0,0,0]</td>
<td>(1) t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2)</td>
</tr>
<tr>
<td>8 d</td>
<td>(0,0,0)</td>
<td>[0,0,0]</td>
<td>(1) t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2)'+</td>
<td>[0,0,0]</td>
<td>(1) t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2)</td>
</tr>
<tr>
<td>8 c</td>
<td>(0,0,0)</td>
<td>[0,0,0]</td>
<td>(1) t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2)'+</td>
<td>[0,0,0]</td>
<td>(1) t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2)</td>
</tr>
<tr>
<td>4 b</td>
<td>(0,0,0)</td>
<td>[0,0,0]</td>
<td>(1) t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2)'+</td>
<td>[0,0,0]</td>
<td>(1) t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2)</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4mm1'</th>
<th>Along [1,0,0]</th>
<th>c1m11'</th>
<th>Along [1,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (a - b)/2</td>
<td>b* = (a + b)/2</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = -(a + b)/2</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
<td>Origin at x,x,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

107.2.884 - 2 - 1762
I4'm'm
107.3.885

I4'm'm

Tetragonal

Origin on 4'm'm

Asymmetric unit

\[0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1; \quad x < y \]

Symmetry Operations

For (0,0,0) + set

1. \(1\)
 \(1\left|0,0,0\right)\)
2. \(2\)
 \(0,0,z\)
 \(2_z\left|0,0,0\right)\)
3. \(4^+\) \(0,0,z\)
 \(4_z\left|0,0,0\right)\)
4. \(4^-\) \(0,0,z\)
 \(4_z^{-1}\left|0,0,0\right)\)
5. \(m'\) \(x,0,z\)
 \(m_y\left|x,0,0\right)\)
6. \(m'\) \(0,y,z\)
 \(m_x\left|0,0,0\right)\)
7. \(m\) \(x,x,z\)
 \(m_{xy}\left|x,0,0\right)\)
8. \(m\) \(x,x,z\)
 \(m_{xy}\left|0,0,0\right)\)

For (1/2,1/2,1/2) + set

1. \(t\) \(1/2,1/2,1/2\)
 \(1\left|1/2,1/2,1/2\right)\)
2. \(2\)
 \(0,0,1/2\)
 \(1/4,1/4,z\)
 \(2_z\left|1/2,1/2,1/2\right)\)
3. \(4^+\) \(0,0,1/2\)
 \(0,1/2,z\)
 \(4_z\left|1/2,1/2,1/2\right)\)
4. \(4^-\) \(0,0,1/2\)
 \(1/2,0,z\)
 \(4_z^{-1}\left|1/2,1/2,1/2\right)\)
5. \(n'\) \(1/2,0,1/2\)
 \(x,1/4,z\)
 \(m_y\left|1/2,1/2,1/2\right)\)
6. \(n'\) \(0,1/2,1/2\)
 \(1/4,y,z\)
 \(m_x\left|1/2,1/2,1/2\right)\)
7. \(c\) \(0,0,1/2\)
 \(x+1/2,x,z\)
 \(m_{xy}\left|1/2,1/2,1/2\right)\)
8. \(n\) \(1/2,1/2,1/2\)
 \(x,x,z\)
 \(m_{xy}\left|1/2,1/2,1/2\right)\)
Continued

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 d .m'</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,x,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>0,x,z [0,u,w]</td>
</tr>
<tr>
<td>8 c .m</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>4 b 2m'm'</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 a 4'm'm</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: p4mm'
 - \(a^* = (a - b)/2 \)
 - \(b^* = (a + b)/2 \)
- **Along [1,0,0]**: c1m'
 - \(a^* = b \)
 - \(b^* = c \)
- **Along [1,1,0]**: p1m1'
 - \(a^* = (-a + b)/2 \)
 - \(b^* = c/2 \)

Origin at 0,0,z
Origin at x,0,0
Origin at x,x,0
Origin on 4'\textit{mm}'

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y\)

Symmetry Operations

For \((0,0,0) + \text{set}\):

1. \(1 \quad (1)\) 0,0,0
2. \(2 \quad (2)\) 0,0,z
 \((2_2)\) 0,0,0
3. \(4^+ \quad (3)\) 0,0,z
 \((4_z)\) 0,0,0,'
4. \(4^- \quad (4)\) 0,0,z
 \((4_z^{-1})\) 0,0,0,'
5. \(m \quad (5)\) x,0,z
 \((m_y)\) 0,0,0
6. \(m \quad (6)\) 0,y,z
 \((m_x)\) 0,0,0
7. \(m' \quad (7)\) x,x,z
 \((m_{xy})\) 0,0,0,'
8. \(m' \quad (8)\) x,x,z
 \((m_{xy})\) 0,0,0,'

For \((1/2,1/2,1/2) + \text{set}\):

1. \(t \quad (1)\) 1/2,1/2,1/2
 \((1)\) 1/2,1/2,1/2
2. \(2 \quad (2)\) 0,0,1/2
 \((2_z)\) 1/2,1/2,1/2
3. \(4^+ \quad (3)\) 0,0,1/2
 \((4_z)\) 1/2,1/2,1/2,'
4. \(4^- \quad (4)\) 0,0,1/2
 \((4_z^{-1})\) 1/2,1/2,1/2,'
5. \(n \quad (5)\) x,1/4,z
 \((m_x)\) 1/2,1/2,1/2
6. \(n \quad (6)\) 0,1/2,1/2
 \((m_x)\) 1/2,1/2,1/2
7. \(c' \quad (7)\) 0,0,1/2
 \((m_{xy})\) 1/2,1/2,1/2,'
8. \(n' \quad (8)\) x,1/2,1/2
 \((m_{xy})\) 1/2,1/2,1/2,'
Generators selected

$(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5)$.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>e</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>d</td>
<td>x,0,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.m.</td>
<td>x,0,z [0,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,z [v,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,z [v,0,0]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>c</td>
<td>x,x,z [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.m'</td>
<td>x,x,z [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,z [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,z [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>0,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2mm.</td>
<td>0,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>0,0,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along $[0,0,1]$ p4'm'm

$ \mathbf{a}^* = (\mathbf{a} - \mathbf{b})/2 \quad \mathbf{b}^* = (\mathbf{a} + \mathbf{b})/2$

Origin at 0,0,z

Along $[1,0,0]$ c1m11'

$ \mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c}$

Origin at x,0,0

Along $[1,1,0]$ p1m1'

$ \mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c}/2$

Origin at x,x,0
Tetragonal
107.5.887

Symmetry Operations

For (0,0,0) + set

1. 1

2. $2 \cdot 0,0,z$

3. $4^+ \cdot 0,0,z$

4. $4^* \cdot 0,0,z$

(1)* $0,0,0$

(2)* $z,0,0,0$

(3)* $4,0,0,0$

(4)* $4^*,-1,0,0,0$

5. $m',x,0,z$

6. $m',0,y,z$

7. $m',0,x,z$

8. m',x,x,z

For (1/2,1/2,1/2) + set

1. $t \cdot 1/2,1/2,1/2$

2. $2 \cdot (0,0,1/2),1/4,1/4,z$

3. $4^+ \cdot (0,0,1/2),1/2,1/2,1/2$ (2)* $z,1/2,1/2,1/2$

4. $4^* \cdot (0,0,1/2),1/2,1/2,1/2$

(1)* $1/2,1/2,1/2$

(2)* $z,1/2,1/2,1/2$

(3)* $z,1/2,1/2,1/2$

(4)* $1/2,1/2,1/2$

5. $n' \cdot 1/2,0,1/2,x,1/4,z$

6. $n' \cdot (0,1/2,1/2),1/4,y,z$

7. $c' \cdot (0,0,1/2),x+1/2,x$, z

8. $n' \cdot (1/2,1/2,1/2),x,x,z$

(5)* $1/2,1/2,1/2$

(6)* $z,1/2,1/2,1/2$

(7)* $z,1/2,1/2,1/2$

(8)* $1/2,1/2,1/2$
Continued

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) +</td>
<td></td>
</tr>
<tr>
<td>16 e</td>
<td>x,y,z [u,v,w]</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 d</td>
<td>x,0,z [u,0,w]</td>
<td>(2) x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [u,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,x,z [0,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,x,z [0,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 c</td>
<td>x,x,z [u,u,w]</td>
<td>(3) x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>4 b</td>
<td>0,1/2,z [0,0,w]</td>
<td>(4) 1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 a</td>
<td>0,0,z [0,0,w]</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p4m’m’</td>
</tr>
<tr>
<td>a* = (a - b)/2</td>
<td>b* = (a + b)/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,0,0]</td>
<td>c1m’1</td>
</tr>
<tr>
<td>a* = b</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,1,0]</td>
<td>p1m’1</td>
</tr>
<tr>
<td>a* = (-a + b)/2</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 4mm

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y\)

Symmetry Operations

For \((0,0,0) + \) set

1. \((1) 1\)
 \(1) 0,0,0\)

5. \((5) m \ x,0,z\)
 \((m_y|0,0,0)\)

For \((1/2,1/2,1/2)^* + \) set

1. \((1) t' (1/2,1/2,1/2)^*\)

3. \((3) 4^* (0,0,1/2) \ 0,1/2,z\)
 \((4^*|1/2,1/2,1/2)^*\)

5. \((5) n' (1/2,0,1/2) \ x,1/4,z\)
 \((m_y|1/2,1/2,1/2)^*\)

7. \((7) c' (0,0,1/2) \ x+1/2,1/2,z\)
 \((m_{xy}|1/2,1/2,1/2)^*\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 e 1</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2)’ +</td>
</tr>
<tr>
<td></td>
<td>(0,0,0), x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x̅,y̅,z̅ [u̅,v̅,w̅]</td>
</tr>
<tr>
<td></td>
<td>(3) y̅,x̅,z̅ [v̅,u̅,w̅]</td>
</tr>
<tr>
<td></td>
<td>(4) y̅,x̅,z̅ [v̅,u̅,w̅]</td>
</tr>
<tr>
<td></td>
<td>(5) x̅,y̅,z̅ [u̅,v̅,w̅]</td>
</tr>
<tr>
<td></td>
<td>(6) x̅,y̅,z̅ [u̅,v̅,w̅]</td>
</tr>
<tr>
<td></td>
<td>(7) y̅,x̅,z̅ [v̅,u̅,w̅]</td>
</tr>
<tr>
<td></td>
<td>(8) y̅,x̅,z̅ [v̅,u̅,w̅]</td>
</tr>
<tr>
<td>8 d .m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,z [v,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,z [v,0,0]</td>
</tr>
<tr>
<td>8 c .m.</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x̅,x̅,z̅ [u̅,u̅,0]</td>
</tr>
<tr>
<td></td>
<td>x̅,x̅,z̅ [u̅,u̅,0]</td>
</tr>
<tr>
<td>4 b 2mm.</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 a 4mm</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p_4, 4mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = (a - b)/2</td>
<td>b^* = (a + b)/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>c1m11’</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = b</td>
<td>b^* = c</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p1m11’</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = -a + b/2</td>
<td>b^* = c/2</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 4'm'm

Asymmetric unit \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1; \ x \leq y \)

Symmetry Operations

For \((0,0,0)\) + set

(1) \(1\)
(1) \(0,0,0\)

(2) \(2\) 0,0,z
(2) \(0,0,0\)

(3) \(4^+\) 0,0,z
(4) \(0,0,0\)

(4) \(4^-\) 0,0,z
(4) \(0,0,0\)

(5) \(m\) x,0,z
(5) \(0,0,0\)

(6) \(m'\) 0,y,z
(6) \(0,0,0\)

(7) \(m\) x,x,z
(7) \(0,0,0\)

(8) \(m\) x,x,z
(8) \(0,0,0\)

For \((1/2,1/2,1/2)\) + set

(1) \(t\) (1/2,1/2,1/2)
(1) \(1/2,1/2,1/2\)

(2) \(2'\) (0,0,1/2)
(2) \(1/2,1/2,1/2\)

(3) \(4^+\) (0,0,1/2)
(3) \(1/2,1/2,1/2\)

(4) \(4^-\) (0,0,1/2)
(4) \(1/2,1/2,1/2\)

(5) \(n\) (1/2,0,1/2)
(5) \(1/2,1/2,1/2\)

(6) \(n\) (0,1/2,1/2)
(6) \(1/2,1/2,1/2\)

(7) \(c'\) (0,0,1/2)
(7) \(1/2,1/2,1/2\)

(8) \(n'\) (1/2,1/2,1/2)
(8) \(1/2,1/2,1/2\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>16 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y',x',z [v',u',w]</td>
</tr>
<tr>
<td></td>
<td>(5) x',y',z [u',v',w]</td>
</tr>
<tr>
<td></td>
<td>(7) y',x',z [v',u',w]</td>
</tr>
<tr>
<td>8 d m'</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>8 c m</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>4 b m' m'</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 a m' m'</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_{6} 4m' m' \)

\(a^{*} = (a - b)/2 \) \(b^{*} = (a + b)/2 \)

Origin at 0,1/2,z

Along [1,0,0] \(c_{6} 1m' 1 \)

\(a^{*} = b \) \(b^{*} = c \)

Origin at x,0,0

Along [1,1,0] \(p_{1} m 11' \)

\(a^{*} = (-a + b)/2 \) \(b^{*} = c/2 \)

Origin at x,x,0
Origin on 4'mm'

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x < y$

Symmetry Operations

For $(0,0,0)$ + set

(1) 1
 (1) 0,0,0

(2) $2' - 0,0,z$
 (2) $2_{z} - 0,0,0$

(3) $4^{+} - 0,0,z$
 (4) $(4_{z} - 0,0,0)^{'}$

(4) $4^{-} - 0,0,z$
 (4) $(4_{z}^{-1} - 0,0,0)^{'}$

(5) $m - x,0,z$
 (m) $0,y,z$

(6) $m - 0,y,z$
 (6) $m_{x} - 0,0,0$

(7) $m^{'} - x,x,z$
 (7) $m_{x}^{'} - 0,0,0$

(8) $m^{'} - x,x,z$
 (8) $m_{x}^{'} - 0,0,0$

For $(1/2,1/2,1/2)^{'} + set$

(1) $t' - (1/2,1/2,1/2)^{'}$
 (1) $1/2,1/2,1/2$' + set

(2) $2' - (0,0,1/2) - 1/4,1/4,z$
 (2) $2_{z} - 1/2,1/2,1/2$'

(3) $4^{+} - (0,0,1/2) - 0,1/2,z$
 (3) $4_{z} - 1/2,1/2,1/2$

(4) $4^{-} - (0,0,1/2) - 1/2,0,z$
 (4) $(4_{z}^{-1} - 1/2,1/2,1/2)$

(5) $n' - (1/2,0,1/2) - x,1/4,z$
 (5) $1/2,1/2,1/2$'

(6) $n' - (0,1/2,1/2) - 1/4,y,z$
 (6) $(m_{x} - 1/2,1/2,1/2)^{'}$

(7) $c - (0,0,1/2) - x+1/2, x,z$
 (7) $(m_{x} - 1/2,1/2,1/2)^{'}$

(8) $n - (1/2,1/2,1/2) - x,x,z$
 (8) $(m_{x} - 1/2,1/2,1/2)^{'}$
Generators selected

\[(1); t(1,0,0); t(0,1,0); t'(1/2,1/2,1/2); (2); (3); (5).\]

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 e 1</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2)′ +</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x, y,z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y,z [u, v, w]</td>
</tr>
<tr>
<td>8 d.m.</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [0, v, 0]</td>
</tr>
<tr>
<td></td>
<td>0,x,z [v,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,z [v,0,0]</td>
</tr>
<tr>
<td>8 c.m.’</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>4 b 2mm.</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 a 4’mm’</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_{6}^{4},4 \text{mm} \) \(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \) \(\text{Origin at } 0,1/2,z \)
Along [1,0,0] \(c1\text{m}11' \) \(a^* = b \) \(b^* = c \) \(\text{Origin at x,0,0} \)
Along [1,1,0] \(p_{2}^{21},1 \text{m}1' \) \(a^* = (a - b)/2 \) \(b^* = c/2 \) \(\text{Origin at x,x,0} \)
Tetragonal

IP 4mm'

107.9.891

Tetragonal

Origin on 4mm'

Asymmetric unit

\[0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1; \ x < y \]

Symmetry Operations

For \((0,0,0)\) + set

1. \((1, 0, 0, 0)\)
2. \((2, 0, 0, z)\)
3. \((3, 4, 0, 0, z)\)
4. \((4, 4, -1, 0, 0, z)\)

5. \((5, m', x, 0, z)\)
6. \((6, m', 0, y, z)\)
7. \((7, m', x, x, z)\)
8. \((8, m', x, x, z)\)

For \((1/2,1/2,1/2)\)' + set

1. \((1, 1/2, 1/2, 1/2)\')
2. \((2, 0, 0, 1/2)\) \((1/4, 1/4, 1/4, z)\)
3. \((3, 4, 0, 0, 1/2)\) \((0, 1/2, 1/2, 1/2)\)
4. \((4, 4, -1, 0, 0, 1/2)\) \((1/2, 1/2, 1/2, 1/2)\)

5. \((5, n, x, 1/4, z)\)
6. \((6, n, 0, 1/2, 1/2)\) \((1/4, y, z)\)
7. \((7, c, (0, 0, 1/2)\) \((x+1/2, x, z)\)
8. \((8, n, (1/2, 1/2, 1/2)\) \((x, x, z)\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2)’ +</td>
</tr>
<tr>
<td>16 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 d .m’</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>8 c .m’</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>4 b 2m’m’</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 a 4m’m’</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_{a’} \) 4m’m’

\(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \)

Origin at 0,0,z

Along [1,0,0] \(c_{p,1} \) m’1

\(a^* = b \) \(b^* = c \)

Origin at x,0,0

Along [1,1,0] \(p_{2b} \) 1m’1

\(a^* = (-a + b)/2 \) \(b^* = c/2 \)

Origin at x,x,0
Symmetry Operations

For (0,0,0) + set

1. \(1 \quad 1\)
2. \(2 \quad 0,0,z\)
3. \(4^+ \quad 0,0,z\)
4. \(4^- \quad 0,0,z\)
5. \(a \quad (1/2,0,0)\)
6. \(b \quad (0,1/2,0)\)
7. \(m \quad x+1/2, \bar{x}, z\)
8. \(g \quad (1/2,1/2,0)\)

For (1/2,1/2,1/2) + set

1. \(t \quad (1/2,1/2,1/2)\)
2. \(2 \quad (0,0,1/2)\)
3. \(4^+ \quad (0,0,1/2)\)
4. \(4^- \quad (0,0,1/2)\)
5. \(c \quad (0,0,1/2)\)
6. \(c \quad (0,0,1/2)\)
7. \(c \quad (0,0,1/2)\)
8. \(c \quad (0,0,1/2)\)

Origin on 4cc

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad y \leq 1/2 - x\]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>d</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) x,y,z [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>c</td>
<td>x + 1/2, y + 1/2, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x + 1/2, x + 1/2, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x + 1/2, x + 1/2, z [u, v, w]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>1/2, 0, z [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0, 1/2, z [0, 0, 0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>0, 0, z [0, 0, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2, 1/2, z [0, 0, w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm
a* = (a - b)/2 b* = (a + b)/2
Origin at 0,0,z

Along [1,0,0] p2a1m1
a* = b/2 b* = c/2
Origin at x,1/4,0

Along [1,1,0] p1m11
a* = -(a + b)/2 b* = c/2
Origin at x,x,0
Origin on 4cc1’

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad y \leq 1/2 - x \]

Symmetry Operations

For \((0,0,0) +\) set

1. \(1\) \(0,0,0\)
2. \(2\) \(0,0,z\) \((2_z 0,0,0)\)
3. \(4^+\) \(0,0,z\) \((4_z 0,0,0)\)
4. \(4^-\) \(0,0,z\) \((4_z^{-1} 0,0,0)\)
5. \(a\) \((1/2,0,0)\) \(x,0,z\) \((m_y | 1/2,1/2,0)\)
6. \(b\) \((0,1/2,0)\) \(1/4,y,z\) \((m_x | 1/2,1/2,0)\)
7. \(m\) \(x+1/2,x,z\) \((m_x | 1/2,1/2,0)\)
8. \(g\) \((1/2,1/2,0)\) \(x,x,z\) \((m_y | 1/2,1/2,0)\)

For \((1/2,1/2,1/2) +\) set

1. \(t\) \((1/2,1/2,1/2)\)
2. \(2\) \((0,0,1/2)\) \(1/4,1/4,z\) \((2_z | 1/2,1/2,1/2)\)
3. \(4^+\) \((0,0,1/2)\) \(0,1/2,z\) \((4_z | 1/2,1/2,1/2)\)
4. \(4^-\) \((0,0,1/2)\) \(1/2,0,z\) \((4_z^{-1} | 1/2,1/2,1/2)\)
5. \(c\) \((0,0,1/2)\) \(x,0,z\) \((m_y | 0,0,1/2)\)
6. \(c\) \((0,0,1/2)\) \(0,y,z\) \((m_x | 0,0,1/2)\)
7. \(c\) \((0,0,1/2)\) \(x,x,z\) \((m_y | 0,0,1/2)\)
8. \(c\) \((0,0,1/2)\) \(x,x,z\) \((m_y | 0,0,1/2)\)
Continued

For \((0,0,0)\)' + set

1. \(1'\)
 \((1|0,0,0)'\)
2. \(2'\) 0,0,z
 \((2|0,0,0)'\)
3. \(4^* + 0,0,z\)
 \((4|0,0,0)'\)
4. \(4^* - 0,0,z\)
 \((4^{-1}|0,0,0)'\)

(5) \(a' (1/2,0,0) x,1/4,z\)
 \((m_x|1/2,1/2,0)'\)
(6) \(b' (0,1/2,0) 1/4,y,z\)
 \((m_x|1/2,1/2,0)'\)
(7) \(m' x+1/2,x,z\)
 \((m_x|1/2,1/2,0)'\)
(8) \(g' (1/2,1/2,0) x,x,z\)
 \((m_x|1/2,1/2,0)'\)

For \((1/2,1/2,1/2)'\) + set

1. \(t' (1/2,1/2,1/2)\)
 \((1|1/2,1/2,1/2)'\)
2. \(2' (0,0,1/2) 1/4,1/4,z\)
 \((2|1/2,1/2,1/2)'\)
3. \(4^* (0,0,1/2) 0,1/2,z\)
 \((4|1/2,1/2,1/2)'\)
4. \(4^* + 0,0,1/2) 1/2,0,z\)
 \((4^{-1}|1/2,1/2,1/2)'\)

(5) \(c' (0,0,1/2) x,0,z\)
 \((m_x|0,0,1/2)'\)
(6) \(c' (0,0,1/2) 0,y,z\)
 \((m_x|0,0,1/2)'\)
(7) \(c' (0,0,1/2) x,x,z\)
 \((m_x|0,0,1/2)'\)
(8) \(c' (0,0,1/2) x,x,z\)
 \((m_x|0,0,1/2)'\)

Generators selected

(1); \(t(1,0,0)\); \(t(0,1,0)\); \(t(0,0,1)\); \(t(1/2,1/2,1/2)\); (2); (3); (5); \(1'\).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 d 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) (\bar{x},\bar{y},z [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(3) (\bar{y},x,z [0,0,0])</td>
<td>(4) y,x,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,(\bar{y}+1/2,z [0,0,0])</td>
<td>(6) (x+1/2,y+1/2,z [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(7) (\bar{y}+1/2,\bar{x}+1/2,z [0,0,0])</td>
<td>(8) (y+1/2,x+1/2,z [0,0,0])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 c ..m1'</th>
<th>(x,x+1/2,z [0,0,0])</th>
<th>(x,x+1/2,z [0,0,0])</th>
<th>(x+1/2,x,z [0,0,0])</th>
<th>(x+1/2,x,z [0,0,0])</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 b 2.mm1'</td>
<td>1/2,0,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 a 4..1'</td>
<td>0,0,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) p4mm1'
- Along \([1,0,0]\) p1m11'
- Along \([1,1,0]\) p1m11'

\(a^* = (a - b)/2\) \(b^* = (a + b)/2\)
Origin at 0,0,z

\(a^* = b/2\) \(b^* = c/2\)
Origin at x,0,0

\(a^* = (-a + b)/2\) \(b^* = c/2\)
Origin at x,x,0
I4’c’m

4’c’m

108.3.894

Tetragonal

Origin on 4’c’c

Asymmetric unit

\[0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < 1; \quad y < \frac{1}{2} - x \]

Symmetry Operations

For \((0,0,0)\) + set

(1) 1
(1 | 0,0,0)

(2) 2 \(0,0,z\)
\((2_z | 0,0,0)\)

(3) \(4^+ \) \(0,0,z\)
\((4_z | 0,0,0)\)

(4) \(4^- \) \(0,0,z\)
\((4_z^{-1} | 0,0,0)\)

(5) \(a' \) \((1/2,0,0)\) \(x,1/4,z\)
\((m_y | 1/2,1/2,0)\)

(6) \(b' \) \((0,1/2,0)\) \(1/4,y,z\)
\((m_x | 1/2,1/2,0)\)

(7) \(m \) \(x+1/2,x,z\)
\((m_x | 1/2,1/2,0)\)

(8) \(g \) \((1/2,1/2,0)\) \(x,x,z\)
\((m_{xy} | 1/2,1/2,0)\)

For \((1/2,1/2,1/2)\) + set

(1) \(t \) \((1/2,1/2,1/2)\)
\((1 | 1/2,1/2,1/2)\)

(2) \(2 \) \((0,0,1/2)\) \(1/4,1/4,z\)
\((2_z | 1/2,1/2,1/2)\)

(3) \(4^+ \) \((0,0,1/2)\) \(0,1/2,z\)
\((4_z | 1/2,1/2,1/2)\)

(4) \(4^- \) \((0,0,1/2)\) \(1/2,0,z\)
\((4_z^{-1} | 1/2,1/2,1/2)\)

(5) \(c' \) \((0,0,1/2)\) \(x,0,z\)
\((m_y | 0,0,1/2)\)

(6) \(c' \) \((0,0,1/2)\) \(0,y,z\)
\((m_x | 0,0,1/2)\)

(7) \(c \) \((0,0,1/2)\) \(x,x,z\)
\((m_{xy} | 0,0,1/2)\)

(8) \(c \) \((0,0,1/2)\) \(x,x,z\)
\((m_{xy} | 0,0,1/2)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>d</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,x,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
</tbody>
</table>

8 c .m x,x+1/2,z [u,u,0] x+1/2,x+1/2,z [u,u,0] x+1/2,x,z [u,u,0]

4 b 2.mm 1/2,0,z [0,0,0] 0,1/2,z [0,0,0]

4 a 4'.. 0,0,z [0,0,0] 1/2,1/2,z [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm'
\[a^* = (a - b)/2, \quad b^* = (a + b)/2\]

Origin at 0,0,z

Along [1,0,0] p1m1'
\[a^* = b/2, \quad b^* = c/2\]

Origin at x,0,0

Along [1,1,0] p1m11'
\[a^* = -(a + b)/2, \quad b^* = c/2\]

Origin at x,x,0
I4'c'm' 4'm'm' Tetragonal

108.4.895

Origin on 4'cc'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad y \leq 1/2 - x \]

Symmetry Operations

For (0,0,0) + set

(1) \(1\) \(1\) (0,0,0) \(1\) (0,0,0)

(2) \(2\) 0,0,z \(2\) 0,0,0

(3) \(4^{+}\) 0,0,z \(4^{+}\) 0,0,0

(4) \(4^{-}\) 0,0,z \(4^{-}\) 0,0,0

(5) \(a\) (1/2,0,0) x,1/4,z \(m\) (1/2,1/2,0)

(6) \(b\) (0,1/2,0) 1/4,y,z \(m\) (1/2,1/2,0)

(7) \(m'\) \(1/2,1/2,0\) \(x+x,0,z\) \(m\) (1/2,1/2,0)

(8) \(g'\) (1/2,1/2,0) \(x,y,z\) \(m\) (1/2,1/2,0)

For (1/2,1/2,1/2) + set

(1) \(t\) (1/2,1/2,1/2) \(1\) (1/2,1/2,1/2)

(2) \(2\) (0,0,1/2) 1/4,1/4,z \(2\) (0,1/2,1/2)

(3) \(4^{+}\) (0,0,1/2) 0,1/2,z \(4^{+}\) (0,1/2,1/2)

(4) \(4^{-}\) (0,0,1/2) 1/2,0,z \(4^{-}\) (0,1/2,1/2)

(5) \(c\) (0,0,1/2) x,0,z \(m\) (0,0,1/2)

(6) \(c\) (0,0,1/2) 0,y,z \(m\) (0,0,1/2)

(7) \(c'\) (0,0,1/2) x,x,z \(m\) (0,0,1/2)

(8) \(c'\) (0,0,1/2) x,x,z \(m\) (0,0,1/2)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 d 1 (1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(7) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>(8) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
</tbody>
</table>

|8 c .m' x,x+1/2,z [u,u,w] |
|x,x+1/2,z [u,u,w] |
| x+1/2,x,z [u,u,w] |
| x+1/2,x,z [u,u,w] |

|4 b 2.m'm' 1/2,0,z [0,0,w] |
| 0,1/2,z [0,0,w] |

|2 a 4'.. 0,0,z [0,0,0] |
| 1/2,1/2,z [0,0,0] |

Symmetry of Special Projections

- **Along [0,0,1]**: p4'm'm
 - \(a^* = (a - b)/2\)
 - \(b^* = (a + b)/2\)
 - Origin at 0,0,z

- **Along [1,0,0]**: p1m'1
 - \(a^* = b/2\)
 - \(b^* = c/2\)
 - Origin at x,0,0

- **Along [1,1,0]**: p1m'1
 - \(a^* = -(a + b)/2\)
 - \(b^* = c/2\)
 - Origin at x,x,0
Tetragonal

Origin on 4c'c'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad y \leq 1/2 - x \]

Symmetry Operations

For \((0,0,0) +\) set

1. \(1\) \(0,0,0\)
2. \(2\) \(0,0,z\) \(2z\)
3. \(4^+\) \(0,0,z\) \(4z\)
4. \(4^-\) \(0,0,z\) \(4z^{-1}\)
5. \(a' (1/2,0,0)\) \(x,1/4,z\) \(m_{y1/2,1/2,0}'\)
6. \(b' (0,1/2,0)\) \(1/4,y,z\) \(m_{x1/2,1/2,0}'\)
7. \(m' x+1/2,\bar{x},z\) \(m_{xy1/2,1/2,0}'\)
8. \(g' (1/2,1/2,0)\) \(x,x,z\) \(m_{xy1/2,1/2,0}'\)

For \((1/2,1/2,1/2) +\) set

1. \(t (1/2,1/2,1/2)\)
2. \(2 (0,0,1/2)\) \(1/4,1/4,z\) \(2z\)
3. \(4^+ (0,0,1/2)\) \(0,1/2,z\) \(4z\)
4. \(4^- (0,0,1/2)\) \(1/2,0,z\) \(4z^{-1}\)
5. \(c' (0,0,1/2)\) \(x,0,z\) \(m_{y0,0,1/2}'\)
6. \(c' (0,0,1/2)\) \(y,z\) \(m_{x0,0,1/2}'\)
7. \(c' (0,0,1/2)\) \(x,x,z\) \(m_{xy0,0,1/2}'\)
8. \(c' (0,0,1/2)\) \(x,x,z\) \(m_{xy0,0,1/2}'\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>8 c ..m' x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,z [u,u,w]</td>
</tr>
<tr>
<td>4 b 2.m'm' 1/2,0,0, [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 a 4.. 0,0,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p4m'm'</th>
<th>Along [1,0,0] p1m'1</th>
<th>Along [1,1,0] p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = (a - b)/2</td>
<td>a = b/2</td>
<td>a = -(a + b)/2</td>
</tr>
<tr>
<td>b = (a + b)/2</td>
<td>b = c/2</td>
<td>b = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Origin on 4c'c'

Asymmetric unit \[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad y \leq 1/2 - x\]

Symmetry Operations

For (0,0,0) + set

1. \(1\) (1) \(0,0,0\)
 \(1^*\) \(1/2,0,0\)

5. \(a\) \((1/2,0,0)\) \(x,1/4,z\)
 \((m_y|x/2,1/2,0)\)

(5) \(a\) \((1/2,0,0)\) \(x,1/4,z\)
 \((m_y|x/2,1/2,0)\)

6. \(b\) \((0,1/2,0)\) \(1/4,1/4,z\)
 \((m_x|x/2,1/2,0)\)

7. \(m\) \(x+1/2,x,z\)
 \((m_x|x/2,1/2,0)\)

8. \(g\) \((1/2,1/2,0)\) \(x,x,z\)
 \((m_x|x,1/2,1/2,0)\)

For \((1/2,1/2,1/2)' + set\)

1. \(t'\) \((1/2,1/2,1/2)'\)

2. \(t'\) \((0,0,1/2)\) \(1/4,1/4,z\)
 \((2_x|x/2,1/2,1/2)'\)

3. \(4^*\) \((0,0,1/2)\) \(0,1/2,z\)
 \((4_x|0,0,1/2)'\)

4. \(4^*\) \((0,0,1/2)\) \(0,1/2,z\)
 \((4_x|0,0,1/2)'\)

5. \(c'\) \((0,0,1/2)'\) \(x,0,z\)
 \((m_y|0,0,1/2)'\)

6. \(c'\) \((0,0,1/2)'\) \(0,y,z\)
 \((m_x|0,0,1/2)'\)

7. \(c'\) \((0,0,1/2)'\) \(x,x,z\)
 \((m_y|0,0,1/2)'\)

8. \(c'\) \((0,0,1/2)'\) \(x,x,z\)
 \((m_y|0,0,1/2)'\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>d</td>
<td>(0,0,0) + (1/2,1/2,1/2)′ +</td>
</tr>
<tr>
<td>8</td>
<td>c .m</td>
<td>x,x+1/2,z [u,u,0] x+1/2,x [u,u,0] x+1/2,x [u,u,0] x+1/2,x [u,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>b 2.mm</td>
<td>1/2,0,z [0,0,0] 0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a 4..</td>
<td>0,0,z [0,0,w] 1/2,1/2,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p_4mm
 \(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \)
- Origin at 0,0,z

- Along [1,0,0] p_2a1m
 \(a^* = b/2 \) \(b^* = c/2 \)
- Origin at x,1/4,0

- Along [1,1,0] p111
 \(a^* = -(a + b)/2 \) \(b^* = c/2 \)
- Origin at x,x,0
Tetragonal

Origin on 4'cc'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad y \leq 1/2 - x \]

Symmetry Operations

For \((0,0,0) + \) set

1. \((1) 1 \quad (1|0,0,0)\)
2. \((2) 2 \quad 0,0,z \quad (2|0,0,0)\)
3. \((3) 4^{+} \quad 0,0,z \quad (4|0,0,0)\)'
4. \((4) 4^{-} \quad 0,0,z \quad (4|0,0,0)'\)

5. \((5) a'(1/2,0,0) \quad x,1/4,z \quad (m_{x}|1/2,1/2,0)'\)
6. \((6) b'(0,1/2,0) \quad 1/4,y,z \quad (m_{z}|1/2,1/2,0)'\)
7. \((7) m \quad x+1/2,x,z \quad (m_{x}|1/2,1/2,0)\)
8. \((8) g \quad (1/2,1/2,0) \quad x,x,z \quad (m_{z}|1/2,1/2,0)\)

For \((1/2,1/2,1/2)' + \) set

1. \((1) t' \quad (1/2,1/2,1/2) \quad (1|1/2,1/2,1/2)'\)
2. \((2) 2' \quad (0,0,1/2) \quad 1/4,1/4,z \quad (2|1/2,1/2,1/2)'\)
3. \((3) 4^{+} \quad (0,0,1/2) \quad 0,1/2,z \quad (4|1/2,1/2,1/2)'\)
4. \((4) 4^{-} \quad (0,0,1/2) \quad 1/2,0,z \quad (4|1/2,1/2,1/2)'\)

5. \((5) c(0,0,1/2) \quad x,0,z \quad (m_{z}|0,0,1/2)\)
6. \((6) c(0,0,1/2) \quad 0,y,z \quad (m_{z}|0,0,1/2)\)
7. \((7) c'(0,0,1/2) \quad x,x,z \quad (m_{x}|0,0,1/2)'\)
8. \((8) c'(0,0,1/2) \quad x,x,z \quad (m_{x}|0,0,1/2)'\)
Generators selected

(1); t(1,0,0); t(0,1,0); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 d 1 (1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(2) x',y',z [u',v',w']</td>
<td></td>
</tr>
<tr>
<td>(3) y',x,z [v',u',w']</td>
<td></td>
</tr>
<tr>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(6) x',y'+1/2,z [u',v',w']</td>
<td></td>
</tr>
<tr>
<td>(7) y'+1/2,x+1/2,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(8) y+1/2,x+1/2,z [v',u',w']</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p,4mm a* = (a - b)/2 b* = (a + b)/2 Origin at 0,1/2,z
Along [1,0,0] p1m'1 a* = b/2 b* = c/2 Origin at x,0,0
Along [1,1,0] p1m11' a* = (a + b)/2 b* = c/2 Origin at x,x,0

Symmetry of Special Projections

Along [0,0,1] p,4mm a* = (a - b)/2 b* = (a + b)/2 Origin at 0,1/2,z
Origin on $4\overline{c}c$

Asymmetric unit

$$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad y \leq 1/2 - x$$

Symmetry Operations

For $(0,0,0) +$ set

(1) 1

(2) 2 $ 0,0,z$

(3) $4^* \cdot 0,0,z$

(4) $4^- \cdot 0,0,z$

(5) a $(1/2,0,0)$ $x,1/4,z$

(6) b $(0,1/2,0)$ $1/4,y,z$

(7) $m' \cdot x+1/2, x,z$

(8) $g' (1/2,1/2,0)$ x,x,z

For $(1/2,1/2,1/2)' +$ set

(1) $t' (1/2,1/2,1/2)$

(2) $2' (0,0,1/2)$ $1/4,1/4,z$

(3) $4^* (0,0,1/2)$ $0,1/2,z$

(4) $4^- (0,0,1/2)$ $1/2,0,z$

(5) $c' (0,0,1/2) \cdot x,0,z$

(6) $c' (0,0,1/2) \cdot 0,y,z$

(7) $c (0,0,1/2) \cdot \bar{x},z$

(8) $c (0,0,1/2) \cdot x,z$

108.8.899 - 1 - 1791
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Mult.</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>d 1</td>
<td>(0,0,0) + (1/2,1/2,1/2)′ +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x′,y,z [u′,v′,w′]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y′,x,z [v′,u′,w′]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z [u′,v′,w′]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x+1/2,y+1/2,z [u′,v′,w′]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y′+1/2,x′+1/2,z [v′,u′,w′]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y+1/2,x′+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>c ′</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x′,x+1/2,z [u′,u′,w′]</td>
</tr>
<tr>
<td>4</td>
<td>b ′</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a ′</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_2 \cdot 4m′m′ \)

\[\mathbf{a}^* = \mathbf{a} - \mathbf{b}/2 \quad \mathbf{b}^* = \mathbf{a} + \mathbf{b}/2 \]

Origin at 0,1/2,z

Along [1,0,0] \(p_{2\alpha} \cdot 1m1 \)

\[\mathbf{a}^* = \mathbf{b}/2 \quad \mathbf{b}^* = \mathbf{c}/2 \]

Origin at x,1/4,0

Along [1,1,0] \(p_{2\alpha} \cdot 1m1 \)

\[\mathbf{a}^* = -(\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c}/2 \]

Origin at x,x,0
Origin on 4cc

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad y \leq 1/2 - x \]

Symmetry Operations

For \((0,0,0) + \) set

1. \(\mathbf{1}\)

 \[(1) \mathbf{1} \quad (1|0,0,0)\]

2. \(\mathbf{2}\)

 \[(2) \mathbf{2} \quad 0,0,z \quad (2z|0,0,0)\]

3. \(\mathbf{4}^+\)

 \[(3) \mathbf{4}^+ \quad 0,0,z \quad (4z|0,0,0)\]

4. \(\mathbf{4}^-\)

 \[(4) \mathbf{4}^- \quad 0,0,z \quad (4z^{-1}|0,0,0)\]

\[(5) \mathbf{a}' \quad (1/2,0,0) \quad x,1/4,z\]

\[(m_y|1/2,1/2,0)'\]

\[(6) \mathbf{b}' \quad (0,1/2,0) \quad 1/4,y,z\]

\[(m_x|1/2,1/2,0)'\]

\[(7) \mathbf{m}' \quad x+1/2,x,z\]

\[(m_x|1/2,1/2,0)'\]

\[(8) \mathbf{g}' \quad (1/2,1/2,0) \quad x,x,z\]

\[(m_{xy}|1/2,1/2,0)'\]

For \((1/2,1/2,1/2)' + \) set

1. \(\mathbf{1}'\)

 \[(1) \mathbf{1}' \quad (1/2,1/2,1/2)\]

\[(1|1/2,1/2,1/2)'\]

\[(5) \mathbf{c} \quad (0,0,1/2) \quad x,0,z\]

\[(m_y|0,0,1/2)\]

\[(6) \mathbf{c} \quad (0,0,1/2) \quad 0,y,z\]

\[(m_x|0,0,1/2)\]

\[(7) \mathbf{c} \quad (0,0,1/2) \quad x,x,z\]

\[(m_{xy}|0,0,1/2)\]

\[(8) \mathbf{c} \quad (0,0,1/2) \quad x,x,z\]

\[(m_{xy}|0,0,1/2)\]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>d</td>
<td>1</td>
<td>(0,0,0) + (1/2,1/2,1/2)’ +</td>
</tr>
<tr>
<td>8</td>
<td>c</td>
<td>m'</td>
<td>x,x+1/2,z [u,u,w] x,x+1/2,z [u,u,w] x+1/2,x,z [u,u,w] x+1/2,x,z [u,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>m’ m’</td>
<td>1/2,0,z [0,0,w] 0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4</td>
<td>0,0,z [0,0,w] 1/2,1/2,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p_4m'</th>
<th>4m'm'</th>
<th>Along [1,0,0]</th>
<th>p1m'1</th>
<th>Along [1,1,0]</th>
<th>p2v-1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (a - b)/2</td>
<td>b* = (a + b)/2</td>
<td>a* = b/2 b* = c/2</td>
<td>a* = (a + b)/2 b* = c/2</td>
<td>a* = (-a + b)/2 b* = c/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,0,0
Origin at x,x,0
Origin on 2mm on 2m1

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0) +$ set

1. 1
2. $2 \quad 0,0,z$

 (2) $2 \quad 0,0,0$

3. $4^+ \quad (0,0,1/4) \quad -1/4,1/4,z$

 (4) $4^+ \quad (0,0,1/4) \quad 1/4,1/4,z$

 (4) $4^+ \quad (0,0,1/4) \quad 1/4,1/4,z$

5. $m \quad x,0,z$

 (m) $x,0,0,0$

6. $m \quad 0,y,z$

 (m) $0,0,0,0$

7. $d \quad (-1/4,1/4,1/4) \quad x+1/4,x,z$

 (d) $d \quad (1/4,1/4,1/4) \quad x-1/4,x,z$

8. $d \quad (1/4,1/4,1/4) \quad x,1/4,x,z$

 (d) $d \quad (1/4,1/4,1/4) \quad x,1/4,x,z$

For $(1/2,1,2,1/2) +$ set

1. $t \quad (1/2,1/2,1/2)$

 (1) $t \quad 1/2,1/2,1/2$

2. $2 \quad (0,0,1/2) \quad 1/4,1/4,z$

 (2) $2 \quad (0,0,1/2) \quad 1/2,1/2,1/2$

3. $4^+ \quad (0,0,3/4) \quad 1/4,1/4,z$

 (3) $4^+ \quad (0,0,3/4) \quad 1/2,0,3/4$

4. $4^+ \quad (0,0,3/4) \quad 1/4,-1/4,z$

 (4) $4^+ \quad (0,0,3/4) \quad 1/4,-1/4,z$

5. $n \quad (1/2,0,1/2) \quad x,1/4,z$

 (m) $x,1/2,1/2,1/2$

6. $n \quad (0,1/2,1/2) \quad 1/4,y,z$

 (m) $0,1/2,1/2,1/2$

7. $d \quad (1/4,-1/4,3/4) \quad x+1/4,x,z$

 (d) $d \quad (1/4,-1/4,3/4) \quad x+1/4,x,z$

8. $d \quad (1/4,1/4,3/4) \quad x+1/4,x,z$

 (d) $d \quad (1/4,1/4,3/4) \quad x+1/4,x,z$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>c</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) y,x+1/2,z+1/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) y,x+1/2,z+1/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) y,x+1/2,z+1/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) y,x+1/2,z+1/4 [v,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm Along [1,0,0] c1m11' Along [1,1,0] c_p1m1
a* = (a - b)/2 b* = (a + b)/2 a* = b b* = c a* = (-a + b)/2 b* = c/2
Origin at 1/4,1/4,z Origin at x,0,0 Origin at x,x,0
Origin on 2mm1' on 2m11'

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

For \((0,0,0) + \text{set}\):

1. \(1\)
2. \(2\) 0,0,z
 \((2_z)0,0,0\)
3. \(4^+ (0,0,1/4) -1/4,1/4,z \)
 \((4_z)0,1/2,1/4\)
4. \(4^- (0,0,1/4) 1/4,1/4,z \)
 \((4_z^{-1})0,1/2,1/4\)

For \((1/2,1/2,1/2) + \text{set}\):

1. \(t\) \((1/2,1/2,1/2)\)
2. \(2\) \((0,0,1/4) 1/4,1/4,z \)
 \((2_z)1/2,1/2,1/2\)
3. \(4^+ (0,0,3/4) 1/4,1/4,z \)
 \((4_z)1/2,0,3/4\)
4. \(4^- (0,0,3/4) 1/4,-1/4,z \)
 \((4_z^{-1})1/2,0,3/4\)

109.2.902 - 1 - 1797
Continued

For (0,0,0) + set

(1) 1' (0,0,0)'
 (2) 2' 0,0,z
 (2_1' 0,0,0)'
 (3) 4* (0,0,1/4) -1/4,1/4,z
 (4_2' 0,1/2,1/4)'
(5) m' x,0,z
 (m_x 0,0,0)'
(6) m' 0,y,z
 (m_y 0,0,0)'
(7) d' (-1/4,1/4,1/4) x+1/4,x,z
 (m_{xy} 0,1/2,1/4)'
(8) d' (1/4,1/4,1/4) x-1/4,x,z
 (m_{xy} 0,1/2,1/4)'

For (1/2,1/2,1/2) + set

(1) t' (1/2,1/2,1/2) (1/2,1/2,1/2)'
 (2) 2' (0,0,1/2) 1/4,1/4,z
 (2_2' 1/2,1/2,1/2)'
 (3) 4* (0,0,3/4) 1/4,1/4,z
 (4_2' 1/2,0,3/4)'
(5) n' (1/2,0,1/2) x,1/4,z
 (m_x 1/2,1/2,1/2)'
(6) n' (0,1/2,1/2) 1/4,y,z
 (m_y 1/2,1/2,1/2)'
(7) d' (1/4,-1/4,3/4) x+1/4,x,z
 (m_{xy} 1/2,0,3/4)'
(8) d' (1/4,1/4,3/4) x+1/4,x,z
 (m_{xy} 1/2,0,3/4)'

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); 1'.

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Mult.</th>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
</table>
| 16 | x,y,z [0,0,0] | (0,0,0) + (1/2,1/2,1/2) + (0,0,0)' + (1/2,1/2,1/2)'
| | x,y,z [0,0,0] | (1) x,y,z [0,0,0] |
| | x,y,z [0,0,0] | (2) x,y,z [0,0,0] |
| | x,y,z [0,0,0] | (3) y,x+1/2,z+1/4 [0,0,0] |
| | x,y,z [0,0,0] | (4) y,x+1/2,z+1/4 [0,0,0] |
| | x,y,z [0,0,0] | (5) x,y,z [0,0,0] |
| | x,y,z [0,0,0] | (6) x,y,z [0,0,0] |
| | x,y,z [0,0,0] | (7) y,x+1/2,z+1/4 [0,0,0] |
| | y,x+1/2,z+1/4 [0,0,0] | (8) y,x+1/2,z+1/4 [0,0,0] |
| 8 | 0,y,z [0,0,0] | 0,y,z [0,0,0] |
| | 0,y,z [0,0,0] | (0,0,0) + (1/2,1/2,1/2) + (0,0,0)' + (1/2,1/2,1/2)'
| | 0,y,z [0,0,0] | (2) x,y,z [0,0,0] |
| | 0,y,z [0,0,0] | (3) y,x+1/2,z+1/4 [0,0,0] |
| | 0,y,z [0,0,0] | (4) y,x+1/2,z+1/4 [0,0,0] |
| | 0,y,z [0,0,0] | (5) x,y,z [0,0,0] |
| | 0,y,z [0,0,0] | (6) x,y,z [0,0,0] |
| | 0,y,z [0,0,0] | (7) y,x+1/2,z+1/4 [0,0,0] |
| | 0,y,z [0,0,0] | (8) y,x+1/2,z+1/4 [0,0,0] |
| 4 | 0,0,z [0,0,0] | 0,1/2,z+1/4 [0,0,0] |
| | 0,0,z [0,0,0] | (0,0,0) + (1/2,1/2,1/2) + (0,0,0)' + (1/2,1/2,1/2)'

Symmetry of Special Projections

Along [0,0,1] p4gm1'

a* = (a - b)/2
b* = (a + b)/2

Origin at 1/4,1/4,z

Along [1,0,0] c1m11'

a* = b
b* = c

Origin at x,0,0

Along [1,1,0] c1m11'

a* = (-a + b)/2
b* = c/2

Origin at x,x,0
Origin on 2m'm' on 2m'1

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

For \((0,0,0) + \) set

1. \((1)\) 1
 - \((1') 0,0,0\)
2. \((2)\) \(0,0,z\)
 - \((2') 0,0,0\)
3. \((3)\) \(4^+ (0,0,1/4) -1/4,1/4,z\)
 - \((3') 4^+ (0,0,1/4) 1/4,1/4,z\)
4. \((4)\) \((0,0,1/4) 0,1/2,1/4'\)
 - \((4') 0,1/2,1/4'\)

For \((1/2,1/2,1/2) + \) set

1. \((1)\) \(t(1/2,1/2,1/2)\)
 - \((1') 1/2,1/2,1/2\)
2. \((2)\) \((0,0,1/2) 1/4,1/4,z\)
 - \((2') 1/2,1/2,1/2\)
3. \((3)\) \(4^+ (0,0,3/4) 1/4,1/4,z\)
 - \((3') 4^+ (0,0,3/4) 1/2,0,3/4'\)
4. \((4)\) \((0,0,3/4) 0,1/2,1/4'\)
 - \((4') 0,1/2,1/4'\)

109.3.903 - 1 - 1799
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions
Multiplicities, Wyckoff letter, Site Symmetry, Coordinates.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>c</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) x,y,z [u,v,w]</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p4'gm'
 \(a^* = (a - b)/2\) \(b^* = (a + b)/2\)
 Origin at 1/4,1/4,z

- Along [1,0,0] c1m'1
 \(a^* = b\) \(b^* = c\)
 Origin at x,0,0

- Along [1,1,0] c\(_p\)1m'1
 \(a^* = (-a + b)/2\) \(b^* = c/2\)
 Origin at x,x,0
Origin on 2mm on 2m1

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2} \]

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\) \(0,0,0\)
2. \(2\) \(0,0,z\) \(2z,0,0,0\)
3. \(4'\) \(0,0,1/4\) \(-1/4,1/4,z\) \(4z,0,1/2,1/4\)
4. \(4\) \(0,0,1/4\) \(1/4,1/4,z\) \(4z^{-1},0,1/2,1/4\)

(5) \(m\) \(x,0,z\) \(m_x,0,0,0\)
(6) \(m\) \(0,y,z\) \(m_y,0,0,0\)
(7) \(d'\) \((-1/4,1/4,1/4)\) \(x+1/4,x,z\) \(m_x,0,1/2,1/4\)
(8) \(d'\) \((1/4,1/4,1/4)\) \(x-1/4,x,z\) \(m_x,0,1/2,1/4\)

For \((1/2,1/2,1/2)\) + set

1. \(t\) \((1/2,1/2,1/2)\)
2. \(2\) \((0,0,1/2)\) \(1/4,1/4,z\) \(2z,1/2,1/2,1/2\)
3. \(4'\) \((0,0,3/4)\) \(1/4,1/4,z\) \(4z,1/2,0,3/4\)
4. \(4\) \((0,0,3/4)\) \(1/4,-1/4,z\) \(4z^{-1},1/2,0,3/4\)

(5) \(n\) \((1/2,0,1/2)\) \(x,1/4,z\) \(m_x,1/2,1/2,1/2\)
(6) \(n\) \((0,1/2,1/2)\) \(1/4,y,z\) \(m_y,1/2,1/2,1/2\)
(7) \(d'\) \((1/4,-1/4,3/4)\) \(x+1/4,x,z\) \(m_x,1/2,0,3/4\)
(8) \(d'\) \((1/4,1/4,3/4)\) \(x+1/4,x,z\) \(m_x,1/2,0,3/4\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

\[(0,0,0) + (1/2,1/2,1/2) + \]

16 c 1 (1) x,y,z [u,v,w] (2) \(\bar{x},y,z [\bar{u},\bar{v},\bar{w}] \)

(3) \(y,x+1/2,z+1/4 [v,\bar{u},\bar{w}] \) (4) y,\(x+1/2,z+1/4 [\bar{v},u,\bar{w}] \)

(5) x,\(y,z [u,v,w] \) (6) \(x,y,z [u,\bar{v},\bar{w}] \)

(7) \(y,x+1/2,z+1/4 [\bar{v},u,w] \) (8) \(y,x+1/2,z+1/4 [v,u,w] \)

8 b .m. 0,y,z [u,0,0] 0,y,1/2,z+1/4 [0,u,0]

4 a 2mm. 0,0,z [0,0,0] 0,1/2,z+1/4 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along</th>
<th>p4'g'm</th>
<th>c1m11'</th>
<th>c1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>(a^* = (a - b)/2) (b^* = (a + b)/2)</td>
<td>(a^* = b) (b^* = c)</td>
<td>(a^* = (a + b)/2) (b^* = c/2)</td>
</tr>
<tr>
<td>Origin at 1/4,1/4,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
I4, m’d’

4m’m’

109.5.905

Tetragonal

Origin on 2m’m’ on 2m’1

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1) 0,0,0

(2) 2 0,0,z
(2) 0,0,0

(3) 4’ (0,0,1/4) -1/4,1/4,z
(4,z,0,1/2,1/4)

(4) 4’ (0,0,1/4) 1/4,1/4,z
(4,z,1/2,1/4)

(5) m’ x,0,z
(5 m’ x,0,0,0)

(6) m’ 0,y,z
(6 m’ 0,0,0)

(7) d’ (-1/4,1/4,1/4) x+1/4,x,z
(m,0,1/2,1/4)

(8) d’ (1/4,1/4,1/4) x+1/4,x,z
(m,0,1/2,1/4)

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2,1/2)
(1/2,1/2,1/2,1/2)

(2) 2 (0,0,1/2) 1/4,1/4,z
(2) 1/2,1/2,1/2,1/2

(3) 4’ (0,0,3/4) 1/4,1/4,z
(4,z,1/2,0,3/4)

(4) 4’ (0,0,3/4) 1/4,-1/4,z
(4,z,1/2,0,3/4)

(5) n’ (1/2,0,1/2) x,1/4,z
(5 m,1/2,1/2,1/2)

(6) n’ (0,1/2,1/2) 1/4,y,z
(6 m,1/2,1/2,1/2)

(7) d’ (1/4,-1/4,3/4) x+1/4,x,z
(m,1/2,0,3/4)

(8) d’ (1/4,1/4,3/4) x+1/4,x,z
(m,1/2,0,3/4)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
</tbody>
</table>

Coordinates

(0,0,0) + (1/2,1/2,1/2) +

Symmetry of Special Projections

Along [0,0,1] p4g'm'

<table>
<thead>
<tr>
<th>a* = (a - b)/2</th>
<th>b* = (a + b)/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin at 1/4,1/4,z</td>
<td>Origin at x,0,0</td>
</tr>
</tbody>
</table>

Along [1,0,0] c1m'1

<table>
<thead>
<tr>
<th>a* = b</th>
<th>b* = c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>

Along [1,1,0] c1m'1

<table>
<thead>
<tr>
<th>a* = -(a + b)/2</th>
<th>b* = c/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Origin on 2c1

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

For \((0,0,0) + \text{ set}\):

1. \((0,0,0)\)
2. \(0,0,z\)
3. \(0,1/2,1/4\)
4. \(0,1/4,1/4,1/4\)
5. \(0,1/2,0\)
6. \(0,1/2,1/2\)
7. \(0,1/4,1/4\)
8. \(0,1/4,1/4,1/4\)
9. \(0,1/2,0\)
10. \(0,1/2,1/2\)

For \((1/2,1/2,1/2) + \text{ set}\):

1. \((1/2,1/2,1/2)\)
2. \(1/4,1/4,1/4\)
3. \(1/4,1/4,1/4\)
4. \(1/2,0,1/2\)
5. \(1/2,1/2,0\)
6. \(1/2,1/2,1/2\)
7. \(1/4,1/4,1/4\)
8. \(1/4,1/4,1/4\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

Continued

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>b</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1/2,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x+1/2,z+3/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x+1/2,z+3/4 [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm
Along [1,0,0] p2b1m1
Along [1,1,0] c1m1

a* = (a - b)/2 b* = (a + b)/2
a* = b/2 b* = c/2
a* = (-a + b)/2 b* = c/2

Origin at 1/4,1/4,z
Origin at x,0,0
Origin at x,x,0
Symmetry Operations

Origin on 2c11'

Asymmetric unit
$0 \leq x < 1/2$; $0 \leq y < 1/2$; $0 \leq z < 1/4$

For $(0,0,0)$ + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
<td></td>
</tr>
<tr>
<td>(1) 0,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) 2</td>
<td>0,0,z</td>
</tr>
<tr>
<td>(2) 0,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) 4⁺</td>
<td>(0,0,1/4) -1/4,1/4,z</td>
</tr>
<tr>
<td>(4) 4⁺</td>
<td>(0,0,1/4) 1/4,1/4,z</td>
</tr>
</tbody>
</table>

For $(1/2,1/2,1/2)$ + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t</td>
<td>(1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(1) 1/2,1/2,1/2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) 2</td>
<td>(0,0,1/2) 1/4,1/4,z</td>
</tr>
<tr>
<td>(2) 1/2,1/2,1/2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) 4⁺</td>
<td>(0,0,3/4) 1/4,1/4,z</td>
</tr>
<tr>
<td>(4) 4⁺</td>
<td>(0,0,3/4) 1/4,-1/4,z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5) a</td>
<td>(1/2,0,0) x,1/4,z</td>
</tr>
<tr>
<td>(5) 1/2,1/2,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6) b</td>
<td>(0,1/2,0) 1/4,y,z</td>
</tr>
<tr>
<td>(6) 1/2,1/2,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7) d</td>
<td>(1/4,-1/4,1/4) x+1/4,x,z</td>
</tr>
<tr>
<td>(8) d</td>
<td>(1/4,1/4,1/4) x+1/4,x,z</td>
</tr>
</tbody>
</table>

For $(0,0,1/4)$ + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
<td></td>
</tr>
<tr>
<td>(1) 0,0,1/4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) 2</td>
<td>0,0,z</td>
</tr>
<tr>
<td>(2) 0,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) 4⁺</td>
<td>(0,0,1/4) -1/4,1/4,z</td>
</tr>
<tr>
<td>(4) 4⁺</td>
<td>(0,0,1/4) 1/4,1/4,z</td>
</tr>
</tbody>
</table>

For $(1/2,0,1/2)$ + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t</td>
<td>(1/2,0,1/2)</td>
</tr>
<tr>
<td>(1) 1/2,0,1/2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) 2</td>
<td>(0,0,1/2) 1/4,1/4,z</td>
</tr>
<tr>
<td>(2) 1/2,0,1/2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) 4⁺</td>
<td>(0,0,3/4) 1/4,1/4,z</td>
</tr>
<tr>
<td>(4) 4⁺</td>
<td>(0,0,3/4) 1/4,-1/4,z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5) a</td>
<td>(1/2,1/2,0) x,1/4,z</td>
</tr>
<tr>
<td>(5) 1/2,1/2,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6) b</td>
<td>(0,1/2,0) 1/4,y,z</td>
</tr>
<tr>
<td>(6) 1/2,1/2,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7) d</td>
<td>(1/4,-1/4,1/4) x+1/4,x,z</td>
</tr>
<tr>
<td>(8) d</td>
<td>(1/4,1/4,1/4) x+1/4,x,z</td>
</tr>
</tbody>
</table>

For $(1/2,1/2,0)$ + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t</td>
<td>(1/2,1/2,0)</td>
</tr>
<tr>
<td>(1) 1/2,1/2,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) 2</td>
<td>(0,0,1/2) 1/4,1/4,z</td>
</tr>
<tr>
<td>(2) 1/2,1/2,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) 4⁺</td>
<td>(0,0,3/4) 1/4,1/4,z</td>
</tr>
<tr>
<td>(4) 4⁺</td>
<td>(0,0,3/4) 1/4,-1/4,z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5) a</td>
<td>(1/2,1/2,0) x,1/4,z</td>
</tr>
<tr>
<td>(5) 1/2,1/2,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6) b</td>
<td>(0,1/2,0) 1/4,y,z</td>
</tr>
<tr>
<td>(6) 1/2,1/2,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7) d</td>
<td>(1/4,-1/4,1/4) x+1/4,x,z</td>
</tr>
<tr>
<td>(8) d</td>
<td>(1/4,1/4,1/4) x+1/4,x,z</td>
</tr>
</tbody>
</table>
Continued

For (0,0,0)'+ set

(1) 1' 0,0,0' (2) 2' 0,0,z (3) 4' (0,0,1/4) 1/4,1/4,z (4) 4' (0,0,1/4) 1/4,1/4,z
 (1) 0,0,0' (2) 0,0,0' (3) 0,0,1/4 (4) 0,0,1/4

(5) c' (0,0,1/2) x,0,z (m|0,0,1/2)' (6) c' (0,0,1/2) 0,y,z (7) d' (-1/4,1/4,3/4) x+1/4,x,z
 (m|0,0,1/2)' (8) d' (1/4,1/4,3/4) x-1/4,x,z (m|0,0,1/2) + (1/2,1/2,1/2) +
 (m|0,0,1/2) (m|1/2,1/2,1/2) + (m|1/2,1/2,1/2)'

For (1/2,1/2,1/2)'+ set

(1) t' (1/2,1/2,1/2) (2) 2' (0,0,1/2) 1/4,1/4,z (3) 4' (0,0,3/4) 1/4,1/4,z (4) 4' (0,0,3/4) 1/4,-1/4,z
 (1) 1/2,1/2,1/2' (2) 1/2,1/2,1/2' (3) 1/2,0,3/4 (4) 1/2,0,3/4

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); 1'.

Positions

Multiplicity
Wyckoff letter
Site Symmetry

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2) + (0,0,0)' + (1/2,1/2,1/2)'+</td>
<td></td>
</tr>
<tr>
<td>16 b 11'</td>
<td>(1) x,y,z [0,0,0] (2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x+1/2,z+1/4 [0,0,0] (4) y,x+1/2,z+1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [0,0,0] (6) x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x+1/2,z+3/4 [0,0,0] (8) y,x+1/2,z+3/4 [0,0,0]</td>
</tr>
<tr>
<td>8 a 2..1'</td>
<td>0,0,z [0,0,0] 0,1/2,z+1/4 [0,0,0] 0,0,z+1/2 [0,0,0] 0,1/2,z+3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm1' Along [1,0,0] p1m11' Along [1,1,0] c1m11'
\[
a^* = (a - b)/2 \quad b^* = (a + b)/2
\]
Origin at 1/4,1/4,z \[
a^* = b/2 \quad b^* = c/2
\]
Origin at x,0,0 \[
a^* = (-a + b)/2 \quad b^* = c/2
\]
Origin at x,x,0
I4₁' c'd

110.3.908

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1) |0,0,0|

(2) t (0,0,1/2) 0,0,z
 (2) |0,0,1/2|

(3) 4⁺ (0,0,1/4) -1/4,1/4,z
 (3) |0,1/2,1/4|

(4) 4⁻ (0,0,1/4) 1/4,1/4,z
 (4) |1/2,1/4|

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2) 1/4,1/4,z
 (1) |1/2,1/2,1/2|

(2) 2 (0,0,1/2) 1/4,1/4,z
 (2) |1/2,1/2,1/2|

(3) 4⁺ (0,0,3/4) 1/4,1/4,z
 (3) |1/2,0,3/4|

(4) 4⁻ (0,0,3/4) 1/4,-1/4,z
 (4) |1/2,0,3/4|

(5) a' (1/2,0,0) x,1/4,z
 (5) |1/2,1/2,0|

(6) b' (0,1/2,0) 1/4,y,z
 (6) |1/2,1/2,0|

(7) d (1/4,-1/4,1/4) x+1/4,z
 (7) |1/2,0,1/4|

(8) d (1/4,1/4,1/4) x+1/4,z
 (8) |1/2,0,1/4|
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16</td>
<td>b 1</td>
</tr>
<tr>
<td>(1) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(2) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(3) y,x+1/2,z+1/4</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(4) y,x+1/2,z+1/4</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(5) x,y,z+1/2</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(6) x,y,z+1/2</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(7) y,x+1/2,z+3/4</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(8) y,x+1/2,z+3/4</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>a 2..</td>
</tr>
<tr>
<td>0,0,z</td>
<td>[0,0,w]</td>
</tr>
<tr>
<td>0,1/2,z+1/4</td>
<td>[0,0,w]</td>
</tr>
<tr>
<td>0,0,z+1/2</td>
<td>[0,0,w]</td>
</tr>
<tr>
<td>0,1/2,z+3/4</td>
<td>[0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'gm'
Along [1,0,0] p1m'1
Along [1,1,0] c1m'1

\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]

Origin at 1/4,1/4,z
Origin at x,0,0
Origin at x,x,0
Origin on 2c1

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(1| 0,0,0)

(2) 2 0,0,z
(2z| 0,0,0)

(3) 4' (0,0,1/4) -1/4,1/4,z
(4z| 0,1/2,1/4')

(4) 4' (0,0,1/4) 1/4,1/4,z
(4z| 0,1/2,1/4')

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(1| 1/2,1/2,1/2)

(2) 2 (0,0,1/2) 1/4,1/4,z
(2z| 1/2,1/2,1/2)

(3) 4' (0,0,3/4) 1/4,1/4,z
(4z| 1/2,0,3/4')

(4) 4' (0,0,3/4) 1/4,-1/4,z
(4z| 1/2,0,3/4')

For (1/2,1,2,1/2) + set

(5) a (1/2,0,0) x,1/4,z
(my| 1/2,1,2,0)

(6) b (0,1/2,0) 1/4,y,z
(mx| 1/2,1,2,0)

(7) d' (1/4,-1/4,1/4) x+1/4,z
(mx| 1/2,0,1/4')

(8) d' (1/4,1/4,1/4) x+1/4,z
(mx| 1/2,0,1/4')
Continued

110.4.909

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 b 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x+1/2,z+1/4 [v,u,w]</td>
<td>(4) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [v,u,w]</td>
<td>(6) x,y,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x+1/2,z+3/4 [v,u,w]</td>
<td>(8) y,x+1/2,z+3/4 [v,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1] p4'g'm</td>
</tr>
<tr>
<td>a* = (a - b)/2 b* = (a + b)/2</td>
</tr>
<tr>
<td>Origin at 1/4,1/4,z</td>
</tr>
</tbody>
</table>

| Along [1,0,0] p2b*1m'1 |
| a* = b/2 b* = c/2 |
| Origin at x,0,0 |

| Along [1,1,0] c1m'1 |
| a* = (-a + b)/2 b* = c/2 |
| Origin at x,x,0 |

Symmetry of Special Projections

| Along [0,1,0] p4'g'm |
| a* = (a - b)/2 b* = (a + b)/2 |
| Origin at 1/4,1/4,z |

| Along [1,0,0] p2b*1m'1 |
| a* = b/2 b* = c/2 |
| Origin at x,0,0 |

| Along [1,1,0] c1m'1 |
| a* = (-a + b)/2 b* = c/2 |
| Origin at x,x,0 |
Origin on 2c'1

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{4} \]

Symmetry Operations

For \((0,0,0) +\) set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \quad 0,0,z \\
(3) & \quad 4^+ \ (0,0,1/4) -1/4,1/4,z \\
(4) & \quad 4^- \ (0,0,1/4) 1/4,1/4,z
\end{align*}
\]

\[
\begin{align*}
(1^*) & \quad 0,0,0 \\
(2^*) & \quad 0,0,0 \\
(3^*) & \quad 4^+ \ * (0,0,1/4) -1/4,1/4,z \\
(4^*) & \quad 4^- \ * (0,0,1/4) 1/4,1/4,z
\end{align*}
\]

\[
\begin{align*}
(5) & \quad c' \ (0,0,1/2) \ x,0,z \\
(6) & \quad c' \ (0,0,1/2) \ 0,y,z \\
(7) & \quad d' \ * (-1/4,1/4,3/4) \ x+1/4,x,z \\
(8) & \quad d' \ (1/4,1/4,3/4) \ x-1/4,x,z
\end{align*}
\]

\[
\begin{align*}
(5^*) & \quad m_y \ (0,0,1/2)' \\
(6^*) & \quad m_y \ (0,0,1/2)' \\
(7^*) & \quad m_y \ (0,1/2,3/4)' \\
(8^*) & \quad m_y \ (0,1/2,3/4)'
\end{align*}
\]

For \((1/2,1/2,1/2) +\) set

\[
\begin{align*}
(1) & \quad t \ (1/2,1/2,1/2) \\
(2) & \quad 2 \ (0,0,1/2) \ 1/4,1/4,z \\
(3) & \quad 4^+ \ * (0,0,3/4) 1/4,1/4,z \\
(4) & \quad 4^- \ * (0,0,3/4) 1/4,-1/4,z
\end{align*}
\]

\[
\begin{align*}
(1^*) & \quad 1/2,1/2,1/2 \\
(2^*) & \quad 1/2,1/2,1/2 \\
(3^*) & \quad 4^+ \ * (0,0,3/4) 1/4,1/4,z \\
(4^*) & \quad 4^- \ * (0,0,3/4) 1/4,-1/4,z
\end{align*}
\]

\[
\begin{align*}
(5) & \quad a' \ (1/2,0,0) \ x,1/4,z \\
(6) & \quad b' \ (0,1/2,0) \ 1/4,y,z \\
(7) & \quad d' \ * (1/4,-1/4,1/4) \ x+1/4,x,z \\
(8) & \quad d' \ (1/4,1/4,1/4) \ x+1/4,x,z
\end{align*}
\]

\[
\begin{align*}
(5^*) & \quad m_y \ (1/2,1/2,0)' \\
(6^*) & \quad m_y \ (1/2,1/2,0)' \\
(7^*) & \quad m_y \ (1/2,0,1/4)' \\
(8^*) & \quad m_y \ (1/2,0,1/4)'
\end{align*}
\]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>b</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x+1/2,z+3/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x+1/2,z+3/4 [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>a</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z+1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,z+3/4 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm'

\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]

Origin at 1/4,1/4,z

Along [1,0,0] p1m'1

\[a^* = b/2 \quad b^* = c/2 \]

Origin at x,0,0

Along [1,1,0] c1m'1

\[a^* = -(a + b)/2 \quad b^* = c/2 \]

Origin at x,x,0
Origin on $\bar{4}2m$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y$

Symmetry Operations

1. 1

2. $2 \cdot 0,0,z$

3. $\bar{4} \cdot 0,0,0$

4. $\bar{4} \cdot 0,0,0$

5. $2 \cdot 0,y,0$

6. $2 \cdot x,0,0$

7. $m \cdot x,x,z$

8. $m \cdot x,x,z$

$P\bar{4}2m$

$\bar{4}2m$

Tetragonal
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>o</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>n</td>
<td>..m</td>
</tr>
<tr>
<td>4</td>
<td>m</td>
<td>2..</td>
</tr>
<tr>
<td>4</td>
<td>l</td>
<td>.2</td>
</tr>
<tr>
<td>4</td>
<td>k</td>
<td>.2</td>
</tr>
<tr>
<td>4</td>
<td>j</td>
<td>.2</td>
</tr>
<tr>
<td>4</td>
<td>i</td>
<td>.2</td>
</tr>
<tr>
<td>2</td>
<td>h</td>
<td>2.mm</td>
</tr>
<tr>
<td>2</td>
<td>g</td>
<td>2.mm</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>222</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>222</td>
</tr>
<tr>
<td>1</td>
<td>d</td>
<td>42m</td>
</tr>
<tr>
<td>1</td>
<td>c</td>
<td>42m</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>42m</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>42m</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) x,y,z [u,v,w]</th>
<th>(3) x,y,z [v,u,w]</th>
<th>(4) x,y,z [v,u,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
<td>(7) x,y,z [v,u,w]</td>
<td>(8) x,y,z [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1]
p4mm'
a* = a
b* = b
Origin at 0,0,z

Along [1,0,0]
p2m'm'
a* = b
b* = c
Origin at x,0,0

Along [1,1,0]
p1m11'
a* = -(a + b)/2
b* = c
Origin at x,x,0
Origin on $\overline{4}2m1'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y$

Symmetry Operations

For 1 + set

1. 1
 \((1|0,0,0)\)
 \((1|0,0,0)\)

2. 2 \(0,0,z\)
 \((2_z|0,0,0)\)

3. $\overline{4}^+ \quad 0,0,z; 0,0,0$
 \((4_z|0,0,0)\)

4. $\overline{4}^- \quad 0,0,z; 0,0,0$
 \((4_z^{-1}|0,0,0)\)

For 1' + set

1'. $1'$
 \((1|0,0,0)'\)

2'. $2' \quad 0,0,z$
 \((2_z|0,0,0)'\)

3'. $\overline{4}^+ ' \quad 0,0,z; 0,0,0$
 \((4_z|0,0,0)'\)

4'. $\overline{4}^- ' \quad 0,0,z; 0,0,0$
 \((4_z^{-1}|0,0,0)'\)
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\cdot)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>1+</th>
<th>(\cdot) 1' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x,y,z [0,0,0])</td>
<td>(8)</td>
<td>y,x,z [0,0,0]</td>
</tr>
<tr>
<td>(1/2,0,1/2 [0,0,0])</td>
<td>(4)</td>
<td>(y,x,z [0,0,0])</td>
</tr>
<tr>
<td>(1/2,0,z [0,0,0])</td>
<td>(6)</td>
<td>(y,x,z [0,0,0])</td>
</tr>
<tr>
<td>(0,1/2,z [0,0,0])</td>
<td>(7)</td>
<td>(y,x,z [0,0,0])</td>
</tr>
<tr>
<td>(0,0,1/2 [0,0,0])</td>
<td>(1)</td>
<td>(y,x,z [0,0,0])</td>
</tr>
<tr>
<td>(0,0,0 [0,0,0])</td>
<td>(2)</td>
<td>(y,x,z [0,0,0])</td>
</tr>
<tr>
<td>(0,0,0 [0,0,0])</td>
<td>(3)</td>
<td>(y,x,z [0,0,0])</td>
</tr>
<tr>
<td>(0,0,0 [0,0,0])</td>
<td>(5)</td>
<td>(y,x,z [0,0,0])</td>
</tr>
<tr>
<td>(0,0,0 [0,0,0])</td>
<td>(9)</td>
<td>(y,x,z [0,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along ([0,0,1])</th>
<th>p4mm1'</th>
<th>Along ([1,0,0])</th>
<th>p2mm1'</th>
<th>Along ([1,1,0])</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td></td>
<td>(a^* = a)</td>
<td></td>
<td>(a^* = (-a+b)/2)</td>
<td></td>
</tr>
<tr>
<td>(b^* = b)</td>
<td></td>
<td>(b^* = c)</td>
<td></td>
<td>(b^* = c)</td>
<td></td>
</tr>
<tr>
<td>Origin at (0,0,z)</td>
<td></td>
<td>Origin at (x,0,0)</td>
<td></td>
<td>Origin at (x,x,0)</td>
<td></td>
</tr>
</tbody>
</table>
Origin on \(\bar{4}2'm \)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y \)

Symmetry Operations

1. \(1 \)
 \((1|0,0,0)\)

2. \(2 \)
 \((2|0,0,z)\)
 \((2_z|0,0,0)\)

3. \(4' \)
 \((4|0,0,z)\)
 \((4_z|0,0,0)\)

4. \(4' \)
 \((4|0,0,z)\)
 \((4_z|0,0,0)\)

5. \(2' \)
 \((5,0,0)\)
 \((2_y|0,0,0)\)

6. \(2' \)
 \((6|x,0,0)\)
 \((2_x|0,0,0)\)

7. \(m \)
 \((7|x,x,z)\)
 \((m_{xy}|0,0,0)\)

8. \(m \)
 \((8|x,x,z)\)
 \((m_{xy}|0,0,0)\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>8</th>
<th>o</th>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) x,y,z [u,v,w]</th>
<th>(3) x,z [v,u,w]</th>
<th>(4) y,x,z [v,u,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>m</td>
<td>x,z [u,u,0]</td>
<td>x,z [u,u,0]</td>
<td>x,z [u,u,0]</td>
<td>x,z [u,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>n</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>l</td>
<td>x,1/2,0 [0,v,w]</td>
<td>x,1/2,0 [0,v,w]</td>
<td>1/2,x,0 [v,0,w]</td>
<td>1/2,x,0 [v,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>k</td>
<td>x,0,1/2 [0,v,w]</td>
<td>x,0,1/2 [0,v,w]</td>
<td>0,x,1/2 [v,0,w]</td>
<td>0,x,1/2 [v,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>j</td>
<td>x,1/2,1/2 [0,v,w]</td>
<td>x,1/2,1/2 [0,v,w]</td>
<td>1/2,x,1/2 [v,0,w]</td>
<td>1/2,x,1/2 [v,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>i</td>
<td>0,0 [v,w]</td>
<td>0,0 [v,w]</td>
<td>0,0 [v,w]</td>
<td>0,0 [v,w]</td>
</tr>
<tr>
<td>2</td>
<td>h</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>g</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>d</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>c</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Coordinates

Symmetry of Special Projections

Along [0,0,1] p4m'm'
\(a^* = a \) \(b^* = b \)
Origin at 0,0,z

Along [1,0,0] p2'm'm'
\(a^* = -c \) \(b^* = b \)
Origin at x,0,0

Along [1,1,0] p1m11'
\(a^* = (a + b)/2 \) \(b^* = c \)
Origin at x,x,0
Symmetry Operations

1. \(1 \)
 1

2. \(2 \)
 \(0,0,z \)
 \((2,0,0,0) \)

3. \(\bar{4} \)
 \(0,0,0; 0,0,0 \)
 \((\bar{4}_z|0,0,0) \)
 \((\bar{4}_z|0,0,0)' \)

4. \(\bar{m} \)
 \(x,x,z \)
 \((m_x|0,0,0) \)
 \((m_x|0,0,0)' \)

5. \(2 \)
 \(0,y,0 \)
 \((2,0,0,0) \)

6. \(2 \)
 \(x,0,0 \)
 \((2,0,0,0) \)

7. \(\bar{m} \)
 \(x,x,z \)
 \((m_x|0,0,0) \)
 \((m_x|0,0,0)' \)

8. \(\bar{m} \)
 \(x,x,z \)
 \((m_x|0,0,0) \)
 \((m_x|0,0,0)' \)
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 o</td>
<td>1</td>
<td>x,y,z [u,v,w]</td>
<td>(1)</td>
</tr>
<tr>
<td>4 n</td>
<td>.m'</td>
<td>x,x,z [u,u,w]</td>
<td>(2)</td>
</tr>
<tr>
<td>4 m</td>
<td>2.</td>
<td>1/2,0,z [0,0,w]</td>
<td>(3)</td>
</tr>
<tr>
<td>4 l</td>
<td>.2.</td>
<td>x,1/2,0 [u,0,0]</td>
<td>(4)</td>
</tr>
<tr>
<td>4 k</td>
<td>.2.</td>
<td>x,0,1/2 [u,0,0]</td>
<td>(5)</td>
</tr>
<tr>
<td>4 j</td>
<td>.2.</td>
<td>x,1/2,1/2 [u,0,0]</td>
<td>(6)</td>
</tr>
<tr>
<td>4 i</td>
<td>.2.</td>
<td>x,0,0 [u,0,0]</td>
<td>(7)</td>
</tr>
<tr>
<td>2 h</td>
<td>2.m'm'</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>(8)</td>
</tr>
<tr>
<td>2 g</td>
<td>2.m'm'</td>
<td>0,0,z [0,0,w]</td>
<td>(9)</td>
</tr>
<tr>
<td>2 f</td>
<td>222.</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>(10)</td>
</tr>
<tr>
<td>2 e</td>
<td>222.</td>
<td>1/2,0,0 [0,0,0]</td>
<td>(11)</td>
</tr>
<tr>
<td>1 d</td>
<td>4'2m'</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>(12)</td>
</tr>
<tr>
<td>1 c</td>
<td>4'2m'</td>
<td>0,0,1/2 [0,0,0]</td>
<td>(13)</td>
</tr>
<tr>
<td>1 b</td>
<td>4'2m'</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>(14)</td>
</tr>
<tr>
<td>1 a</td>
<td>4'2m'</td>
<td>0,0,0 [0,0,0]</td>
<td>(15)</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 o</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 n</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>4 m</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 l</td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4 k</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 j</td>
<td>x,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 i</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>2 h</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 g</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 f</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 e</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>1 d</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>1 c</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 b</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 a</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm Along [1,0,0] p2m'm' Along [1,1,0] p1m'1
\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \] \[\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \] \[\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c} \]
Origin at 0,0,z Origin at x,0,0 Origin at x,x,0

111.4.914 - 2 - 1822
Origin on $\overline{4}2'm'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y$

Symmetry Operations

1. 1
2. 2 0,0,z
 (2z|0,0,0)
3. $\overline{4}'$ 0,0,z; 0,0,0
 ($\overline{4}_z|0,0,0$)
4. $\overline{4}'$ 0,0,z; 0,0,0
 ($\overline{4}_z|0,0,0$)
5. $2'$ 0,y,0
 (2y|0,0,0)'
6. $2'$ x,0,0
 (2x|0,0,0)'
7. m' x,x,z
 (mxy|0,0,0)'
8. m' x,x,z
 (mxy|0,0,0)'}
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Series</th>
<th>Multiplicity</th>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>o 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>n .m'</td>
<td>x,x,z [u,u,w]</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>m 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>l .2'</td>
<td>x,1/2,0 [0,v,w]</td>
<td>x,1/2,0 [0,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>k .2'</td>
<td>x,0,1/2 [0,v,w]</td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>j .2'</td>
<td>x,1/2,1/2 [0,v,w]</td>
<td>x,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>i .2'</td>
<td>x,0,0 [0,v,w]</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>2</td>
<td>h 2.m'm'</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>g 2.m'm'</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>f 22'2'</td>
<td>1/2,0,1/2 [0,0,w]</td>
<td>0,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>e 22'2'</td>
<td>1/2,0,0 [0,0,w]</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>d 42'm'</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>c 42'm'</td>
<td>0,0,1/2 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>b 42'm'</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>a 42'm'</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'mm'
\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along [1,0,0] p2'mm'
\[\mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at x,0,0

Along [1,1,0] p1m'1
\[\mathbf{a}^* = (\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,x,0
Origin on \(\overline{4}2m \)

Asymmetric unit \(0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1; \quad x < y \)

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \quad 0,0,z \\
(3) & \quad \overline{4}^+ \quad 0,0,z; \quad 0,0,0 \\
(4) & \quad \overline{4}^+ \quad 0,0,z; \quad 0,0,0 \\
(5) & \quad 2 \quad 0,y,0 \\
(6) & \quad 2 \quad x,0,0 \\
(7) & \quad m \quad x,x,z \\
(8) & \quad m \quad x,x,z
\end{align*}
\]

\[
\begin{align*}
(1) & \quad t' \quad (0,0,1) \\
(2) & \quad 2' \quad (0,0,1) \\
(3) & \quad \overline{4}'^- \quad 0,0,z; \quad 0,0,1/2 \\
(4) & \quad \overline{4}'^- \quad 0,0,z; \quad 0,0,1/2 \\
(5) & \quad 2' \quad 0,y,1/2 \\
(6) & \quad 2' \quad x,0,1/2 \\
(7) & \quad c' \quad (0,0,1) \quad x,x,z \\
(8) & \quad c' \quad (0,0,1) \quad x,x,z
\end{align*}
\]

111.6.916 - 1 - 1825
Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[
\begin{array}{cccc}
\text{Multiplicity} & \text{Wyckoff letter} & \text{Site Symmetry} & \text{Coordinates} \\
16 & o & 1 & (1) x,y,z [u,v,w] (2) \bar{x},y,\bar{z} [\bar{u},\bar{v},\bar{w}] (3) y,x,\bar{z} [v,u,0] (4) y,\bar{x},\bar{z} [v,u,0] \\
8 & n & .m & x,x,z [u,u,0] x,x,z [u,u,0] x,x,z [u,u,0] x,x,z [u,u,0] \\
8 & m & .2. & 0,1/2,0 [0,0,w] 1/2,0,\bar{z} [0,0,w] 0,1/2,\bar{z} [0,0,w] 0,1/2,\bar{z} [0,0,w] \\
8 & l & .2. & x,1/2,0 [u,0,0] x,1/2,0 [u,0,0] 1/2,x,0 [u,0,0] 1/2,x,0 [u,0,0] \\
8 & k & .2'. & x,0,1/2 [0,v,w] \bar{x},0,1/2 [0,\bar{v},\bar{w}] 0,x,1/2 [v,0,w] 0,x,1/2 [v,0,w] \\
8 & j & .2'. & x,1/2,1/2 [0,v,w] \bar{x},1/2,1/2 [0,\bar{v},\bar{w}] 1/2,x,1/2 [v,0,w] 1/2,x,1/2 [v,0,w] \\
8 & i & .2. & x,0,0 [u,0,0] \bar{x},0,0 [\bar{u},\bar{0},\bar{0}] 0,\bar{x},0 [u,0,0] 0,\bar{x},0 [u,0,0] \\
4 & h & 2mm & 1/2,1/2,0 [0,0,0] 1/2,1/2,\bar{z} [0,0,0] 1/2,1/2,\bar{z} [0,0,0] \\
4 & g & 2mm & 0,0,z [0,0,0] 0,0,z [0,0,0] 0,0,z [0,0,0] 0,0,z [0,0,0] \\
4 & f & 22'2' & 1/2,0,1/2 [0,0,w] 0,1/2,1/2 [0,0,w] 0,1/2,1/2 [0,0,w] 0,1/2,1/2 [0,0,w] \\
4 & e & 222. & 1/2,0,0 [0,0,0] 0,1/2,0 [0,0,0] 0,1/2,0 [0,0,0] 0,1/2,0 [0,0,0] \\
2 & d & 42m & 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] \\
2 & c & 4'2m & 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] \\
2 & b & 4'2m & 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] \\
2 & a & 42m & 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] \\
\end{array}
\]

Symmetry of Special Projections

Along \([0,0,1]\) \hspace{1cm} p4mm1' \hspace{1cm} \begin{array}{c} a^* = a \\ a^* = -c \hspace{1cm} b^* = b \hspace{1cm} a^* = (a + b)/2 \hspace{1cm} b^* = c \end{array} \\
Origin at 0,0,z \hspace{1cm} Origin at x,0,0 \hspace{1cm} Origin at x,x,0

Along \([1,0,0]\) \hspace{1cm} p_{2a} 2m'm'

Along \([1,1,0]\) \hspace{1cm} p1m11'

111.6.916 - 2 - 1826
Origin on \(\bar{4}2m \)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y \)

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) \quad & 1 \\
(2) \quad & 2 \quad 0,0,z \\
(3) \quad & \bar{4}^+ \quad 0,0,z; \quad 0,0,0 \\
(4) \quad & \bar{4}^+ \quad 0,0,z; \quad 0,0,0
\end{align*}
\]

\[
\begin{align*}
(1) \quad & (0,0,0) \\
(2) \quad & (2z,0,0,0) \\
(3) \quad & (4z,0,0,0) \\
(4) \quad & (4z^{-1},0,0,0)
\end{align*}
\]

For \((1,0,0) + \) set

\[
\begin{align*}
(1) \quad & t' (1,0,0) \\
(2) \quad & 2' \quad 1/2,0,z \\
(3) \quad & \bar{4}^+ \quad 1/2,-1/2,z; \quad 1/2,-1/2,0 \\
(4) \quad & \bar{4}^- \quad 1/2,1/2,z; \quad 1/2,1/2,0
\end{align*}
\]

\[
\begin{align*}
(1) \quad & (1,0,0) \\
(2) \quad & (2z,1,0,0)' \\
(3) \quad & (4z,1,0,0)' \\
(4) \quad & (4z^{-1},1,0,0)'
\end{align*}
\]
Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>o</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x',y',z [u',v',w']</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y',x',z [v',u',w']</td>
</tr>
<tr>
<td>8</td>
<td>n</td>
<td>(5) x',y',z [u',v',w']</td>
</tr>
<tr>
<td>8</td>
<td>m</td>
<td>(6) x',y',z [u',v',w']</td>
</tr>
<tr>
<td>8</td>
<td>l</td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>(8) y',x',z [v',u',w']</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>0,1/2,z [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>x,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>0,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>1/2,1/2,2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p_{4} 4mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = a</td>
<td>b^* = b</td>
</tr>
<tr>
<td>Origin at 1/2,1/2,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = b</td>
<td>b^* = c</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = (a + b)/2</td>
<td>b^* = c</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
P_{42m}

111.8.918

$\text{P}_4\text{2}m$

111.8.918

Tetragonal

$\text{42m}1'$
Origin on \(\overline{4}2m \)

Asymmetric unit

\[
0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y
\]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & & \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\
(2) & & \begin{pmatrix} 2 \\ 0 \\ 0 \\ z \end{pmatrix} \\
(3) & & \begin{pmatrix} \overline{4}^+ \\ 0 \\ 0 \\ z \end{pmatrix} \\
(4) & & \begin{pmatrix} \overline{4}^- \\ 0 \\ 0 \\ z \end{pmatrix}
\end{align*}
\]

For \((1,0,0)' + \) set

\[
\begin{align*}
(1) & & \begin{pmatrix} t' \\ 1 \\ 0 \\ 0 \end{pmatrix} \\
(2) & & \begin{pmatrix} 2' \\ 1/2 \\ 0 \\ z \end{pmatrix} \\
(3) & & \begin{pmatrix} \overline{4}'^+ \\ 1/2,-1/2,z \end{pmatrix} \\
(4) & & \begin{pmatrix} \overline{4}'^- \\ 1/2,1/2,z \end{pmatrix}
\end{align*}
\]

Generators selected

\((1); t'(1,0,0); t'(0,1,0); t'(0,0,1); (2); (3); (5).\)

Positions

\[
\begin{array}{llllll}
\text{Multiplicity} & \text{Wyckoff letter} & \text{Site Symmetry} & \text{Coordinates} \\
16 & o & 1 & (1) x,y,z & (2) x,y,z & (3) y,x,z & (4) y,x,z \\
 & & & \text{[u,v,w]} & \text{[u,v,w]} & \text{[v,u,w]} & \text{[v,u,w]} \\
 & & & \text{(5) x,y,z} & \text{[u,v,w]} & \text{[v,u,w]} & \text{[v,u,w]} \\
8 & n & \ldots \text{m} & x,z & x,x,z & x,x,z & x,x,z \\
 & & & \text{[u,u,0]} & \text{[u,u,0]} & \text{[u,u,0]} & \text{[u,u,0]} \\
8 & m & 2\ldots & 0,1/2,z & 1/2,0,z & 1/2,0,z & 1/2,0,z \\
 & & & \text{[u,v,0]} & \text{[v,u,0]} & \text{[v,u,0]} & \text{[v,u,0]} \\
8 & l & \ldots \text{2} & x,1/2,0 & x,1/2,0 & x,1/2,0 & x,1/2,0 \\
 & & & \text{[0,v,w]} & \text{[0,v,w]} & \text{[0,v,w]} & \text{[0,v,w]} \\
8 & k & \ldots \text{2} & x,0,1/2 & x,0,1/2 & x,0,1/2 & x,0,1/2 \\
 & & & \text{[0,v,w]} & \text{[0,v,w]} & \text{[0,v,w]} & \text{[0,v,w]} \\
8 & j & \ldots & x,1/2,1/2 & x,1/2,1/2 & x,1/2,1/2 & x,1/2,1/2 \\
 & & & \text{[u,0,0]} & \text{[u,0,0]} & \text{[u,0,0]} & \text{[u,0,0]} \\
8 & i & \ldots & x,0,0 & x,0,0 & x,0,0 & x,0,0 \\
 & & & \text{[u,0,0]} & \text{[u,0,0]} & \text{[u,0,0]} & \text{[u,0,0]} \\
4 & h & \ldots \text{2mm} & 1/2,1/2,z & 1/2,1/2,z & 1/2,1/2,z & 1/2,1/2,z \\
 & & & \text{[0,0,0]} & \text{[0,0,0]} & \text{[0,0,0]} & \text{[0,0,0]} \\
4 & g & \ldots \text{2mm} & 0,0,0 & 0,0,0 & 0,0,0 & 0,0,0 \\
 & & & \text{[0,0,0]} & \text{[0,0,0]} & \text{[0,0,0]} & \text{[0,0,0]} \\
4 & f & \ldots \text{22'} & 1/2,0,1/2 & 0,1/2,1/2 & 0,1/2,1/2 & 0,1/2,1/2 \\
 & & & \text{[0,v,0]} & \text{[v,0,0]} & \text{[v,0,0]} & \text{[v,0,0]} \\
4 & e & \ldots \text{22'} & 1/2,0,0 & 1/2,0,0 & 1/2,0,0 & 1/2,0,0 \\
 & & & \text{[u,0,0]} & \text{[u,0,0]} & \text{[u,0,0]} & \text{[u,0,0]} \\
2 & d & \ldots \text{42'} & 1/2,1/2,0 & 1/2,1/2,0 & 1/2,1/2,0 & 1/2,1/2,0 \\
 & & & \text{[0,0,0]} & \text{[0,0,0]} & \text{[0,0,0]} & \text{[0,0,0]} \\
\end{array}
\]
2 c 42m 0,0,1/2 [0,0,0]
2 b 42m 1/2,1/2,1/2 [0,0,0]
2 a 42m 0,0,0 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4mm1'</th>
<th>Along [1,0,0]</th>
<th>p2mm1'</th>
<th>Along [1,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b)</td>
<td>(a^* = b)</td>
<td>(b^* = c)</td>
<td>(a^* = (-a + b)/2)</td>
<td>(b^* = c)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

111.8.918 - 3 - 1831
Origin on $\overline{4}2'm'$

Asymmetric unit: $0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1; x \leq y$

Symmetry Operations

For $(0,0,0) +$ set

1. $1 (0,0,0)$
2. $2 \ 0,0,z$
 $2z \ 0,0,0$
3. $4' \ 0,0,z; 0,0,0$
 $4z \ 0,0,0$
4. $4' \ 0,0,z; 0,0,0$
 $4z \ 0,0,0$

For $(0,0,1)' +$ set

1. $t' (0,0,1)$
 $1 \ 0,0,1'$
2. $2' (0,0,1) \ 0,0,z$
 $2z \ 0,0,1'$
3. $4' \ 0,0,z; 0,0,1/2$
 $4z \ 0,0,1'$
4. $4' \ 0,0,z; 0,0,1/2$
 $4z \ 0,0,1'$

5. $2 \ 0,y,1/2$
 $2z \ 0,0,1'$
6. $2 \ 0,y,1/2$
 $2z \ 0,0,1'$
7. $c (0,0,1) \ x,x,z$
 $c \ 0,0,1$
 $m_{xy} \ 0,0,0$
8. $c (0,0,1) \ x,x,z$
 $c \ 0,0,1$
 $m_{xy} \ 0,0,0$
Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 n m'</td>
<td>x,x,z [u,u,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 l .2'</td>
<td>x,1/2,0 [v,w]</td>
<td>x,1/2,0 [v,w]</td>
</tr>
<tr>
<td>8 k .2</td>
<td>x,0,1/2 [u,0,0]</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 j .2</td>
<td>x,1/2,1/2 [u,0,0]</td>
<td>x,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>8 i .2'</td>
<td>x,0,0 [v,w]</td>
<td>x,0,0 [v,w]</td>
</tr>
<tr>
<td>4 h 2.m'm'</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 g 2.m'm'</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 f 222</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 e 222'</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 d 42m</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>2.c 4'2m' 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b 4'2m'</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>2.a 4'2'm' 0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4mm1'</th>
<th>Along [1,0,0]</th>
<th>P2' 2m'm'</th>
<th>Along [1,1,0]</th>
<th>P2'* 1m1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = -c</td>
<td>b* = b</td>
<td>a* = (-a + b)/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,1/2,0</td>
<td></td>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>

111.9.919 - 2 - 1833
Origin on 4'2m'

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y \]

Symmetry Operations

For \((0,0,0) + \) set

1. \(1 \quad (1,0,0) \)
2. \(2 \quad 0,0,z \quad (2_z,0,0,0) \)
3. \(4' \quad 0,0,z; 0,0,0 \quad (4_z,0,0,0)' \)
4. \(4' \quad 0,0,z; 0,0,0 \quad (4_z^{-1},0,0,0)' \)

5. \(0,y,0 \quad (2,0,0,0) \)
6. \(2 \quad x,0,0 \quad (2_x,0,0,0) \)
7. \(m' \quad x,x,z \quad (m_{xy},0,0,0)' \)
8. \(m' \quad x,x,z \quad (m_{xy},0,0,0)' \)

For \((1,0,0)' + \) set

1. \(t' \quad (1,0,0) \quad (1,1,0,0)' \)
2. \(2' \quad 1/2,0,z \quad (2_z,1,0,0)' \)
3. \(4' \quad 1/2,-1/2,z; 1/2,-1/2,0 \quad (4_z,1,0,0) \)
4. \(4' \quad 1/2,1/2,z; 1/2,1/2,0 \quad (4_z^{-1},1,0,0) \)

5. \(2' \quad 1/2,y,0 \quad (2,1,0,0)' \)
6. \(2'(1,0,0) \quad x,0,0 \quad (2_x,1,0,0)' \)
7. \(g \quad (1/2,-1/2,0) \quad x+1/2,x,z \quad (m_{xy},1,0,0) \)
8. \(g \quad (1/2,1/2,0) \quad x+1/2,x,z \quad (m_{xy},1,0,0) \)
Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>(0,0,0) +</th>
<th>(1,0,0) +</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>[u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 n</td>
<td>[u,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 m</td>
<td>[u,v,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 l</td>
<td>[0,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 k</td>
<td>[u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 j</td>
<td>[v,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 i</td>
<td>[0,u,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 h</td>
<td>[u,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 g</td>
<td>[0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 f</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 e</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 d</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] Pₜₜ 4mm

a* = a b* = b

Origin at 0,0,z

Along [1,0,0] p2mm1'

a* = b b* = c

Origin at x,0,0

Along [1,1,0] P₂ₓ 1m1

a* = (-a + b)/2 b* = c

Origin at x-1/4,x+1/4,0
Origin on 4'2m'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y\]

Symmetry Operations

For \((0,0,0) + \) set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1 (0,0,0)\</td>
<td>(0,0,0,0)</td>
</tr>
<tr>
<td>(2) 2 (x,0,0) (2_1,0,0,0)</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>(3) 4' (x,0,0,0) (4_1,0,0,0)</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>(4) 4' (x,0,0,0) (4_1,0,0,0)</td>
<td>(0,0,0)</td>
</tr>
</tbody>
</table>

For \((1,0,0)' + \) set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t' (1,0,0) (1_1,0,0)</td>
<td>(1,0,0,0)</td>
</tr>
<tr>
<td>(2) 2' (1/2,0,0) (1_2,0,0,0)</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>(3) 4' (1/2,1/2,0,0) (2_2,1/2,0,0)</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>(4) 4' (1/2,1/2,0,0) (2_2,1/2,0,0)</td>
<td>(0,0,0)</td>
</tr>
</tbody>
</table>

Generators selected

(1); t'(1,0,0); t'(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 o 1</td>
<td>(1, x,y,z [u,v,w])</td>
<td>((0,0,0) + (1,0,0)')</td>
</tr>
<tr>
<td>8 n (..m')</td>
<td>(x,x,z [u,u,w])</td>
<td>((0,0,0) + (1,0,0)')</td>
</tr>
<tr>
<td>8 m 2'..</td>
<td>(0,1/2,z [u,v,0])</td>
<td>((0,0,0) + (1,0,0)')</td>
</tr>
<tr>
<td>8 l (..2')</td>
<td>(x,1/2,0 [0,v,w])</td>
<td>((0,0,0) + (1,0,0)')</td>
</tr>
<tr>
<td>8 k (..2')</td>
<td>(x,0,1/2 [0,v,w])</td>
<td>((0,0,0) + (1,0,0)')</td>
</tr>
<tr>
<td>8 j (..2')</td>
<td>(x,1/2,1/2 [0,u,0])</td>
<td>((0,0,0) + (1,0,0)')</td>
</tr>
<tr>
<td>8 i (..2')</td>
<td>(x,0,0 [u,0,0])</td>
<td>((0,0,0) + (1,0,0)')</td>
</tr>
<tr>
<td>4 h (..m'm')</td>
<td>(1/2,1/2,z [0,0,0])</td>
<td>((0,0,0) + (1,0,0)')</td>
</tr>
<tr>
<td>4 g (..m'm')</td>
<td>(0,0,z [0,0,0])</td>
<td>((0,0,0) + (1,0,0)')</td>
</tr>
<tr>
<td>4 f (..2'2')</td>
<td>(1/2,0,1/2 [0,v,0])</td>
<td>((0,0,0) + (1,0,0)')</td>
</tr>
<tr>
<td>4 e (..2'2')</td>
<td>(1/2,0,0 [u,0,0])</td>
<td>((0,0,0) + (1,0,0)')</td>
</tr>
<tr>
<td>2 d (..2'm')</td>
<td>(1/2,1/2,0 [0,0,0])</td>
<td>((0,0,0) + (1,0,0)')</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along \([0,0,1]\) \(p\,4mm\)^
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b}\)
Origin at \(0,0,z\)

Along \([1,0,0]\) \(p\,2mm\)^
\(\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c}\)
Origin at \(x,0,0\)

Along \([1,1,0]\) \(p_{\overline{c}}\,1m\)
\(\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c}\)
Origin at \(x-1/4, x+1/4, 0\)

2 c \(4\overline{2}m'\) 0,0,1/2 [0,0,w]
2 b \(4\overline{2}m'\) 1/2,1/2,1/2 [0,0,0]
2 a \(4\overline{2}m'\) 0,0,0 [0,0,0]
Origin on $\bar{4}1c$

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2\)

Symmetry Operations

1. \(1\)
 \(1\) \(0,0,0\)
 \(2\) \(0,0,z\)
 \(3\) \(\bar{4}^+\) \(0,0,z; 0,0,0\)
 \(4\) \(\bar{4}^-\) \(0,0,0; 0,0,0\)

2. \(2\)
 \(0,y,1/4\)
 \(2\) \(x,0,1/4\)
 \(3\) \(\bar{4}^z\) \(0,0,1/2\) \(x,x,z\)
 \(4\) \(\bar{4}^-\) \(0,0,1/2\) \(x,x,z\)

3. \(2\)
 \(0,0,1/2\)
 \(2\) \(0,0,1/2\)
 \(3\) \(\bar{4}^z\) \(0,0,1/2\) \(x,x,z\)
 \(4\) \(\bar{4}^-\) \(0,0,1/2\) \(x,x,z\)

4. \(\bar{4}^+\) \(0,0,0\)
 \(\bar{4}^-\) \(0,0,0\)

5. \(2\)
 \(0,y,1/4\)
 \(2\) \(x,0,1/4\)
 \(3\) \(\bar{4}^z\) \(0,0,1/2\) \(x,x,z\)
 \(4\) \(\bar{4}^-\) \(0,0,1/2\) \(x,x,z\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 n 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 m 2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 l 2..</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 k 2..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 j .2.</td>
<td>0,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>y,0,3/4 [v,0,0]</td>
</tr>
<tr>
<td></td>
<td>y,0,3/4 [v,0,0]</td>
</tr>
<tr>
<td>4 i .2.</td>
<td>x,1/2,1/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,1/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,3/4 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,3/4 [0,u,0]</td>
</tr>
<tr>
<td>4 h .2.</td>
<td>1/2,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,1/4 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>y,1/2,3/4 [v,0,0]</td>
</tr>
<tr>
<td></td>
<td>y,1/2,3/4 [v,0,0]</td>
</tr>
<tr>
<td>4 g .2.</td>
<td>x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,3/4 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,3/4 [0,u,0]</td>
</tr>
<tr>
<td>2 f 4..</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 e 4..</td>
<td>0,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 d 222.</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 c 222.</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 b 222.</td>
<td>1/2,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 a 222.</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -b</td>
<td>b* = a</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,0,1/4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p2c, 1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (-a+b)/2</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on $\overline{4}1c1'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $1 +$ set

(1) 1
\[(1)|0,0,0] \]
(2) $2 \quad 0,0,z$
\[(2)|0,0,0] \]
(3) $\overline{4}^+ \quad 0,0,z; \quad 0,0,0$
\[(\overline{4}|0,0,0] \]
(4) $\overline{4}^- \quad 0,0,z; \quad 0,0,0$
\[(\overline{4}^-|0,0,0] \]

For $1' +$ set

(1) $1'$
\[(1)|0,0,0] \]
(2) $2' \quad 0,0,z$
\[(2')|0,0,0] \]
(3) $\overline{4}^+ \quad 0,0,z; \quad 0,0,0$
\[(\overline{4}|0,0,0] \]
(4) $\overline{4}^- \quad 0,0,z; \quad 0,0,0$
\[(\overline{4}^-|0,0,0] \]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>n</td>
<td>11'</td>
<td>1, x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) y,x,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) y,z+x [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6) x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) y,x,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8) y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>m</td>
<td>2..1'</td>
<td>0,1/2, z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,0, z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2, z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,0, z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>l</td>
<td>2..1'</td>
<td>1/2,1/2, z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2, z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2, z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>k</td>
<td>2..1'</td>
<td>0,0, z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0, z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0, z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>j</td>
<td>2..1'</td>
<td>0,y,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,y,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>i</td>
<td>2..1'</td>
<td>x,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,x,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,x,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>2..1'</td>
<td>1/2,y,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>2..1'</td>
<td>x,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,x,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,x,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>4..1'</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>4..1'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>222.1'</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>222.1'</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>222.1'</td>
<td>1/2,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>222.1'</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,0,1/4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (a + b)/2</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on $\overline{4}$'1c

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

(1) $\begin{pmatrix} 1 \\ 0,0,0 \end{pmatrix}$

(2) $\begin{pmatrix} 2 \\ 0,0,z \end{pmatrix}$

(3) $\begin{pmatrix} 4^{-} \\ 0,0,z; 0,0,0 \end{pmatrix}$

(4) $\begin{pmatrix} 4^{-} \\ 0,0,z; 0,0,0 \end{pmatrix}$

(5) $\begin{pmatrix} 2' \\ 0,y,1/4 \end{pmatrix}$

(6) $\begin{pmatrix} 2' \\ x,0,1/4 \end{pmatrix}$

(7) $\begin{pmatrix} c \\ (0,0,1/2) \end{pmatrix}$

(8) $\begin{pmatrix} c \\ (0,0,1/2) \end{pmatrix}$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) $x,y,z+1/2$ [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) $x,y,z+1/2$ [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) $y,x,z+1/2$ [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) $y,x,z+1/2$ [v,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 n 1</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 m 2..</td>
<td>$0,1/2,z$ [0,0,w]</td>
</tr>
<tr>
<td>4 l 2..</td>
<td>$1/2,1/2,z$ [0,0,w]</td>
</tr>
<tr>
<td>4 k 2..</td>
<td>$0,0,z$ [0,0,w]</td>
</tr>
<tr>
<td>4 j .2'</td>
<td>$0,y,1/4$ [u,0,w]</td>
</tr>
<tr>
<td>4 i .2'</td>
<td>$x,1/2,1/4$ [0,v,w]</td>
</tr>
<tr>
<td>4 h .2'</td>
<td>$1/2,y,1/4$ [u,0,w]</td>
</tr>
<tr>
<td>4 g .2'</td>
<td>$x,0,1/4$ [0,v,w]</td>
</tr>
<tr>
<td>2 f .4'..</td>
<td>$1/2,1/2,0$ [0,0,0]</td>
</tr>
<tr>
<td>2 e .4'..</td>
<td>$0,0,0$ [0,0,0]</td>
</tr>
<tr>
<td>2 d 22'..</td>
<td>$0,1/2,1/4$ [0,0,w]</td>
</tr>
<tr>
<td>2 c 22'..</td>
<td>$1/2,1/2,1/4$ [0,0,w]</td>
</tr>
<tr>
<td>2 b 22'..</td>
<td>$1/2,0,1/4$ [0,0,w]</td>
</tr>
<tr>
<td>2 a 22'..</td>
<td>$0,0,1/4$ [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [1,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^* = a$</td>
<td>p4m'm'</td>
<td>p2'm'm'</td>
<td>p2v, 1m'1</td>
</tr>
<tr>
<td>$b^* = b$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at x,0,1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a^* = -c$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b^* = c/2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at x,x,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin on \(\overline{4}1c' \)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

\begin{align*}
1 & \quad (1) & 1 & \quad (5) & 2 \\
& & (1') & & (2) 0,0,0 \\
& & (1) & & (2) 0,y,1/4 \\
& & (1') & & (2') 0,0,1/4 \\
& & (1) & & (3, 4) \overline{4}1c' \quad 0,0,z; 0,0,0 \quad \overline{4}1c' \quad 0,0,z; 0,0,0 \\
& & (1') & & (4, 4') 0,0,z; 0,0,0 \\
& & (1') & & (4) 0,0,1/2 \quad (4') 0,0,1/2
\end{align*}
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>n 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z [v,u,w] (4) y,x,z [v,u,w] (5) x,y,z+1/2 [u,v,w] (6) x,y,z+1/2 [u,v,w] (7) y,x,z+1/2 [v,u,w] (8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>m 2..</td>
<td>0,1/2,z [0,0,w] 1/2,0,z [0,0,w] 0,1/2,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>l 2..</td>
<td>1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>k 2..</td>
<td>0,0,z [0,0,w] 0,0,z [0,0,w] 0,0,z+1/2 [0,0,w] 0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>j .2</td>
<td>0,y,1/4 [0,v,0] 0,y,1/4 [0,v,0] y,0,3/4 [v,0,0] y,0,3/4 [v,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>i .2</td>
<td>x,1/2,1/4 [u,0,0] x,1/2,1/4 [u,0,0] 1/2,x,3/4 [0,u,0] 1/2,x,3/4 [0,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>h .2</td>
<td>1/2,y,1/4 [0,v,0] 1/2,y,1/4 [0,v,0] y,1/2,3/4 [v,0,0] y,1/2,3/4 [v,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>g .2</td>
<td>x,0,1/4 [u,0,0] x,0,1/4 [u,0,0] 0,x,3/4 [0,u,0] 0,x,3/4 [0,u,0]</td>
</tr>
<tr>
<td>2</td>
<td>f 4'..</td>
<td>1/2,1/2,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>e 4'..</td>
<td>0,0,0 [0,0,0] 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>d 222.</td>
<td>0,1/2,1/4 [0,0,0] 1/2,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>c 222.</td>
<td>1/2,1/2,1/4 [0,0,0] 1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b 222.</td>
<td>1/2,0,1/4 [0,0,0] 0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a 222.</td>
<td>0,0,1/4 [0,0,0] 0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm

Along [0,0,1]

- \(a^* = -b \) \(b^* = a \)
- Origin at 0,0,z

Along [1,0,0]

- \(a^* = b \) \(b^* = c \)
- Origin at x,0,1/4

Along [1,1,0]

- \(a^* = (-a + b)/2 \) \(b^* = c/2 \)
- Origin at x,x,0

112.4.925 - 2 - 1846
Origin on $\overline{4}1c'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

1. $\overline{4}1c'$
2. $2\overline{4}0,0,z$
3. $0,0,0$
4. $0,0,0$
5. $2\overline{4}0,y,1/4$
6. $0,0,0$
7. $0,0,0$
8. $0,0,0$

(1) 1 0,0,0
(2) 2 0,0,0
(3) $\overline{4}1c'$ 0,0,0
(4) $\overline{4}1c'$ 0,0,0
(5) $2\overline{4}0,y,1/4$
(6) $0,0,0$
(7) $0,0,0$
(8) $0,0,0$

$112.5.926 - 1 - 1847$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>0,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>x,1/2,1/4 [v,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>1/2,y,1/4 [u,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>x,0,1/4 [v,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>0,0,0 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>0,2,0,1/4 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Origin at 0,0,z

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
</tbody>
</table>

Origin at x,0,1/4

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -c</td>
<td>b* = b</td>
</tr>
</tbody>
</table>

Origin at x,x,0

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (-a + b)/2</td>
<td>b* = c/2</td>
</tr>
</tbody>
</table>
Origin on \(\overline{4}1c \)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

For \((0,0,0) + \) set

1. \(\bar{1} \)
 - (1) \(\bar{1} (0,0,0) \)
 - (2) \(\bar{2} 0,0,z \) \((2_z 0,0,0) \)
 - (3) \(\bar{4} \cdot 0,0,z; 0,0,0 \) \((4_z 0,0,0) \)
 - (4) \(\bar{4} \cdot 0,0,z; 0,0,0 \) \((4_z^{-1} 0,0,0) \)

For \((1,0,0)' + \) set

1. \(\bar{1}' \)
 - (1) \(\bar{1}' (1,0,0) \)
 - (2) \(\bar{2}' 1/2,0,z \) \((2_z 1,0,0)' \)
 - (3) \(\bar{4}' \cdot 1/2,-1/2,z; 1/2,-1/2,0 \) \((4_z 1,0,0)' \)
 - (4) \(\bar{4}' \cdot 1/2,1/2,z; 1/2,1/2,0 \) \((4_z^{-1} 1,0,0)' \)

\[112.6.927 \]

Tetragonal

\[P_4 \overline{2}c \]

\[112.6.927 \]

\[\overline{4}2m1' \]

\[P_4 \overline{2}c \]
Generators selected
(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>x, y, z [u, v, w]</th>
<th>1/2, 0, z [v, u, 0]</th>
<th>0,1/2, z +1/2 [u, v, 0]</th>
<th>1/2, 0, z +1/2 [v, u, 0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>(1) x, y, z [u, v, w]</td>
<td>(3) y, x, z [v, u, w]</td>
<td>(4) y, x, z [v, u, w]</td>
<td>(5) x, y, z +1/2 [u, v, w]</td>
</tr>
<tr>
<td>8</td>
<td>(2) x, y, z [u, v, w]</td>
<td>(6) x, y, z +1/2 [u, v, w]</td>
<td>(7) y, x, z +1/2 [v, u, w]</td>
<td>(8) y, x, z +1/2 [v, u, w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0, 0, 1] \(p\overline{4}m'm' \) \(a^* = a \quad b^* = b \)
Origin at 1/2, 1/2, z

Along [1, 0, 0] \(p2mm1' \) \(a^* = b \quad b^* = c \)
Origin at x, 0, 1/4

Along [1, 1, 0] \(p_{2x} \ 1m1 \) \(a^* = (-a + b)/2 \quad b^* = (-a + b + c)/2 \)
Origin at x-1/4, x+1/4, 0
Origin on \(\overline{4}1c' \)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

For \((0,0,0) + \) set

1. \(\begin{pmatrix} 1 \end{pmatrix} \)
 \(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \)

2. \(\begin{pmatrix} 2 \end{pmatrix} \)
 \(\begin{pmatrix} 0,0,z \\ (2z,0,0,0) \end{pmatrix} \)

3. \(\begin{pmatrix} 4^+ \end{pmatrix} \)
 \(\begin{pmatrix} 0,0,z; 0,0,0 \\ (4z,0,0,0)' \end{pmatrix} \)

4. \(\begin{pmatrix} 4^- \end{pmatrix} \)
 \(\begin{pmatrix} 0,0,z; 0,0,0 \\ (4z^{-1},0,0,0)' \end{pmatrix} \)

For \((1,0,0) + \) set

5. \(\begin{pmatrix} 5 \end{pmatrix} \)
 \(\begin{pmatrix} 2 \end{pmatrix} \)
 \(\begin{pmatrix} 0,y,1/4 \\ (2z,0,0,1/2) \end{pmatrix} \)

3. \(\begin{pmatrix} 3 \end{pmatrix} \)
 \(\begin{pmatrix} 0,0,1/2 \\ (4z,0,0,1/2)' \end{pmatrix} \)

4. \(\begin{pmatrix} 4 \end{pmatrix} \)
 \(\begin{pmatrix} 0,0,1/2 \\ (4z^{-1},0,0,1/2)' \end{pmatrix} \)

For \((1,0,0) + \) set

6. \(\begin{pmatrix} 6 \end{pmatrix} \)
 \(\begin{pmatrix} 2 \end{pmatrix} \)
 \(\begin{pmatrix} x,0,1/4 \\ (2z,0,0,1/2) \end{pmatrix} \)

7. \(\begin{pmatrix} 7 \end{pmatrix} \)
 \(\begin{pmatrix} 0,0,1/2 \end{pmatrix} \)
 \(\begin{pmatrix} x,x,z \\ (m_{yz},0,0,1/2)' \end{pmatrix} \)

8. \(\begin{pmatrix} 8 \end{pmatrix} \)
 \(\begin{pmatrix} 0,0,1/2 \end{pmatrix} \)
 \(\begin{pmatrix} x,x,z \\ (m_{yz},0,0,1/2)' \end{pmatrix} \)
Generators selected (1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 n 1</td>
<td>(1) x,y,z</td>
<td>(2) x',y',z'</td>
</tr>
<tr>
<td>8 m 2'..</td>
<td>0,1/2,z</td>
<td>1/2,0,z</td>
</tr>
<tr>
<td>8 l 2..</td>
<td>1/2,1/2,z</td>
<td>0,1/2,z</td>
</tr>
<tr>
<td>8 k 2..</td>
<td>0,0,z</td>
<td>0,0,z+1/2</td>
</tr>
<tr>
<td>8 j .2.</td>
<td>0,y,1/4</td>
<td>y,0,3/4</td>
</tr>
<tr>
<td>8 i .2'</td>
<td>x,1/2,1/4</td>
<td>x,1/2,3/4</td>
</tr>
<tr>
<td>8 h .2'</td>
<td>1/2,y,1/4</td>
<td>y,1/2,3/4</td>
</tr>
<tr>
<td>8 g .2</td>
<td>x,0,1/4</td>
<td>x,0,3/4</td>
</tr>
<tr>
<td>4 f 4'..</td>
<td>1/2,1/2,0</td>
<td>1/2,1/2,1/2</td>
</tr>
<tr>
<td>4 e 4'..</td>
<td>0,0,0</td>
<td>0,0,1/2</td>
</tr>
<tr>
<td>4 d 2'2'</td>
<td>0,1/2,1/4</td>
<td>0,1/2,3/4</td>
</tr>
<tr>
<td>4 c 22'2'</td>
<td>1/2,1/2,1/4</td>
<td>1/2,1/2,3/4</td>
</tr>
<tr>
<td>4 b 22'2'</td>
<td>1/2,0,1/4</td>
<td>0,1/2,3/4</td>
</tr>
<tr>
<td>4 a 222.</td>
<td>0,0,1/4</td>
<td>0,0,3/4</td>
</tr>
</tbody>
</table>

Coordinates

(0,0,0) + (1,0,0)'

Symmetry of Special Projections

Along [0,0,1] p_\alpha' 4mm
a^* = a \quad b^* = b
Origin at 0,0,z

Along [1,0,0] p2mm1'
a^* = b \quad b^* = c
Origin at x,0,1/4

Along [1,1,0] p_{2\alpha'} 1m1
a^* = (-a + b)/2 \quad b^* = c/2
Origin at x-1/4,x+1/4,0
Origin on $\overline{4}1g$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad y \leq 1/2-x$

Symmetry Operations

(1) 1

(2) $2 \quad 0,0,z$

(3) $\overline{4}^- \quad 0,0,z; \quad 0,0,0$

(4) $\overline{4}^- \quad 0,0,z; \quad 0,0,0$

(5) $2 \quad (0,1/2,0) \quad 1/4,y,0$

(6) $2 \quad (1/2,0,0) \quad x,1/4,0$

(7) $m \quad x+1/2,x,z$

(8) $g \quad (1/2,1/2,0) \quad x,x,z$

$P\overline{4}_2,m$

$\overline{4}2m$

Tetragonal

113.1.929

P$\overline{4}_2,m$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4 e .m</td>
<td>x,x+1/2,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4 d 2..</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c 2.mm</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b 4..</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a 4..</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'gm' Along [1,0,0] p2m'g' Along [1,1,0] p1m11'
\(a^* = a \) \(b^* = b \) \(a^* = (-a + b)/2 \) \(b^* = c \)
Origin at 0,0,0 Origin at 1/4,0 Origin at x,x,0
Origin on $\overline{4}1g'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad y \leq 1/2-x$

Symmetry Operations

For 1 + set

(1) 1
 (1|0,0,0)

(5) 2 (0,1/2,0) $1/4,y,0$
 (2y_1|1/2,1/2,0)

(2) 2 $0,0,z$
 (2z_1|0,0,0)

(6) 2 (1/2,0,0) $x,1/4,0$
 (2x_1|1/2,1/2,0)

(3) $\overline{4}^-$ $0,0,z; 0,0,0$
 (4z_1|0,0,0)

(4) $\overline{4}^-$ $0,0,z; 0,0,0$
 (4z_1|0,0,0)

(7) m $x+1/2,x,z$
 (my_1|1/2,1/2,0)

For 1' + set

(1) 1'$
 (1|0,0,0)'

(5) 2' (0,1/2,0) $1/4,y,0$
 (2y_1|1/2,1/2,0)'

(2) 2' $0,0,z$
 (2z_1|0,0,0)'

(6) 2' (1/2,0,0) $x,1/4,0$
 (2x_1|1/2,1/2,0)'

(3) $\overline{4}^-$ $0,0,z; 0,0,0$
 (4z_1|0,0,0)'

(4) $\overline{4}^-$ $0,0,z; 0,0,0$
 (4z_1|0,0,0)'

(7) m $x+1/2,x,z$
 (my_1|1/2,1/2,0)'

(8) g' (1/2,1/2,0) x,x,z
 (my_1|1/2,1/2,0)'

$P\overline{4}2_1m1'$

$\overline{4}2m1'$

Tetragonal
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
<td>1' +</td>
</tr>
<tr>
<td>8 f 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) x̄̄,ȳ̄,z̄̄ [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) ȳ̄,x̄̄,z̄̄ [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) ȳ,x̄,z̄ [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) x̄+1/2,y+1/2,z̄ [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(6) x̄+1/2,ȳ+1/2,z̄ [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) ȳ̄+1/2,x̄̄+1/2,z̄̄ [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(8) ȳ,x̄+1/2,z̄ [0,0,0]</td>
</tr>
<tr>
<td>4 e ..m1'</td>
<td>x̄,x̄+1/2,z̄ [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x̄̄,x̄+1/2,z̄ [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x̄+1/2,x̄̄,z̄ [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x̄+1/2,x̄̄,z̄ [0,0,0]</td>
</tr>
<tr>
<td>4 d 2..1'</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 c 2.mm1'</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 b 4..1'</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 4..1'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm1'
Along [1,0,0] p2mg1'
Along [1,1,0] p1m11'

\(a^* = a \) \(b^* = b \)
\(a^* = b \) \(b^* = c \)
\(a^* = (a + b)/2 \) \(b^* = c \)
Origin on 4'1g

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1; y ≤ 1/2-x

Symmetry Operations

1. 1
 (1) 0,0,0
 (2) 0,0,z
 (2z|0,0,0)
 (3) 4'1g 0,0,z; 0,0,0
 (4z|0,0,0)|
 (4) 4'1g 0,0,z; 0,0,0
 (4z|-0,0,0)|

2. 2' (0,1/2,0) 1/4,y,0
 (2y|1/2,1/2,0)

3. 2' (1/2,0,0) x,1/4,0
 (2x|1/2,1/2,0)

4. m x+1/2,x,z
 (mxy|1/2,1/2,0)

5. g (1/2,1/2,0) x,x,z
 (mxz|1/2,1/2,0)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w] (4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w] (6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z [v,u,w] (8) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
</tbody>
</table>

4	e m x,x+1/2,z [u,u,0] x+1/2,x,z [u,u,0] x+1/2,x,z [u,u,0]
4	d 2 m 0,0,z [0,0,w] 0,0,z [0,0,w] 1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w]
2	c 2mm 0,1/2,z [0,0,0] 1/2,0,z [0,0,0]
2	b 4 mm 0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]
2	a 4 mm 0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4g'm' a* = a b* = b

Along [1,0,0] p2'm'g a* = b b* = c

Along [1,1,0] p1m11' a* = (-a + b)/2 b* = c

Origin at 0,0,z Origin at x,1/4,0 Origin at x,x,0
Origin on $\bar{4}1g'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad y \leq 1/2-x$

Symmetry Operations

(1) 1

(1') 0,0,0

(5) 2 (0,1/2,0) 1/4,y,0

(2) 2 0,0,z

(2') 0,0,0

(2'') 0,0,0

(2''') 0,0,0

(6) 2 (1/2,0,0) x,1/4,0

(1/2,0,0)

(1/2,1/2,0)

(1/2,1/2,0)

(7) m' $x+1/2,\bar{x},z$

(m_y $1/2,1/2,0$)

(8) g' $(1/2,1/2,0) x,x,z$

(m_{xy} $1/2,1/2,0$)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>f</td>
<td>1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>m' x,x+1/2,z [u,u,w] x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x,z [u,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>2.. 0,0,z [0,0,w] 0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>2.m'm' 0,1/2,z [0,0,w] 1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4'.. 0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4'.. 0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p4gm</td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>p2m'g'</td>
</tr>
<tr>
<td>Along [1,1,0]</td>
<td>p1m'1</td>
</tr>
</tbody>
</table>

Origin at 0,0,z

a* = a b* = b

Origin at x,1/4,0

a* = b b* = c

Origin at x,x,0

a* = (-a + b)/2 b* = c
Origin on $\overline{4}1g'$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad y \leq 1/2-x$

Symmetry Operations

1. 1

 $1 | 0,0,0$

2. $2 \ 0,0,z$

 $(2z | 0,0,0)$

3. $\overline{4}^{-} \ 0,0,z ; 0,0,0$

 $(4z | 0,0,0)$

4. $\overline{4}^{-} \ 0,0,z ; 0,0,0$

 $(4z^{-1} | 0,0,0)$

5. $2' \ (0,1/2,0) \ 1/4,y,0$

 $(2y | 1/2,1/2,0)$

6. $2' \ (1/2,0,0) \ x,1/4,0$

 $(2x | 1/2,1/2,0)$

7. $m' \ x+1/2,\overline{x},z$

 $(m_{x} | 1/2,1/2,0)$

8. $g' \ (1/2,1/2,0) \ x,x,z$

 $(m_{xy} | 1/2,1/2,0)$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u',v',w']</td>
</tr>
<tr>
<td></td>
<td>(7) y'+1/2,x+1/2,z [v',u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'g'm
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] p2'm'g
\(a^* = b \quad b^* = c \)
Origin at x,1/4,0

Along [1,1,0] p1m'1
\(a^* = (-a + b)/2 \quad b^* = c \)
Origin at x,x,0
Origin on $\bar{4}1g$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad y \leq 1/2-x$

Symmetry Operations

For (0,0,0) + set

(1) 1

(2) 2 \quad 0,0,z

(3) 4^{-} \quad 0,0,z; 0,0,0

(4) 4^{-} \quad 0,0,z; 0,0,0

For (0,0,1)’ + set

(1) $t’$ \quad (0,0,1)

(2) $2’$ \quad (0,0,1) \quad 0,0,z

(3) 4^{-}’ \quad 0,0,z; 0,0,1/2

(4) 4^{-}’ \quad 0,0,z; 0,0,1/2

113.6.934 - 1 - 1863
Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f 1</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(0,0,1)' +</td>
</tr>
<tr>
<td></td>
<td>(0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(0,0,1)</td>
</tr>
<tr>
<td></td>
<td>(0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(0,0,1)</td>
</tr>
<tr>
<td>8 e ..m</td>
<td>x,x+1/2,z</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z</td>
</tr>
<tr>
<td>8 d 2..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 c 2.mm</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
</tbody>
</table>
| 4 b 4'..
| | 2,1/2,1/2 [0,0,0]|
| 4 a | 0,0,0 [0,0,w]|
| | 1/2,1/2,0 [0,0,w]|

Symmetry of Special Projections

Along [0,0,1] p4gm1' Along [1,0,0] p21' 2m'g' Along [1,1,0] 1m11'
\[a^* = a \quad b^* = b \] \[a^* = b \quad b^* = c \] \[a^* = (-a + b)/2 \quad b^* = c \]
Origin at 0,0,z Origin at x,1/4,0 Origin at x,x,0
Origin on $\overline{4} 1g$

Asymmetric unit $0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1; y \leq 1/2-x$

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1) 0,0,0
(2) 2 0,0,z
 (2) 0,0,0
(5) 2 (0,1/2,0) 1/4,y,0
 (2) 1/2,1/2,2,0
(6) 2 (1/2,0,0) x,1/4,0
 (2) 1/2,1/2,2,0
(7) m' x+1/2,x,z
 (m) 1/2,1/2,2,0
(8) n (1/2,1/2,1) x,x,z
 (m) 1/2,1/2,2,1

For (0,0,1) + set

(1) t (0,0,1)
 (1) 0,0,1
(2) $2'$ (0,0,1) 0,0,z
 (2) 0,0,1
(5) $2'$ (0,1/2,0) 1/4,y,1/2
 (2) 1/2,1/2,2,1
(6) $2'$ (1/2,0,0) x,1/4,1/2
 (2) 1/2,1/2,2,1
(7) c (0,0,1) x+1/2,x,z
 (m) 1/2,1/2,2,1
(8) n (1/2,1/2,1) x,x,z
 (m) 1/2,1/2,2,1

113.7.935 - 1 - 1865
Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f 16</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (0,1)’ +</td>
</tr>
<tr>
<td></td>
<td>(2) x’,y’,z’ [u’,v’,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) y’,x’,z’ [v’,u’,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) y+1/2,x+1/2,z [v,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p4gm1’</th>
<th>Along [1,0,0] p211 2m’g’</th>
<th>Along [1,1,0] p211’1m’1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a, b* = b</td>
<td>a* = b, b* = c</td>
<td>a* = (-a + b)/2, b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,1/4,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>

113.7.935 - 2 - 1866
Origin on $\overline{4}1n$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

(1) 1
(1) 0,0,0

(2) 2 0,0,z
(2) $z=0,0,0$

(3) $\overline{4}^\gamma$ 0,0,z; 0,0,0
(3) $\overline{4}^\gamma_z$ 0,0,0

(4) $\overline{4}^\gamma$ 0,0,z; 0,0,0
(4) $\overline{4}^\gamma_z$ 0,0,0

(5) 2 (0,1/2,0) $1/4,y,1/4$
(5) (2,1/2,1/2,1/2)

(6) 2 (1/2,0,0) $x,1/4,1/4$
(6) $(2_x,1/2,1/2,1/2)$

(7) $\overline{4}^\gamma$ 0,0,1/2 $x+1/2,x,z$
(7) (m$\overline{xy},1/2,1/2,1/2$)

(8) n (1/2,1/2,1/2) x,x,z
(8) (m$\overline{xy},1/2,1/2,1/2$)

P4$\overline{2}$,c

Tetragonal
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 d 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 c 2..</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 b 4..</td>
<td>0,0,1/2 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 a 4..</td>
<td>0,0,0 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'g'm
a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p2m'g'
a* = b b* = c
Origin at x,1/4,1/4

Along [1,1,0] p2v,1m'1
a* = (a + b)/2 b* = c/2
Origin at x,x,0
Origin on $\overline{4}1n1'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $1 +$ set

(1) 1
(1 | 0,0,0)

(2) 2 0,0,z
(2 | 0,0,0)

(3) $\overline{4}^+ 0,0,z; 0,0,0$
($4_z | 0,0,0$)

(4) $\overline{4}^- 0,0,z; 0,0,0$
($4_z^{-1} | 0,0,0$)

(5) 2 (0,1/2,0) 1/4,y,1/4
(2 | 1/2,1/2,1/2)

(6) 2 (1/2,0,0) x,1/4,1/4
(2 | 1/2,1/2,1/2)

(7) c (0,0,1/2) x+1/2,x,z
($m_x | 1/2,1/2,1/2$)

(8) n (1/2,1/2,1/2) x,x,z
($m_{xy} | 1/2,1/2,1/2$)

For $1' +$ set

(1) 1'
(1 | 0,0,0)'

(2) 2' 0,0,z
(2 | 0,0,0)'

(3) $\overline{4}^{' +} 0,0,z; 0,0,0$
($4_z^{-1} | 0,0,0$')

(4) $\overline{4}^{-'} 0,0,z; 0,0,0$
($4_z^{-1} | 0,0,0$')

(5) 2' (0,1/2,0) 1/4,y,1/4
(2 | 1/2,1/2,1/2)'

(6) 2' (1/2,0,0) x,1/4,1/4
(2 | 1/2,1/2,1/2)'

(7) c' (0,0,1/2) x+1/2,x,z
($m_x | 1/2,1/2,1/2)$'

(8) n' (1/2,1/2,1/2) x,x,z
($m_{xy} | 1/2,1/2,1/2)$'
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [0,0,0]</td>
<td>(4) y,x,z [0,0,0]</td>
</tr>
<tr>
<td>8 e 11'</td>
<td>(5) x+1/2,y+1/2,z+1/2 [0,0,0]</td>
<td>(6) x+1/2,y+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [0,0,0]</td>
<td>(8) y+1/2,x+1/2,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

4 d 2..1' 0,1/2,z [0,0,0] 1/2,0,z [0,0,0] 1/2,0,z+1/2 [0,0,0] 0,1/2,z+1/2 [0,0,0]
4 c 2..1' 0,0,z [0,0,0] 0,0,z [0,0,0] 1/2,1/2,z+1/2 [0,0,0] 1/2,1/2,z+1/2 [0,0,0]
2 b 4..1' 0,0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0]
2 a 4..1' 0,0,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4gm1' Along [1,0,0] p2mg1' Along [1,1,0] p1m11'
a* = a b* = b a* = b b* = c a* = (-a + b)/2 b* = c/2
Origin at 0,0,z Origin at x,1/4,1/4 Origin at x,x,0
Origin on $\overline{4}1\text{m}$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

1. 1
2. $2z; 0,0,0$
3. $\overline{4}$, $0,0,0$
4. $\overline{4}$, $0,0,0$
5. $2'(0,1/2,0)$
6. $2'(1/2,0,0)$
7. $c(0,0,1/2)$
8. $n(1/2,1/2,1/2)$

$P4^{2}_1c$
$114.3.938$

$\overline{4}^{2}_2m$
$P4^{2}_1c$

Tetragonal
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4g' m'
\(a^* = a \) \(b^* = b \)
Origin at 0,0,z

Along [1,0,0] p2'm' g
\(a^* = b \) \(b^* = c \)
Origin at x,1/4,1/4

Along [1,1,0] p2v.1m'1
\(a^* = (-a + b)/2 \) \(b^* = c/2 \)
Origin at x,x,0
Origin on $\overline{4}1n'$

Asymmetric unit \[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2 \]

Symmetry Operations

(1) 1
(2) 2 0,0,0
(3) $\overline{4}1$' 0,0,0; 0,0,0
(4) $\overline{4}1$' 0,0,0; 0,0,0
(5) 2 (0,1/2,0) 1/4,y,1/4
(6) 2 (1/2,0,0) x,1/4,1/4
(7) c' (0,0,1/2) x+1/2,x,z
(8) n' (1/2,1/2,1/2) x,x,z

Symbols:
- \(x \), \(y \), \(z \) are translations.
- \(\overline{4} \) and \(\overline{4}1n' \) are symmetry operations.
- The asymmetric unit is given by the range of \(x, y, z \).

The diagram illustrates the crystal structure with atoms positioned according to the symmetry operations provided.
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 e 1</td>
<td>(1) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(2) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(3) y, x, z [v, u, w]</td>
</tr>
<tr>
<td></td>
<td>(4) y, x, z [v, u, w]</td>
</tr>
<tr>
<td></td>
<td>(5) x + 1/2, y + 1/2, z + 1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(6) x + 1/2, y + 1/2, z + 1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(7) y + 1/2, x + 1/2, z + 1/2 [v, u, w]</td>
</tr>
<tr>
<td></td>
<td>(8) y + 1/2, x + 1/2, z + 1/2 [v, u, w]</td>
</tr>
</tbody>
</table>

4 d 2.. 0, 1/2, z [0, 0, w] 1/2, 0, z [0, 0, w] 1/2, 0, z + 1/2 [0, 0, w] 0, 1/2, z + 1/2 [0, 0, w]

4 c 2.. 0, 0, z [0, 0, w] 0, 0, z [0, 0, w] 1/2, 1/2, z + 1/2 [0, 0, w] 1/2, 1/2, z + 1/2 [0, 0, w]

2 b 4.. 0, 0, 1/2 [0, 0, 0] 1/2, 1/2, 0 [0, 0, 0]

2 a 4.. 0, 0, 0 [0, 0, 0] 1/2, 1/2, 1/2 [0, 0, 0]

Symmetry of Special Projections

Along [0, 0, 1] p4gm Along [1, 0, 0] p2m'g' Along [1, 1, 0] p1m'1

a* = a b* = b a* = b b* = c a* = (a + b)/2 b* = c/2

Origin at 0, 0, z Origin at x, 1/4, 1/4 Origin at x, x, 0
Origin on $\overline{4}1n'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

(1) 1
(1)* $0,0,0$

(2) 2 0,0,z
(2)* 0,0,0

(3) $\overline{4}^*$ 0,0,z; 0,0,0
(4) $\overline{4}$ 0,0,z; 0,0,0

(5) $2'$ (0,1/2,0) 1/4,y,1/4
(2)* (0,1/2,0) 1/4,y,1/4

(6) $2'$ (1/2,0,0) x,1/4,1/4
(2)* (1/2,0,0) x,1/4,1/4

(7) c' (0,0,1/2) x+1/2,x,z
(m$_x$) (0,0,1/2) x+1/2,x,z

(8) n' (1/2,1/2,1/2) x,x,z
(m$_{xy}$) (1/2,1/2,1/2) x,x,z
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>e</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>2.. 0,1/2,z [0,0,w] 1/2,0,z [0,0,w] 1/2,0,z+1/2 [0,0,w] 0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>2.. 0,0,z [0,0,w] 0,0,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4.. 0,0,1/2 [0,0,w] 1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4.. 0,0,0 [0,0,w] 1/2,1/2,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** p4'g'm
 \[a^* = a \quad b^* = b\]
 Origin at 0,0,z

- **Along [1,0,0]** p2'm'g
 \[a^* = b \quad b^* = c\]
 Origin at x,1/4,1/4

- **Along [1,1,0]** p1m'1
 \[a^* = (-a + b)/2 \quad b^* = c/2\]
 Origin at x,x,0
Origin on $\bar{4}m2$

Asymmetric unit $0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1/2$

Symmetry Operations

1. 1
2. 2 0,0,z
 0,0,0
3. $\bar{4}^+ \cdot 0,0,0; 0,0,0$
 $\bar{4}^- \cdot 0,0,0; 0,0,0$
4. $\bar{4}^- \cdot 0,0,0; 0,0,0$
 $\bar{4}^+ \cdot 0,0,0; 0,0,0$
5. m x,0,z
 (m_y|0,0,0)
6. m 0,y,z
 (m_x|0,0,0)
7. 2 x,x,0
 (2_{xy}|0,0,0)
8. 2 x,0
 (2_{xy}|0,0,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 l 1 (1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4 k .m. x,1/2,z [0,v,0]</td>
<td>1/2,x,z [v,0,0]</td>
<td>1/2,x,z [v,0,0]</td>
</tr>
<tr>
<td>4 j .m. x,0,z [0,v,0]</td>
<td>0,x,z [v,0,0]</td>
<td>0,x,z [v,0,0]</td>
</tr>
<tr>
<td>4 i .2 x,x,1/2 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>4 h .2 x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>2 g 2mm. 0,1/2,z [0,0,0]</td>
<td>1/2,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 f 2mm. 1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 e 2mm. 0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 d m2 0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 c m2 1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 b m2 1/2,1/2,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 a m2 0,0,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4' mm'
Along [1,0,0] p1m11'
Along [1,1,0] p2m'm'

a* = a b* = b
a* = b b* = c
a* = (a + b)/2 b* = c
Origin on $\bar{4}m21'$

Asymmetric unit $\quad 0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $1 +$ set

(1) 1
(1) 0,0,0)
(2) 2 0,0,z
(2z|0,0,0)
(3) $\bar{4}^+$ 0,0,z; 0,0,0
(4z|0,0,0)
(4) $\bar{4}^-$ 0,0,z; 0,0,0
(4z|0,0,0)

(5) m 0,0,0 (m_y|0,0,0)

(6) m 0,y,z
(m_x|0,0,0)
(7) 2 x,x,0
(2xy|0,0,0)
(8) 2 x,x,0
(2xy|0,0,0)

For $1' +$ set

(1) 1'
(1|0,0,0)'
(2) 2' 0,0,z
(2z|0,0,0)'
(3) $\bar{4}^+'$ 0,0,z; 0,0,0
(4z|0,0,0)'
(4) $\bar{4}^-'$ 0,0,z; 0,0,0
(4z|0,0,0)'

(5) m' x,0,z
(m_y'|0,0,0)'
(6) m' 0,y,z
(m_x'|0,0,0)'
(7) 2' x,x,0
(2xy|0,0,0)'
(8) 2' x,x,0
(2xy|0,0,0)'

115.2.942 - 1 - 1879
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

Multiplicities, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>11'</td>
<td>1 +</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [0,0,0]</td>
<td>(6) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>.m.1'</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>x,1/2,z [0,0,0]</td>
<td>x,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>.m.1'</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>x,0,z [0,0,0]</td>
<td>x,0,z [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>.21'</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>x,x,1/2 [0,0,0]</td>
<td>x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>.21'</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [0,0,0]</td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>2mm.1'</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,0]</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>2mm.1'</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>2mm.1'</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>4mm21'</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4mm21'</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4mm21'</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4mm21'</td>
<td>1'</td>
</tr>
<tr>
<td></td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1]
 \[a^* = a \quad b^* = b \]
 Origin at 0,0,z

- Along [1,0,0]
 \[a^* = b \quad b^* = c \]
 Origin at x,0,0

- Along [1,1,0]
 \[a^* = (-a + b)/2 \quad b^* = c \]
 Origin at x,x,0
Origin on $\overline{4}m\bar{2}$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

1. 1

 (1) $0,0,0$

2. $2 \cdot 0,0,0$

 (2) $z \cdot 0,0,0$

3. $\overline{4} \cdot 0,0,0; 0,0,0$

 (3) $\overline{4} \cdot 0,0,0$

4. $\overline{4} \cdot 0,0,0; 0,0,0$

 (4) $\overline{4} \cdot 0,0,0$

5. $m' \cdot x,0,z$

 (5) $m' \cdot 0,0,0$

 (m_y \cdot 0,0,0)$

6. $m' \cdot 0,y,z$

 (6) $m' \cdot 0,0,0$

 (m_x \cdot 0,0,0)$

7. $2 \cdot x,x,0$

 (7) $2 \cdot x,x,0$

 (2_{xy} \cdot 0,0,0$

8. $2 \cdot x,x,0$

 (8) $2 \cdot x,x,0$

 (2_{xy} \cdot 0,0,0$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>l</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>k</td>
<td>.m' x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,x,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,x,z [0,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>j</td>
<td>.m' x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,z [0,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>i</td>
<td>.2 x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>.2 x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>2</td>
<td>g</td>
<td>2m'm' 0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>2m'm' 1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>2m'm' 0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>d</td>
<td>4'm'2 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>c</td>
<td>4'm'2 1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>4'm'2 1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>4'm'2 0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (-a + b)/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on $\bar{4}m2'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

1. 1
 1

2. 2
 $0,0,z$
 $(2z,0,0,0)$

3. $\bar{4}$
 $0,0,z$
 $0,0,0$
 $(4,0,0,0)'$

4. $\bar{4}$
 $0,0,z$
 $0,0,0$
 $(4z^{-1},0,0,0)'$

5. m
 $x,0,z$
 $(m_y,0,0,0)$

6. m
 $0,y,z$
 $(m_x,0,0,0)$

7. $2'$
 $x,x,0$
 $(2x,0,0,0)'$

8. $2'$
 $x,x,0$
 $(2x,0,0,0)'$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 l 1</td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>4 k .m.</td>
<td>x,1/2,z [0,v,0]</td>
<td>1/2,x,z [v,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,0,z [0,v,0]</td>
<td>0,x,z [v,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 i ..2'</td>
<td>x,x,1/2 [u,u,w]</td>
<td>x,x,1/2 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,w]</td>
<td>x,x,0 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>2 g 2mm.</td>
<td>0,1/2,z [0,0,0]</td>
<td>1/2,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 f 2mm.</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 e 2mm.</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 d 4'm2'</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 c 4'm2'</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 b 4'm2'</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 a 4'm2'</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4mm</th>
<th>Along [1,0,0]</th>
<th>p1m11'</th>
<th>Along [1,1,0]</th>
<th>p2'm2'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = -c</td>
<td>b* = (-a + b)/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on $\bar{4}m'2'$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

(1) 1

(1) $|0,0,0)$

(2) $2 \quad 0,0,z$

(2) $(2z,0,0)$

(3) $\bar{4} \quad 0,0,z; 0,0,0$

(3) $(4z,0,0)$

(4) $\bar{4} \quad 0,0,z; 0,0,0$

(4) $(4z^{-1},0,0,0)$

(5) $m' \quad x,0,z$

(5) $(m_x|0,0,0)'$

(6) $m' \quad 0,y,z$

(6) $(m_y|0,0,0)'$

(7) $2' \quad x,x,0$

(7) $(2_{xy}|0,0,0)'$

(8) $2' \quad x,x,0$

(8) $(2_{xy}|0,0,0)'$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 l 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z [v,u,w] (4) y,x,z [v,u,w] (5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>4 k .m'</td>
<td>x,1/2,z [u,0,w] x,1/2,z [u,0,w] 1/2,x,z [0,u,w] 1/2,x,z [0,u,w]</td>
</tr>
<tr>
<td>4 j .m'</td>
<td>x,0,z [u,0,w] x,0,z [u,0,w] 0,x,z [0,u,w] 0,x,z [0,u,w]</td>
</tr>
<tr>
<td>4 i .2'</td>
<td>x,x,1/2 [u,u,w] x,x,1/2 [u,u,w] x,x,1/2 [u,u,w] x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td>4 h .2'</td>
<td>x,x,0 [u,u,w] x,x,0 [u,u,w] x,x,0 [u,u,w] x,x,0 [u,u,w]</td>
</tr>
<tr>
<td>2 g 2m'm'</td>
<td>0,1/2,z [0,0,w] 1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 f 2m'm'</td>
<td>1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 e 2m'm'</td>
<td>0,0,z [0,0,w] 0,0,z [0,0,w]</td>
</tr>
<tr>
<td>1 d 4m2'</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1 c 4m2'</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1 b 4m2'</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>1 a 4m2'</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4m'm' Along [1,0,0] p1m'1 Along [1,1,0] p2mm'
a* = a b* = b a* = b b* = c a* = -c b* = (-a + b)/2
Origin at 0,0,z Origin at x,0,0 Origin at x,x,0
Origin on \(\overline{4}m2 \)

Asymmetric unit \(0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/2 \)

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)
2. \(2 \quad 0,0,z \quad (2z|0,0,0)\)
3. \(\overline{4}^+ \quad 0,0,z; \quad 0,0,0 \quad (4z|0,0,0)\)
4. \(\overline{4}^+ \quad 0,0,z; \quad 0,0,0 \quad (4z^{-1}|0,0,0)\)

(5) \(m \quad x,0,z \quad (m_{y}|0,0,0)\)
(6) \(m \quad 0,y,z \quad (m_{x}|0,0,0)\)
(7) \(2 \quad x,x,0 \quad (2_{xy}|0,0,0)\)
(8) \(2 \quad x,x,0 \quad (2_{xy}|0,0,0)\)

For \((0,0,1)\)' + set

1. \(t' \quad (0,0,1) \quad (1|0,0,1)\)
2. \(2' \quad (0,0,0) \quad 0,0,z \quad (2z|0,0,1)'\)
3. \(\overline{4}^+ \quad 0,0,z; \quad 0,0,1/2 \quad (4z|0,0,1)'\)
4. \(\overline{4}^+ \quad 0,0,z; \quad 0,0,1/2 \quad (4z^{-1}|0,0,1)'\)

(5) \(c' \quad (0,0,1) \quad x,0,z \quad (m_{y}|0,0,1)'\)
(6) \(c' \quad (0,0,1) \quad 0,y,z \quad (m_{x}|0,0,1)'\)
(7) \(2' \quad x,x,1/2 \quad (2_{xy}|0,0,1)'\)
(8) \(2' \quad x,x,1/2 \quad (2_{xy}|0,0,1)'\)

115.6.946 - 1 - 1887
Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,0,1)' +</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) y,x,z [v,u,w]</td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td></td>
</tr>
<tr>
<td>.m.</td>
<td></td>
</tr>
<tr>
<td>x,1/2,z [0,v,0]</td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>1/2,x,z [v,0,0]</td>
<td>1/2,x,z [v,0,0]</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td></td>
</tr>
<tr>
<td>.m.</td>
<td></td>
</tr>
<tr>
<td>x,0,z [0,v,0]</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>0,x,z [v,0,0]</td>
<td>0,x,z [v,0,0]</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>.2'</td>
<td></td>
</tr>
<tr>
<td>x,x,1/2 [u,u,w]</td>
<td>x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td>x,x,1/2 [u,u,w]</td>
<td>x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td></td>
</tr>
<tr>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
</tr>
<tr>
<td>2mm.</td>
<td></td>
</tr>
<tr>
<td>0,1/2,z [0,0,0]</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
</tr>
<tr>
<td>2mm.</td>
<td></td>
</tr>
<tr>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>2mm.</td>
<td></td>
</tr>
<tr>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td>4'm2'</td>
<td></td>
</tr>
<tr>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
</tr>
<tr>
<td>4'm2'</td>
<td></td>
</tr>
<tr>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
</tr>
<tr>
<td>4'm2</td>
<td></td>
</tr>
<tr>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>4m2</td>
<td></td>
</tr>
<tr>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1'
Along [1,0,0] p1m11'
Along [1,1,0] p2a* 2m'm'

a* = a b* = b
a* = b b* = c
a* = -c b* = (-a + b)/2

Origin at 0,0,z
Origin at x,0,0
Origin at x,x,0

115.6.946 - 2 - 1888
Origin on $\bar{4}m2$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0) + \text{set}$

(1) 1

(1) $0,0,0$

(5) $m \times 0, z$

$m_{y} | 0,0,0$

(6) $m \times 0, y$

$m_{x} | 0,0,0$

(7) $2 \times x, x$

(2) $x, x, 0$

(3) $4' \times 0,0,z; 0,0,0$

$2_{z} | 0,0,0$

(4) $4' \times 0,0,z; 0,0,0$

$2_{z}^{-1} | 0,0,0$

For $(1,0,0)' + \text{set}$

(1) $t' (1,0,0)$

(1) $1,0,0'$

(5) $a' (1,0,0) \times 0, z$

$m_{y} | 1,0,0$

(6) $m' 1/2,y,z$

$m_{x} | 1,0,0$

(7) $2' (1/2,1/2,0) \times +1/2,x$

$(2)_{y} | 0,0,0$

(3) $4' ' 1/2,-1/2,z; 1/2,-1/2,0$

$(4)_{z} | 1,0,0'$

(4) $4' ' 1/2,2,1/2,z; 1/2,1/2,0$

$(4)_{z}^{-1} | 1,0,0'$

(8) $2' (1/2,-1/2,0) \times +1/2,x$

$(2)_{y} | 0,0,0$

$\bar{4}m2$

115.7.947

Tetragonal

P$_{4}$ $\bar{4}m2$

$115.7.947 - 1 - 1889$
Generators selected
(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>16 l</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 k .m'</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>8 j .m</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>8 i ..2</td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td>8 h ..2</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>4 g 2'm'</td>
<td>0,1/2,z [u,0,0]</td>
</tr>
<tr>
<td>4 f 2m'm'</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 e 2mm</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 d 4m2</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c 4'm2</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b 4'm2</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 a 4m2</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_{c}4m'm' \) Along [1,0,0] \(p1m11' \) Along [1,1,0] \(p_{2a}2m'm' \)
\(a^* = a \quad b^* = b \)
\(a^* = b \quad b^* = c \)
Origin at 0,0,z Origin at x,0,0 Origin at x,x,0
Origin on $\bar{4}m2$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0)$ + set

1. 1 (1) $0,0,0$
2. 2 $0,0,z$ (2z $0,0,0$
3. $\bar{4}^{-1}$ $0,0,z$; $0,0,0$ (4z $0,0,0$
4. $\bar{4}^{-1}$ $0,0,z$; $0,0,0$ ($4z^{-1}$ $0,0,0$

(5) m $x,0,z$
(m$_{y}$ $0,0,0$

(6) m $0,y,z$
(m$_{x}$ $0,0,0$

(7) 2 $x,x,0$
(2_{xy} $0,0,0$

(8) 2 $x,x,0$
(2_{xy} $0,0,0$

For $(1,0,0)'$ + set

1. $t'(1,0,0)$ (1) $1,0,0$
2. $2'$ $1/2,0,z$ (2z $1,0,0$
3. $\bar{4}^{-1}$ $1/2,-1/2,z$; $1/2,-1/2,0$ (4z $1,0,0$
4. $\bar{4}^{-1}$ $1/2,1/2,z$; $1/2,1/2,0$ ($4z^{-1}$ $1,0,0$

(5) a' $(1,0,0)$ $x,0,z$
(m$_{y}$ $1,0,0$

(6) m' $1/2,y,z$
(m$_{x}$ $1,0,0$

(7) 2' $(1/2,1/2,0)$ $x+1/2,x,0$
(2_{xy} $1,0,0$

(8) 2' $(1/2,-1/2,0)$ $x+1/2,x,0$
(2_{xy} $1,0,0$

Generators selected (1); $t'(1,0,0)$; $t'(0,1,0)$; $t'(0,0,1)$; (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

Coordinates

(0,0,0) +

1. 1 x,y,z [u,v,w]$\quad (1)$ \bar{x},\bar{y},\bar{z} [u,v,w]$\quad (2)$ \bar{x},\bar{y},z [u,v,w]$\quad (3)$ y,x,z [u,v,w]$\quad (4)$ y,x,z [v,u,w]

(5) x,y,z [u,v,w]$\quad (6)$ x,y,z [u,v,w]$\quad (7)$ y,x,z [v,u,w]$\quad (8)$ y,x,z [v,u,w]

8. k $0.1/2,0,[u,0,0]$ $\bar{x},1/2,z$ [u,0,0]$\quad 1/2,\bar{x},z$ [0,u,w]$\quad 1/2,\bar{x},z$ [0,u,w]

8. j $0.0,0,[0,v,0]$ $\bar{x},0,z$ [0,0,0]$\quad 0,\bar{x},z$ [v,0,0]$\quad 0,\bar{x},z$ [v,0,0]

8. i $0.1/2$ $x,x,1/2$ [u,u,w]$\quad \bar{x},x,1/2$ [u,u,w]$\quad x,x,1/2$ [u,u,w]$\quad \bar{x},x,1/2$ [u,u,w]

8. h $0.0,0,[u,0,0]$ $\bar{x},x,0$ [u,u,0]$\quad x,\bar{x},0$ [u,u,0]$\quad \bar{x},x,0$ [u,u,0]

4. g $20.1/2,0,[0,0,0]$ $1/2,0,z$ [u,0,0]$\quad 1/2,0,z$ [0,u,0]

4. f $20.1/2,0,[0,0,0]$ $1/2,1/2,z$ [0,0,w]$\quad 1/2,1/2,z$ [0,0,w]

4. e $20.0,0,[0,0,0]$ $0,0,z$ [0,0,0]$\quad 0,0,z$ [0,0,0]

2. d $\bar{4}m2'$ $0.0,1/2$ [0,0,0]$\quad 0.0,1/2$ [0,0,0]

2. c $\bar{4}m2'$ $1/2,1/2,1/2$ [0,0,w]$\quad 1/2,1/2,1/2$ [0,0,w]

2. b $\bar{4}m2'$ $1/2,1/2,0$ [0,0,0]$\quad 1/2,1/2,0$ [0,0,0]

2. a $\bar{4}m2$ $0.0,0$ [0,0,0]$\quad 0.0,0$ [0,0,0]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p 4mm1'</td>
<td>Origin at 0,0,z</td>
</tr>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td></td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>p1m11'</td>
<td>Origin at x,0,0</td>
</tr>
<tr>
<td>a* = b</td>
<td>b* = c</td>
<td></td>
</tr>
<tr>
<td>Along [1,1,0]</td>
<td>p_c 2mm</td>
<td>Origin at x-1/4,x+1/4,1/2</td>
</tr>
<tr>
<td>a* = (-a + b)/2</td>
<td>b* = c</td>
<td></td>
</tr>
</tbody>
</table>
P2c 4m2

Tetragonal

115.9.949

\(m \) 2

Asymmetric unit

\[0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2} \]

\textbf{Symmetry Operations}

\begin{align*}
(1) & \quad 1 \\
(1) & \quad (0,0,0) \\
(1) & \quad (0,0,0) \\
(5) & \quad m' x,0,z \\
(5) & \quad (m_x | 0,0,0)' \\
(5) & \quad (m_y | 0,0,0)' \\
(6) & \quad m' 0,y,z \\
(6) & \quad (m_y | 0,0,0)' \\
(6) & \quad (m_x | 0,0,0)' \\
(7) & \quad 2' \quad 0,0,z \\
(7) & \quad (2_z | 0,0,0)' \\
(7) & \quad (2_y | 0,0,0) \\
(7) & \quad (2_x | 0,0,0) \\
(8) & \quad 2' \quad 0,0,z \\
(8) & \quad (2_z | 0,0,0)' \\
(8) & \quad (2_y | 0,0,0) \\
(8) & \quad (2_x | 0,0,0)' \\
(1) & \quad t' \quad (0,0,1) \\
(1) & \quad (0,0,1)' \\
(1) & \quad (0,0,1)' \\
(5) & \quad c (0,0,1) \quad x,0,z \\
(5) & \quad (m_x | 0,0,1) \\
(5) & \quad (m_y | 0,0,1)' \\
(6) & \quad c (0,0,1) \quad 0,y,z \\
(6) & \quad (m_x | 0,0,1) \\
(6) & \quad (m_y | 0,0,1)' \\
(7) & \quad 2' \quad x,x,1/2 \\
(7) & \quad (2_x | 0,0,1)' \\
(7) & \quad (2_y | 0,0,1)' \\
(8) & \quad 2' \quad x,x,1/2 \\
(8) & \quad (2_x | 0,0,1)' \\
(8) & \quad (2_y | 0,0,1)' \\
\end{align*}

\textbf{Origin on \(\overline{4} \)'m'2}

For \((0,0,0)\) set

\begin{align*}
(1) \quad & \quad 1 \\
(2) \quad & \quad 2 \quad 0,0,z \\
(2) \quad & \quad (2_z | 0,0,0) \\
(3) \quad & \quad 4^+ \quad 0,0,z; \quad 0,0,0 \\
(3) \quad & \quad (4_z | 0,0,0)' \\
(4) \quad & \quad 4^+ \quad 0,0,z; \quad 0,0,0 \\
(4) \quad & \quad (4_z |-1,0,0)' \\
\end{align*}

For \((0,0,1)\) set

\begin{align*}
(1) \quad & \quad t' \quad (0,0,1) \\
(1) \quad & \quad (0,0,1)' \\
(2) \quad & \quad 2' \quad (0,0,1) \quad 0,0,z \\
(2) \quad & \quad (2_z | 0,0,1)' \\
(3) \quad & \quad 4^+ \quad 0,0,z; \quad 0,0,1/2 \\
(3) \quad & \quad (4_z | 0,0,1) \\
(4) \quad & \quad 4^+ \quad 0,0,z; \quad 0,0,1/2 \\
(4) \quad & \quad (4_z |-1,0,1) \\
(5) \quad & \quad c (0,0,1) \quad x,0,z \\
(5) \quad & \quad (m_x | 0,0,1) \\
(6) \quad & \quad c (0,0,1) \quad 0,y,z \\
(6) \quad & \quad (m_x | 0,0,1) \\
(7) \quad & \quad 2' \quad x,x,1/2 \\
(7) \quad & \quad (2_x | 0,0,1)' \\
(8) \quad & \quad 2' \quad x,x,1/2 \\
(8) \quad & \quad (2_x | 0,0,1)' \\
\end{align*}
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>16</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>k .m'. x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,z [0,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>j .m'. x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,x,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>0,x,z [0,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>i ..2' x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>h ..2 x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>g 2m'm'. 0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>f 2m'm'. 1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>e 2m'm'. 0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>d 4m'2' 0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>c 4m'2' 1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b 4m'2' 1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a 4m'2' 0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4mm1'</th>
<th>Along [1,0,0]</th>
<th>p2a1m1'</th>
<th>Along [1,1,0]</th>
<th>p2a1m1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = -c</td>
<td>b* = (-a + b)/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x,1/2</td>
<td></td>
</tr>
</tbody>
</table>
Origin on $\overline{4}m2'$

Asymmetric unit

$0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/2$

Symmetry Operations

For (0,0,0) + set

(1) 1
(1) $0,0,0$

(2) $2' \quad 0,0,z$
(2) $z,0,0,0$

(3) $\overline{4} +' \quad 0,0,z; \quad 0,0,0$
(4) $\overline{4} +' \quad 0,0,z; \quad 0,0,0$

For (1,0,0)' + set

(1) $t' \quad (1,0,0)$
(1) $1,0,0$

(2) $2' \quad 1/2,0,z$
(2) $z,1,0,0$

(3) $\overline{4} +' \quad 1/2,-1/2,z; \quad 1/2,-1/2,0$
(4) $\overline{4} +' \quad 1/2,1/2,z; \quad 1/2,1/2,0$

(5) $a' \quad (1,0,0)$
(5) $x,0,z$

(6) $m' \quad 1/2,y,z$
(6) $m,1,0,0$

(7) $2' (1/2,1/2,0) \quad x+1/2,x,0$
(7) $2 (1/2,-1/2,0) \quad x+1/2,x,0$

(8) $2 (1/2,-1/2,0) \quad x+1/2,x,0$
(8) $2 (1/2,1/2,0) \quad x+1/2,x,0$
Generators selected

(1); \(t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 l 1</td>
<td>((0,0,0) + (1,0,0)' +)</td>
<td></td>
</tr>
<tr>
<td>8 k .m'</td>
<td>((1) x,y,z [u,v,w])</td>
<td></td>
</tr>
<tr>
<td>8 j .m</td>
<td>((2) \tilde{x},y,z [\tilde{u},\tilde{v},\tilde{w}])</td>
<td></td>
</tr>
<tr>
<td>8 i .2</td>
<td>((3) y,x,z [\tilde{v},u,w])</td>
<td></td>
</tr>
<tr>
<td>8 h .2</td>
<td>((4) y,x,z [v,u,w])</td>
<td></td>
</tr>
<tr>
<td>4 g 2mm'</td>
<td>((5) x,y,z [u,v,w])</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 f 2m'm'</td>
<td>((6) \tilde{x},y,z [\tilde{u},\tilde{v},\tilde{w}])</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 e 2mm</td>
<td>((7) y,x,z [\tilde{v},u,w])</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 d (\bar{4}m2')</td>
<td>((8) \tilde{y},x,z [v,u,w])</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 c (\bar{4}m2')</td>
<td>((1) x,1/2,z [u,0,w])</td>
<td>1/2,x,1/2 [u,0,0]</td>
</tr>
<tr>
<td>2 b (\bar{4}m2')</td>
<td>((2) \tilde{x},x,0 [u,u,0])</td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td>2 a (\bar{4}m2')</td>
<td>((3) x,y,1/2 [u,v,0])</td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>((4) x,0,z [0,v,0])</td>
<td>x,0,z [v,0,0]</td>
</tr>
<tr>
<td></td>
<td>((5) x,0,z [0,v,0])</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>((6) x,0,z [0,v,0])</td>
<td>0,x,z [v,0,0]</td>
</tr>
<tr>
<td></td>
<td>((7) x,0,z [0,v,0])</td>
<td>0,x,z [v,0,0]</td>
</tr>
<tr>
<td></td>
<td>((8) x,0,z [0,v,0])</td>
<td>0,x,z [v,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) \(p_{\beta}, 4mm \)
Along \([1,0,0]\) \(p1m11' \)
Along \([1,1,0]\) \(p_{2\alpha}, 2mm \)

\(a^* = a \quad b^* = b \)
\(a^* = b \quad b^* = c \)
\(a^* = (-a+b)/2 \quad b^* = c \)

Origin at 1/2,1/2,z
Origin at x,0,0
Origin at x-1/4,x+1/4,0
Origin on $\overline{4}c1$

Asymmetric unit \[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4\]

Symmetry Operations

\begin{align*}
(1) & \quad 1 \\
 & \quad (1) \ 0,0,0 \\
(2) & \quad 2 \ 0,0,z \\
 & \quad (2z) \ 0,0,0 \\
(3) & \quad \overline{4}^+ \ 0,0,z; 0,0,0 \\
 & \quad (4z) \ 0,0,0 \\
(4) & \quad \overline{4} - \ 0,0,z; 0,0,0 \\
 & \quad (4z^{-1}) \ 0,0,0 \\
(5) & \quad c \ (0,0,1/2) \ x,0,z \\
 & \quad (m_y) \ 0,0,1/2 \\
(6) & \quad c \ (0,0,1/2) \ 0,y,z \\
 & \quad (m_x) \ 0,0,1/2 \\
(7) & \quad 2 \ x,x,1/4 \\
 & \quad (2_{xy}) \ 0,0,1/2 \\
(8) & \quad 2 \ x,x,1/4 \\
 & \quad (2_{xy}) \ 0,0,1/2
\end{align*}
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>x, y, z</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 j 1</td>
<td>1</td>
<td>x, y, z [u, v, w]</td>
<td>(1) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) y, x, z [v, u, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) y, x, z [v, u, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) y, x, z [v, u, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) x, y, z+1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6) x, y, z+1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) x, y, z+1/2 [v, u, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8) y, x, z+1/2 [v, u, w]</td>
</tr>
<tr>
<td>4 i 2..</td>
<td>1/2,0, z [0,0,w]</td>
<td>1/2,0, z [0,0,w]</td>
<td>1/2,0, z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,0, z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 h 2..</td>
<td>1/2,1/2, z [0,0,w]</td>
<td>1/2,1/2, z [0,0,w]</td>
<td>1/2,1/2, z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2, z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 g 2..</td>
<td>0,0, z [0,0,w]</td>
<td>0,0, z [0,0,w]</td>
<td>0,0, z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0, z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 f ..2</td>
<td>x,x,3/4 [u, u, 0]</td>
<td>x,x,3/4 [u, u, 0]</td>
<td>x,x,1/4 [u, u, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,1/4 [u, u, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,1/4 [u, u, 0]</td>
</tr>
<tr>
<td>4 e ..2</td>
<td>x,x,1/4 [u, u, 0]</td>
<td>x,x,1/4 [u, u, 0]</td>
<td>x,x,3/4 [u, u, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,3/4 [u, u, 0]</td>
</tr>
<tr>
<td>2 d 4</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 c 4</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 b 2.22</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 2.22</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'mm'
Along [1,0,0] p2b1m'1
Along [1,1,0] p2m'm'

\(a^* = a \quad b^* = b \)
Origin at 0,0,z
\(a^* = b \quad b^* = c/2 \)
Origin at x,0,0
\(a^* = (a + b)/2 \quad b^* = c \)
Origin at x,x,1/4
Origin on $\overline{4}c1'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4$

Symmetry Operations

For 1 + set

(1) 1

(1) 0,0,0

(5) $c (0,0,1/2) \cdot x,0,z$

(6) $c (0,0,1/2) \cdot 0,y,z$

(7) $2' \cdot x,x,1/4$

(8) $2' \cdot x,x,1/4$

For 1' + set

(1) 1'

(1) 0,0,0'

(5) $c' (0,0,1/2) \cdot x,0,z$

(6) $c' (0,0,1/2) \cdot 0,y,z$

(7) $2' \cdot x,x,1/4$

(8) $2' \cdot x,x,1/4$
GENERATORS

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

POSITIONS

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 j 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) (\bar{x},\bar{y},\bar{z}) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) y,(\bar{x},\bar{z}) [0,0,0]</td>
<td>(4) y,(\bar{x},\bar{z}) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) x,(\bar{y},\bar{z}+1/2) [0,0,0]</td>
<td>(6) (\bar{x},\bar{y},\bar{z}+1/2) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) y,(\bar{x},\bar{z}+1/2) [0,0,0]</td>
<td>(8) y,(\bar{x},\bar{z}+1/2) [0,0,0]</td>
</tr>
<tr>
<td>4 i 2..1'</td>
<td>0,1/2,z [0,0,0]</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,0]</td>
<td>1/2,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 h 2..1'</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 g 2..1'</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 f ..21'</td>
<td>x,x,3/4 [0,0,0]</td>
<td>x,x,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [0,0,0]</td>
<td>x,x,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 e ..21'</td>
<td>x,x,1/4 [0,0,0]</td>
<td>x,x,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [0,0,0]</td>
<td>x,x,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 d (\bar{4})1'</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c (\bar{4})1'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b 2.221'</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 a 2.221'</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

SYMMETRY OF SPECIAL PROJECTIONS

<table>
<thead>
<tr>
<th>Origin at 0,0,z</th>
<th>Origin at x,0,0</th>
<th>Origin at x,x,1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a) (b^* = b)</td>
<td>(a^* = b) (b^* = c/2)</td>
<td>(a^* = -(a + b)/2) (b^* = c)</td>
</tr>
</tbody>
</table>
Origin on $\overline{4}c'1$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4$

Symmetry Operations

1. $\overline{4}c'2$

2. $\overline{4}m'2$ Tetragonal

$P\overline{4}c'2$

$116.3.953$

$\overline{4}m'2$

$P\overline{4}c'2$

Symmetry Operations:

1. $1 \quad (0,0,0)$

2. $2 \quad 0,0,z \quad (2z,0,0,0)$

3. $\overline{4}c' \quad 0,0,z; 0,0,0 \quad (\overline{4}z,0,0,0')$

4. $\overline{4}c' \quad 0,0,z; 0,0,0 \quad (\overline{4}z,1,0,0')$

5. $c' \quad (0,0,1/2); \quad x,0,z \quad (m_y,0,0,1/2)'$

6. $c' \quad (0,0,1/2); \quad 0,y,z \quad (m_x,0,0,1/2)'$

7. $2 \quad x,x,1/4 \quad (2y,0,0,1/2)$

8. $2 \quad x,x,1/4 \quad (2y,0,0,1/2)$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 j 1 (1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 i 2. 0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 h 2. 1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 g 2. 0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 f ..2 x,x,3/4 [u,u,0]</td>
<td>x,x,3/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td>4 e ..2 x,x,1/4 [u,u,0]</td>
<td>x,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [u,u,0]</td>
</tr>
<tr>
<td>2 d 4. 1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c 4. 0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b 2.22 1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 a 2.22 0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p4m'm'</th>
<th>Along [1,0,0] p1m'</th>
<th>Along [1,1,0] p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = a b' = b</td>
<td>a' = b b' = c/2</td>
<td>a' = (-a + b)/2 b' = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,1/4</td>
</tr>
</tbody>
</table>

116.3.953 - 2 - 1903
Origin on $\overline{4}c1$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4$

Symmetry Operations

1. $\overline{4}c2'$
 - $0,0,0$
 - $0,0,0$

2. $2\overline{4}c2'$
 - $2,0,z$
 - $2,0,0$

3. $\overline{4}c2'$
 - $0,0,z$
 - $0,0,0$

4. $\overline{4}c2'$
 - $0,0,z$
 - $0,0,0$

5. c (0,0,1/2)
 - $x,0,z$
 - $(m_y,0,0,1/2)$

6. c (0,0,1/2)
 - $0,y,z$
 - $(m_x,0,0,1/2)$

7. $2'$
 - $x,x,1/4$
 - $(2_{xy},0,0,1/2)$

8. $2'$
 - $x,x,1/4$
 - $(2_{xy},0,0,1/2)$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>8 j 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>4 i 2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 h 2..</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 g 2..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 f .2'</td>
<td>x,x,3/4 [u,u,w]</td>
</tr>
<tr>
<td>4 e .2'</td>
<td>x,x,1/4 [u,u,w]</td>
</tr>
<tr>
<td>2 d 4'</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 c 4'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b 2.2'2'</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>2 a 2.2'2'</td>
<td>0,0,1/4 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm

a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p21m'1

a* = b b* = c/2
Origin at x,0,0

Along [1,1,0] p2'mm'

a* = -c b* = (-a + b)/2
Origin at x,x,1/4
Origin on $\overline{4}c'1$

Asymmetric unit $\quad 0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4$

Symmetry Operations

1. 1
 - $(1,0,0)$
 - $(2z,0,0,0)$

2. 2 $0,0,z$
 - $(0,0,0,0)$

3. $\overline{4}$ $0,0,z; 0,0,0$
 - $(0,0,0,0)$
 - $(0,0,0,0)$

4. $\overline{4}$ $0,0,z; 0,0,0$
 - $(0,0,0,0)$
 - $(0,0,0,0)$

5. c' $(0,0,1/2)$ $x,0,z$
 - $(m_y,0,0,1/2)$
 - $(0,0,0,1/2)$

6. c' $(0,0,1/2)$ $0,y,z$
 - $(m_x,0,0,1/2)$
 - $(0,0,0,1/2)$

7. $2'$ $x,x,1/4$
 - $(2x,0,0,1/2)$
 - $(2y,0,0,1/2)$

8. $2'$ $x,x,1/4$
 - $(2x,0,0,1/2)$
 - $(2y,0,0,1/2)$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 j 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [v,u,w]</td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>4 i 2... 0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 h 2... 1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 g 2... 0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 f .2' x,x,3/4 [u,u,w]</td>
<td>x,x,3/4 [u,u,w]</td>
<td>x,x,1/4 [u,u,w]</td>
<td>x,x,1/4 [u,u,w]</td>
</tr>
<tr>
<td>4 e .2' x,x,1/4 [u,u,w]</td>
<td>x,x,1/4 [u,u,w]</td>
<td>x,x,3/4 [u,u,w]</td>
<td>x,x,3/4 [u,u,w]</td>
</tr>
<tr>
<td>2 d 4 1/2,1/2,0 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c 4 0,0,0 [0,0,w]</td>
<td>0,1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b 2.2'2' 1/2,1/2,1/4 [0,0,w]</td>
<td>1/2,1/2,3/4 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a 2.2'2' 0,0,1/4 [0,0,w]</td>
<td>0,3/4 [0,0,w]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p4'm'm
- Along [1,0,0] p1m'1
- Along [1,1,0] p2'mm'

Origin at 0,0,z

- a' = a
- b* = b

Origin at x,0,0

- a' = -c
- b* = (-a + b)/2

Origin at x,x,1/4
Origin on $\overline{4}c1$

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq \frac{1}{4} \]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \quad 0,0,z \\
(3) & \quad \overline{4}^+ \quad 0,0,z; 0,0,0 \\
(4) & \quad \overline{4}^+ \quad 0,0,z; 0,0,0 \\
& \quad (\overline{4}_z^\perp|0,0,0) \\
(5) & \quad c \quad (0,0,1/2) \quad x,0,z \\
& \quad (m_y|0,0,1/2) \\
(6) & \quad c \quad (0,0,1/2) \quad 0,y,z \\
& \quad (m_x|0,0,1/2) \\
(7) & \quad 2 \quad x,x,1/4 \\
& \quad (2_{xy}|0,0,1/2) \\
(8) & \quad 2 \quad x,x,1/4 \\
& \quad (2_{xy}|0,0,1/2)
\end{align*}
\]

For \((1,0,0) + \) set

\[
\begin{align*}
(1) & \quad t' \quad (1,0,0) \\
& \quad (1|1,0,0)' \\
(2) & \quad 2' \quad 1/2,0,z \\
& \quad (2_z|1,0,0)' \\
(3) & \quad \overline{4}^+ \quad 1/2,-1/2,z; 1/2,-1/2,0 \\
& \quad (\overline{4}_z|1,0,0)' \\
(4) & \quad \overline{4}^+ \quad 1/2,1/2,z; 1/2,1/2,0 \\
& \quad (\overline{4}_z^\perp|1,0,0)' \\
(5) & \quad n' \quad (1,0,1/2) \quad x,0,z \\
& \quad (m_y|1,0,1/2)' \\
(6) & \quad c' \quad (0,0,1/2) \quad 1/2,y,z \\
& \quad (m_x|1,0,1/2)' \\
(7) & \quad 2' \quad (1/2,1/2,0) \quad x+1/2,x,1/4 \\
& \quad (2_{xy}|1,0,1/2)' \\
(8) & \quad 2' \quad (1/2,-1/2,0) \quad x+1/2,x,1/4 \\
& \quad (2_{xy}|1,0,1/2)'
\end{align*}
\]
Generators selected

(1): t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j 1</td>
<td>(0,0,0) + (1,0,0) +</td>
</tr>
<tr>
<td>16 j 1</td>
<td>16 j 1</td>
</tr>
<tr>
<td>16 j 1</td>
<td>16 j 1</td>
</tr>
<tr>
<td>8 i 2'. 0,1/2,z [u,v,0]</td>
<td>1/2,0,z [v,u,0]</td>
</tr>
<tr>
<td>8 h 2.. 1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 g 2.. 0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 f ..2 x,x,3/4 [u,u,0]</td>
<td>x,x,3/4 [u,u,0]</td>
</tr>
<tr>
<td>8 e ..2 x,x,1/4 [u,u,0]</td>
<td>x,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td>4 d 4'. 1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c 4 0,0,0 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 b 2.22 1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2.22 0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] pₚ 4m’m’

Along [1,0,0] p1m11’

Along [1,1,0] p₂a’ 2m’m’

a’ = a b’ = b

a’ = b b’ = c/2

a’ = (-a + b)/2 b’ = c

Origin at 1/2,1/2,z

Origin at x,0,0

Origin at x,x,1/4
Origin on \(\overline{4} \cdot c1 \)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \)

Symmetry Operations

For \((0,0,0) + \) set

1. \((1) \quad 1 \quad 0,0,0 \)
2. \((2) \quad 2'y \quad 0,0,z \quad (2z, 0, 0, 0) \)
3. \((3) \quad 2'y' \quad 0,0,0; 0,0,0 \quad (4z, 0, 0, 0) \)
4. \((4) \quad 2'y' \quad 0,0,0; 0,0,0 \quad (4z^{-1}, 0, 0, 0) \)

For \((1,0,0) + \) set

1. \((1) \quad t' \quad (1,0,0) \quad (1,1,0,0) \)
2. \((2) \quad 2'y' \quad 1/2,0,z \quad (2z, 1, 0, 0) \)
3. \((3) \quad 2'y' \quad 1/2,1/2,z; 1/2,1/2,0 \quad (4z, 1, 0, 0) \)
4. \((4) \quad 2'y' \quad 1/2,1/2,z; 1/2,1/2,0 \quad (4z^{-1}, 1, 0, 0) \)

For \((1,0,1/2) + \) set

1. \((5) \quad n' \quad (1,0,1/2) \quad x,0,z \quad (m, 0, 0, 1/2) \)
2. \((6) \quad c' \quad (0,0,1/2) \quad 0,y,z \quad (m, 0, 0, 1/2) \)
3. \((7) \quad 2'y' \quad x,x,1/4 \quad (2xy, 0, 0, 1/2) \)
4. \((8) \quad 2'y' \quad x,x,1/4 \quad (2xy, 0, 0, 1/2) \)
Generators selected

(1); t'(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>16</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>0,1/2,z [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>x,x,3/4 [u,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>x,x,1/4 [u,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>0,0,1/4 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_p' 4mm
\[a^* = a, \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p1m11'
\[a^* = b, \quad b^* = c/2 \]
Origin at x,0,0

Along [1,1,0] p_{2z} 2mm
\[a^* = (-a + b)/2, \quad b^* = c \]
Origin at x-1/4,x+1/4,1/4
Origin on $\overline{4}1_{1}$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

(1) 1
(2) $2 \quad 0,0,z$
(3) $\overline{4} \times 0,0,z; 0,0,0$
(4) $\overline{4} \times 0,0,z; 0,0,0$ z

(5) $a (1/2,0,0) \quad x,1/4,z$
(6) $b (0,1/2,0) \quad 1/4,y,z$
(7) $2 (1/2,1/2,0) \quad x,x,0$
(8) $2 \quad x, x+1/2,0$

$P4b2$

$\overline{4}m2$

Tetragonal
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>i</td>
</tr>
</tbody>
</table>

| 1 | (1) x,y,z [u,v,w] |
| (2) x,y,z [u,v,w] |
| (3) y,x,z [v,u,w] |
| (4) y,x,z [v,u,w] |
| (5) x+1/2,y+1/2,z [u,v,w] |
| (6) x+1/2,y+1/2,z [u,v,w] |
| (7) y+1/2,x+1/2,z [v,u,w] |
| (8) y+1/2,x+1/2,z [v,u,w] |

| 4 | h |

| .2 | x,x+1/2,1/2 [u,u,0] |
| x,x+1/2,1/2 [u,u,0] |
| x,x+1/2,0 [u,u,0] |
| x,x+1/2,0 [u,u,0] |
| 0,1/2,z [0,0,0] |
| 1/2,0,z [0,0,0] |
| 0,0,z [0,0,0] |
| 0,0,0 [0,0,0] |
| 0,1/2,1/2 [0,0,0] |
| 1/2,0,0 [0,0,0] |
| 0,0,1/2 [0,0,0] |
| 1/2,1/2,1/2 [0,0,0] |

Symmetry of Special Projections

Along [0,0,1] p4gm'
Along [1,0,0] p2a1m1
Along [1,1,0] p2m1m'

a = a
b = b
a = b/2
b = c
a = (-a + b)/2
b = c
Origin at 0,0,z
Origin at x,1/4,0
Origin at x,x,0
Origin on $\bar{4}12, 1'$

Asymmetric unit
$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $1 +$ set

1. 1

 \[(1) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \]

2. 2

 \[(2) \begin{pmatrix} 2, 0, 0, z \\ 0, 0, 0 \end{pmatrix} \]

3. $\bar{4}$

 \[(3) \begin{pmatrix} 4, 0, z; 0, 0, 0 \\ 4_z, 0, 0, 0 \end{pmatrix} \]

4. $\bar{4}$

 \[(4) \begin{pmatrix} 0, 0, z; 0, 0, 0 \\ 4_z, 0, 0, 0 \end{pmatrix} \]

For $1' +$ set

1. $1'$

 \[(1) \begin{pmatrix} 1, 0, 0, 0 \end{pmatrix} \]

2. $2'$

 \[(2) \begin{pmatrix} 2', 0, 0, z \\ 2_z, 0, 0, 0 \end{pmatrix} \]

3. $\bar{4}'$

 \[(3) \begin{pmatrix} 4', 0, z; 0, 0, 0 \\ 4_z, 0, 0, 0 \end{pmatrix} \]

4. $\bar{4}'$

 \[(4) \begin{pmatrix} 0, 0, z; 0, 0, 0 \\ 4_z, 0, 0, 0 \end{pmatrix} \]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

Coordinates

1 + 1' +

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 h ..21'</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 g ..21'</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>4 f 2..1'</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 e 2..1'</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 d 2.221'</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 c 2.221'</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 b ..1'</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 a ..1'</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm1' Along [1,0,0] p1m11' Along [1,1,0] p2mm1'
a* = a b* = b a* = a/2 b* = c a* = (a + b)/2 b* = c
Origin at 0,0,z Origin at x,0,0 Origin at x,x,0
Origin on $\overline{4}121$,

Asymmetric unit

$$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$$

Symmetry Operations

(1) 1

(1) $0,0,0$

(1) $0,0,0$

(2) $0,0,0$

(3) $0,0,0$

(4) $0,0,0$

(5) a' (1/2,0,0)

(6) b' (0,1/2,0)

(7) $2 (1/2,1/2,0)$

(8) $2 x,x+1/2,0$

$\overline{4}m'$

$P\overline{4}b'$

$117.3.960$

$P\overline{4}b'$

Tetragonal
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter, Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) y+1/2,x+1/2,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>4 h ..2</td>
<td>x,x+1/2,1/2 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,1/2 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,1/2 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,1/2 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>4 g ..2</td>
<td>x,x+1/2,0 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,0 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,0 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,0 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>4 f 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 e 2..</td>
<td>0,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 d 2.22</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 c 2.22</td>
<td>0,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 b 4'..</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 4'..</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4g'm'
\[a^* = a, \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p1m'1
\[a^* = b/2, \quad b^* = c \]
Origin at x,0,0

Along [1,1,0] p2m1'm'
\[a^* = (-a + b)/2, \quad b^* = c \]
Origin at x,x,0
Origin on 4'12,'

Asymmetric unit
\[0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/2\]

Symmetry Operations

\[
(1) \ 1 \\
(1') 0,0,0 \\
(2) \ 2 \ 0,0,z \\
(2') 0,0,0 \\
(3) \ 4' \ 0,0,z; 0,0,0 \\
(4) \ 4' \ 0,0,z; 0,0,0' \\
(5) \ a \ (1/2,0,0) \ x,1/4,z \\
(5') \ (1/2,1/2,0) \ (2y,1/2,0) \\
(6) \ b \ (0,1/2,0) \ 1/4,y,z \\
(6') \ (2x,1/2,1/2,0) \\
(7) \ 2' \ (1/2,1/2,0) \ x,x,0 \\
(7') \ (2x,1/2,1/2,0) \\
(8) \ 2' \ x,x+1/2,0 \\
(8') \ (2x,1/2,1/2,0)'
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z [v,u,w]</td>
<td>(8) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm
Along [1,0,0] p2a1m1
Along [1,1,0] p2mm'
a* = a b* = b
a* = b/2 b* = c
a* = -c b* = (-a + b)/2
Origin at 0,0,z
Origin at x,1/4,0
Origin at x,x,0
Origin on $\overline{4}1'2'_z$.

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

1. 1
 - $(1'0,0,0)$
 - $(m_y,1/2,1/2,0)'$

2. 2 $0,0,z$
 - $(2_z,0,0,0)$
 - $(m_y,1/2,1/2,0)'$

3. $\overline{4}^+$ $0,0,z; 0,0,0$
 - $(4_z,0,0,0)$
 - $(4_z^{-1},0,0,0)$

4. $\overline{4}$ $0,0,z ; 0,0,0$
 - $(4_z,0,0,0)$
 - $(4_z^{-1},0,0,0)$

5. a' $(1/2,2,0,0)$ $x,1/4,z$
 - $(m_x,1/2,1/2,0)'$

6. $b' (0,1/2,0)$ $1/4,y,z$
 - $(m_x,1/2,1/2,0)'$

7. $2' (1/2,1/2,0)$ $x,x,0$
 - $(2_{xy},1/2,1/2,0)'$

8. $2' x,x+1/2,0$
 - $(2_{xy},1/2,1/2,0)'$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td>(4) y,z,v [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z [v,u,w]</td>
<td>(8) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'g'm
a* = a b* = b c* = c
Origin at 0,0,0

Along [1,0,0] p1m'1
a* = b/2 b* = c c* = c
Origin at x,0,0

Along [1,1,0] p2'mm'
a* = -c b* = (-a + b)/2 c* = c
Origin at x,x,0

Origin at 0,0,z

117.5.962 - 2 - 1921
Origin on $\overline{4}12_1$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2$

Symmetry Operations

For $(0,0,0) + set$

(1) 1
(1) 0,0,0)

(5) a (1/2,0,0) x,1/4,z
(m, 1/2,1/2,0)

(6) b (0,1/2,0) 1/4,y,z
(m, 1/2,1/2,0)

(7) 2 (1/2,1/2,0) x,x,0
(2y, 1/2,1/2,0)

(8) 2' x,x+1/2,0
(2y, 1/2,1/2,0)

For $(0,0,1)' + set$

(1) t' (0,0,1)
(1) 0,0,1')

(5) n' (1/2,0,1) x,1/4,z
(m, 1/2,1/2,1')

(6) n' (0,1/2,1) 1/4,y,z
(m, 1/2,1/2,1')

(7) 2' (1/2,1/2,0) x,x,1/2
(2y, 1/2,1/2,1')

(8) 2' x,x+1/2,1/2
(2y, 1/2,1/2,1')

117.6.963 - 1 - 1922
Continued 117.6.963

Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 i</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
</tbody>
</table>

8 h	x,x+1/2,1/2 [u,u,w]
	x+1/2,x,1/2 [u,u,w]
	x+1/2,x,1/2 [u,u,w]
	x+1/2,x,1/2 [u,u,w]
8 g	x,x+1/2,0 [u,u,0]
	x+1/2,x,0 [u,u,0]
	x+1/2,x,0 [u,u,0]
8 f	0,1/2,z [0,0,w]
	1/2,0,z [0,0,w]
	1/2,0,z [0,0,w]
8 e	0,0,z [0,0,w]
	0,0,z [0,0,w]
	1/2,1/2,z [0,0,w]
	1/2,1/2,z [0,0,w]
4 d	0,1/2,1/2 [0,0,w]
	1/2,0,1/2 [0,0,w]
4 c	0,1/2,0 [0,0,0]
	1/2,0,0 [0,0,0]
4 b	0,0,1/2 [0,0,0]
	1/2,1/2,1/2 [0,0,0]
4 a	0,0,0 [0,0,w]
	1/2,1/2,0 [0,0,w]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4gm1'</th>
<th>Along [1,0,0]</th>
<th>p_{2c}1m1</th>
<th>Along [1,1,0]</th>
<th>p_{2c}2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = a</td>
<td>b^* = b</td>
<td>a^* = b/2</td>
<td>b^* = c</td>
<td>a^* = -c</td>
<td>b^* = (-a + b)/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,1/4,0
Origin at x,x,0
P2₁\bar{4}b'2

\begin{align*}
\text{Asymmetric unit} &: 0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/2 \\
\text{Symmetry Operations} &
\begin{align*}
&\begin{array}{l}
(1) 1 \\
(5) a' (1/2,0,0) \quad x,1/4,z \\
\end{array} \\
&\begin{array}{l}
(2) 2' (0,0,1) \quad 0,0,z \\
(6) b' (1/2,1/2,0) \quad 1/4,y,z \\
\end{array} \\
&\begin{array}{l}
(3) \bar{4}^{-} \quad 0,0,z; 0,0,0 \\
(7) 2' (1/2,1/2,0) \quad x,x,1/2 \\
\end{array} \\
&\begin{array}{l}
(4) \bar{4}^{-} \quad 0,0,z; 0,0,0 \\
(8) x,x+1/2,0 \\
\end{array} \\
\end{align*}
\end{align*}
Continued

Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) y+1/2,x+1/2,z [v,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

8 h ..2'	x,x+1/2,1/2 [u,u,w]
	x,x+1/2,1/2 [u,u,w]
	x+1/2,x,1/2 [u,u,w]
	x+1/2,x,1/2 [u,u,w]

8 g ..2	x,x+1/2,0 [u,u,0]
	x,x+1/2,0 [u,u,0]
	x+1/2,x,0 [u,u,0]
	x+1/2,x,0 [u,u,0]

8 f 2..	0,1/2,z [0,0,w]
	1/2,0,z [0,0,w]
	1/2,0,z [0,0,w]
	0,1/2,z [0,0,w]

8 e 2..	0,0,z [0,0,w]
	0,0,z [0,0,w]
	1/2,1/2,z [0,0,w]
	1/2,1/2,z [0,0,w]

| 4 d 2.2'2' | 0,1/2,1/2 [0,0,w] |
| | 1/2,0,1/2 [0,0,w] |

| 4 c 2.22 | 0,1/2,0 [0,0,0] |
| | 1/2,0,0 [0,0,0] |

| 4 b 4.. | 0,0,1/2 [0,0,w] |
| | 1/2,1/2,1/2 [0,0,w] |

| 4 a 4'.. | 0,0,0 [0,0,0] |
| | 1/2,1/2,0 [0,0,0] |

Symmetry of Special Projections

Along [0,0,1] p4gm1' Along [1,0,0] p2a'1m1' Along [1,1,0] p2a'2m'm'

a* = a b* = b a* = a/2 b* = c a* = -c b* = (-a + b)/2

Origin at 0,0,z Origin at x,0,0 Origin at x,x,0

117.7.964 - 2 - 1925
Origin on $\bar{4}$

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1; \ 0 \leq z \leq 1/4$

Symmetry Operations

(1) 1

(1) $0,0,0$

(5) $n (1/2,0,1/2) \ x,1/4,z$

(6) $n (0,1/2,1/2) \ 1/4,y,z$

(7) $2 (1/2,1/2,0) \ x,x,1/4$

(8) $2 \ x,x+1/2,1/4$

(2) $2 \ 0,0,z$

(2) $0,0,0$

(3) $\bar{4}^+ \ 0,0,z; 0,0,0$

(3) $\bar{4}^+ \ 0,0,0$

(4) $\bar{4} \ 0,0,z; 0,0,0$

(4) $\bar{4} \ 0,0,0$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1</td>
<td>x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) y,x,z</td>
<td>[v,u,w]</td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(5) x+1/2, y+1/2, z+1/2</td>
<td>[u,v,w]</td>
<td>(6) x+1/2, y+1/2, z+1/2</td>
</tr>
<tr>
<td>(7) y+1/2, x+1/2, z+1/2</td>
<td>[v,u,w]</td>
<td>(8) y+1/2, x+1/2, z+1/2</td>
</tr>
</tbody>
</table>

4 h 2	0,1/2,0, [0,0,0]	1/2,0,0, z [0,0,w]
4 g .2	x,x+1/2,1/4, [u,u,0]	x+1/2, x,3/4, [u,u,0]
4 f .2	x,x+1/2,1/4, [u,u,0]	x+1/2, x,3/4, [u,u,0]
4 e 2	0,0,0, [0,0,0]	0,0,0, [0,0,0]
2 d 2.22	0,1/2,3/4, [0,0,0]	1/2,0,1/4, [0,0,0]
2 c 2.22	0,1/2,1/4, [0,0,0]	1/2,0,3/4, [0,0,0]
2 b .4	0,0,1/2, [0,0,0]	1/2,1/2,0, [0,0,0]
2 a .4	0,0,0, [0,0,0]	1/2,1/2,1/2, [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4'gm' Along [1,0,0] c_p,1m1' Along [1,1,0] p2m1m1'

a^* = a b^* = b a^* = b b^* = c a^* = (-a + b)/2 b^* = c

Origin at 0,0,z Origin at x,0,0 Origin at x,x,1/4
Origin on $\overline{4}1'$

Asymmetric unit
$0 \leq x \leq 1/2$; $0 \leq y \leq 1$; $0 \leq z \leq 1/4$

Symmetry Operations

For 1 + set

(1) 1
(1) 0,0,0

(5) n (1/2,0,1/2) $x,1/4,z$
($m_{y}|1/2,1/2,1/2$)

(6) n (0,1/2,1/2) $1/4,y,z$
($m_{x}|1/2,1/2,1/2$)

(7) 2 (1/2,1/2,0) $x,x,1/4$
($2_{xy}|1/2,1/2,1/2$)

For 1' + set

(1) 1'
(1) 0,0,0'$

(5) n' (1/2,0,1/2) $x,1/4,z$
($m_{y}|1/2,1/2,1/2'$)

(6) n' (0,1/2,1/2) $1/4,y,z$
($m_{x}|1/2,1/2,1/2'$)

(7) 2' (1/2,1/2,0) $x,x,1/4$
($2_{xy}|1/2,1/2,1/2'$)

(8) 2' $x,x+1/2,1/4$
($2_{xy}|1/2,1/2,1/2'$)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>1' + 1' +</td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [0,0,0]</td>
<td></td>
<td>(4) y,x,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [0,0,0]</td>
<td></td>
<td>(6) x+1/2,y+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [0,0,0]</td>
<td></td>
<td>(8) y+1/2,x+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 h 2.1'</td>
<td>0,1/2,z [0,0,0]</td>
<td>1/2,0,z [0,0,0]</td>
<td>1/2,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 g .21'</td>
<td>x+1/2,1/4 [0,0,0]</td>
<td>x+1/2,1/4 [0,0,0]</td>
<td>x+1/2,x+1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 f .21'</td>
<td>x+1/2,1/4 [0,0,0]</td>
<td>x+1/2,1/4 [0,0,0]</td>
<td>x+1/2,x+1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 e 2.1'</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 d 2.221'</td>
<td>0,1/2,3/4 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 c 2.221'</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>1/2,0,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 b 4.1'</td>
<td>0,0,1/2 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 4.1'</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm1' Along [1,0,0] c1m11' Along [1,1,0] p2mm1'

\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \quad \mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \quad \mathbf{a}^* = (\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c} \)

Origin at 0,0,z Origin at x,0,0 Origin at x,x,1/4
Origin on \(\overline{4} \cdot \nabla \).

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \)

Symmetry Operations

(1) \(1 \\
(1) \quad 0,0,0 \)

(2) \(2 \quad 0,0,z \)

(3) \(\overline{4} \cdot \nabla \quad 0,0,z; 0,0,0 \)

(4) \(\overline{4} \cdot \nabla \quad 0,0,z; 0,0,0 \)

(5) \(n'(1/2,0,1/2) \quad x,1/4,z \)

(6) \(n'(0,1/2,1/2) \quad 1/4,y,z \)

(7) \(2 \quad (1/2,1/2,0) \quad x,x,1/4 \)

(8) \(2 \quad x,x+1/2,1/4 \)

\(\overline{4}' \cdot \nabla' \quad 0,0,0 \)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4g'm'</th>
<th>Along [1,0,0]</th>
<th>c1m'1</th>
<th>Along [1,1,0]</th>
<th>p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = (-a + b)/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,x,1/4</td>
<td></td>
</tr>
</tbody>
</table>
Origin on \(\overline{4} \cdot \)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \)

Symmetry Operations

\begin{align*}
(1) \quad & 1 \\
(1') \quad & 0,0,0 \\
(2) \quad & 0,0,z \\
(2z) \quad & 0,0,0 \\
(3) \quad & \overline{4} \cdot , \quad 0,0,z; \quad 0,0,0 \\
(4) \quad & \overline{4} \cdot \quad 0,0,z; \quad 0,0,0 \\
(5) \quad & n \quad (1/2,0,1/2) \\
(5') \quad & x,1/4,z \\
(6) \quad & n \quad (0,1/2,1/2) \\
(6') \quad & 1/4,y,z \\
(7) \quad & 2' \quad (1/2,1,2/0) \\
(7') \quad & x,x,1/4 \\
(8) \quad & 2' \quad x,x+1/2,1/4 \\
(8') \quad & 2'y,1/2,1/2' \\
\end{align*}
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2, y+1/2, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2, y+1/2, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2, x+1/2, z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y+1/2, x+1/2, z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: p4gm
 - **a** = a
 - **b** = b
 - Origin at 0,0,z

- **Along [1,0,0]**: c_,1m'1
 - **a** = b
 - **b** = c
 - Origin at x,0,0

- **Along [1,1,0]**: p2'mm'
 - **a** = -c
 - **b** = (-a + b)/2
 - Origin at x,x,1/4

Origin on \(\bar{4} \)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4 \)

Symmetry Operations

1. \(1 \)
 \((1) \quad 1 \)
 \((2) \quad 2, 0,0,0 \)
 \((3) \quad \bar{4}, 0,0,0; 0,0,0 \)
 \((4) \quad \bar{4}, 0,0,0; 0,0,0 \)

2. \(n' \)
 \((5) \quad (1/2,0,1/2), x,1/4,z \)
 \((6) \quad (0,1/2,1/2), 1/4,y,z \)
 \((7) \quad 2', (1/2,1/2,0), x,x,1/4 \)
 \((8) \quad 2', x,x+1/2,1/4 \)

3. \(\bar{4}n'2' \)
 \(\bar{4}m'2' \)

4. \(\bar{4}n'2' \)

5. Tetragonal

6. 118.5.969

7. 118.5.969 - 1 - 1934
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w] (4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w] (6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w] (8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

4 h 2.. 0,1/2,z [0,0,w] 1/2,0,z+1/2 [0,0,w] 0,1/2,z+1/2 [0,0,w]

4 g ..2' x,x+1/2,1/4 [u,u,w] x+1/2,x,3/4 [u,u,w] x+1/2,x,3/4 [u,u,w]

4 f ..2' x,x+1/2,1/4 [u,u,w] x+1/2,x,3/4 [u,u,w] x+1/2,x,3/4 [u,u,w]

4 e 2.. 0,0,z [0,0,w] 0,0,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 1/2,1/2,z+1/2 [0,0,w]

2 d 2.2' 0,1/2,3/4 [0,0,w] 1/2,0,1/4 [0,0,w]

2 c 2.2' 0,1/2,1/4 [0,0,w] 1/2,0,3/4 [0,0,w]

2 b 4.. 0,0,1/2 [0,0,w] 1/2,1/2,0 [0,0,w]

2 a 4.. 0,0,0 [0,0,w] 1/2,1/2,1/2 [0,0,w]

Symmetry of Special Projections

Along [1,0,0] p4'g'm Along [1,1,0] p2mm'

a* = a b* = b a* = -c b* = (-a + b)/2

Origin at 0,0,z Origin at x,0,0 Origin at x,x,1/4
$P_{4\bar{n}2}$

$118.6.970$

$\bar{4}m21'$

Tetragonal

$P_{4\bar{n}2}$

$118.6.970 - 1 - 1936$
Origin on $\overline{4}$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4$

Symmetry Operations

For $(0,0,0)$ + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
<td>$0,0,0$</td>
</tr>
<tr>
<td>(2) 2</td>
<td>$0,0,z$</td>
</tr>
<tr>
<td>(3) $\overline{4}$</td>
<td>$0,0,z; 0,0,0$</td>
</tr>
<tr>
<td>(4) $\overline{4}$</td>
<td>$0,0,0; 0,0,0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5) n</td>
<td>$1/2,0,1/2; \quad y,1/4,z$</td>
</tr>
<tr>
<td>(6) n</td>
<td>$1/2,1/2,0; \quad y,x,1/4$</td>
</tr>
<tr>
<td>(7) 2</td>
<td>$1/2,1/2,0; \quad x,x,1/4$</td>
</tr>
<tr>
<td>(8) 2</td>
<td>$1/2,1/2,0; \quad x,x,1/4$</td>
</tr>
</tbody>
</table>

For $(1,0,0)'$ + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t'</td>
<td>$(1,0,0)$</td>
</tr>
<tr>
<td>(2) $2'$</td>
<td>$1/2,0,z$</td>
</tr>
<tr>
<td>(3) $\overline{4}'$</td>
<td>$1/2,1/2,0; \quad 1/2,1/2,0$</td>
</tr>
<tr>
<td>(4) $\overline{4}'$</td>
<td>$1/2,1/2,0; \quad 1/2,1/2,0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5) n'</td>
<td>$3/2,0,1/2; \quad y,x,1/4$</td>
</tr>
<tr>
<td>(6) n'</td>
<td>$3/2,1/2,0; \quad y,x,1/4$</td>
</tr>
<tr>
<td>(7) $2'$</td>
<td>$3/2,1/2,0; \quad x,x,1/4$</td>
</tr>
<tr>
<td>(8) $2'$</td>
<td>$3/2,1/2,0; \quad x,x,1/4$</td>
</tr>
</tbody>
</table>

Generators selected $(1); \quad t'(1,0,0); \quad t'(0,1,0); \quad t'(0,0,1); \quad (2); \quad (3); \quad (5)$.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>16 i 1</td>
<td></td>
</tr>
<tr>
<td>8 h $2'$</td>
<td></td>
</tr>
<tr>
<td>8 g $2'$</td>
<td></td>
</tr>
<tr>
<td>8 f $2'$</td>
<td></td>
</tr>
<tr>
<td>8 e $2'$</td>
<td></td>
</tr>
<tr>
<td>4 d $2'$</td>
<td></td>
</tr>
<tr>
<td>4 c $2'$</td>
<td></td>
</tr>
<tr>
<td>4 b $2'$</td>
<td></td>
</tr>
<tr>
<td>4 a $2'$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>16 i 1</td>
<td></td>
</tr>
<tr>
<td>8 h $2'$</td>
<td></td>
</tr>
<tr>
<td>8 g $2'$</td>
<td></td>
</tr>
<tr>
<td>8 f $2'$</td>
<td></td>
</tr>
<tr>
<td>8 e $2'$</td>
<td></td>
</tr>
<tr>
<td>4 d $2'$</td>
<td></td>
</tr>
<tr>
<td>4 c $2'$</td>
<td></td>
</tr>
<tr>
<td>4 b $2'$</td>
<td></td>
</tr>
<tr>
<td>4 a $2'$</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p4gm1'</td>
<td>$a^* = a$, $b^* = b$</td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>c1m11'</td>
<td>$a^* = b$, $b^* = c$</td>
</tr>
<tr>
<td>Along [1,1,0]</td>
<td>p c* 2mm</td>
<td>$a^* = (-a + b)/2$, $b^* = c$</td>
</tr>
</tbody>
</table>
Origin on 4m2

Asymmetric unit

\[0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/4 \]

Symmetry Operations

For (0,0,0) + set

1. \(1 \)
2. \(2 \) \(0,0,z \) \((2_z 0,0,0) \)
3. \(\bar{4} \) \(0,0,z; 0,0,0 \) \((4_z 0,0,0) \)
4. \(4 \) \(0,0,z; 0,0,0 \) \((4_z 0,0,0) \)
5. \(m \) \(x,0,z \) \((m_x 0,0,0) \)
6. \(m \) \(y,z \) \((m_y 0,0,0) \)
7. \(2 \) \(x,x,0 \) \((2_{xy} 0,0,0) \)
8. \(2 \) \(x,x,0 \) \((2_{xy} 0,0,0) \)

For (1/2,1/2,1/2) + set

1. \(t \) \(1/2,1/2,1/2 \)
2. \(2 \) \(0,0,1/2 \) \(1/4,1/4,z \) \((2_z 1/2,1/2,1/2) \)
3. \(\bar{4} \) \(1/2,0,z; 1/2,0,1/4 \) \((4_z 1/2,1/2,1/2) \)
4. \(4 \) \(0,1/2,2,1/2 \)
5. \(n \) \(1/2,0,1/2 \) \(x,1/4,z \) \((m_y 1/2,1/2,1/2) \)
6. \(n \) \(0,1/2,1/2 \) \(1/4,y,z \) \((m_x 1/2,1/2,1/2) \)
7. \(2 \) \(1/2,1/2,0 \) \(x,x,1/4 \) \((2_{xy} 1/2,1/2,1/2) \)
8. \(2 \) \(x,x+1/2,1/4 \) \((2_{xy} 1/2,1/2,1/2) \)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 j 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 i .m.</td>
<td>(5) x, y, z [u, v, w]</td>
</tr>
<tr>
<td>8 h .2</td>
<td>(x, x, 0) [u, u, 0]</td>
</tr>
<tr>
<td>4 f 2mm.</td>
<td>0, 1/2, 0 [0, 0, 0]</td>
</tr>
<tr>
<td>4 e 2mm.</td>
<td>0, 0, 0 [0, 0, 0]</td>
</tr>
<tr>
<td>2 d 4m2</td>
<td>0, 1/2, 3/4 [0, 0, 0]</td>
</tr>
<tr>
<td>2 c 4m2</td>
<td>0, 1/2, 1/4 [0, 0, 0]</td>
</tr>
<tr>
<td>2 b 4m2</td>
<td>0, 0, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>2 a 4m2</td>
<td>0, 0, 0 [0, 0, 0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'm'm
\[a^* = (a - b)/2 \] \[b^* = (a + b)/2 \]
Origin at 0,0,z

Along [1,0,0] c1m11'
\[a^* = b \] \[b^* = c \]
Origin at 0,0,0

Along [1,1,0] p2m'm'
\[a^* = (-a + b)/2 \] \[b^* = c/2 \]
Origin at x,0,0
I4 m21'

119.2.972

\begin{align*}
\overline{4}m21' & \quad \text{Tetragonal} \\
\end{align*}

\begin{align*}
\text{Origin} & \quad \text{on} \; \overline{4}m21' \\
\text{Asymmetric unit} & \quad 0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \\
\text{Symmetry Operations} & \\
\text{For} \; (0,0,0) \; \text{+ set} & \\
(1) & \; 1 \\
(2) & \; 2 \; 0,0,0 \quad (2\bar{z} \; 0,0,0) \\
(3) & \; \overline{4} \; 0,0,z; 0,0,0 \quad (4\bar{z} \; 0,0,0) \\
(4) & \; \overline{4} \; 0,0,z; 0,0,0 \quad (4\bar{z} \; 0,0,0) \\
(5) & \; m \; x,0,z \quad (m_x \; 0,0,0) \\
(6) & \; m \; 0,y,z \quad (m_y \; 0,0,0) \\
(7) & \; 2 \; x,y,0 \quad (2z_x \; 0,0,0) \\
(8) & \; 2 \; x,y,0 \quad (2z_y \; 0,0,0) \\
\text{For} \; (1/2,1/2,1/2) \; \text{+ set} & \\
(1) & \; t \; (1/2,1/2,1/2) \\
(2) & \; 2 \; (0,0,1/2) \quad 1/4,1/4,z \quad (2\bar{z} \; 1/2,1/2,1/2) \\
(3) & \; \overline{4} \; 1/2,0,z; 1/2,0,1/4 \\
(4) & \; \overline{4} \; 0,1/2,z; 0,1/2,1/4 \quad (4\bar{z} \; 1/2,1/2,1/2) \\
(5) & \; n \; (1/2,0,1/2) \; x,1/4,z \\
(6) & \; n \; (0,1/2,1/2) \; 1/4,y,z \\
(7) & \; 2 \; (1/2,1/2,0) \; x,x,1/4 \\
(8) & \; 2 \; x,x+1/2,1/4 \\
\end{align*}
Continued 119.2.972

For (0,0,0) + set

(1) 1'
 (1) 0,0,0'
(2) 2' 0,0,z
 (2) z,0,0',0
(3) 4' 0,0,z; 0,0,0
 (4) 4' 0,0,z; 0,0,0
(5) m' x,0,z
 (m) x,0,0,0'
(6) m' 0,y,z
 (m) 0,0,0',0
(7) 2' x,x,0
 (2,2) 0,0,0'
(8) 2' x,x,0
 (2,2) 0,0,0'

For (1/2,1/2,1/2) + set

(1) t' (1/2,1/2,1/2)
 (1) 1/2,1/2,1/2'
(2) 2' (0,0,1/2)
 (2) z,1/2,1/2,1/2'
(3) 4' 1/2,0,z; 1/2,0,1/4
 (4) 4' 1/2,0,z; 1/2,0,1/4
(5) n' (1/2,0,1/2)
 (m) 1/2,1/2,1/2'
(6) n' (0,1/2,1/2)
 (m) 1/2,1/2,1/2'
(7) 2' (1/2,1/2,0)
 (2,2) 1/2,1/2,1/2'
(8) 2' (1/2,1/2,1/2)
 (2,2) 1/2,1/2,1/2'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5): 1'.

Positions

Coordinates

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>(0,0,0) +</th>
<th>(1/2,1/2,1/2) +</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j 11' x,y,z [0,0,0]</td>
<td>(2) x,y,z [0,0,0]</td>
<td>(3) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>8 i .m.1' x,0,z [0,0,0]</td>
<td>(5) x,0,z [0,0,0]</td>
<td>(6) x,0,z [0,0,0]</td>
</tr>
<tr>
<td>8 h .21' x,x+1/2,1/4 [0,0,0]</td>
<td>(9) x,x+1/2,1/4 [0,0,0]</td>
<td>(10) x,x+1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 f 2mm.1' 0,1/2,z [0,0,0]</td>
<td>(12) 0,1/2,z [0,0,0]</td>
<td>(13) 0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 e 2mm.1' 0,0,z [0,0,0]</td>
<td>(15) 0,0,z [0,0,0]</td>
<td>(16) 0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 d 4m21' 0,1/2,3/4 [0,0,0]</td>
<td>(18) 0,1/2,3/4 [0,0,0]</td>
<td>(19) 0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 c 4m21' 0,1/2,1/4 [0,0,0]</td>
<td>(21) 0,1/2,1/4 [0,0,0]</td>
<td>(22) 0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 b 4m21' 0,0,1/2 [0,0,0]</td>
<td>(24) 0,0,1/2 [0,0,0]</td>
<td>(25) 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 4m21' 0,0,0 [0,0,0]</td>
<td>(27) 0,0,0 [0,0,0]</td>
<td>(28) 0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p4mm1'</th>
<th>Along [1,0,0] c1m11'</th>
<th>Along [1,1,0] p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = (a - b)/2 b' = (a + b)/2</td>
<td>a' = b b' = c</td>
<td>a' = -(a + b)/2 b' = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>

119.2.972 - 2 - 1942
I$\bar{4}$m'2

119.3.973

I$\bar{4}$m'2

Tetragonal

Origin on $\bar{4}$m'2

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

For (0,0,0) + set

1. 1

(1) 1

(1) 0,0,0

(5) m' x,0,z

(5) m' (0,0,0)

(5) (m,0,0,0')

2. 2 0,0,z

(2) 0,0,0

(6) m' 0,y,z

(6) m' (0,0,0)

(6) (m,0,0,0')

$2z\downarrow\rightarrow 0,0,0$

$2x\downarrow\rightarrow 0,0,0$

$2y\downarrow\rightarrow 0,0,0$

$4z\downarrow\rightarrow 0,0,0$

$4x\downarrow\rightarrow 0,0,0$

$4y\downarrow\rightarrow 0,0,0$

$4\downarrow\rightarrow 0,0,0$

$4\downarrow\rightarrow 0,0,0$

3. $\bar{4}$m' 0,0,z; 0,0,0

(3) $\bar{4}$m' 0,0,0;

(3) 0,0,0

(7) 2 x,x,0

(7) 2 (0,0,0)

$2x\downarrow\rightarrow 0,0,0$

$2y\downarrow\rightarrow 0,0,0$

$2z\downarrow\rightarrow 0,0,0$

$4z\downarrow\rightarrow 0,0,0$

$4x\downarrow\rightarrow 0,0,0$

$4y\downarrow\rightarrow 0,0,0$

$4\downarrow\rightarrow 0,0,0$

4. $\bar{4}$m' 0,0,z; 0,0,0

(4) $\bar{4}$m' 0,0,0;

(4) 0,0,0

(8) 2 x,x,0

(8) 2 (0,0,0)

$2x\downarrow\rightarrow 0,0,0$

$2y\downarrow\rightarrow 0,0,0$

$2z\downarrow\rightarrow 0,0,0$

$4z\downarrow\rightarrow 0,0,0$

$4x\downarrow\rightarrow 0,0,0$

$4y\downarrow\rightarrow 0,0,0$

$4\downarrow\rightarrow 0,0,0$

For (1/2,1/2,1/2) + set

1. t (1/2,1/2,1/2)

(1) t (1/2,1/2,1/2)

(1) 0,0,1/2

(1) 0,0,1/2

(1) 0,0,1/2

2. 2 (0,0,1/2) 1/4,1/4,z

(2) (0,0,1/2)

(2) 1/4,1/4,z

(2) 1/4,1/4,z

$2z\downarrow\rightarrow 1/2,1/2,1/2$

$2x\downarrow\rightarrow 1/2,1/2,1/2$

$2y\downarrow\rightarrow 1/2,1/2,1/2$

$4z\downarrow\rightarrow 1/4,1/4,1/4$

$4x\downarrow\rightarrow 1/4,1/4,1/4$

$4y\downarrow\rightarrow 1/4,1/4,1/4$

3. $\bar{4}$m' 1/2,0,z; 1/2,0,1/4

(3) $\bar{4}$m' 1/2,0,0;

(3) 1/2,0,1/4

(3) 1/2,0,1/4

$2z\downarrow\rightarrow 1/2,1/2,1/2$

$2x\downarrow\rightarrow 1/2,1/2,1/2$

$2y\downarrow\rightarrow 1/2,1/2,1/2$

$4z\downarrow\rightarrow 1/2,1/2,1/2$

$4x\downarrow\rightarrow 1/2,1/2,1/2$

$4y\downarrow\rightarrow 1/2,1/2,1/2$

4. $\bar{4}$m' 0,1/2,z; 0,1/2,1/4

(4) $\bar{4}$m' 0,1/2,0;

(4) 0,1/2,1/4

(4) 0,1/2,1/4

$2z\downarrow\rightarrow 1/2,1/2,1/2$

$2x\downarrow\rightarrow 1/2,1/2,1/2$

$2y\downarrow\rightarrow 1/2,1/2,1/2$

$4z\downarrow\rightarrow 1/2,1/2,1/2$

$4x\downarrow\rightarrow 1/2,1/2,1/2$

$4y\downarrow\rightarrow 1/2,1/2,1/2$

5. n' (1/2,0,1/2) x,1/4,z

(5) n' (1/2,0,1/2)

(5) x,1/4,z

(5) x,1/4,z

$2z\downarrow\rightarrow 1/4,1/4,1/4$

$2x\downarrow\rightarrow 1/4,1/4,1/4$

$2y\downarrow\rightarrow 1/4,1/4,1/4$

$4z\downarrow\rightarrow 1/4,1/4,1/4$

$4x\downarrow\rightarrow 1/4,1/4,1/4$

$4y\downarrow\rightarrow 1/4,1/4,1/4$

6. n' (0,1/2,1/2) 1/4,y,z

(6) n' (0,1/2,1/2)

(6) 1/4,y,z

(6) 1/4,y,z

$2z\downarrow\rightarrow 1/4,1/4,1/4$

$2x\downarrow\rightarrow 1/4,1/4,1/4$

$2y\downarrow\rightarrow 1/4,1/4,1/4$

$4z\downarrow\rightarrow 1/4,1/4,1/4$

$4x\downarrow\rightarrow 1/4,1/4,1/4$

$4y\downarrow\rightarrow 1/4,1/4,1/4$

7. 2 (1/2,1/2,0) x,x,1/4

(7) 2 (1/2,1/2,0)

(7) x,x,1/4

(7) x,x,1/4

$2x\downarrow\rightarrow 1/2,1/2,1/2$

$2y\downarrow\rightarrow 1/2,1/2,1/2$

$2z\downarrow\rightarrow 1/2,1/2,1/2$

$4x\downarrow\rightarrow 1/2,1/2,1/2$

$4y\downarrow\rightarrow 1/2,1/2,1/2$

$4z\downarrow\rightarrow 1/2,1/2,1/2$

8. 2 x,x+1/2,1/4

(8) 2 (x,x+1/2,1/4)

(8) x,x+1/2,1/4

(8) x,x+1/2,1/4

$2x\downarrow\rightarrow 1/2,1/2,1/2$

$2y\downarrow\rightarrow 1/2,1/2,1/2$

$2z\downarrow\rightarrow 1/2,1/2,1/2$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>j</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) x,y,z [v,u,w]</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>x,y,z</td>
</tr>
<tr>
<td>8</td>
<td>u,v,w</td>
</tr>
<tr>
<td>8</td>
<td>u,v,w</td>
</tr>
<tr>
<td>8</td>
<td>u,v,w</td>
</tr>
<tr>
<td>4</td>
<td>u,v,w</td>
</tr>
<tr>
<td>4</td>
<td>u,v,w</td>
</tr>
<tr>
<td>2</td>
<td>u,v,w</td>
</tr>
<tr>
<td>2</td>
<td>u,v,w</td>
</tr>
<tr>
<td>2</td>
<td>u,v,w</td>
</tr>
<tr>
<td>2</td>
<td>u,v,w</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4m'2' Along [1,0,0] c1m'1

\[a^* = \frac{a - b}{2} \quad b^* = \frac{a + b}{2} \]

Origin at 0,0,z

Along [1,1,0] p2m'1

\[a^* = \frac{a + b}{2} \quad b^* = c/2 \]

Origin at x,x,0
Origin on $\overline{4}m2'$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

For (0,0,0) + set

1. $I = (0,0,0)$
2. $2 \cdot 0,0,z \quad (2z \cdot 0,0,0)$
3. $4 \cdot 0,0,z; 0,0,0 \quad (4z \cdot 0,0,0)'$
4. $4 \cdot 0,0,z; 0,0,0 \quad (4z^{-1} \cdot 0,0,0)'$

5. $m \cdot x,0,z \quad (m \cdot x,0,0,0)$
6. $m \cdot 0,y,z \quad (m \cdot 0,y,0,0)$
7. $2' \cdot x,x,0 \quad (2'xy \cdot 0,0,0)'$
8. $2' \cdot x,x,0 \quad (2'xy \cdot 0,0,0)'$

For (1/2,1/2,1/2) + set

1. $t \cdot (1/2,1/2,1/2)$
2. $2 \cdot (0,0,1/2) \quad 1/4,1/4,z \quad (2z \cdot 1/2,1/2,1/2)$
3. $4 \cdot 1/2,0,z; 1/2,0,1/4 \quad (4z \cdot 1/2,1/2,1/2)'$
4. $4 \cdot 0,1/2,z; 0,1/2,1/4 \quad (4z^{-1} \cdot 1/2,1/2,1/2)'$

5. $n \cdot (1/2,0,1/2) \quad x,1/4,z \quad (m \cdot 1/2,1/2,1/2)$
6. $n \cdot (0,1/2,1/2) \quad 1/4,y,z \quad (m \cdot 1/2,1/2,1/2)$
7. $2' \cdot (1/2,1/2,0) \quad x,x,1/4 \quad (2'xy \cdot 1/2,1/2,1/2)'$
8. $2' \cdot x,x,1/2,1/4 \quad (2'xy \cdot 1/2,1/2,1/2)'$

119.4.974 - 1 - 1945
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
<td></td>
</tr>
<tr>
<td>16 j 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) (\bar{x},y,z) [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) (x,\bar{x},z) [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) (y,\bar{x},z) [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) (x,\bar{y},z) [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) (x,\bar{y},z) [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) (y,x,z) [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) (\bar{y},x,z) [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 i .m.</td>
<td>x,0,z [0,v,0]</td>
<td>0,x,(\bar{z}) [v,0,0]</td>
</tr>
<tr>
<td></td>
<td>(\bar{x},0,z) [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 h .2'</td>
<td>x,x+1/2,1/4 [u,u,w]</td>
<td>(\bar{x}+1/2,x,3/4) [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>(x,x+1/2,1/4) [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x+1/2,x,3/4) [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 g .2'</td>
<td>x,x,0 [u,u,w]</td>
<td>(x,x,0) [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>(\bar{x},\bar{x},0) [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x,\bar{x},0) [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x,\bar{x},0) [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>4 f 2mm.</td>
<td>0,1/2,z [0,0,0]</td>
<td>1/2,0,(\bar{z}) [0,0,0]</td>
</tr>
<tr>
<td>4 e 2mm.</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,(\bar{z}) [0,0,0]</td>
</tr>
<tr>
<td>2 d (\bar{4})m2'</td>
<td>0,1/2,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 c (\bar{4})m2'</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 b (\bar{4})m2'</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a (\bar{4})m2'</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm
\(a^* = (a - b)/2\) \(b^* = (a + b)/2\)
Origin at 0,0,z

Along [1,0,0] c1m11'
\(a^* = b\) \(b^* = c\)
Origin at x,0,0

Along [1,1,0] p2'mm'
\(a^* = -c/2\) \(b^* = (-a + b)/2\)
Origin at x,x,0
Origin on $\bar{4}m'2'$

Asymmetric unit
$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

For $(0,0,0) +$ set:

1. 1

2. $2 \quad 0,0,z$

3. $\bar{4} \quad 0,0,0; 0,0,0$

4. $\bar{4} \quad 0,0,0; 0,0,0$

For $(1/2,1/2,1/2) +$ set:

1. $t \quad (1/2,1/2,1/2)$

2. $2 \quad (0,0,1/2) \quad 1/4,1/4,z$

3. $\bar{4} \quad 1/2,1/2,1/2; 1/2,1/2,1/2$

4. $\bar{4} \quad 1/2,1/2,1/2; 1/2,1/2,1/2$

5. $n' \quad (1/2,0,1/2) \quad x,1/4,z$

6. $n' \quad (0,1/2,1/2) \quad 1/4,y,z$

7. $2' \quad (1/2,1/2,0) \quad x,x,1/4$

8. $2' \quad x,x+1/2,1/4$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Generators</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td>(2) x</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
<td>(6) x</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td>(7) y</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
<td>(8) y</td>
</tr>
<tr>
<td>8 i .m'</td>
<td>x,0,z [u,0,w]</td>
<td>0,x,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [u,0,w]</td>
<td>0,x,z [0,0,w]</td>
</tr>
<tr>
<td>8 h ..2'</td>
<td>x,x+1/2,1/4 [u,u,w]</td>
<td>x+1/2,x,3/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,1/4 [u,u,w]</td>
<td>x+1/2,x,3/4 [u,u,w]</td>
</tr>
<tr>
<td>8 g ..2'</td>
<td>x,x,0 [u,u,w]</td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,w]</td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td>4 f 2m'm'</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 e 2m'm'</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 d 4m2'</td>
<td>0,1/2,3/4 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 c 4m2'</td>
<td>0,1/2,1/4 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 b 4m2'</td>
<td>0,0,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 a 4m2'</td>
<td>0,0,0 [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p4mm'; a' = (b - a)/2, b' = (a + b)/2
- Along [1,0,0] c1m'; a' = b, b' = c
- Along [1,1,0] p2mm'; a' = -c/2, b' = (-a + b)/2
- Origin at 0,0,z
- Origin at x,0,0
- Origin at x,x,0
Origin on $\bar{4}m2$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

For $(0,0,0) + \text{set}$

1. 1

(1) 1

(2) $2 \cdot 0,0,z$

(3) $\bar{4}^{-} \cdot 0,0,0$

(4) $\bar{4}^{-} \cdot 0,0,0$

For $(1/2,1/2,1/2)' + \text{set}$

(5) $m \cdot x,0,z$

(6) $m \cdot 0,y,z$

(7) $2 \cdot x,x,0$

(8) $2 \cdot x,x,0$

For $(1/2,1/2,1/2)' + \text{set}$

(1) $t' \cdot (1/2,1/2,1/2)$

(2) $2' \cdot (0,0,1/2)$

(3) $\bar{4}^{-}' \cdot 1/2,0,0$

(4) $\bar{4}^{-}' \cdot 0,1/2,0$

(5) $n' \cdot (1/2,0,1/2)$

(6) $n' \cdot (0,1/2,1/2)$

(7) $2' \cdot (1/2,1/2,0)$

(8) $2' \cdot x,0$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>16</th>
<th>8</th>
<th>8</th>
<th>4</th>
<th>4</th>
<th>2</th>
<th>2</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wyckoff letter</td>
<td>j</td>
<td>i</td>
<td>h</td>
<td>g</td>
<td>f</td>
<td>e</td>
<td>d</td>
<td>c</td>
</tr>
<tr>
<td>Site Symmetry</td>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2)’ +</td>
<td>(0,0,0)</td>
<td>(0,v,0)</td>
<td>(0,v,0)</td>
<td>(0,0,0)</td>
<td>(0,0,0)</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>Coordinates</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) y,x,z [v,u,w]</td>
<td>(4) y,x,z [v,u,w]</td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>Positions</td>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2)’ +</td>
<td>(0,0,0)</td>
<td>(0,v,0)</td>
<td>(0,v,0)</td>
<td>(0,0,0)</td>
<td>(0,0,0)</td>
<td>(0,0,0)</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_{\text{4m}^2} \) \(4\text{m}'\text{m}' \)
Along [1,0,0] \(c1\text{m}11' \)
Along [1,1,0] \(p_{2\text{a}^*} \) \(2\text{m}'\text{m}' \)

\(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \)

Origin at 0,1/2,z
Origin at x,0,0

Origin at x,x,0

Origin at x,0,0

Origin at x,0,0
Origin on $\overline{4}m'2$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

For $(0,0,0) +$ set

$(1) \ 1$

$(2) \ 2 \quad 0,0,z\quad (2_z|0,0,0)$

$(3) \ \overline{4}^+ \quad 0,0,z; 0,0,0\quad (4_z|0,0,0)'$

$(4) \ \overline{4}^+ \quad 0,0,z; 0,0,0\quad (4_z^{-1}|0,0,0)'$

$(5) \ m' \ x,0,z\quad (m_y|0,0,0)'$

$(6) \ m' \ 0,y,z\quad (m_x|0,0,0)'$

$(7) \ 2 \quad x,x,0\quad (2_{xy}|0,0,0)$

$(8) \ 2 \quad x,x,0\quad (2_{xy}|0,0,0)$

For $(1/2,1/2,1/2) +$ set

$(1) \ t' \ (1/2,1/2,1/2)$

$(2) \ 2' \quad (0,0,1/2) \quad 1/4,1/4,z\quad (2_z|1/2,1/2,1/2)'$

$(3) \ \overline{4}^+ \quad 1/2,0,z; 1/2,0,1/4\quad (4_z|1/2,1/2,1/2)$

$(4) \ \overline{4}^+ \quad 0,1/2,z; 0,1/2,1/4\quad (4_z^{-1}|1/2,1/2,1/2)$

$(5) \ n \ (1/2,0,1/2) \quad x,1/4,z\quad (m_y|1/2,1/2,1/2)$

$(6) \ n \ (0,1/2,1/2) \quad 1/4,y,z\quad (m_x|1/2,1/2,1/2)$

$(7) \ 2' \quad (1/2,1/2,0) \quad x,x,1/4\quad (2_{xy}|1/2,1/2,1/2)'$

$(8) \ 2' \quad x,x+1/2,1/4\quad (2_{xy}|1/2,1/2,1/2)'$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
<th>(0,0,0) +</th>
<th>(1/2,1/2,1/2)’ +</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 i .m’. x,0,z [u,0,w]</td>
<td>x,0,z [u,0,w]</td>
<td>0,x,z [0,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 h .2’ x,x+1/2,1/4 [u,u,w]</td>
<td>x,x+1/2,1/4 [u,u,w]</td>
<td>x+1/2,x,3/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 g .2 x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>4 f 2m’m’. 0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 e 2m’m’. 0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 d 4m’2’ 0,1/2,3/4 [0,0,w]</td>
<td>0,1/2,1/4 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c 4m’2’ 0,0,1/2 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b 4m’2’ 0,0,0 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a 4m’2’ 0,0,0 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_{4}’4m’m’

a’ = (a - b)/2 b’ = (a + b)/2

Origin at 0,0,z

Along [1,0,0] c_{p}.1m’1

a* = b b* = c

Origin at x,0,0

Along [1,1,0] p_{2a}.2m’m’

a* = -c/2 b* = (-a + b)/2

Origin at x,x,0

Along [1,0,0] p_{2a}.2m’m’

a’ = (a - b)/2 b’ = (a + b)/2

Origin at 0,0,z
Origin on $\overline{4}c2_1$

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1/4$

Symmetry Operations

For $(0,0,0)$ + set

1. 1

2. 2 ($0,0,z$)

3. $\overline{4}$ ($0,0,0$)

4. $\overline{4}$ ($0,0,z$)

5. c ($0,0,1/2$) ($0,0,1/2$)

6. c ($0,0,1/2$) ($0,0,1/2$)

7. 2 ($0,0,0$)

8. 2 ($0,0,0$)

For $(1/2,1/2,1/2)$ + set

1. t ($1/2,1/2,1/2$)

2. 2 ($0,0,1/2$) ($1/2,1/2,1/2$)

3. $\overline{4}$ ($0,0,1/2$) ($1/2,1/2,1/2$)

4. $\overline{4}$ ($0,0,1/2$) ($1/2,1/2,1/2$)

5. a ($1/2,0,0$) ($1/2,1/2,1/2$)

6. b ($0,1/2,0$) ($1/2,1/2,1/2$)

7. 2 ($1/2,1/2,0$) ($1/2,1/2,0$)

8. 2 ($1/2,1/2,0$) ($1/2,1/2,0$)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>i</td>
<td>1</td>
</tr>
<tr>
<td>(1) x,y,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(2) x,y,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(3) y,x,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(4) y,x,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(5) x,y,z+1/2</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(6) x,y,z+1/2</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(7) y,x,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(8) y,x,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinates</td>
</tr>
<tr>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(6) x,y,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(7) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'm'm
a^* = (a - b)/2 b^* = (a + b)/2
Origin at 0,0,z

Along [1,0,0] p2m1m'
a^* = b/2 b^* = c/2
Origin at x,0,0

Along [1,1,0] p2m1m'
a^* = (-a + b)/2 b^* = c/2
Origin at x,x,0
I4c21'
120.2.979

Tetragonal

1'

Origin on $\overline{4}c_{2,1}'$

Asymmetric unit

$0 \leq x < 1/2; \quad 0 \leq y < 1/2; \quad 0 \leq z < 1/4$

Symmetry Operations

For $(0,0,0)$ + set

(1) 1
(1|0,0,0)

(2) 2 0,0,z
(2z|0,0,0)

(3) $\overline{4}^+$ 0,0,z; 0,0,0
($4_z|0,0,0$)

(4) $\overline{4}^-$ 0,0,z; 0,0,0
($4_z^{-1}|0,0,0$)

(5) c (0,0,1/2) x,0,z
($m_y|0,0,1/2$)

(6) c (0,0,1/2) 0,y,z
($m_x|0,0,1/2$)

(7) 2 x,x,1/4
($2_{xy}|0,0,1/2$)

(8) 2 x,x,1/4
($2_{xy}|0,0,1/2$)

For $(1/2,1/2,1/2) +$ set

(1) t (1/2,1/2,1/2)
(1|1/2,1/2,1/2)

(2) 2 (0,0,1/2) 1/4,1/4,z
($2_z|1/2,1/2,1/2$)

(3) $\overline{4}^+$ 1/2,0,z; 1/2,0,1/4
($4_z|1/2,1/2,1/2$)

(4) $\overline{4}^-$ 1/2,0,z; 1/2,0,1/4
($4_z^{-1}|1/2,1/2,1/2$)

(5) a (1/2,0,0) x,1/4,z
($m_y|1/2,1/2,0$)

(6) b (0,1/2,0) 1/4,y,z
($m_x|1/2,1/2,0$)

(7) 2 (1/2,1/2,0) x,0
($2_{xy}|1/2,1/2,0$)

(8) 2 x,x+1/2,0
($2_{xy}|1/2,1/2,0$)
Continued

For \((0,0,0)\)' + set

\[(1)\] \(1'\) \(0,0,0\)
\[(1)\] \(1'\) \(0,0,0\)
\[(2)\] \(2'\) \(0,0,0\)
\[(2)\] \(2'\) \(0,0,0\)
\[(3)\] \(3'\) \(0,0,0\)
\[(3)\] \(3'\) \(0,0,0\)
\[(4)\] \(4'\) \(0,0,0\)
\[(4)\] \(4'\) \(0,0,0\)

\((\text{Generators selected})\)

\((1): t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); 1'.\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 i 11'</td>
<td>(x,y,z [0,0,0])</td>
</tr>
<tr>
<td>8 h .21'</td>
<td>(x+1/2,0 [0,0,0])</td>
</tr>
<tr>
<td>8 g 2..1'</td>
<td>(0,1/2,z [0,0,0])</td>
</tr>
<tr>
<td>8 f 2..1'</td>
<td>(0,0,z [0,0,0])</td>
</tr>
<tr>
<td>8 e .21'</td>
<td>(x,1/4 [0,0,0])</td>
</tr>
<tr>
<td>4 d 2.221'</td>
<td>(0,1/2,0 [0,0,0])</td>
</tr>
<tr>
<td>4 c .4..1'</td>
<td>(0,1/2,1/4 [0,0,0])</td>
</tr>
<tr>
<td>4 b .4..1'</td>
<td>(0,1/2,0 [0,0,0])</td>
</tr>
<tr>
<td>4 a 2.221'</td>
<td>(0,0,1/4 [0,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin at (0,0,z)</th>
<th>(a^* = (a - b)/2)</th>
<th>(b^* = (a + b)/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin at (x,0,0)</td>
<td>(a^* = b/2)</td>
<td>(b^* = c/2)</td>
</tr>
</tbody>
</table>

Note: \(\alpha = c/2\) and \(\beta = b/2\) do not apply here. Origin at \(x,x,0\).
Origin on $\overline{4}c'2$.

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

For $(0,0,0)$ + set

1. $1 (1) (0,0,0)$
2. $2 \cdot 0,0,z (2z (0,0,0))$
3. $\overline{4}c' \cdot 0,0,z; 0,0,0 (4z (0,0,0)')$
4. $\overline{4}c' \cdot 0,0,z; 0,0,0 (4z^{-1} (0,0,0)')$

5. $c' (0,0,1/2) \cdot x,0,z (m_x (0,0,1/2)')$
6. $c' (0,0,1/2) \cdot y,z (m_y (0,0,1/2)')$
7. $2 \cdot x,x,1/4 (2_{xy} (0,0,1/2))$
8. $2 \cdot x,x,1/4 (2_{xy} (0,0,1/2))$

For $(1/2,1/2,1/2)$ + set

1. $t (1/2,1/2,1/2) (1) (1/2,1/2,1/2)$
2. $2 \cdot (0,0,1/2) \cdot 1/4,1/4,z (2z (1/2,1/2,1/2))$
3. $\overline{4}c' \cdot 1/2,0,z; 1/2,0,1/4 (4z (1/2,1/2,1/2)')$
4. $\overline{4}c' \cdot 0,1/2,z; 0,1/2,1/4 (4z^{-1} (1/2,1/2,1/2)')$

5. $a' (1/2,0,0) \cdot x,1/4,z (m_y (1/2,1/2,0)')$
6. $b' (0,1/2,0) \cdot 1/4,y,z (m_x (1/2,1/2,0)')$
7. $2 \cdot (1/2,1/2,0) \cdot x,x,0 (2_{xy} (1/2,1/2,0))$
8. $2 \cdot x,x,0+1/2,0 (2_{xy} (1/2,1/2,0))$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 i 1</td>
<td>1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z [v,u,w] (4) y,x,z [v,u,w] (5) x,y,z+1/2 [u,v,w] (6) x,y,z+1/2 [u,v,w] (7) y,x,z+1/2 [v,u,w] (8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8 h .2</td>
<td>2</td>
<td>x,x+1/2,0 [u,u,0] x,x+1/2,0 [u,u,0] x+1/2,x,0 [u,u,0] x+1/2,x,0 [u,u,0]</td>
</tr>
<tr>
<td>8 g 2..</td>
<td>2</td>
<td>0,1/2,z [0,0,w] 1/2,0,z [0,0,w] 0,1/2,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 f 2..</td>
<td>2</td>
<td>0,0,z [0,0,w] 0,0,z [0,0,w] 0,0,z+1/2 [0,0,w] 0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 e .2</td>
<td>2</td>
<td>x,x,1/4 [u,u,0] x,x,1/4 [u,u,0] x,x,3/4 [u,u,0] x,x,3/4 [u,u,0]</td>
</tr>
<tr>
<td>4 d 2.22</td>
<td></td>
<td>0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c 4'..</td>
<td></td>
<td>0,1/2,1/4 [0,0,0] 0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b 4'..</td>
<td></td>
<td>0,1/2,0 [0,0,0] 0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2.22</td>
<td></td>
<td>0,0,1/4 [0,0,0] 0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4m'\(m'\) \(a^* = (a - b)/2\) b\(b^* = (a + b)/2\)
Along [1,0,0] p1m'1 \(a^* = b/2\) b\(b^* = c/2\)
Along [1,1,0] p2m'y' \(a^* = -(a + b)/2\) b\(b^* = c/2\)

Origin at 0,0,z Origin at x,0,0 Origin at x,x,0

120.3.980 - 2 - 1958
Origin on $4\text{c}2'$

Asymmetric unit \[0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/4\]

Symmetry Operations

For \((0,0,0) + \) set

1. \(1\) \hfill 2. \(2\ 0,0,z\) \hfill 3. \(4^{-}\ 0,0,z; 0,0,0\) \hfill 4. \(4^{-}\ 0,0,z; 0,0,0\)
 \((2z\ 0,0,0)\)

5. \(c\ (0,0,1/2)\ x,0,z\) \hfill 6. \(c\ (0,0,1/2)\ 0,y,z\) \hfill 7. \(2'\ x,x,1/4\) \hfill 8. \(2'\ x,x,1/4\)
 \((mz,0,0,1/2)\)

For \((1/2,1/2,1/2) + \) set

1. \(t\ (1/2,1/2,1/2)\) \hfill 2. \(2\ (0,0,1/2)\ 1/4,1/4,z\) \hfill 3. \(4^{-}\ 1/2,0,z; 1/2,0,1/4\) \hfill 4. \(4^{-}\ 0,1/2,z; 0,1/2,1/4\)
 \((2z\ 1/2,1/2,1/2)\)

5. \(a\ (1/2,0,0)\ x,1/4,z\) \hfill 6. \(b\ (0,1/2,0)\ 1/4,y,z\) \hfill 7. \(2'\ (1/2,1/2,0)\ x,x,0\) \hfill 8. \(2'\ x,x+1/2,0\)
 \((mz,1/2,1/2,0)\)

\(120.4.981 - 1 - 1959\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin</th>
<th>4 d 2.2' 0,1/2,0 [0,0,w]</th>
<th>1/2,0,0 [0,0,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Along [0,0,1] p4mm
a⁺ = (a - b)/2 b⁺ = (a + b)/2
Origin at 0,0,z

Along [1,0,0] p2b*m1
a⁺ = b/2 b⁺ = c/2
Origin at x,0,0

Along [1,1,0] p2m*m'1
a⁺ = (-a + b)/2 b⁺ = c/2
Origin at x,x,0

Symmetry of Special Projections
Along [0,0,1] p4mm
a⁺ = (a - b)/2 b⁺ = (a + b)/2
Origin at 0,0,z

Along [1,0,0] p2b*m1
a⁺ = b/2 b⁺ = c/2
Origin at x,0,0

Along [1,1,0] p2m*m'1
a⁺ = (-a + b)/2 b⁺ = c/2
Origin at x,x,0
I4 \text{c}2' \quad 120.5.982 \quad I4 \text{c}2'

Tetragonal

Origin on $\bar{4}c2'$

Asymmetric unit $0 \leq x \leq 1/2$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1/4$

Symmetry Operations

For $(0,0,0) +$ set

(1) 1
(2) $\bar{1}$ 0,0,z
(3) $\bar{4}$ 0,0,z; 0,0,0
(4) $\bar{4}$ 0,0,z; 0,0,0

(5) c' (0,0,1/2) x,0,z
(6) c' (0,0,1/2) 0,y,z
(7) $2'$ x,x,1/4
(8) $2'$ x,x,1/4

For $(1/2,1/2,1/2) +$ set

(1) t (1/2,1/2,1/2)
(2) $\bar{2}$ (0,0,1/2) 1/4,1/4,z
(3) $\bar{4}$ 1/2,0,z; 1/2,0,1/4
(4) $\bar{4}$ 0,1/2,z; 0,1/2,1/4

(5) a' (1/2,0,0) x,1/4,z
(6) b' (0,1/2,0) 1/4,y,z
(7) $2'$ (1/2,1/2,0) x,x,0
(8) $2'$ x,x+1/2,0

120.5.982 - 1 - 1961
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>i</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>..2’</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,0 [u,u,w]</td>
<td>x,x+1/2,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,0 [u,u,w]</td>
<td>x+1/2,x,0 [u,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>2.</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>2.</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>e</td>
<td>..2’</td>
</tr>
<tr>
<td></td>
<td>x,x,1/4 [u,u,w]</td>
<td>x,x,1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [u,u,w]</td>
<td>x,x,3/4 [u,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>2.2’</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,w]</td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>4.</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>0,1/2,3/4 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>4.</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,w]</td>
<td>0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>2.2’</td>
</tr>
<tr>
<td></td>
<td>0,0,1/4 [0,0,w]</td>
<td>0,0,3/4 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4’mm’

a’ = (a - b)/2 b’ = (a + b)/2

Origin at 0,0,z

Along [1,0,0] p1m’1

a’ = b/2 b’ = c/2

Origin at x,0,0

Along [1,1,0] p2’mm’

a’ = -c/2 b’ = (-a + b)/2

Origin at x,x,0
I$_{4}$$\overline{4}$c2

120.6.983

Tetragonal

\(\overline{4}m21'\)

I$_{4}$$\overline{4}$c2

Origin on $\overline{4}c2$.

Asymmetric unit

\[0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{4}\]

Symmetry Operations

For (0,0,0) + set

(1) 1

(2) $2 \ 0,0,z$

(3) $\overline{4} \ + \ 0,0,z; \ 0,0,0$

(4) $\overline{4} \ - \ 0,0,z; \ 0,0,0$

(5) \(c \ (0,0,1/2) \ x,0,z$

(6) \(c \ (0,0,1/2) \ y,0,z$

(7) $\overline{4} \ + \ x,x,1/4$

(8) $\overline{4} \ - \ x,x,1/4$

For (1/2,1/2,1/2) + set

(1) $t' \ (1/2,1/2,1/2)$

(2) $2' \ (0,0,1/2) \ 1/4,1/4,z$

(3) $\overline{4} \ + \ 1/2,0,z; \ 1/2,0,1/4$

(4) $\overline{4} \ - \ 0,1/2,z; \ 0,1/2,1/4$

(5) \(a' \ (1/2,0,0) \ x,1/4,z$

(6) \(b' \ (0,1/2,0) \ 1/4,y,z$

(7) $\overline{4} \ + \ 1/2,1/2,0$ \(x,x,0$

(8) $\overline{4} \ - \ x,x+1/2,0$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2)’ +</td>
</tr>
<tr>
<td>i</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x’-y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>h</td>
<td>8h..2’</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,0 [u,u,w]</td>
</tr>
<tr>
<td>g</td>
<td>8g.2’</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>f</td>
<td>8f.2’</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>e</td>
<td>8e.2’</td>
</tr>
<tr>
<td></td>
<td>x,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [u,u,0]</td>
</tr>
<tr>
<td>d</td>
<td>4d.2’2’</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>c</td>
<td>4c.2’</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>b</td>
<td>4b.2’</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>a</td>
<td>4a.2’</td>
</tr>
<tr>
<td></td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p₄’-4mm
a’ = (a - b)/2 b’ = (a + b)/2
Origin at 0,1/2,z

Along [1,0,0] p₂₂₁m’1
a’ = b/2 b’ = c/2
Origin at x,0,0

Along [1,1,0] p₂₂’2m’m’
a’ = -c/2 b’ = (-a + b)/2
Origin at x,x,0
Origin on $\overline{4}c'2'_t$.

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1/4$

Symmetry Operations

For $(0,0,0) + \text{set}$

1. 1
2. $2 \ 0,0,z$
3. $\overline{4} \ 0,0,0; 0,0,0$
4. $\overline{4} \ 0,0,0; 0,0,0$

$(5) \ c'(0,0,1/2) \ x,0,z$

$(6) \ c'(0,0,1/2) \ 0,y,z$

$(7) \ 2' \ x,x,1/4$

$(8) \ 2' \ x,x,1/4$

For $(1/2,1/2,1/2)' + \text{set}$

1. $t'(1/2,1/2,1/2)$
2. $2' (0,0,1/2) \ 1/4,1/4,0$
3. $\overline{4}' \ 1/2,0,z; 1/2,0,1/4$
4. $\overline{4}' \ 0,1/2,z; 0,1/2,1/4$

$(5) \ a (1/2,0,0) \ x,1/4,z$

$(6) \ b (0,1/2,0) \ 1/4,y,z$

$(7) \ 2 (1/2,1/2,0) \ x,0$

$(8) \ 2 \ x,x+1/2,0$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 i 1</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8 h 2</td>
<td>x,x+1/2,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,0 [u,u,0]</td>
</tr>
<tr>
<td>8 g 2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 f 2</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 e ..2'</td>
<td>x,x,1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [u,u,w]</td>
</tr>
<tr>
<td>4 d 2.22</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c ..4'</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b ..4'</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2.2'2'</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p'(4m'4m')
\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]
Origin at 0,1/2,z

Along [1,0,0] p1m'1
\[a^* = b/2 \quad b^* = c/2 \]
Origin at x,0,0

Along [1,1,0] p2a, 2m'm'
\[a^* = -c/2 \quad b^* = (-a + b)/2 \]
Origin at x,x,0

\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]
Origin at 0,1/2,z
I4\(\text{2m} \)

```
121.1.985
```

Origin
on \(\text{42m} \)

Asymmetric unit

\[
0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/2; \quad x < y
\]

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)

 \[(1) 0,0,0 \]

2. \(2\)

 \[(2) 0,0,z \]

3. \(\bar{4}\)

 \[(3) \bar{4}, 0,0,z; 0,0,0 \]

4. \(4\)

 \[(4) 4, 0,0,z; 0,0,0 \]

For \((1/2,1/2,1/2)\) + set

1. \(1\)

 \[(1) 0,0,0 \]

2. \(2\)

 \[(2) 0,0,1/2 \]

3. \(\bar{4}\)

 \[(3) \bar{4}, 1/2,0,z; 1/2,0,1/4 \]

4. \(4\)

 \[(4) 4, 1/2,0,z; 0,1/2,1/4 \]

For \((1/2,1/2,1/2)\) + set

1. \(1\)

 \[(1) 0,0,0 \]

2. \(2\)

 \[(2) 0,0,1/2 \]

3. \(\bar{4}\)

 \[(3) \bar{4}, 1/2,0,z; 1/2,0,1/4 \]

4. \(4\)

 \[(4) 4, 1/2,0,z; 0,1/2,1/4 \]

5. \(2\)

 \[(5) 1/2,0,0 \]

6. \(2\)

 \[(6) 1/2,0,0 \]

7. \(c\)

 \[(7) c, 0,1/2 \]

8. \(n\)

 \[(8) n, 1/2,1/2,1/2 \]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>j</td>
<td>16</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>i</td>
<td>8</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>h</td>
<td>8</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>g</td>
<td>8</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>f</td>
<td>8</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>e</td>
<td>4</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>d</td>
<td>4</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>c</td>
<td>4</td>
<td>x,2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>x,2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td>x,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'm'm

\[
a^* = (a - b)/2 \quad b^* = (a + b)/2
\]

Origin at 0,0,z

Along [1,0,0] c2m'm'

\[
a^* = b \quad b^* = c
\]

Origin at x,0,0

Along [1,1,0] p1m11'

\[
a^* = (-a + b)/2 \quad b^* = c/2
\]

Origin at x,x,0
I42m1'
121.2.986

\begin{align*}
\text{Origin on } & \overline{4}2m1' \\
\text{Asymmetric unit} & 0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq y \\
\text{Symmetry Operations} & \\
\text{For } (0,0,0) + \text{ set} & \\
(1) & 1 \\
(2) & 2 \ 0,0,z \ \\
(3) & \overline{4} \ 0,0,z; 0,0,0 \\
(4) & \overline{4} \ 0,0,z; 0,0,0 \\
\text{For } (1/2,1/2,1/2) + \text{ set} & \\
(1) & t (1/2,1/2,1/2) \\
(2) & 2 \ (0,0,1/2) \ 1/4,1/4,z \\
(3) & \overline{4} \ 1/2,0,z; 1/2,0,1/4 \\
(4) & \overline{4} \ 0,1/2,z; 0,1/2,1/4 \\
\end{align*}
Continued

For (0,0,0)' + set

(1) 1'
(2) 2' 0,0,z
(3) 4' 0,0,z; 0,0,0
(4) 4' 0,0,z; 0,0,0

For (1/2,1/2,1/2)' + set

(1) 1' (1/2,1/2,1/2)
(2) 2' (0,0,1/2) 1/4,1/4,z
(3) 4' 1/2,0,0; 1/2,1/4,1/4
(4) 4' 0,1/2,0; 0,1/2,1/4

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

\[
\begin{array}{cccc}
16 & j & 11' & (1) x,y,z [0,0,0] \\
& & & (2) \bar{x},\bar{y},z [0,0,0] \\
& & & (3) y,\bar{x},\bar{z} [0,0,0] \\
& & & (4) \bar{y},x,\bar{z} [0,0,0] \\
& & & (5) \bar{x},y,z [0,0,0] \\
& & & (6) x,y,z [0,0,0] \\
& & & (7) \bar{y},x,\bar{z} [0,0,0] \\
& & & (8) y,x,\bar{z} [0,0,0]
\end{array}
\]

Symmetry of Special Projections

Along [0,0,1] p4mm1'
Along [1,0,0] c2mm1'
Along [1,1,0] p1m11'

a* = (a - b)/2
b* = (a + b)/2

Origin at 0,0,z
Origin at x,0,0
Origin at x,x,0

2 \text{a} 42m1' 0,0,0 [0,0,0]
Origin on $\overline{4}2'm$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq y$

Symmetry Operations

For $(0,0,0) +$ set

(1) 1
(1) 0,0,0
(5) 2' 0,y,0
(2,y,0,0)' (2) 2' 0,0,z
(2,z,0,0)
(6) 2' x,0,0
(2,x,0,0)'
(7) m x,x,z
(8) m x,x,z
(m,x,0,0) (m,x,0,0)'

For $(1/2,1/2,1/2) +$ set

(1) t (1/2,1/2,1/2)
(1) 1/2,1/2,1/2
(5) 2' (0,1/2,0) 1/4,y,1/4
(2,y,1/2,1/2; 1/2,1/2,1/2)'
(6) 2' (1/2,0,0) x,1/4,1/4
(2,x,1/2,1/2; 1/2,1/2,1/2)'
(7) c (0,0,1/2) x+1/2,x,z
(8) n (1/2,1/2,1/2) x,x,z
(m,x,1/2,1/2; 1/2,1/2,1/2)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i m</td>
<td>x,x,z [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>8 h</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 g .2'</td>
<td>x,0,1/2 [0,v,w]</td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 f .2'</td>
<td>x,0,0 [0,v,w]</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>4 e 2.mm</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 d 4'..</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 c 22'2'</td>
<td>0,1/2,0 [0,0,w]</td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td>2 b 4'2'm</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 4'2'm</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>16 j 1</th>
<th>(0,0,0) +</th>
<th>(1/2,1/2,1/2) +</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(8) y,x,z [v,u,w]</td>
<td>(9) y,x,z [v,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p4m'm'
 - \(a^* = (a - b)/2\)
 - \(b^* = (a + b)/2\)
 - Origin at 0,0,z

- Along [1,0,0] c2m'm'
 - \(a^* = b\)
 - \(b^* = c\)
 - Origin at x,0,0

- Along [1,1,0] p1m11'
 - \(a^* = -(a + b)/2\)
 - \(b^* = c/2\)
 - Origin at x,x,0
Origin on $\bar{4}2m'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq y$

Symmetry Operations

For $(0,0,0) + \text{set}$

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1 \quad (1) \quad 0,0,0$</td>
<td>$0,0,0$</td>
</tr>
<tr>
<td>2</td>
<td>$2 \quad (1) \quad 0,0,z \quad (2z,0,0,0)$</td>
<td>$0,0,z$</td>
</tr>
<tr>
<td>3</td>
<td>$4' \quad 0,0,z; 0,0,0 \quad (4z,0,0,0)'$</td>
<td>$0,0,z$</td>
</tr>
<tr>
<td>4</td>
<td>$\bar{4}2m' \quad 0,0,z; 0,0,0 \quad (4z,1,0,0)'$</td>
<td>$0,0,z$</td>
</tr>
</tbody>
</table>

For $(1/2,1/2,1/2) + \text{set}$

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$t \quad (1) \quad 1/2,1/2,1/2 \quad (1/2,1/2,1/2)$</td>
<td>$1/2,1/2,1/2$</td>
</tr>
<tr>
<td>2</td>
<td>$2 \quad (0,0,1/2) \quad 1/4,1/4,z \quad (2z,1/2,1/2,1/2)$</td>
<td>$1/4,1/4,z$</td>
</tr>
<tr>
<td>3</td>
<td>$4' \quad 1/2,0,z; 1/2,0,1/4 \quad (4z,1/2,1/2,1/2)'$</td>
<td>$1/2,0,z$</td>
</tr>
<tr>
<td>4</td>
<td>$\bar{4}2m' \quad 0,1/2,z; 0,1/2,1/4 \quad (4z,1/2,1/2,1/2)'$</td>
<td>$0,1/2,z$</td>
</tr>
</tbody>
</table>

121.4.988 - 1 - 1973
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j</td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>16 j</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 j</td>
<td>(3) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>16 j</td>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>16 j</td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 i</td>
<td>(6) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>8 i</td>
<td>(7) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 i</td>
<td>(8) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 h</td>
<td>x,x,z [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 f</td>
<td>x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4 e</td>
<td>0,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 d</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 c</td>
<td>0,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 b</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p4mm
- Along [1,0,0] c2m'm'
- Along [1,1,0] p1m'1

a = (a - b)/2 **b** = (a + b)/2
Origin at 0,0,z

a = b **b** = c
Origin at x,0,0

a = (-a + b)/2 **b** = c/2
Origin at x,x,0
Origin on $\overline{4}2'm'$

Asymmetric unit $\begin{cases} 0 \leq x \leq 1/2; \\ 0 \leq y \leq 1/2; \\ 0 \leq z \leq 1/2; \\ x \leq y \end{cases}$

Symmetry Operations

For $(0,0,0) +$ set

1. $\begin{pmatrix} 1 \\ 0,0,0 \end{pmatrix}$
2. $\begin{pmatrix} 2 \\ 0,0,z \\ 2_z,0,0,0 \end{pmatrix}$
3. $\begin{pmatrix} 4^- \\ 0,0,z; 0,0,0 \\ 4_z,0,0,0 \end{pmatrix}$
4. $\begin{pmatrix} 4^- \\ 0,0,z; 0,0,0 \\ 4_z^{-1},0,0,0 \end{pmatrix}$

For $(1/2,1/2,1/2) +$ set

1. $\begin{pmatrix} t \\ 1/2,1/2,1/2 \end{pmatrix}$
2. $\begin{pmatrix} 2 \\ 0,0,1/2 \\ 1/4,1/4,z \\ 2_z,1/2,1/2,1/2 \end{pmatrix}$
3. $\begin{pmatrix} 4^- \\ 1/2,0,z; 1/2,0,1/4 \\ 4_z,1/2,1/2,1/2 \end{pmatrix}$
4. $\begin{pmatrix} 4^- \\ 0,1/2,z; 0,1/2,1/4 \\ 4_z^{-1},1/2,1/2,1/2 \end{pmatrix}$

121.5.989 - 1 - 1975
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1/2,1/2,1/2) +</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16	j	1	(1) x,y,z [u,v,w]	(2) x,y,z [u,v,w]	(3) y,x,z [v,u,w]	(4) y,x,z [v,u,w]
8	i	.m'	x,x,z [u,u,w]	x,x,z [u,u,w]	x,x,z [u,u,w]	x,x,z [u,u,w]
8	h	2..	0,1/2,z [0,0,w]	1/2,0,z [0,0,w]	0,1/2,z [0,0,w]	1/2,0,z [0,0,w]
8	g	.2'.	x,0,1/2 [0,v,w]	x,0,1/2 [0,v,w]	0,x,1/2 [v,0,w]	0,x,1/2 [v,0,w]
8	f	.2'.	x,0,0 [0,v,w]	x,0,0 [0,v,w]	0,x,0 [v,0,w]	0,x,0 [v,0,w]
4	e	2.m'm'	0,0,z [0,0,w]	0,0,z [0,0,w]		
4	d	.4..	0,1/2,1/4 [0,0,w]	0,1/2,3/4 [0,0,w]		
4	c	22'2'.	0,1/2,0 [0,0,w]	1/2,0,0 [0,0,w]		
2	b	42'm'	0,0,1/2 [0,0,w]			
2	a	42'm'	0,0,0 [0,0,w]			

Symmetry of Special Projections

Along [0,0,1] p4mm'
Along [1,0,0] c2mm'
Along [1,1,0] p1m1

\[
a^* = \frac{(a - b)}{2} \quad b^* = \frac{(a + b)}{2}
\]

Origin at 0,0,z
Origin at x,0,0
Origin at x,x,0
Origin on $\overline{4}2m$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x < y$

Symmetry Operations

For $(0,0,0)$ + set

1. 1
 1. $(0,0,0)$

2. $0,0,z$
 2. $(2z,0,0,0)$

3. $\begin{array}{c} 4^- \quad 0,0,z; 0,0,0 \\ (4_z,0,0,0) \end{array}$

4. $\begin{array}{c} 4^- \quad 0,0,z; 0,0,0 \\ (4_z^{-1},0,0,0) \end{array}$

For $(1/2,1/2,1/2)'$ + set

1. $t' (1/2,1/2,1/2)$
 1. $(1/2,1/2,1/2)$

2. $(0,0,1/2)$
 2. $(1/2,1/2,1/2)'$

3. $\begin{array}{c} 4^-' \quad 1/2,0,z; 1/2,0,1/4 \\ (4_z,1/2,1/2,1/2)' \end{array}$

4. $\begin{array}{c} 4^-' \quad 0,1/2,z; 0,1/2,1/4 \\ (4_z^{-1},1/2,1/2,1/2)' \end{array}$

(1) $0,0,0$

(2) $x,0,0$

(3) x,x,z

(4) $x,y,0$

(5) $x,y,1/4$

(6) $x,1/4,1/4$

(7) $x+1/2,x,1/4$

(8) $x+1/2,1/4$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2)’ +</td>
</tr>
<tr>
<td>16 j 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 i m</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>8 h 2</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 g 2</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td>8 f 2</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td>4 e 2.mm</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 d 4’</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 c 222.</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b 42m</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 42m</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p,, 4m’m’ Along [1,0,0] c2m’m’ Along [1,1,0] p1m11’

\(a^* = (a - b)/2\) \(b^* = (a + b)/2\) \(a^* = b\) \(b^* = c\) \(a^* = (-a + b)/2\) \(b^* = c/2\)

Origin at 1/2,0,z Origin at x,0,0 Origin at x,x,0
Origin on $\overline{4}2'm$

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq y \]

Symmetry Operations

For \((0,0,0)\) + set

1. \(1\)

 \((1) 1\)
 \((1) 0,0,0\)

2. \(2\)

 \((2) 2\)
 \((2) 0,0,z\)
 \((2_x, 0, 0, 0)\)

3. \(\overline{4}^+\)

 \((3) \overline{4}^+\)
 \((3) 0,0,0; 0,0,0\)
 \((4, z, 0, 0, 0)\)

4. \(\overline{4}^-\)

 \((4) \overline{4}^-\)
 \((4) 0,0,0; 0,0,0\)
 \((4_z, 0, 0, 0)\)

For \((1/2,1/2,1/2)\) + set

1. \(t'\)

 \((1) t'\)
 \((1) 1/2,1/2,1/2\)
 \((1/2,1/2,1/2)\)

2. \(2'\)

 \((2) 2'\)
 \((2) (0,0,1/2); 1/4,1/4,z\)
 \((2_2, 1/2, 1/2, 1/2)\)

3. \(\overline{4}^+\)

 \((3) \overline{4}^+\)
 \((3) 1/2,0,0; 1/2,0,1/4\)
 \((4_z, 1/2, 1/2, 1/2)\)

4. \(\overline{4}^-\)

 \((4) \overline{4}^-\)
 \((4) 0,1/2,z; 0,1/2,1/4\)
 \((4_z, 1/2, 1/2, 1/2)\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 i</td>
<td>..m</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>8 h</td>
<td>2..</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>8 g</td>
<td>.2'</td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>8 f</td>
<td>.2'</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>4 e</td>
<td>2.mm</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 d</td>
<td>4..</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>4 c</td>
<td>22'2'</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b</td>
<td>4'2'm</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a</td>
<td>4'2'm</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(8) y,x,z [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p,4m'4m'
\(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \)
Origin at 0,0,z

Along [1,0,0] c,2'2mm'
\(a^* = -c \) \(b^* = b \)
Origin at x,0,0

Along [1,1,0] p1m11'
\(a^* = (-a + b)/2 \) \(b^* = c/2 \)
Origin at x,x,0
Origin on $\overline{4}'2m'$

Asymmetric unit
0 ≤ x ≤ 1/2;
0 ≤ y ≤ 1/2;
0 ≤ z ≤ 1/2;
x ≤ y

Symmetry Operations

For (0,0,0) + set

(1) 1
(1) 0,0,0

(2) 2 0,0,z
(2) 0,0,0
(2) z,0,0,0

(3) $\overline{4}'$ 0,0,z; 0,0,0
(3) $\overline{4}'$ 0,0,0
(4) $\overline{4}'$ 0,0,0; 0,0,0

For (1/2,1/2,1/2)' + set

(1) t' (1/2,1/2,1/2)
(1) 1/2,1/2,1/2

(2) 2' (0,0,1/2)
(2) 1/4,1/4,z
(2) z,1/4,1/4

(3) $\overline{4}'$ 1/2,0,z; 1/2,0,1/4
(3) $\overline{4}'$ 1/2,1/2,1/2
(4) $\overline{4}'$ 1/2,1/2,1/2

(5) 2' (0,1/2,0)
(5) 1/4,y,1/4
(5) y,1/4,1/4

(6) 2' (1/2,0,0)
(6) x,1/4,1/4
(6) x,1/4,1/4

(7) c (0,0,1/2)
(7) x+1/2,z,1/2
(7) m_x,1/2,1/2,1/2

(8) n (1/2,1/2,1/2)
(8) x,x,z
(8) m_x,1/2,1/2,1/2
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>j 1</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>8</td>
<td>i ..m'</td>
<td>(1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>8</td>
<td>h 2..</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>8</td>
<td>g .2.</td>
<td>(1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>8</td>
<td>f .2.</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>4</td>
<td>e 2.m'm'</td>
<td>(1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>4</td>
<td>d 4..</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>4</td>
<td>c 222.</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>2</td>
<td>b 4'2m'</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>2</td>
<td>a 4'2m'</td>
<td>(0,0,0) +</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) y,x,z [v,u,w]</td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>x,x,z [u,u,w]</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>x,0,1/2 [u,0,0]</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>x,0,1/2 [u,0,0]</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>0,1/2,1/4 [0,0,w]</td>
<td>0,1/2,3/4 [0,0,w]</td>
</tr>
<tr>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_{2} \cdot 4mm \) \(a^{*} = (a - b)/2 \) \(b^{*} = (a + b)/2 \)
Origin at 0,0,z

Along [1,0,0] \(c_{2} \cdot 2m'm' \) \(a^{*} = b \) \(b^{*} = c \)
Origin at 0,0,0

Along [1,1,0] \(p_{2z} \cdot 1m'1 \) \(a^{*} = -(a + b)/2 \) \(b^{*} = c/2 \)
Origin at x,x,0
Origin on $\text{4}2\text{m}'$

Asymmetric unit $0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/2; \quad x < y$

Symmetry Operations

For $(0,0,0)$ + set

1. 1

2. $2 \cdot 0,0,z$

3. 4 $0,0,z; 0,0,0$

4. 4 $0,z; 0,0,0$

5. $2' 0,y,0$

6. $2' x,0,0$

7. $\text{m'} x,x,z$

8. $\text{m'} x,x,z$

For $(1/2,1/2,1/2)'$ + set

1. $t' (1/2,1/2,1/2)$

2. $2' (0,0,1/2) 1/4,1/4,z$

3. 4 $1/2,0,z; 1/2,0,1/4$

4. 4 $0,1/2,z; 0,1/2,1/4$

5. $2 (0,1/2,0) 1/4,y,1/4$

6. $2 (1/2,0,0) x,1/4,1/4$

7. $c (0,0,1/2) x+1/2,x,z$

8. $n (1/2,1/2,1/2) x,x,z$

121.9.993 - 1 - 1983
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j 1</td>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
</tbody>
</table>

8 i .m'	x,x,z [u,u,w]
8 h 2..	0,1/2,z [0,0,w]
8 g .2'.	x,0,1/2 [0,v,w]
8 f .2'.	x,0,0 [0,v,w]
4 e 2.m'	0,0,z [0,0,w]
4 d 4'	0,1/2,1/4 [0,0,0]
4 c 22'2'	0,1/2,0 [0,0,w]
2 b 42'm'	0,0,1/2 [0,0,w]
2 a 42'm'	0,0,0 [0,0,w]

Symmetry of Special Projections

- Along [0,0,1] \(p_{14} \), 4m'm'
 \(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \)
- Origin at 1/2,0,z

- Along [1,0,0] \(c_{14} \), 2'mm'
 \(a^* = -c \) \(b^* = b \)
- Origin at 0,0,0

- Along [1,1,0] \(p_{22} \), 1m'
 \(a^* = -(a + b)/2 \) \(b^* = c/2 \)
- Origin at x,x,0
Origin on 4

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/8

Symmetry Operations

For (0,0,0) + set

1.
 (1) 1
 (1|0,0,0)

2.
 (2) 2 0,0,z
 (2|0,0,0)

3.
 (3) 4' 0,0,z; 0,0,0
 (4|0,0,0)

4.
 (4) 4' 0,0,z; 0,0,0
 (4|0,0,0)

For (1/2,1/2,1/2) + set

1.
 (1) t (1/2,1/2,1/2)
 (1|1/2,1/2,1/2)

2.
 (2) 2 (0,0,1/2) 1/4,1/4,z
 (2|1/2,1/2,1/2)

3.
 (3) 4' 1/2,0,z; 1/2,0,1/4
 (4|1/2,1/2,1/2)

4.
 (4) 4' 0,1/2,z; 0,1/2,1/4
 (4|1/2,1/2,1/2)

5.
 (5) 2 1/4,y,3/8
 (2|1/2,0,3/4)

6.
 (6) 2 (1/2,0,0) x,0,3/8
 (2|1/2,0,3/4)

7.
 (7) d (1/4,-1/4,3/4) x+1/4,x,z
 (m|1/2,0,3/4)

8.
 (8) d (1/4,1/4,3/4) x+1/4,x,z
 (m|1/2,0,3/4)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 e 1</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x̅,y,z [u̅,v̅,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,z [v,0,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [v,u̅,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u̅,w]</td>
</tr>
</tbody>
</table>

(1) x,y,z [u,v,w]
(2) x̅,y,z [u̅,v̅,w]
(3) y,x,z [v,u,w]
(4) y,z [v,0,w]
(5) x,y,z [v,u,w]
(6) x,y,z [v,u̅,w]
(7) y,x,z [v,u,w]
(8) y,x,z [v,u̅,w]

8 d .2. x,1/4,1/8 [u,0,0]
8 c 2.. 0,0,z [0,0,w]
4 b 4.. 0,0,1/2 [0,0,w]
4 a 4.. 0,0,0 [0,0,w]

Symmetry of Special Projections

Along [0,0,1] p4'g'm
a* = (a - b)/2
b* = (a + b)/2
Origin at 0,0,z

Along [1,0,0] c2m'm'
a* = b
b* = c
Origin at x,0,3/8

Along [1,1,0] c1m'1
a* = (-a + b)/2
b* = c/2
Origin at x,x,0
Origin on $\bar{4} 1'$

Asymmetric unit

$0 \leq x \leq 1/2$; $0 \leq y \leq 1$; $0 \leq z \leq 1/8$

Symmetry Operations

For $(0,0,0)$ + set

1. 1

 $1' (0,0,0)$

2. 2

 $0,0,z$

 $(2_z,0,0,0)$

3. $\bar{4}$

 $0,0,z$; $0,0,0$

 $(4_z,0,0,0)$

For $(1/2,1/2,1/2)$ + set

1. t

 $(1/2,1/2,1/2)$

2. 2

 $(0,0,1/2)$; $1/4,1/4,z$

 $(2_z,1/2,1/2,1/2)$

3. $\bar{4}$

 $1/2,0,z$; $1/2,0,1/4$

 $(4_z,1/2,1/2,1/2)$

4. $\bar{4}$

 $0,1/2,z$; $0,1/2,1/4$

 $(4_z^{-1},0,0,0)$
For (0,0,0)' + set

(1) 1' (2) 2' 0,0,z (3) 4' 0,0,z; 0,0,0 (4) 4' 0,0,z; 0,0,0
(1,0,0,0)' (4z,0,0,0)' (4z,0,0,0)' (4z,0,0,0)'

(5) 2' (0,1/2,0) 0,y,1/8 (2z,0,1/2,1/4)'

(6) 2' x,1/4,1/8 (7) d' (1/4,1/4,1/4) x+1/4,x,z (8) d' (1/4,1/4,1/4) x-1/4,x,z
(2z,0,1/2,1/4) (m_y) 0,1/2,1/4) (m_y) 0,1/2,1/4)'

For (1/2,1/2,1/2)' + set

(1) t' (1/2,1/2,1/2) (2) 2' (0,0,1/2) 1/4,1/4,z (3) 4' 1/2,0,z; 1/2,0,1/4 (4) 4' 0,1/2,z; 0,1/2,1/4
(1,1/2,1/2,1/2) (2z,1/2,1/2,1/2) (4z,1/2,1/2,1/2) (4z,1/2,1/2,1/2)'

(5) 2' 1/4,y,3/8 (2z,1/2,0,3/4)'

(6) 2' (1/2,0,0) x,0,3/8 (7) d' (1/4,-1/4,3/4) x+1/4,x,z (8) d' (1/4,1/4,3/4) x+1/4,x,z
(2z,1/2,0,3/4) (m_x) 1/2,0,3/4) (m_x) 1/2,0,3/4)'

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5): 1'.

Positions

Multiplicity
Wyckoff letter
Site Symmetry

(0,0,0) + (1/2,1/2,1/2) +
(0,0,0)' + (1/2,1/2,1/2)' +

16 e 11' (1) x,y,z [0,0,0] (2) x,y,z [0,0,0]
(3) y,x,z [0,0,0] (4) y,x,z [0,0,0]
(5) x,y+1/2,z+1/4 [0,0,0] (6) x,y+1/2,z+1/4 [0,0,0]
(7) y,x+1/2,z+1/4 [0,0,0] (8) y,x+1/2,z+1/4 [0,0,0]

8 d .2.1' x,1/4,1/8 [0,0,0] x,3/4,1/8 [0,0,0] 1/4,x,7/8 [0,0,0] 3/4,x,7/8 [0,0,0]
8 c 2..1' 0,0,z [0,0,0] 0,0,z [0,0,0] 0,1/2,z+1/4 [0,0,0] 0,1/2,z+1/4 [0,0,0]
4 b 4..1' 0,0,1/2 [0,0,0] 0,1/2,3/4 [0,0,0] 0,1/2,3/4 [0,0,0]
4 a 4..1' 0,0,0 [0,0,0] 0,1/2,1/4 [0,0,0] 0,1/2,1/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4gm1' Along [1,0,0] c2mm1' Along [1,1,0] c1m11'
a* = (a - b)/2 b* = (a + b)/2 a* = b b* = c a* = (-a + b)/2 b* = c/2
Origin at 0,0,z Origin at x,0,3/8 Origin at x,x,0
Symmetry Operations

For (0,0,0) + set

1. \(1 \quad (1) 0,0,0 \)
 \(1^* \quad (2) 0,0,z \)
 \(2^d \quad (3) 4^d \quad 0,0,z; 0,0,0 \)
 \(2^d \quad (4) 4^d \quad 0,0,0\)

2. \(2' \quad (5) (0,1/2,0) \quad 0,y,1/8 \)
 \(2' \quad (6) (0,1/2,1/4) \quad x,1/4,1/8 \)
 \(2' \quad (7) (1/4,-1/4,3/4) \quad x+1/4, x, z; 1/4, x, z \)
 \(2' \quad (8) (1/4,1/4,3/4) \quad x+1/4, x, z \)

For (1/2,1/2,1/2) + set

1. \(t \quad (1) 1/2,1/2,1/2 \)
 \(1^* \quad (2) 0,0,1/2 \quad 1/4,1/4,z \)
 \(2' \quad (3) 4^d \quad 1/2,0,z; 1/2,0,1/4 \)
 \(2' \quad (4) 4^d \quad 1/2,0,1/4\)

2. \(2' \quad (5) (1/4,y,3/8) \quad 0,3/8 \)
 \(2' \quad (6) (1/2,0,0) \quad x,0,3/8 \)
 \(2' \quad (7) (1/4,-1/4,3/4) \quad x+1/4, x, z \)
 \(2' \quad (8) (1/4,1/4,3/4) \quad x+1/4, x, z \)

Origin on 4d

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/8 \]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4g'm'

\[\mathbf{a}^* = (\mathbf{a} - \mathbf{b})/2 \quad \mathbf{b}^* = (\mathbf{a} + \mathbf{b})/2 \]

Origin at 0,0,z

Along [1,0,0] c2m'm'

\[\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \]

Origin at x,0,3/8

Along [1,1,0] \(\mathbf{c}_s \mathbf{1m}'1 \)

\[\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c}/2 \]

Origin at x,x,0
Origin on $\overline{4}v$

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1; \ 0 \leq z \leq 1/8$

Symmetry Operations

For $(0,0,0)$ + set

(1) 1
 (1) $|0,0,0|

(2) 2 $0,0,z$
 (2) $2|0,0,0$

(3) $\overline{4}v$ $0,0; 0,0,0$
 $\left(\frac{4}{x},0,0,0\right)$

(4) $\overline{4}v$ $0,0; 0,0,0$
 $\left(\frac{4}{x}\right)|0,0,0\right)$

For $(1/2,1/2,1/2)$ + set

(1) t $(1/2,1/2,1/2)$
 $(1) |1/2,1/2,1/2|

(2) 2 $(0,0,1/2)$ $1/4,1/4,1/4$
 (2) $2|1/2,1/2,1/2|

(3) $\overline{4}v$ $1/2,0; 1/2,0,1/4$
 $\left(\frac{4}{x},1/2,1/2,1/2\right)$

(4) $\overline{4}v$ $0,1/2,z; 0,1/2,1/4$
 $\left(\frac{4}{x}|1/2,1/2,1/4\right)$

(5) 2 $1/4,y,3/8$
 $(2) |1/2,0,3/4|

(6) 2 $(1/2,0,0)$ $0,3/8$
 (2) $2|1/2,0,3/4|

(7) $\overline{4}v$ $1/4,-1/4,3/4$
 $\left(\frac{4}{x},1/2,0,3/4\right)$

(8) $\overline{4}v$ $1/4,1/4,3/4$
 $\left(\frac{4}{x}|1/2,0,3/4\right)$

122.4.997 - 1 - 1991
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 e 1</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2)</td>
</tr>
<tr>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm

a* = (a - b)/2 b* = (a + b)/2
Origin at 0,0,z

Along [1,0,0] c2m'm'

a* = b b* = c
Origin at x,0,3/8

Along [1,1,0] c1m'1

a* = (-a + b)/2 b* = c/2
Origin at x,x,0
Origin on $\overline{4}$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/8$

Symmetry Operations

For $(0,0,0) +$ set

1. 1
 $(1) \ 0,0,0$
 $(2) \ 2 \ 0,0,z$
 $(3) \ \overline{4}^+ \ 0,0,z \ 0,0,0$
 $(4) \ \overline{4}^- \ 0,0,z \ 0,0,0$
 $(5) \ 2' \ (0,1/2,0) \ 0,y,1/8$
 $(2y) \ 0,1/2,1/4)$
 $(6) \ 2' \ x,1/4,1/8$
 $(2x) \ 0,1/2,1/4)$
 $(7) \ d' \ (-1/4,1/4,1/4) \ x+1/4,x,z$
 $(m_{xy}) \ 0,1/2,1/4)$
 $(8) \ d' \ (1/4,1/4,1/4) \ x-1/4,x,z$
 $(m_{xy}) \ 0,1/2,1/4)$

For $(1/2,1/2,1/2) +$ set

1. $t \ (1/2,1/2,1/2)$
 $(1) \ 0,0,1/2$
 $(2) \ 2 \ (0,0,1/2) \ 1/4,1/4,z$
 $(3) \ \overline{4}^+ \ 1/2,0,z \ 1/2,0,1/4$
 $(4) \ \overline{4}^- \ 1/2,0,z \ 0,1/2,1/4$
 $(5) \ 2' \ 1/4,y,3/8$
 $(2y) \ 1/2,0,3/4)$
 $(6) \ 2' \ (1/2,0,0) \ x,0,3/8$
 $(2x) \ 1/2,0,3/4)$
 $(7) \ d' \ (1/4,-1/4,3/4) \ x+1/4,x,z$
 $(m_{xy}) \ 1/2,0,3/4)$
 $(8) \ d' \ (1/4,1/4,3/4) \ x+1/4,x,z$
 $(m_{xy}) \ 1/2,0,3/4)$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 e 1</td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'gm'
\(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \)
Origin at 0,0,z

Along [1,0,0] c2'mm'
\(a^* = -c \) \(b^* = b \)
Origin at x,0,3/8

Along [1,1,0] c1m'1
\(a^* = -(a + b)/2 \) \(b^* = c/2 \)
Origin at x,x,0
Origin at center (4/mmm)

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x ≥ y

Symmetry Operations:

(1) 1
(1|0,0,0)

(2) 2 0,0,z
(2z|0,0,0)

(3) 4+ 0,0,z
(4z|0,0,0)

(4) 4- 0,0,z
(4z|0,0,0)

(5) 2 0,y,0
(2y|0,0,0)

(6) 2 x,0,0
(2x|0,0,0)

(7) 2 x,x,0
(2xy|0,0,0)

(8) 2 x,x,0
(2xy|0,0,0)

(9) 1 0,0,0
(1|0,0,0)

(10) m x,y,0
(mx|0,0,0)

(11) 4+ 0,0,z; 0,0,0
(4z|0,0,0)

(12) 4- 0,0,z; 0,0,0
(4z|0,0,0)

(13) m x,0,z
(mx|0,0,0)

(14) m 0,y,z
(my|0,0,0)

(15) m x,x,z
(mx|0,0,0)

(16) m x,x,z
(mx|0,0,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 u 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z [v,u,w] (4) y,x,z [v,u,w] (5) x,y,z [u,v,w] (6) x,y,z [u,v,w] (7) y,x,z [v,u,w] (8) y,x,z [v,u,w] (9) x,y,z [u,v,w] (10) x,y,z [u,v,w] (11) y,x,z [v,u,w] (12) y,x,z [v,u,w] (13) x,y,z [u,v,w] (14) x,y,z [u,v,w] (15) y,x,z [v,u,w] (16) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 t .m.</td>
<td>x,1/2,z [0,v,0] x,1/2,z [0,v,0] 1/2,x,z [v,0,0] 1/2,x,z [v,0,0] x,1/2,z [0,v,0] x,1/2,z [0,v,0] 1/2,x,z [v,0,0] 1/2,x,z [v,0,0]</td>
</tr>
<tr>
<td>8 s .m.</td>
<td>x,0,z [0,v,0] x,0,z [0,v,0] 0,x,z [v,0,0] 0,x,z [v,0,0] x,0,z [0,v,0] x,0,z [0,v,0] 0,x,z [v,0,0] 0,x,z [v,0,0]</td>
</tr>
<tr>
<td>8 r .m.</td>
<td>x,x,z [u,u,0] x,x,z [u,u,0]</td>
</tr>
<tr>
<td>8 q .m.</td>
<td>x,y,1/2 [0,0,w] x,y,1/2 [0,0,w] y,x,1/2 [0,0,w] y,x,1/2 [0,0,w] x,y,1/2 [0,0,w] x,y,1/2 [0,0,w] y,x,1/2 [0,0,w] y,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 p .m.</td>
<td>x,y,0 [0,0,w] x,y,0 [0,0,w] y,x,0 [0,0,w] y,x,0 [0,0,w] x,y,0 [0,0,w] x,y,0 [0,0,w] y,x,0 [0,0,w] y,x,0 [0,0,w]</td>
</tr>
<tr>
<td>4 o m2m.</td>
<td>x,1/2,1/2 [0,0,0] x,1/2,1/2 [0,0,0] 1/2,x,1/2 [0,0,0] 1/2,x,1/2 [0,0,0] x,1/2,1/2 [0,0,0] x,1/2,1/2 [0,0,0] 1/2,x,1/2 [0,0,0] 1/2,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 n m2m.</td>
<td>x,1/2,0 [0,0,0] x,1/2,0 [0,0,0] 1/2,x,0 [0,0,0] 1/2,x,0 [0,0,0] x,1/2,0 [0,0,0] x,1/2,0 [0,0,0] 1/2,x,0 [0,0,0] 1/2,x,0 [0,0,0]</td>
</tr>
<tr>
<td>4 m m2m.</td>
<td>x,0,1/2 [0,0,0] x,0,1/2 [0,0,0] 0,x,1/2 [0,0,0] 0,x,1/2 [0,0,0] x,0,1/2 [0,0,0] x,0,1/2 [0,0,0] 0,x,1/2 [0,0,0] 0,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 l m2m.</td>
<td>x,0,0 [0,0,0] x,0,0 [0,0,0] 0,x,0 [0,0,0] 0,x,0 [0,0,0] x,0,0 [0,0,0] x,0,0 [0,0,0] 0,x,0 [0,0,0] 0,x,0 [0,0,0]</td>
</tr>
<tr>
<td>4 k m2m.</td>
<td>x,x,1/2 [0,0,0] x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 j m2m.</td>
<td>x,x,0 [0,0,0] x,x,0 [0,0,0]</td>
</tr>
<tr>
<td>4 i 2mm.</td>
<td>0,1/2,z [0,0,0] 0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 h 4mm</td>
<td>1/2,1/2,z [0,0,0] 1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 g 4mm</td>
<td>0,0,z [0,0,0] 0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 f mmm.</td>
<td>0,1/2,0 [0,0,0] 0,1/2,0 [0,0,0] 0,1/2,0 [0,0,0] 0,1/2,0 [0,0,0] 0,1/2,0 [0,0,0] 0,1/2,0 [0,0,0] 0,1/2,0 [0,0,0] 0,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>
2 e mmm. 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]
1 d 4/mmm 1/2,1/2,1/2 [0,0,0]
1 c 4/mmm 1/2,1/2,0 [0,0,0]
1 b 4/mmm 0,0,1/2 [0,0,0]
1 a 4/mmm 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm1' Along [1,0,0] p2mm1' Along [1,1,0] p2mm1'
\(a^* = a\) \(b^* = b\) \(a^* = b\) \(b^* = c\) \(a^* = (-a + b)/2\) \(b^* = c\)
Origin at 0,0,z Origin at x,0,0 Origin at x,x,0
Origin at center (4/mmm1')

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq y \]

Symmetry Operations

For 1 + set

1. \(1 \to (1|0,0,0) \)
2. \(2 \to (2,0,0) \)
3. \(4^+ \to (4,0,0) \)
4. \(4^- \to (4,0,0) \)

5. \(2 \to (2|0,0,0) \)
6. \(2 \to (2,0,0) \)
7. \(2 \to (2,0,0) \)
8. \(2 \to (2,0,0) \)

9. \(\bar{1} \to (1|0,0,0) \)
10. \(m \to (m,0,0) \)
11. \(\bar{4}^+ \to (4,0,0) \)
12. \(\bar{4}^- \to (4,0,0) \)

13. \(m \to (m,0,0) \)
14. \(m \to (m,0,0) \)
15. \(m \to (m,0,0) \)
16. \(m \to (m,0,0) \)
Continued

For 1' + set

(1) 1'
(1,0,0)

(2) 2', 0,0,0
(1,0,0)

(3) 4', 0,0,0
(1,0,0)

(4) 4', 0,0,0
(1,0,0)

(5) 2', 0,0,0
(2,0,0)

(6) 2', x,0,0
(2,0,0)

(7) 2', x,x,0
(2,0,0)

(8) 2', x,x,0
(2,0,0)

(9) 1'
(0,0,0)

(10) 2', 0,0,0
(0,0,0)

(11) 2', 0,0,0
(0,0,0)

(12) 2', 0,0,0
(0,0,0)

(13) 2', 0,0,0
(0,0,0)

(14) 2', 0,0,0
(0,0,0)

(15) 2', 0,0,0
(0,0,0)

(16) 2', 0,0,0
(0,0,0)

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>u</td>
<td>1' +</td>
</tr>
<tr>
<td>16</td>
<td>u</td>
<td>1' +</td>
</tr>
<tr>
<td>8</td>
<td>t</td>
<td>1/2,x,0,0</td>
</tr>
<tr>
<td>8</td>
<td>t</td>
<td>1/2,x,0,0</td>
</tr>
<tr>
<td>8</td>
<td>s</td>
<td>0,0,0</td>
</tr>
<tr>
<td>8</td>
<td>s</td>
<td>0,0,0</td>
</tr>
<tr>
<td>8</td>
<td>r</td>
<td>0,0,0</td>
</tr>
<tr>
<td>8</td>
<td>r</td>
<td>0,0,0</td>
</tr>
<tr>
<td>8</td>
<td>q</td>
<td>0,0,0</td>
</tr>
<tr>
<td>8</td>
<td>q</td>
<td>0,0,0</td>
</tr>
<tr>
<td>4</td>
<td>o</td>
<td>1/2,0,0,0</td>
</tr>
<tr>
<td>4</td>
<td>o</td>
<td>1/2,0,0,0</td>
</tr>
<tr>
<td>4</td>
<td>n</td>
<td>1/2,0,0,0</td>
</tr>
<tr>
<td>4</td>
<td>n</td>
<td>1/2,0,0,0</td>
</tr>
</tbody>
</table>
4 m m2m.1' x,0,1/2 [0,0,0] \bar{x},0,1/2 [0,0,0] 0,x,1/2 [0,0,0] 0,\bar{x},1/2 [0,0,0]
4 l m2m.1' x,0,0 [0,0,0] \bar{x},0,0 [0,0,0] 0,x,0 [0,0,0] 0,\bar{x},0 [0,0,0]
4 k m.2m1' x,x,1/2 [0,0,0] \bar{x},x,1/2 [0,0,0] \bar{x},x,1/2 [0,0,0] x,\bar{x},1/2 [0,0,0]
4 j m.2m1' x,x,0 [0,0,0] \bar{x},x,0 [0,0,0] \bar{x},x,0 [0,0,0] x,\bar{x},0 [0,0,0]
4 i 2mm.1' 0,1/2,z [0,0,0] 1/2,0,z [0,0,0] 0,1/2,\bar{z} [0,0,0] 1/2,0,\bar{z} [0,0,0]
2 h 4mm1' 1/2,1/2,z [0,0,0] 1/2,1/2,\bar{z} [0,0,0]
2 g 4mm1' 0,0,z [0,0,0] 0,0,\bar{z} [0,0,0]
2 f mmm.1' 0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0]
2 e mmm.1' 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]
1 d 4/mmm1' 1/2,1/2,1/2 [0,0,0]
1 c 4/mmm1' 1/2,1/2,0 [0,0,0]
1 b 4/mmm1' 0,0,1/2 [0,0,0]
1 a 4/mmm1' 0,0,0 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p4mm1'</th>
<th>Along [1,0,0] p2mm1'</th>
<th>Along [1,1,0] p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = a b' = b</td>
<td>a' = b b' = c</td>
<td>a' = (-a + b)/2 b' = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>

123.2.1000 - 3 - 2000
Origin at center (4/m'nm)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq y \]

Symmetry Operations

(1) 1

\[(1\mid0,0,0) \]

(5) 2' 0,y,0

\[(2_y\mid0,0,0)' \]

(9) 1' 0,0,0

\[(1\mid0,0,0)' \]

(13) m x,0,z

\[(m_x\mid0,0,0) \]

(2) 2 0,0,z

\[(2_z\mid0,0,0) \]

(6) 2' x,0,0

\[(2_z\mid0,0,0)' \]

(10) m' x,y,0

\[(m_z\mid0,0,0)' \]

(14) m 0,y,z

\[(m_y\mid0,0,0) \]

(3) 4+ 0,0,z

\[(4_z\mid0,0,0) \]

(7) 2' x,x,0

\[(2_{xy}\mid0,0,0)' \]

(11) 4' 0,0,z

\[(4_z\mid0,0,0)' \]

(8) 2' x,x,0

\[(2_{xy}\mid0,0,0)' \]

(12) 4' 0,0,z

\[(4_z\mid0,0,0)' \]

(15) m x,x,z

\[(m_{xy}\mid0,0,0) \]

(16) m x,x,z

\[(m_{xy}\mid0,0,0) \]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 u 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [v,u,w]</td>
</tr>
<tr>
<td>8 t .m.</td>
<td>x,1/2,z [0,0,0]</td>
<td>x,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>8 s .m.</td>
<td>x,0,z [0,0,0]</td>
<td>x,0,z [0,0,0]</td>
</tr>
<tr>
<td>8 r .m.</td>
<td>x,x,z [u,u,0]</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>8 q m'..</td>
<td>x,y,1/2 [u,v,0]</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>8 p m'..</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>4 o m'2m.</td>
<td>x,1/2,1/2 [0,0,0]</td>
<td>x,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 n m'2m.</td>
<td>x,1/2,0 [0,0,0]</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 m m'2m.</td>
<td>x,0,1/2 [0,0,0]</td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 l m'2m.</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 k m'2m.</td>
<td>x,x,1/2 [u,u,0]</td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td>4 j m'2m.</td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>4 i 2mm.</td>
<td>0,1/2,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 h 4mm</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2 g 4mm</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 f m'2m.</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>
2 e mmm. 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]
1 d 4/m'mm 1/2,1/2,1/2 [0,0,0]
1 c 4/m'mm 1/2,1/2,0 [0,0,0]
1 b 4/m'mm 0,0,1/2 [0,0,0]
1 a 4/m'mm 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm
\[
a^* = a \quad b^* = b
\]
Origin at 0,0,z

Along [1,0,0] p2mm1'
\[
a^* = b \quad b^* = c
\]
Origin at x,0,0

Along [1,1,0] p2mm1'
\[
a^* = (-a + b)/2 \quad b^* = c
\]
Origin at x,x,0
P4'/mm'm 123.4.1002

4'/mm'm

Tetragonal

Origin at center (4'/mm'm)

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2}; \quad x < y \]

Symmetry Operations

(1) \(1\) 1\(\in \in \) 1

(2) 2' 0,0,z
(2'z 0,0,0)

(3) 4' 0,0,z
(4'z 0,0,0)

(4) 4' 0,0,z
(4'z 0,0,0)

(5) 2' 0,y,0
(2'y 0,0,0)

(6) 2' x,0,0
(2'x 0,0,0)

(7) 2 x,x,0
(2xy 0,0,0)

(8) 2 x,x,0
(2xy 0,0,0)

(9) \(\bar{1}\) 0,0,0
(1 0,0,0)

(10) m x,y,0
(mx, 0,0,0)

(11) \(\bar{4}\) 0,0,z
(\(4\bar{z}\) 0,0,0)

(12) \(\bar{4}\) 0,0,z
(\(4\bar{z}\) 0,0,0)

(13) m' x,0,z
(m'x, 0,0,0)

(14) m' 0,y,z
(m'y, 0,0,0)

(15) m x,x,z
(mx, 0,0,0)

(16) m x,x,z
(mx, 0,0,0)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>u</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>t</td>
<td>.m'</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>s</td>
<td>.m'</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>r</td>
<td>..m</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>q</td>
<td>m..</td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>p</td>
<td>m..</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>o</td>
<td>m2'm'</td>
<td>x,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>n</td>
<td>m2'm'</td>
<td>x,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>m</td>
<td>m2'm'</td>
<td>x,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>l</td>
<td>m2'm'</td>
<td>x,0,0 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>k</td>
<td>m.2m</td>
<td>x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>j</td>
<td>m.2m</td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>i</td>
<td>2m'm'</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>h</td>
<td>4m'm'</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>g</td>
<td>4m'm'</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>mm'm'</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
</tbody>
</table>
Continued

2 e mm'm'. 0,1/2,1/2 [0,0,w] 1/2,0,1/2 [0,0,\bar{w}]
1 d 4'/mm'm' 1/2,1/2,1/2 [0,0,0]
1 c 4'/mm'm' 1/2,1/2,0 [0,0,0]
1 b 4'/mm'm' 0,0,1/2 [0,0,0]
1 a 4'/mm'm' 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm1'
\(\mathbf{a}^* = \mathbf{a} \) \(\mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] p2'mm'
\(\mathbf{a}^* = -\mathbf{c} \) \(\mathbf{b}^* = \mathbf{b} \)
Origin at x,0,0

Along [1,1,0] p2mm1'
\(\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \) \(\mathbf{b}^* = \mathbf{c} \)
Origin at x,x,0
Origin at center (4'/mmm')

Asymmetric unit: $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq y$

Symmetry Operations:

1. 1 $(1|0,0,0)$
2. 2 $0,0,z$ $(2_z|0,0,0)$
3. $4'$ $0,0,z$ $(4_z|0,0,0)'$
4. $4'$ $0,0,z$ $(4_z|0,0,0)'$
5. 2 $0,y,0$ $(2_y|0,0,0)$
6. 2 $x,0,0$ $(2_x|0,0,0)$
7. $2'$ $x,x,0$ $(2_{xy}|0,0,0)'$
8. $2'$ $x,x,0$ $(2_{xy}|0,0,0)'$
9. $\overline{1}$ $0,0,0$ $(\overline{1}|0,0,0)$
10. m $x,y,0$ $(m_x|0,0,0)$
11. $4''$ $0,0,z$ $(4_z|0,0,0)'$
12. $4''$ $0,0,z$ $(4_z|0,0,0)'$
13. m $x,0,z$ $(m_x|0,0,0)$
14. m $0,y,z$ $(m_y|0,0,0)$
15. m' x,x,z $(m_{xy}|0,0,0)'$
16. m' x,x,z $(m_{xy}|0,0,0)'$

123.5.1003 - 1 - 2007
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>u</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(11)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(12)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(13)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(14)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(15)</td>
<td>x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(16)</td>
<td>x,y,z [v,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>t</td>
<td>.m.</td>
</tr>
<tr>
<td></td>
<td>(17)</td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>(17)</td>
<td>1/2,x,z [v,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,x,z [v,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>s</td>
<td>.m.</td>
</tr>
<tr>
<td></td>
<td>(18)</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>(18)</td>
<td>0,x,z [v,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,z [v,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>r</td>
<td>.m'</td>
</tr>
<tr>
<td></td>
<td>(19)</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>(19)</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>q</td>
<td>.m'</td>
</tr>
<tr>
<td></td>
<td>(20)</td>
<td>x,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(20)</td>
<td>y,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>p</td>
<td>.m'</td>
</tr>
<tr>
<td></td>
<td>(21)</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(21)</td>
<td>y,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,x,0 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>o</td>
<td>m2m.</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>x,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>1/2,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>n</td>
<td>m2m.</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>1/2,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,x,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>m</td>
<td>m2m.</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
<td>0,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>l</td>
<td>m2m.</td>
</tr>
<tr>
<td></td>
<td>(25)</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(25)</td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>k</td>
<td>m.2'm'</td>
</tr>
<tr>
<td></td>
<td>(26)</td>
<td>x,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(26)</td>
<td>x,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>j</td>
<td>m.2'm'</td>
</tr>
<tr>
<td></td>
<td>(27)</td>
<td>x,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(27)</td>
<td>x,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>i</td>
<td>2mm.</td>
</tr>
<tr>
<td></td>
<td>(28)</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(28)</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>h</td>
<td>4'mm'</td>
</tr>
<tr>
<td></td>
<td>(29)</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>g</td>
<td>4'mm'</td>
</tr>
<tr>
<td></td>
<td>(30)</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>mmm.</td>
</tr>
<tr>
<td></td>
<td>(31)</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>
Continued

Symmetry of Special Projections

Along \([0,0,1]\) \(p4mm'\)
\[a^* = a \quad b^* = b\]
Origin at 0,0,z

Along \([1,0,0]\) \(p2mm'\)
\[a^* = b \quad b^* = c\]
Origin at x,0,0

Along \([1,1,0]\) \(p2'mm'\)
\[a^* = -c \quad b^* = (-a + b)/2\]
Origin at x,x,0

2 e mmm. 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]
1 d 4'/mmm' 1/2,1/2,1/2 [0,0,0]
1 c 4'/mmm' 1/2,1/2,0 [0,0,0]
1 b 4'/mmm' 0,0,1/2 [0,0,0]
1 a 4'/mmm' 0,0,0 [0,0,0]
Origin at center (4'/m'm'm)

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x ≤ y

Symmetry Operations

(1) 1
(1|0,0,0)

(2) 2 0,0,z
(2z|0,0,0)

(3) 4' 0,0,z
(4z|0,0,0)'

(4) 4' 0,0,z
(4z|0,0,0)'

(5) 2 0,y,0
(2y|0,0,0)

(6) 2 x,0,0
(2x|0,0,0)

(7) 2' x,x,0
(2xy|0,0,0)'

(8) 2' x,x,0
(2xy|0,0,0)'

(9) T' 0,0,0
(1|0,0,0)'

(10) m' x,y,0
(mz|0,0,0)'

(11) 4' 0,0,z; 0,0,0
(4z|0,0,0)

(12) 4' 0,0,z; 0,0,0
(4z|0,0,0)

(13) m' x,0,z
(mx|0,0,0)'

(14) m' 0,y,z
(mx|0,0,0)'

(15) m x,x,z
(mxy|0,0,0)

(16) m x,x,z
(mxy|0,0,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Continued 123.6.1004 P4'/m'm'm

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Site Symmetry</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 u 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
<td>(10) x,y,z [u,v,w]</td>
<td>(11) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
<td>(14) x,y,z [u,v,w]</td>
<td>(15) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 t m'</td>
<td>x,1/2,z [u,0,w]</td>
<td>x,1/2,z [u,0,w]</td>
<td>1/2,x,z [0,u,w]</td>
</tr>
<tr>
<td>8 s m'</td>
<td>x,0,0 [u,0,w]</td>
<td>x,0,0 [u,0,w]</td>
<td>0,x,z [0,u,w]</td>
</tr>
<tr>
<td>8 r m</td>
<td>x,x,z [u,u,0]</td>
<td>x,x,z [u,u,0]</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>8 q m'</td>
<td>x,y,1/2 [u,v,0]</td>
<td>x,y,1/2 [u,v,0]</td>
<td>y,x,1/2 [v,u,0]</td>
</tr>
<tr>
<td>8 p m'</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
<td>y,x,0 [v,u,0]</td>
</tr>
<tr>
<td>4 o m'2m'</td>
<td>x,0,1/2 [u,u,0]</td>
<td>x,0,1/2 [u,u,0]</td>
<td>0,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td>4 m m'2m'</td>
<td>x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
<td>0,x,0 [u,0,0]</td>
</tr>
<tr>
<td>4 i 2m'</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2 h 4m'</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 g 4m'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Continued 123.6.1004 P4'/m'm'm

123.6.1004 - 2 - 2011
Symmetry of Special Projections

Along \([0,0,1]\) \(p4\)'m'm'\n\(a^* = a\) \(b^* = b\)
Origin at 0,0,z

Along \([1,0,0]\) \(p2\)'m'm'
\(a^* = b\) \(b^* = c\)
Origin at x,0,0

Along \([1,1,0]\) \(p2mm1'\)
\(a^* = (-a + b)/2\) \(b^* = c\)
Origin at x,x,0
Origin at center (4/mm'm')

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq y \]

Symmetry Operations

\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \cdot 0,0,z \quad (2_z \cdot 0,0,0) \\
(3) & \quad 4^+ \cdot 0,0,z \quad (4_z \cdot 0,0,0) \\
(4) & \quad 4^- \cdot 0,0,z \quad (4_z^- \cdot 0,0,0) \\
(5) & \quad 2' \cdot 0,y,0 \quad (2_y \cdot 0,0,0)' \\
(6) & \quad 2' \cdot x,0,0 \quad (2_x \cdot 0,0,0)' \\
(7) & \quad 2' \cdot x,x,0 \quad (2_{xx} \cdot 0,0,0)' \\
(8) & \quad 2' \cdot x,x,0 \quad (2_{xx} \cdot 0,0,0)' \\
(9) & \quad \bar{1} \cdot 0,0,0 \\
(10) & \quad m \cdot x,y,0 \quad (m_y \cdot 0,0,0) \\
(11) & \quad \bar{4}^+ \cdot 0,0,z; 0,0,0 \quad (\bar{4}_z \cdot 0,0,0) \\
(12) & \quad \bar{4}^- \cdot 0,0,z; 0,0,0 \quad (\bar{4}_z^- \cdot 0,0,0) \\
(13) & \quad m' \cdot x,0,z \quad (m_y \cdot 0,0,0)' \\
(14) & \quad m' \cdot 0,y,z \quad (m_y \cdot 0,0,0)' \\
(15) & \quad m' \cdot x,x,z \quad (m_{xy} \cdot 0,0,0)' \\
(16) & \quad m' \cdot x,x,z \quad (m_{xy} \cdot 0,0,0)'
\end{align*}
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>u</td>
</tr>
<tr>
<td>8</td>
<td>t</td>
</tr>
<tr>
<td>8</td>
<td>s</td>
</tr>
<tr>
<td>8</td>
<td>r</td>
</tr>
<tr>
<td>8</td>
<td>q</td>
</tr>
<tr>
<td>8</td>
<td>p</td>
</tr>
<tr>
<td>4</td>
<td>o</td>
</tr>
<tr>
<td>4</td>
<td>n</td>
</tr>
<tr>
<td>4</td>
<td>m</td>
</tr>
<tr>
<td>4</td>
<td>l</td>
</tr>
<tr>
<td>4</td>
<td>k</td>
</tr>
<tr>
<td>4</td>
<td>j</td>
</tr>
<tr>
<td>4</td>
<td>i</td>
</tr>
<tr>
<td>2</td>
<td>h</td>
</tr>
<tr>
<td>2</td>
<td>g</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin at 0,0,z</th>
<th>Origin at x,0,0</th>
<th>Origin at x,x,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p4mm1'</td>
<td>p2'mm'</td>
</tr>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = -c b* = b</td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>p2'mm'</td>
<td>p2'mm'</td>
</tr>
<tr>
<td>a* = -c b* = b</td>
<td>a* = -c b* = (-a + b)/2</td>
<td></td>
</tr>
<tr>
<td>Along [1,1,0]</td>
<td>p2'mm'</td>
<td></td>
</tr>
<tr>
<td>a* = -c b* = (-a + b)/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (4'/m'2/m')

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x < y

Symmetry Operations

1. 1
 (1 | 0,0,0)

2. 2' 0,0,z
 (2 | z,0,0,0)

3. 4' 0,0,z
 (4 | z,0,0,0)'

4. 4' - 0,0,z
 (4 | z,0,0,0)'

5. 2' 0,y,0
 (2 | y,0,0,0)'

6. 2' x,0,0
 (2 | x,0,0,0)'

7. 2 x,x,0
 (2 | x,0,0,0)'

8. 2 x,x,0
 (2 | x,0,0,0)'

9. 1' 0,0,0
 (1 | 0,0,0)'

10. m' x,y,0
 (m | x,y,0)'

11. 4' + 0,0,z; 0,0,0
 (4 | z,0,0,0)'

12. 4' + 0,0,z; 0,0,0
 (4 | z,0,0,0)'

13. m x,0,z
 (m | 0,0,0)

14. m 0,y,z
 (m | 0,0,0)'

15. m' x,x,z
 (m | 0,0,0)'

16. m' x,x,z
 (m | 0,0,0)'

P4'/m'm'm'
123.8.1006
4'/m'm'm'
P4'/m'2/m2/m'

Tetragonal
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>u</td>
<td>1 (1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16) x,y,z [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>t</td>
<td>.m. x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,z [0,v,0]</td>
</tr>
<tr>
<td>8</td>
<td>s</td>
<td>.m. x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>8</td>
<td>r</td>
<td>.m' x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>q</td>
<td>m'. x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>8</td>
<td>p</td>
<td>m'. x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>4</td>
<td>o</td>
<td>m'2m. x,1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4</td>
<td>n</td>
<td>m'2m. x,1/2,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,0 [0,v,0]</td>
</tr>
<tr>
<td>4</td>
<td>m</td>
<td>m'2m. x,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>4</td>
<td>l</td>
<td>m'2m. x,0,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,0 [0,v,0]</td>
</tr>
<tr>
<td>4</td>
<td>k</td>
<td>m'.2m' x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>j</td>
<td>m'.2m' x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>i</td>
<td>2mm. 0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>h</td>
<td>4'mm' 1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>g</td>
<td>4'mm' 0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>m'2m. 0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>
Continued

Symmetry of Special Projections

Along \([0,0,1]\) \(p4'm'm'\) \(\mathbf{a}^* = \mathbf{a}\) \(\mathbf{b}^* = \mathbf{b}\) Origin at 0,0,z

Along \([1,0,0]\) \(p2mm1'\) \(\mathbf{a}^* = \mathbf{b}\) \(\mathbf{b}^* = \mathbf{c}\) Origin at x,0,0

Along \([1,1,0]\) \(p2m'm'\) \(\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2\) \(\mathbf{b}^* = \mathbf{c}\) Origin at x,x,0
P4/m'2/m'2/m'
123.9.1007
Tetragonal

Origin at center (4/m'2/m'2/m')

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq y \]

Symmetry Operations

1. \(1 \)
 \((0,0,0) \)
2. \(2 \)
 \(x,0,0 \)
3. \(4 \)
 \(x,x,0 \)
4. \(4 \)
 \(x,x,0 \)
5. \(2 \)
 \(x,0,z \)
6. \(2 \)
 \(x,0,z \)
7. \(4 \)
 \(x,x,0 \)
8. \(4 \)
 \(x,x,0 \)
9. \(2 \)
 \(x,0,0 \)
10. \(2 \)
 \(x,0,0 \)
11. \(4 \)
 \(x,x,0 \)
12. \(4 \)
 \(x,x,0 \)
13. \(m' \)
 \(x,0,z \)
14. \(m' \)
 \(x,0,z \)
15. \(m' \)
 \(x,x,z \)
16. \(m' \)
 \(x,x,z \)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>16 u 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z [v,u,w] (4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w] (6) x,y,z [u,v,w] (7) y,x,z [v,u,w] (8) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(9) x,y,z [u,v,w] (10) x,y,z [u,v,w] (11) y,x,z [v,u,w] (12) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(13) x,y,z [u,v,w] (14) x,y,z [u,v,w] (15) y,x,z [v,u,w] (16) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 t .m'</td>
<td>x,1/2,z [u,0,w] x,1/2,z [u,0,w] 1/2,x,z [0,u,w] 1/2,x,z [0,u,w]</td>
</tr>
<tr>
<td>x,1/2,z [u,0,w] x,1/2,z [u,0,w] 1/2,x,z [0,u,w] 1/2,x,z [0,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 s .m'</td>
<td>x,0,z [u,0,w] x,0,z [u,0,w] 0,x,z [0,u,w] 0,x,z [0,u,w]</td>
</tr>
<tr>
<td>x,0,z [u,0,w] x,0,z [u,0,w] 0,x,z [0,u,w] 0,x,z [0,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 r ..m'</td>
<td>x,x,z [u,u,w] x,x,z [u,u,w] x,x,z [u,u,w] x,x,z [u,u,w]</td>
</tr>
<tr>
<td>x,x,z [u,u,w] x,x,z [u,u,w] x,x,z [u,u,w] x,x,z [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 q m'..'</td>
<td>x,y,1/2 [u,v,0] x,y,1/2 [u,v,0] y,x,1/2 [v,u,0] y,x,1/2 [v,u,0]</td>
</tr>
<tr>
<td>x,y,1/2 [u,v,0] x,y,1/2 [u,v,0] y,x,1/2 [v,u,0] y,x,1/2 [v,u,0]</td>
<td></td>
</tr>
<tr>
<td>8 p m'..'</td>
<td>x,y,0 [u,v,0] x,y,0 [u,v,0] y,x,0 [v,u,0] y,x,0 [v,u,0]</td>
</tr>
<tr>
<td>x,y,0 [u,v,0] x,y,0 [u,v,0] y,x,0 [v,u,0] y,x,0 [v,u,0]</td>
<td></td>
</tr>
<tr>
<td>4 o m'2m'</td>
<td>x,1/2,1/2 [u,0,0] x,1/2,1/2 [u,0,0] 1/2,x,1/2 [0,u,0] 1/2,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td>x,1/2,1/2 [u,0,0] x,1/2,1/2 [u,0,0] 1/2,x,1/2 [0,u,0] 1/2,x,1/2 [0,u,0]</td>
<td></td>
</tr>
<tr>
<td>4 n m'2m'</td>
<td>x,1/2,0 [u,0,0] x,1/2,0 [u,0,0] 1/2,x,0 [0,u,0] 1/2,x,0 [0,u,0]</td>
</tr>
<tr>
<td>x,1/2,0 [u,0,0] x,1/2,0 [u,0,0] 1/2,x,0 [0,u,0] 1/2,x,0 [0,u,0]</td>
<td></td>
</tr>
<tr>
<td>4 m m'2m'</td>
<td>x,0,1/2 [u,0,0] x,0,1/2 [u,0,0] 0,x,1/2 [0,u,0] 0,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td>x,0,1/2 [u,0,0] x,0,1/2 [u,0,0] 0,x,1/2 [0,u,0] 0,x,1/2 [0,u,0]</td>
<td></td>
</tr>
<tr>
<td>4 l m'2m'</td>
<td>x,0,0 [u,0,0] x,0,0 [u,0,0] 0,x,0 [0,u,0] 0,x,0 [0,u,0]</td>
</tr>
<tr>
<td>x,0,0 [u,0,0] x,0,0 [u,0,0] 0,x,0 [0,u,0] 0,x,0 [0,u,0]</td>
<td></td>
</tr>
<tr>
<td>4 k m'2m'</td>
<td>x,x,1/2 [u,u,0] x,x,1/2 [u,u,0] x,x,1/2 [u,u,0] x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td>x,x,1/2 [u,u,0] x,x,1/2 [u,u,0] x,x,1/2 [u,u,0] x,x,1/2 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>4 j m'2m'</td>
<td>x,x,0 [u,u,0] x,x,0 [u,u,0] x,x,0 [u,u,0] x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>x,x,0 [u,u,0] x,x,0 [u,u,0] x,x,0 [u,u,0] x,x,0 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>4 i 2m'</td>
<td>0,1/2,z [0,0,w] 1/2,0,z [0,0,w] 0,1/2,z [0,0,w] 1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>0,1/2,z [0,0,w] 1/2,0,z [0,0,w] 0,1/2,z [0,0,w] 1/2,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 h 4m'</td>
<td>1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 g 4m'</td>
<td>0,0,z [0,0,w] 0,0,z [0,0,w]</td>
</tr>
<tr>
<td>0,0,z [0,0,w] 0,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 f m'2m'</td>
<td>0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>e</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>d</td>
</tr>
<tr>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4m\textquotesingle m\textquotesingle</th>
<th>Along [1,0,0]</th>
<th>p2m\textquotesingle m\textquotesingle</th>
<th>Along [1,1,0]</th>
<th>p2m\textquotesingle m\textquotesingle</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a) (b^* = b)</td>
<td>(a^* = b) (b^* = c)</td>
<td>(a^* = (-a + b)/2) (b^* = c)</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Origin

At center (4/mmm)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq y \]

Symmetry Operations

For \((0,0,0)\) + set

<table>
<thead>
<tr>
<th>Number</th>
<th>Symmetry Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>(1)</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>(2)</td>
<td>(2)</td>
</tr>
<tr>
<td>(2)</td>
<td>(0,0,z)</td>
</tr>
<tr>
<td>(3)</td>
<td>(4^+)</td>
</tr>
<tr>
<td>(3)</td>
<td>(0,0,z)</td>
</tr>
<tr>
<td>(4)</td>
<td>(4)</td>
</tr>
<tr>
<td>(4)</td>
<td>(0,0,z)</td>
</tr>
<tr>
<td>(4)</td>
<td>(4^-)</td>
</tr>
<tr>
<td>(4)</td>
<td>(0,0,z)</td>
</tr>
</tbody>
</table>

For \((0,0,1)\)' + set

<table>
<thead>
<tr>
<th>Number</th>
<th>Symmetry Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(t'(0,0,1))</td>
</tr>
<tr>
<td>(1)</td>
<td>(0,0,1)</td>
</tr>
<tr>
<td>(2)</td>
<td>(2'(0,0,1))</td>
</tr>
<tr>
<td>(2)</td>
<td>(0,0,z)</td>
</tr>
<tr>
<td>(3)</td>
<td>(4^+)</td>
</tr>
<tr>
<td>(3)</td>
<td>((0,0,1))</td>
</tr>
<tr>
<td>(4)</td>
<td>(4)</td>
</tr>
<tr>
<td>(4)</td>
<td>(0,0,z)</td>
</tr>
<tr>
<td>(4)</td>
<td>(0,0,z)</td>
</tr>
<tr>
<td>(4)</td>
<td>(4^-)</td>
</tr>
<tr>
<td>(4)</td>
<td>(0,0,z)</td>
</tr>
</tbody>
</table>

Generators selected

\((1), \{(0,1,0)\}; \{(0,0,1)\}; \{t'(0,0,1)\}; (2); (3); (5); (9)\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>((0,0,0)) +</td>
</tr>
<tr>
<td>32 u 1</td>
<td>(x,y,z) [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(\bar{x},\bar{y},\bar{z}) [u,v,w]</td>
</tr>
<tr>
<td>16 t.m.</td>
<td>(x,1/2,z) [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>(\bar{x},1/2,\bar{z}) [0,v,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4mm1'</th>
<th>Along [1,0,0]</th>
<th>p2mm1'</th>
<th>Along [1,1,0]</th>
<th>p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = (-a + b)/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>

16 s .m. x,0,z [0,v,0] x,0,z [0,v,0] 0,x,z [v,0,0] 0,x,z [v,0,0] 16 r .m. x,x,z [u,u,0] x,x,z [u,u,0] x,x,z [u,u,0] 16 q m.. x,y,1/2 [u,v,0] x,y,1/2 [u,v,0] y,x,1/2 [v,u,0] y,x,1/2 [v,u,0] 16 p m.. x,y,0 [0,0,w] x,y,0 [0,0,w] y,x,0 [0,0,w] y,x,0 [0,0,w] 8 o m'2'm. x,1/2,1/2 [0,v,0] 1/2,x,1/2 [v,0,0] 1/2,x,1/2 [v,0,0] 8 n m2m. x,1/2,0 [0,0,0] 1/2,x,0 [0,0,0] 1/2,x,0 [0,0,0] 8 m m'2'm. x,0,1/2 [0,v,0] 0,x,1/2 [v,0,0] 0,x,1/2 [v,0,0] 8 l m2m. x,0,0 [0,0,0] 0,x,0 [0,0,0] 0,x,0 [0,0,0] 8 k m'.2'm x,x,1/2 [u,u,0] x,x,1/2 [u,u,0] x,x,1/2 [u,u,0] x,x,1/2 [u,u,0] 8 j m.2m x,x,0 [0,0,0] x,x,0 [0,0,0] x,x,0 [0,0,0] x,x,0 [0,0,0] 8 i 2mm. 0,1/2,z [0,0,0] 1/2,0,z [0,0,0] 1/2,0,z [0,0,0] 4 h 4mm 1/2,1/2,z [0,0,0] 1/2,1/2,z [0,0,0] 1/2,1/2,z [0,0,0] 4 g 4mm 0,0,z [0,0,0] 0,0,z [0,0,0] 0,0,z [0,0,0] 4 f mmm. 0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0] 1/2,0,0 [0,0,0] 4 e m'mm. 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 2 d 4/m'mm 1/2,1/2,1/2 [0,0,0] 2 c 4/mmm 1/2,1/2,0 [0,0,0] 2 b 4/m'mm 0,0,1/2 [0,0,0] 2 a 4/mmm 0,0,0 [0,0,0]
Origin at center (4/mmm)

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x ≤ y

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) 2 0,0,z
(2z|0,0,0)

(3) 4+ 0,0,z
(4z|0,0,0)

(4) 4− 0,0,z
(4z−1|0,0,0)

(5) 2 0,y,0
(2y|0,0,0)

(6) 2 x,0,0
(2x|0,0,0)

(7) 2 x,0,x
(2yx|0,0,0)

(8) 2 x,x,0
(2xy|0,0,0)

(9) m 0,0,0
(m|0,0,0)

(10) m x,y,0
(mx|0,0,0)

(11) 4+ 0,0,z; 0,0,0
(4z|0,0,0)

(12) 4− 0,0,z; 0,0,0
(4z−1|0,0,0)

(13) m x,0,z
(mx|0,0,0)

(14) m 0,y,z
(mx|0,0,0)

(15) m x,x,z
(mx|0,0,0)

(16) m x,x,z
(mx|0,0,0)
For (1,0,0)' + set

<table>
<thead>
<tr>
<th>Generators selected</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t' (1,0,0)</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>(1</td>
<td>1,0,0)'</td>
</tr>
<tr>
<td>(2) 2' 1/2,0,z</td>
<td></td>
</tr>
<tr>
<td>(2</td>
<td>1,0,0)'</td>
</tr>
<tr>
<td>(3) 4' -1/2,1/2,z</td>
<td></td>
</tr>
<tr>
<td>(4</td>
<td>1,0,0)'</td>
</tr>
<tr>
<td>(4' 1/2,-1/2,z</td>
<td></td>
</tr>
<tr>
<td>(4'</td>
<td>1,0,0)'</td>
</tr>
<tr>
<td>(5) 2' 1/2,y,0</td>
<td></td>
</tr>
<tr>
<td>(2</td>
<td>1,0,0)'</td>
</tr>
<tr>
<td>(6) 2' (1,0,0)</td>
<td></td>
</tr>
<tr>
<td>(2</td>
<td>1,0,0)'</td>
</tr>
<tr>
<td>(7) 2' (1/2,1/2,0)</td>
<td></td>
</tr>
<tr>
<td>(2</td>
<td>1,0,0)'</td>
</tr>
<tr>
<td>(8) 2' (1/2,-1/2,0)</td>
<td></td>
</tr>
<tr>
<td>(2</td>
<td>1,0,0)'</td>
</tr>
<tr>
<td>(9) T' 1/2,0,0</td>
<td></td>
</tr>
<tr>
<td>(1) t' (1,0,0)</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>(2) 2' 1/2,0,0</td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>(2</td>
<td>1,0,0)'</td>
</tr>
<tr>
<td>(10) a' (1,0,0)</td>
<td></td>
</tr>
<tr>
<td>(m</td>
<td>1,0,0)'</td>
</tr>
<tr>
<td>(11) 4' 1/2,-1/2,z</td>
<td></td>
</tr>
<tr>
<td>(1/2,1,0,0)'</td>
<td></td>
</tr>
<tr>
<td>(12) 4' 1/2,1/2,0</td>
<td></td>
</tr>
<tr>
<td>(1/2,1,0,0)'</td>
<td></td>
</tr>
<tr>
<td>(13) a' (1,0,0)</td>
<td></td>
</tr>
<tr>
<td>(m</td>
<td>1,0,0)'</td>
</tr>
<tr>
<td>(14) m' 1/2,y,z</td>
<td></td>
</tr>
<tr>
<td>(m</td>
<td>1,0,0)'</td>
</tr>
<tr>
<td>(15) g' (1/2,-1/2,0)</td>
<td></td>
</tr>
<tr>
<td>(1/2,1,0,0)'</td>
<td></td>
</tr>
<tr>
<td>(16) g' (1/2,1/2,0)</td>
<td></td>
</tr>
<tr>
<td>(1/2,1,0,0)'</td>
<td></td>
</tr>
</tbody>
</table>

Positions selected (1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 u 1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>16 t</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>16 s</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>16 r</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>16 q</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>16 p</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8 o</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8 n</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8 m</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
8 l m2m. x,0,0 [0,0,0] \bar{x},0,0 [0,0,0] 0,x,0 [0,0,0] 0,\bar{x},0 [0,0,0]
8 k m.2m x,x,1/2 [0,0,0] \bar{x},x,1/2 [0,0,0] x,x,1/2 [0,0,0] x,\bar{x},1/2 [0,0,0]
8 j m.2m x,x,0 [0,0,0] \bar{x},x,0 [0,0,0] x,x,0 [0,0,0] x,\bar{x},0 [0,0,0]
8 i 2'nm'. 0,1/2,z [u,0,0] 1/2,0,z [u,0,0] 0,1/2,\bar{z} [u,0,0] 1/2,0,\bar{z} [u,0,0]
4 h 4'm'm 1/2,1/2,z [0,0,0] 1/2,1/2,z [0,0,0]
4 g 4mm 0,0,z [0,0,0] 0,0,\bar{z} [0,0,0]
4 f mm'. 0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0]
4 e mm'. 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]
2 d 4'/mm'm 1/2,1/2,1/2 [0,0,0]
2 c 4'/mm'm 1/2,1/2,0 [0,0,0]
2 b 4mmm 0,0,1/2 [0,0,0]
2 a 4/mmm 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm1' a' = a b' = b Origin at 0,0,z
Along [1,0,0] p2mm1' a' = b b' = c Origin at x,0,0
Along [1,1,0] p2mm1' a' = (-a + b)/2 b' = c Origin at x,x,0
PI 4/mmm
123.12.1010

4/mmm1'
P_4/m2/m2/m

Tetragonal
Origin at center (4/mmm)

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq y \]

Symmetry Operations

For \((0,0,0)\) + set

1. \((1)\) \(1\)
 \((1|0,0,0)\)
2. \((2)\) \(2\) \(0,0,z\)
 \((2z|0,0,0)\)
3. \((3)\) \(4^+\) \(0,0,z\)
 \((4z|0,0,0)\)
4. \((4)\) \(4^-\) \(0,0,z\)
 \((4z^-|0,0,0)\)

5. \((5)\) \(2\) \(0,y,0\)
 \((2z|0,0,0)\)

9. \((9)\) \(\overline{1}\) \(0,0,0\)
 \((1\overline{1}|0,0,0)\)

13. \((13)\) \(m\) \(x,0,z\)
 \((m_\parallel|0,0,0)\)

For \((1,0,0)\)' + set

1. \((1)\) \(t'\) \((1,0,0)\)
 \((1,0,0)'\)

5. \((5)\) \(2'\) \(1/2,y,0\)
 \((2z|1,0,0)'\)

9. \((9)\) \(\overline{1}\) \(1/2,0,0\)
 \((\overline{1}|1,0,0)'\)

13. \((13)\) \(a'\) \((1,0,0)\) \(x,0,z\)
 \((m_\parallel|1,0,0)'\)

Generators selected
1. \(t'(1,0,0)\); \(t'(0,1,0)\); \(t'(0,0,1)\); \((2)\); \((3)\); \((5)\); \((9)\).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>((0,0,0) +)</th>
<th>((1,0,0)' +)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(32) (u) 1</td>
<td>(1) (x,y,z) ([u,v,w])</td>
<td>(2) (\overline{x},\overline{y},\overline{z}) ([u,\overline{v},w])</td>
</tr>
<tr>
<td></td>
<td>(5) (x,y,\overline{z}) ([u,\overline{v},w])</td>
<td>(6) (x,\overline{y},\overline{z}) ([u,\overline{v},\overline{w}])</td>
</tr>
<tr>
<td></td>
<td>(9) (\overline{x},\overline{y},\overline{z}) ([u,\overline{v},w])</td>
<td>(10) (x,y,\overline{z}) ([u,\overline{v},w])</td>
</tr>
<tr>
<td></td>
<td>(13) (x,y,\overline{z}) ([u,\overline{v},w])</td>
<td>(14) (x,\overline{y},\overline{z}) ([u,\overline{v},w])</td>
</tr>
<tr>
<td>(16) (t) (m')</td>
<td>(x,1/2,z) ([u,0,w])</td>
<td>(\overline{x},1/2,z) ([\overline{u},0,w])</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>m..</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>r</td>
<td>..m</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>q</td>
<td>m'..</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>p</td>
<td>m..</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>o</td>
<td>m'2m'</td>
<td>x,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>n</td>
<td>m2m'</td>
<td>x,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>m</td>
<td>m'2m'</td>
<td>x,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td>l</td>
<td>m2m</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>k</td>
<td>m'.2'm</td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td>j</td>
<td>m.2m</td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td>i</td>
<td>2'mm'</td>
<td>0,1/2,z [u,0,0]</td>
</tr>
<tr>
<td>h</td>
<td>4'm'm</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>g</td>
<td>4mm</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>f</td>
<td>mm'm</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>e</td>
<td>m'm'm'</td>
<td>0,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>d</td>
<td>4'/m'm'm</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>c</td>
<td>4'/mm'm</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>b</td>
<td>4'm'mm</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>a</td>
<td>4'mmm</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Along [0,0,1] p4mm1'
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p2mm1'
\[a^* = b \quad b^* = c \]
Origin at x,0,0

Along [1,1,0] p2mm1'
\[a^* = (-a + b)/2 \quad b^* = c \]
Origin at x,x,0
P_2c 4'/mm'1'
123.13.1011
P_2c 4'/m2'/m'2/m

Tetragonal
Origin at center (4/mmm)

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x ≤ y

Symmetry Operations

For (0,0,0) + set

1. 1
 (1 0 0 0)

2. 2 0 0, z
 (2z 0 0, 0)

3. 4* 0 0, z
 (4z 0 0, 0)

4. 4* 0 0, z
 (4z 0 0, 0)

5. 2' 0, y, 0
 (2z 0 0, 0)

6. 2' x, 0, 0
 (2z 0 0, 0)

7. 2 x, x, 0
 (2xy 0 0, 0)

8. 2 x, x, 0
 (2xy 0 0, 0)

9. T 0, 0, 0
 (0 0 0)

10. m x, y, 0
 (mz 0 0, 0)

11. 4 + 0, 0, z; 0, 0, 0
 (4z 0 0, 0)

12. 4 + 0, 0, z; 0, 0, 0
 (4z 0 0, 0)

13. m' x, 0, z
 (m'z 0 0, 0)

14. m' 0, y, z
 (mz 0 0, 0)

15. m x, x, z
 (mx 0 0, 0)

16. m x, x, z
 (mx 0 0, 0)

For (0,0,1) + set

1. t 0, 0, 1
 (1 0 0, 1)

2. 2' 0, 0, 1
 (2z 0 0, 0)

3. 4* 0, 0, 1
 (4z 0 0, 1)

4. 4* 0, 0, 1
 (4z 0 0, 1)

5. 2 0, y, 1/2
 (2z 0 0, 0)

6. 2 x, 0, 1/2
 (2z 0 0, 0)

7. 2 x, x, 1/2
 (2xy 0 0, 1)

8. 2 x, x, 1/2
 (2xy 0 0, 1)

9. T 0, 0, 1/2
 (0 0 1)

10. m'' x, y, 1/2
 (mz 0 0, 1)

11. 4 + 0, 0, z; 0, 0, 1/2
 (4z 0 0, 1)

12. 4 + 0, 0, z; 0, 0, 1/2
 (4z 0 0, 1)

13. c 0, 0, 1
 (mz 0 0, 1)

14. c 0, 0, 1
 (mz 0 0, 1)

15. c' 0, 0, 1
 (mxz 0 0, 1)

16. c' 0, 0, 1
 (mxz 0 0, 1)

Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 u 1</td>
<td>(0,0,0) +</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(0,0,1)' +</td>
<td>(0,0,1)' +</td>
</tr>
</tbody>
</table>

32 u 1
(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z [v,u,w] (4) y,x,z [v,u,w]
(5) x,y,z [u,v,w] (6) x,y,z [u,v,w] (7) y,x,z [v,u,w] (8) y,x,z [v,u,w]
(9) x,y,z [u,v,w] (10) x,y,z [u,v,w] (11) y,x,z [v,u,w] (12) y,x,z [v,u,w]
(13) x,y,z [u,v,w] (14) x,y,z [u,v,w] (15) y,x,z [v,u,w] (16) y,x,z [v,u,w]

16 t .m'
(1) x,1/2,z [u,0,w] (2) x,1/2,z [u,0,w] (3) x,1/2,z [u,0,w] (4) x,1/2,z [u,0,w]
(5) x,1/2,z [u,0,w] (6) x,1/2,z [u,0,w] (7) x,1/2,z [u,0,w] (8) x,1/2,z [u,0,w]
16 s	.m'	x,0,z [u,0,w]	x,0,z [u,0,w]	0,x,z [0,u,w]	0,x,z [0,u,w]	0,x,z [0,u,w]
16 r	.m	x,x,z [u,u,0]	x,x,z [u,u,0]	x,x,z [u,u,0]	x,x,z [u,u,0]	
16 q	m'	x,y,1/2 [u,v,0]	x,y,1/2 [u,v,0]	y,x,1/2 [v,u,0]	y,x,1/2 [v,u,0]	
16 p	m	x,y,0 [0,0,w]	x,y,0 [0,0,w]	y,x,0 [0,0,w]	y,x,0 [0,0,w]	
8 o	m'2m'	x,1/2,1/2 [u,0,0]	x,1/2,1/2 [u,0,0]	1/2,x,1/2 [0,u,0]	1/2,x,1/2 [0,u,0]	
8 n	m'2m'	x,1/2,0 [0,0,w]	x,1/2,0 [0,0,w]	1/2,x,0 [0,0,w]	1/2,x,0 [0,0,w]	
8 m	m'2m'	x,0,1/2 [u,0,0]	x,0,1/2 [u,0,0]	0,x,1/2 [0,u,0]	0,x,1/2 [0,u,0]	
8 l	m2m'	x,0,0 [0,0,w]	x,0,0 [0,0,w]	0,x,0 [0,0,w]	0,x,0 [0,0,w]	
8 k	m'.2m	x,x,1/2 [u,u,0]	x,x,1/2 [u,u,0]	x,x,1/2 [u,u,0]	x,x,1/2 [u,u,0]	
8 j	m.2m	x,x,0 [0,0,w]	x,x,0 [0,0,w]	x,x,0 [0,0,w]	x,x,0 [0,0,w]	
8 i	2m'm'	0,1/2,z [0,0,0]	0,1/2,z [0,0,0]	0,1/2,z [0,0,0]	0,1/2,z [0,0,0]	
4 h	4'm'm	1/2,1/2,z [0,0,0]	1/2,1/2,z [0,0,0]	1/2,1/2,z [0,0,0]		
4 g	4'm'm	0,0,z [0,0,0]	0,0,z [0,0,0]			
4 f	mm'm'.	0,1/2,0 [0,0,w]	1/2,0,0 [0,0,w]			
4 e	m'mm.	0,1/2,1/2 [0,0,0]	1/2,0,1/2 [0,0,0]			
2 d	4'/m'm'm	1/2,1/2,1/2 [0,0,0]	1/2,1/2,1/2 [0,0,0]			
2 c	4'/mm'm	1/2,1/2,0 [0,0,0]				
2 b	4'/mm'm	0,0,1/2 [0,0,0]				
2 a	4'/mm'm	0,0,0 [0,0,0]				

Symmetry of Special Projections

Along [0,0,1]	p4mm1'	a* = a	b* = b
Along [1,0,0]	p2mm'	a* = -c	b* = b
Along [1,1,0]	p2mm1'	a* = (-a + b)/2	b* = c

Origin at 0,0,z

Origin at x,0,0

Origin at x,x,0
P_2c'4'/mmm'
123.14.1012

4/mmm1'
P_2c'4'/m2/m2'/m'

Tetragonal
Origin at center (4'/mmm')

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x ≤ y

Symmetry Operations

For (0,0,0) + set

<table>
<thead>
<tr>
<th>(1) 1</th>
<th>(2) 2 x,y,z</th>
<th>(3) 4' x,y,z</th>
<th>(4) 4' 0,0,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,0,0)</td>
<td>(2,1,0)</td>
<td>(3,1,0)</td>
<td>(4,1,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(5) 2</th>
<th>(6) 2' x,y,z</th>
<th>(7) 2' x,y,z</th>
<th>(8) 2' x,y,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2,0,0)</td>
<td>(2,1,0)</td>
<td>(2,1,0)</td>
<td>(2,1,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(9) 1</th>
<th>(10) m 0,1/2</th>
<th>(11) 4' x,y,z</th>
<th>(12) 4' x,y,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,0,0)</td>
<td>(1,0,0)</td>
<td>(1,0,0)</td>
<td>(1,0,0)</td>
</tr>
</tbody>
</table>

For (0,0,1)' + set

<table>
<thead>
<tr>
<th>(1) t</th>
<th>(2) 2' x,y,z</th>
<th>(3) 4' x,y,z</th>
<th>(4) 4' x,y,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,0,1)</td>
<td>(2,1,0)</td>
<td>(3,1,0)</td>
<td>(4,1,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(5) 2'</th>
<th>(6) 2' x,y,z</th>
<th>(7) 2' x,y,z</th>
<th>(8) 2' x,y,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2,0,1)'</td>
<td>(2,1,0)</td>
<td>(2,1,0)</td>
<td>(2,1,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(9) 1'</th>
<th>(10) m 0,1/2</th>
<th>(11) 4' x,y,z</th>
<th>(12) 4' x,y,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,0,1)'</td>
<td>(1,0,0)</td>
<td>(1,0,0)</td>
<td>(1,0,0)</td>
</tr>
</tbody>
</table>

Generators selected

(1): t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 u 1</td>
<td>(0,0,0) +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,0,1)' +</td>
<td></td>
</tr>
<tr>
<td>16 t .m.</td>
<td>x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,y,z [u,v,w]</td>
<td></td>
</tr>
</tbody>
</table>

Continued 123.14.1012 P 2c 4'/mmm'

Origin at center (4'/mmm')

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x ≤ y

Symmetry Operations

For (0,0,0) + set

<table>
<thead>
<tr>
<th>(1) 1</th>
<th>(2) 2 x,y,z</th>
<th>(3) 4' x,y,z</th>
<th>(4) 4' x,y,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,0,0)</td>
<td>(2,1,0)</td>
<td>(3,1,0)</td>
<td>(4,1,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(5) 2</th>
<th>(6) 2' x,y,z</th>
<th>(7) 2' x,y,z</th>
<th>(8) 2' x,y,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2,0,0)</td>
<td>(2,1,0)</td>
<td>(2,1,0)</td>
<td>(2,1,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(9) 1</th>
<th>(10) m 0,1/2</th>
<th>(11) 4' x,y,z</th>
<th>(12) 4' x,y,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,0,0)</td>
<td>(1,0,0)</td>
<td>(1,0,0)</td>
<td>(1,0,0)</td>
</tr>
</tbody>
</table>

For (0,0,1)' + set

<table>
<thead>
<tr>
<th>(1) t</th>
<th>(2) 2' x,y,z</th>
<th>(3) 4' x,y,z</th>
<th>(4) 4' x,y,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,0,1)</td>
<td>(2,1,0)</td>
<td>(3,1,0)</td>
<td>(4,1,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(5) 2'</th>
<th>(6) 2' x,y,z</th>
<th>(7) 2' x,y,z</th>
<th>(8) 2' x,y,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2,0,1)'</td>
<td>(2,1,0)</td>
<td>(2,1,0)</td>
<td>(2,1,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(9) 1'</th>
<th>(10) m 0,1/2</th>
<th>(11) 4' x,y,z</th>
<th>(12) 4' x,y,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,0,1)'</td>
<td>(1,0,0)</td>
<td>(1,0,0)</td>
<td>(1,0,0)</td>
</tr>
</tbody>
</table>

Generators selected

(1): t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 u 1</td>
<td>(0,0,0) +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,0,1)' +</td>
<td></td>
</tr>
<tr>
<td>16 t .m.</td>
<td>x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,y,z [u,v,w]</td>
<td></td>
</tr>
</tbody>
</table>

123.14.1012 - 2 - 2035
Continued

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>s</td>
<td>.m.</td>
<td>x,0,z [0,v,0]</td>
<td>x,0,z [0,v,0]</td>
<td>0,x,z [v,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,0,z [0,v,0]</td>
<td>x,0,z [0,v,0]</td>
<td>0,x,z [v,0,0]</td>
</tr>
<tr>
<td>16</td>
<td>r</td>
<td>.m'</td>
<td>x,x,z [u,u,w]</td>
<td>x,x,z [u,u,w]</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,z [u,u,w]</td>
<td>x,x,z [u,u,w]</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>16</td>
<td>q</td>
<td>m'..</td>
<td>x,y,1/2 [u,v,0]</td>
<td>y,x,1/2 [v,u,0]</td>
<td>y,x,1/2 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,y,1/2 [u,v,0]</td>
<td>y,x,1/2 [v,u,0]</td>
<td>y,x,1/2 [v,u,0]</td>
</tr>
<tr>
<td>16</td>
<td>p</td>
<td>m..</td>
<td>x,y,0 [0,0,w]</td>
<td>y,x,0 [0,0,w]</td>
<td>y,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,y,0 [0,0,w]</td>
<td>y,x,0 [0,0,w]</td>
<td>y,x,0 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>o</td>
<td>m'2'm.</td>
<td>x,1/2,1/2 [0,v,0]</td>
<td>1/2,x,1/2 [v,0,0]</td>
<td>1/2,x,1/2 [v,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,1/2,1/2 [0,v,0]</td>
<td>1/2,x,1/2 [v,0,0]</td>
<td>1/2,x,1/2 [v,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>n</td>
<td>m2m.</td>
<td>x,1/2,0 [0,0,0]</td>
<td>1/2,x,0 [0,0,0]</td>
<td>1/2,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,1/2,0 [0,0,0]</td>
<td>1/2,x,0 [0,0,0]</td>
<td>1/2,x,0 [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>m</td>
<td>m'2'm.</td>
<td>x,0,1/2 [0,v,0]</td>
<td>0,x,1/2 [v,0,0]</td>
<td>0,x,1/2 [v,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,0,1/2 [0,v,0]</td>
<td>0,x,1/2 [v,0,0]</td>
<td>0,x,1/2 [v,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>l</td>
<td>m2m.</td>
<td>x,0,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,0,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>m'.2'm</td>
<td>x,x,1/2 [u,u,0]</td>
<td>x,x,1/2 [u,u,0]</td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,1/2 [u,u,0]</td>
<td>x,x,1/2 [u,u,0]</td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
<td>m.2'm'</td>
<td>x,x,0 [0,0,w]</td>
<td>x,x,0 [0,0,w]</td>
<td>x,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,0 [0,0,w]</td>
<td>x,x,0 [0,0,w]</td>
<td>x,x,0 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
<td>2mm.</td>
<td>0,1/2,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>4'mm'</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>4'mm'</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>mmm.</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>m'mm.</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>4'/m'mm'</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>4'/m'mm'</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4'/m'mm'</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4'/mmm'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4mm1'</th>
<th>Along [1,0,0]</th>
<th>p2mm1'</th>
<th>Along [1,1,0]</th>
<th>p2a* 2'mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = -c</td>
<td>b* = (-a + b)/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
<td>Origin at x,x,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
P$_{2c}$ 4/mmm1

123.15.1013

P$_{2c}$ 4/m2'/m'2'/m'

4/mmm1

Tetragonal
Origin at center (4/mm'm')

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x ≤ y

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) 2 0,0,z
(2z|0,0,0)

(3) 4* 0,0,z
(4z|0,0,0)

(4) 4* 0,0,0
(4z'|0,0,0)

(5) 2' 0,y,0
(2z|0,0,0)

(6) 2' x,0,0
(2z|0,0,0)

(7) 2' x,x,0
(2z|0,0,0)

(8) 2' x,x,0
(2y|0,0,0)

(9) T 0,0,0
(T|0,0,0)

(10) m x,y,0
(m|x,0,0)

(11) 4* 0,0,z; 0,0,0
(4z|0,0,0)

(12) 4* 0,0,z; 0,0,0
(4z'|0,0,0)

(13) m' x,0,z
(m'|0,0,0)

For (0,0,1)' + set

(1) t'(0,0,1)
(1|0,0,1)'

(2) 2' (0,0,1) 0,0,z
(2z|0,0,1)'

(3) 4* '(0,0,1) 0,0,z
(4z|0,0,1)'

(4) 4* '(0,0,1) 0,0,0
(4z'|0,0,1)'

(5) 2 0,y,1/2
(2z|0,0,1)

(6) 2 x,0,1/2
(2z|0,0,1)

(7) 2 x,x,1/2
(2z|0,0,1)

(8) 2 x,x,1/2
(2y|0,0,1)

(9) T 0,0,1/2
(T|0,0,1)'

(10) m' x,y,1/2
(m'|0,0,1)'

(11) 4* x,0,z; 0,0,1/2
(4z|0,0,1)'

(12) 4* x,0,z; 0,0,1/2
(4z'|0,0,1)'

(13) c (0,0,1) x,0,z
(m|0,0,1)

(14) c (0,0,1) 0,y,z
(m|0,0,1)

(15) c (0,0,1) x,x,0
(mxy|0,0,1)

(16) c (0,0,1) x,x,0
(mxy|0,0,1)

Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

(0,0,0) + (0,0,1)' +

32 u 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z [v,u,w] (4) y,x,z [v,u,w]

(5) x,y,z [u,v,w] (6) x,y,z [u,v,w] (7) y,x,z [v,u,w] (8) y,x,z [v,u,w]

(9) x,y,z [u,v,w] (10) x,y,z [u,v,w] (11) y,x,z [v,u,w] (12) y,x,z [v,u,w]

(13) x,y,z [u,v,w] (14) x,y,z [u,v,w] (15) y,x,z [v,u,w] (16) y,x,z [v,u,w]

16 t .m' x,1/2,z [u,0,w] x,1/2,z [u,0,w] 1/2,x,z [0,u,w] 1/2,x,z [0,u,w]

x,1/2,z [u,0,w] x,1/2,z [u,0,w] 1/2,x,z [0,u,w] 1/2,x,z [0,u,w]
Symmetry of Special Projections

Along \([0,0,1]\) \(p4mm1'\)

\(a^* = a\) \(b^* = b\)

Origin at 0,0,z

Along \([1,0,0]\) \(p_2a^-2'nm'\)

\(a^* = -c\) \(b^* = b\)

Origin at x,0,0

Along \([1,1,0]\) \(p_2a^-2'nm'\)

\(a^* = -c\) \(b^* = (-a + b)/2\)

Origin at x,x,0

\(\)
Origin at center (4/m'mm)

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x < y

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1) 0,0,0
(5) 2' 0,y,0
 (2) 0,0,z
 (2) 0,0,0
 (2) 0,0,0
(9) T' 0,0,0
 (3) 4', 0,0,z
 (3) 0,0,0
 (4) 0,0,0
 (4) 0,0,0
(13) m x,0,z
 (m) x,0,0
 (m) x,0,0
 (m) x,0,0
(17) m x,0,0
 (m) x,0,0
 (m) x,0,0
 (m) x,0,0
For (1,0,0)' + set

<table>
<thead>
<tr>
<th>Precise Coordinates</th>
<th>Wyckoff letter, Multiplicity, Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t' (1,0,0)</td>
<td>(123.16.1014)</td>
</tr>
<tr>
<td>(2') 1/2,0,z</td>
<td>(4') -1/2,1/2,z</td>
</tr>
<tr>
<td>(2') 1/2,0,z</td>
<td>(4') -1/2,1/2,z</td>
</tr>
<tr>
<td>(3) 4' -1/2,1/2,z</td>
<td>(4) 1/2,1/2,z</td>
</tr>
<tr>
<td>(4) 1/2,1/2,z</td>
<td></td>
</tr>
<tr>
<td>(5) 2 1/2,y,0</td>
<td>(2) 1/2,1/2,0</td>
</tr>
<tr>
<td>(2) 1/2,1/2,0</td>
<td></td>
</tr>
<tr>
<td>(6) 2 1/2,1/2,0</td>
<td></td>
</tr>
<tr>
<td>(7) 2 1/2,1/2,0</td>
<td></td>
</tr>
<tr>
<td>(8) 2 1/2,1/2,0</td>
<td></td>
</tr>
<tr>
<td>(9) T 1/2,0,0</td>
<td>(13) a' (1,0,0)</td>
</tr>
<tr>
<td>(10) a' (1,0,0)</td>
<td>(14) m' 1/2,y,z</td>
</tr>
<tr>
<td>(11) 4' 1/2,1/2,z</td>
<td>(15) g' (1/2,1/2,0)</td>
</tr>
<tr>
<td>(12) 4' 1/2,1/2,z</td>
<td>(16) g' (1/2,1/2,0)</td>
</tr>
<tr>
<td>(13) a' (1,0,0)</td>
<td></td>
</tr>
<tr>
<td>(14) m' 1/2,y,z</td>
<td></td>
</tr>
<tr>
<td>(15) g' (1/2,1/2,0)</td>
<td></td>
</tr>
<tr>
<td>(16) g' (1/2,1/2,0)</td>
<td></td>
</tr>
</tbody>
</table>

Generators selected (1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Coordinates</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
<td></td>
</tr>
<tr>
<td>32 u 1</td>
<td>(1) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>16 t .m'.</td>
<td>(2) x',y,z</td>
<td>[u',v,w]</td>
</tr>
<tr>
<td>16 s .m.</td>
<td>(3) y',x,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>16 r ..m</td>
<td>(4) y,x,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>16 q m'..</td>
<td>(5) x,y,1/2</td>
<td>[u,v,0]</td>
</tr>
<tr>
<td>16 p m'..</td>
<td>(6) x,y,1/2</td>
<td>[u,v,0]</td>
</tr>
<tr>
<td>8 o m'2m'.</td>
<td>(7) x,1/2,1/2</td>
<td>[u,0,0]</td>
</tr>
<tr>
<td>8 n m'2m'.</td>
<td>(8) x,1/2,0</td>
<td>[u,0,0]</td>
</tr>
<tr>
<td>8 m m'2m'.</td>
<td>(9) x,0,1/2</td>
<td>[0,v,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p_p 4mm
\textbf{a}^* = a \quad \textbf{b}^* = \textbf{b} \\
Origin at 0,0,z

Along [1,0,0] p2mm1'
\textbf{a}^* = \textbf{b} \quad \textbf{b}^* = c \\
Origin at x,0,0

Along [1,1,0] p2mm1'
\textbf{a}^* = (-\textbf{a} + \textbf{b})/2 \quad \textbf{b}^* = c \\
Origin at x,x,0
Origin at center (4'/mmm')

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x < y \]

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{align*}
(1) & \quad 1 \quad (1|0,0,0) \\
(5) & \quad 2 \quad 0,y,0 \quad (2z|0,0,0) \\
(9) & \quad \bar{1} \quad 0,0,0 \quad (1|0,0,0) \\
(13) & \quad m \quad x,0,z \quad (mz|0,0,0) \\
(2) & \quad 2 \quad 0,0,z \quad (2z|0,0,0) \\
(6) & \quad 2 \quad x,0,0 \quad (2z|x,0,0) \\
(10) & \quad m \quad x,y,0 \quad (mz|x,0,0) \\
(3) & \quad 4^{+} \quad 0,0,z \quad (4z|0,0,0) \quad (4z^{-1}|0,0,0)' \\
(7) & \quad 2' \quad x,x,0 \quad (2x|x,0,0) \quad (2x^{-1}|0,0,0)' \\
(11) & \quad \bar{4}^{+} \quad 0,0,z; 0,0,0 \quad (4z|0,0,0) \quad (4z^{-1}|0,0,0)' \\
(15) & \quad m' \quad x,x,z \quad (mz|0,0,0) \quad (mz^{-1}|0,0,0)' \\
(4) & \quad 4^{+} \quad 0,0,z \quad (4z|0,0,0) \quad (4z^{-1}|0,0,0)' \\
(8) & \quad 2' \quad x,x,0 \quad (2x|x,0,0) \quad (2x^{-1}|0,0,0)' \\
(12) & \quad \bar{4}^{+} \quad 0,0,z; 0,0,0 \quad (4z|0,0,0) \quad (4z^{-1}|0,0,0)' \\
(16) & \quad m' \quad x,x,z \quad (mz|0,0,0) \quad (mz^{-1}|0,0,0)' \\
\end{align*}
\]
For \((1,0,0)\)' + set

(1) \(t' (1,0,0)\)
(2) \(2' 1/2,0,z\)
(3) \(4' -1/2,1/2,z\)
(4) \(4' 1/2,-1/2,z\)

(5) \(2' 1/2,y,0\)
(6) \(2' (1,0,0) x,0,0\)
(7) \(2 (1/2,1/2,0) x+1/2,x,0\)
(8) \(2 (1/2,-1/2,0) x+1/2,x,0\)

(9) \(t (1,0,0)\)
(10) \(t (1,0,0)'\)
(11) \(4 1/2,-1/2,z; 1/2,1/2,z\)
(12) \(4 1/2,1/2,z; 1/2,1/2,z\)

(13) \(a' (1,0,0) x,0,z\)
(14) \(m' 1/2,y,z\)
(15) \(g (1/2,-1/2,0) x+1/2,x,0\)
(16) \(g (1/2,1/2,0) x+1/2,x,0\)

Generators selected \((1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5); (9)\).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 u 1</td>
<td>((0,0,0) +)</td>
</tr>
<tr>
<td>(1)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2)</td>
<td>(x',y,z [u',v,w])</td>
</tr>
<tr>
<td>(3)</td>
<td>(y',x,z [v,u,w])</td>
</tr>
<tr>
<td>(4)</td>
<td>(y,x,z [v,u,w])</td>
</tr>
<tr>
<td>(5)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(6)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(7)</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(8)</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(9)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(10)</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(11)</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(12)</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(13)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(14)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(15)</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(16)</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>16 t .m'.</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>(17)</td>
<td>x,1/2,z [u,0,w]</td>
</tr>
<tr>
<td>(18)</td>
<td>1/2,x,0 [0,u,w]</td>
</tr>
<tr>
<td>(19)</td>
<td>1/2,x,0 [0,u,w]</td>
</tr>
<tr>
<td>16 s .m.</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>(20)</td>
<td>x,0,z [0,v,0]</td>
</tr>
<tr>
<td>(21)</td>
<td>0,x,0 [v,0,0]</td>
</tr>
<tr>
<td>(22)</td>
<td>0,x,0 [v,0,0]</td>
</tr>
<tr>
<td>16 r ..m'</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>(23)</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>(24)</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>(25)</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>(26)</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>16 q m..</td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>(27)</td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>(28)</td>
<td>y,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>(29)</td>
<td>y,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>16 p m..</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>(30)</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>(31)</td>
<td>y,x,0 [0,0,w]</td>
</tr>
<tr>
<td>(32)</td>
<td>y,x,0 [0,0,w]</td>
</tr>
<tr>
<td>8 o m2m'.</td>
<td>x,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>(33)</td>
<td>x,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>(34)</td>
<td>1/2,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>(35)</td>
<td>1/2,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 n m2m'.</td>
<td>x,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>(36)</td>
<td>x,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>(37)</td>
<td>1/2,x,0 [0,0,w]</td>
</tr>
<tr>
<td>(38)</td>
<td>1/2,x,0 [0,0,w]</td>
</tr>
<tr>
<td>8 m m2m.</td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>(39)</td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>(40)</td>
<td>0,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>(41)</td>
<td>0,x,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

\[\text{123.17.1015 - 2 - 2044}\]
Continued

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>l</td>
<td>m2m. $x,0,0$ [0,0,0] $\bar{x},0,0$ [0,0,0] $0,x,0$ [0,0,0] $0,\bar{x},0$ [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>m.2'm' $x,x,1/2$ [0,0,w] $\bar{x},\bar{x},1/2$ [0,0,w] $\bar{x},x,1/2$ [0,0,w] $x,\bar{x},1/2$ [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
<td>m.2'm' $x,x,0$ [0,0,w] $\bar{x},\bar{x},0$ [0,0,w] $\bar{x},x,0$ [0,0,w] $x,\bar{x},0$ [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
<td>2'mm'. $0,1/2,z$ [u,0,0] $1/2,0,z$ [u,0,0] $0,1/2,\bar{z}$ [u,0,0] $1/2,0,\bar{z}$ [u,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>4'm'm' $1/2,1/2,z$ [0,0,w] $1/2,1/2,\bar{z}$ [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>4'mm' $0,0,z$ [0,0,0] $0,0,\bar{z}$ [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>mmm'. $0,1/2,0$ [0,0,0] $1/2,0,0$ [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>mmm'. $0,1/2,1/2$ [0,0,0] $1/2,0,1/2$ [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>4/mm'm' $1/2,1/2,1/2$ [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>4/mm'm' $1/2,1/2,0$ [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4'/mmm' $0,0,1/2$ [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4'/mmm' $0,0,0$ [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] $p4mm1'$

- $a^* = a$
- $b^* = b$
- Origin at 0,0,z

Along [1,0,0] $p2mm1'$

- $a^* = b$
- $b^* = c$
- Origin at x,0,0

Along [1,1,0] p_{21}, 2m'm'

- $a^* = (-a + b)/2$
- $b^* = c$
- Origin at x-1/4, x+1/4, 0
Origin at center (4'/m'mm')

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x ≤ y

Symmetry Operations

For (0,0,0) + set

(1) 1 (1|0,0,0)
(2) 2 0,0,z (2_z|0,0,0)
(3) 4' 0,0,z (4_z|0,0,0)
(4) 4' 0,0,z (4_z|0,0,0)
(5) 2' 0,y,0 (2_y|0,0,0)
(6) 2' x,0,0 (2_x|0,0,0)
(7) 2 0,y,0 (2_y|0,0,0)
(8) 2 0,y,0 (2_y|0,0,0)
(9) 1' 0,0,0 (1|0,0,0)
(10) m' x,y,0 (m_x|0,0,0)
(11) 4' 0,0,z; 0,0,0 (4_z|0,0,0)
(12) 4' 0,0,z; 0,0,0 (4_z|0,0,0)
(13) m x,0,z (m|0,0,0)
(14) m 0,y,z (m_y|0,0,0)
(15) m' x,y,z (m_x|0,0,0)
(16) m' x,y,z (m_x|0,0,0)
Continued

(1) \(t' (1,0,0) \)
(2) \(2' 1/2,0,z \)
(3) \(4' -1/2,1/2,z \)
(4) \(4' 1/2,-1/2,z \)

For \((1,0,0)\)' + set

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Generators selected
(1); \(t'(1,0,0) \); \(t'(0,1,0) \); \(t(0,0,1) \); (2); (3); (5); (9).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

\(\begin{array}{cccc}
\text{Coordinates} & (0,0,0) + & (1,0,0)' + \\
\hline
(1) x,y,z [u,v,w] & (2) \bar{x}, \bar{y}, \bar{z} [\bar{u}, \bar{v}, \bar{w}] & (3) \bar{y}, \bar{x}, \bar{z} [\bar{v}, \bar{u}, \bar{w}] & (4) y, \bar{x}, z [\bar{v}, u, w] \\
(5) \bar{x}, \bar{y}, \bar{z} [\bar{u}, \bar{v}, \bar{w}] & (6) x, y, z [u, v, w] & (7) \bar{y}, x, \bar{z} [\bar{v}, u, w] & (8) y, x, \bar{z} [\bar{v}, u, w] \\
(9) x, \bar{y}, \bar{z} [u, v, w] & (10) \bar{x}, \bar{y}, z [\bar{u}, \bar{v}, \bar{w}] & (11) \bar{x}, \bar{y}, z [\bar{v}, \bar{u}, \bar{w}] & (12) y, \bar{x}, \bar{z} [\bar{v}, u, w] \\
(13) x, \bar{y}, \bar{z} [u, v, w] & (14) \bar{x}, \bar{y}, \bar{z} [\bar{u}, \bar{v}, \bar{w}] & (15) \bar{y}, x, \bar{z} [\bar{v}, u, w] & (16) y, x, z [v, u, w] \\
\end{array} \)

\(\begin{array}{cccc}
\text{Coordinates} & (0,0,0) + & (1,0,0)' + \\
\hline
x,1/2,z [u,0,w] & \bar{x},1/2,z [\bar{u},0,\bar{w}] & 1/2,x,z [0,0,w] & 1/2,\bar{x},z [0,0,\bar{w}] \\
\bar{x},1/2,\bar{z} [u,0,w] & x,1/2,\bar{z} [u,0,\bar{w}] & 1/2,x,\bar{z} [0,0,\bar{w}] & 1/2,\bar{x},\bar{z} [0,0,w] \\
x,0,z [0,0,v] & \bar{x},0,z [\bar{v},0,\bar{w}] & 0,x,z [v,0,0] & 0,\bar{x},z [v,0,\bar{w}] \\
\bar{x},0,\bar{z} [\bar{v},0,\bar{w}] & x,0,z [0,0,v] & 0,x,\bar{z} [v,0,0] & 0,\bar{x},\bar{z} [v,0,\bar{w}] \\
x,x,z [u,u,w] & \bar{x},x,\bar{z} [\bar{u},\bar{u},\bar{w}] & x,x,z [u,u,\bar{w}] & \bar{x},x,\bar{z} [u,u,\bar{w}] \\
\bar{x},x,\bar{z} [\bar{u},\bar{u},\bar{w}] & x,x,z [u,u,\bar{w}] & x,x,\bar{z} [u,u,\bar{w}] & \bar{x},x,\bar{z} [u,u,\bar{w}] \\
x,y,1/2 [u,v,0] & \bar{x},y,1/2 [\bar{u},\bar{v},0] & y,x,1/2 [v,u,0] & \bar{y},x,1/2 [\bar{v},u,0] \\
\bar{x},y,1/2 [\bar{u},\bar{v},0] & x,y,1/2 [u,v,0] & y,x,1/2 [v,u,0] & \bar{y},x,1/2 [\bar{v},u,0] \\
x,y,0 [u,v,0] & \bar{x},y,0 [\bar{u},\bar{v},0] & y,x,\bar{z} [v,0,0] & \bar{y},x,0 [\bar{v},0,0] \\
\bar{x},y,0 [\bar{u},\bar{v},0] & x,y,0 [u,v,0] & y,x,\bar{z} [v,0,0] & \bar{y},x,0 [\bar{v},0,0] \\
x,1/2,1/2 [u,0,0] & \bar{x},1/2,1/2 [\bar{u},0,\bar{w}] & 1/2,x,1/2 [0,0,\bar{w}] & 1/2,\bar{x},1/2 [0,0,w] \\
x,1/2,0 [u,0,0] & \bar{x},1/2,0 [\bar{u},0,\bar{w}] & 1/2,x,0 [0,0,\bar{w}] & 1/2,\bar{x},0 [0,0,w] \\
x,0,1/2 [0,v,0] & \bar{x},0,1/2 [\bar{v},0,\bar{w}] & 0,x,1/2 [v,0,0] & \bar{y},x,1/2 [\bar{v},0,0] \\
\end{array} \)
8	l	m'2m'	x,0,0 [0,v,0]	x,0,0 [0,\(\bar{v},0\)]	0,x,0 [v,0,0]	0,\(\bar{x},0\) [\(\bar{v},0,0\)]
8	k	m'.2m'	x\(,x,1/2\) [u,u,0]	x\(,x,1/2\) [u,u,0]	x\(,x,1/2\) [u,u,0]	x\(,x,1/2\) [u,u,0]
8	j	m'.2m'	x\(,x,0\) [u,u,0]	x\(,x,0\) [u,u,0]	x\(,x,0\) [u,u,0]	x\(,x,0\) [u,u,0]
8	i	2'mm'	0,1/2,z [u,0,0]	1/2,0,z [u,0,0]	0,1/2,z [u,0,0]	1/2,0,z [u,0,0]
4	h	4m'm'	1/2,1/2,z [0,0,w]	1/2,1/2,z [0,0,w]	0,1/2,z [0,0,w]	0,1/2,z [0,0,w]
4	g	4'mm'	0,0,z [0,0,0]	0,0,z [0,0,0]	0,0,z [0,0,0]	0,0,z [0,0,0]
4	f	m'm'm'.	0,1/2,0 [u,0,0]	1/2,0,0 [u,0,0]	1/2,0,0 [u,0,0]	1/2,0,0 [u,0,0]
4	e	m'm'm'.	0,1/2,1/2 [u,0,0]	1/2,0,1/2 [u,0,0]	1/2,0,1/2 [u,0,0]	1/2,0,1/2 [u,0,0]
2	d	4/m'm'm'	1/2,1/2,1/2 [0,0,0]	1/2,1/2,1/2 [0,0,0]	1/2,1/2,1/2 [0,0,0]	1/2,1/2,1/2 [0,0,0]
2	c	4/m'm'm'	1/2,1/2,0 [0,0,0]	1/2,1/2,0 [0,0,0]	1/2,1/2,0 [0,0,0]	1/2,1/2,0 [0,0,0]
2	b	4'/m'm'm'	0,0,1/2 [0,0,0]	0,0,1/2 [0,0,0]	0,0,1/2 [0,0,0]	0,0,1/2 [0,0,0]
2	a	4'/m'm'm'	0,0,0 [0,0,0]	0,0,0 [0,0,0]	0,0,0 [0,0,0]	0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] \(p_p, 4m'm'\)

\[a^* = a\]

Along [1,0,0] \(p2mm1'\)

\[a^* = b\]

Origin at 1/2,1/2,z

\[b^* = b\]

Origin at x,0,0

\[a^* = (a+b)/2\]

Origin at x,x,0

\[b^* = c\]
Origin at center (4/mmm')

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq y\]

Symmetry Operations

For \((0,0,0)\) + set

1. \((1)|0,0,0\)
2. \((2)\ 0,0,z\)
3. \((3)\ 4^*\ 0,0,z\)
4. \((4)\ 4^*\ 0,0,0\)
5. \((5)\ 2'\ 0,y,0\)
6. \((6)\ 2'\ x,0,0\)
7. \((7)\ 2'\ x,x,0\)
8. \((8)\ 2'\ x,x,0\)
9. \((9)\ \bar{1}\ 0,0,0\)
10. \((10)\ m\ x,y,0\)
11. \((11)\ 4^*\ 0,0,z;\ 0,0,0\)
12. \((12)\ 4^*\ 0,0,0;\ 0,0,0\)
13. \((13)\ m'\ x,0,z\)
14. \((14)\ m'\ 0,y,z\)
15. \((15)\ m'\ x,x,z\)
16. \((16)\ m'\ x,x,z\)

For \((1,0,0)'\) + set

1. \((1)\ t'(1,0,0)\)
2. \((2)\ 2'\ 1/2,0,0\)
3. \((3)\ 4^*\ -1/2,1/2,0\)
4. \((4)\ 4^*\ 1/2,-1/2,0\)
5. \((5)\ 2\ 1/2,y,0\)
6. \((6)\ (2,1,0,0)\)
7. \((7)\ 2(1/2,1/2,0)\)
8. \((8)\ 2(1/2,-1,2,0)\)
9. \((9)\ \bar{1}\ 1/2,0,0\)
10. \((10)\ a(1,0,0)\)
11. \((11)\ 4^*\ -1/2,-1,2,0;\ 1/2,-1,2,0\)
12. \((12)\ 4^*\ 1/2,1,2,0;\ 1/2,1,2,0\)
13. \((13)\ a(1,0,0)\)
14. \((14)\ m\ 1/2,y,z\)
15. \((15)\ g(1/2,-1,2,0)\)
16. \((16)\ g(1/2,1,2,0)\)

Generators selected
(1); \(t'(1,0,0); \ t'(0,1,0); \ t'(0,0,1); \ (2); \ (3); \ (5); \ (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>u 1</td>
</tr>
<tr>
<td>16</td>
<td>t .m.</td>
</tr>
</tbody>
</table>

123.19.1017 - 2 - 2050
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>4' mm'</td>
<td>Along [0,0,1] p4mm1'</td>
</tr>
<tr>
<td>4 mm'</td>
<td>Along [1,0,0] p2mm1'</td>
</tr>
<tr>
<td>b* = b</td>
<td>Along [1,1,0] p$_{c'}$-2mm</td>
</tr>
<tr>
<td>a* = a</td>
<td>a* = b + a/2</td>
</tr>
<tr>
<td>Origin at 0,0,0</td>
<td>Origin at x,0,0</td>
</tr>
<tr>
<td></td>
<td>a* = (-a + b)/2</td>
</tr>
<tr>
<td></td>
<td>b* = c</td>
</tr>
<tr>
<td></td>
<td>Origin at x-1/4, x+1/4, 0</td>
</tr>
</tbody>
</table>

Origin at 0,0,z

16 s m'
- x,0,z [u,0,w] -> x,0,z [u,0,w]
- 0,x,z [0,u,w] -> 0,x,z [0,u,w]
- 0,x,z [0,u,w] -> 0,x,z [0,u,w]

16 r m'
- x,x,z [u,u,w] -> x,x,z [u,u,w]
- x,x,z [u,u,w] -> x,x,z [u,u,w]
- x,x,z [u,u,w] -> x,x,z [u,u,w]

16 q m'.
- x,y,1/2 [u,v,0] -> y,x,1/2 [v,u,0]
- x,y,1/2 [u,v,0] -> y,x,1/2 [v,u,0]
- x,y,1/2 [u,v,0] -> y,x,1/2 [v,u,0]

16 p m..
- x,y,0 [0,0,w] -> y,x,0 [0,0,w]
- y,x,0 [0,0,w] -> y,x,0 [0,0,w]
- y,x,0 [0,0,w] -> y,x,0 [0,0,w]

Symmetry of Special Projections

- **16 s m':** x,0,z [u,0,w] → x,0,z [u,0,w]
- **16 r m':** x,x,z [u,u,w] → x,x,z [u,u,w]
- **16 q m':** x,y,1/2 [u,v,0] → y,x,1/2 [v,u,0]
- **16 p m':** x,y,0 [0,0,w] → y,x,0 [0,0,w]

Origin at 0,0,z: 0,x,z [0,u,w] → 0,x,z [0,u,w]

Origin at x,0,0: x,x,z [u,u,w] → x,x,z [u,u,w]

Origin at x-1/4, x+1/4, 0: y,x,0 [0,0,w] → y,x,0 [0,0,w]
Origin at center (4/m) at 4/mcc

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

(1) 1
(1) $0,0,0$

(2) $2,0,0,z$
(2) $(2z,0,0,0)$

(3) $4^+ 0,0,z$
(3) $(4z,0,0,0)$

(4) $4^- 0,0,z$
(4) $(4z^{-1},0,0,0)$

(5) 2
(5) $0,y,1/4$
(5) $(2,0,0,1/2)$

(6) $2,x,0,1/4$
(6) $(2z,0,0,1/2)$

(7) $2,x,x,1/4$
(7) $(2y,0,0,1/2)$

(8) $2,x,x,1/4$
(8) $(2y,0,0,1/2)$

(9) $\overline{1}$
(9) $0,0,0$
(9) $(1,0,0,0)$

(10) $m,x,y,0$
(10) $(m,0,0,0)$

(11) $\overline{4}^+ 0,0,z; 0,0,0$
(11) $\overline{4}z,0,0,0$

(12) $\overline{4}^- 0,0,z; 0,0,0$
(12) $\overline{4}z^{-1},0,0,0$

(13) $c(0,0,1/2) x,0,z$
(13) $(m,0,0,1/2)$

(14) $c(0,0,1/2) 0,y,z$
(14) $(m,0,0,1/2)$

(15) $c(0,0,1/2) x,x,z$
(15) $(m,0,0,1/2)$

(16) $c(0,0,1/2) x,x,z$
(16) $(m,0,0,1/2)$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 n 1</td>
<td>n</td>
<td>1 (1) x,y,z [u,v,w] (2) x, y, z [u,v,w] (3) y, x, z [v,u,w] (4) y, x, z [v,u,w] (5) x, y, z +1/2 [u,v,w] (6) x, y, z +1/2 [u,v,w] (7) y, x, z +1/2 [v,u,w] (8) y, x, z +1/2 [v,u,w] (9) x, y, z [u,v,w] (10) x,y,z [u,v,w] (11) y,x,z [v,u,w] (12) y,x,z [v,u,w] (13) x,y,z+1/2 [u,v,w] (14) x,y,z+1/2 [v,u,w] (15) y,x,z+1/2 [v,u,w] (16) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8 m m..</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w] y,x,0 [0,0,w] y,x,0 [0,0,w]</td>
</tr>
<tr>
<td>8 l .2</td>
<td>x,1/2,1/4 [u,v,0]</td>
<td>1/2,x,1/4 [0,0,u] 1/2,x,1/4 [0,0,u]</td>
</tr>
<tr>
<td>8 k .2</td>
<td>x,0,1/4 [u,0,v]</td>
<td>0,x,1/4 [0,0,u] 0,x,1/4 [0,0,u]</td>
</tr>
<tr>
<td>8 j .2</td>
<td>x,x,1/4 [u,0,u]</td>
<td>x,x,1/4 [u,0,u] x,x,1/4 [u,0,u]</td>
</tr>
<tr>
<td>8 i .2</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w] 0,1/2,z [0,0,w] 1/2,0,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 h 4..</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 g 4..</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w] 0,0,z [0,0,w] 0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 f 222.</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0] 0,1/2,3/4 [0,0,0] 0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 e 2/m..</td>
<td>0,1/2,0 [0,0,w]</td>
<td>0,1/2,0 [0,0,w] 0,1/2,1/2 [0,0,w] 0,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 d 4/m..</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 c 422</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 b 4/m..</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a 422</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p4mm1'
\(a^* = a\) \(b^* = b\)
Origin at 0,0,z

Along [1,0,0] p_{2a'2m'm'}
\(a^* = -c/2\) \(b^* = b\)
Origin at x,0,1/4

Along [1,1,0] p_{2a'2m'm'}
\(a^* = -c/2\) \(b^* = (-a + b)/2\)
Origin at x,x,1/4
P4/mcc1' P4/m2/c2/c1'

Tetragonal

Origin at center (4/m1') at 4/mcc1'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

For 1 + set

1. \(1\) 1

 \[
 (1|0,0,0) \\
 (1|0,0,0)
 \]

2. \(2\) \(0,0,z\)

 \[
 (2_z|0,0,0) \\
 (2_z|0,0,0)
 \]

3. \(4^+\) \(0,0,z\)

 \[
 (4_z|0,0,0) \\
 (4_z^{-1}|0,0,0)
 \]

4. \(4^-\) \(0,0,z\)

 \[
 (4_z^{-1}|0,0,0) \\
 (4_z^{-1}|0,0,0)
 \]

5. \(2\) \(0,y,1/4\)

 \[
 (2_y|0,0,1/2) \\
 (2_y|0,0,1/2)
 \]

6. \(2\) \(x,0,1/4\)

 \[
 (2_x|0,0,1/2) \\
 (2_x|0,0,1/2)
 \]

7. \(2\) \(x,x,1/4\)

 \[
 (2_{xx}|0,0,1/2) \\
 (2_{xx}|0,0,1/2)
 \]

8. \(2\) \(x,x,1/4\)

 \[
 (2_{xx}|0,0,1/2) \\
 (2_{xx}|0,0,1/2)
 \]

9. \(\bar{1}\) \(0,0,0\)

 \[
 (1|0,0,0) \\
 (1|0,0,0)
 \]

10. \(m\) \(x,y,0\)

 \[
 (m_y|0,0,0) \\
 (m_y|0,0,0)
 \]

11. \(\bar{4}^+\) \(0,0,z; 0,0,0\)

 \[
 (\bar{4}_z|0,0,0) \\
 (\bar{4}_z^{-1}|0,0,0)
 \]

12. \(\bar{4}^-\) \(0,0,z; 0,0,0\)

 \[
 (\bar{4}_z^{-1}|0,0,0) \\
 (\bar{4}_z^{-1}|0,0,0)
 \]

13. \(c\) \((0,0,1/2)\) \(x,0,z\)

 \[
 (c_{|y}|0,0,1/2) \\
 (m_{xy}|0,0,1/2)
 \]

14. \(c\) \((0,0,1/2)\) \(0,y,z\)

 \[
 (m_{xy}|0,0,1/2) \\
 (m_{xy}|0,0,1/2)
 \]

15. \(c\) \((0,0,1/2)\) \(x,x,z\)

 \[
 (m_{xy}|0,0,1/2) \\
 (m_{xy}|0,0,1/2)
 \]

16. \(c\) \((0,0,1/2)\) \(x,x,z\)

 \[
 (m_{xy}|0,0,1/2) \\
 (m_{xy}|0,0,1/2)
 \]
For $1^+ +$ set

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>n $11'$</td>
<td>(1) x,y,z</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) \bar{x},\bar{y},\bar{z}</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) \bar{y},x,z</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,\bar{x},z</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) $\bar{x},y,\bar{z}+1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) $x,\bar{y},\bar{z}+1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) $y,x,\bar{z}+1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) $\bar{y},x,\bar{z}+1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) \bar{x},\bar{y},\bar{z}</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x,\bar{y},\bar{z}</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) y,\bar{x},\bar{z}</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) \bar{y},x,\bar{z}</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) $x,\bar{y},\bar{z}+1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14) $\bar{x},y,\bar{z}+1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) $\bar{y},x,\bar{z}+1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16) $y,\bar{x},\bar{z}+1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td>8</td>
<td>m $m..1'$</td>
<td>$x,y,0$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\bar{x},\bar{y},0$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y,\bar{x},0$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\bar{y},\bar{x},0$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x,y,1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\bar{x},\bar{y},1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y,x,1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\bar{y},x,1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td>8</td>
<td>l $.2.1'$</td>
<td>$x,1/2,1/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\bar{x},1/2,1/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1/2,x,1/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1/2,\bar{x},1/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x,1/2,3/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\bar{x},1/2,3/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1/2,x,3/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1/2,\bar{x},3/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td>8</td>
<td>k $.2.1'$</td>
<td>$x,0,1/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\bar{x},0,1/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0,x,1/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0,\bar{x},1/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x,0,3/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\bar{x},0,3/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0,\bar{x},3/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0,x,3/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td>8</td>
<td>j $.2.1'$</td>
<td>$x,x,1/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\bar{x},x,1/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\bar{x},x,1/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x,\bar{x},1/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x,1/2,3/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\bar{x},1/2,3/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\bar{x},x,3/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x,\bar{x},3/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x,1/2,3/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td>8</td>
<td>i $.2.1'$</td>
<td>$0,1/2,z$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1/2,0,z$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0,1/2,\bar{z}+1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1/2,0,z+1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0,1/2,\bar{z}$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1/2,0,z$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0,1/2,\bar{z}+1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1/2,0,z+1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td>4</td>
<td>h $.4.1'$</td>
<td>$1/2,1/2,z$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1/2,1/2,\bar{z}+1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1/2,1/2,z$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td>4</td>
<td>g $.4.1'$</td>
<td>$0,0,z$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0,0,\bar{z}+1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0,\bar{z}$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0,0,\bar{z}+1/2$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td>4</td>
<td>f $222.1'$</td>
<td>$0,1/2,1/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1/2,0,1/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0,1/2,3/4$</td>
<td>$[0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1/2,0,3/4$</td>
<td>$[0,0,0]$</td>
</tr>
</tbody>
</table>

Generators selected (1); (1,0,0); (0,1,0); (0,0,1); (2); (3); (5); (9); 1'.
<table>
<thead>
<tr>
<th>4</th>
<th>e</th>
<th>2/m..1'</th>
<th>0,1/2,0 [0,0,0]</th>
<th>1/2,0,0 [0,0,0]</th>
<th>0,1/2,1/2 [0,0,0]</th>
<th>1/2,0,1/2 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>d</td>
<td>4/m..1'</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>4221'</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4/m..1'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4221'</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1'

\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)

Origin at 0,0,z

Along [1,0,0] p2mm1'

\(\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c}/2 \)

Origin at x,0,0

Along [1,1,0] p2mm1'

\(\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c}/2 \)

Origin at x,x,0
Origin at center (4/m') at 4/m'cc

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

(1) 1
 (1 | 0,0,0)

(5) 2' 0,y,1/4
 (2|0,0,1/2)'

(9) T' 0,0,0
 (1 | 0,0,0)'

(13) c (0,0,1/2) x,0,z
 (m|0,0,1/2)

(2) 2 0,0,z
 (2|0,0,0)

(6) 2' x,0,1/4
 (2|0,0,1/2)'

(10) m' x,y,0
 (m|0,0,0)'

(14) c (0,0,1/2) 0,y,z
 (m|0,0,1/2)

(3) 4+ 0,0,z
 (4|0,0,0)

(7) 2' x,x,1/4
 (2|0,0,1/2)'

(11) 4++ 0,0,z; 0,0,0
 (4|0,0,0)'

(12) 4++ 0,0,z; 0,0,0
 (4|0,0,1/2)'

(4) 4' 0,0,z
 (4|0,0,0)

(8) 2' x,x,1/4
 (2|0,0,1/2)'

(15) c (0,0,1/2) x,x,z
 (m|0,0,1/2)

(16) c (0,0,1/2) x,x,z
 (m|0,0,1/2)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>m</td>
<td>m'..</td>
</tr>
<tr>
<td>8</td>
<td>l</td>
<td>.2'</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>.2'</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
<td>.2'</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
<td>2..</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>4..</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>4..</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>22'2'</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>2/m'..</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>4/m'..</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>42'2'</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4/m'..</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>42'2'</td>
</tr>
</tbody>
</table>

Continued 124.3.1020 P4/m'cc
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Basis Vectors</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>p4mm</td>
<td>$a^* = a$</td>
<td>0,0,z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b^* = b$</td>
<td></td>
</tr>
<tr>
<td>[1,0,0]</td>
<td>$p_{2a'}2m'm'$</td>
<td>$a^* = -c/2$</td>
<td>x,0,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b^* = b$</td>
<td></td>
</tr>
<tr>
<td>[1,1,0]</td>
<td>$p_{2a'}2m'm'$</td>
<td>$a^* = -c/2$</td>
<td>x,x,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b^* = (-a + b)/2$</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (4'/m) at 4'/mc'c

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

1. 1 (1 | 0,0,0)
2. 2 0,0,z (2z | 0,0,0)
3. 4' 0,0,z (4z | 0,0,0)
4. 4' 0,0,z (4z | 0,0,0)
5. 2' 0,y,1/4 (2y | 0,0,1/2)
6. 2' x,0,1/4 (2x | 0,0,1/2)
7. 2 x,x,1/4 (2x | 0,0,1/2)
8. 2 x,x,1/4 (2x | 0,0,1/2)
9. 1 0,0,0 (1 | 0,0,0)
10. m x,y,0 (mz | 0,0,0)
11. 4+m 0,0,z; 0,0,0 (4z | 0,0,0)
12. 4+m 0,0,z; 0,0,0 (4z | 0,0,0)
13. c' (0,0,1/2) x,0,z (mz | 0,0,1/2)
14. c' (0,0,1/2) 0,y,z (mz | 0,0,1/2)
15. c (0,0,1/2) x,x,z (mz | 0,0,1/2)
16. c (0,0,1/2) x,x,z (mz | 0,0,1/2)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z +1/2 [u, v, w] (6) x, y, z +1/2 [u, v, w] (7) y, x, z +1/2 [v, u, w] (8) y, x, z +1/2 [v, u, w]</td>
</tr>
<tr>
<td></td>
<td>(9) x, y, z [u, v, w] (10) x, y, z [u, v, w] (11) y, x, z [v, u, w] (12) y, x, z [v, u, w]</td>
</tr>
<tr>
<td></td>
<td>(13) x, y, z +1/2 [u, v, w] (14) x, y, z +1/2 [u, v, w] (15) y, x, z +1/2 [v, u, w] (16) y, x, z +1/2 [v, u, w]</td>
</tr>
<tr>
<td>8</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>(15) x, y, 1/2 [0,0,w] x,y,1/2 [0,0,w] y,x,1/2 [0,0,w] y,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>l</td>
</tr>
<tr>
<td></td>
<td>(15) x, 1/2,3/4 [0,v,w] x,1/2,3/4 [0,v,w] 1/2,x,3/4 [v,0,w] 1/2,x,3/4 [v,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
</tr>
<tr>
<td></td>
<td>(15) x, 0,3/4 [0,v,w] x,0,3/4 [0,v,w] 0,x,3/4 [v,0,w] 0,x,3/4 [v,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
</tr>
<tr>
<td></td>
<td>(15) x, x, 3/4 [u,u,0] x,x,3/4 [u,u,0] x,x,3/4 [u,u,0] x,x,3/4 [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>(15) 0,1/2,z [0,0,w] 0,1/2,z [0,0,w] 0,1/2,z +1/2 [0,0,w] 0,1/2,z +1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
</tr>
<tr>
<td></td>
<td>(15) 0,0,z [0,0,0] 0,0,z [0,0,0] 0,0,z [0,0,0] 0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td>(15) 0,1/2,0 [0,0,w] 0,1/2,0 [0,0,w] 0,1/2,1/2 [0,0,w] 0,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>(15) 1/2,1/2,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>(15) 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
</tr>
</tbody>
</table>

124.4.1021 - 2 - 2062
Symmetry of Special Projections

Along [0,0,1] p4mm1'
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] p 2'mm'
\(\mathbf{a}^* = -\mathbf{c}/2 \quad \mathbf{b}^* = \mathbf{b} \)
Origin at x,0,0

Along [1,1,0] p_{2a'} 2m'm'
\(\mathbf{a}^* = -\mathbf{c}/2 \quad \mathbf{b}^* = (-\mathbf{a} + \mathbf{b})/2 \)
Origin at x,x,1/4
P4'/mcc'
124.5.1022

4'/mmm'
P4'/m2/c2'/c'

Tetragonal

Origin at center (4'/m) at 4'/mcc'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

1. 1

2. $2 \ x,0,0$
 \((2_x,0,0) \)

3. $4^{+} \ x,0,0$
 \((4_x,0,0,0') \)

4. $4^{-} \ x,0,0$
 \((4^{-}_x,0,0,0') \)

5. $2 \ y,1/4$
 \((2_y,0,0,1/2) \)

6. $2' \ x,0,1/4$
 \((2_x,0,0,1/2) \)

7. $2' \ x,0,1/4$
 \((2_x,0,0,1/2) \)

8. $2' \ x,0,1/4$
 \((2_x,0,0,1/2) \)

9. $\bar{1} \ 0,0,0$
 \((1,0,0,0) \)

10. $m \ x,y,0$
 \((m_x,0,0,0) \)

11. $4^{+} \ x,0,0,0$
 \((4^{+}_x,0,0,0') \)

12. $4^{-} \ x,0,0,0$
 \((4^{-}_x,0,0,0') \)

13. $c \ (0,0,1/2) \ x,0,z$
 \((m,0,0,1/2) \)

14. $c \ (0,0,1/2) \ 0,y,z$
 \((m,0,0,1/2) \)

15. $c' \ (0,0,1/2) \ x,x,z$
 \((m_x,0,0,1/2) \)

16. $c' \ (0,0,1/2) \ x,x,z$
 \((m_x,0,0,1/2) \)

124.5.1022 - 1 - 2064
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 n 1</td>
<td>(1) x, y, z [u, v, w]</td>
<td>(2) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(3) y, x, z [v, u, w]</td>
<td>(4) y, x, z [v, u, w]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z+1/2 [u, v, w]</td>
<td>(6) x, y, z+1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(7) y, x, z+1/2 [v, u, w]</td>
<td>(8) y, x, z+1/2 [v, u, w]</td>
</tr>
<tr>
<td></td>
<td>(9) x, y, z [u, v, w]</td>
<td>(10) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(11) y, x, z [v, u, w]</td>
<td>(12) y, x, z [v, u, w]</td>
</tr>
<tr>
<td></td>
<td>(13) x, y, z+1/2 [u, v, w]</td>
<td>(14) x, y, z+1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(15) y, x, z+1/2 [v, u, w]</td>
<td>(16) y, x, z+1/2 [v, u, w]</td>
</tr>
<tr>
<td>8 m m..</td>
<td>x, y, 0 [0, 0, w]</td>
<td>x, y, 0 [0, 0, w]</td>
</tr>
<tr>
<td></td>
<td>y, x, 0 [0, 0, w]</td>
<td>y, x, 0 [0, 0, w]</td>
</tr>
<tr>
<td></td>
<td>y, x, 1/2 [0, 0, w]</td>
<td>y, x, 1/2 [0, 0, w]</td>
</tr>
<tr>
<td>8 l .2</td>
<td>x, 1/2, 1/4 [u, 0, 0]</td>
<td>x, 1/2, 1/4 [u, 0, 0]</td>
</tr>
<tr>
<td></td>
<td>x, 1/2, 1/4 [u, 0, 0]</td>
<td>1/2, x, 1/4 [0, u, 0]</td>
</tr>
<tr>
<td></td>
<td>1/2, x, 1/4 [0, u, 0]</td>
<td>1/2, x, 1/4 [0, u, 0]</td>
</tr>
<tr>
<td></td>
<td>1/2, x, 3/4 [0, u, 0]</td>
<td>1/2, x, 3/4 [0, u, 0]</td>
</tr>
<tr>
<td>8 k .2</td>
<td>x, 0, 1/4 [0, u, 0]</td>
<td>x, 0, 1/4 [0, u, 0]</td>
</tr>
<tr>
<td></td>
<td>x, 0, 1/4 [0, u, 0]</td>
<td>0, x, 1/4 [0, u, 0]</td>
</tr>
<tr>
<td></td>
<td>0, x, 1/4 [0, u, 0]</td>
<td>0, x, 1/4 [0, u, 0]</td>
</tr>
<tr>
<td>8 j .2'</td>
<td>x, x, 1/4 [u, u, w]</td>
<td>x, x, 1/4 [u, u, w]</td>
</tr>
<tr>
<td></td>
<td>x, x, 1/4 [u, u, w]</td>
<td>x, x, 1/4 [u, u, w]</td>
</tr>
<tr>
<td></td>
<td>x, x, 3/4 [u, u, w]</td>
<td>x, x, 3/4 [u, u, w]</td>
</tr>
<tr>
<td></td>
<td>x, x, 3/4 [u, u, w]</td>
<td>x, x, 3/4 [u, u, w]</td>
</tr>
<tr>
<td>8 i 2..</td>
<td>0, 1/2, z [0, 0, w]</td>
<td>1/2, 0, z [0, 0, w]</td>
</tr>
<tr>
<td></td>
<td>1/2, 0, z [0, 0, w]</td>
<td>0, 1/2, z+1/2 [0, 0, w]</td>
</tr>
<tr>
<td></td>
<td>0, 1/2, z+1/2 [0, 0, w]</td>
<td>1/2, 0, z+1/2 [0, 0, w]</td>
</tr>
<tr>
<td>4 h 4'..</td>
<td>1/2, 1/2, z [0, 0, 0]</td>
<td>1/2, 1/2, z [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td>1/2, 1/2, z [0, 0, 0]</td>
<td>1/2, 1/2, z [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td>1/2, 1/2, z [0, 0, 0]</td>
<td>1/2, 1/2, z+1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>4 g 4'..</td>
<td>0, 0, z [0, 0, 0]</td>
<td>0, 0, z [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td>0, 0, z [0, 0, 0]</td>
<td>0, 0, z+1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>4 f 222.</td>
<td>0, 1/2, 1/4 [0, 0, 0]</td>
<td>1/2, 0, 1/4 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td>1/2, 0, 1/4 [0, 0, 0]</td>
<td>0, 1/2, 3/4 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td>0, 1/2, 3/4 [0, 0, 0]</td>
<td>1/2, 0, 3/4 [0, 0, 0]</td>
</tr>
<tr>
<td>4 e 2/m..</td>
<td>0, 1/2, 0 [0, 0, w]</td>
<td>1/2, 0, 0 [0, 0, w]</td>
</tr>
<tr>
<td></td>
<td>1/2, 0, 0 [0, 0, w]</td>
<td>0, 1/2, 1/2 [0, 0, w]</td>
</tr>
<tr>
<td></td>
<td>0, 1/2, 1/2 [0, 0, w]</td>
<td>1/2, 0, 1/2 [0, 0, w]</td>
</tr>
<tr>
<td>2 d 4'/m..</td>
<td>1/2, 1/2, 0 [0, 0, 0]</td>
<td>1/2, 1/2, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>2 c 4'/22'</td>
<td>1/2, 1/2, 1/4 [0, 0, 0]</td>
<td>1/2, 1/2, 3/4 [0, 0, 0]</td>
</tr>
<tr>
<td>2 b 4'/m..</td>
<td>0, 0, 0 [0, 0, 0]</td>
<td>0, 0, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>2 a 4'/22'</td>
<td>0, 0, 1/4 [0, 0, 0]</td>
<td>0, 0, 3/4 [0, 0, 0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>a* =</th>
<th>b* =</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>p4mm1'</td>
<td>a</td>
<td>b</td>
<td>0,0,z</td>
</tr>
<tr>
<td>[1,0,0]</td>
<td>p2a'-2m'm'</td>
<td>-c/2</td>
<td>b</td>
<td>x,0,1/4</td>
</tr>
<tr>
<td>[1,1,0]</td>
<td>p2'mm'</td>
<td>-c/2</td>
<td>-(a+b)/2</td>
<td>x,x,0</td>
</tr>
</tbody>
</table>

- a* = a, b* = b
- a* = -c/2, b* = b
- a* = -c/2, b* = -(a+b)/2
Origin at center (4'/m') at 4'/m'c'c

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

(1) 1
(1|0,0,0)

(2) 2 0,0,z
(2|0,0,0)

(3) 4' 0,0,z
(4|0,0,0)

(4) 4' - 0,0,z
(4|-0,0,0)

(5) 2 0,y,1/4
(2|0,0,1/2)

(6) 2 x,0,1/4
(2|0,0,1/2)

(7) 2' x,x,1/4
(2|x,0,1/2)

(8) 2' x,x,1/4
(2|x,0,1/2)

(9) 1' 0,0,0
(1|0,0,0)

(10) m' x,y,0
(m|0,0,0)

(11) 4' 0,0,z; 0,0,0
(4|0,0,0)

(12) 4' 0,0,z; 0,0,0
(4|-0,0,0)

(13) c' (0,0,1/2) x,0,z
(m|0,0,1/2)

(14) c' (0,0,1/2) 0,y,z
(m|0,0,1/2)

(15) c (0,0,1/2) x,x,z
(m|x,0,1/2)

(16) c (0,0,1/2) x,x,z
(m|x,0,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 n 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
<td>(10) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(11) y,x,z [v,u,w]</td>
<td>(12) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z+1/2 [u,v,w]</td>
<td>(14) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(15) y,x,z+1/2 [v,u,w]</td>
<td>(16) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8 m m'..</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [u,v,0]</td>
<td>y,x,1/2 [v,u,0]</td>
</tr>
<tr>
<td>8 l .2</td>
<td>x,1/2,1/4 [u,0,0]</td>
<td>1/2,x,1/4 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,3/4 [u,0,0]</td>
<td>1/2,x,3/4 [0,u,0]</td>
</tr>
<tr>
<td>8 k .2</td>
<td>x,0,1/4 [u,0,0]</td>
<td>0,x,1/4 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,3/4 [u,0,0]</td>
<td>0,x,3/4 [0,u,0]</td>
</tr>
<tr>
<td>8 j .2'</td>
<td>x,x,1/4 [u,u,w]</td>
<td>x,x,1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [u,u,w]</td>
<td>x,x,3/4 [u,u,w]</td>
</tr>
<tr>
<td>8 i 2'</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 h 4'..</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 g 4'..</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 f 222.</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 e 2/m'..</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 d 4'm'..</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c 4'22'</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 b 4'm'..</td>
<td>0,0,0 [0,0,0]</td>
<td>0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 4'22'</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p4'm'm
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] p 2m'm'
\(\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c}/2 \)
Origin at x,0,0

Along [1,1,0] p 2a* 2m'm'
\(\mathbf{a}^* = -\mathbf{c}/2 \quad \mathbf{b}^* = (-\mathbf{a} + \mathbf{b})/2 \)
Origin at x,x,0
Origin at center (4/m) at 4/mc'c'

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

1. 1
 (1|0,0,0)

2. 2 0,0,z
 (2z|0,0,0)

3. 4+ 0,0,z
 (4z|0,0,0)

4. 4− 0,0,z
 (4z⁻¹|0,0,0)

5. 2' 0,y,1/4
 (2y|0,0,1/2')

6. 2' x,0,1/4
 (2x|0,0,1/2')

7. 2' x,x,1/4
 (2xy|0,0,1/2')

8. 2' x,x,1/4
 (2xy|0,0,1/2')

9. 1 0,0,0
 (1|0,0,0)

10. m x,y,0
 (m|0,0,0)

11. 4+ 0,0,z; 0,0,0
 (4z|0,0,0)

12. 4− 0,0,z; 0,0,0
 (4z⁻¹|0,0,0)

13. c' (0,0,1/2) x,0,z
 (m|0,0,1/2')

14. c' (0,0,1/2) 0,y,z
 (m|0,0,1/2')

15. c' (0,0,1/2) x,x,z
 (m|0,0,1/2')

16. c' (0,0,1/2) x,x,z
 (m|0,0,1/2')
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8	m			
1	.2'			
	x,1/2,1/4 [0,v,w]	x,1/2,1/4 [0,v,w]	1/2,x,1/4 [v,0,w]	1/2,x,1/4 [v,0,w]
	.2'			
8	k			
1	.2'			
	x,0,1/4 [0,v,w]	x,0,1/4 [0,v,w]	0,x,1/4 [v,0,w]	0,x,1/4 [v,0,w]
	.2'			
8	j			
1	.2'			
	x,x,1/4 [u,u,w]	x,x,1/4 [u,u,w]	x,x,1/4 [u,u,w]	x,x,1/4 [u,u,w]
	.2'			
8	i			
1	.2'			
	0,1/2,z [0,0,w]	1/2,0,z [0,0,w]	0,1/2,z+1/2 [0,0,w]	1/2,0,z+1/2 [0,0,w]
	.2'			
4	h			
1	.2'			
	0,0,z [0,0,w]	0,0,z+1/2 [0,0,w]	0,0,z [0,0,w]	0,0,z+1/2 [0,0,w]
	.2'			
4	f			
1	.2'			
	0,1/2,1/4 [0,0,w]	1/2,0,1/4 [0,0,w]	1/2,0,1/4 [0,0,w]	1/2,0,1/4 [0,0,w]
	.2'			
4	e			
1	.2'			
	0,1/2,0 [0,0,w]	1/2,0,0 [0,0,w]	0,1/2,1/2 [0,0,w]	1/2,0,1/2 [0,0,w]
	.2'			
2	d			
1	.2'			
	1/2,1/2,0 [0,0,w]	1/2,1/2,1/2 [0,0,w]	1/2,1/2,1/2 [0,0,w]	1/2,1/2,1/2 [0,0,w]
	.2'			
2	c			
1	.2'			
	1/2,1/2,1/4 [0,0,w]	1/2,1/2,3/4 [0,0,w]	1/2,1/2,3/4 [0,0,w]	1/2,1/2,3/4 [0,0,w]
	.2'			
2	b			
1	.2'			
	0,0,0 [0,0,w]	0,0,1/2 [0,0,w]	0,0,1/2 [0,0,w]	0,0,1/2 [0,0,w]
	.2'			
2	a			
1	.2'			
	0,0,1/4 [0,0,w]	0,0,3/4 [0,0,w]	0,0,3/4 [0,0,w]	0,0,3/4 [0,0,w]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Transformation</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p4mm'</td>
<td>$a^* = a$</td>
<td>0,0,z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b^* = b$</td>
<td></td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>p 2'mm'</td>
<td>$a^* = -c/2$</td>
<td>x,0,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b^* = b$</td>
<td></td>
</tr>
<tr>
<td>Along [1,1,0]</td>
<td>p 2'mm'</td>
<td>$a^* = -c/2$</td>
<td>x,x,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b^* = (-a + b)/2$</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (4'/m') at 4'/m'cc'

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4\]

Symmetry Operations

1. \(1\) 1
2. \(2\) 0,0,z
3. \(4^+\) 0,0,z
4. \(4^-\) 0,0,z
5. \(2'\) 0,y,1/4
6. \(2^*\) x,0,1/4
7. \(2\) x,x,1/4
8. \(2\) x,x,1/4
9. \(\bar{1}\) 0,0,0
10. \(m'\) x,y,0
11. \(\bar{4}^+\) 0,0,z; 0,0,0
12. \(\bar{4}^-\) 0,0,z; 0,0,0
13. \(c(0,0,1/2)\) x,0,z
14. \(c(0,0,1/2)\) 0,y,z
15. \(c'(0,0,1/2)\) x,x,z
16. \(c'(0,0,1/2)\) x,x,z

124.8.1025 - 1 - 2073
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>16 n 1</td>
<td>(1) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(5) x, y, z +1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(9) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(13) x, y, z +1/2 [u, v, w]</td>
</tr>
<tr>
<td>8 m m'..</td>
<td>x, y, 0 [u, v, 0]</td>
</tr>
<tr>
<td></td>
<td>x, y, 1/2 [u, v, 0]</td>
</tr>
<tr>
<td>8 l .2'</td>
<td>x, 1/2, 1/4 [0, v, w]</td>
</tr>
<tr>
<td></td>
<td>x, 1/2, 3/4 [0, v, w]</td>
</tr>
<tr>
<td>8 k .2'</td>
<td>x, 0, 1/4 [0, v, w]</td>
</tr>
<tr>
<td></td>
<td>x, 0, 3/4 [0, v, w]</td>
</tr>
<tr>
<td>8 j .2</td>
<td>x, x, 1/4 [u, u, 0]</td>
</tr>
<tr>
<td></td>
<td>x, x, 3/4 [u, u, 0]</td>
</tr>
<tr>
<td>8 i 2..</td>
<td>0, 1/2, z [0, 0, w]</td>
</tr>
<tr>
<td></td>
<td>0, 1/2, z [0, 0, w]</td>
</tr>
<tr>
<td>4 h 4'..</td>
<td>1/2, 1/2, z [0, 0, 0]</td>
</tr>
<tr>
<td>4 g 4'..</td>
<td>0, 0, z [0, 0, 0]</td>
</tr>
<tr>
<td>4 f 22'2'</td>
<td>0, 1/2, 1/4 [0, 0, w]</td>
</tr>
<tr>
<td>4 e 2/m'..</td>
<td>0, 1/2, 0 [0, 0, 0]</td>
</tr>
<tr>
<td>2 d 4/m'..</td>
<td>1/2, 1/2, 0 [0, 0, 0]</td>
</tr>
<tr>
<td>2 c 4'22</td>
<td>1/2, 1/2, 1/4 [0, 0, 0]</td>
</tr>
<tr>
<td>2 b 4'm'..</td>
<td>0, 0, 0 [0, 0, 0]</td>
</tr>
<tr>
<td>2 a 4'22</td>
<td>0, 0, 1/4 [0, 0, 0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p4'mm'
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p_2a'-2m'm'
\[a^* = -c/2 \quad b^* = b \]
Origin at x,0,0

Along [1,1,0] p 2m'm'
\[a^* = (-a + b)/2 \quad b^* = c/2 \]
Origin at x,x,0
Origin at center (4/m') at 4/m'c'c'

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{4}\]

Symmetry Operations

1. \(1\)
 - \((1|0,0,0)\)

2. \(2\)
 - \((0,0,z)\)
 - \((2_z|0,0,0)\)

3. \(4^+\)
 - \((0,0,z)\)
 - \((4_z|0,0,0)\)

4. \(4^-\)
 - \((0,0,z)\)
 - \((4_z^{-1}|0,0,0)\)

5. \(2\)
 - \((0,y,1/4)\)
 - \((2_y|0,0,1/2)\)

6. \(2\)
 - \((x,0,1/4)\)
 - \((2_z|0,0,1/2)\)

7. \(2\)
 - \((x,x,1/4)\)
 - \((2_{xy}|0,0,1/2)\)

8. \(2\)
 - \((x,x,1/4)\)
 - \((2_{xy}|0,0,1/2)\)

9. \(\overline{1}\)
 - \((0,0,0)\)
 - \((1|0,0,0)\)'s

10. \(m'\)
 - \((m_x|0,0,0)\)'
 - \((m_y|0,0,1/2)\)'

11. \(4^+\)·
 - \((0,0,z)\)
 - \((4_z|0,0,0)\)'

12. \(4^-\)·
 - \((0,0,z)\)
 - \((4_z^{-1}|0,0,0)\)'

13. \(c'\)·
 - \((0,0,1/2)\)
 - \((m_x|0,0,1/2)\)'

14. \(c'\)·
 - \((0,0,1/2)\)
 - \((m_y|0,0,1/2)\)'

15. \(c'\)·
 - \((0,0,1/2)\)
 - \((m_{xy}|0,0,1/2)\)'

16. \(c'\)·
 - \((0,0,1/2)\)
 - \((m_{xy}|0,0,1/2)\)'

Remarks

- **Origin at center (4/m') at 4/m'c'c'**
- **Asymmetric unit**
 - \(0 \leq x \leq \frac{1}{2}; 0 \leq y \leq \frac{1}{2}; 0 \leq z \leq \frac{1}{4}\)
- **Symmetry Operations**
 - (1) \(1\)
 - (2) \(2\)
 - (3) \(4^+\)
 - (4) \(4^-\)
 - (5) \(2\)
 - (6) \(2\)
 - (7) \(2\)
 - (8) \(2\)
 - (9) \(\overline{1}\)
 - (10) \(m'\)
 - (11) \(4^+\)·
 - (12) \(4^-\)·
 - (13) \(c'\)
 - (14) \(c'\)
 - (15) \(c'\)
 - (16) \(c'\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>n</td>
<td>1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z [v,u,w] (4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>m</td>
<td>m'.. x,y,0 [u,v,0] (5) x,y,z+1/2 [u,v,w] (6) x,y,z+1/2 [u,v,w] (7) y,x,z+1/2 [v,u,w] (8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>l</td>
<td>.2. x,1/2,1/4 [u,0,0] (9) x,y,z [u,v,w] (10) x,y,z [u,v,w] (11) y,x,z [v,u,w] (12) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>.2. x,0,1/4 [u,0,0] (13) x,y,z+1/2 [u,v,w] (14) x,y,z+1/2 [u,v,w] (15) y,x,z+1/2 [v,u,w] (16) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
<td>.2. x,x,1/4 [u,u,0] (17) x,x,1/4 [u,u,0] (18) x,x,1/4 [u,u,0] (19) x,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
<td>2.. 0,1/2,z [0,0,w] (20) 0,1/2,z [0,0,w] (21) 0,1/2,z [0,0,w] (22) 0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>4.. 1/2,1/2,z [0,0,w] (23) 1/2,1/2,z [0,0,w] (24) 1/2,1/2,z [0,0,w] (25) 1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>4.. 0,0,z [0,0,w] (26) 0,0,z [0,0,w] (27) 0,0,z [0,0,w] (28) 0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>222. 1/2,1/4 [0,0,0] (29) 1/2,1/4 [0,0,0] (30) 1/2,1/4 [0,0,0] (31) 1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>2/m'.. 0,1/2,0 [0,0,0] (32) 0,1/2,0 [0,0,0] (33) 0,1/2,0 [0,0,0] (34) 0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>4/m'.. 1/2,1/2,0 [0,0,0] (35) 1/2,1/2,0 [0,0,0] (36) 1/2,1/2,0 [0,0,0] (37) 1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>422 1/2,1/2,1/4 [0,0,0] (38) 1/2,1/2,1/4 [0,0,0] (39) 1/2,1/2,1/4 [0,0,0] (40) 1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4/m'.. 0,0,0 [0,0,0] (41) 0,0,0 [0,0,0] (42) 0,0,0 [0,0,0] (43) 0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>422 0,0,1/4 [0,0,0] (44) 0,0,1/4 [0,0,0] (45) 0,0,1/4 [0,0,0] (46) 0,0,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p4m'm'
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p 2m'm'
\[a^* = b \quad b^* = c/2 \]
Origin at x,0,0

Along [1,1,0] p 2m'm'
\[a^* = (-a + b)/2 \quad b^* = c/2 \]
Origin at x,x,0
Origin at center (4/m) at 4/mcc

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4\)

Symmetry Operations

For \((0,0,0) + \text{set}\)

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \quad 0,0,z \\
(3) & \quad 4^+ \quad 0,0,z \\
(4) & \quad 4^- \quad 0,0,z \\
(5) & \quad 2 \quad 0,y,1/4 \\
(6) & \quad 2 \quad x,0,1/4 \\
(7) & \quad 2 \quad x,x,1/4 \\
(8) & \quad 2 \quad x,x,1/4 \\
(9) & \quad \overline{1} \quad 0,0,0 \\
(10) & \quad m \quad x,y,0 \\
(11) & \quad 4^+ \quad 0,0,z; \quad 0,0,0 \\
(12) & \quad 4^- \quad 0,0,z; \quad 0,0,0 \\
(13) & \quad c \quad (0,0,1/2) \quad x,0,z \\
(14) & \quad c \quad (0,0,1/2) \quad 0,y,z \\
(15) & \quad c \quad (0,0,1/2) \quad x,x,z \\
(16) & \quad c \quad (0,0,1/2) \quad x,x,z
\end{align*}
\]
For $(1,0,0)' + \text{set}$

(1) $t'(1,0,0)$
(1,0,0)'

(2) $2'(1/2,0,z)$
(1,0,0)'

(3) $4^{+}\cdot -1/2,1/2,z$
(1,0,0)'

(4) $4^{+}\cdot 1/2,-1/2,z$
(1,0,0)'

(5) $2'1/2,y,1/4$
(2,1,0,1/2)'

(6) $2'(1,0,0)x,0,1/4$
(2,1,0,1/2)'

(7) $2'(1/2,1/2,0)x+1/2,x,1/4$
(2,1,0,1/2)'

(8) $2'(1/2,-1/2,0)x+1/2,\overline{x},1/4$
(2,1,0,1/2)'

(9) $1/2,0,z$
(1,0,0)'

(10) $4^{+}\cdot 1/2,-1/2,z; 1/2,-1/2,0$
(1,0,0)'

(11) $4^{+}\cdot 1/2,1/2,z; 1/2,1/2,0$
(1,0,0)'

(12) $2^{+}\cdot 1,0,1/2$
(2,1,0,1/2)'

(13) $c'(0,0,1/2)1/2,y,z$
(1,0,0)'

(14) $n'(1/2,1/2,1/2)x+1/2,x,z$
(1,0,0)'

(15) $n'(1/2,1/2,1/2)x+1/2,x,z$
(1,0,0)'

(16) $n'(1/2,1/2,1/2)x+1/2,x,z$
(1,0,0)'

Generators selected (1); $t'(1,0,0)$; $t'(0,1,0)$; $t(0,0,1)$; (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>32</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16</td>
<td>m</td>
</tr>
<tr>
<td>$x,y,0$ [0,0,w]</td>
<td>$\bar{x},\bar{y},0$ [\overline{0},0,\overline{w}]</td>
</tr>
<tr>
<td>16</td>
<td>l</td>
</tr>
<tr>
<td>$x,1/2,1/4$ [0,v,w]</td>
<td>$\bar{x},1/2,1/4$ [\overline{0},v,w]</td>
</tr>
<tr>
<td>16</td>
<td>k</td>
</tr>
<tr>
<td>$x,0,1/4$ [u,0,0]</td>
<td>$\bar{x},0,1/4$ [\overline{u},0,0]</td>
</tr>
<tr>
<td>16</td>
<td>j</td>
</tr>
<tr>
<td>$x,x,1/4$ [u,u,0]</td>
<td>$\bar{x},x,1/4$ [\overline{u},u,0]</td>
</tr>
<tr>
<td>16</td>
<td>i</td>
</tr>
<tr>
<td>$x,x,3/4$ [u,u,0]</td>
<td>$\bar{x},x,3/4$ [\overline{u},u,0]</td>
</tr>
<tr>
<td>16</td>
<td>h</td>
</tr>
<tr>
<td>$0,1/2,z$ [u,v,0]</td>
<td>$1/2,0,z$ [\overline{v},\overline{u},0]</td>
</tr>
<tr>
<td>8</td>
<td>4'</td>
</tr>
<tr>
<td>$1/2,1/2,z$ [0,0,0]</td>
<td>$1/2,1/2,\bar{z}+1/2$ [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
</tr>
<tr>
<td>$0,0,z$ [0,0,w]</td>
<td>$0,0,\bar{z}+1/2$ [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
</tr>
<tr>
<td>$0,1/2,1/4$ [v,0,0]</td>
<td>$1/2,0,1/4$ [v,0,0]</td>
</tr>
</tbody>
</table>
Continued

124.10.1027

P₃ 4/mcc

8 e 2'/m.. 0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0] 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]
4 d 4'/m.. 1/2,1/2,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]
4 c 4'2'2 1/2,1/2,1/4 [0,0,0] 1/2,1/2,3/4 [0,0,0]
4 b 4/m.. 0,0,0 [0,0,w] 0,0,1/2 [0,0,w]
4 a 422 0,0,1/4 [0,0,0] 0,0,3/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm1'
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p 2mm1'
\[a^* = b \quad b^* = c/2 \]
Origin at x,0,0

Along [1,1,0] p₃ 2mm
\[a^* = (-a + b)/2 \quad b^* = c/2 \]
Origin at x-1/4,x+1/4,0
Origin at center (4/m') at 4/m'cc

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>(2)</td>
<td>2</td>
<td>(0,0,z) (2z,0,0,0)</td>
</tr>
<tr>
<td>(3)</td>
<td>4+</td>
<td>0,0,z (4z,0,0,0)</td>
</tr>
<tr>
<td>(4)</td>
<td>4-</td>
<td>0,0,z (4z,1,0,0)</td>
</tr>
<tr>
<td>(5)</td>
<td>2'</td>
<td>0,y,1/4 (2y,0,0,1/2)</td>
</tr>
<tr>
<td>(6)</td>
<td>2'</td>
<td>x,0,1/4 (2x,0,0,1/2)</td>
</tr>
<tr>
<td>(7)</td>
<td>2'</td>
<td>x,x,1/4 (2x,0,0,1/2)</td>
</tr>
<tr>
<td>(8)</td>
<td>2'</td>
<td>x,x,1/4 (2x,0,0,1/2)</td>
</tr>
<tr>
<td>(9)</td>
<td>3'</td>
<td>0,0,0 (1,0,0)</td>
</tr>
<tr>
<td>(10)</td>
<td>3'</td>
<td>m',x,y,0 (m',0,0,0)</td>
</tr>
<tr>
<td>(11)</td>
<td>3'</td>
<td>0,0,0 (m',0,0,0)</td>
</tr>
<tr>
<td>(12)</td>
<td>3'</td>
<td>0,0,0 (m',0,0,0)</td>
</tr>
<tr>
<td>(13)</td>
<td>c</td>
<td>(0,0,1/2) x,0,z (m,0,0,1/2)</td>
</tr>
<tr>
<td>(14)</td>
<td>c</td>
<td>(0,0,1/2) x,0,z (m,0,0,1/2)</td>
</tr>
<tr>
<td>(15)</td>
<td>c</td>
<td>(0,0,1/2) x,0,z (m,0,0,1/2)</td>
</tr>
<tr>
<td>(16)</td>
<td>c</td>
<td>(0,0,1/2) x,0,z (m,0,0,1/2)</td>
</tr>
</tbody>
</table>
Continued

For (1,0,0)' + set

(1) t'(1,0,0) (2) 2' 1/2,0,z (3) 4' 1/2,1/2,z (4) 4' 1/2,-1/2,z
(1) t'(1,0,0) (2) 2' 1/2,0,z (4) 1/2,-1/2,z

(5) 2 1/2,y,1/4 (2) 1,0,1/2 (3) 2 1/2,-1/2,0 (4) 1/2,1/2,0
(5) 2 1/2,y,1/4 (2) 1,0,1/2 (3) 2 1/2,-1/2,0 (4) 1/2,1/2,0

(9) T 1/2,0,0 (10) a 1,0,0 (11) 2 (1/2,1/2,0) x+1/2,x,1/4
(9) T 1/2,0,0 (10) a 1,0,0 (11) 2 (1/2,1/2,0) x+1/2,x,1/4

(13) n' (1,0,1/2) x,0,z (14) c' (0,0,1/2) 1/2,y,z
(13) n' (1,0,1/2) x,0,z (14) c' (0,0,1/2) 1/2,y,z

Generators selected (1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>16</th>
<th>m</th>
<th>m'..</th>
<th>(x,y,0) [u,v,0]</th>
<th>(x,y,1/2) [u,v,0]</th>
<th>(x,1/2,0) [u,v,0]</th>
<th>(x,0,1/2) [u,v,0]</th>
<th>(x,0,3/4) [u,v,0]</th>
<th>(x,3/4,0) [u,v,0]</th>
<th>(x,1/4,0) [u,v,0]</th>
<th>(x,1/4,3/4) [u,v,0]</th>
<th>(x,3/4,1/4) [u,v,0]</th>
<th>(x,1/4,1/4) [u,v,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>n</td>
<td>1</td>
<td>(x,y,z) [u,v,w]</td>
<td>(x,y,z+1/2) [u,v,w]</td>
<td>(x+1/2,y,z) [u,v,w]</td>
<td>(x+1/2,y,z+1/2) [u,v,w]</td>
<td>(x+1/2,y,z) [u,v,w]</td>
<td>(x+1/2,y,z+1/2) [u,v,w]</td>
<td>(x,y,z) [u,v,w]</td>
<td>(x+1/2,y,z) [u,v,w]</td>
<td>(x+1/2,y,z+1/2) [u,v,w]</td>
<td>(x,y,z) [u,v,w]</td>
</tr>
</tbody>
</table>

Coordinates

(0,0,0) + (1,0,0)' +

124.11.1028 - 2 - 2083
<table>
<thead>
<tr>
<th>#</th>
<th>Symmetry</th>
<th>Special Projection</th>
<th>[u,v,0]</th>
<th>[v,u,0]</th>
<th>[v,u,0]</th>
<th>[v,u,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>e 2'/m'..</td>
<td>0,1/2,0 [u,v,0]</td>
<td>1/2,0,0 [v,u,0]</td>
<td>0,1/2,1/2 [u,v,0]</td>
<td>1/2,0,1/2 [v,u,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>d 4'/m'..</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c 4'22'</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b 4/m'..</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>a 42'2'</td>
<td>0,0,1/4 [0,0,w]</td>
<td>0,0,3/4 [0,0,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: p, 4m'm'
 - \(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
 - Origin at 0,0,z

- **Along [1,0,0]**: p 2mm1'
 - \(\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c}/2 \)
 - Origin at x,0,0

- **Along [1,1,0]**: p, 2mm
 - \(\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c}/2 \)
 - Origin at x-1/4, x+1/4, 1/4
PP 4'/mcc'

124.12.1029

4/mmm1'

Tetragonal

PP 4'/m2/c2'/c'

Origin at center (4'/m) at 4'/mcc'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

For (0,0,0) + set

(1) 1

(2) 2 0,0,z
 (2z) 0,0,0

(3) 4' 0,0,z
 (4z) 0,0,0'

(4) 4' 0,0,z
 (4z) 0,0,0'

(5) 2 0,y,1/4
 (2y) 0,0,1/2

(6) 2 x,0,1/4
 (2x) 0,0,1/2

(7) 2' x,x,1/4
 (2xy) 0,0,1/2'

(8) 2' x,x,1/4
 (2xy) 0,0,1/2'

(9) 1 0,0,0
 (1) 0,0,0

(10) m x,y,0
 (mz) 0,0,0

(11) 4 0,0,z; 0,0,0
 (4z) 0,0,0'

(12) 4' 0,0,z; 0,0,0
 (4z) 0,0,0'

(13) c (0,0,1/2) x,0,z
 (mz) 0,0,1/2

(14) c (0,0,1/2) 0,y,z
 (mz) 0,0,1/2

(15) c' (0,0,1/2) x,x,z
 (mz) 0,0,1/2'

(16) c' (0,0,1/2) x,x,z
 (mz) 0,0,1/2'
Continued

For $(1,0,0)' +$ set

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1)'(1,0,0)$</td>
<td>$(0,0,0) +$</td>
</tr>
<tr>
<td>$(1)(1,0,0)'$</td>
<td>$(1,0,0)' +$</td>
</tr>
<tr>
<td>$(2)' 1/2,0,z$</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>$(2)(1,0,0)'$</td>
<td>$(1,0,0)$</td>
</tr>
<tr>
<td>$(3) 4'\ -1/2,1/2,z$</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>$(4) 4'\ -1/2,1/2,z$</td>
<td>$(1,0,0)$</td>
</tr>
<tr>
<td>$(5) 2'/1/2,y,1/4$</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>$(6) 2'(1,0,0)'\ x,0,1/4$</td>
<td>$(1,0,0)$</td>
</tr>
<tr>
<td>$(7) 2(1/2,1/2,0)'\ x+1/2,x,1/4$</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>$(8) 2(1/2,-1/2,0)'\ x+1/2,x,1/4$</td>
<td>$(1,0,0)$</td>
</tr>
<tr>
<td>$(9) T'1/2,0,0$</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>$(10) a'(1,0,0)'\ x,y,0$</td>
<td>$(1,0,0)$</td>
</tr>
<tr>
<td>$(11) 4'\ \ 1/2,-1/2,z; 1/2,-1/2,0$</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>$(12) 4'\ \ 1/2,-1/2,z; 1/2,-1/2,0$</td>
<td>$(1,0,0)$</td>
</tr>
<tr>
<td>$(13) n'(1,0,1/2)'\ x,0,z$</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>$(14) c'(0,0,1/2)'\ 1/2,y,z$</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>$(15) n(1/2,-1/2,1/2)'\ x+1/2,x,z$</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>$(16) n(1/2,1/2,1/2)'\ x+1/2,x,z$</td>
<td>$(0,0,0)$</td>
</tr>
</tbody>
</table>

Generators selected $(1); (1,0,0); (0,0,1); (2); (3); (5); (9).$

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>n</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>16</td>
<td>m</td>
<td>$(1,0,0)'$</td>
</tr>
<tr>
<td>16</td>
<td>i</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>16</td>
<td>j</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>16</td>
<td>i</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>16</td>
<td>h</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>16</td>
<td>g</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>16</td>
<td>f</td>
<td>$(0,0,0)$</td>
</tr>
</tbody>
</table>

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>m</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>16</td>
<td>i</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>16</td>
<td>j</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>16</td>
<td>i</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>16</td>
<td>h</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>16</td>
<td>g</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>16</td>
<td>f</td>
<td>$(0,0,0)$</td>
</tr>
</tbody>
</table>

124.12.1029 - 2 - 2086
Symmetry of Special Projections

Along [0,0,1] p4mm1’
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] p 2mm1’
\(a^* = b \quad b^* = c/2 \)
Origin at x,0,0

Along [1,1,0] p2a*, 2mm
\(a^* = (a + b)/2 \quad b^* = c/2 \)
Origin at x-1/4,x+1/4,0

8 e 2/m. 0.1/2,0 [0,0,0] 1/2,0,0 [0,0,0] 0.1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]
4 d 4/m. 1/2,1/2,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]
4 c 422 1/2,1/2,1/4 [0,0,0] 1/2,1/2,3/4 [0,0,0]
4 b 4/m. 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]
4 a 422 0,0,1/4 [0,0,0] 0,0,3/4 [0,0,0]
Origin at center (4'/m') at 4'/m'cc'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

1. 1
 (1|0,0,0)

2. 2 0,0,z
 (2_2,0,0,0)

3. 4⁺ 0,0,z
 (4_2,0,0,0')

5. 0,0,1/4
 (2,0,0,1/2')

6. 2⁺ x,0,1/4
 (2_x,0,0,1/2')

7. 2 x,x,1/4
 (2_xy,0,0,1/2)

8. 2 x,x,1/4
 (2_xy,0,0,1/2)

9. 0,0,0
 (1|0,0,0')

10. m' x,y,0
 (m_2,0,0,0')

11. 4⁺ 0,0,z; 0,0,0
 (4_2,0,0,0)

12. 4⁺ 0,0,z; 0,0,0
 (4_2,0,0,0)

13. c (0,0,1/2) x,0,z
 (m_2,0,0,1/2)

14. c (0,0,1/2) 0,y,z
 (m_2,0,0,1/2)

15. c' (0,0,1/2) x,x,z
 (m_x,0,0,1/2')

16. c' (0,0,1/2) x,x,z
 (m_x,0,0,1/2')
For $(1,0,0)' + \text{set}$

(1) $t'(1,0,0)$
(2) $2' 1/2,0,z$
(3) $4' -1/2,1/2,z$
(4) $4' 1/2,-1/2,z$

(5) $2 1/2,y,1/4$
(2) $1,0,1/2$

(9) $1/2,0,0$

(13) $n'(1,0,1/2) x,0,z$

Generators selected (1); $t'(1,0,0)$; $t'(0,1,0)$; $t(0,0,1)$; (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 n 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) $\bar{x},y,z [\bar{u},v,w]$</td>
</tr>
<tr>
<td>16 m m'..</td>
<td>x,y,0 [u,v,0]</td>
<td>$\bar{x},\bar{y},0 [\bar{u},\bar{v},0]$</td>
</tr>
<tr>
<td>16 l .2.</td>
<td>x,1/2,1/4 [u,0,0]</td>
<td>$\bar{x},1/2,1/4 [\bar{u},0,0]$</td>
</tr>
<tr>
<td>16 k .2'.</td>
<td>x,0,1/4 [0,v,w]</td>
<td>$\bar{x},0,1/4 [\bar{0},v,w]$</td>
</tr>
<tr>
<td>16 j .2</td>
<td>x,x,1/4 [u,u,0]</td>
<td>$\bar{x},x,1/4 [\bar{u},u,0]$</td>
</tr>
<tr>
<td>16 i .2'..</td>
<td>x,x,3/4 [u,u,0]</td>
<td>$\bar{x},x,3/4 [\bar{u},u,0]$</td>
</tr>
<tr>
<td>8 h 4..</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>$1/2,1/2,z+1/2 [0,0,w]$</td>
</tr>
<tr>
<td>8 g 4'..</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>8 f 2'2'..</td>
<td>0,1/2,1/4 [u,0,0]</td>
<td>$1/2,0,1/4 [0,u,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>8</td>
<td>e</td>
<td>2/m'..</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>4/m'..</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>422</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>4'/m'..</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>4'2'2</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p_p, 4m'm' \)

- \(a^* = a \)
- \(b^* = b \)

Origin at 1/2,1/2,z

Along [1,0,0] \(p\, 2mm1' \)

- \(a^* = b \)
- \(b^* = c/2 \)

Origin at x,0,0

Along [1,1,0] \(p_2\, 2m'm' \)

- \(a^* = (-a + b)/2 \)
- \(b^* = c/2 \)

Origin at x,x,0
Origin at 422 at 4/n22/g, at -1/4, -1/4, 0 from center (2/m)

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ 1/2 - x

Symmetry Operations

1. 1
 (1 | 0,0,0)

2. 2 0,0,z
 (2 | 0,0,0)

3. 4+ 0,0,z
 (4 | 0,0,0)

4. 4- 0,0,z
 (4- | 0,0,0)

5. 2 0,y,0
 (2y | 0,0,0)

6. 2 x,0,0
 (2x | 0,0,0)

7. 2 x,x,0
 (2x | 0,0,0)

8. 2 x,0,z
 (2xz | 0,0,0)

9. 1/4,1/4,0
 (1 | 1/2,1/2,0)

10. n 1/2,1/2,0
 (m | 1/2,1/2,0)

11. 4+ 1/2,0,z; 1/2,0,0
 (2 | 1/2,1/2,0)

12. 4- 0,1/2,z; 0,1/2,0
 (2- | 1/2,1/2,0)

13. a 1/2,0,0
 (m | 1/2,1/2,0)

14. b 0,1/2,0
 (m | 1/2,1/2,0)

15. m x+1/2,0,z
 (nxy | 1/2,1/2,0)

16. g 1/2,1/2,0
 (nxy | 1/2,1/2,0)
Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 n 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) x,y,z ([u,v,w])</td>
<td>(2) x+1/2, y+1/2, (\bar{z}) ([u,v,w])</td>
<td>(3) x, y, z ([\bar{u}, \bar{v}, \bar{w}])</td>
<td>(4) x, y, z ([\bar{v}, \bar{u}, \bar{w}])</td>
</tr>
<tr>
<td>(5) x, y, z ([u,v,w])</td>
<td>(6) x, y, z ([u,v,w])</td>
<td>(7) y, x, z ([v,u,w])</td>
<td>(8) y, x, z ([v,u,w])</td>
</tr>
<tr>
<td>(9) x+1/2, y+1/2, (\bar{z}) ([u,v,w])</td>
<td>(10) x+1/2, y+1/2, (\bar{z}) ([u,v,w])</td>
<td>(11) y+1/2, (\bar{x}) +1/2, (\bar{z}) ([v,u,w])</td>
<td>(12) (y) +1/2, (x) +1/2, (\bar{z}) ([v,u,w])</td>
</tr>
<tr>
<td>(13) x+1/2, y+1/2, (\bar{z}) ([u,v,w])</td>
<td>(14) x+1/2, y+1/2, (\bar{z}) ([u,v,w])</td>
<td>(15) y+1/2, (\bar{x}) +1/2, (\bar{z}) ([v,u,w])</td>
<td>(16) y+1/2, (x) +1/2, (\bar{z}) ([v,u,w])</td>
</tr>
</tbody>
</table>

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).
Symmetry of Special Projections

Along [0,0,1] \(\rho_p \) 4m'm'
\(\mathbf{a}^* = (\mathbf{a} - \mathbf{b})/2 \)
\(\mathbf{b}^* = (\mathbf{a} + \mathbf{b})/2 \)
Origin at 0,0,z

Along [1,0,0] \(\rho_{2a} \) 2m'm'
\(\mathbf{a}^* = \mathbf{b}/2 \)
\(\mathbf{b}^* = \mathbf{c} \)
Origin at x,0,0

Along [1,1,0] \(\rho \) 2mm1'
\(\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \)
\(\mathbf{b}^* = \mathbf{c} \)
Origin at x,x,0
Origin at 4221' at 4/n22/g1', at -1/4,-1/4,0 from center (2/m1')

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ 1/2 - x

Symmetry Operations

For 1 + set

(1) 1
(1) 0,0,0

(2) 2 0,0,z
(22) 0,0,0

(3) 4+ 0,0,z
(42) 0,0,0

(4) 4- 0,0,z
(42) 0,0,0

(5) 2 0,y,0
(22) 0,0,0

(6) 2 x,0,0
(22) 0,0,0

(7) 2 x,x,0
(22) 0,0,0

(8) 2 x,x,0
(22) 0,0,0

(9) 1/4,1/4,0

(1) 1/2,1/2,0

(10) n (1/2,1/2,0) x,y,0
(m2) 1/2,1/2,0

(11) 4+ 1/2,0,z; 1/2,0,0
(42) 1/2,1/2,0

(12) 4- 0,1/2,z; 0,1/2,0
(42) 1/2,1/2,0

(13) a (1/2,0,0) x,1/4,z
(m2) 1/2,1/2,0

(14) b (0,1/2,0) 1/4,y,z
(m2) 1/2,1/2,0

(15) m x+1/2, y,z
(m2) 1/2,1/2,0

(16) g (1/2,1/2,0) x,x,z
(m2) 1/2,1/2,0

125.2.1032 - 1 - 2094
For 1' + set

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1'</td>
<td>(1) $t(1,0,0)$; $t(0,1,0)$; $t(0,0,1)$; (2); (3); (5); (9)</td>
<td>16</td>
<td>n</td>
<td>11'</td>
</tr>
<tr>
<td>1'</td>
<td>x,y,z [0,0,0]</td>
<td>8</td>
<td>m</td>
<td>..m1'</td>
</tr>
<tr>
<td></td>
<td>x,y,z [0,0,0]</td>
<td>8</td>
<td>i</td>
<td>..21'</td>
</tr>
<tr>
<td></td>
<td>x,x,1/2 [0,0,0]</td>
<td>8</td>
<td>j</td>
<td>.21'</td>
</tr>
<tr>
<td></td>
<td>x,x,1/2 [0,0,0]</td>
<td>8</td>
<td>k</td>
<td>.21'</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [0,0,0]</td>
<td>8</td>
<td>l</td>
<td>.21'</td>
</tr>
<tr>
<td>1'</td>
<td>x,x+1/2,z [0,0,0]</td>
<td>4</td>
<td>h</td>
<td>2.mm1'</td>
</tr>
</tbody>
</table>

Generators selected:
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9); 1'.
Symmetry of Special Projections

Along $[0,0,1]$ \(p4mm1' \)

- \(a^* = (a - b)/2 \)
- \(b^* = (a + b)/2 \)

Origin at 0,0,z

Along $[1,0,0]$ \(p2mm1' \)

- \(a^* = b/2 \)
- \(b^* = c \)

Origin at x,0,0

Along $[1,1,0]$ \(p2mm1' \)

- \(a^* = -(a + b)/2 \)
- \(b^* = c \)

Origin at x,x,0

<table>
<thead>
<tr>
<th>4</th>
<th>g</th>
<th>4..1'</th>
<th>0,0,z [0,0,0]</th>
<th>0,0,z [0,0,0]</th>
<th>1/2,1/2,z [0,0,0]</th>
<th>1/2,1/2,z [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>f</td>
<td>..2/m1'</td>
<td>1/4,1/4,1/2 [0,0,0]</td>
<td>3/4,3/4,1/2 [0,0,0]</td>
<td>3/4,1/4,1/2 [0,0,0]</td>
<td>1/4,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>..2/m1'</td>
<td>1/4,1/4,0 [0,0,0]</td>
<td>3/4,3/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
<td>1/4,3/4,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>\overline{4}2m1'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>\overline{4}2m1'</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4221'</td>
<td>0,0,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4221'</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin at $42'2'$ at $4/n'2'2'/g$, at $-1/4,-1/4,0$ from center ($2'/m$)

Asymmetric unit: $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq 1/2 - x$

Symmetry Operations

1. 1
2. $2' \quad 0,0,z$
3. $4' \quad 0,0,z$
4. $4' \quad 0,0,z$
5. $2' \quad 0,y,0$
6. $2' \quad x,0,0$
7. $2' \quad x,x,0$
8. $2' \quad x,x,0$
9. $3' \quad 1/4,1/4,0$
10. $3' \quad 1/4,1/4,0$
11. $4' \quad 1/2,0,z$
12. $4' \quad 1/2,0,z$
13. $a \quad (1/2,0,0)
14. $b \quad (0,1/2,0)$
15. $m \quad x+1/2,\bar{x},z$
16. $g \quad (1/2,1/2,0)$
Continued

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 n 1</td>
<td></td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(9) x+1/2,y+1/2,z [u,v,w]</td>
<td>(10) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z [u,v,w]</td>
<td>(14) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
</tbody>
</table>

8 m ..m	x,x+1/2,z [u,u,0]	x+1/2,x+1/2,z [u,u,0]	x+1/2,x+1/2,z [u,u,0]	x+1/2,x+1/2,z [u,u,0]
8 l .2'.	x,x+1/2,z [u,u,0]	x+1/2,x+1/2,z [u,u,0]	x+1/2,x+1/2,z [u,u,0]	
8 k .2'.	x,x+1/2,z [u,u,0]	x+1/2,x+1/2,z [u,u,0]	x+1/2,x+1/2,z [u,u,0]	
8 j .2'	x,x+1/2,z [u,u,0]	x+1/2,x+1/2,z [u,u,0]	x+1/2,x+1/2,z [u,u,0]	

4 h 2.mm	0,1/2,z [0,0,0]	1/2,0,2 [0,0,0]	0,1/2,z [0,0,0]	1/2,0,2 [0,0,0]
4 g 4..	0,0,z [0,0,0]	0,0,z [0,0,0]	1/2,1/2,z [0,0,0]	1/2,1/2,z [0,0,0]
4 f .2'm	1,4,1/4,1/2 [0,0,0]	3/4,3/4,1/2 [0,0,0]	3/4,3/4,1/2 [0,0,0]	1/4,3/4,1/2 [0,0,0]
4 e .2'm	1,4,1/4,0 [0,0,0]	3/4,3/4,0 [0,0,0]	3/4,3/4,0 [0,0,0]	1/4,3/4,0 [0,0,0]

2 d 42'2m	0,1/2,1/2 [0,0,0]	1/2,0,1/2 [0,0,0]
2 c 42'2m	0,1/2,0 [0,0,0]	1/2,0,0 [0,0,0]
2 b 42'2'	0,0,1/2 [0,0,w]	1/2,1/2,1/2 [0,0,w]
2 a 42'2'	0,0,0 [0,0,w]	1/2,1/2,0 [0,0,w]

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>p4mm</th>
<th>p 2m'm'</th>
<th>p 2mm'1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$a^* = (a - b)/2$</td>
<td>$b^* = (a + b)/2$</td>
<td>$a^* = b/2$</td>
<td>$b^* = c$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$a^* = (-a + b)/2$</td>
<td>$b^* = c$</td>
</tr>
</tbody>
</table>

Origin at x,0,0

Origin at x,x,0
Origin at 4'2'2 at 4'/n2'2/g, at -1/4,-1/4,0 from center (2/m)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq 1/2 - x \]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \quad 0,0,z \\
& \quad (2_z \mid 0,0,0) \\
(3) & \quad 4^+ \quad 0,0,z \\
& \quad (4_z \mid 0,0,0)' \\
(4) & \quad 4^- \quad 0,0,z \\
& \quad (4_z^{-1} \mid 0,0,0)' \\
(5) & \quad 2' \quad 0,y,0 \\
& \quad (2_y \mid 0,0,0)' \\
(6) & \quad 2' \quad x,0,0 \\
& \quad (2_x \mid 0,0,0)' \\
(7) & \quad 2 \quad x,x,0 \\
& \quad (2_{xy} \mid 0,0,0) \\
(8) & \quad 2 \quad x,x,0 \\
& \quad (2_{xy} \mid 0,0,0) \\
(9) & \quad \overline{1} \quad 1/4,1/4,0 \\
& \quad (1 \mid 1/2,1/2,0) \\
(10) & \quad n \quad (1/2,1/2,0) \\
& \quad x,y,0 \\
& \quad (m_z \mid 1/2,1/2,0) \\
(11) & \quad 4^+ \quad 1/2,0,z; 1/2,0,0 \\
& \quad (4_z \mid 1/2,1/2,0) \\
& \quad 0,1/2,z; 0,1/2,0 \\
& \quad (4_z^{-1} \mid 1/2,1/2,0)' \\
(12) & \quad a' \quad (1/2,2,0) \\
& \quad x,1/4,z \\
& \quad (m_y \mid 1/2,1/2,0)' \\
(13) & \quad b' \quad (0,1/2,0) \\
& \quad 1/4,y,z \\
& \quad (m_x \mid 1/2,1/2,0)' \\
(14) & \quad m \quad x+1/2,x,z \\
& \quad (m_{xy} \mid 1/2,1/2,0) \\
(15) & \quad g \quad (1/2,1/2,0) \\
& \quad x,x,z \\
& \quad (m_{xy} \mid 1/2,1/2,0)
\end{align*}
\]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>m</td>
<td>..m</td>
</tr>
<tr>
<td>8</td>
<td>l</td>
<td>.2'</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>.2'</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
<td>..2</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
<td>..2</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>2.mm</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>4'..</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>..2/m</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>..2/m</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>4'2'm</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>4'2'm</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4'2'2</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4'2'2</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x+1/2,x+1/2,1/2 [u,u,0]</td>
</tr>
<tr>
<td>(9) x+1/2,x+1/2,1/2 [u,u,0]</td>
</tr>
<tr>
<td>(13) x+1/2,x+1/2,1/2 [u,u,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p'\text{4mm}
\begin{align*}
a^* &= \frac{a - b}{2} \quad b^* &= \frac{a + b}{2} \\
\text{Origin at 1/2,0,}z &
\end{align*}

Along [1,0,0] p_{2a'}^* 2'mm'
\begin{align*}
a^* &= -c \quad b^* &= \frac{b}{2} \\
\text{Origin at x,0,} &
\end{align*}

Along [1,1,0] p 2'mm'
\begin{align*}
a^* &= -c \quad b^* &= \frac{(-a + b)}{2} \\
\text{Origin at x,x,} &
\end{align*}
Origin at 4'22' at 4'/n22'/g', at -1/4,-1/4,0 from center (2'/m')

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq 1/2 - x \]

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2' 0,0,z
(2_z | 0,0,0)

(3) 4' 0,0,z
(4_z | 0,0,0')

(4) 4' 0,0,z
(4_z | 0,0,0')

(5) 2' 0,y,0
(2_y | 0,0,0)

(6) 2' x,0,0
(2_x | 0,0,0)

(7) 2' x,x,0
(2_x | 0,0,0')

(8) 2' x,x,0
(2_x | 0,0,0')

(9) \overline{1} 1/4,1/4,0
(1 | 1/2,1/2,0)

(10) n (1/2,1/2,0) x,y,0
(m_x | 1/2,1/2,0)

(11) 4' 1/2,0,z; 1/2,0,0
(4_z | 1/2,1/2,0')

(12) 4' 0,1/2,z; 0,1/2,0
(4_z | 1/2,1/2,0')

(13) a (1/2,0,0) x,1/4,z
(m_y | 1/2,1/2,0)

(14) b (0,1/2,0) 1/4,y,z
(m_z | 1/2,1/2,0)

(15) m' x+1/2,x,z
(m_x | 1/2,1/2,0')

(16) g' (1/2,1/2,0) x,x,z
(m_y | 1/2,1/2,0')
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>(1) x,y,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(2) x, y, z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(3) y, x, z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(4) y, x, z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(5) x, y, z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(6) x, y, z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(7) y, x, z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(8) y, x, z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(9) x+1/2, y+1/2, z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(10) x+1/2, y+1/2, z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(11) y+1/2, x+1/2, z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(12) y+1/2, x+1/2, z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(13) x+1/2, y+1/2, z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(14) x+1/2, y+1/2, z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(15) y+1/2, x+1/2, z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(16) y+1/2, x+1/2, z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>m</th>
<th>.m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,x+1/2,z</td>
<td>[u,u,w]</td>
<td></td>
</tr>
<tr>
<td>x,x+1/2,z</td>
<td>[u,u,w]</td>
<td>x+1/2,x,z</td>
</tr>
<tr>
<td>x,x+1/2,z</td>
<td>[u,u,w]</td>
<td>x+1/2,x,z</td>
</tr>
<tr>
<td>x,x+1/2,z</td>
<td>[u,u,w]</td>
<td>x+1/2,x,z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>l</th>
<th>.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,x,1/2</td>
<td>[u,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,x,1/2</td>
<td>[u,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,x,1/2</td>
<td>[u,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>k</th>
<th>.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,x+1/2,2</td>
<td>[u,u,w]</td>
<td></td>
</tr>
<tr>
<td>x,x+1/2,2</td>
<td>[u,u,w]</td>
<td></td>
</tr>
<tr>
<td>x,x+1/2,2</td>
<td>[u,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>j</th>
<th>.2'</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,x+1/2,2</td>
<td>[u,u,w]</td>
<td></td>
</tr>
<tr>
<td>x,x+1/2,2</td>
<td>[u,u,w]</td>
<td></td>
</tr>
<tr>
<td>x,x+1/2,2</td>
<td>[u,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>i</th>
<th>.2'</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,x+1/2,2</td>
<td>[u,u,w]</td>
<td></td>
</tr>
<tr>
<td>x,x+1/2,2</td>
<td>[u,u,w]</td>
<td></td>
</tr>
<tr>
<td>x,x+1/2,2</td>
<td>[u,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>h</th>
<th>2.m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1/2,z</td>
<td>[0,0,w]</td>
<td></td>
</tr>
<tr>
<td>0,1/2,z</td>
<td>[0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>g</th>
<th>4'..</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,z</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,0,z</td>
<td>[0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>f</th>
<th>.2'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4,1/4,1/2</td>
<td>[u,u,w]</td>
<td></td>
</tr>
<tr>
<td>1/4,1/4,1/2</td>
<td>[u,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>e</th>
<th>.2'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4,1/4,0</td>
<td>[u,u,w]</td>
<td></td>
</tr>
<tr>
<td>1/4,1/4,0</td>
<td>[u,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>d</th>
<th>4'2m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1/2,1/2</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,1/2,1/2</td>
<td>[0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>c</th>
<th>4'2m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1/2,0</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,1/2,0</td>
<td>[0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>b</th>
<th>4'22'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,1/2</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,0,1/2</td>
<td>[0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>a</th>
<th>4'22'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,0,0</td>
<td>[0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

125.5.1035 - 2 - 2104
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p_{gm} 4m'm'</td>
<td>Origin at $1/2,0,0$</td>
</tr>
<tr>
<td>$a^* = (a - b)/2$</td>
<td>$b^* = (a + b)/2$</td>
<td></td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>$p_{2/a} 2m'm'$</td>
<td>Origin at $x,0,0$</td>
</tr>
<tr>
<td>$a^* = b/2$</td>
<td>$b^* = c$</td>
<td></td>
</tr>
<tr>
<td>Along [1,1,0]</td>
<td>$p_{2/m}m'$</td>
<td>Origin at $x,x,0$</td>
</tr>
<tr>
<td>$a^* = -c$</td>
<td>$b^* = (-a + b)/2$</td>
<td></td>
</tr>
</tbody>
</table>
P4'/n'b'm
125.6.1036

P4'/n'2/b'2'/m
Tetragonal

Origin at 4'22' at 4'/n'22'/g, at -1/4,-1/4,0 from center (2'/m)

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ 1/2 - x

Symmetry Operations

(1) 1
(1) 0,0,0
(2) 2 0,0,z
(2) z 0,0,0
(3) 4 + 0,0,z
(3) 4+z 0,0,0'
(4) 4 - 0,0,z
(4) 4+z 0,0,0'

(5) 2 0,y,0
(5) 0,y,0
(6) 2 x,0,0
(6) x 0,0,0
(7) 2' x,x,0
(7) x,x,0
(2) y x,0
(2) x y,0

(9) 1/4,1/4,0
(1) 1/2,1/2,0
(10) n' (1/2,1/2,0) x,y,0
(10) m 1/2,1/2,0
(11) 4+ 1/2,0,z; 1/2,0,0
(11) 4+z 1/2,1/2,0
(12) 4- 0,1/2,z; 0,1/2,0
(12) 4- 1/2,1/2,0

(13) a' (1/2,0,0) x,1/4,z
(13) m 1/2,1/2,0
(14) b' (0,1/2,0) 1/4,y,z
(14) m 1/2,1/2,0
(15) m x+1/2,x,z
(15) m 1/2,1/2,0
(16) g (1/2,1/2,0) x,x,z
(16) m 1/2,1/2,0

125.6.1036 - 1 - 2106
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>16 n 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, y, z [u, v, w]</td>
<td></td>
</tr>
<tr>
<td>(2) x, x, z [u, v, w]</td>
<td></td>
</tr>
<tr>
<td>(3) y, x, z [v, u, w]</td>
<td></td>
</tr>
<tr>
<td>(4) y, x, z [v, u, w]</td>
<td></td>
</tr>
<tr>
<td>(5) x, y, z [u, v, w]</td>
<td></td>
</tr>
<tr>
<td>(6) x, y, z [u, v, w]</td>
<td></td>
</tr>
<tr>
<td>(7) y, x, z [v, u, w]</td>
<td></td>
</tr>
<tr>
<td>(8) y, x, z [v, u, w]</td>
<td></td>
</tr>
<tr>
<td>(9) x+1/2, y+1/2, z [u, v, w]</td>
<td></td>
</tr>
<tr>
<td>(10) x+1/2, y+1/2, z [u, v, w]</td>
<td></td>
</tr>
<tr>
<td>(11) y+1/2, x+1/2, z [v, u, w]</td>
<td></td>
</tr>
<tr>
<td>(12) y+1/2, x+1/2, z [v, u, w]</td>
<td></td>
</tr>
<tr>
<td>(13) x+1/2, y+1/2, z [u, v, w]</td>
<td></td>
</tr>
<tr>
<td>(14) x+1/2, y+1/2, z [u, v, w]</td>
<td></td>
</tr>
<tr>
<td>(15) y+1/2, x+1/2, z [v, u, w]</td>
<td></td>
</tr>
<tr>
<td>(16) y+1/2, x+1/2, z [v, u, w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>8 m .m</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>x, x+1/2, z [u, u, 0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>8 i .2'</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, x, 0 [u, u, w]</td>
<td></td>
</tr>
<tr>
<td>x, x, 0 [u, u, w]</td>
<td></td>
</tr>
<tr>
<td>x, x, 0 [u, u, w]</td>
<td></td>
</tr>
<tr>
<td>x, x, 0 [u, u, w]</td>
<td></td>
</tr>
<tr>
<td>x, x, 0 [u, u, w]</td>
<td></td>
</tr>
<tr>
<td>x, x, 0 [u, u, w]</td>
<td></td>
</tr>
<tr>
<td>x, x, 0 [u, u, w]</td>
<td></td>
</tr>
<tr>
<td>x, x, 0 [u, u, w]</td>
<td></td>
</tr>
<tr>
<td>x, x, 0 [u, u, w]</td>
<td></td>
</tr>
<tr>
<td>x, x, 0 [u, u, w]</td>
<td></td>
</tr>
<tr>
<td>x, x, 0 [u, u, w]</td>
<td></td>
</tr>
<tr>
<td>x, x, 0 [u, u, w]</td>
<td></td>
</tr>
<tr>
<td>x, x, 0 [u, u, w]</td>
<td></td>
</tr>
<tr>
<td>x, x, 0 [u, u, w]</td>
<td></td>
</tr>
<tr>
<td>x, x, 0 [u, u, w]</td>
<td></td>
</tr>
<tr>
<td>x, x, 0 [u, u, w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>8 h 2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1/2, z [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>0, 1/2, z [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>0, 1/2, z [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>0, 1/2, z [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>0, 1/2, z [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>0, 1/2, z [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>0, 1/2, z [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>0, 1/2, z [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>0, 1/2, z [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>0, 1/2, z [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>0, 1/2, z [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>0, 1/2, z [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>0, 1/2, z [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>0, 1/2, z [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>0, 1/2, z [0, 0, 0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>2 d 42m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1/2, 1/2 [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>1/2, 0, 1/2 [0, 0, 0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>2 c 42m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1/2, 0 [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>1/2, 0, 0 [0, 0, 0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>2 b 4'22'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0, 1/2 [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>1/2, 1/2, 1/2 [0, 0, 0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>2 a 4'22'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0, 0 [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>1/2, 1/2, 0 [0, 0, 0]</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p4'mm'
\[a^* = \frac{a - b}{2}, \quad b^* = \frac{a + b}{2} \]
Origin at 0,0,z

Along [1,0,0] p 2m'm'
\[a^* = \frac{b}{2}, \quad b^* = c \]
Origin at x,0,0

Along [1,1,0] p 2mm1'
\[a^* = \frac{-a + b}{2}, \quad b^* = c \]
Origin at x,x,0
Origin at 42'2' at 4/n2'2'/g', at -1/4,-1/4,0 from center (2'm')

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ 1/2 - x

Symmetry Operations

(1) 1
(1 | 0,0,0)

(5) 2'
0,y,0
(2'y | 0,0,0')

(9) 1/4,1/4,0
(1 | 1/2,1/2,0)

(13) a'
(1/2,0,0)
(m' | 1/2,1/2,0')

(2) 2
0,0,z
(2z | 0,0,0)

(6) 2'
x,0,0
(2z | 0,0,0')

(10) n
(1/2,1/2,0)
x,y,0
(mz | 1/2,1/2,0)

(14) b'
(0,1/2,0)
1/4,y,z
(mx | 1/2,1/2,0')

(3) 4
0,0,z
(4z | 0,0,0)

(7) 2'
x,x,0
(2y | 0,0,0')

(11) 4
1/2,0,z; 1/2,0,0
(4z | 1/2,1/2,0)

(15) m'
x+1/2,x,z
(mx | 1/2,1/2,0')

(4) 4'
0,0,z
(4z | 0,0,0)

(8) 2'
x,x,0
(2y | 0,0,0')

(12) 4
0,1/2,z; 0,1/2,0
(4z | 1/2,1/2,0)

(16) g'
(1/2,1/2,0)
x,x,z
(mx | 1/2,1/2,0)
Generators selected

(1) t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>n</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x+1/2,x,z [u,u,w]</td>
</tr>
<tr>
<td>(3) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x+1/2,x,z [u,u,w]</td>
</tr>
<tr>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x+1/2,x,z [u,u,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td>(6) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x+1/2,x,z [u,u,w]</td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x+1/2,x,z [u,u,w]</td>
</tr>
<tr>
<td>(8) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x+1/2,x,z [u,u,w]</td>
</tr>
<tr>
<td>(9) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
<td></td>
<td>x+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>(10) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
<td></td>
<td>x+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>(11) y+1/2,x+1/2,z [v,u,w]</td>
<td></td>
<td></td>
<td>x+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>(12) y+1/2,x+1/2,z [v,u,w]</td>
<td></td>
<td></td>
<td>x+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
<td></td>
<td>x+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>(14) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
<td></td>
<td>x+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z [v,u,w]</td>
<td></td>
<td></td>
<td>x+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>(16) y+1/2,x+1/2,z [v,u,w]</td>
<td></td>
<td></td>
<td>x+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>m .m'</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x,y,z [v,u,w]</td>
</tr>
<tr>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x,y,z [v,u,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(6) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x,y,z [v,u,w]</td>
</tr>
<tr>
<td>(8) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x,y,z [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>l .2'</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x,y,z [v,u,w]</td>
</tr>
<tr>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x,y,z [v,u,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(6) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x,y,z [v,u,w]</td>
</tr>
<tr>
<td>(8) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x,y,z [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>k .2'</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x,y,z [v,u,w]</td>
</tr>
<tr>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x,y,z [v,u,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(6) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x,y,z [v,u,w]</td>
</tr>
<tr>
<td>(8) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x,y,z [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>i .2'</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x,y,z [v,u,w]</td>
</tr>
<tr>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x,y,z [v,u,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(6) x,y,z [u,v,w]</td>
<td></td>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x,y,z [v,u,w]</td>
</tr>
<tr>
<td>(8) y,x,z [v,u,w]</td>
<td></td>
<td></td>
<td>x,y,z [v,u,w]</td>
</tr>
</tbody>
</table>

Continued 125.7.1037 P4/nb'm'
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Transformation</th>
<th>Origin</th>
</tr>
</thead>
</table>
| Along [0,0,1] | p' 4mm | $a^* = (a - b)/2$
$\begin{align*}
a^* &= (a - b)/2 \\
b^* &= (a + b)/2 \\
\end{align*}$ | Origin at 0,0,z |
| Along [1,0,0] | p 2m'm' | $a^* = b/2$
$\begin{align*}
a^* &= b/2 \\
b^* &= c \\
\end{align*}$ | Origin at x,0,0 |
| Along [1,1,0] | p 2'm'm' | $a^* = -c$
$\begin{align*}
a^* &= -c \\
b^* &= (-a + b)/2 \\
\end{align*}$ | Origin at x,x,0 |
Tetragonal

Symmetry Operations

1. 1

 (1) 1

 (1 0 0 0)

2. 2' 0,0,z

 (2 0 0 0)

3. 4' 0,0,z

 (4 0 0 0)

4. -4' 0,0,z

 (4 0 0 0)

5. 2' 0,y,0

 (2 0 0 0)

6. 2' x,0,0

 (2 0 0 0)

7. 2' x,x,0

 (2 0 0 0)

8. 2' x,x,0

 (2 0 0 0)

9. 2' 0,y,0

 (2 0 0 0)

10. 2' x,0,0

 (2 0 0 0)

11. 2' x,x,0

 (2 0 0 0)

12. 2' x,x,0

 (2 0 0 0)

13. 2' 0,z,0

 (2 0 0 0)

14. 2' x,0,0

 (2 0 0 0)

15. 2' x,x,0

 (2 0 0 0)

16. 2' x,x,0

 (2 0 0 0)

Origin

at 4'/2'/2 at 4'/n'2'/2/g', at -1/4,-1/4,0 from center (2/m')

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ 1/2 - x
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

16 n 1

(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z [v,u,w] (4) y,x,z [v,u,w]
(5) x,y,z [u,v,w] (6) x,y,z [u,v,w] (7) y,x,z [v,u,w] (8) y,x,z [v,u,w]
(9) x+1/2,y+1/2,z [u,v,w] (10) x+1/2,y+1/2,z [u,v,w] (11) y+1/2,x+1/2,z [v,u,w] (12) y+1/2,x+1/2,z [v,u,w]
(13) x+1/2,y+1/2,z [u,v,w] (14) x+1/2,y+1/2,z [u,v,w] (15) y+1/2,x+1/2,z [v,u,w] (16) y+1/2,x+1/2,z [v,u,w]

8 m ..m'

x,x+1/2,z [u,u,w] x,x+1/2,z [u,u,w] x+1/2,x,z [u,u,w] x+1/2,x,z [u,u,w]

x,x+1/2,z [u,u,w] x,x+1/2,z [u,u,w] x+1/2,x,z [u,u,w] x+1/2,x,z [u,u,w]

8 l .2'.

x,0,1/2 [0,v,w] x,0,1/2 [0,v,w] 0,x,1/2 [v,0,w] 0,x,1/2 [v,0,w]

x+1/2,1/2,1/2 [0,v,w] x+1/2,1/2,1/2 [0,v,w] 1/2,x+1/2,1/2 [v,0,w] 1/2,x+1/2,1/2 [v,0,w]

8 k .2'.

x,0,0 [0,v,w] x,0,0 [0,v,w] 0,x,0 [v,0,w] 0,x,0 [v,0,w]

x+1/2,1/2,0 [0,v,w] x+1/2,1/2,0 [0,v,w] 1/2,x+1/2,0 [v,0,w] 1/2,x+1/2,0 [v,0,w]

8 j .2

x,x,1/2 [u,u,0] x,x,1/2 [u,u,0] x,x,1/2 [u,u,0] x,x,1/2 [u,u,0]

x+1/2,x+1/2,1/2 [u,u,0]+x+1/2,x+1/2,1/2 [u,u,0] x+1/2,x+1/2,1/2 [u,u,0] x+1/2,x+1/2,1/2 [u,u,0]

8 i .2

x,x,0 [u,u,0] x,x,0 [u,u,0] x,x,0 [u,u,0] x,x,0 [u,u,0]

x+1/2,x+1/2,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0]

4 h 2.m'm'

0,1/2,z [0,0,w] 1/2,0,z [0,0,w] 0,1/2,z [0,0,w] 1/2,0,z [0,0,w]

4 g 4'..

0,0,z [0,0,0] 0,0,z [0,0,0] 1/2,1/2,z [0,0,0] 1/2,1/2,z [0,0,0]

4 f .2m'

1/4,1/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 1/4,3/4,1/2 [0,0,0]

4 e .2m'

1/4,1/4,0 [0,0,0] 3/4,3/4,0 [0,0,0] 3/4,3/4,0 [0,0,0] 1/4,3/4,0 [0,0,0]

2 d 4'2m'

0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,w] 1/2,0,1/2 [0,0,0] 0,1/2,1/2 [0,0,w]

2 c 4'2m'

0,1/2,0 [0,0,0] 1/2,0,0 [0,0,w] 1/2,0,0 [0,0,0] 0,1/2,0 [0,0,w]

2 b 4'2'

0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 0,0,1/2 [0,0,0]

2 a 4'2'

0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 0,0,0 [0,0,0]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Projection</th>
<th>Axis</th>
<th>Transformation</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>p4'm'm</td>
<td>[0,0,1]</td>
<td>$a^* = \frac{(a - b)}{2}$, $b^* = \frac{(a + b)}{2}$</td>
<td>0,0,z</td>
</tr>
<tr>
<td>p2a'-2mm</td>
<td>[1,0,0]</td>
<td>$a^* = \frac{b}{2}$, $b^* = c$</td>
<td>x,1/4,0</td>
</tr>
<tr>
<td>p 2m'm'</td>
<td>[1,1,0]</td>
<td>$a^* = \frac{(-a + b)}{2}$, $b^* = c$</td>
<td>x,x,0</td>
</tr>
</tbody>
</table>
P4/n'b'm'

Origin

at 422 at 4/n'22/g', at -1/4, -1/4, 0 from center (2/m')

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ 1/2 - x

Symmetry Operations

1. 1

 (1) 1

 (2) 2 0,0,z

 (3) 4+ 0,0,z

 (4) 4 0,0,z

 (5) 2 0,y,0

 (6) 2 x,0,0

 (7) 2 x,x,0

 (8) 2 x,x,0

 (9) 1/4,1/4,0

 (10) 1/2,1/2,0

 (11) 1/2,1/2,0

 (12) 1/2,1/2,0

 (13) 1/4,1/4,0

 (14) 1/2,1/2,0

 (15) 1/2,1/2,0

 (16) 1/2,1/2,0

125.9.1039 - 1 - 2115
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3)</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(4)</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(5)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(6)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(7)</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(8)</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(9)</td>
<td>x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(10)</td>
<td>x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(11)</td>
<td>x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(12)</td>
<td>y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>(13)</td>
<td>x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(14)</td>
<td>x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(15)</td>
<td>y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>(16)</td>
<td>y+1/2,x+1/2,z [v,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(17)</td>
<td>x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(18)</td>
<td>x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(19)</td>
<td>y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>(20)</td>
<td>y+1/2,x+1/2,z [v,u,w]</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>x+1/2,z [u,0]</td>
</tr>
<tr>
<td>(2)</td>
<td>x+1/2,z [u,0]</td>
</tr>
<tr>
<td>(3)</td>
<td>x+1/2,z [v,0]</td>
</tr>
<tr>
<td>(4)</td>
<td>x+1/2,z [v,0]</td>
</tr>
<tr>
<td>(5)</td>
<td>x+1/2,z [u,0]</td>
</tr>
<tr>
<td>(6)</td>
<td>x+1/2,z [u,0]</td>
</tr>
<tr>
<td>(7)</td>
<td>x+1/2,z [v,0]</td>
</tr>
<tr>
<td>(8)</td>
<td>x+1/2,z [v,0]</td>
</tr>
<tr>
<td>(9)</td>
<td>x+1/2,z [u,0]</td>
</tr>
<tr>
<td>(10)</td>
<td>x+1/2,z [u,0]</td>
</tr>
<tr>
<td>(11)</td>
<td>x+1/2,z [v,0]</td>
</tr>
<tr>
<td>(12)</td>
<td>x+1/2,z [v,0]</td>
</tr>
<tr>
<td>(13)</td>
<td>x+1/2,z [u,0]</td>
</tr>
<tr>
<td>(14)</td>
<td>x+1/2,z [u,0]</td>
</tr>
<tr>
<td>(15)</td>
<td>x+1/2,z [v,0]</td>
</tr>
<tr>
<td>(16)</td>
<td>x+1/2,z [v,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(17)</td>
<td>x+1/2,z [u,0]</td>
</tr>
<tr>
<td>(18)</td>
<td>x+1/2,z [u,0]</td>
</tr>
<tr>
<td>(19)</td>
<td>x+1/2,z [v,0]</td>
</tr>
<tr>
<td>(20)</td>
<td>x+1/2,z [v,0]</td>
</tr>
</tbody>
</table>

Additional Information

- **Continued:** 125.9.1039 P4/n'b'm'
- **Multiplicities:**...
- **Wyckoff letters:**...
- **Site Symmetry:**...
Symmetry of Special Projections

Along [0,0,1] \text{ p4m'}
\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]
Origin at 0,0,z

Along [1,0,0] \text{ p2m'}
\[a^* = b/2 \quad b^* = c \]
Origin at x,0,0

Along [1,1,0] \text{ p2m'}
\[a^* = (-a + b)/2 \quad b^* = c \]
Origin at x,x,0
P2c 4/nbm

4/mmm1'

Tetragonal

125.10.1040

P2c 4/n2/b2/m

125.10.1040 - 1 - 2118
Origin at 422 at 4/n22/g, at -1/4,-1/4,0 from center (2/m)

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ 1/2 - x

Symmetry Operations

For (0,0,0) + set

(1) 1 (1|0,0,0)
(2) 2 0,0,z (2z|0,0,0)
(3) 4* 0,0,z (4z|0,0,0)
(4) 4' 0,0,z (4z'|0,0,0)
(5) 2 0,y,0 (2z|0,0,0)
(6) 2 x,0,0 (2z|0,0,0)
(7) 2 x,x,0 (2xy|0,0,0)
(8) 2 x,0,0 (2xy|0,0,0)
(9) T 1/4,1/4,0 (1|1/2,1/2,0)
(10) n (1/2,1/2,0) x,y,0 (11) 4*+ 1/2,0,z; 1/2,0,0 (4z|1/2,1/2,0)
(12) 4* 1/2,0; 0,1/2,0 (4z|1/2,1/2,0)
(13) a (1/2,0,0) x,1/4,z (m_1|1/2,1/2,0)
(14) b (0,1/2,0) 1/4,y,z (m_1|1/2,1/2,0)
(15) m x+1/2,x,z (m_1y|1/2,1/2,0)
(16) g (1/2,1/2,0) x,x,z (m_1y|1/2,1/2,0)

For (0,0,1)' + set

(1) t' (0,0,1) (1|0,0,1)
(2) 2' (0,0,1) 0,0,z (2z|0,0,0)'
(3) 4'*(0,0,1) 0,0,z (4z|0,0,0)'
(4) 4'*(0,0,1) 0,0,z (4z'|0,0,0)'
(5) 2' 0,y,1/2 (2z|0,0,1)'
(6) 2' x,0,1/2 (2z|0,0,1)'
(7) 2' x,x,1/2 (2xy|0,0,1)'
(8) 2' x,x,1/2 (2xy|0,0,1)'
(9) T' 1/4,1/4,1/2 (1|1/2,1/2,1)
(10) n' (1/2,1/2,0) x,y,1/2 (11) 4*'-1/2,0,z; 1/2,0,1/2 (4z|1/2,1/2,1)'
(12) 4*-0,1/2,0; 0,1/2,1/2 (4z'|1/2,1/2,1)'
(13) n' (1/2,0,1) x,1/4,z (m_1|1/2,1/2,1)'
(14) n' (0,1/2,1) 1/4,y,z (m_1|1/2,1/2,1)'
(15) c' (0,0,1) x+1/2,x,z (m_1y|1/2,1/2,1)'
(16) n' (1/2,1/2,1) x,x,z (m_1y|1/2,1/2,1)'

Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

32 n 1

(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z [v,u,w] (4) y,x,z [v,u,w]
(5) x,y,z [u,v,w] (6) x,y,z [u,v,w] (7) y,x,z [v,u,w] (8) y,x,z [v,u,w]
(9) x+1/2,y+1/2,z [u,v,w] (10) x+1/2,y+1/2,z [u,v,w] (11) y+1/2,x+1/2,z [v,u,w] (12) y+1/2,x+1/2,z [v,u,w]
(13) x+1/2,y+1/2,z [u,v,w] (14) x+1/2,y+1/2,z [u,v,w] (15) y+1/2,x+1/2,z [v,u,w] (16) y+1/2,x+1/2,z [v,u,w]

16 m ..m x,x+1/2,z [u,u,0] x,x+1/2,z [u,u,0] x,x+1/2,z [u,u,0] x,x+1/2,z [u,u,0]
 x+1/2,x,z [u,u,0] x+1/2,x,z [u,u,0] x+1/2,x,z [u,u,0] x+1/2,x,z [u,u,0]
16 l .2'. x,0,1/2 [0,v,w] \bar{x},0,1/2 [\bar{0},\bar{v},\bar{w}] 0,x,1/2 [v,0,w] 0,\bar{x},1/2 [\bar{v},0,\bar{w}]
\bar{x}+1/2,1/2,1/2 [0,\bar{v},\bar{w}] x+1/2,1/2,1/2 [0,v,w] 1/2,\bar{x}+1/2,1/2 [\bar{v},0,\bar{w}] 1/2,x+1/2,1/2 [v,0,w]
16 k .2. x,0,0 [u,0,0] \bar{x},0,0 [\bar{u},0,0] 0,x,0 [0,u,0] 0,\bar{x},0 [0,\bar{u},0]
\bar{x}+1/2,1/2,0 [u,0,0] x+1/2,1/2,0 [u,0,0] 1/2,\bar{x}+1/2,0 [0,u,0] 1/2,x+1/2,0 [0,\bar{u},0]
16 j ..2' x,x,1/2 [u,u,w] \bar{x},x,1/2 [\bar{u},\bar{u},w] x,x,1/2 [0,0,w] x,x,1/2 [u,\bar{u},w]
\bar{x}+1/2,x+1/2,1/2 [u,\bar{u},w] x+1/2,x+1/2,1/2 [u,u,w] x+1/2,\bar{x}+1/2,1/2 [0,0,0] x+1/2,\bar{x}+1/2,1/2 [u,\bar{u},w]
16 i ..2 x,x,0 [u,u,0] \bar{x},x,0 [\bar{u},\bar{u},0] x,x,0 [0,0,0] x,x,0 [u,\bar{u},0]
\bar{x}+1/2,x+1/2,0 [u,u,0] x+1/2,\bar{x}+1/2,0 [0,0,0] x+1/2,\bar{x}+1/2,0 [u,\bar{u},0] x+1/2,x+1/2,0 [u,u,0]
8 h 2.mm 0,1/2,z [0,0,0] 1/2,0,z [0,0,0] 0,1/2,z [0,0,0] 1/2,0,z [0,0,0]
8 g 4.. 0,0,z [0,0,w] 0,0,z [0,0,\bar{w}] 0,1/2,1/2 [0,0,0] 0,1/2,1/2 [0,0,\bar{w}]
8 f .2/m' 1/4,1/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0] 1/4,3/4,1/2 [0,0,0]
8 e .2/m 1/4,1/4,0 [u,u,0] 3/4,3/4,0 [\bar{u},\bar{u},0] 3/4,1/4,0 [\bar{u},\bar{u},0] 1/4,3/4,0 [u,\bar{u},0]
4 d \bar{4}2m 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]
4 c \bar{4}2m 0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0]
4 b 42'2' 0,0,1/2 [0,0,w] 1/2,1,1/2 [0,0,0]
4 a 422 0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm1'
\mathbf{a}^* = (\mathbf{a} - \mathbf{b})/2 \quad \mathbf{b}^* = (\mathbf{a} + \mathbf{b})/2
Origin at 0,0,z

Along [1,0,0] p\text{mm}
\mathbf{a}^* = \mathbf{b}/2 \quad \mathbf{b}^* = \mathbf{c}
Origin at 1/4,1/2

Along [1,1,0] p\text{2mm1'}
\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c}
Origin at x,x,0
P_2c 4'/nb'm
125.11.1041
P_2c 4'/n2'/b'2/m

4/mmm1'
Tetragonal

125.11.1041 - 1 - 2121
Origin at $4'2'2$ at $4'/n2'2/g$, at $-1/4,-1/4,0$ from center ($2/m$)

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq 1/2 - x$

Symmetry Operations

For $(0,0,0) +$ set

$(1) \quad 1$
$(1 | 0,0,0)$

$(2) \quad 2\quad 0,0,z$
$(2z | 0,0,0)$

$(3) \quad 4^*\quad 0,0,z$
$(4z | 0,0,0)'$

$(4) \quad 4^*\quad 0,0,z$
$(4z | 0,0,0)'$

$(5) \quad 2^*\quad 0,y,0$
$(2z | 0,0,0)'$

$(6) \quad 2'\quad x,0,0$
$(2z | 0,0,0)'$

$(7) \quad 2'\quad x,x,0$
$(2xy | 0,0,0)$

$(8) \quad 2\quad x,x,0$
$(2xy | 0,0,0)$

$(9) \quad \bar{T}^\perp\quad 1/4,1/4,0$
$(\bar{T} | 1/2,1/2,0)$

$(10) \quad n\quad (1/2,1/2,0)\quad x,y,0$
$(mz | 1/2,1/2,0)$

$(11) \quad 4^*\quad 1/2,0,z; 1/2,0,0$
$(4z | 1/2,1/2,0)'$

$(12) \quad 4^*\quad 0,1/2,z; 0,1/2,0$
$(4z | 1/2,1/2,0)'$

$(13) \quad a'(1/2,0,0)\quad x,1/4,z$
$(mz | 1/2,1/2,0)'$

$(14) \quad b'(0,1/2,0)\quad 1/4,y,z$
$(mz | 1/2,1/2,0)'$

$(15) \quad m\quad x+1/2,x,z$
$(mz | 1/2,1/2,0)$

$(16) \quad n\quad (1/2,1/2,1)\quad x,x,z$
$(mz | 1/2,1/2,1)$

For $(0,0,1) +$ set

$(1) \quad t'(0,0,1)$
$(1 | 0,0,1)'$

$(2) \quad 2'\quad (0,0,1)$
$(2z | 0,0,1)'$

$(3) \quad 4^*\quad (0,0,1)\quad 0,0,z$
$(4z | 0,0,1)$

$(4) \quad 4^*\quad (0,0,1)\quad 0,0,z$
$(4z | 0,0,1)$

$(5) \quad 2\quad 0,y,1/2$
$(2z | 0,0,1)$

$(6) \quad 2\quad x,0,1/2$
$(2z | 0,0,1)$

$(7) \quad 2'\quad x,x,1/2$
$(2xy | 0,0,1)'$

$(8) \quad 2'\quad x,x,1/2$
$(2xy | 0,0,1)'$

$(9) \quad \bar{T}^\perp\quad 1/4,1/4,1/2$
$(\bar{T} | 1/2,1/2,1)'$

$(10) \quad n'\quad (1/2,1/2,0)\quad x,y,1/2$
$(mz | 1/2,1/2,1)'$

$(11) \quad 4^*\quad 1/2,0,z; 1/2,0,1/2$
$(4z | 1/2,1/2,1)$

$(12) \quad 4^*\quad 0,1/2,z; 0,1/2,1/2$
$(4z | 1/2,1/2,1)$

$(13) \quad n\quad (1/2,0,1)\quad x,1/4,z$
$(mz | 1/2,1/2,1)$

$(14) \quad n\quad (0,1/2,1)\quad 1/4,y,z$
$(mz | 1/2,1/2,1)$

$(15) \quad c'(0,0,1)\quad x+1/2,x,z$
$(mz | 1/2,1/2,1)'$

$(16) \quad n'\quad (1/2,1/2,1)\quad x,x,z$
$(mz | 1/2,1/2,1)'$

Generators selected $(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5); (9)$.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>n</td>
<td>1</td>
</tr>
</tbody>
</table>

(1) $x,y,z\ [u,v,w]$

(2) $x,y,z\ [u,v,w]$

(3) $y,x,z\ [v,u,w]$

(4) $y,x,z\ [v,u,w]$

(5) $x,y,z\ [u,v,w]$

(6) $x,y,z\ [u,v,w]$

(7) $y,x,z\ [v,u,w]$

(8) $y,x,z\ [v,u,w]$

(9) $x+1/2,y+1/2,z\ [u,v,w]$

(10) $x+1/2,y+1/2,z\ [u,v,w]$

(11) $y+1/2,x+1/2,z\ [v,u,w]$

(12) $y+1/2,x+1/2,z\ [v,u,w]$

(13) $x+1/2,y+1/2,z\ [u,v,w]$

(14) $x+1/2,y+1/2,z\ [u,v,w]$

(15) $y+1/2,x+1/2,z\ [v,u,w]$

(16) $y+1/2,x+1/2,z\ [v,u,w]$
Symmetry of Special Projections

Along [0,0,1] \(p4mm1' \)
\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]
Origin at 0,0,z

Along [1,0,0] \(p_{2a}2m'm' \)
\[a^* = -c \quad b^* = b/2 \]
Origin at x,0,1/2

Along [1,1,0] \(p2mm1' \)
\[a^* = (-a + b)/2 \quad b^* = c \]
Origin at x,x,0
$P_2c\ 4'/nmb'$

$4/mmm1'$

Tetragonal

125.12.1042

$P_2c\ 4'/n2/b2'/m'$
Origin at 4'22' at 4'/n22'/g', at -1/4,-1/4,0 from center (2'/m')

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ 1/2 - x

Symmetry Operations

For (0,0,0) + set

(1) 1 (2) 2 0,0,z
(1) | 0,0,0 (2) z | 0,0,0
(5) 2 0,y,0 (6) 2 x,0,0
(5) y | 0,0,0 (6) z | 0,0,0
(9) T' 1/4,1/4,0 (10) n' (1/2,1/2,0) x,y,0
(9) z | 1/2,1/2,0 (10) z | 1/2,1/2,0
(13) a (1/2,0,0) x,1/4,z (14) b (0,1/2,0) 1/4,y,z
(13) 1/2,1/2,0 (14) 1/2,1/2,0

For (0,0,1)' + set

(1) t' (0,0,1) (2) 2' 0,0,z
(1) | 0,0,1 (2) z | 0,0,1
(5) 2' 0,y,1/2 (6) 2' x,0,1/2
(5) y | 0,0,1 (6) z | 0,0,1
(9) T' 1/4,1/4,1/2 (10) n' (1/2,1/2,0) x,y,1/2
(9) z | 1/2,1/2,1 (10) z | 1/2,1/2,1
(13) a (1/2,0,1) x,1/4,z (14) b (0,1/2,1) 1/4,y,z
(13) 1/2,1/2,1 (14) 1/2,1/2,1

Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,0,1)' +</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(9) x+1/2,y+1/2,z [u,v,w]</td>
<td>(10) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z [u,v,w]</td>
<td>(14) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>16</td>
<td>m'</td>
</tr>
<tr>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
</tbody>
</table>
16 l .2'. x,0,1/2 [0,v,w] x,0,1/2 [0,v,w] 0,x,1/2 [v,0,w] 0,x,1/2 [v,0,w]
 x+1/2,1/2,1/2 [0,v,w] x+1/2,1/2,1/2 [0,v,w] 1/2,x+1/2,1/2 [v,0,w] 1/2,x+1/2,1/2 [v,0,w]
16 k .2. x,0,0 [u,0,0] x,0,0 [u,0,0] 0,x,0 [0,u,0] 0,x,0 [0,u,0]
 x+1/2,1/2,0 [u,0,0] x+1/2,1/2,0 [u,0,0] 1/2,x+1/2,0 [u,0,0] 1/2,x+1/2,0 [u,0,0]
16 j .2 x,x,1/2 [u,u,0] x,x,1/2 [u,u,0] x,x,1/2 [u,u,0] x,x,1/2 [u,u,0]
 x+1/2,x+1/2,1/2 [u,u,0] x+1/2,x+1/2,1/2 [u,u,0] 1/2,x+1/2,x [u,u,0] 1/2,x+1/2,x [u,u,0]
16 i .2' x,x,0 [u,u,w] x,x,0 [u,u,w] x,x,0 [u,u,w] x,x,0 [u,u,w]
 x,x,0 [u,u,w] x,x,0 [u,u,w] x,x,0 [u,u,w] x,x,0 [u,u,w]
 x+1/2,x+1/2,2 [u,u,w] x+1/2,x+1/2,2 [u,u,w] 1/2,x+1/2,x [u,u,w] 1/2,x+1/2,x [u,u,w]
8 h 2.m'm' 0,1/2,z [0,0,w] 1/2,0,z [0,0,w] 0,1/2,z [0,0,w] 1/2,0,z [0,0,w]
8 g 4'. 0,0,2 [0,0,0] 0,0,2 [0,0,0] 1/2,1/2,2 [0,0,0] 1/2,1/2,2 [0,0,0]
8 f .2/m' 1/4,1/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0] 1/4,3/4,1/2 [0,0,0]
8 e .2'/m' 1/4,1/4,0 [u,u,w] 3/4,3/4,0 [u,u,w] 3/4,1/4,0 [u,u,w] 1/4,3/4,0 [u,u,w]
4 d 42'2m' 0,1/2,1/2 [0,0,w] 1/2,0,1/2 [0,0,w]
4 c 42'2m' 0,1/2,0 [0,0,0] 0,1/2,0 [0,0,0]
4 b 4'2'2 0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]
4 a 4'2'2' 0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0]

Symmetry of Special Projections
Along [0,0,1] p4mm1' Along [1,0,0] p2mm Along [1,1,0] p222m'
\(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \) \(a^* = b/2 \) \(b^* = c \) \(a^* = -c \) \(b^* = (-a + b)/2 \)
Origin at 0,0,z Origin at x,1/4,1/2 Origin at x,x,1/2
$P_{2c} 4/\text{nb}'m'$

125.13.1043

$4/\text{mmm}1'$

Tetragonal

$P_{2c} 4/n2'/b'2'/m'$
Origin at 42'2' at 4/n2'2'/g', at -1/4,-1/4,0 from center (2'/m')

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq 1/2 - x \]

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad 0,0,0 \\
(5) & \quad 1/4,1/4,0 \\
(13) & \quad 1/2,0,0 \\
(1) & \quad t(0,0,1) \\
(1) & \quad 0,0,1 \\
(5) & \quad 0,y,1/2 \\
(9) & \quad -1/4,1/4,1/2 \\
(13) & \quad 1/2,0,1 \\
(1) & \quad t'(0,0,1) \\
(1) & \quad 0,0,1' \\
(5) & \quad 0,y,1/2 \\
(9) & \quad -1/4,1/4,1/2 \\
(13) & \quad 1/2,0,1 \\
(1) & \quad t(0,0,1) \\
(1) & \quad 0,0,1 \\
(5) & \quad 0,y,1/2 \\
(9) & \quad -1/4,1/4,1/2 \\
(13) & \quad 1/2,0,1 \\
(1) & \quad t'(0,0,1) \\
(1) & \quad 0,0,1' \\
(5) & \quad 0,y,1/2 \\
(9) & \quad -1/4,1/4,1/2 \\
(13) & \quad 1/2,0,1 \\
(1) & \quad t(0,0,1) \\
(1) & \quad 0,0,1 \\
(5) & \quad 0,y,1/2 \\
(9) & \quad -1/4,1/4,1/2 \\
(13) & \quad 1/2,0,1 \\
(1) & \quad t'(0,0,1) \\
(1) & \quad 0,0,1' \\
(5) & \quad 0,y,1/2 \\
(9) & \quad -1/4,1/4,1/2 \\
(13) & \quad 1/2,0,1 \\
\end{align*}
\]

for \((0,0,1)\)' + set

\[
\begin{align*}
(1) & \quad t'(0,0,1) \\
(1) & \quad 0,0,1' \\
(5) & \quad 0,y,1/2 \\
(9) & \quad -1/4,1/4,1/2 \\
(13) & \quad 1/2,0,1 \\
(1) & \quad t(0,0,1) \\
(1) & \quad 0,0,1 \\
(5) & \quad 0,y,1/2 \\
(9) & \quad -1/4,1/4,1/2 \\
(13) & \quad 1/2,0,1 \\
(1) & \quad t'(0,0,1) \\
(1) & \quad 0,0,1' \\
(5) & \quad 0,y,1/2 \\
(9) & \quad -1/4,1/4,1/2 \\
(13) & \quad 1/2,0,1 \\
(1) & \quad t(0,0,1) \\
(1) & \quad 0,0,1 \\
(5) & \quad 0,y,1/2 \\
(9) & \quad -1/4,1/4,1/2 \\
(13) & \quad 1/2,0,1 \\
\end{align*}
\]

Generators selected

\[(1); t'(1,0,0); t'(0,1,0); t'(0,0,1); (2); (3); (5); (9).\]

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

\[
\begin{align*}
&32 \quad n \quad 1 \\
&\begin{align*}
(1) & \quad x,y,z \quad [u,v,w] \\
(5) & \quad x,y,z \quad [u,v,w] \\
(9) & \quad x+1/2,y+1/2,z \quad [u,v,w] \\
(13) & \quad x+1/2,y+1/2,z \quad [u,v,w] \\
16 & \quad m \quad ..m' \\
\end{align*}
\end{align*}
\]

Coordinates

\[
\begin{align*}
(0,0,0) & \quad + \quad (0,0,1) \\
(0,0,0) & \quad + \quad (0,0,1) \\
\end{align*}
\]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Special Projections</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [1,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.m' m'</td>
<td>p4mm1'</td>
<td>p\text{22} m'</td>
<td>p\text{22} m'</td>
</tr>
<tr>
<td>a* = (a - b)/2</td>
<td>a* = b/2</td>
<td>a* = c</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,1/2</td>
<td>Origin at x,x,1/2</td>
<td></td>
</tr>
<tr>
<td>42'2'</td>
<td>422</td>
<td>422</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Continued 125.13.1043

<table>
<thead>
<tr>
<th>Special Projections</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [1,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.m' m'</td>
<td>p4mm1'</td>
<td>p\text{22} m'</td>
<td>p\text{22} m'</td>
</tr>
<tr>
<td>a* = (a - b)/2</td>
<td>a* = b/2</td>
<td>a* = c</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,1/2</td>
<td>Origin at x,x,1/2</td>
<td></td>
</tr>
<tr>
<td>42'2'</td>
<td>422</td>
<td>422</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Continued 125.13.1043

<table>
<thead>
<tr>
<th>Special Projections</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [1,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.m' m'</td>
<td>p4mm1'</td>
<td>p\text{22} m'</td>
<td>p\text{22} m'</td>
</tr>
<tr>
<td>a* = (a - b)/2</td>
<td>a* = b/2</td>
<td>a* = c</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,1/2</td>
<td>Origin at x,x,1/2</td>
<td></td>
</tr>
<tr>
<td>42'2'</td>
<td>422</td>
<td>422</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Continued 125.13.1043

<table>
<thead>
<tr>
<th>Special Projections</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [1,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.m' m'</td>
<td>p4mm1'</td>
<td>p\text{22} m'</td>
<td>p\text{22} m'</td>
</tr>
<tr>
<td>a* = (a - b)/2</td>
<td>a* = b/2</td>
<td>a* = c</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,1/2</td>
<td>Origin at x,x,1/2</td>
<td></td>
</tr>
<tr>
<td>42'2'</td>
<td>422</td>
<td>422</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Continued 125.13.1043

<table>
<thead>
<tr>
<th>Special Projections</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [1,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.m' m'</td>
<td>p4mm1'</td>
<td>p\text{22} m'</td>
<td>p\text{22} m'</td>
</tr>
<tr>
<td>a* = (a - b)/2</td>
<td>a* = b/2</td>
<td>a* = c</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,1/2</td>
<td>Origin at x,x,1/2</td>
<td></td>
</tr>
<tr>
<td>42'2'</td>
<td>422</td>
<td>422</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Continued 125.13.1043

<table>
<thead>
<tr>
<th>Special Projections</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [1,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.m' m'</td>
<td>p4mm1'</td>
<td>p\text{22} m'</td>
<td>p\text{22} m'</td>
</tr>
<tr>
<td>a* = (a - b)/2</td>
<td>a* = b/2</td>
<td>a* = c</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,1/2</td>
<td>Origin at x,x,1/2</td>
<td></td>
</tr>
<tr>
<td>42'2'</td>
<td>422</td>
<td>422</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Origin at 422/n, at -1/4,-1/4,-1/4 from \(\bar{1} \)

Asymmetric unit: \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1/4 \)

Symmetry Operations:

1. \(1 \)
 \((1) \ 0,0,0 \)

2. \(0,y,0 \)
 \((2) \ x,0,0 \)

3. \(0,0,0 \)
 \((3) \ 4^+ \ x,0,0 \)

4. \(0,0,0 \)
 \((4) \ 4^- \ 0,0,0 \)

5. \(0,y,0 \)
 \((5) \ 2^0 \ x,0,0 \)

6. \(0,y,0 \)
 \((6) \ 2^0 \ 0,0,0 \)

7. \(0,y,0 \)
 \((7) \ 2^0 \ x,0,0 \)

8. \(0,y,0 \)
 \((8) \ 2^0 \ 0,0,0 \)

9. \(1/4,1/4,1/4 \)
 \((9) \ -1/2,1/2,1/2 \)

10. \(x,y,1/4 \)
 \((10) \ 1/2,1/2,0 \)

11. \(4^+ \ x,0,0 \)
 \((11) \ 4^- \ 0,1/2,z \)

12. \(4^+ \ x,0,0 \)
 \((12) \ 4^- \ 0,1/2,z \)

13. \(x,1/4,z \)
 \((13) \ 1/2,0,1/2 \)

14. \(1/4,y,z \)
 \((14) \ 0,1/2,1/2 \)

15. \(x,1/4,z \)
 \((15) \ 0,0,1/2 \)

16. \(x,1/4,z \)
 \((16) \ 0,0,1/2 \)

126.1.1044 - 1 - 2130
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>k 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(10) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(12) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(14) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) x+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>j .2</td>
<td>x,0,1/2 [u,0,0]</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,1/2,0 [u,0,0]</td>
<td>1/2,x+1/2,0 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,1/2 [0,u,0]</td>
<td>1/2,x+1/2,0 [0,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>i .2</td>
<td>x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,1/2,1/2 [u,0,0]</td>
<td>1/2,x+1/2,1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,0 [0,u,0]</td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,0 [0,u,0]</td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>h .2</td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x+1/2,1/2 [u,u,0]</td>
<td>x+1/2,x+1/2,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x+1/2,1/2 [u,u,0]</td>
<td>x+1/2,x+1/2,1/2 [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>g 2..</td>
<td>1/2,0,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>f 2</td>
<td>1/4,1/4,1/4 [u,v,w]</td>
<td>3/4,3/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4,1/4,1/4 [v,u,w]</td>
<td>3/4,3/4,1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4,1/4,3/4 [u,v,w]</td>
<td>1/4,1/4,3/4 [v,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>e 4</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
<td>1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,z+1/2 [0,0,w]</td>
<td>1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>d 3..</td>
<td>1/2,0,1/4 [0,0,w]</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>1/2,0,3/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>0,1/2,3/4 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>c 222.</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b 422</td>
<td>0,0,1/2 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a 422</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] \ p_p, 4m'\m'
\[a^* = (a \ - \ b)/2 \quad b^* = (a \ + \ b)/2 \]
Origin at 0,0,z

Along [1,0,0] \ c_p, 2m'\m'
\[a^* = b \quad b^* = c \]
Origin at x,0,0

Along [1,1,0] \ p_{2a}, 2m'\m'
\[a^* = -c/2 \quad b^* = (-a + b)/2 \]
Origin at x,x,0
Origin at $422/n1'$, at -1/4,-1/4,-1/4 from $1'$.

Asymmetric unit:

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

For $1+$ set:

1. $1 \quad (0,0,0)$
2. $2 \quad 0,0,z \quad (2z,0,0,0)$
3. $4' \quad 0,0,z \quad (4z,0,0,0)$
4. $4' \quad 0,0,z \quad (4z,0,0,0)$
5. $2 \quad y,0 \quad (2y,0,0,0)$
6. $2 \quad x,0 \quad (2x,0,0,0)$
7. $2 \quad x,x,0 \quad (2x,0,0,0)$
8. $2 \quad x,x,0 \quad (2x,0,0,0)$
9. $\bar{2} \quad 1/4,1,1/4 \quad (0,1/2,1/2)$
10. $n \quad (1/2,1/2,0) \quad x,y,1/4 \quad (m_{y},1/2,1/2,1/2)$
11. $\bar{4} \quad 1/2,0,z ; 1/2,0,1/4 \quad (4z,1/2,1/2,1/2)$
12. $\bar{4} \quad 0,1/2,z ; 0,1/2,1/4 \quad (4z,1/2,1/2,1/2)$
13. $n \quad (1/2,0,1/2) \quad x,1/4,z \quad (m_{y},1/2,1/2,1/2)$
14. $n \quad (0,1/2,1/2) \quad 1/4,y,z \quad (m_{y},1/2,1/2,1/2)$
15. $c \quad (0,0,1/2) \quad x+1/2,x,z \quad (m_{y},1/2,1/2,1/2)$
16. $n \quad (1/2,1/2,1/2) \quad x,x,z \quad (m_{y},1/2,1/2,1/2)$
Continued

For 1′ + set

(1) 1′
 (1) (0,0,0)′

(2) 2′ 0,0,z
 (2) (0,0,0)′

(3) 4+′ 0,0,z
 (4) (0,0,0)′

(4) 4′ - 0,0,z
 (4) (0,0,0)′

(5) 0,y,0
 (2) (0,0,0)′

(6) 2′ x,0,0
 (2) (0,0,0)′

(7) 2′ x,x,0
 (2) (0,0,0)′

(8) 2′ x,x,0
 (2) (0,0,0)′

(9) 1′ 1/4,1/4,1/4
 (2) 1/2,1/2,1/2)

(10) n′ (1/2,1/2,1/2) x,y,1/4
 (m) 1/2,1/2,1/2)

(11) n′ (1/2,1/2,1/2) x+1/2,x+1/2,1/2 [0,0,0]
 (m) 1/2,1/2,1/2)

(12) n′ (1/2,1/2,1/2) x,x,z
 (1/2,1/2,1/2)

(13) n′ (1/2,1/2,1/2) x,1/4,z
 (m) 1/2,1/2,1/2)

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9); 1′.

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>k</td>
<td>11′</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
<td>.21′</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
<td>.21′</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>.21′</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>2..1′</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
<td></td>
</tr>
<tr>
<td>1′ +</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8 f</td>
<td>1'</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,1/4 [0,0,0]</td>
<td>3/4,1/4,1/4 [0,0,0]</td>
<td>1/4,3/4,1/4 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4,1/4,3/4 [0,0,0]</td>
<td>1/4,3/4,3/4 [0,0,0]</td>
<td>1/4,1/4,3/4 [0,0,0]</td>
<td>3/4,3/4,3/4 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 e</td>
<td>4..1'</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,\overline{z} [0,0,0]</td>
<td>1/2,1/2,\overline{z}+1/2 [0,0,0]</td>
<td>1/2,1/2,\overline{z}+1/2 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 d</td>
<td>\overline{4}..1'</td>
<td>1/2,0,1/4 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>1/2,0,3/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 c</td>
<td>222.1'</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b</td>
<td>4221'</td>
<td>0,0,1/2 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a</td>
<td>4221'</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Origin

- **Along [0,0,1]**: p 4mm1'
 - \(a^* = (a - b)/2\)
 - \(b^* = (a + b)/2\)
 - Origin at 0,0,z

- **Along [1,0,0]**: c 2mm1'
 - \(a^* = b\)
 - \(b^* = c\)
 - Origin at x,0,0

- **Along [1,1,0]**: p 2mm1'
 - \(a^* = (-a + b)/2\)
 - \(b^* = c/2\)
 - Origin at x,x,0
Origin
At 42'2'/n, at -1/4,-1/4,-1/4 from 1

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

1. 1

2. $2\cdot 0,0,z$

3. $4^+\cdot 0,0,z$

4. $4^-\cdot 0,0,z$

5. $2'\cdot 0,y,0$

6. $2'\cdot x,0,0$

7. $2'\cdot x,x,0$

8. $2'\cdot x,x,0$

9. $\overline{1}\cdot 1/4,1/4,1/4$

10. $n'\cdot (1/2,1/2,0)$

11. $\overline{4}^-\cdot 1/2,0,0$

12. $\overline{4}^-\cdot 0,1/2,0; 0,1/2,1/4$

13. $n\cdot (1/2,0,1/2)$

14. $n\cdot (0,1/2,1/2)$

15. $c\cdot (0,0,1/2)$

16. $n\cdot (1/2,1/2,1/2)$

17. $n\cdot (1/2,1/2,1/2)$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>k</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
<td>.2'</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
<td>.2'</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>.2'</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>2..</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>1..</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>4..</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>4'..</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>22'2'</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>42'2'</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>42'2'</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2)</td>
<td>x,y,z [v,w]</td>
</tr>
<tr>
<td>(3)</td>
<td>y,z [v,w]</td>
</tr>
<tr>
<td>(4)</td>
<td>x [v,w]</td>
</tr>
<tr>
<td>(5)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(6)</td>
<td>x,y,z [v,w]</td>
</tr>
<tr>
<td>(7)</td>
<td>y,x,z [v,w]</td>
</tr>
<tr>
<td>(8)</td>
<td>y,x,z [v,w]</td>
</tr>
<tr>
<td>(9)</td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(10)</td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(11)</td>
<td>y+1/2,x+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(12)</td>
<td>y+1/2,x+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(13)</td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(14)</td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(15)</td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(16)</td>
<td>y+1/2,x+1/2,z+1/2 [v,w]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] \(p \) 4mm
\(a^* = \frac{(a - b)}{2} \quad b^* = \frac{(a + b)}{2} \)
Origin at 0,0,z

Along [1,0,0] \(c \) 2mm'
\(a^* = -c \quad b^* = b \)
Origin at x,0,0

Along [1,1,0] \(p_{2a'} \) 2m'm'
\(a^* = \frac{-c}{2} \quad b^* = \frac{-(a + b)}{2} \)
Origin at x,x,0
P4'/nn'c
126.4.1047

4'/mm'm
P4'/n2'/n'2/c

Tetragonal

Origin at 4'2'2/n, at -1/4,-1/4,-1/4 from \(\bar{1} \)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

\begin{align*}
(1) & \ 1 \quad (1|0,0,0) \\
(2) & \ 2_x \ 0,0,z \quad (2_z|0,0,0) \\
(3) & \ 4''_x \ 0,0,z \quad (4_z|0,0,0)' \\
(4) & \ 4''_x \ 0,0,z \quad (4_z|-1,0,0)' \\
(5) & \ 2' \ 0,y,0 \quad (2_y|0,0,0)' \\
(6) & \ 2' \ x,0,0 \quad (2_x|0,0,0)' \\
(7) & \ 2 \ x,x,0 \quad (2_{xx}|0,0,0) \\
(8) & \ 2 \ x,x,0 \quad (2_{xx}|0,0,0) \\
(9) & \ \bar{1} \ 1/4,1/4,1/4 \quad (\bar{1}|1/2,1/2,1/2) \\
(10) & \ n \ (1/2,1/2,0) \quad x,y,1/4 \quad (m_x|1/2,1/2,1/2) \\
(11) & \ \bar{4}''_x \ 1/2,0,z \quad 1/2,0,1/4 \quad (\bar{4}_z|1/2,1/2,1/2)' \\
(12) & \ \bar{4}''_x \ 0,1/2,z \quad 0,1/2,1/4 \quad (\bar{4}_z|-1,1/2,1/2)' \\
(13) & \ n' \ (1/2,0,1/2) \quad x,1/4,z \quad (m_y|1/2,1/2,1/2)' \\
(14) & \ n' \ (0,1/2,1/2) \quad 1/4,y,z \quad (m_y|1/2,1/2,1/2)' \\
(15) & \ c \ (0,0,1/2) \quad x+1/2,x,z \quad (m_{xy}|1/2,1/2,1/2) \\
(16) & \ n \ (1/2,1/2,1/2) \quad x,x,z \quad (m_{xy}|1/2,1/2,1/2)
\end{align*}
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>k</td>
</tr>
<tr>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) y,x,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(5) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(7) y,x,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(9) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(10) x+1/2,y+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(11) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(12) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(14) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
</tr>
</tbody>
</table>

Continued 126.4.1047 P4'\text{inn}'c
Symmetry of Special Projections

Along [0,0,1] \(p \), 4mm
\(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \)
Origin at 1/2,0,z

Along [1,0,0] \(c \), 2mm'
\(a^* = -c \) \(b^* = b \)
Origin at x,0,0

Along [1,1,0] \(p_{2a} \), 2m'm'
\(a^* = -c/2 \) \(b^* = (-a + b)/2 \)
Origin at x,x,0
Origin at 4'22'/n', at -1/4,-1/4,-1/4 from 1

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

1. **I**
 - (1) 1
 - (1 | 0,0,0)

2. **2**
 - (5) 2 0,y,0
 - (2z | 0,0,0)
 - (6) 2 x,0,0
 - (2z | 0,0,0)

3. **4'**
 - (10) n (1/2,1/2,0)
 - x,y,1/4
 - (m_\perp | 1/2,1/2,1/2)
 - (11) 4' * 1/2,0,z; 1/2,0,1/4
 - (4_{z} | 1/2,1/2,1/2)'

4. **4'**
 - (13) n (1/2,0,1/2)
 - x,1/4,z
 - (m_\perp | 1/2,1/2,1/2)
 - (14) n (0,1/2,1/2) 1/4,y,z
 - (m_\perp | 1/2,1/2,1/2)
 - (15) c' (0,0,1/2) x+1/2,x,z
 - (m_{xy} | 1/2,1/2,1/2)'

5. **n**
 - (12) n' (1/2,1/2,1/2) x,x,z
 - (m_{xy} | 1/2,1/2,1/2)'

6. **m**
 - (16) m' (1/2,1/2,1/2) x,x,z
 - (m_{xy} | 1/2,1/2,1/2)'

Tetragonal

\[126.5.1048 \]

P4'/nnc'

\[126.5.1048 \]

P4'/mmm'

\[126.5.1048 \]

P4'/n2/n2'/c'

\[126.5.1048 \]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

Coordinates

16 k 1
(1) x,y,z [u,v,w]
(2) x,y,z [u,v,w]
(3) y,x,z [v,u,w]
(4) y,x,z [v,u,w]
(5) x,y,z [u,v,w]
(6) y,x,z [v,u,w]
(7) y,x,z [v,u,w]
(8) y+1/2,x+1/2,z+1/2 [u,v,w]
(9) x+1/2,y+1/2,z+1/2 [u,v,w]
(10) x+1/2,y+1/2,z+1/2 [u,v,w]

8 j .2.
(1) x,0,1/2 [u,0,0]
(2) x,0,1/2 [u,0,0]
(3) x+1/2,1/2,0 [u,0,0]
(4) x+1/2,1/2,0 [u,0,0]
(5) 0,x,1/2 [0,u,0]
(6) 0,x,1/2 [0,u,0]
(7) 0,x,1/2 [0,u,0]
(8) 0,x,1/2 [0,u,0]

8 i .2.
(1) x,0,0 [u,0,0]
(2) x,0,0 [u,0,0]
(3) x+1/2,1/2,1/2 [u,0,0]
(4) x+1/2,1/2,1/2 [u,0,0]
(5) 0,x,0 [0,u,0]
(6) 0,x,0 [0,u,0]
(7) 0,x,0 [0,u,0]
(8) 0,x,0 [0,u,0]

8 h ..2'
(1) x,x,0 [u,u,w]
(2) x,x,0 [u,u,w]
(3) x,x,0 [u,u,w]
(4) x,x,0 [u,u,w]

8 g 2..
(1) 1/2,0,z [0,0,w]
(2) 1/2,0,z [0,0,w]
(3) 1/2,0,z [0,0,w]
(4) 1/2,0,z [0,0,w]

8 f 1'
(1) 1/4,1,4/4 [u,v,w]
(2) 1/4,1,4/4 [u,v,w]
(3) 1/4,1,4/4 [u,v,w]
(4) 1/4,1,4/4 [u,v,w]

4 e 4'..
(1) 0,0,z [0,0,0]
(2) 0,0,z [0,0,0]
(3) 0,0,z [0,0,0]
(4) 0,0,z [0,0,0]

4 d 4'..
(1) 0,1/2,1/2 [0,1/2,1/2]
(2) 0,1/2,1/2 [0,1/2,1/2]
(3) 0,1/2,1/2 [0,1/2,1/2]
(4) 0,1/2,1/2 [0,1/2,1/2]

4 c 222.
(1) 1/2,0,0 [0,0,0]
(2) 1/2,0,0 [0,0,0]
(3) 1/2,0,0 [0,0,0]
(4) 1/2,0,0 [0,0,0]

2 b 4'22'
(1) 0,0,0 [0,0,0]
(2) 0,0,0 [0,0,0]

2 a 4'22'
(1) 0,0,0 [0,0,0]
(2) 0,0,0 [0,0,0]
Symmetry of Special Projections

Along [0,0,1] \(p' \), \(4m'm' \)
\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]
Origin at \(1/2,0,z \)

Along [0,0,0] \(c \), \(2m'm' \)
\[a^* = b \quad b^* = c \]
Origin at \(x,0,0 \)

Along [1,1,0] \(p \), \(2'm'm' \)
\[a^* = -c/2 \quad b^* = (-a + b)/2 \]
Origin at \(x,x,0 \)
Origin at $4'22'/n'$, at -1/4,-1/4,-1/4 from $\bar{1}'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

1. $1 \quad (1 | 0,0,0)$
2. $2 \quad 0,0,z \quad (2_z | 0,0,0)$
3. $4' \quad 0,0,z \quad (4_z | 0,0,0)'$
4. $4' \quad 0,0,z \quad (4_z | 0,0,0)'$
5. $2 \quad 0,y,0 \quad (2_z | 0,0,0)$
6. $2 \quad x,0,0 \quad (2_x | 0,0,0)$
7. $2' \quad x,x,0 \quad (2_{xy} | 0,0,0)'$
8. $2' \quad x,x,0 \quad (2_{xy} | 0,0,0)'$
9. $1/4,1/4,1/4 \quad (1 | 1/2,1/2,1/2)'$
10. $n' \quad 1/2,1/2,0 \quad x,y,1/4 \quad (m_1 | 1/2,1/2,1/2)'$
11. $4' \quad 1/2,0,z; 1/2,0,1/4 \quad (4_z | 1/2,1/2,1/2)$
12. $4' \quad 1/2,0,z; 1/2,0,1/4 \quad (4_z | 1/2,1/2,1/2)$
13. $n' \quad 1/2,0,1/2 \quad x,1/4,z \quad (m_1 | 1/2,1/2,1/2)'$
14. $n' \quad 0,1/2,1/2 \quad 1/4,y,z \quad (m_1 | 1/2,1/2,1/2)'$
15. $c \quad (0,0,1/2) \quad x+1/2,x,z \quad (m_1 | 1/2,1/2,1/2)$
16. $n \quad 1/2,1/2,1/2 \quad x,x,z \quad (m_1 | 1/2,1/2,1/2)$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>k 1</td>
</tr>
<tr>
<td>(1) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(2) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(3) y,x,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(4) y,x,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(5) x,y,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(6) x,y,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(7) y,x,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(8) x+1/2,y+1/2,z+1/2</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(9) y+1/2,x+1/2,z+1/2</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(10) x+1/2,y+1/2,z+1/2</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(11) y+1/2,x+1/2,z+1/2</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(12) x+1/2,y+1/2,z+1/2</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(13) y+1/2,x+1/2,z+1/2</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(14) x+1/2,y+1/2,z+1/2</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z+1/2</td>
<td>[v,u,w]</td>
</tr>
</tbody>
</table>

8 j .2.	x,0,1/2 [u,0,0]
8 i .2.	x,0,0 [u,0,0]
8 h .2'	x,x,0 [u,u,w]
8 g 2..	1/2,0,z [0,0,0]
8 f 4'..	1/4,1/4,1/4 [0,0,0]
4 e 4'..	0,0,z [0,0,0]
4 d 4'..	1/2,0,1/4 [0,0,0]
4 c 222.	1/2,0,0 [0,0,0]

Continued

126.6.1049 - 2 - 2146
Symmetry of Special Projections

Along [0,0,1] p4'mm'
\[a^* = \frac{a - b}{2} \quad b^* = \frac{a + b}{2} \]
Origin at 0,0,z

Along [1,0,0] c 2m'm'
\[a^* = b \quad b^* = c \]
Origin at x,0,0

Along [1,1,0] p 2a* 2mm
\[a^* = -\frac{c}{2} \quad b^* = \frac{-a + b}{2} \]
Origin at x-1/4,x+1/4,0
Origin at 42'2'/n', at -1/4,-1/4,-1/4 from 1

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

(1) 1 (1|0,0,0)
(5) 2' 0,y,0
(2) 2 0,0,z
(2_2|0,0,0)
(3) 4+ 0,0,z
(4_2|0,0,0)
(4) 4' 0,0,z
(4_2|0,0,0)
(2y|0,0,0)
(2 x|0,0,0)
(2 xy|0,0,0)
(2 x|y|0,0,0)

(9) 1/4,1/4,1/4
(1/2,1/2,1/2)
(10) n (1/2,1/2,0) x,y,1/4
(m_2|1/2,1/2,1/2)
(11) 4+ 1/2,0,z; 1/2,0,1/4
(4_2|1/2,1/2,1/2)
(12) 4' 0,1/2,z; 0,1/2,1/4
(4_2|1/2,1/2,1/2)
(13) n' (1/2,0,1/2) x,1/4,z
(m_2|1/2,1/2,1/2)
(14) n' (0,1/2,1/2) 1/4,y,z
(m_2|1/2,1/2,1/2)
(15) c' (0,0,1/2) x+1/2,x,z
(m_2|1/2,1/2,1/2)
(16) n' (1/2,1/2,1/2) x,x,z
(m_2|1/2,1/2,1/2)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>k</td>
<td>1</td>
</tr>
<tr>
<td>(1)</td>
<td>x,y,z [u,v,w]</td>
<td>(2) x, y, z [u, v, w]</td>
</tr>
<tr>
<td>(3)</td>
<td>y,x,z [v,u,w]</td>
<td>(4) y, x, z [v, u, w]</td>
</tr>
<tr>
<td>(5)</td>
<td>x,y,z [u,v,w]</td>
<td>(6) x, y, z [u, v, w]</td>
</tr>
<tr>
<td>(7)</td>
<td>y,x,z [v,u,w]</td>
<td>(8) y, x, z [v, u, w]</td>
</tr>
<tr>
<td>(9)</td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(10) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(11)</td>
<td>y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(12) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(13)</td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(14) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(15)</td>
<td>y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
<td>.2'</td>
</tr>
<tr>
<td>(2)</td>
<td>x,0,1/2 [0,v,w]</td>
<td>x,0,1/2 [0,v,w]</td>
</tr>
<tr>
<td>(3)</td>
<td>x+1/2,1/2,0 [0,v,w]</td>
<td>x+1/2,1/2,0 [0,v,w]</td>
</tr>
<tr>
<td>(4)</td>
<td>x,0,0 [0,v,w]</td>
<td>x,0,0 [0,v,w]</td>
</tr>
<tr>
<td>(5)</td>
<td>x+1/2,1/2,1/2 [0,v,w]</td>
<td>x+1/2,1/2,1/2 [0,v,w]</td>
</tr>
<tr>
<td>(6)</td>
<td>x,x,0 [u,u,w]</td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td>(7)</td>
<td>x+1/2,x+1/2,1/2 [u,u,w]</td>
<td>x+1/2,x+1/2,1/2 [u,u,w]</td>
</tr>
<tr>
<td>(8)</td>
<td>1/2,0,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>(9)</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>(10)</td>
<td>1/4,3/4,1/4 [u,v,w]</td>
<td>1/4,3/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td>(11)</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>(12)</td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(13)</td>
<td>1/2,0,1/4 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>(14)</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>(15)</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>(16)</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k 16</td>
<td>x, y, z [u, v, w]</td>
</tr>
<tr>
<td>3 (1)</td>
<td>y, x, z [v, u, w]</td>
</tr>
<tr>
<td>5 (2)</td>
<td>x, y, z [u, v, w]</td>
</tr>
<tr>
<td>6 (3)</td>
<td>y, x, z [v, u, w]</td>
</tr>
<tr>
<td>9 (4)</td>
<td>y + 1/2, y + 1/2, z + 1/2 [u, v, w]</td>
</tr>
<tr>
<td>11 (5)</td>
<td>y + 1/2, x + 1/2, z + 1/2 [v, u, w]</td>
</tr>
<tr>
<td>13 (6)</td>
<td>x + 1/2, y + 1/2, z + 1/2 [u, v, w]</td>
</tr>
<tr>
<td>15 (7)</td>
<td>y + 1/2, x + 1/2, z + 1/2 [v, u, w]</td>
</tr>
<tr>
<td>8 j 8</td>
<td>x, 0, 1/2 [0, v, w]</td>
</tr>
<tr>
<td>9 (8)</td>
<td>x + 1/2, 1/2, 0 [0, v, w]</td>
</tr>
<tr>
<td>11 (9)</td>
<td>x, 0, 0 [0, v, w]</td>
</tr>
<tr>
<td>13 (10)</td>
<td>x + 1/2, 1/2, 1/2 [0, v, w]</td>
</tr>
<tr>
<td>15 (11)</td>
<td>x + 1/2, x + 1/2, 1/2 [u, u, w]</td>
</tr>
<tr>
<td>8 i 8</td>
<td>x, x, 0 [u, u, w]</td>
</tr>
<tr>
<td>9 (12)</td>
<td>x + 1/2, x + 1/2, 1/2 [u, u, w]</td>
</tr>
<tr>
<td>11 (13)</td>
<td>1/2, 0, z [0, 0, w]</td>
</tr>
<tr>
<td>13 (14)</td>
<td>1/2, 0, z + 1/2 [0, 0, w]</td>
</tr>
<tr>
<td>15 (15)</td>
<td>1/4, 3/4, 1/4 [u, v, w]</td>
</tr>
<tr>
<td>17 (16)</td>
<td>0, 0, z [0, 0, 0]</td>
</tr>
<tr>
<td>19 (17)</td>
<td>1/2, 1/2, z + 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>20 (18)</td>
<td>1/2, 0, 1/4 [0, 0, 0]</td>
</tr>
<tr>
<td>21 (19)</td>
<td>0, 1/2, 1/4 [0, 0, 0]</td>
</tr>
<tr>
<td>22 (20)</td>
<td>0, 1/2, 0 [0, 0, 0]</td>
</tr>
<tr>
<td>23 (21)</td>
<td>0, 1/2, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>24 (22)</td>
<td>0, 0, 0 [0, 0, 0]</td>
</tr>
<tr>
<td>25 (23)</td>
<td>1/2, 1/2, 1/2 [0, 0, 0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along $[0,0,1]$</td>
<td>p_{14} 4mm</td>
<td>$a^* = (a - b)/2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b^* = (a + b)/2$</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Along $[1,0,0]$</td>
<td>$c_{2}'mm'$</td>
<td>$a^* = -c$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b^* = b$</td>
</tr>
<tr>
<td>Origin at $x,0,0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Along $[1,1,0]$</td>
<td>$p_{2m}'m'$</td>
<td>$a^* = (-a + b)/2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b^* = c/2$</td>
</tr>
<tr>
<td>Origin at $x,x,0$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin at 422/n’, at -1/4,-1/4,-1/4 from 1

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2z 0,0,z
(2z | 0,0,0)

(3) 4h 0,0,z
(4z | 0,0,0)

(4) 4h 0,0,z
(4z | 0,0,0)

(5) 2t 0,y,0
(2y | 0,0,0)

(6) 2h x,0,0
(2s | 0,0,0)

(7) 2h x,x,0
(2xy | 0,0,0)

(8) 2h x,x,0
(2xy | 0,0,0)

(9) 2h 1/4,1/4,1/4
(2h | 1/2,1/2,1/2)

(10) n’ (1/2,1/2,0) x,y,1/4
(m | 1/2,1/2,1/2)

(11) 4h 1/2,0,z; 1/2,0,1/4
(4z | 1/2,1/2,1/2)

(12) 4h 0,1/2,z; 0,1/2,1/4
(4z | 1/2,1/2,1/2)

(13) n’ (1/2,0,1/2) x,1/4,z
(m | 1/2,1/2,1/2)

(14) n (0,1/2,1/2) 1/4,y,z
(m | 1/2,1/2,1/2)

(15) c’ (0,0,1/2) x+1/2,x,z
(mxy | 1/2,1/2,1/2)

(16) n’ (1/2,1/2,1/2) x,x,z
(mxy | 1/2,1/2,1/2)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>k</td>
<td>1</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) x,y,z [u,v,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3) y,x,z [v,u,w]</td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(9) x+y/2,y+z/2,z+1/2 [u,v,w]</td>
<td>(10) x+y/2,y+z/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(11) y+x/2,z+y/2,z+1/2 [v,u,w]</td>
<td>(12) y+x/2,z+y/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(13) x+y/2,y+z/2,z+1/2 [u,v,w]</td>
<td>(14) x+y/2,y+z/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(15) y+x/2,x+y/2,z+1/2 [v,u,w]</td>
<td>(16) y+x/2,x+y/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

Additional coordinates

8	j	.2'	x,0,1/2 [0,v,w]
8	i	.2'	x,0,0 [0,v,w]
8	h	.2	x,x,0 [u,u,0]

8	g	2'	1/2,0,z [0,0,w]
8	f	1'	1/4,1/4,1/4 [0,0,0]
4	e	4'	0,0,0 [0,0,0]
4	d	4'	1/2,0,1/4 [0,0,w]
4	c	22'2'	1/2,0,0 [0,0,w]
2	b	42'2	0,0,1/2 [0,0,0]
2	a	42'2	0,0,0 [0,0,0]
Symmetry of Special Projections

Along [0,0,1] $p' 4'm'm$
\begin{align*}
a^* &= \frac{(a - b)}{2} \\
b^* &= \frac{(a + b)}{2}
\end{align*}
Origin at 0,0,z

Along [1,0,0] c' $2'mm'$
\begin{align*}
a^* &= -c \\
b^* &= b
\end{align*}
Origin at x,0,0

Along [1,1,0] $p 2m'm'$
\begin{align*}
a^* &= \frac{(-a + b)}{2} \\
b^* &= \frac{c}{2}
\end{align*}
Origin at x,x,0
P4/n'c'
126.9.1052

4/m'm'm'
P4/n'2/n'2/c'

Tetragonal

Origin at 422/n', at -1/4,-1/4,-1/4 from 1

Asymmetric unit 0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1/4

Symmetry Operations

1. 1
 (1 | 0,0,0)

2. 2 0,0,z
 (2_z | 0,0,0)

3. 4+ 0,0,z
 (4_z | 0,0,0)

4. 4- 0,0,z
 (4_z^{-1} | 0,0,0)

5. 2 0,y,0
 (2_y | 0,0,0)

6. 2 x,0,0
 (2_x | 0,0,0)

7. 2 x,x,0
 (2_{xy} | 0,0,0)

8. 2 x,x,0
 (2_{xy} | 0,0,0)

9. 1' 1/4,1/4,1/4
 (1' | 1/2,1/2,1/2)'

10. n' (1/2,1/2,0) x,y,1/4
 (m_x | 1/2,1/2,1/2)'

11. 4+ 1/2,0,z; 1/2,0,1/4
 (4_z | 1/2,1/2,1/2)'

12. 4+ 1/2,0,z; 0,1/2,1/4
 (4_z^{-1} | 1/2,1/2,1/2)'

13. n' (1/2,0,1/2) x,1/4,z
 (m_y | 1/2,1/2,1/2)'

14. n' (0,1/2,1/2) 1/4,y,z
 (m_y | 1/2,1/2,1/2)'

15. c' (0,0,1/2) x+1/2,x,z
 (m_{xy} | 1/2,1/2,1/2)'

16. n' (1/2,1/2,1/2) x,x,z
 (m_{xy} | 1/2,1/2,1/2)'

126.9.1052 - 1 - 2154
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

16 k 1
(1) x,y,z [u,v,w]
(2) x,y,z [u,v,w]
(3) y,x,z [v,u,w]
(4) y,x,z [v,u,w]
(5) x,y,z [u,v,w]
(6) x,y,z [u,v,w]
(7) y,x,z [v,u,w]
(8) y,x,z [v,u,w]
(9) x+1/2,y+1/2,z+1/2 [u,v,w]
(10) x+1/2,y+1/2,z+1/2 [u,v,w]
(11) y+1/2,x+1/2,z+1/2 [v,u,w]
(12) y+1/2,x+1/2,z+1/2 [v,u,w]
(13) x+1/2,y+1/2,z+1/2 [u,v,w]
(14) x+1/2,y+1/2,z+1/2 [u,v,w]
(15) x+1/2,y+1/2,z+1/2 [v,u,w]
(16) y+1/2,x+1/2,z+1/2 [v,u,w]

8 j .2.
(1) x,0,1/2 [u,0,0]
(2) x,0,1/2 [u,0,0]
(3) x,0,1/2 [u,0,0]
(4) x,0,1/2 [u,0,0]
(5) x,0,1/2 [u,0,0]
(6) x,0,1/2 [u,0,0]
(7) x,0,1/2 [u,0,0]
(8) x,0,1/2 [u,0,0]

8 i .2.
(1) x,0,0 [u,0,0]
(2) x,0,0 [u,0,0]
(3) x,0,0 [u,0,0]
(4) x,0,0 [u,0,0]
(5) x,0,0 [u,0,0]
(6) x,0,0 [u,0,0]
(7) x,0,0 [u,0,0]
(8) x,0,0 [u,0,0]

8 h .2
(1) x,x,0 [u,u,0]
(2) x,x,0 [u,u,0]
(3) x,x,0 [u,u,0]
(4) x,x,0 [u,u,0]
(5) x,x,0 [u,u,0]
(6) x,x,0 [u,u,0]
(7) x,x,0 [u,u,0]
(8) x,x,0 [u,u,0]

4 e 4..
(1) 1/2,0,z [0,0,w]
(2) 1/2,0,z [0,0,w]
(3) 1/2,0,z [0,0,w]
(4) 1/2,0,z [0,0,w]
(5) 1/2,0,z [0,0,w]
(6) 1/2,0,z [0,0,w]
(7) 1/2,0,z [0,0,w]
(8) 1/2,0,z [0,0,w]

4 d 4..’
(1) 1/2,0,1/4 [0,0,0]
(2) 1/2,0,1/4 [0,0,0]
(3) 1/2,0,1/4 [0,0,0]
(4) 1/2,0,1/4 [0,0,0]
(5) 1/2,0,1/4 [0,0,0]
(6) 1/2,0,1/4 [0,0,0]
(7) 1/2,0,1/4 [0,0,0]
(8) 1/2,0,1/4 [0,0,0]

2 b 422
(1) 0,0,1/2 [0,0,0]
(2) 0,0,1/2 [0,0,0]
(3) 0,0,1/2 [0,0,0]
(4) 0,0,1/2 [0,0,0]
(5) 0,0,1/2 [0,0,0]
(6) 0,0,1/2 [0,0,0]
(7) 0,0,1/2 [0,0,0]
(8) 0,0,1/2 [0,0,0]

2 a 422
(1) 0,0,0 [0,0,0]
(2) 0,0,0 [0,0,0]
(3) 0,0,0 [0,0,0]
(4) 0,0,0 [0,0,0]
(5) 0,0,0 [0,0,0]
(6) 0,0,0 [0,0,0]
(7) 0,0,0 [0,0,0]
(8) 0,0,0 [0,0,0]
Symmetry of Special Projections

Along [0,0,1] p4m' m'
\[a^* = (a - b)/2 \]
\[b^* = (a + b)/2 \]
Origin at 0,0,z

Along [1,0,0] c 2m'm'
\[a^* = b \]
\[b^* = c \]
Origin at x,0,0

Along [1,1,0] p 2m'm'
\[a^* = -(a + b)/2 \]
\[b^* = c/2 \]
Origin at x,x,0
P4/mbm
127.1.1053

4/mmm
P4/m21/b2/m

Tetragonal

Origin at center (4/m) at 4/m121/g

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ 1/2 - x

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2 0,0,z
(2_2 | 0,0,0)

(3) 4⁺ 0,0,z
(4 | 0,0,0)

(4) 4⁻ 0,0,z
(4_1 | 0,0,0)

(5) 2 (0,1/2,0) 1/4,y,0
(2_1 | 1/2,1/2,0)

(6) 2 (1/2,0,0) x,1/4,0
(2_x | 1/2,1/2,0)

(7) 2 (1/2,1/2,0) x,x,0
(2_xy | 1/2,1/2,0)

(8) 2 x,x+1/2,0
(2_xy | 1/2,1/2,0)

(9)
(0,0,0)

(10) m x,y,0
(m_x | 0,0,0)

(11) 4⁺ 0,0,z; 0,0,0
(4 | 0,0,0)

(12) 4⁻ 0,0,z; 0,0,0
(4_1 | 0,0,0)

(13) a (1/2,0,0) x,1/4,z
(m_y | 1/2,1/2,0)

(14) b (0,1/2,0) 1/4,y,z
(m_y | 1/2,1/2,0)

(15) m x+1/2,x,z
(m_y | 1/2,1/2,0)

(16) g (1/2,1/2,0) x,x,z
(m_y | 1/2,1/2,0)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>l</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>i</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm1'
Along [1,0,0] p\text{2\textast} 2\text{mm}
Along [1,1,0] p2\text{mm}1'

\[a^* = a \quad b^* = b \]
\[a^* = b/2 \quad b^* = c \]
\[a^* = (-a + b)/2 \quad b^* = c \]

Origin at 0,0,z
Origin at x,1/4,0
Origin at x,x,0

127.1.1053 - 2 - 2158
Origin at center (4/m1') at 4/m12/,g1'

Asymmetric unit
\[
0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2}; \quad y \leq \frac{1}{2} - x
\]

Symmetry Operations

For 1 + set

1. \(1\)
 \((1|0,0,0)\)

2. \(2\)
 \((0,0,z)\)
 \((2_{z}|0,0,0)\)

3. \(4^+\)
 \((0,0,z)\)
 \((4_{z}|0,0,0)\)

4. \(4^-\)
 \((0,0,z)\)
 \((4_{z}^{-1}|0,0,0)\)

5. \(2\)
 \((0,1/2,0)\)
 \((1/4,y,0)\)
 \((2_{y}|1/2,1/2,0)\)

6. \(2\)
 \((1/2,0,0)\)
 \((x,1/4,0)\)
 \((2_{x}|1/2,1/2,0)\)

7. \(2\)
 \((1/2,1/2,0)\)
 \((x,x,0)\)
 \((2_{xy}|1/2,1/2,0)\)

8. \(2\)
 \((x,x+1/2,0)\)
 \((2_{xy}|1/2,1/2,0)\)

9. \(\overline{1}\)
 \((0,0,0)\)
 \((1|0,0,0)\)

10. \(m\)
 \((x,y,0)\)
 \((m_{x}|0,0,0)\)

11. \(4^+\)
 \((0,0,z)\)
 \((0,0,0)\)
 \((4_{z}|0,0,0)\)

12. \(4^-\)
 \((0,0,z)\)
 \((0,0,0)\)
 \((4_{z}^{-1}|0,0,0)\)

13. \(a\)
 \((1/2,0,0)\)
 \((x,1/4,z)\)
 \((m_{x}|1/2,1/2,0)\)

14. \(b\)
 \((0,1/2,0)\)
 \((1/4,y,z)\)
 \((m_{y}|1/2,1/2,0)\)

15. \(m\)
 \((x+1/2,x,z)\)
 \((m_{x}|1/2,1/2,0)\)

16. \(g\)
 \((1/2,1/2,0)\)
 \((x,x,z)\)
 \((m_{xy}|1/2,1/2,0)\)
Continued

For 1' + set

<table>
<thead>
<tr>
<th>Generator</th>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1'</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(2) 2'</td>
<td>x,y,z</td>
<td>[1/2,0,0]</td>
</tr>
<tr>
<td>(3) 4'</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(4) 4'</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(5) 2'</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(6) 2'</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(7) 2'</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(8) 2'</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(9) 1</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(10) 1</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(11) 1</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(12) 1</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(13) 1</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(14) 1</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(15) 1</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(16) 1</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
</tbody>
</table>

Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9); 1'.
2 b 4/m..1' 0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]
2 a 4/m..1' 0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4gm1'
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p 2mm1'
\[a^* = b/2 \quad b^* = c \]
Origin at x,1/4,0

Along [1,1,0] p2mm1'
\[a^* = (-a + b)/2 \quad b^* = c \]
Origin at x,x,0
Origin at center (4/m') at 4/m'121'/g

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y < 1/2 - x

Symmetry Operations

(1) 1
(1|0,0,0)

(2) 2 0,0,z
(2z|0,0,0)

(3) 4+ 0,0,z
(4z|0,0,0)

(4) 4- 0,0,z
(4z|-1|0,0,0)

(5) 2' (0,1/2,0) 1/4,y,0
(2z|1/2,1/2,0)

(6) 2' (1/2,0,0) x,1/4,0
(2z|1/2,1/2,0)

(7) 2' (1/2,1/2,0) x,x,0
(2xy|1/2,1/2,0)

(8) 2' x,x+1/2,0
(2xy|1/2,1/2,0)

(9) 1' 0,0,0
(1|0,0,0)

(10) m' x,y,0
(mz|0,0,0)

(11) 4+ - 0,0,z; 0,0,0
(4z|0,0,0)

(12) 4- - 0,0,z; 0,0,0
(4z|-1|0,0,0)

(13) a (1/2,0,0) x,1/4,z
(mz|1/2,1/2,0)

(14) b (0,1/2,0) 1/4,y,z
(mz|1/2,1/2,0)

(15) m x+1/2,x,z
(mxy|1/2,1/2,0)

(16) g (1/2,1/2,0) x,x,z
(mxy|1/2,1/2,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>l</td>
<td>1</td>
</tr>
<tr>
<td>(1) x,y,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(2) x',y',z'</td>
<td>[u',v',w']</td>
<td></td>
</tr>
<tr>
<td>(3) y,x,z</td>
<td>[v',u',w']</td>
<td></td>
</tr>
<tr>
<td>(4) y',x',z'</td>
<td>[v,u',w']</td>
<td></td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z</td>
<td>[u',v,w]</td>
<td></td>
</tr>
<tr>
<td>(6) x+1/2,y+1/2,z'</td>
<td>[u',v',w']</td>
<td></td>
</tr>
<tr>
<td>(7) y+1/2,x+1/2,z</td>
<td>[v',u,w]</td>
<td></td>
</tr>
<tr>
<td>(8) y'+1/2,x'+1/2,z'</td>
<td>[v,u',w']</td>
<td></td>
</tr>
<tr>
<td>(9) x,y,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(10) x,y,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(11) y,x,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(12) y',x',z'</td>
<td>[v,u',w']</td>
<td></td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z</td>
<td>[u',v,w]</td>
<td></td>
</tr>
<tr>
<td>(14) x+1/2,y+1/2,z'</td>
<td>[u',v',w']</td>
<td></td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z</td>
<td>[v',u,w]</td>
<td></td>
</tr>
<tr>
<td>(16) y'+1/2,x'+1/2,z'</td>
<td>[v,u',w']</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p4gm
- Along [1,0,0] p2m'm'
- Along [1,1,0] p2mm1'

- Origin at 0,0,z
- Origin at x,0,0
- Origin at x,x,0
Origin at center (4'/m) at 4'/m121/g

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq 1/2 - x \]

Symmetry Operations

1. \(1\)
 \((0,0,0)\)

2. \(2\)
 \((0,0,z)\)
 \((2_z,0,0)\)

3. \(4^+\)
 \((0,0,z)\)
 \((4_z,0,0)\)

4. \(4^-\)
 \((0,0,z)\)
 \((4_z,0,0)\)

5. \(2'\)
 \((0,1/2,0)\)
 \((1/2,1/2,0)\)

6. \(2'\)
 \((1/2,0,0)\)
 \((1/4,y,0)\)

7. \(2\)
 \((1/2,1/2,0)\)
 \((2_x,1/4,y,0)\)

8. \(2\)
 \((2_x,1/4,y,0)\)

9. \(\overline{1}\)
 \((0,0,0)\)

10. \(m\)
 \((x,y,0)\)
 \((m_x,0,0)\)

11. \(\overline{4}^+\)
 \((0,0,z)\)
 \((4_z,0,0)\)

12. \(\overline{4}^-\)
 \((0,0,z)\)
 \((4_z,0,0)\)

13. \(a'\)
 \((1/2,0,0)\)
 \((x,1/4,z)\)

14. \(b'\)
 \((0,1/2,0)\)
 \((1/4,y,z)\)

15. \(m\)
 \((x+1/2,\overline{1/2},0)\)
 \((m_x,1/2,1/2,0)\)

16. \(g\)
 \((1/2,1/2,0)\)
 \((x,x,z)\)

127.4.1056 - 1 - 2164
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>l</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x, y, z [u, v, w]</td>
<td>(3) y, x, z [v, u, w]</td>
<td>(4) y, x, z [v, u, w]</td>
</tr>
<tr>
<td>(5) x+1/2, y+1/2, z [u, v, w]</td>
<td>(6) x+1/2, y+1/2, z [u, v, w]</td>
<td>(7) y+1/2, x+1/2, z [v, u, w]</td>
<td>(8) y+1/2, x+1/2, z [v, u, w]</td>
</tr>
<tr>
<td>(9) x, y, z [u, v, w]</td>
<td>(10) x, y, z [u, v, w]</td>
<td>(11) y, x, z [v, u, w]</td>
<td>(12) y, x, z [v, u, w]</td>
</tr>
<tr>
<td>(13) x+1/2, y+1/2, z [u, v, w]</td>
<td>(14) x+1/2, y+1/2, z [u, v, w]</td>
<td>(15) y+1/2, x+1/2, z [v, u, w]</td>
<td>(16) y+1/2, x+1/2, z [v, u, w]</td>
</tr>
</tbody>
</table>

8 k m

<table>
<thead>
<tr>
<th>8</th>
<th>j</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, y, 1/2 [0, 0, w]</td>
<td>x, y, 1/2 [0, 0, w]</td>
<td>x, y, 1/2 [0, 0, w]</td>
</tr>
<tr>
<td>x+1/2, y+1/2, 1/2 [0, 0, w]</td>
<td>x+1/2, y+1/2, 1/2 [0, 0, w]</td>
<td>x+1/2, y+1/2, 1/2 [0, 0, w]</td>
</tr>
</tbody>
</table>

8 i m

<table>
<thead>
<tr>
<th>8</th>
<th>i</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, y, 0 [0, 0, w]</td>
<td>x, y, 0 [0, 0, w]</td>
<td>x, y, 0 [0, 0, w]</td>
</tr>
<tr>
<td>x+1/2, y+1/2, 0 [0, 0, w]</td>
<td>x+1/2, y+1/2, 0 [0, 0, w]</td>
<td>x+1/2, y+1/2, 0 [0, 0, w]</td>
</tr>
<tr>
<td>y, x, 0 [0, 0, w]</td>
<td>y, x, 0 [0, 0, w]</td>
<td>y, x, 0 [0, 0, w]</td>
</tr>
</tbody>
</table>

4 h m2m

<table>
<thead>
<tr>
<th>4</th>
<th>h</th>
<th>m2m</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, x+1/2, 1/2 [0, 0, 0]</td>
<td>x, x+1/2, 1/2 [0, 0, 0]</td>
<td>x, x+1/2, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>x+1/2, y+1/2, 0 [0, 0, w]</td>
<td>x+1/2, y+1/2, 0 [0, 0, w]</td>
<td>x+1/2, y+1/2, 0 [0, 0, w]</td>
</tr>
<tr>
<td>y, x, 0 [0, 0, w]</td>
<td>y, x, 0 [0, 0, w]</td>
<td>y, x, 0 [0, 0, w]</td>
</tr>
</tbody>
</table>

4 g m2m

<table>
<thead>
<tr>
<th>4</th>
<th>g</th>
<th>m2m</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, x+1/2, 0 [0, 0, 0]</td>
<td>x, x+1/2, 0 [0, 0, 0]</td>
<td>x, x+1/2, 0 [0, 0, 0]</td>
</tr>
<tr>
<td>x+1/2, x+1/2, 0 [0, 0, 0]</td>
<td>x+1/2, x+1/2, 0 [0, 0, 0]</td>
<td>x+1/2, x+1/2, 0 [0, 0, 0]</td>
</tr>
</tbody>
</table>

4 f 2.mm

<table>
<thead>
<tr>
<th>4</th>
<th>f</th>
<th>2.mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1/2, z [0, 0, 0]</td>
<td>1/2, 0, z [0, 0, 0]</td>
<td>1/2, 0, z [0, 0, 0]</td>
</tr>
<tr>
<td>1/2, 1/2, z [0, 0, 0]</td>
<td>1/2, 1/2, z [0, 0, 0]</td>
<td>1/2, 1/2, z [0, 0, 0]</td>
</tr>
</tbody>
</table>

4 e 4'..

<table>
<thead>
<tr>
<th>4</th>
<th>e</th>
<th>4'..</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0, z [0, 0, 0]</td>
<td>1/2, 1/2, z [0, 0, 0]</td>
<td>1/2, 1/2, z [0, 0, 0]</td>
</tr>
<tr>
<td>1/2, 1/2, z [0, 0, 0]</td>
<td>1/2, 1/2, z [0, 0, 0]</td>
<td>1/2, 1/2, z [0, 0, 0]</td>
</tr>
</tbody>
</table>

2 d m.mm

<table>
<thead>
<tr>
<th>2</th>
<th>d</th>
<th>m.mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1/2, 0 [0, 0, 0]</td>
<td>1/2, 0, 0 [0, 0, 0]</td>
<td>1/2, 0, 0 [0, 0, 0]</td>
</tr>
</tbody>
</table>

2 c m.mm

<table>
<thead>
<tr>
<th>2</th>
<th>c</th>
<th>m.mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1/2, 1/2 [0, 0, 0]</td>
<td>1/2, 0, 1/2 [0, 0, 0]</td>
<td>1/2, 0, 1/2 [0, 0, 0]</td>
</tr>
</tbody>
</table>

2 b 4'm..

<table>
<thead>
<tr>
<th>2</th>
<th>b</th>
<th>4'm..</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0, 1/2 [0, 0, 0]</td>
<td>1/2, 1/2, 1/2 [0, 0, 0]</td>
<td>1/2, 1/2, 1/2 [0, 0, 0]</td>
</tr>
</tbody>
</table>

2 a 4'm..

<table>
<thead>
<tr>
<th>2</th>
<th>a</th>
<th>4'm..</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0, 0 [0, 0, 0]</td>
<td>1/2, 1/2, 0 [0, 0, 0]</td>
<td>1/2, 1/2, 0 [0, 0, 0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4gm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2'2'2m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -c</td>
<td>b* = b/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p22m1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -(a + b)/2</td>
<td>b* = c</td>
</tr>
</tbody>
</table>

Origin at 0,0,z

Origin at x,0,0

Origin at x,x,0
Origin at center (4'/m) at 4'/m121'/g'

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ 1/2 - x

Symmetry Operations

(1) 1

(2) 2 0,0,z

(3) 4' 0,0,z

(4) 4' 0,0,z

(5) 2 (0,1/2,0) 1/4,y,0

(6) 2 (1/2,0,0) x,1/4,0

(7) 2' (1/2,1/2,0) x,x,0

(8) 2' x,x+1/2,0

(9) 1 0,0,0

(10) m x,y,0

(11) 4' 0,0,z; 0,0,0

(12) 4' 0,0,z; 0,0,0

(13) a (1/2,0,0) x,1/4,z

(14) b (0,1/2,0) 1/4,y,z

(15) m' x+1/2,x,z

(16) g' (1/2,1/2,0) x,x,z
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

16 l 1

(1) x,y,z [u,v,w] (2) x,\bar{y},z [\bar{u},v,\bar{w}] (3) \bar{y},x,z [v,u,\bar{w}] (4) y,\bar{x},z [v,u,\bar{w}]

(5) x+1/2,y+1/2,z [\bar{u},v,\bar{w}] (6) x+1/2,\bar{y}+1/2,z [u,v,\bar{w}] (7) y+1/2,x+1/2,z [v,u,\bar{w}] (8) \bar{y}+1/2,\bar{x}+1/2,z [v,u,\bar{w}]

(9) \bar{x},y,z [u,v,\bar{w}] (10) x,y,z [u,v,\bar{w}] (11) y,\bar{x},z [v,u,\bar{w}] (12) \bar{y},x,\bar{z} [v,u,\bar{w}]

(13) x+1/2,\bar{y}+1/2,z [u,v,\bar{w}] (14) x+1/2,y+1/2,z [u,\bar{v},\bar{w}] (15) y+1/2,\bar{x}+1/2,z [u,\bar{v},\bar{w}] (16) y+1/2,x+1/2,z [v,u,\bar{w}]

8 k ..m' x,x+1/2,z [u,u,\bar{w}] \bar{x},x+1/2,z [\bar{u},u,\bar{w}] \bar{x},\bar{x}+1/2,z [u,\bar{u},\bar{w}] x+1/2,\bar{x},z [u,u,\bar{w}]

x+1/2,x,\bar{z} [u,u,\bar{w}] x+1/2,x,z [u,u,\bar{w}] x,x+1/2,z [u,u,\bar{w}] \bar{x},x+1/2,z [u,u,\bar{w}]

8 j m.. x,y,1/2 [0,0,w] x,\bar{y},1/2 [0,0,w] \bar{y},x,1/2 [0,0,w] y,\bar{x},1/2 [0,0,w]

\bar{x}+1/2,y+1/2,1/2 [0,0,w] x+1/2,\bar{y}+1/2,1/2 [0,0,w] y+1/2,\bar{x}+1/2,1/2 [0,0,w] \bar{y}+1/2,\bar{x}+1/2,1/2 [0,0,w]

8 i m.. x,y,0 [0,0,w] x,\bar{y},0 [0,0,w] \bar{y},x,0 [0,0,w] y,\bar{x},0 [0,0,w]

\bar{x}+1/2,y+1/2,0 [0,0,w] x+1/2,\bar{y}+1/2,0 [0,0,w] y+1/2,\bar{x}+1/2,0 [0,0,w] \bar{y}+1/2,\bar{x}+1/2,0 [0,0,w]

4 h m.2'm' x,x+1/2,1/2 [0,0,w] x,\bar{x}+1/2,1/2 [0,0,w] \bar{x}+1/2,\bar{x},1/2 [0,0,w] x+1/2,\bar{x},1/2 [0,0,w]

4 g m.2'm' x,x+1/2,0 [0,0,w] x,\bar{x}+1/2,0 [0,0,w] \bar{x}+1/2,\bar{x},0 [0,0,w] x+1/2,\bar{x},0 [0,0,w]

4 f 2.m.m' 0,1/2,z [0,0,w] 1/2,0,z [0,0,\bar{w}] 1/2,0,\bar{z} [0,0,w] 0,1/2,\bar{z} [0,0,w]

4 e 4'.. 0,0,z [0,0,0] 1/2,1/2,z [0,0,0] 0,0,\bar{z} [0,0,0] 1/2,1/2,\bar{z} [0,0,0]

2 d m.m.m' 0,1/2,0 [0,0,w] 1/2,0,0 [0,0,w]

2 c m.m.m' 0,1/2,1/2 [0,0,w] 1/2,0,1/2 [0,0,w]

2 b 4'/m.. 0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]

2 a 4'/m.. 0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4gm1' Along [1,0,0] p2a 2mm Along [1,1,0] p2'2mm'
a^* = a \ b^* = b \ a^* = b/2 \ b^* = c \ a^* = -c \ b^* = (-a + b)/2

Origin at 0,0,z \ Origin at x,1/4,0 \ Origin at x,x,0
Origin at center (4'/m') at 4'/m'121'/g

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ 1/2 - x

Symmetry Operations

(1) 1 (1|0,0,0)
(2) 2 0,0,z (2z|0,0,0)
(3) 4+ 0,0,z (4z|0,0,0)'
(4) 4- 0,0,z (4z|0,0,0)'
(5) 2 (0,1/2,0) 1/4,y,0 (2z|1/2,1/2,0)
(6) 2 (1/2,0,0) x,1/4,0 (2z|1/2,1/2,0)
(7) 2' (1/2,1/2,0) x,x,0 (2xy|1/2,1/2,0)'
(8) 2' x,x +1/2,0 (2xy|1/2,1/2,0)'
(9) T 0,0,0 (T|0,0,0)'
(10) m' x,y,0 (mz|0,0,0)'
(11) 4+ 0,0,z; 0,0,0 (4z|0,0,0)
(12) 4- 0,0,z; 0,0,0 (4z|0,0,0)'
(13) a' (1/2,0,0) x,1/4,z (mz|1/2,1/2,0)'
(14) b' (0,1/2,0) 1/4,y,z (mz|1/2,1/2,0)'
(15) m x+1/2,x,z (mx|1/2,1/2,0)
(16) g (1/2,1/2,0) x,x,z (mx|1/2,1/2,0)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>l</td>
<td>1</td>
</tr>
</tbody>
</table>

(1) x,y,z [u,v,w]
(2) x,y,z [u,v,w]
(3) y,x,z [v,u,w]
(4) y,x,z [v,u,w]

(5) x+1/2,y+1/2,z [u,v,w]
(6) x+1/2,y+1/2,z [u,v,w]
(7) y+1/2,x+1/2,z [v,u,w]
(8) y+1/2,x+1/2,z [v,u,w]

(9) x,y,z [u,v,w]
(10) x,y,z [u,v,w]
(11) y,x,z [v,u,w]
(12) y,x,z [v,u,w]

(13) x+1/2,y+1/2,z [u,v,w]
(14) x+1/2,y+1/2,z [u,v,w]
(15) y+1/2,x+1/2,z [v,u,w]
(16) y+1/2,x+1/2,z [v,u,w]

Coordinates

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>l</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4g'm</th>
<th>Along [1,0,0]</th>
<th>p2mm'</th>
<th>Along [1,1,0]</th>
<th>p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b/2</td>
<td>b* = c</td>
<td>a* = (a + b)/2</td>
<td>b* = c</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,1/4,0
Origin at x,x,0
Origin at center (4/m) at 4/m121'/g'

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2}; \quad y \leq \frac{1}{2} - x \]

Symmetry Operations

1. \((1 | 0,0,0)\)
2. \((2 | 0,0,z) (2_z | 0,0,0)\)
3. \(4^+ 0,0,z (4_z | 0,0,0)\)
4. \(4^- 0,0,z (4_z^{-1} | 0,0,0)\)
5. \(2' (0,1/2,0) 1/4,y,0 (2_z, 1/2,1/2,0)'\)
6. \(2' (1/2,0,0) x,1/4,0 (2_z, 1/2,1/2,0)'\)
7. \(2' (1/2,1/2,0) x,x,0 (2_{xy}, 1/2,1/2,0)'\)
8. \(2' x, x+1/2,0 (2_{xy}, 1/2,1/2,0)'\)
9. \(\tilde{1} 0,0,0 (1 | 0,0,0)\)
10. \(m x,y,0 (m_z | 0,0,0)\)
11. \(4^+ 0,0,z; 0,0,0 (4_z | 0,0,0)\)
12. \(4^- 0,0,z; 0,0,0 (4_z^{-1} | 0,0,0)\)
13. \(a' (1/2,0,0) x,1/4,z (m_z, 1/2,1/2,0)'\)
14. \(b' (0,1/2,0) 1/4,y,z (m_{xy}, 1/2,1/2,0)'\)
15. \(m' x+1/2,\bar{x},z (m_{xy}, 1/2,1/2,0)'\)
16. \(g' (1/2,1/2,0) x, x,z (m_{xy}, 1/2,1/2,0)'\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>l</td>
<td>1</td>
</tr>
<tr>
<td>(1) x,y,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(2) x,y,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(3) y,x,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(4) y,x,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(6) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(7) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(8) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(9) x,y,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(10) x,y,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(11) y,x,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(12) y,x,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(14) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(16) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>.m'</td>
</tr>
<tr>
<td>(14) x,y,1/2</td>
<td>[0,0,w]</td>
<td></td>
</tr>
<tr>
<td>(15) x,y,1/2</td>
<td>[0,0,w]</td>
<td></td>
</tr>
<tr>
<td>(16) x,y,1/2</td>
<td>[0,0,w]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>j</td>
<td>..m'</td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(14) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(16) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>i</td>
<td>m..</td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(14) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(16) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>m.2'm'</td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(14) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(16) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>m.2'm'</td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(14) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(16) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>2.m.m'</td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(14) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(16) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>4..</td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(14) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(16) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>m.m.m'</td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(14) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(16) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>m.m.m'</td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(14) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4/m..</td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(14) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(16) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>Symmetry of Special Projections</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Along [0,0,1]
p4gm1'
a* = a b* = b
Origin at 0,0,z

Along [1,0,0]
p2'2'm'

Along [1,1,0]
p22'nm'

Along [1,1,0]
p22'nm'

a* = -c b* = (-a + b)/2
Origin at x,x,0
Origin at center (4'/m') at 4'/m'121/g'

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2}; \quad y \leq \frac{1}{2} - x\]

Symmetry Operations

1. \(1 (0,0,0)\)
2. \(2 (0,0,z) (\frac{1}{2},0,0)\)
3. \(4' (0,0,z) (\frac{1}{2},0,0)'\)
4. \(4' (0,0,z) (\frac{1}{2},0,0)'\)
5. \(2' (0,1/2,0) (1,1/2,0)'\)
6. \(2' (1/2,0,0) (1,1/2,0)'\)
7. \(2 (1/2,1/2,0) (1,1/2,0)'\)
8. \(2 (1/2,1/2,0) (1,1/2,0)'\)
9. \(\bar{1} (0,0,0)\)
10. \(m' (x,y,0) (m_z,0,0)'\)
11. \(\bar{4} (x,y,0) (m_z,0,0)'\)
12. \(\bar{4} (x,y,0) (m_z,0,0)'\)
13. \(a (x,y,0) (m_z,1/2,1/2,0)\)
14. \(b (0,1/2,0) (1/2,1/2,0)'\)
15. \(m' (x+1/2,x,z) (m_{xy},1/2,1/2,0)'\)
16. \(g' (x,y,z) (m_{xy},1/2,1/2,0)'\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>l</td>
<td>1</td>
</tr>
</tbody>
</table>

(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z [v,u,w] (4) y,x,z [v,u,w] (5) x+1/2,y+1/2,z [u,v,w] (6) x+1/2,y+1/2,z [u,v,w] (7) y+1/2,x+1/2,z [v,u,w] (8) y+1/2,x+1/2,z [v,u,w] (9) x,y,z [u,v,w] (10) x,y,z [u,v,w] (11) y,x,z [v,u,w] (12) y,x,z [v,u,w] (13) x+1/2,y+1/2,z [u,v,w] (14) x+1/2,y+1/2,z [u,v,w] (15) y+1/2,x+1/2,z [v,u,w] (16) y+1/2,x+1/2,z [v,u,w]

8	k	.m'
x,x+1/2,z [u,u,w]	x,x+1/2,z [u,u,w]	x+1/2,x,z [u,u,w]
x+1/2,y+1/2,z [u,u,w]	x+1/2,y+1/2,z [u,u,w]	x,x+1/2,z [u,u,w]

8	j	m'.	
x,y,1/2 [u,v,0]	x,y,1/2 [u,v,0]	y,x,1/2 [v,u,0]	y,x,1/2 [v,u,0]
x+1/2,y+1/2,1/2 [u,v,0]	x+1/2,y+1/2,1/2 [u,v,0]	y+1/2,x+1/2,1/2 [v,u,0]	y+1/2,x+1/2,1/2 [v,u,0]

8	i	m'.	
x,y,0 [u,v,0]	x,y,0 [u,v,0]	y,x,0 [v,u,0]	y,x,0 [v,u,0]
x+1/2,y+1/2,0 [u,v,0]	x+1/2,y+1/2,0 [u,v,0]	y+1/2,x+1/2,0 [v,u,0]	y+1/2,x+1/2,0 [v,u,0]

4	h	m'.2m'
x,x+1/2,1/2 [u,u,0]	x,x+1/2,1/2 [u,u,0]	x+1/2,x,1/2 [u,u,0]

4	g	m'.2m'
x,x+1/2,0 [u,u,0]	x,x+1/2,0 [u,u,0]	x+1/2,x,0 [u,u,0]

4	f	2.m'm'
0,1/2,z [0,0,w]	0,1/2,z [0,0,w]	1/2,0,z [0,0,w]

4	e	4'..
0,0,z [0,0,0]	0,0,z [0,0,0]	0,0,z [0,0,0]

2	d	m'.m'm'
0,1/2,0 [0,0,0]	0,1/2,0 [0,0,0]	1/2,0,0 [0,0,0]

2	c	m'.m'm'
0,1/2,1/2 [0,0,0]	0,1/2,1/2 [0,0,0]	1/2,0,1/2 [0,0,0]

2	b	4'/m'..
0,0,1/2 [0,0,0]	0,0,1/2 [0,0,0]	1/2,1,2,1/2 [0,0,0]

2	a	4'/m'..
0,0,0 [0,0,0]	0,0,0 [0,0,0]	1/2,1,2,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4'gm' Along [1,0,0] p2m'm' Along [1,1,0] p2m'm'

a* = a b* = b a* = b/2 b* = c a* = -(a + b)/2 b* = c

Origin at 0,0,z Origin at x,1/4,0 Origin at x,x,0
Origin at center (4/m') at 4/m'121/g'

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2}; \quad y \leq \frac{1}{2} - x\]

Symmetry Operations

1. \(1 \rightarrow (1|0,0,0)\)
2. \(2 \rightarrow (0,0,z) (2z|0,0,0)\)
3. \(4^+ \rightarrow (0,0,z) (4z|0,0,0)\)
4. \(4^- \rightarrow (0,0,z) (4z|0,0,0)\)
5. \(2 \rightarrow (0,1/2,0) \rightarrow (1/2,0,0) \rightarrow (1/2,1/2,0) \rightarrow (1,0,0)\)
6. \(2 \rightarrow (1/2,0,0) \rightarrow (1,0,0)\)
7. \(2 \rightarrow (1/2,1/2,0) \rightarrow (1,0,0)\)
8. \(2 \rightarrow (1/2,1/2,0) \rightarrow (1,0,0)\)
9. \(3 \rightarrow (0,0,0)\)
10. \(m' \rightarrow (m|0,0,0)\)
11. \(4^+ \rightarrow (0,0,z) (4z|0,0,0)\)
12. \(4^- \rightarrow (0,0,z) (4z|0,0,0)\)
13. \(a' \rightarrow (1/2,0,0) \rightarrow (1,0,0)\)
14. \(b' \rightarrow (0,1/2,0) \rightarrow (1,0,0)\)
15. \(m' \rightarrow (m|0,0,0)\)
16. \(g' \rightarrow (1/2,1/2,0) \rightarrow (1,0,0)\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>l</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(1) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(2) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(3) y,x,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(4) y,x,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(6) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(7) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(8) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(9) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(10) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(11) y,x,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(12) y,x,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(14) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(16) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4g'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p 2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,1/4,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (-a + b)/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>

127.9.1061 - 2 - 2175
Origin at center (4/m) at 4/m 121/g

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ 1/2 - x

Symmetry Operations

For (0,0,0) + set

(1) 1
(1*0,0,0)

(2) 2 0,0,0
(2z,0,0)

(3) 4* 0,0,0
(4z,0,0,0)

(4*) 0,0,0
(4z*0,0,0)

(5) 2 (0.1/2,0) 1/4,y,0
(2z,1/2,1/2,0)

(6) 2 (1/2,0,0) x,1/4,0
(2z,1/2,1/2,0)

(7) 2 (1/2,1/2,0) x,x,0
(2xy,1/2,1/2,0)

(8) 2 x,x+1/2,0
(2xy,1/2,1/2,0)

(9) 1 0,0,0
(10) m x,y,0
(mz,0,0,0)

(11) 4* 0,0,0; 0,0,0
(4z,0,0,0)

(12) 4* 0,0,0; 0,0,0
(4z*0,0,0)

(13) a (1/2,0,0) 1/4,y,z
(mz,1/2,1/2,0)

(14) b (0,1/2,0) 1/4,y,z
(mz,1/2,1/2,0)

Generators selected (1); t(0,0,0); t(0,0,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

(0,0,0) +

Coordinates

16 k .m

(0,0,0) +

(0,0,0)^' +

16 k .m

127.10.1062 - 2 - 2177
Symmetry of Special Projections

Along [0,0,1] p4gm1'
Along [1,0,0] p2mm
Along [1,1,0] p2mm1'

a* = a b* = b
Origin at 0,0,z

a* = b/2 b* = c
Origin at x,1/4,0

a* = (-a + b)/2 b* = c
Origin at x,x,0
$P_2c \ 4'/mb'm$

$4/mmm1'$

Tetragonal

127.11.1063

$P_2c \ 4'/m21'/b'2/m$
Origin at center (4/m) at 4/m12, /g

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ 1/2 - x

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2 0,0,z (2z|0,0,0)
(3) 4+ 0,0,z (4z|0,0,0)
(4) 4+ 0,0,z
(5) 2 (0,1/2,0) 1/4,y,0 (2z|1/2,1/2,0)
(6) 2' (1/2,0,0) x,1/4,0 (2z|1/2,1/2,0)
(7) 2 (1/2,1/2,0) x,x,0 (2z|1/2,1/2,0)
(8) 2 x,x+1/2,0
(9) 3 0,0,0
(10) m x,y,0 (m|0,0,0)
(11) 4+ 0,0,z; 0,0,0 (4z|0,0,0)
(12) 4+ 0,0,z; 0,0,0
(13) a' (1/2,0,0) x,1/4,z (m|1/2,1/2,0)
(14) b' (0,1/2,0) 1/4,y,z (m|1/2,1/2,0)
(15) g (1/2,1/2,0) x,x,z
(16) g' (1/2,1/2,0) x,x,z

For (0,0,1) ' set

(1) t' (0,0,1)
(2) 2' (0,0,1) 0,0,z (2z|0,0,1)
(3) 4+ (0,0,1) 0,0,z
(4) 4+ (0,0,1) 0,0,z
(5) 2 (0,1/2,0) 1/4,y,1/2 (2z|1/2,1/2,1)
(6) 2' (1/2,0,0) x,1/4,1/2 (2z|1/2,1/2,1)
(7) 2 (1/2,1/2,0) x,x,1/2 (2z|1/2,1/2,1)
(8) 2' x,x+1/2,1/2
(9) 3 0,0,1/2
(10) m' x,y,1/2 (m|0,0,1)
(11) 4+ 0,0,z; 0,0,1/2
(12) 4+ 0,0,z; 0,0,1/2
(13) n (1/2,0,1) x,1/4,z (m|1/2,1/2,1)
(14) n (0,1/2,1) 1/4,y,z (m|1/2,1/2,1)
(15) c' (0,0,1) x+1/2, x,z (m|1/2,1/2,1)
(16) n' (1/2,1/2,1) x,x,z

Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

(0,0,0) +
(0,0,1) +

32 l 1

(1) x,y,z [u,v,w]
(2) x,y,z [u,v,w]
(3) y,x,z [v,u,w]
(4) y,x,z [v,u,w]

(5) x+1/2,y+1/2,z [u,v,w]
(6) x+1/2,y+1/2,z [u,v,w]
(7) y+1/2,x+1/2,z [v,u,w]
(8) y+1/2,x+1/2,z [v,u,w]

(9) x,y,z [u,v,w]
(10) x,y,z [u,v,w]
(11) y,x,z [v,u,w]
(12) y,x,z [v,u,w]

(13) x+1/2,y+1/2,z [u,v,w]
(14) x+1/2,y+1/2,z [u,v,w]
(15) y+1/2,x+1/2,z [v,u,w]
(16) y+1/2,x+1/2,z [v,u,w]

16 k .m x,x+1/2,z [u,u,0] x,x+1/2,z [u,u,0] x,x+1/2,z [u,u,0] x,x+1/2,z [u,u,0]

127.11.1063 - 2 - 2180
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Origin</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [1,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>p4gm1'</td>
<td>0,0,z</td>
<td>a* = a</td>
<td>a* = -c, b* = b/2</td>
<td>a* = (-a + b)/2</td>
</tr>
<tr>
<td>p 2'mm'</td>
<td>x,0</td>
<td>a* = a</td>
<td>a* = -c, b* = b/2</td>
<td>a* = (-a + b)/2</td>
</tr>
<tr>
<td>p2mm1'</td>
<td>x,x,0</td>
<td>a* = a</td>
<td>a* = -c, b* = b/2</td>
<td>a* = (-a + b)/2</td>
</tr>
</tbody>
</table>

Origin at
- 0,0,z
- x,0
- x,x,0
$P_{2c} 4'/mbm'$

127.12.1064

$4/mmm1'$

$P_{2c} 4'/m2',/b2'/m'$

Tetragonal
Continued

Origin at center (4/m) at 4/m121'/g

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ 1/2 - x

Symmetry Operations

For (0,0,0) + set

(1) 1 (2) 2 0,0,z (3) 4+ 0,0,z (4) 4' 0,0,z (4') 0,0,0' (4'') 0,0,0''

(1) 0,0,0 (2) 0,0,0 (3) 0,0,0 (4) 0,0,0' (4') 0,0,0'' (4'') 0,0,0'''

(5) 2 0,1/2,0 1/4,y,0 (6) 2 0,1/2,0 1/4,y,0 (7) 2' 0,1/2,0 1/4,y,0 (8) 2' 0,1/2,0 1/4,y,0
(2z, 1/2,1/2,0) (2z, 1/2,1/2,0) (2x, 1/2,1/2,0) (2x, 1/2,1/2,0)

(9) 0,0,0 (10) m x,y,0 (11) 4+z 0,0,0 (12) 4+z 0,0,0 (4+z) 0,0,0 (4+z) 0,0,0'

(13) a 0,1/2,0 1/4,y,z (m, 1/2,1/2,0) (14) b 0,1/2,0 1/4,y,z (m, 1/2,1/2,0) (15) m' x+1/2,x,z (m, 1/2,1/2,0)

For (0,0,1) + set

(1) t 0,0,0 (2) 2 0,0,0 (3) 4- 0,0,0 (4) 4- 0,0,0 (4) 0,0,0,0 (4) 0,0,0,0

(1) 0,0,0 (2) 0,0,0 (3) 0,0,0 (4) 0,0,0 (4) 0,0,0 (4) 0,0,0

(5) 2 0,1/2,0 1/4,y,1/2 (6) 2' 0,1/2,0 1/4,y,1/2 (7) 2' 0,1/2,0 1/4,y,1/2 (8) 2' 0,1/2,0 1/4,y,1/2
(2z, 1/2,2/1,0) (2z, 1/2,2/1,0) (2z, 1/2,2/1,0) (2z, 1/2,2/1,0)

(9) 0,0,1/2 (10) m' x,y,1/2 (11) 4- 0,0,1/2 (12) 4- 0,0,1/2 (4-') 0,0,1/2 (4-') 0,0,1/2

(13) n 0,1/2,0 1/4,y,z (m, 1/2,1/2,1) (14) n' 0,1/2,0 1/4,y,z (m, 1/2,1/2,1) (15) c 0,0,1/2 x+1/2,x,z (m, 1/2,1/2,1)

Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,0,1)' +</td>
<td></td>
</tr>
</tbody>
</table>

32 1 1

(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z [v,u,w] (4) y,x,z [v,u,w]

(5) x+1/2,y+1/2,z [u,v,w] (6) x+1/2,y+1/2,z [u,v,w] (7) y+1/2,x+1/2,z [v,u,w] (8) y+1/2,x+1/2,z [v,u,w]

(9) x,y,z [u,v,w] (10) x,y,z [u,v,w] (11) y,x,z [v,u,w] (12) y,x,z [v,u,w]

(13) x+1/2,y+1/2,z [u,v,w] (14) x+1/2,y+1/2,z [u,v,w] (15) y+1/2,x+1/2,z [v,u,w] (16) y+1/2,x+1/2,z [v,u,w]

16 k ..m' x,x+1/2,z [u,u,w] x,x+1/2,z [u,u,w]

127.12.1064 - 2 - 2183
Continued

16 j m'.. x,y,1/2 [u,v,0] \bar{x},\bar{y},1/2 [\bar{u},\bar{v},0] \bar{y},x,1/2 [v,\bar{u},0] y,\bar{x},1/2 [\bar{v},u,0]
 \bar{x}+1/2,y+1/2,1/2 [u,\bar{v},0] x+1/2,y+1/2,1/2 [\bar{u},v,0] y+1/2,x+1/2,1/2 [v,u,0] \bar{y}+1/2,\bar{x}+1/2,1/2 [\bar{v},u,0]

16 i m.. x,y,0 [0,0,w] \bar{x},\bar{y},0 [0,0,w] \bar{y},x,0 [0,0,w] y,\bar{x},0 [0,0,w]
 \bar{x}+1/2,y+1/2,0 [0,0,\bar{w}] x+1/2,\bar{y}+1/2,0 [0,0,\bar{w}] y+1/2,x+1/2,0 [0,0,\bar{w}] \bar{y}+1/2,\bar{x}+1/2,0 [0,0,\bar{w}]

8 h m'.2m' x,x+1/2,1/2 [u,u,0] \bar{x},x+1/2,1/2 [\bar{u},\bar{u},0] \bar{x}+1/2,\bar{x},1/2 [u,\bar{u},0] x+1/2,\bar{x},1/2 [\bar{u},u,0]

8 g m.2'm' x,x+1/2,0 [0,0,w] \bar{x},x+1/2,0 [0,0,\bar{w}] \bar{x}+1/2,\bar{x},0 [0,0,\bar{w}] x+1/2,\bar{x},0 [0,0,\bar{w}]

8 f 2.m'm' 0,1/2,z [0,0,w] 1/2,0,z [0,0,\bar{w}] 1/2,0,z [0,0,\bar{w}] 0,1/2,z [0,0,\bar{w}]

8 e 4'.. 0,0,z [0,0,0] 1/2,1/2,z [0,0,0] 0,0,z [0,0,0] 1/2,1/2,z [0,0,0]

4 d m.m'm' 0,1/2,0 [0,0,w] 1/2,0,0 [0,0,\bar{w}]

4 c m'.mm 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]

4 b 4'/m'.. 0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]

4 a 4'/m.. 0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0]

Symmetry of Special Projections

Along $[0,0,1]$ \text{p4gm1}^*$ Along $[1,0,0]$ \text{p}_{\text{cm}} 2\text{mm} Along $[1,1,0]$ \text{p}_{2\text{cm}} 2\text{m}'\text{m}'
\begin{align*}
\text{a}^* &= \text{a} & \text{b}^* &= \text{b} & \text{a}^* &= \text{b}/2 & \text{b}^* &= \text{c} & \text{a}^* &= -\text{c} & \text{b}^* &= (-\text{a} + \text{b})/2 \\
\text{Origin at} 0,0,z & & \text{Origin at} x,1/4,0 & & \text{Origin at} x,x,1/2
\end{align*}
P2c 4/mbm'
127.13.1065
P2c 4/m21'/b'2'/m'
4/mmm1'
Tetragonal
Origin at center (4/m) at 4/m121'/g'

Asymmetric unit

\[0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/2; \quad y < 1/2 - x \]

Symmetry Operations

For \((0,0,0)\) + set

(1) \(1 \) (1 | 0,0,0)
(2) \(2 \) 0,0,z
(3) \(4^* \) 0,0,z
(4) \(4^* \) 0,0,z

(5) \(2' \) (0,1/2,0) 1/4,y,0
(6) \(2' \) (1/2,1/2,0) x,1/4,0
(7) \(2' \) (1/2,1/2,0) x,x,0
(8) \(2' \) x,x+1/2,0

(9) \(\overline{1} \) 0,0,0
(10) m x,y,0
(11) \(4^* \) 0,0,z; 0,0,0
(12) \(4^* \) 0,0,z; 0,0,0

(13) \(a' \) (1/2,0,0) x,1/4,z
(14) \(b' \) (0,1/2,0) 1/4,y,z
(15) m' x+1/2,\overline{x},z
(16) g' (1/2,1/2,0) x,x,z

For \((0,0,1)\)' + set

(1) \(t' \) (0,0,1)
(2) \(2' \) (0,0,1) 0,0,z
(3) \(4^* \) (0,0,1) 0,0,z
(4) \(4^* \) (0,0,1) 0,0,z

(5) \(2 \) (0,1/2,0) 1/4,y,1/2
(6) \(2 \) (1/2,1/2,1) x,1/4,1/2
(7) \(2 \) (1/2,1/2,1) x,x,1/2
(8) \(2 \) x,x+1/2,1/2

(9) \(\overline{1} \) 0,0,1/2
(10) m' x,y,1/2
(11) \(4^* \) 0,0,z; 0,0,1/2
(12) \(4^* \) 0,0,z; 0,0,1/2

(13) \(n \) (1/2,0,1) x,1/4,z
(14) \(n \) (0,1/2,1) 1/4,y,z
(15) c (0,0,1) x+1/2,\overline{x},z
(16) n (1/2,1/2,1) x,x,z

Generators selected

(1); \(t(1,0,0); \) \(t(0,1,0); \) \(t'(0,0,1); \) (2); (3); (5); (9).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>(0,0,0) +</th>
<th>(0,0,1)' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z ([u,v,w])</td>
<td>(x,\overline{y},z) ([\overline{u},\overline{v},w])</td>
</tr>
<tr>
<td>(5) (x+1/2,\overline{y}+1/2,\overline{z}) ([u,\overline{v},w])</td>
<td>(x+1/2,\overline{y}+1/2,\overline{z}) ([u,\overline{v},w])</td>
</tr>
<tr>
<td>(9) (x,\overline{y},z) ([u,v,w])</td>
<td>(x,y,\overline{z}) ([u,\overline{v},\overline{w}])</td>
</tr>
<tr>
<td>(13) (x+1/2,\overline{y}+1/2,\overline{z}) ([u,\overline{v},\overline{w}])</td>
<td>(x+1/2,\overline{y}+1/2,\overline{z}) ([u,\overline{v},\overline{w}])</td>
</tr>
</tbody>
</table>

16 \(k \) \(m' \) \(x,x+1/2,\overline{z} \) \([u,u,w] \) | \(x,x+1/2,\overline{z} \) \([u,u,w] \) | \(x,x+1/2,\overline{z} \) \([u,u,w] \) | \(x,x+1/2,\overline{z} \) \([u,u,w] \) |
Continued

16 j m'. x,y,1/2 [u,v,0] \(\bar{x},\bar{y},1/2 [\bar{u},\bar{v},0] \) \(\bar{y},x,1/2 [\bar{v},u,0] \) \(y,\bar{x},1/2 [v,\bar{u},0] \)
\(\bar{x}+1/2,y+1/2,1/2 [\bar{u},\bar{v},0] \) \(x+1/2,\bar{y}+1/2,1/2 [u,\bar{v},0] \) \(y+1/2,x+1/2,1/2 [v,u,0] \) \(\bar{y}+1/2,\bar{x}+1/2,1/2 [\bar{v},\bar{u},0] \)

16 i m.. x,y,0 [0,0,w] \(\bar{x},\bar{y},0 [0,0,w] \) \(\bar{y},x,0 [0,0,w] \) \(y,\bar{x},0 [0,0,w] \)
\(\bar{x}+1/2,y+1/2,0 [0,0,w] \) \(x+1/2,\bar{y}+1/2,0 [0,0,w] \) \(y+1/2,x+1/2,0 [0,0,w] \) \(\bar{y}+1/2,\bar{x}+1/2,0 [0,0,w] \)

8 h m'.2m' x,x+1/2,1/2 [u,u,0] \(\bar{x},\bar{x}+1/2,1/2 [\bar{u},\bar{u},0] \) \(\bar{x}+1/2,\bar{x},1/2 [\bar{u},\bar{u},0] \) \(x+1/2,\bar{x},1/2 [u,\bar{u},0] \)

8 g m.2' m' x,x+1/2,0 [0,0,w] \(\bar{x},\bar{x}+1/2,0 [0,0,w] \) \(\bar{x}+1/2,\bar{x},0 [0,0,w] \) \(x+1/2,\bar{x},0 [0,0,w] \)

8 f 2.m'm' 0,1/2,z [0,0,w] \(1/2,0,z [0,0,w] \) \(1/2,0,\bar{z} [0,0,w] \) \(0,1/2,\bar{z} [0,0,w] \)

8 e 4.. 0,0,z [0,0,w] \(1/2,1/2,\bar{z} [0,0,w] \) \(0,0,\bar{z} [0,0,w] \) \(1/2,1/2,\bar{z} [0,0,w] \)

4 d m.m'm' 0,1/2,0 [0,0,w] \(1/2,0,0 [0,0,w] \)

4 c m'.m'm' 0,1/2,1/2 [0,0,0] \(1/2,0,1/2 [0,0,0] \)

4 b 4/m'.. 0,0,1/2 [0,0,0] \(1/2,1/2,1/2 [0,0,0] \)

4 a 4/m.. 0,0,0 [0,0,w] \(1/2,1/2,0 [0,0,w] \)

Symmetry of Special Projections

Along [0,0,1] p4gm1' \(a^* = a \) \(b^* = b \) \(a^* = -c \) \(b^* = b/2 \) \(a^* = -c \) \(b^* = (-a + b)/2 \)
Origin at 0,0,z \ Origin at 0,1/2 \ Origin at x,0,1/2

127.13.1065 - 3 - 2187
Origin at center (4/m) at 4/m1n

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{4} \]

Symmetry Operations

(1) \(\bar{1} \) (0,0,0)

(2) \(2 \) \(0,0,z \) \((2z,0,0,0) \)

(3) \(4 \) \(0,0,z \) \((4z,0,0,0) \)

(4) \(4 \) \(0,0,z \) \((4z^{-1},0,0,0) \)

(5) \(2 \) \((0,1/2,0,0) \) \(1/4,y,1/4 \)

(6) \(2 \) \((1/2,0,0,0) \) \(x,1/4,1/4 \)

(7) \(4 \) \((1/2,1/2,0,0) \) \(x,x,1/4 \)

(8) \(2 \) \(x,x+1/2,1/4 \)

(10) \(m \) \(x,y,0 \) \((m_x,0,0,0) \)

(11) \(4 \) \(0,0,z;0,0,0 \) \((4z,0,0,0) \)

(12) \(4 \) \(0,0,z;0,0,0 \) \((4z^{-1},0,0,0) \)

(9) \(\bar{1} \) \(0,0,0 \)

(10) \(m \) \(x,y,0 \) \((m_x,0,0,0) \)

(11) \(4 \) \(0,0,z;0,0,0 \) \((4z,0,0,0) \)

(12) \(4 \) \(0,0,z;0,0,0 \) \((4z^{-1},0,0,0) \)

(13) \(n \) \((1/2,0,1/2) \) \(x,1/4,z \)

(14) \(n \) \((0,1/2,1/2) \) \(1/4,y,z \)

(15) \(c \) \((0,0,1/2) \) \(x+1/2,y,z \)

(16) \(n \) \((1/2,1/2,1/2) \) \(x,x,z \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>i</td>
<td>1 (1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x̅,y̅,z [u̅,v̅,w̅]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y̅,x̅,z [v̅,u̅,w̅]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y̅+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y̅+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x̅+1/2,y̅+1/2,z+1/2 [u̅,v̅,w̅]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x̅+1/2,y̅+1/2,z+1/2 [u̅,v̅,w̅]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) y̅+1/2,x+1/2,z+1/2 [v̅,u̅,w̅]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) y̅+1/2,x+1/2,z+1/2 [v̅,u̅,w̅]</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>m.. x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x̅,y̅,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y̅,x̅,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,y+1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y+1/2,x+1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y̅+1/2,x̅+1/2,z̅+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>..2 x,x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x̅,x̅+1/2,1/4 [u̅,u̅,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y̅,x̅+1/2,1/4 [u̅,u̅,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y+1/2,x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y̅+1/2,x̅+1/2,1/4 [u̅,u̅,0]</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>2.. 0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>4.. 0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>2.22 0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>2/m.. 0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4/m.. 0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4/m.. 0,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Projection</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p4gm1'</td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>c_\perp 2mm'</td>
</tr>
<tr>
<td>Along [1,1,0]</td>
<td>p_{2\perp} 2m'm'</td>
</tr>
</tbody>
</table>

Origin at 0,0,0
Origin at center (4/m1') at 4/m1n1'

Asymmetric unit \(0 \leq x \leq 1/2;\quad 0 \leq y \leq 1/2;\quad 0 \leq z \leq 1/4\)

Symmetry Operations

For 1 + set

1. \(1\) at \((0,0,0)\)
2. \((12)\) \(0,0,z\) \(0,0,0\)
3. \((13)\) \(0,0,0\) \(0,0,0\)
4. \((14)\) \(0,0,0\) \(0,0,0\)
5. \((15)\) \(0,0,0\) \(0,0,0\)
6. \((16)\) \(0,0,0\) \(0,0,0\)
7. \((17)\) \(0,0,0\) \(0,0,0\)
8. \((18)\) \(0,0,0\) \(0,0,0\)
9. \((19)\) \(0,0,0\) \(0,0,0\)
10. \((20)\) \(0,0,0\) \(0,0,0\)
11. \((21)\) \(0,0,0\) \(0,0,0\)
12. \((22)\) \(0,0,0\) \(0,0,0\)
13. \((23)\) \(0,0,0\) \(0,0,0\)
14. \((24)\) \(0,0,0\) \(0,0,0\)
15. \((25)\) \(0,0,0\) \(0,0,0\)
16. \((26)\) \(0,0,0\) \(0,0,0\)
For 1' + set

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 i 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) (\overline{x},\overline{y},\overline{z}) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) (y,\overline{x},\overline{z}) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) (x,\overline{y},\overline{z}) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) (\overline{x}+1/2,y+1/2,\overline{z}+1/2) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(6) (x+1/2,\overline{y}+1/2,\overline{z}+1/2) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) (y+1/2,\overline{x}+1/2,\overline{z}+1/2) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(8) (\overline{y}+1/2,\overline{x}+1/2,\overline{z}+1/2) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(9) (\overline{x},\overline{y},\overline{z}) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(10) (x,y,\overline{z}) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(11) (y,\overline{x},\overline{z}) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(12) (\overline{y},x,\overline{z}) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(13) (x+1/2,\overline{y}+1/2,\overline{z}+1/2) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(14) (\overline{x}+1/2,\overline{y}+1/2,\overline{z}+1/2) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(15) (\overline{y}+1/2,\overline{x}+1/2,\overline{z}+1/2) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(16) (y+1/2,\overline{x}+1/2,\overline{z}+1/2) [0,0,0]</td>
</tr>
<tr>
<td>8 h m..1'</td>
<td>x,y,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(\overline{x},\overline{y},\overline{z}) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(y,\overline{x},\overline{z}) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(x,\overline{y},\overline{z}) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(\overline{x}+1/2,y+1/2,\overline{z}+1/2) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(x+1/2,\overline{y}+1/2,\overline{z}+1/2) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(y+1/2,\overline{x}+1/2,\overline{z}+1/2) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(\overline{y}+1/2,\overline{x}+1/2,\overline{z}+1/2) [0,0,0]</td>
</tr>
<tr>
<td>8 g .21'</td>
<td>x,x+1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(\overline{x},\overline{x}+1/2,1/4) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(\overline{y},x+1/2,1/4) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(\overline{x}+1/2,\overline{x},1/4) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(x+1/2,\overline{x},1/4) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(\overline{x},\overline{x}+1/2,3/4) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(\overline{x},x+1/2,3/4) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(x,x+1/2,3/4) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(x+1/2,\overline{x},3/4) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(\overline{x}+1/2,\overline{x},3/4) [0,0,0]</td>
</tr>
<tr>
<td>8 f 2..1'</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(1/2,z+1/2) [0,0,0]</td>
</tr>
<tr>
<td>4 e 4..1'</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,z+1/2) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,z+1/2) [0,0,0]</td>
</tr>
<tr>
<td>4 d 2.221'</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(1/2,0,1/4) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(1/2,3/4) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(1/2,0,3/4) [0,0,0]</td>
</tr>
<tr>
<td>4 c 2/m..1'</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(1/2,0,1/2) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(1/2,0,1/2) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(1/2,0,1/2) [0,0,0]</td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.
2 b 4/m..1’ 0,0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0]
2 a 4/m..1’ 0,0,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4gm1’</th>
<th>Along [1,0,0]</th>
<th>c 2mm1’</th>
<th>Along [1,1,0]</th>
<th>p 2mm1’</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = (-a + b)/2</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>

Continued 128.2.1067 P4/mnc1’
Origin at center (4/m'') at 4/m'1n

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

1. 1
 (1|0,0,0)

2. 2 0,0,z
 (2z|0,0,0)

3. 4+ 0,0,z
 (4z|0,0,0)

4. 4- 0,0,z
 (4z|0,0,0)

5. 2' (0,1/2,0) 1/4,y,1/4
 (2y|1/2,1/2,1/2')

6. 2' (1/2,0,0) x,1/4,1/4
 (2x|1/2,1/2,1/2')

7. 2' (1/2,1/2,0) x,x,1/4
 (2xy|1/2,1/2,1/2')

8. 2' x,x+1/2,1/4
 (2xy|1/2,1/2,1/2')

9. m
 (1|0,0,0)

10. m' x,y,0
 (mz|0,0,0')

11. m+ 0,0,z; 0,0,0
 (4z|0,0,0')

12. m- 0,0,z; 0,0,0
 (4z|0,0,0')

13. n (1/2,0,1/2) x,1/4,z
 (m|1/2,1/2,1/2)

14. n (0,1/2,1/2) 1/4,y,z
 (m|1/2,1/2,1/2)

15. c (0,0,1/2) x+1/2,z
 (mxy|1/2,1/2,1/2)

16. n (1/2,1/2,1/2) x,x,z
 (m|1/2,1/2,1/2)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>i</td>
<td>1</td>
</tr>
<tr>
<td>(1)</td>
<td>x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>x̅,y̅,z [u̅,v̅,w]</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>y̅,x,z [v̅,u̅,w]</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>y,x̅,z [v̅,u̅,w]</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>x̅+1/2,y+1/2,z+1/2 [u̅,v̅,w]</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>x+1/2,y+1/2,z+1/2 [u̅,v̅,w]</td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>y+1/2,x+1/2,z+1/2 [v̅,u̅,w]</td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td>y+1/2,x+1/2,z+1/2 [v̅,u̅,w]</td>
<td></td>
</tr>
<tr>
<td>(9)</td>
<td>x,y,z [u̅,v̅,w]</td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td>x,y,z [u̅,v̅,w]</td>
<td></td>
</tr>
<tr>
<td>(11)</td>
<td>y,x̅,z [v̅,u̅,w]</td>
<td></td>
</tr>
<tr>
<td>(12)</td>
<td>y,x̅,z [v̅,u̅,w]</td>
<td></td>
</tr>
<tr>
<td>(13)</td>
<td>x+1/2,y̅+1/2,z+1/2 [u̅,v̅,w]</td>
<td></td>
</tr>
<tr>
<td>(14)</td>
<td>x+1/2,y+1/2,z+1/2 [u̅,v̅,w]</td>
<td></td>
</tr>
<tr>
<td>(15)</td>
<td>y+1/2,x+1/2,z+1/2 [v̅,u̅,w]</td>
<td></td>
</tr>
<tr>
<td>(16)</td>
<td>y+1/2,x+1/2,z+1/2 [v̅,u̅,w]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>m'..</td>
</tr>
<tr>
<td>(1)</td>
<td>x̅,y̅,0 [u̅,v̅,0]</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>x̅,y̅,0 [u̅,v̅,0]</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>y̅,x̅,0 [v̅,u̅,0]</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>y̅,x̅,0 [v̅,u̅,0]</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>x̅+1/2,y+1/2,z+1/2 [u̅,v̅,w]</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>x+1/2,y+1/2,z+1/2 [u̅,v̅,w]</td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>y+1/2,x+1/2,z+1/2 [v̅,u̅,w]</td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td>y+1/2,x+1/2,z+1/2 [v̅,u̅,w]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>..2'</td>
</tr>
<tr>
<td>(1)</td>
<td>x̅,x̅+1/2,1/4 [u̅,u̅,w]</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>x̅,x̅+1/2,1/4 [u̅,u̅,w]</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>x̅+1/2,x+1/4 [u̅,u̅,w]</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>x+1/2,x,1/4 [u̅,u̅,w]</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>x̅+1/2,x̅+1/2,3/4 [u̅,u̅,w]</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>x̅+1/2,x̅+1/2,3/4 [u̅,u̅,w]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>2..</td>
</tr>
<tr>
<td>(1)</td>
<td>1/2,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>1/2,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>1/2,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>1/2,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>1/2,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>1/2,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>4..</td>
</tr>
<tr>
<td>(1)</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>2.2'2'</td>
</tr>
<tr>
<td>(1)</td>
<td>1/2,0,1/4 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>1/2,0,1/4 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>1/2,0,1/4 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>1/2,0,1/4 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>2/m'..</td>
</tr>
<tr>
<td>(1)</td>
<td>1/2,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>1/2,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>1/2,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>1/2,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4/m'..</td>
</tr>
<tr>
<td>(1)</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4/m'..</td>
</tr>
<tr>
<td>(1)</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4gm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = a</td>
<td>b^* = b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>c_p 2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = b</td>
<td>b^* = c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p_2c 2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = -c/2</td>
<td>b^* = (-a + b)/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z

Origin at x,0,0

128.3.1068 - 2 - 2194
Origin at center (4/m) at 4/m1n

Asymmetric unit
\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{4}\]

Symmetry Operations

1. \([1, 0, 0, 0]\)
2. \([2, 0, 0, z, (2_z, 0, 0, 0)]\)
3. \([4^+, 0, 0, z, (4_z, 0, 0, 0')]\)
4. \([4^- 0, 0, z, (4_z^{-1}, 0, 0, 0)']\)
5. \([2', (0, 1/2, 0), 1/4, y, 1/4, (2_y, 1/2, 1/2, 1/2)']\)
6. \([2', (1/2, 0, 0), x, 1/4, 1/4, (2_x, 1/2, 1/2, 1/2)']\)
7. \([2 (1/2, 1/2, 0), x, x, 1/4, (2_y, 1/2, 1/2, 1/2)']\)
8. \([2, x, x+1/2, 1/4, (2_y, 1/2, 1/2, 1/2)']\)
9. \([\overline{1}, 0, 0, 0]\)
10. \([m, x, y, 0, (m_x, 0, 0, 0)]\)
11. \([\overline{4}^+, 0, 0, z, 0, 0, 0, (\overline{4}_z, 0, 0, 0)']\)
12. \([\overline{4}^-, 0, 0, z, 0, 0, 0, (\overline{4}_z^{-1}, 0, 0, 0)']\)
13. \([n', (1/2, 0, 1/2), x, 1/4, z, (m_y, 1/2, 1/2, 1/2)']\)
14. \([n', (0, 1/2, 1/2), 1/4, y, z, (m_y, 1/2, 1/2, 1/2)']\)
15. \([c (0, 0, 1/2), x+1/2, x, z, (m_x, 1/2, 1/2, 1/2)]\)
16. \([n (1/2, 1/2, 1/2), x, x, z, (m_x, 1/2, 1/2, 1/2)]\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>i</td>
<td>1 (1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

8	h	m.. x,y,0 [0,0,w]
		x,y,0 [0,0,w]
		y,x,0 [0,0,w]
		y,x,0 [0,0,w]
		x+1/2,y+1/2,z+1/2 [0,0,w]
		y+1/2,x+1/2,z+1/2 [0,0,w]
		y+1/2,x+1/2,z+1/2 [0,0,w]

| 8 | g | ..2 x+1/2,1/4 [u,u,0] |
| | | x+1/2,1/4 [u,u,0] |

| 8 | f | 2.. 0,1/2,z [0,0,w] |
| | | 0,1/2,z [0,0,w] |

| 4 | e | 4'.. 0,0,z [0,0,0] |
| | | 0,0,z [0,0,0] |

4	d	2.22 0,1/2,1/4 [0,0,0]
		0,1/2,1/4 [0,0,0]
		0,1/2,1/4 [0,0,0]
		0,1/2,1/4 [0,0,0]
		0,1/2,1/4 [0,0,0]
		0,1/2,1/4 [0,0,0]
		0,1/2,1/4 [0,0,0]

| 4 | c | 2/m.. 0,1/2,0 [0,0,w] |
| | | 0,1/2,0 [0,0,w] |

2	b	4'/m.. 0,0,1/2 [0,0,0]
		0,0,1/2 [0,0,0]
		0,0,1/2 [0,0,0]
		0,0,1/2 [0,0,0]
		0,0,1/2 [0,0,0]
		0,0,1/2 [0,0,0]
		0,0,1/2 [0,0,0]

2	a	4'/m.. 0,0,0 [0,0,0]
		0,0,0 [0,0,0]
		0,0,0 [0,0,0]
		0,0,0 [0,0,0]
		0,0,0 [0,0,0]
		0,0,0 [0,0,0]
		0,0,0 [0,0,0]

Symmetry of Special Projections
Along [0,0,1] p4gm1' a* = a b* = b Origin at 0,0,z
Along [1,0,0] c2mm' a* = -c b* = b Origin at x,0,0
Along [1,1,0] p2cm 2m'm' a* = -c/2 b* = (-a + b)/2 Origin at x,x,1/4
Along [0,1,0] p2c 2m'm' a* = a b* = b Origin at 0,0,z
Along [0,0,1] p4gm1' a* = a b* = b Origin at 0,0,z
Origin at center (4'/m) at 4'/m1n'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

1. 1 (1 0 0)
2. 2 0 0, z (2z 0 0, 0)
3. 4+ 0 0, z (4z 0 0, 0)
4. 4+ 0 0, z (4z-1 0 0, 0)
5. 2 (0, 1/2, 0) 1/4, y, 1/4 (2y 1/2, 1/2, 1/2)
6. 2 (1/2, 0, 0) x, 1/4, 1/4 (2x 1/2, 1/2, 1/2)
7. 2' (1/2, 1/2, 0) x, x, 1/4 (2xy 1/2, 1/2, 1/2)
8. 2' x, x + 1/2, 1/4 (2xy 1/2, 1/2, 1/2)
9. 2 0, 0, 0 (1 0, 0, 0)
10. m x, y, 0 (mz 0, 0, 0)
11. 4- z, 0, 0, 0 (4z 0, 0, 0)
12. 4- z, 0, 0, 0 (4z-1 0, 0, 0)
13. n (1/2, 0, 1/2) x, 1/4, z (m, 1/2, 1/2, 1/2)
14. n (0, 1/2, 1/2) 1/4, y, z (m, 1/2, 1/2, 1/2)
15. c' (0, 0, 1/2) x + 1/2, x, z (m, 1/2, 1/2, 1/2)
16. n' (1/2, 1/2, 1/2) x, x, z (m, 1/2, 1/2, 1/2)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>i</td>
<td>1 (1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x̅,y,z [u̅,v̅,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y̅,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v̅,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) y,x,z [v,u̅,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

8	h	m.. x,y,0 [0,0,w]
		x̅,y,0 [0,0,w]
		y̅,x,0 [0,0,w]
		y,x,0 [0,0,w]
		x+1/2,y+1/2,1/2 [0,0,w]
		x+1/2,y+1/2,1/2 [0,0,w]
		y+1/2,x+1/2,1/2 [0,0,w]
		y+1/2,x+1/2,1/2 [0,0,w]

8	g	..2' x,x+1/2,1/4 [u,u,w]
		x̅,x+1/2,1/4 [u,u,w]
		x̅,x+1/2,1/4 [u,u,w]
		x+1/2,x+1/2,1/4 [u,u,w]
		x+1/2,x+1/2,1/4 [u,u,w]

8	f	2.. 0,1/2,z [0,0,w]
		1/2,0,z [0,0,w]
		1/2,0,z+1/2 [0,0,w]
		1/2,0,z+1/2 [0,0,w]

4	e	4'.. 0,0,z [0,0,0]
		1/2,1/2,z+1/2 [0,0,0]
		0,0,z [0,0,0]
		1/2,1/2,z+1/2 [0,0,0]

4	d	2.2'2' 0,1/2,1/4 [0,0,w]
		1/2,0,1/4 [0,0,w]
		0,1/2,3/4 [0,0,w]
		1/2,0,3/4 [0,0,w]

4	c	2/m.. 0,1/2,0 [0,0,w]
		1/2,0,0 [0,0,w]
		1/2,0,1/2 [0,0,w]
		0,1/2,1/2 [0,0,w]

| 2 | b | 4'/m.. 0,1/2 [0,0,0] |
| | | 1/2,1,2 [0,0,0] |

| 2 | a | 4'/m.. 0,0 [0,0,0] |
| | | 1/2,1/2,1/2 [0,0,0] |

Symmetry of Special Projections

Along [0,0,1] p4gm1’

\[\mathbf{a^*} = \mathbf{a} \quad \mathbf{b^*} = \mathbf{b} \]

Origin at 0,0,z

Along [1,0,0] c\(^{-}&\) 2’mm’

\[\mathbf{a^*} = -\mathbf{c} \quad \mathbf{b^*} = \mathbf{b} \]

Origin at x,0,0

Along [1,1,0] p 2’m’

\[\mathbf{a^*} = -\mathbf{c}/2 \quad \mathbf{b^*} = (-\mathbf{a} + \mathbf{b})/2 \]

Origin at x,x,0
Origin at center (4/m'c) at 4/m'1n

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

1. \(1\) \(0,0,0 \)
2. \(2\) \(0,0,z \)
\[(2z | 0,0,0) \]
3. \(4^+\) \(0,0,z \)
\[(4z | 0,0,0)' \]
4. \(4^-\) \(0,0,z \)
\[(4z^- | 0,0,0)' \]
5. \(2\) \((0,1/2,0) \)
\[1/4,1/4,1/4 \]
\[(2x | 1/2,1/2,1/2) \]
6. \(2\) \((1/2,0,0) \)
\[x,1/4,1/4 \]
\[(2x_0 | 1/2,1/2,1/2) \]
7. \(2'\) \((1/2,1/2,0) \)
\[x,x,1/4 \]
\[(2x_0 | 1/2,1/2,1/2)' \]
8. \(2'\) \(x,x+1/2,1/4 \)
\[(2x_0 | 1/2,1/2,1/2)' \]
9. \(\overline{1}\) \(0,0,0 \)
\[(1 | 0,0,0)' \]
10. \(m'\) \(x,y,0 \)
\[(m_2 | 0,0,0)' \]
11. \(\overline{4}^+\) \(0,0,z; 0,0,0 \)
\[(4z | 0,0,0) \]
12. \(\overline{4}^-\) \(0,0,z; 0,0,0 \)
\[(4z^- | 0,0,0) \]
13. \(n'\) \((1/2,0,1/2) \)
\[x,1/4,z \]
\[(m_2 | 1/2,1/2,1/2)' \]
14. \(n'\) \((0,1/2,1/2) \)
\[1/4,y,z \]
\[(m_2 | 1/2,1/2,1/2)' \]
15. \(c\) \((0,0,1/2) \)
\[x+1/2,x,z \]
\[(m_2 | 1/2,1/2,1/2) \]
16. \(n\) \((1/2,1/2,1/2) \)
\[x,x,z \]
\[(m_2 | 1/2,1/2,1/2) \]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 i 1 (1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) y,x,z [v,u,w]</td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(9) x,y,z [u,v,w]</td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(11) y,x,z [v,u,w]</td>
<td>(12) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(14) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 h m’..</th>
<th>x,y,0 [u,v,0]</th>
<th>x,y,0 [u,v,0]</th>
<th>y,x,0 [v,u,0]</th>
<th>y,x,0 [v,u,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 g ..2’</th>
<th>x+1/2,1/4 [u,u,w]</th>
<th>x+1/2,1/4 [u,u,w]</th>
<th>x+1/2,1/4 [u,u,w]</th>
<th>x+1/2,1/4 [u,u,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x+1/2,3/4 [u,u,w]</td>
<td>x+1/2,3/4 [u,u,w]</td>
<td>x+1/2,3/4 [u,u,w]</td>
<td>x+1/2,3/4 [u,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 f 2..</th>
<th>0,1/2,z [0,0,w]</th>
<th>1/2,0,z [0,0,w]</th>
<th>1/2,0,z [0,0,w]</th>
<th>1/2,0,z [0,0,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 e 4’..</th>
<th>0,0,z [0,0,0]</th>
<th>1/2,1/2,z+1/2 [0,0,0]</th>
<th>0,0,z [0,0,0]</th>
<th>1/2,1/2,z+1/2 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 d 2.2’</td>
<td>1/2,0,1/4 [0,0,w]</td>
<td>1/2,0,1/4 [0,0,w]</td>
<td>1/2,3/4 [0,0,w]</td>
<td>1/2,3/4 [0,0,w]</td>
</tr>
<tr>
<td>4 c 2/m’..</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 b 4’/m’..</th>
<th>0,0,1/2 [0,0,0]</th>
<th>1/2,1/2,0 [0,0,0]</th>
<th>0,0,1/2 [0,0,0]</th>
<th>1/2,1/2,0 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 a 4’/m’..</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4’g’m

- \(a^* = a\)
- \(b^* = b\)

Origin at 0,0,z

Along [1,0,0] c 2m’m’

- \(a^* = a\)
- \(b^* = c\)

Origin at x,0,0

Along [1,1,0] \(p_{2a} \cdot 2m’m’\)

- \(a^* = -c/2\)
- \(b^* = (-a + b)/2\)

Origin at x,x,0

128.6.1071 - 2 - 2200
Origin at center (4/m) at 4/m1n'

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{4} \]

Symmetry Operations

1. \(1 \)
 \((1|0,0,0) \)
2. \(2 \) \(0,0,z \)
 \((2_z|0,0,0) \)
3. \(4^+ \) \(0,0,z \)
 \((4_z|0,0,0) \)
4. \(4^- \) \(0,0,z \)
 \((4_z^{-1}|0,0,0) \)
5. \(2' \) (0,1/2,0) \(1/4, y, 1/4 \)
 \((2_x|1/2,1/2,1/2)' \)
6. \(2' \) (1/2,0,0) \(x, 1/4, 1/4 \)
 \((2_x|1/2,1/2,1/2)' \)
7. \(2' \) (1/2,1/2,0) \(x, x, 1/4 \)
 \((2_x|x,1/4,1/4) \)
8. \(2' \) \(x, x + 1/2, 1/4 \)
 \((2_x|x,1/4,1/4) \)
9. \(\bar{1} \) \(0,0,0 \)
 \((1|0,0,0) \)
10. \(m \) \(x, y, 0 \)
 \((m_x|0,0,0) \)
11. \(\bar{4}^+ \) \(0,0,z; 0,0,0 \)
 \((\bar{4}_z|0,0,0) \)
12. \(\bar{4}^- \) \(0,0,z; 0,0,0 \)
 \((\bar{4}_z^{-1}|0,0,0) \)
13. \(n' \) (1/2,0,1/2) \(x, 1/4, z \)
 \((m_y|1/2,1/2,1/2)' \)
14. \(n' \) (0,1/2,1/2) \(1/4, y, z \)
 \((m_x|1/2,1/2,1/2)' \)
15. \(c' \) (0,0,1/2) \(x+1/2, x, z \)
 \((m_{xy}|1/2,1/2,1/2)' \)
16. \(n' \) (1/2,1/2,1/2) \(x, x, z \)
 \((m_{xy}|1/2,1/2,1/2)' \)
Continued

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>i</td>
<td>1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) y,x,z [v,u,w] (4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w] (6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w] (8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(9) x,y,z [v,u,w] (10) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(11) y,x,z [v,u,w] (12) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(13) y+1/2,x+1/2,z+1/2 [v,u,w] (14) x+1/2,y+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(15) y+1/2,x+1/2,z+1/2 [v,u,w] (16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>m..</td>
<td>x,y,0 [0,0,w] x,y,0 [0,0,w] y,x,0 [0,0,w] y,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/2,y+1/2,z+1/2 [0,0,w] x+1/2,y+1/2,z+1/2 [0,0,w] y+1/2,x+1/2,z+1/2 [0,0,w] y+1/2,x+1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>..2’</td>
<td>x,x+1/2,1/4 [u,u,w] x,x+1/2,1/4 [u,u,w] x,x+1/2,1/4 [u,u,w] x,x+1/2,1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x+1/2,3/4 [u,u,w] x,x+1/2,3/4 [u,u,w] x,x+1/2,3/4 [u,u,w] x,x+1/2,3/4 [u,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>2..</td>
<td>0,1/2,z [0,0,w] 1/2,0,z [0,0,w] 1/2,0,z [0,0,w] 0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,z [0,0,w] 1/2,0,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w] 0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>4..</td>
<td>0,0,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 0,0,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>2.2’2’</td>
<td>0,1/2,1/4 [0,0,w] 1/2,0,1/4 [0,0,w] 1/2,0,1/4 [0,0,w] 1/2,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>2/m..</td>
<td>0,1/2,0 [0,0,w] 1/2,0,0 [0,0,w] 1/2,0,0 [0,0,w] 1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4/m..</td>
<td>0,0,1/2 [0,0,w] 1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4/m..</td>
<td>0,0,0 [0,0,w] 1/2,1/2,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm1’

\[
\begin{align*}
\mathbf{a}^* &= \mathbf{a} & \mathbf{b}^* &= \mathbf{b} \\
\text{Origin at } 0,0,z
\end{align*}
\]

Along [1,0,0] c 2’mm’

\[
\begin{align*}
\mathbf{a}^* &= -\mathbf{c} & \mathbf{b}^* &= \mathbf{b} \\
\text{Origin at } x,0,0
\end{align*}
\]

Along [1,1,0] p 2’mm’

\[
\begin{align*}
\mathbf{a}^* &= -\mathbf{c}/2 & \mathbf{b}^* &= (-\mathbf{a} + \mathbf{b})/2 \\
\text{Origin at } x,x,0
\end{align*}
\]
Origin at center ($4'/m'$) at $4'/m'1n'$

Asymmetric unit $0 \leq x \leq 1/2$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1/4$

Symmetry Operations

1. 1
2. $2' \ 0,0,z$
3. $4^{+} \ 0,0,z$
4. $4^{-} \ 0,0,z$
5. $2' \ (0,1/2,0) \ 1/4,y,1/4$
6. $2' \ (1/2,0,0) \ x,1/4,1/4$
7. $2 \ (1/2,1/2,0) \ x,x,1/4$
8. $2 \ x,x+1/2,1/4$
9. $\overline{1} \ 0,0,0$
10. $m' \ x,y,0$
11. $\overline{4}^{-} \ 0,0,z \; 0,0,0$
12. $\overline{4}^{-} \ 0,0,z \; 0,0,0$
13. $n \ (1/2,0,1/2) \ x,1/4,z$
14. $n \ (0,1/2,1/2) \ 1/4,y,z$
15. $c' \ (0,0,1/2) \ x+1/2,x,z$
16. $n' \ (1/2,1/2,1/2) \ x,x,z$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions				
Multiplicity, Wyckoff letter, Site Symmetry.	Coordinates			
16	i	1	(1) x,y,z [u,v,w]	(2) x,y,z [u,v,w]
			(3) y,x,z [v,u,w]	(4) y,x,z [v,u,w]
			(5) x+1/2,y+1/2,z+1/2 [u,v,w]	(6) x+1/2,y+1/2,z+1/2 [u,v,w]
			(7) y+1/2,x+1/2,z+1/2 [v,u,w]	(8) y+1/2,x+1/2,z+1/2 [v,u,w]
			(9) x,y,z [u,v,w]	(10) x,y,z [u,v,w]
			(11) y,x,z [v,u,w]	(12) y,x,z [v,u,w]
			(13) x+1/2,y+1/2,z+1/2 [u,v,w]	(14) x+1/2,y+1/2,z+1/2 [u,v,w]
			(15) y+1/2,x+1/2,z+1/2 [v,u,w]	(16) y+1/2,x+1/2,z+1/2 [v,u,w]
8	h	m'..	x,y,0 [u,v,0]	x,y,0 [u,v,0]
			y,z,0 [v,u,0]	y,z,0 [v,u,0]
			(x+1/2,y+1/2,z+1/2 [u,v,w])	(y+1/2,x+1/2,z+1/2 [v,u,w])
			(x+1/2,y+1/2,z+1/2 [u,v,w])	(y+1/2,x+1/2,z+1/2 [v,u,w])
8	g	.2	x,x+1/2,1/4 [u,u,0]	x,x+1/2,1/4 [u,u,0]
			x,y,1/2,z [0,0,w]	x,y,1/2,z [0,0,w]
			(x+1/2,y+1/2,z+1/2 [u,v,w])	(y+1/2,x+1/2,z+1/2 [v,u,w])
			(x+1/2,y+1/2,z+1/2 [u,v,w])	(y+1/2,x+1/2,z+1/2 [v,u,w])
	8	2..	0,1/2,z [0,0,w]	1/2,0,z [0,0,w]
			1/2,0,z [0,0,w]	1/2,0,z [0,0,w]
			0,1/2,z+1/2 [0,0,0]	0,1/2,z+1/2 [0,0,0]
			0,1/2,z+1/2 [0,0,0]	0,1/2,z+1/2 [0,0,0]
4	e	4'..	0,0,z [0,0,0]	1/2,1/2,z+1/2 [0,0,0]
			0,0,z [0,0,0]	1/2,1/2,z+1/2 [0,0,0]
4	d	2.22	0,1/2,1/4 [0,0,0]	1/2,0,1/4 [0,0,0]
			0,1/2,1/4 [0,0,0]	1/2,0,1/4 [0,0,0]
4	c	2/m'..	0,1/2,0 [0,0,0]	1/2,0,0 [0,0,0]
			0,1/2,0 [0,0,0]	1/2,0,0 [0,0,0]
2	b	4'/m'..	0,0,1/2 [0,0,0]	1/2,1/2,0 [0,0,0]
			0,0,1/2 [0,0,0]	1/2,1/2,0 [0,0,0]
2	a	4'/m'..	0,0,0 [0,0,0]	1/2,1/2,1/2 [0,0,0]

Symmetry of Special Projections

- Along [0,0,1] p4'gm'
 \[a^* = a \quad b^* = b \]
 Origin at 0,0,z

- Along [1,0,0] c_{p\prime} 2m'm'
 \[a^* = b \quad b^* = c \]
 Origin at x,0,0

- Along [1,1,0] p 2m'm'
 \[a^* = (-a + b)/2 \quad b^* = c/2 \]
 Origin at x,x,0
Origin at center (4/m') at 4/m'1n'

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

(1) \[1 \]
(1' \[0,0,0 \])

(5) \[2 \]
(0,1/2,0) \[1/4,y,1/4 \]
(2 \[1/2,1/2,1/2 \])

(9) \[\bar{1} \]
0,0,0
(1' \[0,0,0 \])

(13) \[\bar{n}' \]
(1/2,0,1/2) \[x,1/4,z \]
(m \[1/2,1/2,1/2 \])

(14) \[\bar{n}' \]
(0,1/2,1/2) \[1/4,y,z \]
(m \[1/2,1/2,1/2 \])

(15) \[c' \]
(0,0,1/2) \[x+1/2,x,z \]
(m \[1/2,1/2,1/2 \])

(16) \[n' \]
(1/2,1/2,1/2) \[x,x,z \]
(m \[1/2,1/2,1/2 \])

\[(1) \quad 1 \]
\[(2) \quad 2 \]
[0,0,z]
\[(2_x,0,0,0) \]

\[(3) \quad 4^+ \]
[0,0,z]
\[(4_z,0,0,0) \]

\[(4) \quad 4^- \]
[0,0,z]
\[(4_z^{-1},0,0,0) \]

\[(5) \quad 2 \]
(0,1/2,0) \[1/4,y,1/4 \]
(2 \[1/2,1/2,1/2 \])

\[(6) \quad 2 \]
(1/2,0,0) \[x,1/4,1/4 \]
(2 \[1/2,1/2,1/2 \])

\[(7) \quad 2 \]
(1/2,1/2,0) \[x,x,1/4 \]
(2 \[1/2,1/2,1/2 \])

\[(8) \quad 2 \]
x,x+1/2,1/4
(2 \[1/2,1/2,1/2 \])

\[(9) \quad \bar{1} \]
0,0,0
(1' \[0,0,0 \])

\[(10) \quad m' \]
x,y,0
(m \[0,0,0 \])

\[(11) \quad \bar{4}^+ \]
0,0,z; 0,0,0
(4 \[0,0,0 \])

\[(12) \quad \bar{4}^- \]
0,0,z; 0,0,0
(4 \[0,0,0 \])

\[(13) \quad \bar{n}' \]
(1/2,0,1/2) \[x,1/4,z \]
(m \[1/2,1/2,1/2 \])

\[(14) \quad \bar{n}' \]
(0,1/2,1/2) \[1/4,y,z \]
(m \[1/2,1/2,1/2 \])

\[(15) \quad c' \]
(0,0,1/2) \[x+1/2,x,z \]
(m \[1/2,1/2,1/2 \])

\[(16) \quad n' \]
(1/2,1/2,1/2) \[x,x,z \]
(m \[1/2,1/2,1/2 \])
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>i</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>m'</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>..2</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>2..</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>4..</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>2.22</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>2/m'..</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4/m'..</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4/m'..</td>
</tr>
</tbody>
</table>

Coordinates

(1) x,y,z [u,v,w]
(2) x,y,z [u,v,w]
(3) y,x,z [v,u,w]
(4) y,x,z [v,u,w]
(5) x+1/2,y+1/2,z+1/2 [u,v,w]
(6) x+1/2,y+1/2,z+1/2 [u,v,w]
(7) y+1/2,x+1/2,z+1/2 [v,u,w]
(8) y+1/2,x+1/2,z+1/2 [v,u,w]
(9) x,y,z [u,v,w]
(10) x,y,z [u,v,w]
(11) y,x,z [v,u,w]
(12) y,x,z [v,u,w]
(13) x+1/2,y+1/2,z+1/2 [u,v,w]
(14) x+1/2,y+1/2,z+1/2 [u,v,w]
(15) y+1/2,x+1/2,z+1/2 [v,u,w]
(16) y+1/2,x+1/2,z+1/2 [v,u,w]

Symmetry of Special Projections

Along [0,0,1] p4g'm'

a* = a b* = b

Origin at 0,0,z
Origin at center $\overline{4}m2$ at $\overline{4}/nm2/g$, at $-1/4,1/4,0$ from center (2/m)

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq 1/2 - x$

Symmetry Operations

(1) 1

(2) $2 \begin{pmatrix} 0,0,z \\ 2z,0,0,0 \end{pmatrix}$

(3) $4^+ \begin{pmatrix} 0,1/2,z \\ 4z,1/2,1/2,0 \end{pmatrix}$

(4) $4^- \begin{pmatrix} 1/2,0,z \\ 4z^{-1},1/2,1/2,0 \end{pmatrix}$

(5) $2 \begin{pmatrix} 0,1/2,0 \\ 2,1/2,1/2,0 \end{pmatrix}$

(6) $2 \begin{pmatrix} 1/2,0,0 \\ 2,1/2,1/2,0 \end{pmatrix}$

(7) $2 \begin{pmatrix} x,0,0 \\ 2xy,0,0 \end{pmatrix}$

(8) $2 \begin{pmatrix} x,0,0 \\ 2xy,0,0 \end{pmatrix}$

(9) $\overline{1} \begin{pmatrix} 1/4,1/4,0 \\ 1,1/2,1/2,0 \end{pmatrix}$

(10) $n \begin{pmatrix} 1/2,1/2,0 \\ mz,1/2,1/2,0 \end{pmatrix}$

(11) $\overline{4}^+ \begin{pmatrix} 0,0,z \\ 4z,0,0 \end{pmatrix}$

(12) $\overline{4}^- \begin{pmatrix} 0,0,z; 0,0,0 \\ 4z^{-1},0,0 \end{pmatrix}$

(13) $m \begin{pmatrix} x,0,z \\ mz,0,0,0 \end{pmatrix}$

(14) $m \begin{pmatrix} 0,y,z \\ my,0,0 \end{pmatrix}$

(15) $m \begin{pmatrix} x+1/2,0,0 \\ mx,1/2,1/2,0 \end{pmatrix}$

(16) $g \begin{pmatrix} 1/2,1/2,0 \\ x,x,z \end{pmatrix}$

(mz,1/2,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>x,y,z [u,v,w]</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4mm</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>j..m</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>i..m</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>h..2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>g..2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>f2mm</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>e..2/m</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>d..2/m</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>c4mm</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b4mm2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a4mm2</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) \(p_{4\text{mm}}\)

- \(a^* = (a - b)/2\) = \(\mathbf{b}\) = \(\mathbf{c}\)

Origin at \(0,1/2,z\)

Along \([1,0,0]\) \(p2'm'g\)

- \(a^* = (a + b)/2\)

Origin at \([1,0,0]\)

Along \([1,1,0]\) \(p2mm1'\)

- \(a^* = -(a + b)/2\) = \(\mathbf{b}\) = \(\mathbf{c}\)

Origin at \([1,0,0]\)
Origin at center $\overline{4}m21''$ at $\overline{4}/nm2/1''$, at $-1/4,1/4,0$ from center (2/m1'')

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq 1/2 - x \]

Symmetry Operations

For 1 + set

(1) 1
(1 | 0,0,0)

(5) 2 (0,1/2,0) 1/4,y,0
(2 | 1/2,1/2,0)

(9) $\overline{1}$ 1/4,1/4,0
($\overline{1}$ | 1/2,1/2,0)

(13) m x,0,z
(m | 0,0,0)

(2) 2 0,0,z
(2z | 0,0,0)

(6) 2 (1/2,0,0) x,1/4,0
(2z | 1/2,1/2,0)

(10) n (1/2,1/2,0) x,y,0
(mz | 1/2,1/2,0)

(14) m 0,y,z
(mz | 0,0,0)

(3) 4' 0,1/2,z
(4z | 1/2,1/2,0)

(7) 2 x,x,0
(2y | 0,0,0)

(11) $\overline{4}'$ 0,0,z; 0,0,0
($\overline{4}z$ | 0,0,0)

(15) m x+1/2,x,z
(mxy | 1/2,1/2,0)

(4) 4' 1/2,0,z
(4z | 1/2,1/2,0)

(8) 2 x,x,0
(2y | 0,0,0)

(12) $\overline{4}'$ 0,0,z; 0,0,0
($\overline{4}z$ | 0,0,0)

(16) g (1/2,1/2,0) x,x,z
(mxy | 1/2,1/2,0)
Continued

129.2.1076

P4/nmm1'

For 1' + set

(1) 1'
(1 0,0,0)'
(2) 2' 0,0,z
(2 0,0,0)'
(3) 4' 0,1/2,z
(4 1/2,1/2,0)'
(4 1/2,0,0)'
(4 -1 1/2,1/2,0)'

(5) 2'(0,1/2,0) 1/4,y,0
(2 1/2,1/2,0)'
(6) 2'(1/2,0,0) x,1/4,0
(2 0,0,0)'
(7) 2' x,x,0
(2 z 0,0,0)'
(8) 2' x,x,0
(2 z 0,0,0)'

(9) 1' 1/4,1/4,0
(1 2/1,1/2,0)'
(10) n' (1/2,1/2,0) y,0,z
(1 0,0,0)'
(11) 4' 0,0,z; 0,0,0
(4 0,0,0)'
(12) 4' 0,0,z; 0,0,0
(4 0,0,0)'

(13) m' x,0,z
(1 0,0,0)'
(14) m' 0,y,z
(1 0,0,0)'
(15) m' x+1/2,x,z
(1 1/2,1/2,0)'
(16) g' (1/2,1/2,0) x,x,z
(1 1/2,1/2,0)'

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

16 k 11'

(1) x,y,z [0,0,0]
(2) x,y,z [0,0,0]
(3) y+1/2,x+1/2,z [0,0,0]
(4) y+1/2,x+1/2,z [0,0,0]

(5) x+1/2,y+1/2,z [0,0,0]
(6) x+1/2,y+1/2,z [0,0,0]
(7) y,x,z [0,0,0]
(8) y,x,z [0,0,0]

(9) x+1/2,y+1/2,z [0,0,0]
(10) x+1/2,y+1/2,z [0,0,0]
(11) y,x,z [0,0,0]
(12) y,x,z [0,0,0]

(13) x,y,z [0,0,0]
(14) x,y,z [0,0,0]
(15) y+1/2,x+1/2,z [0,0,0]
(16) y+1/2,x+1/2,z [0,0,0]

8 j m1' x,x+1/2,z [0,0,0]
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)

8 i m1' 0,y,z [0,0,0]
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)

8 h 21' x,x,1/2 [0,0,0]
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)

8 g 21' x,x,0 [0,0,0]
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)

4 f 2mm.1' 0,0,z [0,0,0]
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)

4 e 2/m1' 1/4,1/4,1/2 [0,0,0]
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)

4 d 2/m1' 1/4,1/4,0 [0,0,0]
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)

2 c 4mm1' 0,1/2,z [0,0,0]
(0,0,0)
(0,0,0)
(0,0,0)
(0,0,0)
Continued

2 b $\bar{4}m21'$ 0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]
2 a $\bar{4}m21'$ 0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm1'
$a^* = (a - b)/2$ $b^* = (a + b)/2$
Origin at 0,0,z

Along [1,0,0] p2mg1'
$a^* = b$ $b^* = c$
Origin at x,1/4,0

Along [1,1,0] p2mm1'
$a^* = (-a + b)/2$ $b^* = c$
Origin at x,x,0
Origin at center $\overline{4}'m2'$ at $\overline{4}'/nm2'/g$, at -1/4,1/4,0 from center (2'/m)

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq 1/2 - x$

Symmetry Operations

(1) 1
(1 | 0,0,0)

(5) 2' (0,1/2,0) 1/4,y,0
(2z | 1/2,1/2,0)'

(9) $\overline{1}'$ 1/4,1/4,0
(1 | 1/2,1/2,0)'

(13) m x,0,z
(m | 0,0,0)

(2) 2 0,0,z
(2z | 0,0,0)

(6) 2' (1/2,1/2,0) x,1/4,0
(2z | 1/2,1/2,0)'

(10) n' (1/2,1/2,0) x,y,0
(m | 1/2,1/2,0)'

(14) m 0,y,z
(m | 0,0,0)

(3) $4'$ 0,1/2,z
(4z | 1/2,1/2,0)

(7) 2' x,x,0
(2x | 0,0,0)'

(11) $\overline{4}'$ * 0,0,z; 0,0,0
(4z | 0,0,0)'

(15) m x+1/2,x,z
(m | 1/2,1/2,0)

(4) $4'$ 1/2,0,z
(4z | 1/2,1/2,0)

(8) 2' x,x,0
(2x | 0,0,0)'

(12) $\overline{4}'$ * 0,0,z; 0,0,0
(4z | 0,0,0)'

(16) g (1/2,1/2,0) x,x,z
(m | 1/2,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>k</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(1) x,y,z</td>
<td>u,v,w</td>
</tr>
<tr>
<td>(2) x,y,z</td>
<td>u,v,w</td>
</tr>
<tr>
<td>(3) y+1/2,x+1/2,z</td>
<td>v,u,w</td>
</tr>
<tr>
<td>(4) y+1/2,x+1/2,z</td>
<td>v,u,w</td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z</td>
<td>u,v,w</td>
</tr>
<tr>
<td>(6) x+1/2,y+1/2,z</td>
<td>u,v,w</td>
</tr>
<tr>
<td>(7) y,x,z</td>
<td>v,u,w</td>
</tr>
<tr>
<td>(8) y,x,z</td>
<td>v,u,w</td>
</tr>
<tr>
<td>(9) x+1/2,y+1/2,z</td>
<td>u,v,w</td>
</tr>
<tr>
<td>(10) y+1/2,x+1/2,z</td>
<td>v,u,w</td>
</tr>
<tr>
<td>(11) y+1/2,x+1/2,z</td>
<td>v,u,w</td>
</tr>
<tr>
<td>(12) y+1/2,x+1/2,z</td>
<td>v,u,w</td>
</tr>
<tr>
<td>(13) x,y,z</td>
<td>u,v,w</td>
</tr>
<tr>
<td>(14) x,y,z</td>
<td>u,v,w</td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z</td>
<td>v,u,w</td>
</tr>
<tr>
<td>(16) y+1/2,x+1/2,z</td>
<td>v,u,w</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p 4'mm' a* = (a - b)/2 b* = (a + b)/2
Origin at 0,0,z

Along [1,0,0] p 2mm a* = b b* = c
Origin at x,1/4,0

Along [1,1,0] p 2mm' a* = (a - b)/2 b* = c
Origin at x,x,0
Origin at center $\overline{4}m2$ at $\overline{4}'/nm2/g$, at $-1/4,1/4,0$ from center ($2/m$).

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq 1/2 - x$

Symmetry Operations

(1) 1

(2) 2 $0,0,z$

(3) $4'$ $0,1/2,z$

(4) $4' \cdot 1/2,0,z$

(5) $2'$ $(0,1/2,0)$ $1/4,y,0$

(6) $2' (1/2,0,0)$ $x,1/4,0$

(7) $2 \cdot x,x,0$

(8) $2 \cdot x,x,0$

(9) $\overline{4}$ $1/4,1/4,0$

(10) $n (1/2,1/2,0)$ $x,y,0$

(11) $\overline{4} \cdot 0,0,z; 0,0,0$

(12) $\overline{4} \cdot 0,0,z; 0,0,0$

(13) $\overline{4}$ $x,0,z$

(14) $m' 0,y,z$

(15) $m \cdot x+1/2,\overline{x},z$

(16) $g (1/2,1/2,0)$ x,x,z
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

16 k 1

(1) x,y,z [u,v,w] (2) x',y',z [u',v',w'] (3) y+1/2,x+1/2,z [v,u,w] (4) y+1/2,x+1/2,z [v,u,w]
(5) x+1/2,y+1/2,z [u,v,w] (6) x+1/2,y+1/2,z [u,v,w] (7) y,x,z [v,u,w] (8) y,x,z [v,u,w]
(9) x+1/2,y+1/2,z [u,v,w] (10) x+1/2,y+1/2,z [u,v,w] (11) y,x,z [v,u,w] (12) y,x,z [v,u,w]
(13) x,y,z [u,v,w] (14) x,y,z [u,v,w] (15) y+1/2,x+1/2,z [v,u,w] (16) y+1/2,x+1/2,z [v,u,w]

8 j .m x+1/2,z [u,u,0] x,x+1/2,z [u,u,0] x,x+1/2,z [u,u,0] x,x+1/2,z [u,u,0]
8 i .m': 0,y,z [0,v,w] 0,y,z [0,v,w] y+1/2,1/2,z [v,0,w] y+1/2,1/2,z [v,0,w]
8 h .2 x,x,1/2 [u,u,0] x,x,1/2 [u,u,0] x+1/2,x+1/2,1/2 [u,u,0] x+1/2,x+1/2,1/2 [u,u,0]

8 g .2 x,x,0 [u,u,0] x,x,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0]
4 f 2m'm'. 0,0,z [0,0,w] 1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w] 0,0,z [0,0,w]
4 e .2/m 1/4,1/4,1/2 [u,u,0] 3/4,3/4,1/2 [u,u,0] 1/4,3/4,1/2 [u,u,0] 3/4,1/4,1/2 [u,u,0]
4 d .2/m 1/4,1/4,0 [u,u,0] 3/4,3/4,0 [u,u,0] 1/4,3/4,0 [u,u,0] 3/4,1/4,0 [u,u,0]
2 c 4'm'm' 0,1/2,z [0,0,0] 1/2,0,z [0,0,0] 0,1/2,z [0,0,0] 1/2,0,z [0,0,0]
2 b 4'm'2 0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]
2 a 4'm'2 0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0] 0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p'c, 4'm'm' \(a^* = (a - b) / 2 \), \(b^* = (a + b) / 2 \)
Origin at 0,0,0
Along [1,0,0] p2m'g' \(a^* = b \), \(b^* = c \)
Origin at x,1/4,0
Along [1,1,0] p2mm1' \(a^* = -(a + b) / 2 \), \(b^* = c \)
Origin at x,x,0

129.4.1078 - 2 - 2215
Origin at center $\overline{4}m2'$ at $\overline{4}'/nm2'/g'$, at $-1/4,1/4,0$ from center ($2'/m'$)

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq 1/2 - x$

Symmetry Operations

(1) 1

$\bar{1} \ 0,0,0$

(2) $2 \ 0,0,z$

$2_z \ 0,0,0$

(3) $4' \ 0,1/2,z$

$4_z \ 1/2,1/2,0'$

(4) $4' \ 1/2,0,z$

$4_z \ 1/2,1/2,0'$

(5) $2 \ (0,1/2,0) \ 1/4,y,0$

$2_z \ 1/2,1/2,0$

(6) $2 \ (1/2,0,0) \ x,1/4,0$

$2_z \ 1/2,1/2,0$

(7) $2' \ x,x,0$

$2_{xy} \ 0,0,0'$

(8) $2' \ x,x,0$

$2_{xy} \ 0,0,0'$

(9) $\bar{1} \ 1/4,1/4,0$

$\bar{1} \ 1/2,1/2,0$

(10) $n \ (1/2,1/2,0) \ x,y,0$

$m_z \ 1/2,1/2,0$

(11) $\bar{4}' \ 0,0,z; \ 0,0,0$

$\bar{4}_z \ 0,0,0'$

(12) $\bar{4}' \ 0,0,z; \ 0,0,0$

$\bar{4}_z \ 0,0,0'$

(13) $m \ x,0,z$

$m \ 0,0,0$

(14) $m \ 0,y,z$

$m \ 0,0,0$

(15) $m' \ x+1/2,x,z$

$m_{xy} \ 1/2,1/2,0'$

(16) $g' \ (1/2,1/2,0) \ x,x,z$

$m_{xy} \ 1/2,1/2,0'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>16</td>
<td>k</td>
</tr>
<tr>
<td>(2) x,y,z [u,v,w]</td>
<td>8</td>
<td>j</td>
</tr>
<tr>
<td>(3) y+1/2,x+1/2,z [v,u,w]</td>
<td>8</td>
<td>i</td>
</tr>
<tr>
<td>(4) y+1/2,x+1/2,z [v,u,w]</td>
<td>8</td>
<td>h</td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td>4</td>
<td>f</td>
</tr>
<tr>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
<td>4</td>
<td>e</td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td>4</td>
<td>d</td>
</tr>
<tr>
<td>(8) y,x,z [v,u,w]</td>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td>(9) x+1/2,y+1/2,z [u,v,w]</td>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>(10) y+1/2,x+1/2,z [v,u,w]</td>
<td>2</td>
<td>a</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'mmm
\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]
Origin at 0,0,z

Along [1,0,0] p2mg1'
\[a^* = b \quad b^* = c \]
Origin at x,1/4,0

Along [1,1,0] p2'mmm'
\[a^* = -c \quad b^* = (-a + b)/2 \]
Origin at x,x,0
P4'/n'm'm
129.6.1080

4'/m'm'm
P4'/n'2,./m'2'/m
Tetragonal

Origin at center 4m'2' at 4/n'm'2'/g, at -1/4,1/4,0 from center (2'/m)

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ 1/2 - x

Symmetry Operations

(1) 1
(1) 0,0,0
(1|0,0,0)

(2) 2 0,0,z
(2z|0,0,0)

(3) 4+ 0,1/2,z
(4z|1/2,1/2,0)

(4) 4+ 1/2,0,z
(4z|1/2,1/2,0)

(5) 2 (0,1/2,0) 1/4,y,0
(2,1/2,1/2,0)

(6) 2 (1/2,0,0) x,1/4,0
(2x,1/2,1/2,0)

(7) 2' x,x,0
(2xx|0,0,0)

(8) 2' x,x,0
(2xx|0,0,0)

(9) 1/4,1/4,0
(1|1/2,1/2,0)

(10) n' (1/2,1/2,0) x,y,0
(m,1/2,1/2,0)

(11) 4' 0,0,z; 0,0,0
(4z|0,0,0)

(12) 4' 0,0,z; 0,0,0
(4z|0,0,0)

(13) m' x,0,z
(m,0,0,0)

(14) m' 0,y,z
(m,0,0,0)

(15) m x+1/2,x,z
(m,1/2,1/2,0)

(16) g (1/2,1/2,0) x,x,z
(mx,1/2,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>k</td>
<td>1</td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Coordinates

<table>
<thead>
<tr>
<th>Position</th>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z [v,u,w]</td>
<td>(4) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x+1/2,y+1/2,z [u,v,w]</td>
<td>(10) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(11) y,x,z [v,u,w]</td>
<td>(12) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
<td>(14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) y+1/2,x+1/2,z [v,u,w]</td>
<td>(16) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'm'm

\[a^* = (\mathbf{a} - \mathbf{b})/2 \]

Origin at 0,0,z

Along [1,0,0] p2m'g'

\[a^* = \mathbf{a} \quad b^* = \mathbf{b} \]

Origin at x,1/4,0

Along [1,1,0] p2mm'1

\[a^* = (-\mathbf{a} + \mathbf{b})/2 \quad b^* = \mathbf{c} \]

Origin at x,x,0
Origin at center $\overline{4}m'2'$ at $\overline{4}/nm'2'/g'$, at -1/4,1/4,0 from center ($2'/m'$)

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ 1/2 - x

Symmetry Operations

(1) 1
(1 | 0,0,0)

(5) 2' (0,1/2,0) 1/4,y,0
(2_z | 1/2,1/2,0)

(9) T 1/4,1/4,0
(1 | 1/2,1/2,0)

(13) m' x,0,z
(m_y | 0,0,0)

(2) 2 0,0,z
(2_z | 0,0,0)

(6) 2' (1/2,0,0) x,1/4,0
(2_z | 1/2,1/2,0)

(10) n (1/2,1/2,0) x,y,0
(m_z | 1/2,1/2,0)

(14) m' 0,y,z
(m_z | 0,0,0)

(3) 4' 0,1/2,z
(4_z | 1/2,1/2,0)

(7) 2' x,x,0
(2_y | 0,0,0)

(11) 4' 0,0,z; 0,0,0
(4_z | 0,0,0)

(15) m' x+1/2,x,z
(m_y | 1/2,1/2,0)

(4) 4' 1/2,0,z
(4_z | 1/2,1/2,0)

(8) 2' x,x,0
(2_y | 0,0,0)

(12) 4'; 0,0,z; 0,0,0
(4_z | 0,0,0)

(16) g' (1/2,1/2,0) x,x,z
(m_y | 1/2,1/2,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

Coordinates

\begin{align*}
16 & \begin{array}{llll}
1 & (1) & x,y,z & [u,v,w] \\
(2) & x',y',z' & [u',v',w] \\
(3) & y+1/2,x+1/2,z & [v,u,w] \\
(4) & y+1/2,x+1/2,z & [v,u,w] \\
(5) & x+1/2,y+1/2,z & [u,v,w] \\
(6) & x+1/2,y+1/2,z & [u,v,w] \\
(7) & y,x,z & [v,u,w] \\
(8) & y,x,z & [v,u,w] \\
(9) & x+1/2,y+1/2,z & [u,v,w] \\
(10) & x+1/2,y+1/2,z & [u,v,w] \\
(11) & y,x,z & [v,u,w] \\
(12) & y,x,z & [v,u,w] \\
(13) & x,y,z & [u,v,w] \\
(14) & x,y,z & [u,v,w] \\
(15) & y+1/2,x+1/2,z & [v,u,w] \\
(16) & y+1/2,x+1/2,z & [v,u,w] \\
8 & j & m' & x,x+1/2,z & [u,u,w] \\
& & & x,x+1/2,z & [u,u,w] \\
& & & x,x+1/2,z & [u,u,w] \\
8 & i & m'. & 0,y,z & [0,v,w] \\
& & & 0,y,z & [0,v,w] \\
& & & 0,y,z & [0,v,w] \\
8 & h & 2' & x,x+1/2 & [u,u,w] \\
& & & x,x+1/2 & [u,u,w] \\
& & & x,x+1/2 & [u,u,w] \\
8 & g & 2' & x,x,0 & [u,u,w] \\
& & & x,x,0 & [u,u,w] \\
& & & x,x,0 & [u,u,w] \\
4 & f & 2m'. & 0,0,z & [0,0,w] \\
& & & 1/2,1/2,z & [0,0,w] \\
& & & 1/2,1/2,z & [0,0,w] \\
4 & e & 2'/m' & 1/4,1/4,1/2 & [u,u,w] \\
& & & 3/4,3/4,1/2 & [u,u,w] \\
& & & 3/4,3/4,1/2 & [u,u,w] \\
4 & d & 2'/m' & 1/4,1/4,0 & [u,u,w] \\
& & & 3/4,3/4,0 & [u,u,w] \\
& & & 3/4,3/4,0 & [u,u,w] \\
2 & c & 4m'. & 0,1/2,z & [0,0,w] \\
& & & 1/2,0,z & [0,0,w] \\
2 & b & 4m'2' & 0,0,1/2 & [0,0,w] \\
& & & 1/2,1/2,1/2 & [0,0,w] \\
2 & a & 4m'2' & 0,0,0 & [0,0,w] \\
& & & 1/2,1/2,0 & [0,0,w]
\end{array}
\end{align*}

Symmetry of Special Projections

Along [0,0,1] \(p_{0.2} \) 4m'm'
Along [1,0,0] \(p_{2} \) 4m'g
Along [1,1,0] \(p_{2mm} \) 4m'

\[a^* = (a-b)/2 \quad b^* = (a+b)/2 \]

Origin at 1/2,0,z

\[a^* = b \quad b^* = c \]

Origin at x,1/4,0

\[a^* = c \quad b^* = -(a+b)/2 \]

Origin at x,x,0
Origin at center $\overline{4}m\bar{2}$ at $\overline{4}/n'm2/g'$, at $-1/4,1/4,0$ from center ($2/m'$)

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq 1/2 - x$

Symmetry Operations

1. 1
2. $2,0,0,z$ $0 \leq z \leq 1/2$
3. $4^+,0,1/2,z$ $0 \leq z \leq 1/2$
4. $4^+,1/2,0,z$ $0 \leq z \leq 1/2$
5. $2'(0,1/2,0)$ $1/4,y,0$ $0 \leq y \leq 1/2$
6. $2'(1/2,0,0)$ $2',1/2,0$ $0 \leq y \leq 1/2$
7. $2,x,x,0$ $0 \leq x \leq 1/2$
8. $2,x,x,0$ $0 \leq x \leq 1/2$
9. $\overline{1}^+,1/4,1/4,0$ $x,1/4,0$ $0 \leq z \leq 1/2$
10. $\overline{1}^+,1/2,1/2,0$ $x,1/4,0$ $0 \leq z \leq 1/2$
11. $\overline{4}^-,0,0,z$ $0 \leq z \leq 1/2$
12. $\overline{4}^-,0,0,z$ $0 \leq z \leq 1/2$
13. $m,x,0,z$ $0 \leq z \leq 1/2$
14. $m,0,y,z$ $0 \leq y \leq 1/2$
15. $m',x+1/2,x,z$ $0 \leq z \leq 1/2$
16. $g'(1/2,1/2,0)$ x,x,z $0 \leq z \leq 1/2$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Number</th>
<th>k</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x, y, z [u, v, w]</td>
</tr>
<tr>
<td>(3) y+1/2, x+1/2, z [v, u, w]</td>
<td>(4) y+1/2, x+1/2, z [v, u, w]</td>
</tr>
<tr>
<td>(5) x+1/2, y+1/2, z [u, v, w]</td>
<td>(6) x+1/2, y+1/2, z [u, v, w]</td>
</tr>
<tr>
<td>(7) y, x, z [v, u, w]</td>
<td>(8) y, x, z [v, u, w]</td>
</tr>
<tr>
<td>(9) x, y, z [u, v, w]</td>
<td>(10) x, y, z [u, v, w]</td>
</tr>
</tbody>
</table>

Along [0,0,1] p 4'm'm
a* = (a - b)/2 b* = (a + b)/2
Origin at 0,0,z

Along [1,0,0] p2mg1'
a* = b b* = c
Origin at x,1/4,0

Along [1,1,0] p2'mm'
a* = -c b* = (-a + b)/2
Origin at x,x,0

Symmetry of Special Projections
Along [0,0,1] p 4'm'm
a* = (a - b)/2 b* = (a + b)/2
Origin at 0,0,z

Along [1,0,0] p2mg1'
a* = b b* = c
Origin at x,1/4,0

Along [1,1,0] p2'mm'
a* = -c b* = (-a + b)/2
Origin at x,x,0
Origin at center \(\overline{4}m'2\) at \(\overline{4}'\overline{n}'m'2\overline{g}'\), at -1/4,1/4,0 from center (2/m')

Asymmetric unit

\[
0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq 1/2 - x
\]

Symmetry Operations

\begin{align*}
(1) & \quad 1
(1\parallel 0,0,0) \\
(5) & \quad 2 \quad (0,1/2,0) \quad 1/4,y,0 \\
& \quad (2\parallel 1/2,1/2,0) \\
(9) & \quad \overline{1} \quad 1/4,1/4,0 \\
& \quad (1\parallel 1/2,1/2,0)' \\
(13) & \quad m' \quad x,0,z \\
& \quad (m\parallel 0,0,0)' \\
(2) & \quad 2 \quad 0,0,z \\
& \quad (2z\parallel 0,0,0) \\
(6) & \quad 2 \quad (1/2,0,0) \quad x,1/4,0 \\
& \quad (2x\parallel 1/2,1/2,0) \\
(10) & \quad n' \quad (1/2,1/2,0) \quad x,y,0 \\
& \quad (m\parallel 1/2,1/2,0)' \\
(14) & \quad m' \quad 0,y,z \\
& \quad (m\parallel 0,0,0)' \\
(3) & \quad 4' \quad 0,1/2,z \\
& \quad (4z\parallel 1/2,1/2,0) \\
(7) & \quad 2 \quad x,x,0 \\
& \quad (2x\parallel 0,0,0) \\
(11) & \quad 4' \quad 0,0,z; 0,0,0 \\
& \quad (4z\parallel 0,0,0)' \\
(15) & \quad m' \quad x+1/2,x,z \\
& \quad (m\parallel 1/2,1/2,0)' \\
(4) & \quad 4' \quad 1/2,0,z \\
& \quad (4z\parallel 1/2,1/2,0) \\
(8) & \quad 2 \quad x,\overline{x},0 \\
& \quad (2x\parallel 0,0,0) \\
(12) & \quad 4' \quad 0,0,z; 0,0,0 \\
& \quad (4z\parallel 0,0,0)' \\
(16) & \quad g' \quad (1/2,1/2,0) \quad x,x,z \\
& \quad (m\parallel 1/2,1/2,0)' \\
\end{align*}
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>k</td>
<td>1</td>
</tr>
</tbody>
</table>

Positions are given as multiples of the translation vectors, with Wyckoff letters indicating the symmetry operations. The coordinates include translations and rotations.

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin at 0,0,z</th>
<th>Along [0,0,1]</th>
<th>p4m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (a - b)/2</td>
<td>a* = b</td>
<td>b* = c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Origin at x,1/4,0</th>
<th>Along [1,0,0]</th>
<th>p2m'g'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b</td>
<td>a* = b</td>
<td>b* = c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Origin at x,x,0</th>
<th>Along [1,1,0]</th>
<th>p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (-a + b)/2</td>
<td>a* = b</td>
<td>b* = c</td>
</tr>
</tbody>
</table>
Origin at center \(\overline{4} m 2 \) at \(\overline{4}/n m 2/g \), at \(-1/4,1/4,0\) from center (2/\(m\))

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq 1/2 - x \]

Symmetry Operations

For (0,0,0) + set

\[
\begin{align*}
(1) & \quad 1 \\
 & \quad (1 | 0,0,0) \\
(2) & \quad 2 \quad 0,0,z \\
 & \quad (2_z | 0,0,0) \\
(3) & \quad 4^+ \quad 0,1/2,z \\
 & \quad (4_z | 1/2,1/2,0) \\
(4) & \quad 4^+ \quad 1/2,0,z \\
 & \quad (4_z^{-1} | 1/2,1/2,0) \\
(5) & \quad 2 \quad (0,1/2,0) \quad 1/4,y,0 \\
 & \quad (2_z | 1/2,1/2,0) \\
(6) & \quad 2 \quad (1/2,0,0) \quad x,1/4,0 \\
 & \quad (2_x | 1/2,1/2,0) \\
(7) & \quad 2 \quad x,x,0 \\
 & \quad (2_{xy} | 0,0,0) \\
(8) & \quad 2 \quad x,x,0 \\
 & \quad (2_{xy} | 0,0,0) \\
(9) & \quad \overline{4} \quad 1/4,1/4,0 \\
 & \quad (\overline{4} | 1/2,1/2,0) \\
(10) & \quad n \quad (1/2,1/2,0) \quad x,y,0 \\
 & \quad (m_{z-1/2} | 1/2,1/2,0) \\
(11) & \quad \overline{4} \quad 0,0,z \quad 0,0,0 \\
 & \quad (\overline{4}_z | 0,0,0) \\
(12) & \quad \overline{4} \quad 0,0,z \quad 0,0,0 \\
 & \quad (\overline{4}_z^{-1} | 0,0,0) \\
(13) & \quad m \quad x,0,z \\
 & \quad (m_{0,0,0}) \\
(14) & \quad m \quad 0,y,z \\
 & \quad (m_{0,0,0}) \\
(15) & \quad m \quad x+1/2,\overline{x},z \\
 & \quad (m_{x+1/2,1/2,0}) \\
(16) & \quad g \quad (1/2,1/2,1) \quad x,x,z \\
 & \quad (m_{x+1/2,1/2,0})
\end{align*}
\]

For (0,0,1) + set

\[
\begin{align*}
(1) & \quad t' \quad (0,0,1) \\
 & \quad (1 | 0,0,1)' \\
(2) & \quad 2' \quad (0,0,1) \quad 0,0,z \\
 & \quad (2_z | 0,0,1)' \\
(3) & \quad 4^+ \quad (0,0,1) \quad 0,1/2,z \\
 & \quad (4_z | 1/2,1/2,1)' \\
(4) & \quad 4^+ \quad (0,0,1) \quad 1/2,0,z \\
 & \quad (4_z^{-1} | 1/2,1/2,1)' \\
(5) & \quad 2' \quad (0,1/2,0) \quad 1/4,y,1/2 \\
 & \quad (2_z | 1/2,1/2,1)'
\end{align*}
\]

Generators selected

\((1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5); (9). \)

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[
\begin{align*}
(0,0,0) + (0,0,1)' +
\end{align*}
\]

\[
\begin{align*}
(1) & \quad x,y,z \ [u,v,w] \\
(2) & \quad \overline{x},\overline{y},\overline{z} \ [\overline{u},\overline{v},\overline{w}] \\
(3) & \quad y+1/2,x+1/2,z \ [\overline{v},u,w] \\
(4) & \quad y+1/2,\overline{x}+1/2,z \ [\overline{v},u,w] \\
(5) & \quad x+1/2,y+1/2,\overline{z} \ [u,v,w] \\
(6) & \quad x+1/2,\overline{y}+1/2,\overline{z} \ [u,v,w] \\
(7) & \quad y,x,z \ [v,u,w] \\
(8) & \quad \overline{y},\overline{x},z \ [\overline{v},u,w] \\
(9) & \quad \overline{x}+1/2,y+1/2,\overline{z} \ [u,v,w] \\
(10) & \quad x+1/2,y+1/2,\overline{z} \ [\overline{u},\overline{v},w] \\
(11) & \quad y,x,z \ [v,u,w] \\
(12) & \quad \overline{y},\overline{x},z \ [\overline{v},u,w] \\
(13) & \quad x,\overline{y},z \ [u,v,w] \\
(14) & \quad \overline{x},\overline{y},\overline{z} \ [\overline{u},\overline{v},\overline{w}] \\
(15) & \quad \overline{y}+1/2,\overline{x}+1/2,z \ [v,u,w] \\
(16) & \quad y+1/2,\overline{x}+1/2,z \ [\overline{v},u,w]
\end{align*}
\]
Continued 129.10.1084

16 i .m. 0,y,z [u,0,0] 0,y ,z [u,0,0] y+1/2,1/2,z [0,u,0] y+1/2,1/2,z [0,u,0]
 1/2,y+1/2,z [u,0,0] 1/2,y+1/2,z [u,0,0] y,0,z [0,u,0] y,0,z [0,u,0]
16 h ..2' x,x,1/2 [u,u,w] x,x,1/2 [u,u,w] x+1/2,x+1/2,1/2 [u,u,w] x+1/2,x+1/2,1/2 [u,u,w]
 x+1/2,x+1/2,1/2 [u,u,w] x,x,1/2 [u,u,w] x,x,1/2 [u,u,w]
16 g ..2 x,x,0 [u,u,0] x,x,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0]
 x+1/2,x+1/2,0 [u,u,0] x,x,0 [u,u,0] x,x,0 [u,u,0]
 8 f 2mm. 0,0,z [0,0,0] 1/2,1/2,z [0,0,0] 1/2,1/2,z [0,0,0] 0,0,z [0,0,0]
 8 e ..2'/m 1/4,1/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 1/4,3/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0]
 8 d ..2/m 1/4,1/4,0 [u,u,0] 3/4,3/4,0 [u,u,0] 1/4,3/4,0 [u,u,0] 3/4,1/4,0 [u,u,0]
 4 c 4mm 0,1/2,z [0,0,0] 1/2,0,z [0,0,0]
 4 b 4'm2' 0,0,1/2 [0,0,0] 1/2,1,2,1/2 [0,0,0]
 4 a 4m2 0,0,0 [0,0,0] 1/2,1,2,0 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p 4mm 1'</th>
<th>Along [1,0,0]</th>
<th>p2mg 1'</th>
<th>Along [1,1,0]</th>
<th>p2mm 1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (a - b)/2</td>
<td>b* = (a + b)/2</td>
<td>a* = b</td>
<td>b* = c</td>
<td>a* = (-a + b)/2</td>
<td>b* = c</td>
</tr>
</tbody>
</table>

Origin at 0,0,z Origin at x,1/4,0 Origin at x,x,0
Origin at center $\overline{4}m^2$ at $\overline{4}'/nm^2$g, at -1/4, 1/4, 0 from center (2/m)

Asymmetric unit
$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq 1/2 - x$

Symmetry Operations

For (0,0,0) + set

1. 1
2. $2 \times 0,0,z$
3. $4+ \times 0,1/2,z$
4. $4- \times 1/2,0,z$
5. $2' \times (0,1/2,0), \quad 1/4, y, 0$
6. $2' \times (1/2,0,0), \quad x, 1/4, 0$
7. $2' \times x, x, 0$
8. $2' \times x, x, 0$
9. $1 \times y, y, 0$
10. $1 \times y, y, 0$
11. $4+ \times 0,0, z; 0,0, 0$
12. $4+ \times 0,0, z; 0,0, 0$
13. $m' \times x, 0, z$
14. $m' \times 0, y, z$
15. $m' \times x+1/2, x, z$
16. $g \times 1/2, 1/2, 0$

For (0,0,1) + set

1. $t' \times (0,0,1)$
2. $2' \times (0,0,1), \quad 0,0,z$
3. $4+ \times (0,0,1), \quad 0,1/2,z$
4. $4+ \times 0,0, z; 0,0, 1/2$
5. $2 \times (0,1/2,0), \quad 1/4, y, 1/2$
6. $2 \times (1/2,0,0), \quad x, 1/4, 1/2$
7. $2' \times x, x, 1/2$
8. $2' \times x, x, 1/2$
9. $1 \times y, y, 1/2$
10. $1 \times y, y, 1/2$
11. $4+ \times 0,0, z; 0,0, 0$
12. $4+ \times 0,0, z; 0,0, 1/2$
13. $c \times (0,0,1), \quad x, 0, z$
14. $c \times (0,0,1), \quad 0, y, z$
15. $c' \times (0,0,1), \quad x+1/2, x, z$
16. $n' \times (1/2,1/2,1), \quad x, x, z$

Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

32 $k \times 1$

(1) x, y, z [u,v,w]
(2) $\bar{x}, \bar{y}, \bar{z}$ [u,v,w]
(3) $y+1/2, x+1/2, z$ [v,u,w]
(4) $y+1/2, x+1/2, z$ [v,u,w]
(5) $x+1/2, y+1/2, z$ [u,v,w]
(6) $x+1/2, y+1/2, z$ [u,v,w]
(7) y, x, z [v,u,w]
(8) y, x, z [v,u,w]
(9) $x+1/2, y+1/2, z$ [u,v,w]
(10) $x+1/2, y+1/2, z$ [u,v,w]
(11) y, x, z [v,u,w]
(12) y, x, z [v,u,w]
(13) x, y, z [u,v,w]
(14) $\bar{x}, \bar{y}, \bar{z}$ [u,v,w]
(15) $\bar{y}+1/2, x+1/2, z$ [v,u,w]
(16) $y+1/2, x+1/2, z$ [v,u,w]

16 $j \times . m$

(1) $x, x+1/2, z$ [u,u,0]
(2) $\bar{x}, \bar{x}+1/2, z$ [u,u,0]
(3) $x, x+1/2, z$ [u,u,0]
(4) $\bar{x}, \bar{x}+1/2, z$ [u,u,0]
(5) $x, x+1/2, z$ [u,u,0]
(6) $\bar{x}, \bar{x}+1/2, z$ [u,u,0]
(7) $x, x+1/2, z$ [u,u,0]
(8) $\bar{x}, \bar{x}+1/2, z$ [u,u,0]
16 i .m'. 0,y,z [0,v,w] 0,y,z [0,v,w] y+1/2,1/2,z [v,0,w] y+1/2,1/2,z [v,0,w]
1/2,y+1/2,z [0,v,w] 1/2,y+1/2,z [0,v,w] y,0,z [v,0,w] y,0,z [v,0,w]
16 h .2' x,x,1/2 [u,u,w] x,x,1/2 [u,u,w] x+1/2,x+1/2,1/2 [u,u,w] x+1/2,x+1/2,1/2 [u,u,w]
 x+1/2,x+1/2,1/2 [u,u,w] x,x,1/2 [u,u,w] x,x,1/2 [u,u,w] x+1/2,x+1/2,1/2 [u,u,w]
16 g .2 x,x,0 [u,u,0] x,x,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0]
 x+1/2,x+1/2,0 [u,u,0] x+1/2,x+1/2,0 [u,u,0] x,x,0 [u,u,0] x,x,0 [u,u,0]
8 f 2m'm'. 0,0,z [0,0,w] 1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w] 0,0,z [0,0,w]
8 e .2'/m 1/4,1/4,1/2 [0,0,0] 3/4,3/4,1/2 [0,0,0] 1/4,3/4,1/2 [0,0,0] 3/4,1/4,1/2 [0,0,0]
8 d .2/m 1/4,1/4,0 [u,u,0] 3/4,3/4,0 [u,u,0] 1/4,3/4,0 [u,u,0] 3/4,1/4,0 [u,u,0]
4 c 4'm'm 0,1/2,z [0,0,0] 1/2,0,z [0,0,0]
4 b 4'm'2' 0,0,1/2 [0,0,w] 1/2,1/2,1/2 [0,0,w]
4 a 4'm'2 0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p 4mm1' Along [1,0,0] p 2m'g' Along [1,1,0] p 2mm1'
\(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \) \(a^* = b \) \(b^* = c \) \(a^* = (-a + b)/2 \) \(b^* = c \)
Origin at 0,0,z Origin at x,1/4,1/2 Origin at x,x,0
P_2c 4'/nmm'

4/mmm1'

Tetragonal

129.12.1086

P_2c 4'/n2_1/m2_1/m'
Origin at center \(\overline{4}m2' \) at \(\overline{4}'nm2'/g' \), at -1/4,1/4,0 from center (2'/m')

Asymmetric unit
\(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq 1/2 - x \)

Symmetry Operations

For \((0,0,0)+\) set

\[
\begin{align*}
(1) \quad & x, y, z \quad [u, v, w] \\
(2) \quad & x+y+1/2, x+1/2, z + v+1/2, [u, v, w] \\
(3) \quad & y+1/2, x+1/2, z + [v, u, w] \\
(4) \quad & y+1/2, x+1/2, z + [v, u, w] \\
(5) \quad & x+1/2, y+1/2, z + [u, v, w] \\
(6) \quad & x+y+1/2, y+1/2, z + [u, v, w] \\
(7) \quad & y, x, z + v, u, w \\
(8) \quad & y, x, z + v, u, w \\
(9) \quad & x+y+1/2, x+1/2, z + [u, v, w] \\
(10) \quad & x+y+1/2, x+1/2, z + [u, v, w] \\
(11) \quad & y, x, z + v, u, w \\
(12) \quad & y, x, z + v, u, w \\
(13) \quad & x, y, z + [u, v, w] \\
(14) \quad & x, y, z + [u, v, w] \\
(15) \quad & y+1/2, x+1/2, z + [v, u, w] \\
(16) \quad & y+1/2, x+1/2, z + [v, u, w] \\
\end{align*}
\]

Generators selected \((1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (3); (5); (9).\)

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[
\begin{align*}
32 & \quad \begin{array}{ll}
32 & \quad k & \quad 1 \\
(1) & \quad x, y, z + [u, v, w] \\
(5) & \quad x+y+1/2, y+1/2, z + [u, v, w] \\
(9) & \quad x+y+1/2, x+1/2, z + [u, v, w] \\
(13) & \quad x, y, z + [u, v, w] \\
\end{array} \\
16 & \quad \begin{array}{ll}
16 & \quad j & \quad m' \\
\end{array} \\
\end{align*}
\]
16 i .m. 0,y,z [u,0,0] 0,y,z [0-u,0] y+1/2,1/2,z [0,u,0] y+1/2,1/2,z [0,u,0] 1/2,y+1/2,z [u,0,0] 1/2,y+1/2,z [u,0,0] y,0,z [0,u,0] y,0,z [0,u,0] 16 h .2 x,x,1/2 [u,u,0] x+1/2,y+1/2,z [u,0,0] x+1/2,y+1/2,z [u,0,0] y,0,z [0,u,0] y,0,z [0,u,0] 1/2,y+1/2,z [u,0,0] 1/2,y+1/2,z [u,0,0] 16 g .2' x,x,0 [u,u,w] x+1/2,x+1/2,0 [u,u,w] x+1/2,x+1/2,0 [u,u,w] x+1/2,x+1/2,0 [u,u,w] x+1/2,x+1/2,0 [u,u,w] x,x,0 [u,u,w] 1/2,y+1/2,z [0,u,0] 1/2,y+1/2,z [0,u,0] 8 f 2mm. 0,0,z [0,0,0] 1/2,1/2,z [0,0,0] 1/2,1/2,z [0,0,0] 0,0,z [0,0,0] 8 e .2/m 1/2,1/2,0 [u,u,0] 3/4,1/2,1/2 [u,u,0] 3/4,1/2,1/2 [u,u,0] 1/2,1/2,0 [u,u,0] 1/2,1/2,0 [u,u,0] 8 d .2'/m' 1/2,1/2,0 [u,u,0] 3/4,3/4,0 [u,u,0] 3/4,3/4,0 [u,u,0] 1/2,1/2,0 [u,u,0] 1/2,1/2,0 [u,u,0] 4 c 4'mm' 0,1/2,z [0,0,0] 1/2,0,z [0,0,0] 1/2,0,z [0,0,0] 4 b 4'm2 0,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 4 a 4'm2' 0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] Symmetry of Special Projections

Along [0,0,1] p4mm1'
\[a^* = \frac{a - b}{2} \quad b^* = \frac{a + b}{2} \]
Origin at 0,0,z

Along [1,0,0] p2mg1'
\[a^* = b \quad b^* = c \]
Origin at x,1/4,0

Along [1,1,0] p2na 2m'm'
\[a^* = -c \quad b^* = \frac{-a + b}{2} \]
Origin at x,x,1/2

129.12.1086 - 3 - 2234
Origin at center $\overline{4}m2'$ at $\overline{4}/nm2'/g'$, at -1/4,1/4,0 from center ($2'/m'$).

Asymmetric unit $0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1/2; y \leq 1/2 - x$

Symmetry Operations

For $(0,0,0)$ + set

(1) 1
(2) $2' (0,0,1)$
(5) $2' (0,1/2,0)$
(9) $1'$
(12) $4'$
(13) m'
(16) g'

(1)' + set

(1) $t'(0,0,1)$
(2) $2' (0,0,1)$
(5) $2 (0,1/2,0)$
(9) $1'$
(13) $c (0,0,1)$
(16) $n (1/2,1/2,1)$

Generators selected (1); $t(1,0,0)$; $t(0,1,0)$; $t'(0,0,1)$; (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

$$(0,0,0) + (0,0,1)' +$$

32 k 1

(1) $x,y,z [u,v,w]$ (2) $x,y,z [u,v,w]$ (3) $y+1/2,x+1/2,z [v,u,w]$ (4) $y+1/2,x+1/2,z [v,u,w]$

(5) $x+1/2,y+1/2,z [u,v,w]$ (6) $x+1/2,y+1/2,z [u,v,w]$ (7) $y,x,z [v,u,w]$ (8) $y,x,z [v,u,w]$

(9) $x+1/2,y+1/2,z [u,v,w]$ (10) $x+1/2,y+1/2,z [u,v,w]$ (11) $y,x,z [v,u,w]$ (12) $y,x,z [v,u,w]$

(13) $x,y,z [u,v,w]$ (14) $x,y,z [u,v,w]$ (15) $y+1/2,x+1/2,z [v,u,w]$ (16) $y+1/2,x+1/2,z [v,u,w]$

16 j ..m' $x,x+1/2,z [u,u,w]$ $x,x+1/2,z [u,u,w]$ $x+1/2,x,z [u,u,w]$ $x+1/2,x,z [u,u,w]$ $x,x+1/2,z [u,u,w]$ $x+1/2,x,z [u,u,w]$.

129.13.1087 - 2 - 2236
Symmetry of Special Projections

Along [0,0,1] p 4mm1'
\[a^* = \frac{a - b}{2}, \quad b^* = \frac{a + b}{2} \]
Origin at 0,0,z

Along [1,0,0] p 2m'g'
\[a^* = b, \quad b^* = c \]
Origin at 0,0,0

Along [1,1,0] p 22', 2mm'
\[a^* = -c, \quad b^* = \frac{-a + b}{2} \]
Origin at x,x,1/2
Origin at \(\bar{4}/ncc \), at \(-1/4,1/4,0\) from \(\bar{1} \)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

1. \(1 \)

2. \(2 \quad 0,0,z \)
 \((2_z|0,0,0) \)

3. \(4^+ \quad 0,1/2,z \)
 \((4_z|1/2,1/2,0) \)

4. \(4^{-} \quad 1/2,0,z \)
 \((4_z^{-}|1/2,1/2,0) \)

5. \(2 \quad (0,1/2,0) \)
 \(1/4,y,1/4 \)
 \((2_y|1/2,1/2,1/2) \)

6. \(2 \quad (1/2,0,0) \)
 \(x,1/4,1/4 \)
 \((2_x|1/2,1/2,1/2) \)

7. \(2 \quad x,x,1/4 \)
 \((2_x|0,0,1/2) \)

8. \(2 \quad x,\bar{x},1/4 \)
 \((2_x|0,0,1/2) \)

9. \(\bar{1} \quad 1/4,1/4,0 \)
 \((\bar{1}|1/2,1/2,0) \)

10. \(n \quad (1/2,1/2,0) \)
 \(x,y,0 \)
 \((m_x|1/2,1/2,0) \)

11. \(\bar{4}^- \quad 0,0,z; 0,0,0 \)
 \((4_z|0,0,0) \)

12. \(\bar{4}^- \quad 0,0,z; 0,0,0 \)
 \((4_z^{-}|0,0,0) \)

13. \(c \quad (0,0,1/2) \)
 \(x,0,z \)
 \((m_y|0,0,1/2) \)

14. \(c \quad (0,0,1/2) \)
 \(0,y,z \)
 \((m_x|0,0,1/2) \)

15. \(c \quad (0,0,1/2) \)
 \(x+1/2,x,z \)
 \((m_y|1/2,1/2,1/2) \)

16. \(n \quad (1/2,1/2,1/2) \)
 \(x,x,z \)
 \((m_y|1/2,1/2,1/2) \)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>g</td>
<td>1 (1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y+1/2,x+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) y,x,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) y,x,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_{4mm} 4mm
\begin{align*}
a^* &= (a - b)/2 \\
b^* &= (a + b)/2
\end{align*}
Origin at 1/2,0,z

Along [1,0,0] p_{222} 2m'g'
\begin{align*}
a^* &= b \\
b^* &= c/2
\end{align*}
Origin at x,1/4,0

Along [1,1,0] p_{222} 2m'm'
\begin{align*}
a^* &= -c/2 \\
b^* &= (-a + b)/2
\end{align*}
Origin at x,x,0
Origin at $\overline{4}/ncn^1$, at $-1/4,1/4,0$ from $\overline{\overline{1}}^1$.

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

For $1 +$ set

1. $1_{1}(1|0,0,0)$

2. $2_{2}(1|0,0,0)$

3. $4+_{3}(0,1/2,0)$
4. $4-_{4}(0,1/2,0)$

5. $2(0,1/2,0)$
6. $2(1,0,0)$

7. $2_{2}(0,0,1/2)$
8. $2_{2}(0,0,1/2)$

9. $1/4,1/4,0$
10. $n(1/2,1/2,0)$

11. $4_{4}^{+}(0,0,0)$
12. $4_{4}^{-}(0,0,0)$

13. $c(0,0,1/2)$
14. $c(0,0,1/2)$

15. $c(0,0,1/2)$
16. $c(0,0,1/2)$

$\overline{1}^1$
Continued

For 1' + set

<table>
<thead>
<tr>
<th>(1)</th>
<th>1'</th>
<th>(1)</th>
<th>0,0,0'</th>
<th>(2)</th>
<th>2'</th>
<th>0,0,z</th>
<th>(3)</th>
<th>4'*</th>
<th>0,1/2,z</th>
<th>(4)</th>
<th>4'*</th>
<th>1/2,0,z</th>
<th>(4')</th>
<th>1/2,1/2,0'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5)</td>
<td>2'</td>
<td>(0,1/2,0)</td>
<td>1/4,y,1/4</td>
<td>(5)</td>
<td>1'</td>
<td>1/4,1/4,0</td>
<td>(5)</td>
<td>1/2,1/2,1/2</td>
<td>(6)</td>
<td>2'</td>
<td>(1/2,0,0)</td>
<td>x,1/4,1/4</td>
<td>(7)</td>
<td>2'</td>
</tr>
<tr>
<td>(6)</td>
<td>2'</td>
<td>(1/2,0,0)</td>
<td>x,1/4,1/4</td>
<td>(7)</td>
<td>x,x,1/4</td>
<td>(8)</td>
<td>x,x,1/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9)</td>
<td>n'</td>
<td>(1/2,1/2,0)</td>
<td>x,y,0</td>
<td>(11)</td>
<td>4'*</td>
<td>0,0,z</td>
<td>0,0,0</td>
<td>(12)</td>
<td>4'*</td>
<td>0,0,z</td>
<td>0,0,0</td>
<td>(4')</td>
<td>0,0,1/2'</td>
<td></td>
</tr>
<tr>
<td>(13)</td>
<td>c'</td>
<td>(0,0,1/2)</td>
<td>x,0,z</td>
<td>(14)</td>
<td>c'</td>
<td>(0,0,1/2)</td>
<td>0,y,z</td>
<td>(15)</td>
<td>c'</td>
<td>(0,0,1/2)</td>
<td>x+1/2,x,z</td>
<td>(16)</td>
<td>n'</td>
<td>(1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(14)</td>
<td>c'</td>
<td>(0,0,1/2)</td>
<td>0,y,z</td>
<td>(15)</td>
<td>c'</td>
<td>(0,0,1/2)</td>
<td>x+1/2,x,z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(16)</td>
<td>n'</td>
<td>(1/2,1/2,1/2)</td>
<td>x,x,z</td>
<td></td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry, Coordinates

<table>
<thead>
<tr>
<th>1 +</th>
<th>1' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>g</td>
</tr>
<tr>
<td>(1)</td>
<td>x,y,z</td>
</tr>
<tr>
<td>(3)</td>
<td>y+1/2,x+1/2,z</td>
</tr>
<tr>
<td>(5)</td>
<td>x+1/2,y+1/2,z+1/2</td>
</tr>
<tr>
<td>(7)</td>
<td>y,x,z+1/2</td>
</tr>
<tr>
<td>(9)</td>
<td>x+1/2,y+1/2,z</td>
</tr>
<tr>
<td>(11)</td>
<td>y,x,z</td>
</tr>
<tr>
<td>(13)</td>
<td>x,y,z+1/2</td>
</tr>
<tr>
<td>(15)</td>
<td>y+1/2,x+1/2,z+1/2</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
</tr>
<tr>
<td>(2)</td>
<td>x,y,z</td>
</tr>
<tr>
<td>(4)</td>
<td>y+1/2,x+1/2,z</td>
</tr>
<tr>
<td>(6)</td>
<td>x+1/2,y+1/2,z+1/2</td>
</tr>
<tr>
<td>(8)</td>
<td>y,x,z+1/2</td>
</tr>
<tr>
<td>(10)</td>
<td>x+1/2,y+1/2,z</td>
</tr>
<tr>
<td>(12)</td>
<td>y,x,z</td>
</tr>
<tr>
<td>(14)</td>
<td>x,y,z+1/2</td>
</tr>
<tr>
<td>(16)</td>
<td>y+1/2,x+1/2,z+1/2</td>
</tr>
<tr>
<td>8</td>
<td>e</td>
</tr>
<tr>
<td>(1)</td>
<td>1/4,1/4,0</td>
</tr>
<tr>
<td>(3)</td>
<td>1/2,1/2,0</td>
</tr>
<tr>
<td>(5)</td>
<td>0,0,0</td>
</tr>
<tr>
<td>(7)</td>
<td>1/2,1/2,z</td>
</tr>
<tr>
<td>(9)</td>
<td>0,0,0</td>
</tr>
<tr>
<td>(11)</td>
<td>1/2,1/2,z</td>
</tr>
<tr>
<td>(13)</td>
<td>0,1/2,z</td>
</tr>
<tr>
<td>(15)</td>
<td>0,0,0</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
</tr>
<tr>
<td>(1)</td>
<td>1/2,0,z</td>
</tr>
<tr>
<td>(3)</td>
<td>1/2,0,z</td>
</tr>
<tr>
<td>(5)</td>
<td>0,0,0</td>
</tr>
<tr>
<td>(7)</td>
<td>1/2,0,z</td>
</tr>
<tr>
<td>(9)</td>
<td>1/2,0,z</td>
</tr>
<tr>
<td>(11)</td>
<td>0,1/2,z</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
</tr>
<tr>
<td>(1)</td>
<td>1/2,1/2,0</td>
</tr>
<tr>
<td>(3)</td>
<td>1/2,1/2,0</td>
</tr>
<tr>
<td>(5)</td>
<td>0,0,0</td>
</tr>
<tr>
<td>(7)</td>
<td>1/2,1/2,0</td>
</tr>
<tr>
<td>(9)</td>
<td>0,1/2,z</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4mm1'</th>
<th>Along [1,0,0]</th>
<th>p2mg1'</th>
<th>Along [1,1,0]</th>
<th>p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = (a - b)/2)</td>
<td>(b^* = (a + b)/2)</td>
<td>(a^* = b)</td>
<td>(b^* = c/2)</td>
<td>(a^* = (-a + b)/2)</td>
<td>(b^* = c/2)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,1/4,0</td>
<td></td>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at $\overline{4}/n'cc$, at $-1/4,1/4,0$ from $\overline{1}'$

Asymmetric unit

$0 \leq x \leq 1/2;
0 \leq y \leq 1/2;
0 \leq z \leq 1/4$

Symmetry Operations

(1) 1
(2) 2 0,0,z
(3) $4'$ 0,1/2,z
(4) $4'\overline{1}$ 1/2,1/2,0

(5) $2'$ (0,1/2,0) 1/4,y,1/4
(6) $2'$ (1/2,0,0) x,1/4,1/4

(7) $2'$ x,x,1/4
(8) $2'$ x,x,1/4

(9) $\overline{1}$' 1/4,1/4,0
(10) n' (1/2,1/2,0) x,y,0

(11) $\overline{4}'$ x,0,z; 0,0,0
(12) $\overline{4}'$ 0,0,z; 0,0,0

(13) c (0,0,1/2) x,0,z
(14) c (0,0,1/2) 0,y,z
(15) c (0,0,1/2) x+1/2,x,z

(16) n (1/2,1/2,1/2) x,x,z
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>g</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y + 1/2, x + 1/2, z [v, u, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x + 1/2, y + 1/2, z + 1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y, x, z + 1/2 [v, u, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x + 1/2, y + 1/2, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) y, x, z [v, u, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x, y, z + 1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) y + 1/2, x + 1/2, z + 1/2 [v, u, w]</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>x, x, 1/4 [u, u, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x + 1/2, x + 1/2, 1/4 [u, u, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x + 1/2, x + 1/2, 3/4 [u, u, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x, x, 3/4 [u, u, w]</td>
</tr>
<tr>
<td>8</td>
<td>e</td>
<td>0, 0, z [0, 0, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2, 1/2, z + 1/2 [0, 0, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0, 0, z + 1/2 [0, 0, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2, 1/2, z + 1/2 [0, 0, w]</td>
</tr>
<tr>
<td>8</td>
<td>d</td>
<td>1/4, 1/4, 0 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4, 3/4, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4, 1/4, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>0, 1/2, z [0, 0, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2, 0, z [0, 0, w]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>0, 0, 0 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2, 1/2, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>0, 0, 1/4 [0, 0, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2, 1/2, 3/4 [0, 0, w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm

\[\mathbf{a}^* = \frac{\mathbf{a} - \mathbf{b}}{2} \quad \mathbf{b}^* = \frac{\mathbf{a} + \mathbf{b}}{2} \]

Origin at 0,0,z

Along [1,0,0] \(p_{2a}, 2m'g' \)

\[\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = c/2 \]

Origin at 1/4,1/4

Along [1,1,0] \(p_{2a}, 2m'm' \)

\[\mathbf{a}^* = -c/2 \quad \mathbf{b}^* = (-\mathbf{a} + \mathbf{b})/2 \]

Origin at x,x,1/4

130.3.1090 - 2 - 2244
Origin at $\overline{4}'/nc'c$, at $-1/4,1/4,0$ from 1

Asymmetric unit

$0 \leq x \leq 1/2;
0 \leq y \leq 1/2;
0 \leq z \leq 1/4$

Symmetry Operations

1. 1
2. 2 $0,0,z$
3. $4''$ $0,1/2,z$
4. $4'
1/2,0,z$
5. $2' (0,1/2,0)$ $1/4,y,1/4$
6. $2' (1/2,0,0)$ $x,1/4,1/4$
7. 2 $x,x,0$
8. 2 $x,x,1/4$
9. $2''$ $1/4,1/4,0$
10. $n (1/2,1/2,0)$ $x,y,0$
11. $4'''$ $0,0,z$
12. $4'''$ $0,0,z$
13. $c' (0,0,1/2)$ $x,0,z$
14. $c' (0,0,1/2)$ $0,y,z$
15. $c (0,0,1/2)$ $x+1/2,x,z$
16. $n (1/2,1/2,1/2)$ x,x,z
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry, Coordinates

16 g 1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w]
(3) y+1/2,x+1/2,z [v,u,w] (4) y+1/2,x+1/2,z [v,u,w]
(5) x+1/2,y+1/2,z+1/2 [u,v,w] (6) x+1/2,y+1/2,z+1/2 [u,v,w]
(7) y,x,z [v,u,w] (8) y,x,z [v,u,w]
(9) x+1/2,y+1/2,z [v,u,w] (10) x+1/2,y+1/2,z [v,u,w]
(11) y,x,z [v,u,w] (12) y,x,z [v,u,w]
(13) x,y,z+1/2 [u,v,w] (14) x,y,z+1/2 [u,v,w]
(15) y+1/2,x+1/2,z+1/2 [v,u,w] (16) y+1/2,x+1/2,z+1/2 [v,u,w]

8 f ..2 x,x,1/4 [u,u,0] x,x,1/4 [u,u,0]
(1/2,1/2,0) [0,0,0,0] (1/2,1/2,0) [0,0,0,0]
(1,2,1/2,3/4) [u,u,0] (1,2,1/2,3/4) [u,u,0]
(1/2,0,0,0) [0,0,0,0] (1/2,0,0,0) [0,0,0,0]

8 e 2.. 0,0,z [0,0,w] 1/2,1/2,z [0,0,w]
(1/2,1/2,0,0) [0,0,0,0] (1/2,1/2,0,0) [0,0,0,0]
(0,0,0,0) [0,0,0,0] (0,0,0,0) [0,0,0,0]

8 d 1 1/4,1/4,0 [u,v,w] 3/4,3/4,0 [u,v,w]
(1/4,3/4,1/2) [u,v,w] (3/4,3,1/2) [u,v,w]
(3/4,1/4,0) [v,u,w] (3/4,1/4,0) [v,u,w]

4 c 4'.. 0,1/2,z [0,0,0] 1/2,0,z [0,0,0]
(1/2,0,0,0) [0,0,0,0] (1/2,0,0,0) [0,0,0,0]

4 b 2'.. 0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0]
(1/2,1/2,0,0) [0,0,0,0] (1/2,1/2,0,0) [0,0,0,0]

4 a 2.22 0,0,1/4 [0,0,0] 1/2,1/2,1/4 [0,0,0]
(1/2,1/2,3/4) [0,0,0,0] (1/2,1/2,3/4) [0,0,0,0]

Symmetry of Special Projections

Along [0,0,1] p 4/m'm' Along [1,0,0] p 2/m'g Along [1,1,0] p 2/m'm'
a* = (a - b)/2 b* = (a + b)/2 a* = b b* = c/2 a* = -c/2 b* = (-a + b)/2
Origin at 0,0,z Origin at x,1/4,0 Origin at x,x,0
Origin at $\bar{4}'/ncn'$, at $-1/4, 1/4, 0$ from $\bar{1}$

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1/4$

Symmetry Operations

(1) 1
(1' 0,0,0)

(5) 2 (0,1/2,0) 1/4,y,1/4
(2') 1/2,1/2,1/2

(9) $\bar{1}$ 1/4,1/4,0
($\bar{1}$' 1/2,1/2,0)

(13) c (0,0,1/2) x,0,z
(m 0,0,1/2)

(2) 2 0,0,z
(2' 0,0,0)

(6) 2 (1/2,0,0) x,1/4,1/4
(2', 1/2,1/2,1/2)

(10) n (1/2,1/2,0) x,y,0
(m 1/2,1/2,0)

(11) $\bar{4}'$ 0,0,z; 0,0,0
($\bar{4}$' 0,0,0)

(14) c (0,0,1/2) 0,y,z
(m 0,0,1/2)

(15) c' (0,0,1/2) x+1/2,x,z
(m 1/2,1/2,1/2)

(16) n' (1/2,1/2,1/2) x,x,z
(m 1/2,1/2,1/2)

(3) $4'$ 0,1/2,z
($4'$ 1/2,1/2,0)

(4) $4'$ 1/2,0,z
($4'$' 1/2,1/2,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) $y+1/2,x+1/2,z$ [v,u,w]</td>
<td>(4) $y+1/2,x+1/2,z$ [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) $x+1/2,y+1/2,z+1/2$ [u,v,w]</td>
<td>(6) $x+1/2,y+1/2,z+1/2$ [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) $y,x+1/2,v,u,w$</td>
<td>(8) $y,x+1/2,v,u,w$</td>
</tr>
<tr>
<td></td>
<td>(9) $x+1/2,y+1/2,z$ [u,v,w]</td>
<td>(10) $x+1/2,y+1/2,z$ [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(11) y,x,z [v,u,w]</td>
<td>(12) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) $x,y,z+1/2$ [u,v,w]</td>
<td>(14) $x,y,z+1/2$ [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) $y+1/2,x+1/2,z+1/2$ [u,v,w]</td>
<td>(16) $y+1/2,x+1/2,z+1/2$ [v,u,w]</td>
</tr>
<tr>
<td>8 f ..2'</td>
<td>x,x,1/4 [u,u,w]</td>
<td>x,x,1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/4 [u,u,w]</td>
<td>x+1/2,x+1/2,1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,3/4 [u,u,w]</td>
<td>x+1/2,x+1/2,3/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [u,u,w]</td>
<td>x,x,3/4 [u,u,w]</td>
</tr>
<tr>
<td>8 e 2..</td>
<td>0,0,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 d 1</td>
<td>1/4,1/4,0 [u,v,w]</td>
<td>3/4,3/4,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/4,0 [v,u,w]</td>
<td>1/4,1/4,0 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,1/2 [u,v,w]</td>
<td>3/4,1/4,1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/2 [u,v,w]</td>
<td>3/4,3/4,1/2 [v,u,w]</td>
</tr>
<tr>
<td>4 c 4'..</td>
<td>0,1/2,z [0,0,0]</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,0]</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 b 4'..</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 a 2.2'2'</td>
<td>0,0,1/4 [0,0,w]</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/4 [0,0,w]</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,3/4 [0,0,w]</td>
<td>0,0,3/4 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p_{c}: 4mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^* = (a - b)/2$</td>
<td>$b^* = (a + b)/2$</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p_{2b}: 2m'g'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^* = b$</td>
<td>$b^* = c/2$</td>
</tr>
<tr>
<td>Origin at x,1/4,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>$p_{2}': mm'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^* = -c/2$</td>
<td>$b^* = (-a + b)/2$</td>
</tr>
<tr>
<td>Origin at x,x</td>
<td></td>
</tr>
</tbody>
</table>
Origin at \(\overline{4}n'c'n \), at \(-1/4,1/4,0\) from \(\overline{1} \)

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \quad 0,0,z \\
(3) & \quad 4^+ \quad 0,1/2,z \\
(4) & \quad 4^+ \quad 1/2,0,z \\
(5) & \quad (2) \quad (0,1/2,0) \\
(6) & \quad (2) \quad (1/2,0,0) \\
(7) & \quad (2) \quad x,x,x \\
(8) & \quad (2) \quad x,x,x \\
(9) & \quad \overline{1} \quad 1/4,1/4,0 \\
(10) & \quad \overline{1} \quad (1/2,1/2,0) \\
(11) & \quad \overline{4}^+ \quad 0,0,z; 0,0,0 \\
(12) & \quad \overline{4}^+ \quad 0,0,z; 0,0,0 \\
(13) & \quad c' \quad (0,0,1/2) \\
(14) & \quad c' \quad (0,0,1/2) \\
(15) & \quad c \quad (0,0,1/2) \\
(16) & \quad n \quad (1/2,1/2,1/2)
\end{align*}
\]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>g</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>x , y , z [u , v , w]</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>y + 1/2 , x + 1/2 , z [v , u , w]</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>x + 1/2 , y + 1/2 , z + 1/2 [u , v , w]</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>y , x , z + 1/2 [v , u , w]</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>x + 1/2 , y + 1/2 , z [u , v , w]</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>y , x , z + 1/2 [v , u , w]</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>y , x , z + 1/2 [v , u , w]</td>
</tr>
<tr>
<td></td>
<td>(9)</td>
<td>x + 1/2 , y + 1/2 , z [u , v , w]</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
<td>x + 1/2 , x + 1/2 , z + 1/2 [v , u , w]</td>
</tr>
<tr>
<td></td>
<td>(11)</td>
<td>x , y , z + 1/2 [u , v , w]</td>
</tr>
<tr>
<td></td>
<td>(12)</td>
<td>x , y , z + 1/2 [u , v , w]</td>
</tr>
<tr>
<td></td>
<td>(13)</td>
<td>x , y , z + 1/2 [u , v , w]</td>
</tr>
<tr>
<td></td>
<td>(14)</td>
<td>x , y , z + 1/2 [u , v , w]</td>
</tr>
<tr>
<td></td>
<td>(15)</td>
<td>x + 1/2 , x + 1/2 , z + 1/2 [v , u , w]</td>
</tr>
<tr>
<td></td>
<td>(16)</td>
<td>x + 1/2 , x + 1/2 , z + 1/2 [v , u , w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'nm'

\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]

Origin at 0,0,z

Along [1,0,0] p2m'g'

\[a^* = b \quad b^* = c/2 \]

Origin at x,1/4,0

Along [1,1,0] p2a'2m'm'

\[a^* = -c/2 \quad b^* = (-a + b)/2 \]

Origin at x,x,0
Origin at $\overline{4}/n c'n'$, at $-1/4, 1/4, 0$ from 1

Asymmetric unit $0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1/4$

Symmetry Operations

(1) 1
(2) 2' 0,0,0
(2') 0,0,0
(3) 4' 0,1/2,0
(4) 4' 1/2,0,0
(5) 2' (0,1/2,0) 1/4,y,1/4
(6) 2' (1/2,0,0) x,1/4,1/4
(7) 2' x,x,1/4
(8) 2' x,x,1/4
(9) $\overline{1}$ 1/4,1/4,0
(10) n (1/2,1/2,0) x,y,0
(11) $\overline{4}$' 0,0,0
(12) $\overline{4}$' 0,0,0
(13) c' (0,0,1/2) x,0,z
(14) c' (0,0,1/2) 0,y,z
(15) c' (0,0,1/2) x+1/2, x,z
(16) n' (1/2,1/2,1/2) x,x,z
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>g</td>
<td>1 (1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y+1/2,x+1/2,z [v,u,w] (4) x+1/2,y+1/2,z+1/2 [u,v,w] (5) y,x,z+1/2 [v,u,w] (6) x+1/2,y+1/2,z [u,v,w] (7) y,x,z [v,u,w] (8) x,y,z [v,u,w] (9) x,y,z [v,u,w] (10) x+1/2,y+1/2,z+1/2 [v,u,w] (11) y,x,z [v,u,w] (12) y,x,z [v,u,w] (13) x,y,z+1/2 [u,v,w] (14) x,y,z+1/2 [u,v,w] (15) y+1/2,x+1/2,z+1/2 [v,u,w] (16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>..2' x,x,1/4 [u,u,w] x,x,1/4 [u,u,w] x+1/2,x+1/2,1/4 [u,u,w] x+1/2,x+1/2,1/4 [u,u,w] x+1/2,x+1/2,3/4 [u,u,w] x+1/2,x+1/2,3/4 [u,u,w] x,x,3/4 [u,u,w] x,x,3/4 [u,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>e</td>
<td>2.. 0,0,z [0,0,w] 1/2,1/2,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 0,0,z+1/2 [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>d</td>
<td>1 1/4,1/4,0 [u,v,w] 3/4,3/4,0 [u,v,w] 3/4,3/4,0 [u,v,w] 1/4,3/4,0 [v,u,w] 1/4,3/4,0 [v,u,w] 3/4,1/4,0 [v,u,w] 3/4,1/4,0 [v,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>4.. 0,1/2,z [0,0,0] 1/2,0,z+1/2 [0,0,0] 1/2,0,z+1/2 [0,0,0] 0,1/2,z+1/2 [0,0,0] 0,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>4.. 0,0,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>2.22' 0,0,1/4 [0,0,0] 1/2,1/2,1/4 [0,0,0] 1/2,1/2,1/4 [0,0,0] 1/2,1/2,3/4 [0,0,0] 1/2,1/2,3/4 [0,0,0] 0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p 4m'm' a* = (a - b)/2 b* = (a + b)/2
- Along [1,0,0] p 2'm'g a* = b b* = c/2
- Along [1,1,0] p2mm' a* = -c/2 b* = (-a + b)/2

Origin at 1/2,0,z Origin at x,1/4,0 Origin at x,x,0
Origin at $\overline{4}/n'cc'$, at $-1/4,1/4,0$ from $1'$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

(1) 1
(2) 2 $0,0,z$
(3) $4'/ 0,1/2,z$
(4) $4'/ 1/2,0,z$

(5) $2' (0,1/2,0) 1/4,y,1/4$
(6) $2' (1/2,0,0) x,1/4,1/4$
(7) $2 x,x,1/4$
(8) $2 x,x,1/4$

(9) $\overline{1} 1/4,1/4,0$
(10) $n' (1/2,1/2,0) x,y,0$
(11) $4' 0,0,z; 0,0,0$
(12) $4' 0,0,z; 0,0,0$

(13) c $(0,0,1/2) x,0,z$
(14) c $(0,0,1/2) 0,y,z$
(15) $c' (0,0,1/2) x+1/2,\overline{z},z$
(16) $n' (1/2,1/2,1/2) x,x,z
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicities, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2,y+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x+1/2,y+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(10) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(11) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(12) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(14) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) x+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'm'm
a* = (a - b)/2 b* = (a + b)/2
Origin at 0,0,z

Along [1,0,0] p2b* 2m'g'
a* = b b* = c/2
Origin at 1/4,1/4,0

Along [1,1,0] p2m'm'
a* = (a + b)/2 b* = c/2
Origin at x,x,0

130.8.1095 - 2 - 2254
P4/n'c'c'

130.9.1096

4/m'm'm'

P4/n'c'c'

Tetragonal

Origin at $\overline{4}'/n'c'n'$, at $-1/4,1/4,0$ from $\overline{1}'$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

1. 1

 $1 | 0,0,0$

2. 2 0,0,z

 $2_z | 0,0,0$

3. $4^+ 0,1/2,z$

 $(4_z | 1/2,1/2,0)$

4. $4^- 1/2,0,z$

 $(4_z^{-1} | 1/2,1/2,0)$

5. $2 (0,1/2,0)$ 1/4,y,1/4

 $(2_y | 1/2,1/2,1/2)$

6. $2 (1/2,0,0) x,1/4,1/4$

 $(2_x | 1/2,1/2,1/2)$

7. $2 x,x,1/4$

 $(2_{xy} | 0,0,1/2)$

8. $2 x,x,1/4$

 $(2_{xy} | 0,0,1/2)$

9. $\overline{1}' 1/4,1/4,0$

 $(\overline{1} | 1/2,1/2,0)'$

10. $n' (1/2,1/2,2,0)$ x,y,0

 $(m_z | 1/2,1/2,2,0)'$

11. $\overline{4}' 0,0,z; 0,0,0$

 $(\overline{4}_z | 0,0,0)'$

12. $\overline{4}^- 0,0,z; 0,0,0$

 $(\overline{4}_z^{-1} | 0,0,0)'$

13. $c' (0,0,1/2) x,0,z$

 $(m_y | 0,0,1/2)'$

14. $c' (0,0,1/2) 0,y,z$

 $(m_y | 0,0,1/2)'$

15. $c' (0,0,1/2) x+1/2,x,z$

 $(m_{xy} | 1/2,1/2,1/2)'$

16. $n' (1/2,1/2,1/2) x,x,z$

 $(m_{xy} | 1/2,1/2,1/2)'$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry, Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>g</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(9) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(11) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(12) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(13) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(14) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(15) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(16) x,y,z [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4m'm'm'
Along [1,0,0] p 2m'g'
Along [1,1,0] p2m'm'

\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]

Origin at 0,0,z
Origin at x,1/4,0
Origin at x,x,0
Origin at center (mmm) at P42/mmc

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

1. 1
 (1|0,0,0)
2. 2 0,0,z
 (2z|0,0,0)
3. 4+ (0,0,1/2) 0,0,z
 (4z|0,0,1/2)
4. 4- (0,0,1/2) 0,0,z
 (4z -1|0,0,1/2)
5. 2 0,y,0
 (2y|0,0,0)
6. 2 x,0,0
 (2x|0,0,0)
7. 2 x,x,1/4
 (2xy|0,0,1/2)
8. 2 x,x,1/4
 (2xy|0,0,1/2)
9. 1 0,0,0
 (1|0,0,0)
10. m x,y,0
 (mz|0,0,0)
11. 4+ 0,0,z; 0,0,1/4
 (4z|0,0,1/2)
12. 4- 0,0,z; 0,0,1/4
 (4z -1|0,0,1/2)
13. m x,0,z
 (mz|0,0,0)
14. m 0,y,z
 (mz|0,0,0)
15. c (0,0,1/2) x,x,z
 (mxy|0,0,1/2)
16. c (0,0,1/2) x,x,z
 (mxy|0,0,1/2)
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 q m..</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 p .m.</td>
<td>1/2,y,z [u,0,0]</td>
<td>1/2,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 o .m.</td>
<td>0,y,z [u,0,0]</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td>8 n ..2</td>
<td>x,x,1/4 [u,u,0]</td>
<td>x,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td>4 m m2m.</td>
<td>x,1/2,0 [0,0,0]</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 l m2m.</td>
<td>x,0,1/2 [0,0,0]</td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 k m2m.</td>
<td>x,1/2,1/2 [0,0,0]</td>
<td>x,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 j m2m.</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 i 2mm.</td>
<td>0,1/2,z [0,0,0]</td>
<td>1/2,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 h 2mm.</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 g 2mm.</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 f 4m2</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 e 4m2</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 d mmm.</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c mmm.</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b mmm.</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p4mm$	ext{1}'$
\[a^* = a\qquad b^* = b\]
Origin at 0,0,z

Along [1,0,0] p2mm1'
\[a^* = b\qquad b^* = c\]
Origin at x,0,0

Along [1,1,0] p2a1$^* 2m'm'$
\[a^* = \frac{-c}{2}\qquad b^* = \frac{(-a + b)}{2}\]
Origin at x,x,0
Origin at center (mmm1') at 4/m2/mc1'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For 1 + set

(1) 1 (1 | 0,0,0)
(2) 2 0,0,z (2z | 0,0,0)
(3) 4+ (0,0,1/2) 0,0,z (4z | 0,0,1/2)
(4) 4* (0,0,1/2) 0,0,z (4z−1 | 0,0,1/2)
(5) 2 0,y,0 (2y | 0,0,0)
(6) 2 x,0,0 (2z | 0,0,0)
(7) 2 x,x,1/4 (2xy | 0,0,1/2)
(8) 2 x,x,1/4 (2xy | 0,0,1/2)
(9) 1 0,0,0 (1 | 0,0,0)
(10) m x,y,0 (mz | 0,0,0)
(11) 4+ 0,0,z; 0,0,1/4 (4z | 0,0,1/2)
(12) 4* 0,0,z; 0,0,1/4 (4z−1 | 0,0,1/2)
(13) m x,0,z (mz | 0,0,0)
(14) m 0,y,z (mz | 0,0,0)
(15) c (0,0,1/2) x,x,z (mxy | 0,0,1/2)
(16) c (0,0,1/2) x,x,z (mxy | 0,0,1/2)
Continued

For 1^+ set

(1) $1' \ (10,0,0)$
(2) $2' \ 0,0,0 \ (2) \ 2' \ 0,0,0$
(3) $4^+ \ (0,0,1/2) \ 0,0,0 \ (4) \ 4^+ \ (0,0,1/2) \ 0,0,0$

(5) $2' \ 0,y,0 \ (2) \ 2' \ 0,y,0$
(6) $2' \ x,0,0 \ (2) \ 2' \ x,0,0$
(7) $2' \ x,x,1/4 \ (2) \ 2' \ x,x,1/4$
(8) $2' \ x,x,1/4 \ (2) \ 2' \ x,x,1/4$

(9) $1^+ \ 0,0,0 \ (1) \ 1^+ \ 0,0,0$
(10) $m' \ x,y,0 \ (2) \ m' \ x,y,0$
(11) $4^+ \ (0,0,1/4) \ 0,0,0 \ (4) \ 4^+ \ (0,0,1/4) \ 0,0,0$
(12) $4^+ \ (0,0,1/4) \ 0,0,0 \ (4) \ 4^+ \ (0,0,1/4) \ 0,0,0$

(13) $m' \ x,0,z \ (m) \ 0,0,0 \ (14) \ m' \ 0,y,0 \ (m) \ 0,0,0$
(15) $c' \ (0,0,1/2) \ x,x,1/4 \ (2) \ c' \ (0,0,1/2) \ x,x,1/4$
(16) $c' \ (0,0,1/2) \ x,x,1/4 \ (2) \ c' \ (0,0,1/2) \ x,x,1/4$

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9); 1'.

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 r 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(5) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(6) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(7) y,x,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(8) y,x,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(9) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(10) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(11) y,x,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(12) y,x,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(13) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(14) x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(15) y,x,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(16) y,x,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 q m..1'</td>
<td>x,y,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 p .m.1'</td>
<td>1/2,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 o .m.1'</td>
<td>0,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 n ..21'</td>
<td>x,x,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 m m2m.1'</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 l m2m.1'</td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 k m2m.1'</td>
<td>x,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 j m2m.1'</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p4mm1'
\[\mathbf{a}^* = \mathbf{a}, \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along [1,0,0] p2mm1'
\[\mathbf{a}^* = \mathbf{b}, \mathbf{b}^* = \mathbf{c} \]
Origin at x,0,0

Along [1,1,0] p2mm1'
\[\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2, \mathbf{b}^* = \mathbf{c}/2 \]
Origin at x,x,0
Origin at center (mmm') at 4_2 /m'2'/mc

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

(1) 1 (1|0,0,0)
(5) 2' 0,y,0
(2,|0,0,0)' (2,|0,0,0)'

(9) T' 0,0,0
(1|0,0,0)' (1|0,0,0)'

(13) m x,0,z
(m,|0,0,0) (m,|0,0,0)'

(2) 2 0,0,z
(2z|0,0,0)

(6) 2' x,0,0
(2z|0,0,0)'

(10) m' x,y,0
(m,|0,0,0)'

(3) 4' (0,0,1/2) 0,0,z
(4z|0,0,1/2)

(7) 2' x,x,1/4
(2xy|0,0,1/2)'

(11) 4' 0,0,z; 0,0,1/4
(4z|0,0,1/2)'

(4) 4' (0,0,1/2) 0,0,z
(4z|0,0,1/2)

(8) 2' x,x,1/4
(2xy|0,0,1/2)'

(12) 4' 0,0,z; 0,0,1/4
(4z|0,0,1/2)'

(14) m 0,y,z
(m,|0,0,0) (m,|0,0,0)'

(15) c (0,0,1/2) x,x,z
(mxy|0,0,1/2) (mxy|0,0,1/2)'

(16) c (0,0,1/2) x,x,z
(mxy|0,0,1/2) (mxy|0,0,1/2)'
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordination</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(11) y,x,z+1/2 [v,u,w]</td>
<td>(12) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
<td>(14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) y,x,z+1/2 [v,u,w]</td>
<td>(16) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8 q m'..</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [u,v,0]</td>
<td>y,x,1/2 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,1/2 [v,u,0]</td>
<td>y,x,1/2 [v,u,0]</td>
</tr>
<tr>
<td>8 p .m.</td>
<td>1/2,y,z [u,0,0]</td>
<td>1/2,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,z [u,0,0]</td>
<td>y,1/2,z+1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>y,1/2,z+1/2 [0,u,0]</td>
<td>y,1/2,z+1/2 [0,u,0]</td>
</tr>
<tr>
<td>8 o .m.</td>
<td>0,y,z [u,0,0]</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [u,0,0]</td>
<td>y,0,z+1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>y,0,z+1/2 [0,u,0]</td>
<td>y,0,z+1/2 [0,u,0]</td>
</tr>
<tr>
<td>8 n .2'</td>
<td>x,x,1/4 [u,u,w]</td>
<td>x,x,1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/4 [u,u,w]</td>
<td>x,x,3/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [u,u,w]</td>
<td>x,x,3/4 [u,u,w]</td>
</tr>
<tr>
<td>4 m m'2'm.</td>
<td>x,1/2,0 [0,v,0]</td>
<td>x,1/2,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,0 [0,v,0]</td>
<td>1/2,x,1/2 [v,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,1/2 [v,0,0]</td>
<td>1/2,x,1/2 [v,0,0]</td>
</tr>
<tr>
<td>4 l m'2'm.</td>
<td>x,0,1/2 [0,v,0]</td>
<td>x,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [0,v,0]</td>
<td>0,x,0 [v,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,0 [v,0,0]</td>
<td>0,x,0 [v,0,0]</td>
</tr>
<tr>
<td>4 k m'2'm.</td>
<td>x,1/2,1/2 [0,v,0]</td>
<td>x,1/2,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,1/2 [0,v,0]</td>
<td>1/2,x,0 [v,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,0 [v,0,0]</td>
<td>1/2,x,0 [v,0,0]</td>
</tr>
<tr>
<td>4 j m'2'm.</td>
<td>x,0,0 [0,v,0]</td>
<td>x,0,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [0,v,0]</td>
<td>0,x,1/2 [v,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,1/2 [v,0,0]</td>
<td>0,x,1/2 [v,0,0]</td>
</tr>
<tr>
<td>4 i 2mm.</td>
<td>0,1/2,z [0,0,0]</td>
<td>1/2,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,0]</td>
<td>0,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,0]</td>
<td>1/2,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 h 2mm.</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 g 2mm.</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 f 4 mm2'</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 e 4 mm2'</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 d m'mm.</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 c m'mm.</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b m'mm.</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>
2 a m'mmm. 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm
\(a^* = a \) \(b^* = b \)
Origin at 0,0,z

Along [1,0,0] p2mm1'
\(a^* = b \) \(b^* = c \)
Origin at x,0,0

Along [1,1,0] p2a* 2m'm'
\(a^* = -c/2 \) \(b^* = (-a + b)/2 \)
Origin at x,x,0
Origin at center (m'm'm) at $4_{2}^{'}/m2'/m'c$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

1. 1
 \[(1|0,0,0) \]

2. $2' \cdot 0,0,z$
 \[(2_{z}|0,0,0) \]

3. $4^+ \cdot (0,0,1/2) \cdot 0,0,z$
 \[(4_{z}|0,0,1/2)' \]

4. $4^- \cdot (0,0,1/2) \cdot 0,0,z$
 \[(4_{z}'|0,0,1/2)' \]

5. $2' \cdot 0,y,0$
 \[(2_{y}|0,0,0)' \]

6. $2' \cdot x,0,0$
 \[(2_{x}|0,0,0)' \]

7. $2 \cdot x,x,1/4$
 \[(2_{xx}|0,0,1/2) \]

8. $2 \cdot x,\overline{x},1/4$
 \[(2_{x}|0,0,1/2) \]

9. $\overline{1} \cdot 0,0,0$
 \[(\overline{1}|0,0,0) \]

10. $m \cdot x,y,0$
 \[(m_{x}|0,0,0) \]

11. $4\overline{2}^+ \cdot 0,0,z; 0,0,1/4$
 \[(4_{z}|0,0,1/2)' \]

12. $4\overline{2}^- \cdot 0,0,z; 0,0,1/4$
 \[(4_{z}'|0,0,1/2)' \]

13. $m' \cdot x,0,z$
 \[(m_{x}|0,0,0)' \]

14. $m' \cdot 0,y,z$
 \[(m_{y}|0,0,0)' \]

15. $c \cdot (0,0,1/2) \cdot x,\overline{x},z$
 \[(m_{x}|0,0,1/2) \]

16. $c \cdot (0,0,1/2) \cdot x,x,z$
 \[(m_{x}|0,0,1/2) \]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>16 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x̄,ȳ,z [ū,v̄,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x̄,ȳ,z [ū,v̄,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x̄,ȳ,z [ū,v̄,w]</td>
</tr>
<tr>
<td>8 q m..</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x̄,y,0 [0,0,w]</td>
</tr>
<tr>
<td>8 p .m'.</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 o .m'.</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>8 n ..2</td>
<td>x,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x̄,x̄,3/4 [ū,ū,0]</td>
</tr>
<tr>
<td>4 m m2m'.</td>
<td>x,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>4 l m2m'.</td>
<td>x,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 k m2m'.</td>
<td>x,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 j m2m'.</td>
<td>x,0,0 [0,0,w]</td>
</tr>
<tr>
<td>4 i 2m'2.</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 h 2m'2.</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 g 2m'2.</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 f 4m'2</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 e 4m'2</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 d mm'm'.</td>
<td>0,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 c mm'm'.</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 b mm'm'.</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p4mm1'
\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along [1,0,0] p2'mm'
\[\mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at x,0,0

Along [1,1,0] p2\alpha' 2m'm'
\[\mathbf{a}^* = -\mathbf{c}/2 \quad \mathbf{b}^* = (-\mathbf{a} + \mathbf{b})/2 \]
Origin at x,x,0
P4$_1$/mmc’
131.5.1101

4’/mmm’
P4$_{1}$/m2/m2’/c’

Tetragonal

Origin at center (mmm) at 4’/m2/mc’

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

(1) 1
(1 0 0,0)
(1 0 0,0)

(2) 2 0,0,z
(2z 0,0,0)
(2 0,0,0)

(3) 4’+ (0,0,1/2) 0,0,z
(4z 0,0,1/2)’
(4 0,0,1/2)’

(4) 4’- (0,0,1/2) 0,0,z
(4z-1 0,0,1/2)’
(4 0,0,1/2)’

(5) 2 0,y,0
(2z 0,0,0)
(2 0,0,0)

(6) 2 x,0,0
(2z 0,0,0)
(2 0,0,0)

(7) 2’ x,x,1/4
(2xy 0,0,1/2)’
(2’ 0,0,1/2)’

(8) 2’ x,x,1/4
(2xy 0,0,1/2)’
(2’ 0,0,1/2)’

(9) 1 0,0,0
(1 0,0,0)

(10) m x,y,0
(mz 0,0,0)
(m 0,0,0)

(11) 4’+ 0,0,z; 0,0,1/4
(4z 0,0,1/2)’
(4 0,0,1/2)’

(12) 4’- 0,0,z; 0,0,1/4
(4z-1 0,0,1/2)’
(4 0,0,1/2)’

(13) m x,0,z
(mx 0,0,0)
(m 0,0,0)

(14) m 0,y,z
(mx 0,0,0)
(m 0,0,0)

(15) c’ (0,0,1/2) x,x,z
(mxy 0,0,1/2)’
(m’x 0,0,1/2)’

(16) c’ (0,0,1/2) x,x,z
(mxy 0,0,1/2)’
(m’x 0,0,1/2)’

131.5.1101 - 1 - 2269
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); \(2\); \(3\); \(5\); \(9\).

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
<td>(10) x,y,z [u,v,w]</td>
<td>(11) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
<td>(14) x,y,z [u,v,w]</td>
<td>(15) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8 q m..</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
<td>y,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
<td>y,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 p m..</td>
<td>1/2,y,z [u,0,0]</td>
<td>1/2,y,z [u,0,0]</td>
<td>y,1/2,z+1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y,z [u,0,0]</td>
<td>1/2,y,z [u,0,0]</td>
<td>y,1/2,z+1/2 [0,u,0]</td>
</tr>
<tr>
<td>8 o m..</td>
<td>0,y,z [u,0,0]</td>
<td>0,y,z [u,0,0]</td>
<td>y,0,z+1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [u,0,0]</td>
<td>0,y,z [u,0,0]</td>
<td>y,0,z+1/2 [0,u,0]</td>
</tr>
<tr>
<td>8 n .2'</td>
<td>x,x,1/4 [u,u,w]</td>
<td>x,x,1/4 [u,u,w]</td>
<td>x,x,3/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/4 [u,u,w]</td>
<td>x,x,1/4 [u,u,w]</td>
<td>x,x,1/4 [u,u,w]</td>
</tr>
<tr>
<td>4 m m2m.</td>
<td>x,1/2,0 [0,0,0]</td>
<td>x,1/2,0 [0,0,0]</td>
<td>1/2,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 l m2m.</td>
<td>x,0,1/2 [0,0,0]</td>
<td>x,0,1/2 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 k m2m.</td>
<td>x,1/2,1/2 [0,0,0]</td>
<td>x,1/2,1/2 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4 j m2m.</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td>0,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 i 2mm.</td>
<td>0,1/2,z [0,0,0]</td>
<td>1/2,0,z+1/2 [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 h 2mm.</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 g 2mm.</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z+1/2 [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 f 4'm2'</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 e 4'm2'</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 d mmm.</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c mmm.</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b mmm.</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>
2 a mmm. 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm1'
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] p2mm1'
\(a^* = b \quad b^* = c \)
Origin at x,0,0

Along [1,1,0] p2'mm'
\(a^* = -c/2 \quad b^* = (-a + b)/2 \)
Origin at x,x,0
Origin at center (m'm'm') at 4 symmetry operations:

1. 1
2. 2 0, 0, z
3. 4 0, 0, 1/2)
4. 4 0, 0, 1/2')
5. 2 y, 0, 0
6. 2 x, 0, 0
7. 2 x, 0, 0
8. 2 x, 0, 0
9. 1 0, 0, 0
10. 1 0, 0, 0
11. 1 0, 0, 0
12. 1 0, 0, 0
13. 1 0, 0, 0
14. 1 0, 0, 0
15. 1 0, 0, 0
16. 1 0, 0, 0

Asymmetric unit:
0 ≤ x ≤ 1/2;
0 ≤ y ≤ 1/2;
0 ≤ z ≤ 1/4

Symmetry Operations:

1. 1
2. 2 0, 0, z
3. 4 0, 0, 1/2)
4. 4 0, 0, 1/2')
5. 2 y, 0, 0
6. 2 x, 0, 0
7. 2 x, 0, 0
8. 2 x, 0, 0
9. 1 0, 0, 0
10. 1 0, 0, 0
11. 1 0, 0, 0
12. 1 0, 0, 0
13. 1 0, 0, 0
14. 1 0, 0, 0
15. 1 0, 0, 0
16. 1 0, 0, 0

Tetragonal
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>r 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x, y, z [u, v, w]</td>
</tr>
<tr>
<td>8</td>
<td>q m'</td>
<td>x,y,0 [u,v,0]</td>
<td>x, y,0 [u, v, 0]</td>
</tr>
<tr>
<td>8</td>
<td>p m'</td>
<td>1/2,y,z [0,v,w]</td>
<td>1/2, y, z [0, v, w]</td>
</tr>
<tr>
<td>8</td>
<td>o m'</td>
<td>0,y,z [0,v,w]</td>
<td>0, y, z [0, v, w]</td>
</tr>
<tr>
<td>8</td>
<td>n m'</td>
<td>x,x,1/4 [u,u,w]</td>
<td>x, x,1/4 [u, u, w]</td>
</tr>
<tr>
<td>4</td>
<td>m m'2m'</td>
<td>x,1/2,0 [u,0,0]</td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>l m'2m'</td>
<td>x,0,1/2 [u,0,0]</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>k m'2m'</td>
<td>x,1/2,1/2 [u,0,0]</td>
<td>x, 1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>j m'2m'</td>
<td>x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>i 2m'</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>h 2m'</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>g 2m'</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>f 4m'2</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
<td>1/2,1/2,3/4 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>e 4m'2</td>
<td>0,0,1/4 [0,0,w]</td>
<td>0,0,3/4 [0,0, w]</td>
</tr>
<tr>
<td>2</td>
<td>d m'm'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>c m'm'</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b m'm'</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>
2 a m'm'm'. 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4'm'm
a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p2m'm'
a* = b b* = c
Origin at x,0,0

Along [1,1,0] p2a' 2m'm'
a* = -c/2 b* = (-a + b)/2
Origin at x,x,0
Origin at center (m'm'm') at $42/m2'/m'c'$

Asymmetric unit $0 < x < 1/2; \ 0 < y < 1/2; \ 0 < z < 1/4$

Symmetry Operations

1.

(1) 1

(1|0,0,0)

(2) $2' \ 0,0,z$

($2_z|0,0,0$)

(3) $4^+ (0,0,1/2) \ 0,0,z$

($4_z|0,0,1/2$)

(4) $4^- (0,0,1/2) \ 0,0,z$

($4_z^{-1}|0,0,1/2$)

(5) $2' \ 0,y,0$

($2_y|0,0,0'$)

(6) $2' \ x,0,0$

($2_x|0,0,0'$)

(7) $2' \ x,x,1/4$

($2_{xy}|0,0,1/2'$)

(8) $2' \ x,1/2$

($2_{xy}|0,0,1/2'$)

(9) $\bar{1} \ 0,0,0$

($1|0,0,0$)

(10) $m \ x,y,0$

($m_z|0,0,0$)

(11) $4^+ \ 0,0,z; 0,0,1/4$

($4_z|0,0,1/2$)

(12) $4^- \ 0,0,z; 0,0,1/4$

($4_z^{-1}|0,0,1/2$)

(13) $m' \ x,0,z$

($m_z|0,0,0'$)

(14) $m' \ 0,y,z$

($m_z|0,0,0'$)

(15) $c' (0,0,1/2) \ x,\bar{x},z$

($m_{xy}|0,0,1/2'$)

(16) $c' (0,0,1/2) \ x,\bar{x},z$

($m_{xy}|0,0,1/2'$)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>r</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
</tr>
<tr>
<td></td>
<td>(9)</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
</tr>
<tr>
<td></td>
<td>(11)</td>
</tr>
<tr>
<td></td>
<td>(12)</td>
</tr>
<tr>
<td>8</td>
<td>q</td>
</tr>
<tr>
<td></td>
<td>(13)</td>
</tr>
<tr>
<td></td>
<td>(14)</td>
</tr>
<tr>
<td></td>
<td>(15)</td>
</tr>
<tr>
<td></td>
<td>(16)</td>
</tr>
<tr>
<td>8</td>
<td>p</td>
</tr>
<tr>
<td></td>
<td>(17)</td>
</tr>
<tr>
<td></td>
<td>(18)</td>
</tr>
<tr>
<td></td>
<td>(19)</td>
</tr>
<tr>
<td></td>
<td>(20)</td>
</tr>
<tr>
<td>8</td>
<td>o</td>
</tr>
<tr>
<td></td>
<td>(21)</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
</tr>
<tr>
<td></td>
<td>(24)</td>
</tr>
<tr>
<td>8</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>(25)</td>
</tr>
<tr>
<td></td>
<td>(26)</td>
</tr>
<tr>
<td></td>
<td>(27)</td>
</tr>
<tr>
<td></td>
<td>(28)</td>
</tr>
<tr>
<td>4</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>(29)</td>
</tr>
<tr>
<td></td>
<td>(30)</td>
</tr>
<tr>
<td></td>
<td>(31)</td>
</tr>
<tr>
<td></td>
<td>(32)</td>
</tr>
<tr>
<td>4</td>
<td>l</td>
</tr>
<tr>
<td></td>
<td>(33)</td>
</tr>
<tr>
<td></td>
<td>(34)</td>
</tr>
<tr>
<td></td>
<td>(35)</td>
</tr>
<tr>
<td></td>
<td>(36)</td>
</tr>
<tr>
<td>4</td>
<td>k</td>
</tr>
<tr>
<td></td>
<td>(37)</td>
</tr>
<tr>
<td></td>
<td>(38)</td>
</tr>
<tr>
<td></td>
<td>(39)</td>
</tr>
<tr>
<td></td>
<td>(40)</td>
</tr>
<tr>
<td>4</td>
<td>j</td>
</tr>
<tr>
<td></td>
<td>(41)</td>
</tr>
<tr>
<td></td>
<td>(42)</td>
</tr>
<tr>
<td></td>
<td>(43)</td>
</tr>
<tr>
<td></td>
<td>(44)</td>
</tr>
<tr>
<td>4</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>(45)</td>
</tr>
<tr>
<td></td>
<td>(46)</td>
</tr>
<tr>
<td></td>
<td>(47)</td>
</tr>
<tr>
<td></td>
<td>(48)</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
</tr>
<tr>
<td></td>
<td>(49)</td>
</tr>
<tr>
<td></td>
<td>(50)</td>
</tr>
<tr>
<td></td>
<td>(51)</td>
</tr>
<tr>
<td></td>
<td>(52)</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>(53)</td>
</tr>
<tr>
<td></td>
<td>(54)</td>
</tr>
<tr>
<td></td>
<td>(55)</td>
</tr>
<tr>
<td></td>
<td>(56)</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td>(57)</td>
</tr>
<tr>
<td></td>
<td>(58)</td>
</tr>
<tr>
<td></td>
<td>(59)</td>
</tr>
<tr>
<td></td>
<td>(60)</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>(61)</td>
</tr>
<tr>
<td></td>
<td>(62)</td>
</tr>
<tr>
<td></td>
<td>(63)</td>
</tr>
<tr>
<td></td>
<td>(64)</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>(65)</td>
</tr>
<tr>
<td></td>
<td>(66)</td>
</tr>
<tr>
<td></td>
<td>(67)</td>
</tr>
<tr>
<td></td>
<td>(68)</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>(69)</td>
</tr>
<tr>
<td></td>
<td>(70)</td>
</tr>
<tr>
<td></td>
<td>(71)</td>
</tr>
<tr>
<td></td>
<td>(72)</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>(73)</td>
</tr>
<tr>
<td></td>
<td>(74)</td>
</tr>
<tr>
<td></td>
<td>(75)</td>
</tr>
<tr>
<td></td>
<td>(76)</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p4mm1'

\(a^* = a \quad b^* = b \)

Origin at 0,0,z

Along [1,0,0] p2'mm'

\(a^* = -c \quad b^* = b \)

Origin at x,0,0

Along [1,1,0] p 2'mm'

\(a^* = -c/2 \quad b^* = (-a + b)/2 \)

Origin at x,x,0
Origin at center (mmm') at 42'/m2'/mc'

Asymmetric unit \[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4\]

Symmetry Operations

(1) \(1\) \((1|0,0,0)\)

(2) \(2\) \((0,0,z)\)
\((2_z|0,0,0)\)

(3) \(4^{+} (0,0,1/2)\) \((0,0,z)\)
\((4_z|0,0,1/2)\)

(4) \(4^{-} (0,0,1/2)\) \((0,0,z)\)
\((4_z^{-1}|0,0,1/2)\)

(5) \(2'\) \((0,y,0)\)
\((2_y|0,0,0)\)

(6) \(2'\) \((x,0,0)\)
\((2_x|0,0,0)\)

(7) \(2\) \((x,x,1/4)\)
\((2_{xy}|0,0,1/2)\)

(8) \(2\) \((x,x,1/4)\)
\((2_{xy}|0,0,1/2)\)

(9) \(T'\) \((0,0,0)\)
\((1|0,0,0)\)

(10) \(m'\) \((x,y,0)\)
\((m_x|0,0,0)\)

(11) \(4^{+}\) \((0,0,z; 0,0,1/4)\)
\((4_z|0,0,1/2)\)

(12) \(4^{-}\) \((0,0,z; 0,0,1/4)\)
\((4_z^{-1}|0,0,1/2)\)

(13) \(m\) \((x,0,z)\)
\((m_x|0,0,0)\)

(14) \(m\) \((0,y,z)\)
\((m_y|0,0,0)\)

(15) \(c'\) \((0,0,1/2)\) \((x,x,z)\)
\((m_{xy}|0,0,1/2)\)

(16) \(c'\) \((0,0,1/2)\) \((x,x,z)\)
\((m_{xy}|0,0,1/2)\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>r</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(11) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(12) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(14) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(15) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(16) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>q</td>
<td>m'..</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [u,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,y,0 [u,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,y,0 [u,v,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,x,1/2 [v,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,x,1/2 [v,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,x,1/2 [v,u,0]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>p</td>
<td>.m.</td>
</tr>
<tr>
<td></td>
<td>1/2,y,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,y,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,y,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,1/2,z+1/2 [0,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,1/2,z+1/2 [0,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,1/2,z+1/2 [0,u,0]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>o</td>
<td>.m.</td>
</tr>
<tr>
<td></td>
<td>0,y,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,y,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,y,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,0,z+1/2 [0,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,0,z+1/2 [0,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,0,z+1/2 [0,u,0]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>n</td>
<td>..2</td>
</tr>
<tr>
<td></td>
<td>x,x,1/4 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>m</td>
<td>m'2'm.</td>
</tr>
<tr>
<td></td>
<td>x,1/2,0 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>l</td>
<td>m'2'm.</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>k</td>
<td>m'2'm.</td>
</tr>
<tr>
<td></td>
<td>x,1/2,1/2 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>j</td>
<td>m'2'm.</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>i</td>
<td>2mm.</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>2mm.</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>2mm.</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>2mm.</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>2mm.</td>
</tr>
<tr>
<td></td>
<td>0,0,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>2mm.</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>2mm.</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>2mm.</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>
2 a m'mm. 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4'mm'
\(a^* = a\quad b^* = b\)
Origin at 0,0,z

Along [1,0,0] p2mm1'
\(a^* = b\quad b^* = c\)
Origin at x,0,0

Along [1,1,0] p2m'm'
\(a^* = (a + b)/2\quad b^* = c/2\)
Origin at x,x,0
Origin at center (m'm'm') at 4/m'2/m'c'

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

1. \(1\) (1|0,0,0)
2. \(2\) \(0,0,z\) \(0,0,0\)
3. \(4^+\) \((0,0,1/2)\) \((0,0,0)\)
4. \(4^-\) \((0,0,1/2)\) \((0,0,1/2)\)
5. \(2\) \(0,y,0\) \(2_x,0,0\)
6. \(2\) \(x,0,0\) \(2_x,0,0\)
7. \(2\) \(x,x,1/4\) \(2_{xy},0,0\)
8. \(2\) \(x,x,1/4\) \(2_{xy},0,0\)
9. \(\bar{1}\) \(0,0,0\) \(2_y,0,0\)
10. \(m'\) \(x,y,0\) \(m_x,0,0\)
11. \(\bar{4}^{+}\) \(0,0,z\) \(0,0,1/2\)
12. \(\bar{4}^{-}\) \(0,0,z\) \(0,0,1/2\)
13. \(m'\) \(x,0,z\) \(m_x,0,0\)
14. \(m'\) \(y,z\) \(m_y,0,0\)
15. \(c'\) \((0,0,1/2)\) \(x,x,z\) \(m_{xy},0,0\)
16. \(c'\) \((0,0,1/2)\) \(x,x,z\) \(m_{xy},0,0\)
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>r 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
<td>(14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>q m'..</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>8</td>
<td>p .m'</td>
<td>1/2,y,z [0,v,w]</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,y,z [0,v,w]</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>o .m'</td>
<td>0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>n ..2</td>
<td>x,x,1/4 [u,u,0]</td>
<td>x,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,3/4 [u,u,0]</td>
<td>x,x,3/4 [u,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>m m'2m'</td>
<td>x,1/2,0 [u,0,0]</td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>l m'2m'</td>
<td>x,0,1/2 [u,0,0]</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>k m'2m'</td>
<td>x,1/2,1/2 [u,0,0]</td>
<td>x,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>j m'2m'</td>
<td>x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>i 2m'2</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>h 2m'2</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>g 2m'2</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>f m'2</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>e m'2</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>d m'2m'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>c m'2m'</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>
2 a m'm'm'. 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4m'm'
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p2m'm'
\[a^* = b \quad b^* = c \]
Origin at x,0,0

Along [1,1,0] p2m'm'
\[a^* = (-a + b)/2 \quad b^* = c/2 \]
Origin at x,x,0
Origin at center (mmm) at $P_{4}2/mc$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

For $(0,0,0) + \text{ set}$

1. 1

 $(1|0,0,0)$

2. $2\overline{1}$

 $(0,0,z)$

3. $4\overline{1}$

 $(0,0,1/2)$

4. $4\overline{1}$

 $(0,0,1/2)$

5. 2

 $(0,y,0)$

6. 2

 $(x,0,0)$

7. 2

 $(x,x,1/4)$

8. 2

 $(x,x,1/4)$

9. m

 (x,z)

10. m

 $(0,y,0)$

11. 4

 $(0,0,z; 0,0,1/4)$

12. 4

 $(0,0,z; 0,0,1/4)$

13. m

 $(x,0,z)$

14. m

 $(0,y,z)$

15. c

 $(0,0,1/2)$

16. c

 $(0,0,1/2)$
Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(1) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
<td>(10) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
<td>(14) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(16) y,x,z [u,v,w]</td>
<td>(15) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 q m..</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(16) y,x,z [u,v,w]</td>
<td>(15) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 p .m'.</td>
<td>1/2,y,z [0,v,w]</td>
<td>1/2,y,z [0,v,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(16) y,x,z [u,v,w]</td>
<td>(15) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 o .m.</td>
<td>0,y,z [u,0,0]</td>
<td>0,y,z [u,0,0]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(16) y,x,z [u,v,w]</td>
<td>(15) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 n ..2</td>
<td>x,x,1/4 [u,u,0]</td>
<td>x,x,1/4 [u,u,0]</td>
<td>x,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(16) y,x,z [u,v,w]</td>
<td>(15) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 m m2'.</td>
<td>x,1/2,0 [0,0,w]</td>
<td>x,1/2,0 [0,0,w]</td>
<td>x,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 l m2m.</td>
<td>x,0,1/2 [0,0,0]</td>
<td>x,0,1/2 [0,0,0]</td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 k m2'.</td>
<td>x,1/2,1/2 [0,0,w]</td>
<td>x,1/2,1/2 [0,0,w]</td>
<td>x,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 j m2m.</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 i 2'm'.</td>
<td>0,1/2,z [u,0,0]</td>
<td>0,1/2,z [u,0,0]</td>
<td>0,1/2,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

For (1,0,0)' + set

(1) t' (1,0,0) (2) 2' 1/2,0,z (3) 4' (0,0,1/2) 1/2,1/2,z (4) 4' (0,0,1/2) 1/2,-1/2,z (5) 2' 1/2,y,0 (6) 2' (1,0,0) x,0,0 (7) 2' (1/2,1/2,0) x+1/2,x,1/4 (8) 2' (1/2,-1/2,0) x+1/2,x,1/4 (9) 1' 1/2,0,0 (10) a' (1,0,0) x,y,0 (11) 4' 1/2,-1/2,1/2 1/2,-1/2,1/4 (12) 4' 1/2,1/2,1/2 1/2,1/2,1/4 (13) a' (1,0,0) x,0,z (14) m' 1/2,y,z (15) n' (1/2,1/2,1/2) x+1/2,x,z (16) n' (1/2,1/2,1/2) x+1/2,x,z

Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5); (9).
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>h</td>
<td>2m'</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td>1/2,1/2,0+z/2 [0,0,0]</td>
<td>1/2,1/2,0+z/2 [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>2mm</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0+z/2 [0,0,0]</td>
<td>0,0,0+z/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>mm'2</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>mm'2</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>mmm'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>mmm'</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>mmm'</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>mmm</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1'
\(a^* = a \) \(b^* = b \)

Origin at 0,0,z

Along [1,0,0] p2mm1'
\(a^* = b \) \(b^* = c \)

Origin at x,0,0

Along [1,1,0] p_42mm
\(a^* = (a + b)/2 \) \(b^* = c/2 \)

Origin at x-1/4,x+1/4,0
Origin at center (mmm') at 42/m2'mc

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(5) 2' 0,y,0
(2y|0,0,0)'

(9) 1' 0,0,0
(1|0,0,0)'

(13) m x,0,z
(m|0,0,0)

(2) 2 0,0,z
(2z|0,0,0)

(6) 2' x,0,0
(2x|0,0,0)'

(10) m' x,y,0
(mz|0,0,0)'

(3) 4' (0,0,1/2) 0,0,z
(4z|0,0,1/2)

(7) 2' x,x,1/4
(2xy|0,0,1/2)'

(11) 4' (0,0,1/2) 0,0,z
(4z|0,0,1/2)

(8) 2' x,x,1/4
(2xy|0,0,1/2)'

(12) 4' (0,0,1/2) 0,0,z
(4z|0,0,1/2)

(14) m 0,y,z
(mx|0,0,0)

Continued

For \((1,0,0)\)' + set

\[
\begin{align*}
(1) \ t'(1,0,0) & \quad (2) \ 2' \ 1/2,0,z \\
(2,1,0,0)' & \quad (3) \ 4' \ (0,0,1/2) \ 1/2,1/2,z \\
(2,1,0,0)' & \quad (4) \ 4' \ (0,0,1/2) \ 1/2,-1/2,z \\
\end{align*}
\]

\[
\begin{align*}
(5) \ 2 & \ 1/2,y,0 \\
(2,1,0,0)' & \quad (6) \ 2 \ (1,0,0) \ x,0,0 \\
(2,1,0,0)' & \quad (7) \ 2 \ (1/2,1/2,0) \ x+1/2,x,1/4 \\
(2,1,0,0)' & \quad (8) \ 2 \ (1/2,1/2,0) \ x+1/2,x,1/4 \\
\end{align*}
\]

\[
\begin{align*}
(9) \ 1/2,2,0,0 & \quad (10) \ a \ (1,0,0) \ x,y,0 \\
(1,0,0)' & \quad (11) \ 4' \ 1/2,1/2,0; \ 1/2,-1/2,1/4 \\
(1,0,0)' & \quad (12) \ 4' \ 1/2,1/2,0; \ 1/2,-1/2,1/4 \\
\end{align*}
\]

\[
\begin{align*}
(13) \ a'(1,0,0) & \quad (14) \ m' \ 1/2,y,z \\
(3,1,0,0)' & \quad (15) \ n' \ (1/2,1/2,1/2) \\
(3,1,0,0)' & \quad (16) \ n' \ (1/2,1/2,1/2) \\
\end{align*}
\]

\[
\begin{align*}
(13) \ a'(1,0,0) & \quad (14) \ m' \ 1/2,y,z \\
(3,1,0,0)' & \quad (15) \ n' \ (1/2,1/2,1/2) \\
(3,1,0,0)' & \quad (16) \ n' \ (1/2,1/2,1/2) \\
\end{align*}
\]

Generators selected

(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>((0,0,0) + (1,0,0)' +)</td>
</tr>
<tr>
<td>32 \ r \ 1</td>
<td>(1) \ x,y,z \ [u,v,w] \ (2) \ x, y, z \ [u, v, w] \ (3) \ y, x, z+1/2 \ [v, u, w] \ (4) \ y, x, z+1/2 \ [v, u, w]</td>
</tr>
<tr>
<td>16 \ q \ dotted \ m'.</td>
<td>x,0 \ [u, v, 0] \ x,0 \ [u, v, 0] \ y, x, 1/2 \ [v, u, 0] \ y, x, 1/2 \ [v, u, 0]</td>
</tr>
<tr>
<td>16 \ p \ dotted \ m'.</td>
<td>1/2, y, z \ [0, v, w] \ y, 1/2, z+1/2 \ [v, 0, w] \ y, 1/2, z+1/2 \ [v, 0, w]</td>
</tr>
<tr>
<td>16 \ o \ m.</td>
<td>0, y, z \ [u, 0, 0] \ 0, y, z \ [u, 0, 0] \ y, 0, z+1/2 \ [0, u, 0] \ y, 0, z+1/2 \ [0, u, 0]</td>
</tr>
<tr>
<td>16 \ n \ dotted' \ 2'</td>
<td>x, x, 1/2 \ [u, u, w] \ x, x, 1/2 \ [u, u, w] \ x, x, 3/2 \ [u, u, w] \ x, x, 3/2 \ [u, u, w]</td>
</tr>
<tr>
<td>8 \ m \ m'2m'.</td>
<td>x, 1/2, 0 \ [u, 0, 0] \ x, 1/2, 0 \ [u, 0, 0] \ 1/2, x, 1/2 \ [0, u, 0] \ 1/2, x, 1/2 \ [0, u, 0]</td>
</tr>
<tr>
<td>8 \ l \ m'2m'.</td>
<td>x, 0, 1/2 \ [0, v, 0] \ 0, x, 1/2 \ [0, v, 0] \ 0, x, 0 \ [v, 0, 0]</td>
</tr>
<tr>
<td>8 \ k \ m'2m'.</td>
<td>x, 1/2, 1/2 \ [u, 0, 0] \ x, 1/2, 1/2 \ [u, 0, 0] \ 1/2, x, 0 \ [0, u, 0] \ 1/2, x, 0 \ [0, u, 0]</td>
</tr>
<tr>
<td>8 \ j \ m'2m'.</td>
<td>x, 0, 0 \ [0, v, 0] \ 0, x, 1/2 \ [v, 0, 0] \ 0, x, 1/2 \ [v, 0, 0]</td>
</tr>
<tr>
<td>8 \ i \ 2mm'.</td>
<td>0, 1/2, z \ [u, 0, 0] \ 0, 1/2, z \ [u, 0, 0] \ 1/2, 0, z+1/2 \ [0, u, 0] \ 1/2, 0, z+1/2 \ [0, u, 0]</td>
</tr>
</tbody>
</table>

131.11.1107 - 2 - 2288
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>8</th>
<th>h</th>
<th>2m'm'.</th>
<th>1/2,1/2,z [0,0,w]</th>
<th>1/2,1/2,z+1/2 [0,0,0]</th>
<th>1/2,1/2,z [0,0,w]</th>
<th>1/2,1/2,z+1/2 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>g</td>
<td>2mm.</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z+1/2 [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>(\bar{4}m'2')</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
<td>1/2,1/2,3/4 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>(\bar{4}m2')</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>m'm'm'.</td>
<td>0,1/2,1/2 [u,0,0]</td>
<td>1/2,0,0 [0,u,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>m'mm'.</td>
<td>0,1/2,0 [u,0,0]</td>
<td>1/2,0,1/2 [0,u,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>m'm'm'.</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>m'mm.</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Along [0,0,1] \(p_0.4mm\)

\[a^* = a \quad b^* = b\]

Origin at 0,0,z

Along [1,0,0] \(p2mm1'\)

\[a^* = b \quad b^* = c\]

Origin at x,0,0

Along [1,1,0] \(p_0.2m'm'\)

\[a^* = (-a + b)/2 \quad b^* = c/2\]

Origin at x,x,0

131.11.1107 - 3 - 2289
Origin at center (m'm'm) at \(4_2/m2'/m'c'\)

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4\]

Symmetry Operations
For \((0,0,0) + \) set

1. \[1 \quad (1|0,0,0)\]
2. \[2' \quad 0,0,z \quad (2_z|0,0,0)\]
3. \[4^+ (0,0,1/2) \quad 0,0,z \quad (4_z|0,0,1/2)\]
4. \[4^- (0,0,1/2) \quad 0,0,z \quad (4_z^{-1}|0,0,1/2)\]
5. \[2' \quad 0,y,0 \quad (2_y|0,0,0)\]
6. \[2' \quad x,0,0 \quad (2_x|0,0,0)\]
7. \[2' \quad x,x,1/4 \quad (2_{xy}|0,0,1/2)\]
8. \[2' \quad x,x,1/4 \quad (2_{xy}^{-1}|0,0,1/2)\]
9. \[1 \quad 0,0,0 \quad (1|0,0,0)\]
10. \[m \quad x,y,0 \quad (m_x|0,0,0)\]
11. \[4^+ (0,0,1/4) \quad 0,0,1/4 \quad (4_z|0,0,1/2)\]
12. \[4^- (0,0,1/4) \quad 0,0,1/4 \quad (4_z^{-1}|0,0,1/2)\]
13. \[m' \quad x,0,z \quad (m_x|0,0,0)\]
14. \[m' \quad 0,y,z \quad (m_y|0,0,0)\]
15. \[c' \quad (0,0,1/2) \quad x,x,z \quad (m_{xy}|0,0,1/2)\]
16. \[c' \quad (0,0,1/2) \quad x,x,z \quad (m_{xy}|0,0,1/2)\]
For \((1,0,0)' + \) set

(1) \(t'(1,0,0)\)	(2) \(2'(1/2,0,z)\) & (3) \(4'^+ (0,0,1/2)\) & (4) \(4'^- (0,0,1/2)\)				
\((1	0,0)'\)	\((2	1,0,0)'\) & \((4	1,0,1/2)'\) & \((4	1,0,1/2)'\)

| (5) \(2|1/2,y,0\) & (6) \(2|1,0,0)\) & (7) \(2|1/2,1/2,0\) & (8) \(2|1/2,1/2,0\) |
|-----------------|-----------------|-----------------|-----------------|
| \((2|1,0,0)\) & \((2|1,0,0)\) & \((2|1,0,1/2)\) & \((2|1,0,1/2)\) |

| (9) \(T(1/2,0,0)'\) & (10) \(a'(1,0,0)\) & (11) \(\bar{4}'\) & (12) \(\bar{4}'\) |
|-----------------|-----------------|-----------------|-----------------|
| \((m|1,0,0)'\) & \((m|x,1/2,0)\) & \((4|x,1/2,1/2)'\) & \((4|x,1/2,1/2)'\) |

| (13) \(a|1,0,0)\) & (14) \(m|1/2,y,z\) & (15) \(n|1/2,-1/2,1/2\) & (16) \(n|1/2,1/2,1/2\) |
|-----------------|-----------------|-----------------|-----------------|
| \((m|x,1/2,0)\) & \((m|x,y,0)\) & \((m|x,1/2,0)\) & \((m|x,1/2,0)\) |

Generators selected \((1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 r 1</td>
<td>(1) x,y,z</td>
<td>[u,v,w]</td>
<td>(0,0,0) + (1,0,0)' +</td>
</tr>
<tr>
<td></td>
<td>(2) (\bar{x},\bar{y},z)</td>
<td>[(\bar{u},\bar{v},w)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) (y,x,z+1/2)</td>
<td>[(\bar{v},u,w)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) (y,x,z+1/2)</td>
<td>[(v,u,w)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) (\bar{x},\bar{y},z)</td>
<td>[(u,v,w)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) (\bar{x},\bar{y},z)</td>
<td>[(u,v,w)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) (y,x,z+1/2)</td>
<td>[(\bar{v},u,w)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) (y,x,z+1/2)</td>
<td>[(v,u,w)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9) (\bar{x},\bar{y},z)</td>
<td>[(u,v,w)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10) (\bar{x},\bar{y},z)</td>
<td>[(u,v,w)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(11) (y,x,z+1/2)</td>
<td>[(\bar{v},u,w)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(12) (y,x,z+1/2)</td>
<td>[(v,u,w)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(13) (\bar{x},\bar{y},z)</td>
<td>[(u,v,w)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(14) (\bar{x},\bar{y},z)</td>
<td>[(u,v,w)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(15) (y,x,z+1/2)</td>
<td>[(\bar{v},u,w)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(16) (y,x,z+1/2)</td>
<td>[(v,u,w)]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16 q m..</th>
<th>x,y,0 [0,0,0]</th>
<th>(\bar{x},\bar{y},0) [0,0,0]</th>
<th>(y,x,1/2) [0,0,0]</th>
<th>(y,x,1/2) [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 p .m.</td>
<td>1/2,y,z [u,0,0]</td>
<td>1/2,(\bar{y},z) [u,0,0]</td>
<td>(\bar{y},1/2,z+1/2) [0,u,0]</td>
<td>(y,1/2,z+1/2) [0,u,0]</td>
</tr>
<tr>
<td>16 o .m'</td>
<td>0,y,z [0,v,w]</td>
<td>0,(\bar{y},z) [0,v,w]</td>
<td>(\bar{y},0,z+1/2) [v,0,w]</td>
<td>(y,0,z+1/2) [v,0,w]</td>
</tr>
<tr>
<td>16 n ..2'</td>
<td>x,x,1/4 [u,u,w]</td>
<td>(\bar{x},\bar{x},1/4) [u,u,w]</td>
<td>(\bar{x},3/4) [u,u,w]</td>
<td>(x,3/4) [u,u,w]</td>
</tr>
<tr>
<td>8 m m2m.</td>
<td>x,1/2,0 [0,0,0]</td>
<td>(\bar{x},1/2,0) [0,0,0]</td>
<td>1/2,x,1/2 [0,0,0]</td>
<td>1/2,(\bar{x},1/2) [0,0,0]</td>
</tr>
<tr>
<td>8 l m2'm.</td>
<td>x,0,1/2 [0,0,0]</td>
<td>(\bar{x},0,1/2) [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td>0,(\bar{x},0) [0,0,0]</td>
</tr>
</tbody>
</table>

Coordinates

- \((0,0,0)\) + \((1,0,0)' + \)
- \((1) x,y,z\) \([u,v,w]\)
- \((2) \bar{x},\bar{y},z\) \([\bar{u},\bar{v},w]\)
- \((3) y,x,z+1/2\) \([\bar{v},u,w]\)
- \((4) y,x,z+1/2\) \([v,u,w]\)
- \((5) \bar{x},\bar{y},z\) \([u,v,w]\)
- \((6) \bar{x},\bar{y},z\) \([u,v,w]\)
- \((7) y,x,z+1/2\) \([\bar{v},u,w]\)
- \((8) y,x,z+1/2\) \([v,u,w]\)
- \((9) \bar{x},\bar{y},z\) \([u,v,w]\)
- \((10) \bar{x},\bar{y},z\) \([u,v,w]\)
- \((11) y,x,z+1/2\) \([\bar{v},u,w]\)
- \((12) y,x,z+1/2\) \([v,u,w]\)
- \((13) \bar{x},\bar{y},z\) \([u,v,w]\)
- \((14) \bar{x},\bar{y},z\) \([u,v,w]\)
- \((15) y,x,z+1/2\) \([\bar{v},u,w]\)
- \((16) y,x,z+1/2\) \([v,u,w]\)

Continued
Symmetry of Special Projections

<table>
<thead>
<tr>
<th></th>
<th>Special Projection</th>
<th>Kaleidoscopic Generation</th>
<th>Mother Space Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>h</td>
<td>2mm.</td>
<td>Along [0,0,1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
<td>p4mm1'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
<td>p2a 2mm</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>2m'2'</td>
<td>Along [1,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
<td>b* = c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
<td>a* = (-a + b)/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,0 [0,0,w]</td>
<td>Origin at x,0,0</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>4</td>
<td>Along [1,1,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,3/4 [0,0,0]</td>
<td>p2a 2mm</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>4</td>
<td>Along [1,1,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,1/4 [0,0,w]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,3/4 [0,0,w]</td>
<td>p2a 2mm</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>mm'm.</td>
<td>Along [1,1,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
<td>p2a 2mm</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>mm'm.</td>
<td>Along [1,1,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>p2a 2mm</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>mmm.</td>
<td>Along [1,1,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>p2a 2mm</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>mm'm'.</td>
<td>Along [1,1,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,0 [0,0,w]</td>
<td>p2mm1'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,1/2 [0,0,w]</td>
<td>p2a 2mm</td>
</tr>
</tbody>
</table>
Origin at center (mmm') at 42'/m'2'/mc'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(1'0,0,0)

(2) 2 0,0,z
(2z0,0,0)

(3) 4' (0,0,1/2) 0,0,z
(4z0,0,1/2')

(4) 4' (0,0,1/2) 0,0,z
(4z0,0,1/2')

(5) 2' y,y,0
(2y0,0,0)

(6) 2' x,0,0
(2x0,0,0')

(7) 2 x,0,1/4
(2x0,0,1/2)

(8) 2 x,x,1/4
(2y0,0,1/2)

(9) T' 0,0,0
(1'0,0,0')

(10) m' x,y,0
(mz0,0,0')

(11) 4' 0,0,z; 0,0,1/4
(4z0,0,1/2)

(12) 4' 0,0,z; 0,0,1/4
(4z0,0,1/2')

(13) m x,0,z
(mz0,0,0)

(14) m 0,y,z
(mx0,0,0)

(15) c' (0,0,1/2) x,x,z
(mx0,0,1/2')

(16) c' (0,0,1/2) x,x,z
(mx0,0,1/2')
For (1,0,0)' + set

Continued

Generators selected
(1); t'(1,0,0); t'((0,1,0)); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>32 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(11) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(12) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(16) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>16 q m'.</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z+1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z+1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,u,0]</td>
</tr>
<tr>
<td>16 p .m'.</td>
<td>1/2,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,x,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,1/2 [u,0,0]</td>
</tr>
<tr>
<td>16 o .m.</td>
<td>0,y,z [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z+1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z+1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,u,0]</td>
</tr>
<tr>
<td>16 n ..2</td>
<td>0,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td>8 m m'2m'.</td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td>8 l m'2m'.</td>
<td>x,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,0 [0,v,0]</td>
</tr>
<tr>
<td>8 k m'2m'.</td>
<td>x,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,0 [u,0,0]</td>
</tr>
<tr>
<td>8 j m'2m'.</td>
<td>x,0,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,1/2 [0,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,1/2 [0,v,0]</td>
</tr>
<tr>
<td>8 i 2mm'.</td>
<td>0,1/2,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,u,0]</td>
</tr>
</tbody>
</table>

Wyckoff point

-1 31.13.1109 - 2 - 2294
8	h	2m'h'.	1/2,1/2,z [0,0,w]	1/2,1/2,z+1/2 [0,0,w]	1/2,1/2,z [0,0,w]	1/2,1/2,z+1/2 [0,0,w]
8	g	2mm.	0,0,z [0,0,0]	0,0,z+1/2 [0,0,0]	0,0,z [0,0,0]	0,0,z+1/2 [0,0,0]
4	f	4'm'2	1/2,1/2,1/4 [0,0,0]	1/2,1/2,3/4 [0,0,0]	1/2,1/2,1/4 [0,0,0]	1/2,1/2,3/4 [0,0,0]
4	e	4'm2	0,0,1/4 [0,0,0]	0,0,3/4 [0,0,0]	0,0,1/4 [0,0,0]	0,0,3/4 [0,0,0]
4	d	m'm'm'.	0,1/2,1/2 [0,v,0]	1/2,0,0 [v,0,0]	0,1/2,1/2 [0,v,0]	1/2,0,0 [v,0,0]
4	c	m'm'm'.	0,1/2,0 [0,v,0]	1/2,0,1/2 [v,0,0]	0,1/2,0 [0,v,0]	1/2,0,1/2 [v,0,0]
4	b	m'm'm'.	1/2,1/2,0 [0,0,0]	1/2,1/2,1/2 [0,0,0]	1/2,1/2,0 [0,0,0]	1/2,1/2,1/2 [0,0,0]
4	a	m'm'm.	0,0,0 [0,0,0]	0,0,1/2 [0,0,0]	0,0,0 [0,0,0]	0,0,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p_{4'} 4m'm'

\[a^* = a \quad b^* = b \]

Origin at 1/2,1/2,z

Along [1,0,0] p2mm1'

\[a^* = b \quad b^* = c \]

Origin at x,0,0

Along [1,1,0] p_{2x} 2m'm'

\[a^* = (-a + b)/2 \quad b^* = c/2 \]

Origin at x,x,0
Origin at center (mmm) at $4/m/mc2/m$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \geq y$

Symmetry Operations

1. 1
 - $(1|0,0,0)$

2. 2
 - $(2|0,0,z)$
 - $(2|z,0,0,0)$

3. 4^+
 - $(0,0,1/2)\ 0,0,z$
 - $(4|z,0,0,1/2)$

4. 4^-
 - $(0,0,1/2)\ 0,0,z$
 - $(4|z^{-1},0,0,1/2)$

5. 2
 - $0, y, 1/4$
 - $(2|0,0,1/2)$

6. 2
 - $x, 0, 1/4$
 - $(2|z,0,0,1/2)$

7. 2
 - $x, x, 0$
 - $(2|x,0,0,0)$

8. 2
 - $x, x, 0$
 - $(2|x,0,0,0)$

9. T
 - $0, 0, 0$
 - $(1|0,0,0)$

10. m
 - $x, y, 0$
 - $(m|x,0,0,0)$

11. 4^+
 - $0, 0, z;\ 0, 0, 1/4$
 - $(4|z,0,0,1/2)$

12. 4^-
 - $0, 0, z;\ 0, 0, 1/4$
 - $(4|z^{-1},0,0,1/2)$

13. c
 - $(0,0,1/2)\ x, 0, z$
 - $(m|x,0,0,1/2)$

14. c
 - $(0,0,1/2)\ 0, y, z$
 - $(m|x,0,0,1/2)$

15. m
 - x, \bar{x}, z
 - $(m|x,0,0,0)$

16. m
 - x, x, z
 - $(m|x,0,0,0)$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>p</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>o</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,z+1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,z+1/2 [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>n</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>m</td>
<td>x,1/2,1/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,1/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,3/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,3/4 [u,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>l</td>
<td>x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,3/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,3/4 [u,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>j</td>
<td>x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>i</td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

132.1.1110 - 2 - 2297
Symmetry of Special Projections

Along [0,0,1] p4mm1'
\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along [1,0,0] p2a* 2m'm'
\[\mathbf{a}^* = -\mathbf{c}/2 \quad \mathbf{b}^* = \mathbf{b} \]
Origin at x,0,1/4

Along [1,1,0] p2mm1'
\[\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,x,0
Origin at center (mmm1') at 4/m/mc2/m1'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x < y \]

Symmetry Operations

For 1 + set

1. \((1) 1 (1|0,0,0)\)
2. \((2) 2 (0,0,z) (2_z|0,0,0)\)
3. \((3) 4^+ (0,0,1/2) 0,0,z (4_z|0,0,1/2)\)
4. \((4) 4^- (0,0,1/2) 0,0,z (4_z^{-1}|0,0,1/2)\)
5. \((5) 2 0,y,1/4 (2_y|0,0,1/2)\)
6. \((6) 2 x,0,1/4 (2_x|0,0,1/2)\)
7. \((7) 2 x,x,0 (2_{xy}|0,0,0)\)
8. \((8) 2 x,x,0 (2_{xy}|0,0,0)\)
9. \((9) \overline{1} 0,0,0 (1|0,0,0)\)
10. \((10) m x,y,0 (m_x|0,0,0)\)
11. \((11) \overline{4}^+ 0,0,z; 0,0,1/4 (4_z|0,0,1/2)\)
12. \((12) \overline{4}^- 0,0,z; 0,0,1/4 (4_z^{-1}|0,0,1/2)\)
13. \((13) c (0,0,1/2) x,0,z (m_y|0,0,1/2)\)
14. \((14) c (0,0,1/2) 0,y,z (m_x|0,0,1/2)\)
15. \((15) m x,x,z (m_{xy}|0,0,0)\)
16. \((16) m x,x,z (m_{xy}|0,0,0)\)
Continued

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>p</td>
<td>11'</td>
</tr>
<tr>
<td>8</td>
<td>o</td>
<td>..m1'</td>
</tr>
<tr>
<td>8</td>
<td>n</td>
<td>m..1'</td>
</tr>
<tr>
<td>8</td>
<td>m</td>
<td>.2.1'</td>
</tr>
<tr>
<td>8</td>
<td>l</td>
<td>.2.1'</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>2..1'</td>
</tr>
<tr>
<td>4</td>
<td>j</td>
<td>m.2m1'</td>
</tr>
<tr>
<td>4</td>
<td>i</td>
<td>m.2m1'</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>2mm1'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
</tr>
<tr>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>x,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>y,x,0 [0,0,0]</td>
</tr>
<tr>
<td>x,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>0,x,1/4 [0,0,0]</td>
</tr>
<tr>
<td>0,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1'
\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along [1,0,0] p 2mm1'
\[\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c}/2 \]
Origin at x,0,0

Along [1,1,0] p2mm1'
\[\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,x,0
P4₂/m'cm
132.3.1112

4/m'mm
P4₂/m'2'/c2'/m
Tetragonal

Origin at center (mmm') at 4₂/m'c2'/m

Asymmetric unit
0 ≤ x ≤ 1/2;
0 ≤ y ≤ 1/2;
0 ≤ z ≤ 1/2;
x ≤ y

Symmetry Operations

1.
 \(\begin{align*}
 \bar{1} & \quad (x, y, 0) \\
 \end{align*} \)

2.
 \(\begin{align*}
 2 & \quad (0, 0, z) \\
 (2z, 0, 0, 0) \\
 \end{align*} \)

3.
 \(\begin{align*}
 4' & \quad (0, 0, 1/2) \\
 0, 0, z \\
 (4z, 0, 0, 1/2) \\
 \end{align*} \)

4.
 \(\begin{align*}
 4' & \quad (0, 0, 1/2) \\
 0, 0, z \\
 (4z, 0, 0, 1/2) \\
 \end{align*} \)

5.
 \(\begin{align*}
 2' & \quad 0, y, 1/4 \\
 (2y, 0, 0, 1/2)' \\
 \end{align*} \)

6.
 \(\begin{align*}
 2' & \quad x, 0, 1/4 \\
 (2z, 0, 0, 1/2)' \\
 \end{align*} \)

7.
 \(\begin{align*}
 2' & \quad x, x, 0 \\
 (2x, 0, 0, 0)' \\
 \end{align*} \)

8.
 \(\begin{align*}
 2' & \quad x, x, 0 \\
 (2x, 0, 0, 0)' \\
 \end{align*} \)

9.
 \(\begin{align*}
 \bar{1}' & \quad 0, 0, 0 \\
 (1, 0, 0, 0)' \\
 \end{align*} \)

10.
 \(\begin{align*}
 m' & \quad x, y, 0 \\
 (mz, 0, 0, 0)' \\
 \end{align*} \)

11.
 \(\begin{align*}
 \bar{4} & \quad 0, 0, z; 0, 0, 1/4 \\
 (4z, 0, 0, 1/2)' \\
 \end{align*} \)

12.
 \(\begin{align*}
 \bar{4} & \quad 0, 0, z; 0, 0, 1/4 \\
 (4z, 0, 0, 1/2)' \\
 \end{align*} \)

13.
 \(\begin{align*}
 c & \quad (0, 0, 1/2) \\
 x, 0, z \\
 (m, 0, 0, 1/2) \\
 \end{align*} \)

14.
 \(\begin{align*}
 c & \quad (0, 0, 1/2) \\
 0, y, z \\
 (m, 0, 0, 1/2) \\
 \end{align*} \)

15.
 \(\begin{align*}
 m & \quad x, x, z \\
 (m, 0, 0, 0) \\
 \end{align*} \)

16.
 \(\begin{align*}
 m & \quad x, x, z \\
 (m, 0, 0, 0) \\
 \end{align*} \)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>p 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x,y,z+1/2 [u,v,w]</td>
<td>(14) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>o .m</td>
<td>x,x,z [u,u,0]</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,z+1/2 [u,u,0]</td>
<td>x,x,z+1/2 [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>n m'..</td>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,1/2 [u,v,0]</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>8</td>
<td>m .2'</td>
<td>x,0,1/4 [0,v,w]</td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,3/4 [0,v,w]</td>
<td>x,0,3/4 [0,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>k 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>j m'..</td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>i m'..</td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>h 2.mm</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>g 2.mm</td>
<td>0,0,z+1/2 [0,0,0]</td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>f 2/m'..</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>e 22'2'..</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>d 2/m'</td>
<td>2/1,2/1/4 [0,0,0]</td>
<td>2/1,2/1/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>c m'..</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b 3'2'</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a m'..</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p4mm
\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along [1,0,0] p_{2a'*2m'm'}
\[\mathbf{a}^* = -\frac{c}{2} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at x,0,0

Along [1,1,0] p2mm1'
\[\mathbf{a}^* = -\frac{\mathbf{a} + \mathbf{b}}{2} \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,x,0
Origin at center (mmm) at 4'/mc'm

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x < y\]

Symmetry Operations

(1) 1
(1) 1
(5) 2' 0,y,1/4

(2) 2 0,0,z

(6) 2' x,0,1/4

(7) 2 x,x,0

(8) 2 x,x,0

(9) \(\overline{1}\) 0,0,0

(10) m x,y,0

(11) 4' \((0,0,1/2), 0,0,z\)

(12) 4' \((0,0,1/2), 0,0,1/2\)

(13) c' (0,0,1/2) x,0,z

(14) c' (0,0,1/2) 0,y,z

(15) m x,x,z

(16) m x,x,z
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 p 1</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 o .m</td>
<td>1</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,z+1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>8 n m.</td>
<td>1</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 m .2'</td>
<td>1</td>
<td>x,1/2,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,1/4 [0,v,w]</td>
</tr>
<tr>
<td>8 l .2'</td>
<td>1</td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td>8 k 2.</td>
<td>1</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 j m.2m</td>
<td>1</td>
<td>x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td>4 i m.2m</td>
<td>1</td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td>4 h 2.mm</td>
<td>1</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 g 2.mm</td>
<td>1</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 f 2.mm</td>
<td>1</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 e 22'2'</td>
<td>1</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 d 4'2'm</td>
<td>1</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 c m.mm</td>
<td>1</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b 4'2'm</td>
<td>1</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 a m.mm</td>
<td>1</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] \(\text{p4mm}' \)
- \(\mathbf{a}^* = \mathbf{a} \)
- \(\mathbf{b}^* = \mathbf{b} \)
- Origin at 0,0,z

Along [1,0,0] \(\text{p2''mm}' \)
- \(\mathbf{a}^* = -\mathbf{c}/2 \)
- \(\mathbf{b}^* = \mathbf{b} \)
- Origin at x,0,0

Along [1,1,0] \(\text{p2mm}' \)
- \(\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \)
- \(\mathbf{b}^* = \mathbf{c} \)
- Origin at x,x,0
Origin at center \((m'm'm)\) at \(4_2'/mc2'/m'\)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq y\)

Symmetry Operations

1. \((1) \enspace 1\)
 \((1|0,0,0)\)

2. \((2) \enspace 2 \quad 0,0,z\)
 \((2_z|0,0,0)\)

3. \((3) \enspace 4^+ \times (0,0,1/2) \quad 0,0,z\)
 \((4_z|0,0,1/2)'\)

4. \((4) \enspace 4^- \times (0,0,1/2) \quad 0,0,z\)
 \((4_z^-|0,0,1/2)'\)

5. \((5) \enspace 2 \quad 0,y,1/4\)
 \((2_y|0,0,1/2)\)

6. \((6) \enspace 2 \quad x,0,1/4\)
 \((2_x|0,0,1/2)\)

7. \((7) \enspace 2' \quad x,x,0\)
 \((2_{xy}|0,0,0)'\)

8. \((8) \enspace 2' \quad x,x,0\)
 \((2_{xy}|0,0,0)'\)

9. \((9) \enspace \bar{1} \quad 0,0,0\)
 \((\bar{1}|0,0,0)\)

10. \((10) \enspace m \quad x,y,0\)
 \((m|0,0,0)\)

11. \((11) \enspace \bar{4}^- \times \quad 0,0,z; \quad 0,0,1/4\)
 \((\bar{4}_z|0,0,1/2)'\)

12. \((12) \enspace \bar{4}^- \times \quad 0,0,z; \quad 0,0,1/4\)
 \((\bar{4}_{z^-}|0,0,1/2)'\)

13. \((13) \enspace c \quad (0,0,1/2) \quad x,0,z\)
 \((m_y|0,0,1/2)\)

14. \((14) \enspace c \quad (0,0,1/2) \quad 0,y,z\)
 \((m_x|0,0,1/2)\)

15. \((15) \enspace m' \quad x,x,z\)
 \((m_x|0,0,0)'\)

16. \((16) \enspace m' \quad x,x,z\)
 \((m_x|0,0,0)'\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>p</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(11) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(12) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(15) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(16) y,x,z [v,u,w]</td>
</tr>
</tbody>
</table>

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>o</td>
<td>..m'</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,z+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,z+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>n</td>
<td>m..</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>m</td>
<td>.2.</td>
<td>x,1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>l</td>
<td>.2.</td>
<td>x,0,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,0,3/4 [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>j</td>
<td>m..</td>
<td>x,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>i</td>
<td>m..</td>
<td>x,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,0 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>2..</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>m..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>m..</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>2..</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>2..</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>m..</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>m..</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>m..</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along \([0,0,1]\) \(\text{p}4\text{mm}'\)

- \(\mathbf{a}' = \mathbf{a}\)
- \(\mathbf{b}' = \mathbf{b}\)
- Origin at \(0,0,z\)

Along \([1,0,0]\) \(\text{p}_2\text{a}^* \ 2\text{m}'\text{m}'\)

- \(\mathbf{a}' = -\mathbf{c}/2\)
- \(\mathbf{b}' = \mathbf{b}\)
- Origin at \(x,0,1/4\)

Along \([1,1,0]\) \(\text{p}2'\text{mm}'\)

- \(\mathbf{a}' = -\mathbf{c}\)
- \(\mathbf{b}' = (-\mathbf{a} + \mathbf{b})/2\)
- Origin at \(x,x,0\)
Origin at center (mmm') at 42'/m'/c'2'/m

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x ≤ y

Symmetry Operations

(1) 1
(1|0,0,0)

(5) 2 0,y,1/4
(2y|0,0,1/2)

(9) 1' 0,0,0
(1'|0,0,0')

(13) c' (0,0,1/2) x,0,z
(m|x|0,0,1/2')

(2) 2 0,0,z
(2z|0,0,0)

(6) 2 x,0,1/4
(2z|0,0,1/2)

(10) m' x,y,0
(m|0,0,0')

(14) c' (0,0,1/2) 0,y,z
(m|x|0,0,1/2')

(3) 4+ (0,0,1/2) 0,0,z
(4z|0,0,1/2')

(7) 2' x,x,0
(2x|0,0,0')

(11) 4+ 0,0,z; 0,0,1/4
(4z|0,0,1/2)

(8) 2' x,x,0
(2x|0,0,0')

(12) 4+ 0,0,z; 0,0,1/4
(4z|0,0,1/2)

(15) m x,x,z
(m|x|0,0,0)

(16) m x,x,z
(m|x|0,0,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 p 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(11) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(12) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8 o .m</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z+1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z+1/2 [u,u,0]</td>
</tr>
<tr>
<td>8 n m'..</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,1/2 [v,u,0]</td>
</tr>
<tr>
<td>8 m .2.</td>
<td>x,1/2,1/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,1/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,3/4 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,3/4 [0,u,0]</td>
</tr>
<tr>
<td>8 l .2.</td>
<td>x,0,1/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,3/4 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,3/4 [0,u,0]</td>
</tr>
<tr>
<td>8 k 2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 j m'.2m</td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>4 i m'.2m</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td>4 h 2.mm</td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 g 2.mm</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 f 2/m'..</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 e 222.</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 d 42m</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 c m'.mm</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b 42m</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 a m'.mm</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] \(p4'm'm \)
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] \(p2m'm' \)
\(a^* = b \quad b^* = c/2 \)
Origin at x,0,1/4

Along [1,1,0] \(p2mm1' \)
\(a^* = (-a + b)/2 \quad b^* = c \)
Origin at x,x,0
Origin at center (m'm'm) at 4_{2}/mc'2'/m'

Asymmetric unit $0 \leq x \leq 1/2$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1/2$; $x \leq y$

Symmetry Operations

1. 1

 2. 2 \(0,0,z \)
 \((2z,0,0) \)

5. $2'$ \(0,y,1/4 \)
 \((2\overline{y},0,1/2) \)

9. 1 \(0,0,0 \)
 \((1,0,0) \)

13. c' \((0,0,1/2) \)
 \((mz,0,1/2) \)

 14. c' \((0,0,1/2) \)
 \((mz,0,1/2) \)

 15. m' \(x,z \)
 \((mz,0,0) \)

 16. m' \(x,z \)
 \((mz,0,0) \)

$P4_{2}$/mc'm'

4_{2} /mc'2'/m'

$132.7.1116$

Tetragonal
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 p 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
<td>(7) y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
<td>(10) x,y,z+1/2 [u,v,w]</td>
<td>(11) y,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
<td>(14) x,y,z+1/2 [u,v,w]</td>
<td>(15) y,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8 o m'</td>
<td>x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
<td>x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8 n m..</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
<td>y,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [0,0,w]</td>
<td>x,y,1/2 [0,0,w]</td>
<td>y,x,0 [0,0,w]</td>
</tr>
<tr>
<td>8 m .2'</td>
<td>x,1/2,1/4 [0,v,w]</td>
<td>x,1/2,1/4 [0,v,w]</td>
<td>1/2,x,3/4 [v,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,3/4 [0,v,w]</td>
<td>x,1/2,3/4 [0,v,w]</td>
<td>1/2,x,1/4 [v,0,w]</td>
</tr>
<tr>
<td>8 l .2'</td>
<td>x,0,1/4 [0,v,w]</td>
<td>x,0,1/4 [0,v,w]</td>
<td>0,x,3/4 [v,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,3/4 [0,v,w]</td>
<td>x,0,3/4 [0,v,w]</td>
<td>0,x,1/4 [v,0,w]</td>
</tr>
<tr>
<td>8 k .2'</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 j m.2'</td>
<td>x,x,1/2 [0,0,w]</td>
<td>x,x,1/2 [0,0,w]</td>
<td>x,x,0 [0,0,w]</td>
</tr>
<tr>
<td>4 i m.2'</td>
<td>x,x,0 [0,0,w]</td>
<td>x,x,0 [0,0,w]</td>
<td>x,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 h 2.m'</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 g 2.m'</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 f 2/m..</td>
<td>0,1/2,0 [0,0,w]</td>
<td>1/2,0,1/2 [0,0,w]</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>4 e 22'2'</td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>1/2,0,3/4 [0,0,w]</td>
<td>0,1/2,3/4 [0,0,w]</td>
</tr>
<tr>
<td>2 d 42'2'</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
<td>1/2,1/2,3/4 [0,0,w]</td>
<td>1/2,1/2,3/4 [0,0,w]</td>
</tr>
<tr>
<td>2 c m.m'm'</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 b 42'm'</td>
<td>0,0,1/4 [0,0,w]</td>
<td>0,0,3/4 [0,0,w]</td>
<td>0,0,3/4 [0,0,w]</td>
</tr>
<tr>
<td>2 a m.m'm'</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] \(p'4mm' \)
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] \(p'2'mm' \)
\[a^* = -c/2 \quad b^* = b \]
Origin at x,0,0

Along [1,1,0] \(p'2'mm' \)
\[a^* = -c \quad b^* = (-a + b)/2 \]
Origin at x,x,0
Origin at center (m'm'm') at 4'/m'c2/m'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x < y \]

Symmetry Operations

1. \(1\)
 \((1|0,0,0)\)

2. \(2\)
 \(0,0,z\)
 \((2_z|0,0,0)\)

3. \(4^+\) (0,0,1/2)
 \(0,0,z\)
 \((4_z|0,0,1/2)'\)

4. \(4^-\) (0,0,1/2)
 \(0,0,z\)
 \((4_z^{-1}|0,0,1/2)'\)

5. \(2'\)
 \(0,0,1/4\)
 \((2_z|0,0,1/2)'\)

6. \(2'\)
 \(x,0,1/4\)
 \((2_x|0,0,1/2)'\)

7. \(2\)
 \(x,x,0\)
 \((2_xy|0,0,0)\)

8. \(2\)
 \(x,x,0\)
 \((2_{xy}|0,0,0)\)

9. \(\bar{1}\)
 \(0,0,0\)
 \((\bar{1}|0,0,0)'\)

10. \(m'\)
 \(x,y,0\)
 \((m_x|0,0,0)'\)

11. \(4^+\)
 \(0,0,z; 0,0,1/4\)
 \((4_z|0,0,1/2)\)

12. \(4^-\)
 \(0,0,z; 0,0,1/4\)
 \((4_z^{-1}|0,0,1/2)\)

13. \(c\)
 \((0,0,1/2)\)
 \(x,0,z\)
 \((m_x|0,0,1/2)\)

14. \(c\)
 \((0,0,1/2)\)
 \(0,y,z\)
 \((m_y|0,0,0)'\)

15. \(m'\)
 \(x,x,z\)
 \((m_{xy}|0,0,0)'\)

16. \(m'\)
 \(x,x,z\)
 \((m_{xy}|0,0,0)'\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
</tbody>
</table>

16	p	1	(1) x,y,z [u,v,w]	(2) x,y,z [u,v,w]	(3) y,x,z+1/2 [v,u,w]	(4) y,x,z+1/2 [v,u,w]
(5) x,y,z+1/2 [u,v,w]	(6) x,y,z+1/2 [u,v,w]	(7) y,x,z [v,u,w]	(8) y,x,z [v,u,w]			
(9) x,y,z [u,v,w]	(10) x,y,z [u,v,w]	(11) y,x,z+1/2 [v,u,w]	(12) y,x,z+1/2 [v,u,w]			
(13) x,y,z+1/2 [u,v,w]	(14) x,y,z+1/2 [u,v,w]	(15) y,x,z [v,u,w]	(16) y,x,z [v,u,w]			

| 8 | o | .m' | x,x,z [u,u,w] | x,x,z [u,u,w] | x,x,z+1/2 [u,u,w] | x,x,z+1/2 [u,u,w] |
| x,x,z+1/2 [u,u,w] | x,x,z+1/2 [u,u,w] |

| 8 | n | m'.. | x,y,0 [u,v,0] | x,y,0 [u,v,0] | y,x,1/2 [v,u,0] | y,x,1/2 [v,u,0] |
| x,y,1/2 [u,v,0] | x,y,1/2 [u,v,0] |

| 8 | m | .2' | x,1/2,1/4 [0,v,w] | x,1/2,1/4 [0,v,w] | 1/2,x,3/4 [v,0,w] | 1/2,x,3/4 [v,0,w] |
| x,1/2,3/4 [0,v,w] | x,1/2,3/4 [0,v,w] |

| 8 | l | .2' | x,0,1/4 [0,v,w] | x,0,1/4 [0,v,w] | 0,x,3/4 [v,0,w] | 0,x,3/4 [v,0,w] |
| x,0,3/4 [0,v,w] | x,0,3/4 [0,v,w] |

| 8 | k | 2.. | 0,1/2,z [0,0,w] | 0,1/2,z [0,0,w] | 1/2,0,z+1/2 [0,0,w] | 1/2,0,z+1/2 [0,0,w] |
| 0,1/2,z [0,0,w] | 0,1/2,z [0,0,w] |

| 4 | j | m'.2m' | x,x,1/2 [u,u,0] | x,x,1/2 [u,u,0] | x,x,0 [u,u,0] | x,x,0 [u,u,0] |
| x,x,0 [u,u,0] | x,x,0 [u,u,0] |

| 4 | i | m'.2m' | x,x,0 [u,u,0] | x,x,0 [u,u,0] | x,x,1/2 [u,u,0] | x,x,1/2 [u,u,0] |
| x,x,0 [u,u,0] | x,x,0 [u,u,0] |

| 4 | h | 2.m'm' | 1/2,1/2,z [0,0,w] | 1/2,1/2,z [0,0,w] | 1/2,1/2,z+1/2 [0,0,w] | 1/2,1/2,z+1/2 [0,0,w] |
| 1/2,1/2,z+1/2 [0,0,w] | 1/2,1/2,z+1/2 [0,0,w] |

| 4 | g | 2.m'm' | 0,0,z [0,0,w] | 0,0,z+1/2 [0,0,w] | 0,0,z+1/2 [0,0,w] | 0,0,z+1/2 [0,0,w] |
| 0,0,z+1/2 [0,0,w] | 0,0,z+1/2 [0,0,w] |

| 4 | f | 2/m'.. | 0,1/2,0 [0,0,0] | 0,1/2,0 [0,0,0] | 1/2,0,1/2 [0,0,0] | 1/2,0,1/2 [0,0,0] |
| 1/2,0,1/2 [0,0,0] | 1/2,0,1/2 [0,0,0] |

| 4 | e | 22'2'.. | 0,1/2,1/4 [0,0,w] | 0,1/2,1/4 [0,0,w] | 1/2,0,3/4 [0,0,w] | 1/2,0,3/4 [0,0,w] |
| 1/2,0,3/4 [0,0,w] | 1/2,0,3/4 [0,0,w] |

| 2 | d | 42'm' | 1/2,1/2,1/4 [0,0,w] | 1/2,1/2,1/4 [0,0,w] |
| 1/2,1/2,1/4 [0,0,w] | 1/2,1/2,1/4 [0,0,w] |

| 2 | c | m'.m'm' | 1/2,1/2,0 [0,0,0] | 1/2,1/2,0 [0,0,0] |
| 1/2,1/2,0 [0,0,0] | 1/2,1/2,0 [0,0,0] |

| 2 | b | 42'm' | 0,0,1/4 [0,0,w] | 0,0,1/4 [0,0,w] |
| 0,0,3/4 [0,0,w] | 0,0,3/4 [0,0,w] |

| 2 | a | m'.m'm' | 0,0,0 [0,0,0] | 0,0,1/2 [0,0,0] |
| 0,0,1/2 [0,0,0] | 0,0,1/2 [0,0,0] |
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Translation</th>
<th>Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>p4'mm'</td>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
<tr>
<td>[1,0,0]</td>
<td>p2m'm'</td>
<td>a* = -c/2</td>
<td>b* = b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
</tr>
<tr>
<td>[1,1,0]</td>
<td>p2m'm'</td>
<td>a* = (-a + b)/2</td>
<td>b* = c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center ($m'm'm'$) at $4/m'c'/2/m'$

Asymmetric unit

$$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x < y$$

Symmetry Operations

1. 1
2. $2 \cdot 0,0,z$
3. $4^+ \cdot (0,0,1/2)\cdot 0,0,z$
4. $4^- \cdot (0,0,1/2)\cdot 0,0,z$

5. $2 \cdot 0,y,1/4$
6. $2 \cdot x,0,1/4$
7. $2 \cdot x,x,0$
8. $2 \cdot x,x,0$

9. $\bar{1} \cdot 0,0,0$
10. $m' \cdot x,y,0$
11. $\bar{4}^+ \cdot 0,0,z; 0,0,1/4$
12. $\bar{4}^- \cdot 0,0,z; 0,0,1/4$

13. $c' \cdot (0,0,1/2)\cdot x,0,z$
14. $c' \cdot (0,0,1/2)\cdot 0,y,z$
15. $m' \cdot x,x,z$
16. $m' \cdot x,x,z$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 p 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z+1/2 [v,u,w] (4) x,y,z+1/2 [v,u,w] (5) x,y,z+1/2 [u,v,w] (6) x,y,z+1/2 [u,v,w] (7) y,x,z [v,u,w] (8) y,x,z [v,u,w] (9) x,y,z [u,v,w] (10) x,y,z [u,v,w] (11) x,y,z [u,v,w] (12) x,y,z [u,v,w] (13) x,y,z [u,v,w] (14) x,y,z [u,v,w] (15) x,y,z [v,u,w] (16) x,y,z [v,u,w]</td>
</tr>
<tr>
<td>8 o .m'</td>
<td>x,x,z [u,u,w] x,x,z+1/2 [u,u,w]</td>
</tr>
<tr>
<td>8 n m'..</td>
<td>x,y,0 [u,v,0] x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>8 m .2.</td>
<td>x,1/2,1/4 [u,0,0] x,1/2,1/4 [u,0,0]</td>
</tr>
<tr>
<td>8 l .2.</td>
<td>x,0,1/4 [u,0,0] x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td>8 k 2..</td>
<td>0,1/2,z [0,0,w] 1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 j m'.2m'</td>
<td>x,x,1/2 [u,u,0] x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td>4 i m'.2m'</td>
<td>x,x,0 [u,u,0] x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>4 h 2.m'm'</td>
<td>1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 g 2.m'm'</td>
<td>0,0,z [0,0,w] 0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 f 2/m'..</td>
<td>0,1/2,z [0,0,0] 0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4 e 222.</td>
<td>0,1/2,1/4 [0,0,0] 0,1/2,1/4 [0,0,0] 0,1/2,1/4 [0,0,0] 0,1/2,1/4 [0,0,0] 0,1/2,1/4 [0,0,0] 0,1/2,1/4 [0,0,0] 0,1/2,1/4 [0,0,0] 0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 d 422m'</td>
<td>1/2,1/2,1/4 [0,0,0] 1/2,1/2,1/4 [0,0,0] 1/2,1/2,1/4 [0,0,0] 1/2,1/2,1/4 [0,0,0] 1/2,1/2,1/4 [0,0,0] 1/2,1/2,1/4 [0,0,0] 1/2,1/2,1/4 [0,0,0] 1/2,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 c m'.m'm'</td>
<td>1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 b 422m'</td>
<td>0,0,1/4 [0,0,0] 0,0,1/4 [0,0,0] 0,0,1/4 [0,0,0] 0,0,1/4 [0,0,0] 0,0,1/4 [0,0,0] 0,0,1/4 [0,0,0] 0,0,1/4 [0,0,0] 0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 a m'.m'm'</td>
<td>0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p4m'm'
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p 2m'm'
\[a^* = b \quad b^* = c/2 \]
Origin at x,0,0

Along [1,1,0] p2m'm'
\[a^* = (-a + b)/2 \quad b^* = c \]
Origin at x,x,0
Origin at center (mmm) at $4_2/\text{mc2/m}$

Asymmetric unit

$$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x < y$$

Symmetry Operations

For $(0,0,0)$ set

1. 1

2. $2 \cdot 0,0,z$

3. $4^+ (0,0,1/2) \cdot 0,0,z$

4. $4^- (0,0,1/2) \cdot 0,0,z$

5. $2 \cdot 0,y,1/4$

6. $2 \cdot x,0,1/4$

7. $2 \cdot x,x,0$

8. $2 \cdot x,0,0$

9. $1 \cdot 0,0,0$

10. $m \cdot x,y,0$

11. $4^+ \cdot 0,0,z; 0,0,1/4$

12. $4^- \cdot 0,0,z; 0,0,1/4$

13. $c \cdot (0,0,1/2) \cdot x,0,z$

14. $c \cdot (0,0,1/2) \cdot 0,y,z$

15. $m \cdot x,x,z$

16. $m \cdot x,x,z$
Continued

For \(1,0,0\)' + set

(1) \(t' (1,0,0)\)
(2) \(2' 1/2,0,z\)
(3) \(4^+ (0,0,1/2) 1/2,1/2,z\)
(4) \(4^- (0,0,1/2) 1/2,-1/2,z\)

(5) \(2' 1/2,0,1/4\)
(6) \(2' (1,0,0) 0,1/4\)
(7) \(2' (1/2,1/2,0) x+1/2,x,0\)
(8) \(2' (1/2,-1/2,0) x+1/2,x,0\)

(9) \(T' 1/2,0.0\)
(10) \(a' (1,0,0) x,y,0\)
(11) \(4^+ (1/2,-1/2,0) x+1/2,x,0\)
(12) \(4^- (1/2,1/2,0) x+1/2,x,0\)

(13) \(n' (1,0,1/2) x,0,z\)
(14) \(c' (0,0,1/2) 1/2,y,z\)
(15) \(g' (1/2,-1/2,0) x+1/2,x\)
(16) \(g' (1/2,1/2,0) x+1/2,x\)

Generators selected (1); \(t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 p 1</td>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
</tr>
<tr>
<td>(1) x,y,z</td>
<td>u,v,w</td>
<td></td>
</tr>
<tr>
<td>(2) x,y,z</td>
<td>u,v,w</td>
<td></td>
</tr>
<tr>
<td>(3) y,x,z+1/2</td>
<td>v,u,w</td>
<td></td>
</tr>
<tr>
<td>(4) y,x,z+1/2</td>
<td>v,u,w</td>
<td></td>
</tr>
<tr>
<td>(5) x,y,z+1/2</td>
<td>u,v,w</td>
<td></td>
</tr>
<tr>
<td>(6) x,y,z+1/2</td>
<td>u,v,w</td>
<td></td>
</tr>
<tr>
<td>(7) y,x,z</td>
<td>v,u,w</td>
<td></td>
</tr>
<tr>
<td>(8) y,x,z</td>
<td>v,u,w</td>
<td></td>
</tr>
<tr>
<td>(9) x,y,z</td>
<td>u,v,w</td>
<td></td>
</tr>
<tr>
<td>(10) x,y,z</td>
<td>u,v,w</td>
<td></td>
</tr>
<tr>
<td>(11) y,x,z+1/2</td>
<td>v,u,w</td>
<td></td>
</tr>
<tr>
<td>(12) y,x,z+1/2</td>
<td>v,u,w</td>
<td></td>
</tr>
<tr>
<td>(13) x,y,z+1/2</td>
<td>u,v,w</td>
<td></td>
</tr>
<tr>
<td>(14) x,y,z+1/2</td>
<td>u,v,w</td>
<td></td>
</tr>
<tr>
<td>(15) y,x,z</td>
<td>v,u,w</td>
<td></td>
</tr>
<tr>
<td>(16) y,x,z</td>
<td>v,u,w</td>
<td></td>
</tr>
</tbody>
</table>

16 o .m x,x,z [u,u,0] x,x,z [u,u,0] x,x,z+1/2 [u,u,0] x,x,z x,x,z [u,u,0] x,x,z+1/2 [u,u,0]

16 n m.. x,y,0 [0,0,w] x,y,0 [0,0,w] y,x,1/2 [0,0,w] y,x,1/2 [0,0,w] y,x,0 [0,0,w] y,x,0 [0,0,w]

16 m .2' x,1/2,1/4 [0,v,w] x,1/2,1/4 [0,v,w] 1/2,x,3/4 [v,0,w] 1/2,x,3/4 [v,0,w] 1/2,x,1/4 [v,0,w] 1/2,x,1/4 [v,0,w]

16 l .2 x,0,1/4 [u,0,0] x,0,1/4 [u,0,0] 0,x,3/4 [0,u,0] 0,x,3/4 [0,u,0] 0,x,1/4 [0,u,0] 0,x,1/4 [0,u,0]

16 k 2'.. 0,1/2,z [u,v,0] 0,1/2,z [u,v,0] 1/2,0,z+1/2 [v,u,0] 1/2,0,z+1/2 [v,u,0] 1/2,0,z [v,u,0] 1/2,0,z [v,u,0]

8 j m.2m x,x,1/2 [0,0,0] x,x,1/2 [0,0,0] x,x,0 [0,0,0] x,x,0 [0,0,0] x,x,0 [0,0,0] x,x,0 [0,0,0]

8 i m.2m x,x,0 [0,0,0] x,x,0 [0,0,0] x,x,1/2 [0,0,0] x,x,1/2 [0,0,0] x,x,1/2 [0,0,0] x,x,1/2 [0,0,0]

8 h 2.mm 1/2,1/2,z [0,0,0] 1/2,1/2,z+1/2 [0,0,0] 1/2,1/2,z+1/2 [0,0,0] 1/2,1/2,z [0,0,0] 1/2,1/2,z [0,0,0]

16 1/2,1/2,z [0,0,0] 1/2,1/2,z+1/2 [0,0,0] 1/2,1/2,z+1/2 [0,0,0] 1/2,1/2,z [0,0,0] 1/2,1/2,z [0,0,0]
Symmetry of Special Projections

Along [0,0,1] p4mm1'
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] p2mm1'
\(a^* = b \quad b^* = c/2 \)
Origin at x,0,0

Along [1,1,0] p2mm1'
\(a^* = (-a + b)/2 \quad b^* = c \)
Origin at x,x,0
Origin at center (mmm') at $4_2/m'c'2/m$

Asymmetric unit

$$\begin{align*}
0 & \leq x \leq 1/2; \\
0 & \leq y \leq 1/2; \\
0 & \leq z \leq 1/2; \\
x & < y
\end{align*}$$

Symmetry Operations

For (0,0,0) + set

1. $\begin{pmatrix} 1 \end{pmatrix}$
2. $\begin{pmatrix} 2 \end{pmatrix}$ $0,0,z$
 $(2z|0,0,0)$
3. $\begin{pmatrix} 4^+ \end{pmatrix}$ $(0,0,1/2)0,0,z$
 $(4_2|0,0,1/2)$
4. $\begin{pmatrix} 4^- \end{pmatrix}$ $(0,0,1/2)0,0,z$
 $(4_2^{-1}|0,0,1/2)$
5. $\begin{pmatrix} 2' \end{pmatrix}$ $0,y,1/4$
 $(2_2|0,0,1/2)'$
6. $\begin{pmatrix} 2' \end{pmatrix}$ $x,0,1/4$
 $(2_z|0,0,1/2)'$
7. $\begin{pmatrix} 2' \end{pmatrix}$ $x,x,0$
 $(2_{xy}|0,0,0)'$
8. $\begin{pmatrix} 2' \end{pmatrix}$ $x,x,0$
 $(2_{xy}|0,0,0)'$
9. $\begin{pmatrix} 1' \end{pmatrix}$ $0,0,0$
 $(1|0,0,0)'$
10. $\begin{pmatrix} m' \end{pmatrix}$ $x,y,0$
 $(m_z|0,0,0)'$
11. $\begin{pmatrix} 4^{+}\overline{1} \end{pmatrix}$ $0,0,z; 0,0,1/4$
 $(4_z^{-1}|0,0,1/2)'$
12. $\begin{pmatrix} 4^{-}\overline{1} \end{pmatrix}$ $0,0,z; 0,0,1/4$
 $(4_z^{-1}|0,0,1/2)'$
13. $\begin{pmatrix} c \end{pmatrix}$ $(0,0,1/2) x,0,z$
 $(m_1|0,0,1/2)$
14. $\begin{pmatrix} c \end{pmatrix}$ $(0,0,1/2) 0,y,z$
 $(m_z|0,0,1/2)$
15. $\begin{pmatrix} m \end{pmatrix}$ x,x,z
 $(m_{xy}|0,0,0)$
16. $\begin{pmatrix} m \end{pmatrix}$ x,x,z
 $(m_{xy}|0,0,0)$
Continued

For (1,0,0)'+ set

(1) t' (1,0,0) (2) 2' 1/2,0,z (3) 4' (0,0,1/2) 1/2,1/2,z (4) 4' (0,0,1/2) 1/2,-1/2,z
 (1 1,0,0)' (2 1/2,0,0)' (3 1/2,0,1/2)' (4 1/2,0,1/2)'

(5) 2 1/2,y,1/4 (6) 2 (1,0,0) x,0,1/4 (7) 2 (1/2,1/2,0) x+1/2,x,0 (8) 2 (1/2,-1/2,0)
 (2 1/2,1/2)' (2 1/2,1/2)'

(9) T 1/2,0,0 (10) a (1,0,0) x,y,0 (11) 4' 1/2,-1/2,z; 1/2,-1/2,1/4
 (T 1/0,0) (m 1/0,0) (4 1/2,1/2,1/4)

(13) n' (1,0,1/2) x,0,z (14) c' (0,0,1/2) 1/2,y,z (15) g' (1/2,-1/2,0) x+1/2,x,z
 (m 1,0,1/2)' (m 1,0,1/2)' (m 1/2,1/2,1/4)

Generators selected
(1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 p 1</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(1,0,0)'+</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(11) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(12) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(14) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(16) y,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(17) x,y,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(18) y,x,0 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(19) y,x,0 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(20) x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>(21) x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>(22) x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>(23) x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>(24) x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>(25) x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>(26) x,0,1/4 [0,v,w]</td>
</tr>
</tbody>
</table>

16 o ..m x,x,z [u,u,0] x,x,z [u,u,0] x,x,z [u,u,0] x,x,z [u,u,0]

16 n m'.. x,y,0 [u,v,0] x,y,0 [u,v,0] y,x,1/2 [v,u,0] y,x,1/2 [v,u,0]

16 m .2. x,1/2,1/4 [u,0,0] x,1/2,1/4 [u,0,0] x,u,3/4 [0,u,0] x,u,3/4 [0,u,0]

16 l .2'. x,0,1/4 [0,v,w] x,0,1/4 [0,v,w] 0,x,3/4 [v,0,w] 0,x,3/4 [v,0,w]

16 k 2'. 0,1/2,z [u,v,0] 0,1/2,z [u,v,0] 0,1/2,z [u,v,0] 0,1/2,z [u,v,0]

8 j m'.2'm x,x,1/2 [u,u,0] x,x,1/2 [u,u,0] x,x,1/2 [u,u,0] x,x,1/2 [u,u,0]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>8</th>
<th>h</th>
<th>2.mm</th>
<th>1/2,1/2,z [0,0,0]</th>
<th>1/2,1/2,z+1/2 [0,0,0]</th>
<th>1/2,1/2,\bar{z}+1/2 [0,0,0]</th>
<th>1/2,1/2,\bar{z} [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>g</td>
<td>2.mm</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z+1/2 [0,0,0]</td>
<td>0,0,\bar{z}+1/2 [0,0,0]</td>
<td>0,0,\bar{z} [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>2'/m'..</td>
<td>0,1/2,0 [u,v,0]</td>
<td>1/2,0,1/2 [v,u,0]</td>
<td>0,1/2,1/2 [u,v,0]</td>
<td>1/2,0,0, [v,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>e</td>
<td>2'2'.</td>
<td>0,1/2,1/4 [u,0,0]</td>
<td>1/2,0,3/4 [0,u,0]</td>
<td>0,1/2,3/4 [u,0,0]</td>
<td>1/2,0,1/4 [0,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>\bar{4}2m</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>m'.mm</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,2 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>\bar{4}'2'm</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>m'.mm</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p\text{p\prime}, 4mm

\begin{align*}
\mathbf{a}^* &= \mathbf{a} & \mathbf{b}^* &= \mathbf{b} \\
\text{Origin at } 0,0,z
\end{align*}

Along [1,0,0] p2mm1'

\begin{align*}
\mathbf{a}^* &= \mathbf{b} & \mathbf{b}^* &= \mathbf{c} \\
\text{Origin at } x,0,0
\end{align*}

Along [1,1,0] p2mm1'

\begin{align*}
\mathbf{a}^* &= (-\mathbf{a} + \mathbf{b})/2 & \mathbf{b}^* &= \mathbf{c} \\
\text{Origin at } x,x,0
\end{align*}
Pₚ 4₂'/mcm'
132.12.1121

4/mmm1'
Pₚ 4₂'/m2/c2'/m'

Tetragonal

Origin at center (m'm'm) at 4₂'/mc2'/m'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x < y

Symmetry Operations

For (0,0,0) + set

(1) 1 (1|0,0,0)
(2) 2 0,0,z
(2z|0,0,0)
(3) 4⁺ 0,0,1/2 0,0,z
(4z|0,0,1/2)
(4) 4⁻ 0,0,1/2 0,0,z
(4z⁻|0,0,1/2)

(5) 2 0,y,1/4
(2|0,0,1/2)
(6) 2 x,0,1/4
(2z|0,0,1/2)
(7) 2⁺ x,x,0
(2xy|0,0,0)
(8) 2⁻ x,x,0
(2xy|0,0,0)

(9) 1 0,0,0
(1|0,0,0)
(10) m x,y,0
(mz|0,0,0)
(11) 4⁺ 0,0,z; 0,0,1/4
(4z|0,0,1/2)
(12) 4⁻ 0,0,z; 0,0,1/4
(4z⁻|0,0,1/2)

(13) c (0,0,1/2) x,0,z
(m|0,0,1/2)
(14) c (0,0,1/2) 0,y,z
(m|0,0,1/2)
(15) m' x,x,z
(mxy|0,0,0)
(16) m' x,x,z
(mxy|0,0,0)
Continued

For \((1,0,0)\) + set

<table>
<thead>
<tr>
<th>Generators selected</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>((1)) (t'(1,0,0)) ((1)) ((1,0,0))' ((1)) ((1,0,0))'</td>
</tr>
<tr>
<td>(32)</td>
<td>(p)</td>
</tr>
<tr>
<td>(5)</td>
<td>(2') (1/2, y, 1/4) ((5)) ((2,1,0,1/2))' (2) ((2,1,0,1/2))'</td>
</tr>
<tr>
<td>(9)</td>
<td>(\bar{T}) (1/2,0,0) ((9)) ((m,1,0,0))' ((9)) ((m,1,0,0))'</td>
</tr>
<tr>
<td>(13)</td>
<td>(n') ((1,0,1/2)) (x,0, z) ((13)) ((m,1,0,1/2))' ((13)) ((m,1,0,1/2))'</td>
</tr>
</tbody>
</table>

Positions selected \((1); t'(1,0,0); t'(0,1,0); t(0,0,1); (2); (3); (5); (9).\)

Multiplicity,
Wyckoff letter,
Site Symmetry.
8	g	2\text{.m'}m'	0,0,z [0,0,w]	0,0,z+1/2 [0,0,w]	0,0,z+1/2 [0,0,w]	0,0,z [0,0,w]
8	f	2'/m..	0,1/2,0 [0,0,0]	1/2,0,1/2 [0,0,0]	0,1/2,1/2 [0,0,0]	1/2,0,0, [0,0,0]
8	e	2'2'2'.	0,1/2,1/4 [0,v,0]	1/2,0,3/4 [v,0,0]	0,1/2,3/4 [0,v,0]	1/2,0,1/4 [0,v,0]
4	d	4'2'm'	1/2,1/2,1/4 [0,0,w]	1/2,1/2,3/4 [0,0,w]		
4	c	m.mm	1/2,1/2,0 [0,0,0]	1/2,1/2,1/2 [0,0,0]		
4	b	4'2m'	0,0,1/4 [0,0,0]	0,0,3/4 [0,0,0]		
4	a	m.m'm'	0,0,0 [0,0,w]	0,0,1/2 [0,0,w]		

Symmetry of Special Projections

- Along [0,0,1] p4mm1'
 - \(a^* = a\) \(b^* = b\)
 - Origin at 0,0,z

- Along [1,0,0] p2mm1'
 - \(a^* = b\) \(b^* = c/2\)
 - Origin at x,0,0

- Along [1,1,0] p_{2\alpha} 2mm
 - \(a^* = -c\) \(b^* = (a + b)/2\)
 - Origin at x-1/4,x+1/4,0
Origin at center (m'm'm') at 4/m'/c2/m'

Asymmetric unit

\(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x < y\)

Symmetry Operations

For \((0,0,0) + \) set

1. \(1\)

(1) \(1\)
(1) \((0,0,0)\)

2. \(2\)

(2) \(2\) 0,0,0
\(2_z\) 0,0,0

3. \(4'\)

(3) \(4'\) (0,0,1/2) 0,0,0
\(4_z\) (0,0,1/2)'

4. \(4'\)

(4) \(4'\) (0,0,1/2) 0,0,0
\(4_z\) (0,0,1/2)'

5. \(2'\)

(5) \(2'\) 0,y,1/4
\(2_y\) 0,0,1/2)

6. \(2'\)

(6) \(2'\) x,0,1/4
\(2_x\) 0,0,1/2)

7. \(2\)

(7) \(2\) x,x,0
\(2_x\) 0,0,0

8. \(2\)

(8) \(2\) x,x,0
\(2_y\) 0,0,0

9. \(\bar{1}\)

(9) \(\bar{1}\) 0,0,0
\(\bar{1}_y\) 0,0,0)

10. \(m'\)

(10) \(m'\) x,y,0
\(m_x\) 0,0,0)'

11. \(\bar{4}\)

(11) \(\bar{4}\) 0,0,0; 0,0,1/4
\(\bar{4}_y\) 0,0,1/2)

12. \(\bar{4}\)

(12) \(\bar{4}\) 0,0,0; 0,0,1/4
\(\bar{4}_y\) 0,0,1/2)

13. \(c\)

(13) \(c\) (0,0,1/2) x,0,0
\(c_x\) 0,0,1/2)

14. \(c\)

(14) \(c\) (0,0,1/2) 0,y,0
\(c_x\) 0,0,1/2)

15. \(m'\)

(15) \(m'\) x,y,z
\(m_y\) 0,0,0)'

16. \(m'\)

(16) \(m'\) x,x,z
\(m_{xy}\) 0,0,0)'

132.13.1122 - 1 - 2332
Continued

For \((1,0,0)\)' + set

(1) \(t'(1,0,0)\)
(2) \(2' \ 1/2,0,z\)
(3) \(4' \ (0,0,1/2) \ 1/2,1/2,z\)
(4) \(4' \ (0,0,1/2) \ 1/2,-1/2,z\)

(5) 2 1/2,y,1/4
(2') 1,0,1/2

(6) 2' (1,0,0) x,0,1/4
(2') 1,0,1/2

(7) 2' (1/2,1/2,0) x+1,2,x,0
(2') 1,0,1/2

(8) 2' (1/2,-1/2,0) x+1,2,x,0
(2') 1,0,1/2

(9) \(T \ 1/2,0,0\)

(10) a (1,0,0) x,y,0
(2') 1,0,1/2

(11) \(4' \ (1,0,1/2) \ 1/2,1/2,z\)
(4') 1,0,1/2

(12) \(4' \ (1,0,0) \ 1/2,1/2,z\)
(4') 1,0,1/2

(13) \(n' (1,0,1/2) \ x,0,z\)

(14) \(c' (0,0,1/2) \ 1/2,y,z\)

(15) \(g (1/2,-1/2,0) \ x+1/2,x,0\)

(16) \(g (1/2,1/2,0) \ x+1/2,x,0\)

Generators selected

\((1); t'(1,0,0); t'(0,1,0); t'(0,0,1); (2); (3); (5); (9).\)

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.
Coordinates

\((0,0,0)\) + \((1,0,0)\)'

16 o
\(x,y,z [u,v,w]\)
\(x,y,z [u,v,w]\)
\(x,y,z+1/2 [u,v,w]\)
\(x,y,z+1/2 [u,v,w]\)

16 n
\(x,y,0 [u,v,0]\)
\(x,y,0 [u,v,0]\)
\(y,x,1/2 [v,u,0]\)
\(y,x,1/2 [v,u,0]\)

16 m
\(x,1/2,1/4 [u,0,0]\)
\(x,1/2,1/4 [u,0,0]\)
\(1/2,x,3/4 [0,u,0]\)
\(1/2,x,3/4 [0,u,0]\)

16 l
\(x,0,1/4 [0,v,w]\)
\(x,0,1/4 [0,v,w]\)
\(0,x,3/4 [v,0,w]\)
\(0,x,3/4 [v,0,w]\)

16 k
\(0,1/2,z [u,v,0]\)
\(0,1/2,z [u,v,0]\)
\(0,1/2,z+1/2 [v,u,0]\)
\(0,1/2,z+1/2 [v,u,0]\)

8 j
\(x,x,1/2 [u,u,0]\)
\(x,x,0 [u,u,0]\)
\(x,x,0 [u,u,0]\)
\(x,x,1/2 [u,u,0]\)

8 i
\(x,x,0 [u,u,0]\)
\(x,x,0 [u,u,0]\)
\(x,x,0 [u,u,0]\)
\(x,x,1/2 [u,u,0]\)

8 h 2mm
\(1/2,1/2,z [0,0,0]\)
\(1/2,1/2,z+1/2 [0,0,0]\)
\(1/2,1/2,z+1/2 [0,0,0]\)
\(1/2,1/2,z+1/2 [0,0,0]\)
Continued

8	g	2.m'm'	0,0,z [0,0,w]	0,0,z+1/2 [0,0,w]	0,0,z [0,0,w]
8	f	2'/m'	0,1/2,0 [u,v,0]	1/2,0,1/2 [v,u,0]	0,1/2,1/2 [u,v,0]
8	e	2'22'	0,1/2,1/4 [u,0,0]	1/2,0,3/4 [u,0,0]	0,1/2,3/4 [u,0,0]
4	d	42'm'	1/2,1/2,1/4 [0,0,0]	1/2,1/2,3/4 [0,0,0]	1/2,0,1/4 [0,0,0]
4	c	m'.m'm'	1/2,1/2,0 [0,0,0]	1/2,1/2,1/2 [0,0,0]	1/2,0,0, [v,u,0]
4	b	42'm'	0,0,1/4 [0,0,w]	0,0,3/4 [0,0,w]	0,0,1/2 [0,0,w]
4	a	m'.m'm'	0,0,0 [0,0,0]	0,0,1/2 [0,0,0]	0,0,2 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p2 4m'm'</th>
<th>Along [1,0,0] p2mm1'</th>
<th>Along [1,1,0] p2a' 2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{a^} = \mathbf{a}) (\mathbf{b^} = \mathbf{b})</td>
<td>(\mathbf{a^} = \mathbf{b}) (\mathbf{b^} = \mathbf{c}/2)</td>
<td>(\mathbf{a^} = (-\mathbf{a} + \mathbf{b})/2) (\mathbf{b^} = \mathbf{c})</td>
</tr>
<tr>
<td>Origin at 1/2,1/2,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Origin at \(\bar{4}12_{1}/c \), at \(-1/4,1/4,-1/4\) from \(\bar{1} \)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \)

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
& \quad (1 | 0,0,0) \\
(2) & \quad 2 \quad 0,0,z \\
& \quad (2_{z} | 0,0,0) \\
(3) & \quad 4^{+} \quad (0,0,1/2) \quad 0,1/2,z \\
& \quad (4_{z} | 1/2,1/2,1/2) \\
(4) & \quad 4^{-} \quad (0,0,1/2) \quad 1/2,0,z \\
& \quad (4_{z}^{-} | 1/2,1/2,1/2) \\
(5) & \quad 2 \quad 0,y,1/4 \\
& \quad (2_{y} | 0,0,1/2) \\
(6) & \quad 2 \quad x,0,1/4 \\
& \quad (2_{x} | 0,0,1/2) \\
(7) & \quad 2 \quad (1/2,1/2,0) \quad x,x,0 \\
& \quad (2_{x,y} | 1/2,1/2,0) \\
(8) & \quad 2 \quad x,x+1/2,0 \\
& \quad (2_{x,y} | 1/2,1/2,0) \\
(9) & \quad \bar{1} \quad 1/4,1/4,1/4 \\
& \quad (1 \ | 1/2,1/2,1/2) \\
(10) & \quad n \quad (1/2,1/2,0) \quad x,y,1/4 \\
& \quad (m_{x,y} | 1/2,1/2,1/2) \\
(11) & \quad \bar{4}^{+} \quad 0,0,z; \quad 0,0,0 \\
& \quad (4_{z} | 0,0,0) \\
(12) & \quad \bar{4}^{-} \quad 0,0,z; \quad 0,0,0 \\
& \quad (4_{z}^{-} | 0,0,0) \\
(13) & \quad a \quad (1/2,0,0) \quad x,1/4,z \\
& \quad (m_{x} | 1/2,1/2,0) \\
(14) & \quad b \quad (0,1/2,0) \quad 1/4,y,z \\
& \quad (m_{y} | 1/2,1/2,0) \\
(15) & \quad c \quad (0,0,1/2) \quad x,x,z \\
& \quad (m_{x,y} | 0,0,1/2) \\
(16) & \quad c \quad (0,0,1/2) \quad x,x,z \\
& \quad (m_{x,y} | 0,0,1/2)
\end{align*}
\]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k 1</td>
<td></td>
<td>(1) x,y,z [u,v,w] (2) x̅,y, z [u̅,v̅,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y̅+1/2,x+1/2,z+1/2 [v̅,u,w] (4) y+1/2,x̅+1/2,z+1/2 [v̅,u̅,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x̅,y̅,z+1/2 [u̅,v,w] (6) x̅,y,z+1/2 [u̅,v̅,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y+z+1/2 [v,u̅,w] (8) y+z+1/2 [v,u̅,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x+1/2,y+1/2,z+1/2 [u,v,w] (10) x+1/2,y+1/2,z+1/2 [u̅,v̅,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) y̅, x̅,z [v̅,u,w] (12) y̅, x̅,z [v̅,u̅,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x+1/2,y+1/2,z [u,v,w] (14) x+1/2,y+1/2,z [u̅,v̅,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) y̅, x̅,z+1/2 [v̅,u,w] (16) y̅, x̅,z+1/2 [v̅,u̅,w]</td>
</tr>
<tr>
<td>8 j .2</td>
<td></td>
<td>x̅+1/2,0 [u,u̅,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x̅+1/2,0 [u,u̅,0]</td>
</tr>
<tr>
<td>8 i .2</td>
<td></td>
<td>x̅+1/2,1/2 [u,u̅,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x̅+1/2,1/2 [u,u̅,0]</td>
</tr>
<tr>
<td>8 h .2</td>
<td></td>
<td>x̅+1/2,1/2,1/4 [u,u̅,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x̅+1/2,1/2,1/4 [u,u̅,0]</td>
</tr>
<tr>
<td>8 g .2</td>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 f .2</td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 e 1</td>
<td></td>
<td>1/4,1/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4,1/4,1/4 [u̅,v̅,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4,1/4,1/4 [v,u̅,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4,1/4,1/4 [v,u̅,w]</td>
</tr>
<tr>
<td>4 d 4</td>
<td></td>
<td>0,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,0 [0,0,w]</td>
</tr>
<tr>
<td>4 c 222</td>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 b 222</td>
<td></td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 a 222</td>
<td></td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Continued
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Formulae</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>pₐₜ, 4m'm'</td>
<td>$a^* = (a - b)/2$</td>
<td>1/2,0,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b^* = (a + b)/2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Origin at 1/2,0,0</td>
<td></td>
</tr>
<tr>
<td>[1,0,0]</td>
<td>p₂ₐₜ, 2m'm'</td>
<td>$a^* = b/2$</td>
<td>x,0,1/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b^* = c$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Origin at x,0,1/4</td>
<td></td>
</tr>
<tr>
<td>[1,1,0]</td>
<td>p₂ₐₜ, 2m'm'</td>
<td>$a^* = -c/2$</td>
<td>x,x,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b^* = (-a + b)/2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at $\overline{4} 12_i / c 1'$, at -1/4,1/4,-1/4 from $\overline{1}$ 1'

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

For 1 + set

1. 1

 (1) 1

 (2) $2 \cdot 0,0,z$

 (3) $4^+ (0,0,1/2) 0,1/2,z$

 (4) $4^- (0,0,1/2) 1/2,0,z$

2. $0,0,1/2$

 (2z) $0,0,0$

3. $0,1/2,0$

 (2x) $0,0,1/2$

4. $1/2,1/2,0$

 (4z) $1/2,1/2,1/2$

5. $0,0,1/2$

 (4z) $0,0,0$

6. $0,0,1/2$

 (4z) $0,0,0$

7. $1/2,1/2,0$

 (2x) $1/2,1/2,0$

8. $x,x+1/2,0$

 (2x) $1/2,1/2,0$

9. $1/4,1/4,1/4$

 (1) $1/2,1/2,1/2$

10. $1/4,1/4,1/4$

 (mz) $1/2,1/2,1/2$

11. $0,0,0$

 (mz) $0,0,0$

12. $0,0,0$

 (mz) $0,0,0$

13. $1/2,0,0$

 (mz) $1/2,1/2,0$

14. $1/4,1/4,1/4$

 (mz) $1/2,1/2,1/2$

15. $0,0,1/2$

 (mz) $0,0,1/2$

16. $0,0,1/2$

 (mz) $0,0,1/2$
Continued 133.2.1124 P4₁ /nbc₁'

For 1' + set

<table>
<thead>
<tr>
<th>(1) 1'</th>
<th>(2) 2'</th>
<th>(3) 4⁺'</th>
<th>(4) 4⁻'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 0 0 0)⁺'</td>
<td>0 0 z</td>
<td>(0 0 1/2) 0 1/2 z</td>
<td>(0 0 1/2) 1/2 0 z</td>
</tr>
<tr>
<td>(2 0 0 0)⁺'</td>
<td>1/2 1/2 1/2 z⁺'</td>
<td>1/2 1/2 1/2 z⁺'</td>
<td></td>
</tr>
</tbody>
</table>

| (5) 2' 0, y, 1/4 | (6) 2' x, 0, 1/4 | (7) 2' (1/2, 1/2, 0) x, x, 0 | (8) 2' x, x + 1/2, 0 |
| (2 0 0 0 1/2)⁺' | (2 0 0 0 1/2)⁺' | (2 0 0 1/2 1/2, 1/2)⁺' | (2 0 0 1/2 1/2, 1/2)⁺' |

| (9) T⁺ 1/4, 1/4, 1/4 | (10) n⁺ (1/2, 1/2, 2) x, y, 1/4 | (11) 4⁺ x, 0, z; 0, 0, 0 | (12) 4⁻ x, 0, z; 0, 0, 0 |
| (1/2 1/2 1/2 1/2)⁺' | (m 1/2 1/2 1/2 1/2)⁺' | (4 0 0 0)⁺' | (4 z⁻ 0 0 0)⁺' |

| (13) a⁺ (1/2, 0, 0) x, 1/4, z | (14) b⁺ (0, 1/2, 0) 1/4, y, z | (15) c⁺ (0, 0, 1/2) x, x, z | (16) c⁻ (0, 0, 1/2) x, x, z |
| (m 1/2 1/2 1/2 1/2)⁺' | (m 1/2 1/2 1/2 1/2)⁺' | (m 0 0 1/2 1/2)⁺' | (m 0 0 1/2 1/2)⁺' |

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5); (9); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>1 +</th>
<th>1' +</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>k</th>
<th>11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x, y, z [0, 0, 0]</td>
<td>(2) x, y, z [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>(3) y + 1/2, x + 1/2, z + 1/2 [0, 0, 0]</td>
<td>(4) y + 1/2, x + 1/2, z + 1/2 [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>(5) x, y, z + 1/2 [0, 0, 0]</td>
<td>(6) x, y, z + 1/2 [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>(7) y + 1/2, x + 1/2, z [0, 0, 0]</td>
<td>(8) y + 1/2, x + 1/2, z [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>(9) x + 1/2, y + 1/2, z + 1/2 [0, 0, 0]</td>
<td>(10) x + 1/2, y + 1/2, z + 1/2 [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>(11) y, x, z [0, 0, 0]</td>
<td>(12) y, x, z [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>(13) x + 1/2, y + 1/2, z [0, 0, 0]</td>
<td>(14) x + 1/2, y + 1/2, z [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>(15) y, x, z + 1/2 [0, 0, 0]</td>
<td>(16) y, x, z + 1/2 [0, 0, 0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>j</th>
<th>.21'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, x + 1/2, 0 [0, 0, 0])</td>
<td>x, x + 1/2, [0, 0, 0]</td>
<td>x, x + 1/2, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>x + 1/2, x, 1/2 [0, 0, 0]</td>
<td>x + 1/2, x, 1/2 [0, 0, 0]</td>
<td>x + 1/2, x, 0 [0, 0, 0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>i</th>
<th>.21'</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, 3/4 [0, 0, 0]</td>
<td>x, 3/4 [0, 0, 0]</td>
<td>1/2, x + 1/2, 1/4 [0, 0, 0]</td>
</tr>
<tr>
<td>x + 1/2, 1/2, 3/4 [0, 0, 0]</td>
<td>x + 1/2, 1/2, 3/4 [0, 0, 0]</td>
<td>0, x, 1/4 [0, 0, 0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>h</th>
<th>.21'</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, 1/4 [0, 0, 0]</td>
<td>x, 1/4 [0, 0, 0]</td>
<td>1/2, x + 1/2, 3/4 [0, 0, 0]</td>
</tr>
<tr>
<td>x + 1/2, 1/2, 1/4 [0, 0, 0]</td>
<td>x + 1/2, 1/2, 1/4 [0, 0, 0]</td>
<td>0, x, 3/4 [0, 0, 0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>g</th>
<th>.21'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0, z [0, 0, 0]</td>
<td>0, 0, z [0, 0, 0]</td>
<td>0, z + 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>1/2, 1/2, z + 1/2 [0, 0, 0]</td>
<td>1/2, 1/2, z + 1/2 [0, 0, 0]</td>
<td>1/2, 1/2, z [0, 0, 0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Operation</th>
<th>Axes</th>
<th>Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>8f 2..1'</td>
<td>0.1/2,z [0,0,0]</td>
<td>0.1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,2z+1/2 [0,0,0]</td>
<td>1/2,0,2z [0,0,0]</td>
</tr>
<tr>
<td>8e -1'</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,1/4 [0,0,0]</td>
<td>1/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4d 41'</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4c 2.221'</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4b 222.1'</td>
<td>0,0,1/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4a 222.1'</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1] p4mm1'**
 - \(a^* = \frac{(a - b)}{2} \)
 - \(b^* = \frac{(a + b)}{2} \)
 - Origin at 0,0,z

- **Along [1,0,0] p2mm1'**
 - \(a^* = \frac{b}{2} \)
 - \(b^* = c \)
 - Origin at x,0,1/4

- **Along [1,1,0] p2mm1'**
 - \(a^* = \frac{(a + b)}{2} \)
 - \(b^* = \frac{c}{2} \)
 - Origin at x,x,0
Origin at $\overline{4}12\overline{1}/c$, at $-1/4,1/4,-1/4$ from $\overline{1}$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

1. $\overline{1} (0,0,0)$
2. $2' 0,0,z$
3. $4' (0,0,1/2) 0,1/2,z$
4. $4' (0,0,1/2) 1/2,0,z$
5. $2' 0,y,1/4$
6. $2' x,0,1/4$
7. $2' (1/2,1/2,0) x,x,0$
8. $2' x,x+1/2,0$
9. $\overline{1} 1/4,1/4,1/4$
10. $n' (1/2,1/2,0) x,y,1/4$
11. $\overline{4}' 0,0,z$
12. $\overline{4}' 0,0,z$
13. $a (1/2,0,0) x,1/4,z$
14. $b (0,1/2,0) 1/4,y,z$
15. $c (0,0,1/2) x,x,1/4$
16. $c (0,0,1/2) x,x,z

133.3.1125 - 1 - 2341
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>k</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
<td>.2'</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
<td>.2'</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>.2'</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>2..</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>2..</td>
</tr>
<tr>
<td>8</td>
<td>e</td>
<td>1'</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>4'</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>22'</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>22'</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>22'</td>
</tr>
</tbody>
</table>

Coordinates

- (1) x, y, z [u, v, w]
- (2) x, y, z [u, v, w]
- (3) $y + 1/2, x + 1/2, z + 1/2$ [v, u, w]
- (4) $y + 1/2, x + 1/2, z + 1/2$ [v, u, w]
- (5) $x, y, z + 1/2$ [u, v, w]
- (6) $x, y, z + 1/2$ [u, v, w]
- (7) $y + 1/2, x + 1/2, z$ [v, u, w]
- (8) $y + 1/2, x + 1/2, z$ [v, u, w]
- (9) $x + 1/2, y + 1/2, z + 1/2$ [u, v, w]
- (10) $x + 1/2, y + 1/2, z + 1/2$ [u, v, w]
- (11) y, x, z [v, u, w]
- (12) y, x, z [v, u, w]
- (13) $x + 1/2, y + 1/2, z$ [u, v, w]
- (14) $x + 1/2, y + 1/2, z$ [u, v, w]
- (15) $y, x, z + 1/2$ [v, u, w]
- (16) $y, x, z + 1/2$ [v, u, w]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>p4mm</th>
<th>p2a' 2mm</th>
<th>p2a' 2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>a* = (a - b)/2 b* = (a + b)/2</td>
<td>a* = b/2 b* = c</td>
<td>a* = -c/2 b* = (-a + b)/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,z</td>
<td>Origin at x,1/4,1/4</td>
<td>Origin at x,x,1/4</td>
</tr>
</tbody>
</table>
Origin at $\bar{4}12_1/c$, at $-1/4,1/4,-1/4$ from 1

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

<table>
<thead>
<tr>
<th>Number</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1</td>
</tr>
<tr>
<td>(2)</td>
<td>$2x,0,z$</td>
</tr>
<tr>
<td>(3)</td>
<td>$4'^{+}(0,0,1/2)\rightarrow 0,1/2,z$</td>
</tr>
<tr>
<td>(4)</td>
<td>$4'^{-}(1/2,1/2,1/2')$</td>
</tr>
<tr>
<td>(5)</td>
<td>$2'0,y,1/4$</td>
</tr>
<tr>
<td>(6)</td>
<td>$2'x,0,1/4$</td>
</tr>
<tr>
<td>(7)</td>
<td>$2(1/2,1/2,0)\rightarrow x,x,0$</td>
</tr>
<tr>
<td>(8)</td>
<td>$x,x+1/2,0$</td>
</tr>
<tr>
<td>(9)</td>
<td>$\bar{1}1/4,1/4,1/4$</td>
</tr>
<tr>
<td>(10)</td>
<td>$n(1/2,1/2,0)\rightarrow x,y,1/4$</td>
</tr>
<tr>
<td>(11)</td>
<td>$\bar{4}'\cdot 0,0,z; 0,0,0$</td>
</tr>
<tr>
<td>(12)</td>
<td>$\bar{4}'\cdot 0,0,z; 0,0,0$</td>
</tr>
<tr>
<td>(13)</td>
<td>$a'(1/2,0,0)\rightarrow x,1/4,z$</td>
</tr>
<tr>
<td>(14)</td>
<td>$b'(0,1/2,0)\rightarrow 1/4,y,z$</td>
</tr>
<tr>
<td>(15)</td>
<td>$c(0,0,1/2)\rightarrow x,x,z$</td>
</tr>
<tr>
<td>(16)</td>
<td>$c(0,0,1/2)\rightarrow x,x,z$</td>
</tr>
</tbody>
</table>
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>k 1</td>
</tr>
<tr>
<td>(1)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2)</td>
<td>x̅,y̅,z [u̅,v̅,w]</td>
</tr>
<tr>
<td>(3)</td>
<td>y̅+1/2,x+1/2,z+1/2 [v̅,u̅,w]</td>
</tr>
<tr>
<td>(4)</td>
<td>y+1/2,x̅+1/2,z+1/2 [v̅,u̅,w]</td>
</tr>
<tr>
<td>(5)</td>
<td>x̅,y̅,z+1/2 [u̅,v̅,w]</td>
</tr>
<tr>
<td>(6)</td>
<td>x̅,y̅,z+1/2 [u̅,v̅,w]</td>
</tr>
<tr>
<td>(7)</td>
<td>y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>(8)</td>
<td>y+1/2,x+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(9)</td>
<td>x̅+1/2,y̅+1/2,z+1/2 [v̅,u̅,w]</td>
</tr>
<tr>
<td>(10)</td>
<td>y̅+1/2,x+1/2,z [v̅,u̅,w]</td>
</tr>
<tr>
<td>(11)</td>
<td>y̅+1/2,x+1/2,z [v̅,u̅,w]</td>
</tr>
<tr>
<td>(12)</td>
<td>y̅+1/2,x+1/2,z+1/2 [v̅,u̅,w]</td>
</tr>
<tr>
<td>(13)</td>
<td>x+1/2,y̅+1/2,z [u̅,v̅,w]</td>
</tr>
<tr>
<td>(14)</td>
<td>x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(15)</td>
<td>x,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(16)</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>j 2</td>
</tr>
<tr>
<td>(1)</td>
<td>x,x+1/2,0 [u,u,0]</td>
</tr>
<tr>
<td>(2)</td>
<td>x̅,x+1/2,0 [u̅,u̅,0]</td>
</tr>
<tr>
<td>(3)</td>
<td>x̅+1/2,x̅+1/2,0 [u̅,u̅,0]</td>
</tr>
<tr>
<td>(4)</td>
<td>x̅,x+1/2,1/2 [u̅,u,0]</td>
</tr>
<tr>
<td>(5)</td>
<td>x̅+1/2,x̅+1/2,1/2 [u̅,u,0]</td>
</tr>
<tr>
<td>(6)</td>
<td>x̅+1/2,x̅+1/2,0 [u̅,u,0]</td>
</tr>
<tr>
<td>(7)</td>
<td>x̅+1/2,x̅,1/2 [u,u,0]</td>
</tr>
<tr>
<td>(8)</td>
<td>x̅,x+1/2,1/2 [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>i 2</td>
</tr>
<tr>
<td>(1)</td>
<td>x,0,3/4 [0,v,w]</td>
</tr>
<tr>
<td>(2)</td>
<td>x̅,0,3/4 [0,v̅,w]</td>
</tr>
<tr>
<td>(3)</td>
<td>x̅+1/2,1/2,3/4 [0,v̅,w]</td>
</tr>
<tr>
<td>(4)</td>
<td>x̅+1/2,1/2,1/4 [0,v̅,w]</td>
</tr>
<tr>
<td>(5)</td>
<td>x̅,1/2,1/4 [v̅,0,w]</td>
</tr>
<tr>
<td>(6)</td>
<td>x̅,1/2,1/4 [v̅,0,w]</td>
</tr>
<tr>
<td>(7)</td>
<td>x̅+1/2,1/2,1/4 [0,v,w]</td>
</tr>
<tr>
<td>(8)</td>
<td>x̅+1/2,1/2,3/4 [0,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>h 2</td>
</tr>
<tr>
<td>(1)</td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td>(2)</td>
<td>x̅,0,1/4 [0,v̅,w]</td>
</tr>
<tr>
<td>(3)</td>
<td>x̅+1/2,1/2,1/4 [0,v̅,w]</td>
</tr>
<tr>
<td>(4)</td>
<td>x̅+1/2,1/2,3/4 [0,v̅,w]</td>
</tr>
<tr>
<td>(5)</td>
<td>0,1/2,1/4 [v,v̅,w]</td>
</tr>
<tr>
<td>(6)</td>
<td>0,1/2,1/4 [v,v̅,w]</td>
</tr>
<tr>
<td>(7)</td>
<td>0,1/2,3/4 [v,v̅,w]</td>
</tr>
<tr>
<td>(8)</td>
<td>0,1/2,3/4 [v,v̅,w]</td>
</tr>
<tr>
<td>8</td>
<td>g 2</td>
</tr>
<tr>
<td>(1)</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>(2)</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>(3)</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>(4)</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>(5)</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>(6)</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>(7)</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>(8)</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>f 2</td>
</tr>
<tr>
<td>(1)</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>(2)</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>(3)</td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>(4)</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>(5)</td>
<td>1/2,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(6)</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>(7)</td>
<td>1/2,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(8)</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>e 1</td>
</tr>
<tr>
<td>(1)</td>
<td>1/4,1/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td>(2)</td>
<td>3/4,3/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td>(3)</td>
<td>3/4,3/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td>(4)</td>
<td>3/4,3/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td>(5)</td>
<td>3/4,3/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td>(6)</td>
<td>3/4,3/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td>(7)</td>
<td>3/4,3/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td>(8)</td>
<td>3/4,3/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>d 4</td>
</tr>
<tr>
<td>(1)</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>(2)</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>(3)</td>
<td>0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>(4)</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>c 2</td>
</tr>
<tr>
<td>(1)</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>(2)</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>(3)</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>(4)</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>b 2</td>
</tr>
<tr>
<td>(1)</td>
<td>0,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td>(2)</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>(3)</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>(4)</td>
<td>0,0,3/4 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>a 2</td>
</tr>
<tr>
<td>(1)</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>(2)</td>
<td>0,1/2,3/4 [0,0,w]</td>
</tr>
<tr>
<td>(3)</td>
<td>1/2,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>(4)</td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] \(p_{\infty} 4mm \)
\[a^* = \frac{(a - b)}{2} \quad b^* = \frac{(a + b)}{2} \]
Origin at 0,0,z

Along [1,0,0] \(p2'mm' \)
\[a^* = -c \quad b^* = \frac{b}{2} \]
Origin at x,0,1/4

Along [1,1,0] \(p_{2a'} 2m'm' \)
\[a^* = -\frac{c}{2} \quad b^* = \frac{-(a + b)}{2} \]
Origin at x,x,0
Origin at $\overline{4}'12$_1'/c'$, at -1/4,1/4,-1/4 from $\overline{1}$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

(1) 1
(1) 0,0,0

(2) 2 0,0,z
(2) $z_0,0,0$

(3) $4'\cdot (0,0,1/2) 0,1/2,z$
(3) $4_z\cdot (1/2,1/2,1/2)'$

(4) $4'\cdot (0,0,1/2) 1/2,0,z$
(4) $4_z\cdot (1/2,1/2,1/2)'$

(5) 2 0,y,1/4
(5) $y_0,0,1/2$

(6) 2 0,y,1/4
(6) $z_0,0,1/2$

(7) 2' (1/2,1/2,0) x,x,0
(7) $2_{x'} (1/2,1/2,0)'$

(8) 2' x,x+1/2,0
(8) $2_{x'} (1/2,1/2,0)'$

(9) $\overline{4}'14,1/4,1/4$
(9) $\overline{1} 1/2,1/2,1/2$

(10) n (1/2,1/2,0) x,y,1/4
(10) $n_z 1/2,1/2,1/2$

(11) $\overline{4}'\cdot 0,0,z; 0,0,0$
(11) $\overline{4}_z\cdot (0,0,0)'$

(12) $\overline{4}'\cdot 0,0,z; 0,0,0$
(12) $\overline{4}_z\cdot (0,0,0)'$

(13) a (1/2,0,0) x,1/4,z
(13) $m_{x'} 1/2,1/2,0$

(14) b (0,1/2,0) 1/4,y,z
(14) $m_{xy} 1/2,1/2,0$

(15) $c' (0,0,1/2) x,x,z$
(15) $m_{xy} (0,0,1/2)'$

(16) $c' (0,0,1/2) x,x,z$
(16) $m_{xy} (0,0,1/2)'$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>k</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
<td>.2'</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
<td>.2</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>.2</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>2..</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>2..</td>
</tr>
<tr>
<td>8</td>
<td>e</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>4`</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>222'</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>222.</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>222.</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3)</td>
<td>y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(4)</td>
<td>x+1/2,y+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(5)</td>
<td>x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(6)</td>
<td>x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(7)</td>
<td>y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>(8)</td>
<td>y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>(9)</td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(10)</td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(11)</td>
<td>x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(12)</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(13)</td>
<td>y+1/2,x+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(14)</td>
<td>y+1/2,x+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(15)</td>
<td>x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(16)</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along $[0,0,1]$ p_{12}, $4m'm'$
\[a^* = (\mathbf{a} - \mathbf{b})/2 \quad b^* = (\mathbf{a} + \mathbf{b})/2\]
Origin at $\frac{1}{2},0,z$

Along $[1,0,0]$ $p_{2\alpha}$, $2m'm'$
\[a^* = -\mathbf{c} \quad b^* = \mathbf{b}/2\]
Origin at $x,0,\frac{1}{4}$

Along $[1,1,0]$ $p'2\text{mm}'$
\[a^* = (-\mathbf{a} + \mathbf{b})/2 \quad b^* = \mathbf{c}/2\]
Origin at $x,x,0$
Origin at $\overline{4}12/c$, at -$1/4,1/4,-1/4$ from $\overline{1}$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

1. 1

 $1 | 0,0,0$

2. z

 $z | 0,0,0$

3. z'

 $z | 1/2,1/2,0$

4. x

 $1/2,0,0$

5. y

 $0,1/2,0$

6. z

 $0,0,1/2$

7. x

 $x,x,0$

8. y

 $x,y,1/4$

9. z

 x,x,z

10. x

 $x,y,1/4$

11. y

 $1/2,1/2,0$

12. z

 $1/2,1/2,0$

13. x

 $1/2,0,0$

14. y

 $0,1/2,0$

15. z

 $0,0,1/2$

16. x

 $0,0,1/2$

17. y

 $0,0,0$

18. z

 $0,0,0$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>k</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p4'mm'
\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]
Origin at 0,0,z

Along [1,0,0] p2m'm'
\[a^* = \frac{b}{2} \quad b^* = c \]
Origin at x,0,1/4

Along [1,1,0] p2a* 2m'm'
\[a^* = \frac{-c}{2} \quad b^* = \frac{-(a + b)}{2} \]
Origin at x,x,0
Origin at \(\overline{4}12_1'/c' \), at \(-1/4,1/4,-1/4\) from \(\overline{1} \)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

1. 1
2. \(2^+ (0,0,0) \)
3. \(4^+ (0,0,1/2) 0,1/2,z \)
4. \(4^* (0,0,1/2) 1/2,0,z \)
5. \(2' 0,y,1/4 \)
6. \(2' x,0,1/4 \)
7. \(2' (1/2,1/2,0) x,x,0 \)
8. \(2' x,x+1/2,0 \)
9. \(\overline{1} 1/4,1/4,1/4 \)
10. \(n (1/2,1/2,0) x,y,1/4 \)
11. \(4^* 0,0,z; 0,0,0 \)
12. \(4^- 0,0,z; 0,0,0 \)
13. \(a' (1/2,0,0) x,1/4,z \)
14. \(b' (0,1/2,0) 1/4,y,z \)
15. \(c' (0,0,1/2) x,x,z \)
16. \(c' (0,0,1/2) x,x,z \)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>k 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x,y,z+1/2 [u,v,w]</td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) x,y,z+1/2 [u,v,w]</td>
<td>(8) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x,y,z+1/2 [u,v,w]</td>
<td>(10) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) x,y,z+1/2 [u,v,w]</td>
<td>(12) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x,y,z+1/2 [u,v,w]</td>
<td>(14) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) x,y,z+1/2 [u,v,w]</td>
<td>(16) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>j .2'</td>
<td>x,x+1/2,0 [u,v,w]</td>
<td>x,x+1/2,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x,1/2 [u,v,w]</td>
<td>x+1/2,x,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,1/2,1/2 [u,v,w]</td>
<td>x+1/2,1/2,1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,1/2,0 [u,v,w]</td>
<td>x+1/2,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>i .2'</td>
<td>x,0,3/4 [0,v,w]</td>
<td>0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,3/4 [0,v,w]</td>
<td>0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,1/2,3/4 [0,v,w]</td>
<td>x+1/2,1/2,3/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,1/2,1/4 [0,v,w]</td>
<td>x+1/2,1/2,1/4 [0,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>h .2'</td>
<td>x,0,1/4 [0,v,w]</td>
<td>0,3/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/4 [0,v,w]</td>
<td>0,3/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,1/2,1/4 [0,v,w]</td>
<td>x+1/2,1/2,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,1/2,3/4 [0,v,w]</td>
<td>x+1/2,1/2,3/4 [0,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>g 2..</td>
<td>0,0,z [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>f 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>e 1</td>
<td>1/4,1/4,1/4 [u,v,w]</td>
<td>3/4,3/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4,3/4,1/4 [u,v,w]</td>
<td>3/4,3/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4,1/4,1/4 [u,v,w]</td>
<td>3/4,1/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>d 4</td>
<td>0,0,0 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,0 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,0 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,0 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>c 2.2'</td>
<td>0,1/2,0 [0,0,w]</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,0 [0,0,w]</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>b 22'</td>
<td>0,0,1/4 [0,0,w]</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,1/4 [0,0,w]</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>a 22'</td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p\textsubscript{2}mm
\begin{align*}
a^* &= (a - b)/2 \\
b^* &= (a + b)/2
\end{align*}
Origin at 1/2,0,z

Along [1,0,0] p'2'mm
\begin{align*}
a^* &= -c \\
b^* &= b/2
\end{align*}
Origin at x,0,1/4

Along [1,1,0] p'2'mm
\begin{align*}
a^* &= -c/2 \\
b^* &= (-a + b)/2
\end{align*}
Origin at x,x,0
Origin at \(\bar{4}12_{1}/c' \), at \(-1/4, 1/4, -1/4\) from \(\bar{1} \)

Asymmetric unit \(\quad 0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \)

Symmetry Operations

1. \(1\) \(1|0,0,0\)
2. \(2\) \((0,0,z) \) \(2|z|0,0,0\)
3. \(4'\) \((0,0,1/2) \) \(0,1/2,z\) \(4_z|1/2,1/2,1/2'\)
4. \(4'\) \((0,0,1/2) \) \(1/2,0,z\) \(4_{z'}|1/2,1/2,1/2'\)
5. \(2'\) \(0,y,1/4\) \(2_{y}|0,0,1/2'\)
6. \(2'\) \(x,0,1/4\) \(2_{x}|0,0,1/2'\)
7. \(2\) \((1/2,1/2,0) \) \(x,x,0\) \(2_{x'}|1/2,1/2,0\)
8. \(2\) \(x, x+1/2,0\) \(2_{x'}|1/2,1/2,0\)
9. \(\bar{1}\) \(1/4,1/4,1/4\) \(1|1/2,1/2,1/2'\)
10. \(n'\) \((1/2,1/2,0) \) \(x,y,1/4\) \(m_{y}|1/2,1/2,1/2'\)
11. \(\bar{4}^+\) \((0,0,z) \) \(0,0,0\) \(\bar{4}_{z}|0,0,0\)
12. \(\bar{4}^-\) \((0,0,z) \) \(0,0,0\) \(\bar{4}_{z'}|0,0,0\)
13. \(a\) \((1/2,0,0) \) \(x,1/4,z\) \(m_{x}|1/2,1/2,0\)
14. \(b\) \((0,1/2,0) \) \(1/4,y,z\) \(m_{y}|1/2,1/2,0\)
15. \(c'\) \((0,0,1/2) \) \(x,x,z\) \(m_{x'}|0,0,1/2'\)
16. \(c'\) \((0,0,1/2) \) \(x,x,z\) \(m_{x'}|0,0,1/2'\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(11) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8 j .2</td>
<td>x,x+1/2,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,x+1/2,1/4 [v,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,x+1/2,3/4 [v,0,w]</td>
</tr>
<tr>
<td>8 i .2'</td>
<td>x,0,3/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,3/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,x,1/4 [v,0,w]</td>
</tr>
<tr>
<td>8 h .2'</td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,x+1/2,3/4 [v,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,x,3/4 [v,0,w]</td>
</tr>
<tr>
<td>8 g 2..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 f 2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 e 1'</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 d 4</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c 2.22</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4 b 22'2'</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 a 22'2'</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p4'm'm
\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]
Origin at 0,0,z

Along [1,0,0] p2m'm'
\[a^* = b/2 \quad b^* = c \]
Origin at x,1/4,1/4

Along [1,1,0] p2m'm'
\[a^* = (-a + b)/2 \quad b^* = c/2 \]
Origin at x,x,0
P4₁/n'b'c'

133.9.1131

4/m'm'

P4₁/n'2/b'2/c'

Tetragonal

Origin at \(\overline{4}12_{1}/c' \), at \(-1/4,1/4,-1/4\) from \(\overline{1} \)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

1. \(1 \)
2. \(2; 0,0,z \)
3. \(4^{+}; (0,0,1/2) 0,1/2,z \)
4. \(4^{-}; (0,0,1/2) 1/2,0,z \)
5. \(0,y,1/4 \)
6. \(x,0,1/4 \)
7. \((1/2,1/2,0) x,x,0 \)
8. \(x,x+1/2,0 \)
9. \(1/4,1/4,1/4 \)
10. \((1/2,1/2,1/2) x,y,1/4 \)
11. \((4) x,y,1/4 \)
12. \((4) 0,0,0 \)
13. \(a' (1/2,0,0) x,1/4,z \)
14. \(b' (0,1/2,0) 1/4,y,z \)
15. \(c' (0,0,1/2) x,x,z \)
16. \(c' (0,0,1/2) x,x,z \)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>k 1</td>
</tr>
<tr>
<td>(1) x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(2) x̅,y̅,z</td>
<td>[u̅,v̅,w]</td>
</tr>
<tr>
<td>(3) y+1/2,x+1/2,z+1/2</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(4) y+1/2,x+1/2,z+1/2</td>
<td>[v̅,u̅,w]</td>
</tr>
<tr>
<td>(5) x,y,z+1/2</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(6) x,y,z+1/2</td>
<td>[u̅,v̅,w]</td>
</tr>
<tr>
<td>(7) y+1/2,x+1/2,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(8) y+1/2,x+1/2,z</td>
<td>[v̅,u̅,w]</td>
</tr>
<tr>
<td>(9) x+1/2,y+1/2,z+1/2</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(10) x+1/2,y+1/2,z+1/2</td>
<td>[u̅,v̅,w]</td>
</tr>
<tr>
<td>(11) x̅,x̅,z</td>
<td>[v̅,u̅,w]</td>
</tr>
<tr>
<td>(12) y̅,x̅,z</td>
<td>[v,u̅,w]</td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(14) x+1/2,y+1/2,z</td>
<td>[u̅,v̅,w]</td>
</tr>
<tr>
<td>(15) y̅,x̅,z+1/2</td>
<td>[v,u̅,w]</td>
</tr>
<tr>
<td>(16) y̅,x̅,z+1/2</td>
<td>[v,u̅,w]</td>
</tr>
</tbody>
</table>

8 j .2 x,x+1/2,0 [u,u,0] x̅,x+1/2,0 [u̅,u,0] x̅,x+1/2,1/2 [u,u,0] x̅,x+1/2,1/2 [u̅,u,0] x+1/2,x,1/2 [u,u,0] x+1/2,x,1/2 [u̅,u,0] x+1/2,x,0 [u,u,0] x+1/2,x,0 [u̅,u,0]

8 i .2 x,0,3/4 [u,0,0] x,0,3/4 [u,0,0] 1/2,x+1/2,1/4 [0,u,0] 1/2,x+1/2,1/4 [0,u,0] x+1/2,1/2,3/4 [u̅,0,0] x+1/2,1/2,3/4 [u̅,0,0] 0,x,1/4 [0,u,0] 0,x,1/4 [0,u,0]

8 h .2 x,0,1/4 [u,0,0] x̅,0,1/4 [u̅,0,0] 1/2,x+1/2,3/4 [0,u,0] 1/2,x+1/2,3/4 [0,u,0] x+1/2,1/2,1/4 [u̅,0,0] x+1/2,1/2,1/4 [u̅,0,0] 0,x,3/4 [0,u,0] 0,x,3/4 [0,u,0]

8 g 2.. 0,0,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 0,0,z+1/2 [0,0,w] 1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,0,w] 0,0,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 0,0,z+1/2 [0,0,w]

8 f 2.. 0,1/2,z [0,0,w] 0,1/2,z+1/2 [0,0,w] 0,1/2,z+1/2 [0,0,w] 0,1/2,z [0,0,w] 1/2,0,1/2 [0,0,w,w] 1/2,0,1/2 [0,0,w,w] 1/2,0,z [0,0,w] 1/2,0,z [0,0,w]

8 e 41 1/4,1/4,1/4 [0,0,0] 3/4,3/4,1/4 [0,0,0] 1/4,1/4,3/4 [0,0,0] 3/4,1/4,3/4 [0,0,0] 1/4,3/4,1/4 [0,0,0] 3/4,3/4,1/4 [0,0,0] 3/4,3/4,3/4 [0,0,0] 1/4,1/4,3/4 [0,0,0]

4 d 41 0,0,0 [0,0,0] 1/2,1/2,1/2 [0,0,0] 0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,1/2 [0,0,0] 0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]

4 c 22. 0,1/2,0 [0,0,0] 0,1/2,1/2 [0,0,0] 0,1/2,1/2 [0,0,0] 0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0] 1/2,0,0 [0,0,0] 1/2,0,0 [0,0,0] 1/2,0,0 [0,0,0]

4 b 222. 0,0,1/4 [0,0,0] 1/2,1/2,3/4 [0,0,0] 1/2,1/2,3/4 [0,0,0] 0,0,3/4 [0,0,0] 0,0,3/4 [0,0,0] 0,0,3/4 [0,0,0] 0,0,3/4 [0,0,0] 0,0,3/4 [0,0,0]

4 a 222. 0,1/2,1/4 [0,0,0] 0,1/2,3/4 [0,0,0] 0,1/2,3/4 [0,0,0] 0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0] 1/2,0,0 [0,0,0] 1/2,0,0 [0,0,0] 1/2,0,0 [0,0,0]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Equations</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1] p4m'</td>
<td>$a^* = (a - b)/2$</td>
<td>0,0,z</td>
</tr>
<tr>
<td></td>
<td>$b^* = (a + b)/2$</td>
<td></td>
</tr>
<tr>
<td>[1,0,0] p2m'</td>
<td>$a^* = b/2$</td>
<td>x,0,1/4</td>
</tr>
<tr>
<td></td>
<td>$b^* = c$</td>
<td></td>
</tr>
<tr>
<td>[1,1,0] p2m'</td>
<td>$a^* = (a + b)/2$</td>
<td>x,x,0</td>
</tr>
<tr>
<td></td>
<td>$b^* = c/2$</td>
<td></td>
</tr>
</tbody>
</table>
P4$_2$/nnm
134.1.1132

4/mmm
P4$_2$/n2/n2/m

Tetragonal

Origin at $\bar{4}2m$ at $-1/4,1/4,-1/4$ from center ($2/m$)

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4; \quad x < y; \quad y \leq 1-x$

Symmetry Operations

(1) 1
 (1 0,0,0)

(5) 2 0,y,0
 (2_y 0,0,0)

(9) $\bar{1}$ 1/4,1/4,1/4
 (1 1/2,1/2,1/2)

(13) n (1/2,0,1/2) x,1/4,z
 (m_y 1/2,1/2,1/2)

(2) 2 0,0,z
 (2_z 0,0,0)

(6) 2 x,0,0
 (2_x 0,0,0)

(10) n (1/2,1/2,0) x,y,1/4
 (m_z 1/2,1/2,1/2)

(14) n (0,1/2,1/2) 1/4,y,z
 (m_x 1/2,1/2,1/2)

(3) 4^+ (0,0,1/2) 0,1/2,z
 (4_z^{+} 1/2,1/2,1/2)

(7) 2 (1/2,1/2,0) x,x,1/4
 (2_{xy} 1/2,1/2,1/2)

(11) $\bar{4}^+$ 0,0,z; 0,0,0
 ($\bar{4}_z$ 0,0,0)

(15) m x,x,z
 (m_x 0,0,0)

(4) 4^- (0,0,1/2) 1/2,0,z
 (4_z^{-} 1/2,1/2,1/2)

(8) 2 x,x+1/2,1/4
 (2_{xy} 1/2,1/2,1/2)

(12) $\bar{4}^-$ 0,0,z; 0,0,0
 ($\bar{4}_z$ 0,0,0)

(16) m x,x,z
 (m_x 0,0,0)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

- **Multiplicity**, **Wyckoff letter**, **Site Symmetry.**

<table>
<thead>
<tr>
<th>N</th>
<th>Wyckoff Letter</th>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>n</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y+1/2, x+1/2, z+1/2 [v, u, w]</td>
<td>(4) y+1/2, x+1/2, z+1/2 [v, u, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x, y, z [u, v, w]</td>
<td>(6) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y+1/2, x+1/2, z+1/2 [v, u, w]</td>
<td>(8) y+1/2, x+1/2, z+1/2 [v, u, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x+1/2, y+1/2, z+1/2 [u, v, w]</td>
<td>(10) x+1/2, y+1/2, z+1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) y, x, z [v, u, w]</td>
<td>(12) y, x, z [v, u, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x+1/2, y+1/2, z+1/2 [u, v, w]</td>
<td>(14) x+1/2, y+1/2, z+1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) y, x, z [v, u, w]</td>
<td>(16) y, x, z [v, u, w]</td>
</tr>
<tr>
<td>8</td>
<td>m</td>
<td>x,x,z [u,u,0]</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>.m</td>
<td>x,x,z [u,u,0]</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>l</td>
<td>x,x+1/2,3/4 [u,u,0]</td>
<td>x,x+1/2,3/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>.2</td>
<td>x,x+1/2,3/4 [u,u,0]</td>
<td>x,x+1/2,3/4 [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>x,x+1/2,1/4 [u,u,0]</td>
<td>x,x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>.2</td>
<td>x,x+1/2,1/4 [u,u,0]</td>
<td>x,x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
<td>x,0, 1/2 [u,0,0]</td>
<td>x,0, 1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>.2</td>
<td>x,0, 1/2 [u,0,0]</td>
<td>x,0, 1/2 [u,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
<td>x,0, 0 [u,0,0]</td>
<td>x,0, 0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>.2</td>
<td>x,0, 0 [u,0,0]</td>
<td>x,0, 0 [u,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>0,1/2, z [0,0,w]</td>
<td>0,1/2, z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>2..</td>
<td>0,1/2, z+1/2 [0,0,w]</td>
<td>1/2,0, z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>0,0, z [0,0,0]</td>
<td>0,0, z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>2.mm</td>
<td>0,0, z [0,0,0]</td>
<td>0,0, z [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>1/4,1/4,1/4 [u,u,0]</td>
<td>1/4,1/4,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>.2/m</td>
<td>1/4,1/4,1/4 [u,u,0]</td>
<td>1/4,1/4,1/4 [u,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>2.22</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>
4 c 222. 0,1/2,0 [0,0,0] 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,0,0 [0,0,0]
2 b 42m 0,0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0]
2 a 42m 0,0,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p, 4m'm'
\[a^* = \frac{(a - b)}{2}, \quad b^* = \frac{(a + b)}{2} \]
Origin at 1/2,0,z

Along [1,0,0] c, 2m'm'
\[a^* = b, \quad b^* = c \]
Origin at x,0,0

Along [1,1,0] p2mm1'
\[a^* = \frac{(-a + b)}{2}, \quad b^* = c \]
Origin at x,x,1/4
Origin at $\overline{4}2m1'$ at $-1/4,1/4,-1/4$ from center ($2/m1'$)

Asymmetric unit

$$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4; \quad x < y; \quad y \leq 1-x$$

Symmetry Operations

For $1 +$ set

(1) 1
(2) 2 $0,0,z$
(3) $4^+ (0,0,1/2)$ $0,1/2,z$
(4) $4' (0,0,1/2)$ $1/2,0,z$

(5) 2 $0,y,0$
(6) 2 $x,0,0$
(7) 2 $(1/2,1/2,0)$ $x,x,1/4$
(8) 2 $x,x+1/2,1/4$

(9) $\overline{1}$ $1/4,1/4,1/4$
(10) n $(1/2,1/2,0)$ $x,y,1/4$
(11) $\overline{4}^+$ $0,0,z; 0,0,0$
(12) $\overline{4}'^- 0,0,z; 0,0,0$

(13) n $(1/2,0,1/2)$ $x,1/4,z$
(14) n $(0,1/2,1/2)$ $1/4,y,z$
(15) m x,x,z
(16) m x,x,z
For \(1'\) + set

\[
\begin{align*}
(1) \ 1' & \quad (2) \ 2' & \quad (3) \ 4' & \quad (4) \ 4' \\
(1', 0, 0, 0) & \quad (2, 0, 0, 0) & \quad (0, 0, 1/2, 0) & \quad (0, 0, 1/2, 0) \\
(2, 0, 0, 0) & \quad (4, 1/2, 1/2, 1/2) & \quad (4, 1/2, 1/2, 1/2) & \quad (4, 1/2, 1/2, 1/2)
\end{align*}
\]

\[
\begin{align*}
(5) \ 2' & \quad (6) \ 2' & \quad (7) \ 2' & \quad (8) \ 2' \\
0, y, 0 & \quad x, 0, 0 & \quad (1/2, 1, 2, 0) & \quad (1/2, x + 1, 1/2, 1/4) \\
(2, 0, 0, 0) & \quad (2, 0, 0, 0) & \quad (2, 1/2, 1, 2, 1/2) & \quad (2, 1/2, 1, 2, 1/2)
\end{align*}
\]

\[
\begin{align*}
(9) \ T' & \quad (10) \ n' & \quad (11) \ n' & \quad (12) \ n' \\
1/4, 1/4, 1/4 & \quad (1/2, 1, 2, 0) & \quad 0, 0, 0; 0, 0, 0 & \quad 0, 0, 0; 0, 0, 0 \\
(1/2, 1, 2, 1/2) & \quad (m, 1/2, 1, 1/2) & \quad (4, 0, 0) & \quad (4, 0, 0)
\end{align*}
\]

\[
\begin{align*}
(13) \ n' & \quad (14) \ n' & \quad (15) \ m' & \quad (16) \ m' \\
(1/2, 0, 1/2) & \quad (0, 1/2, 1/2) & \quad (1/2, 0, 1/2) & \quad (0, 1/2, 1/2) \\
(1/2, 1/2, 1/2) & \quad (1/2, 1/2, 1/2) & \quad (1/2, 1/2, 1/2) & \quad (1/2, 1/2, 1/2)
\end{align*}
\]

Generators selected

\[(1); \ t(1, 0, 0); \ t(0, 1, 0); \ t(0, 0, 1); \ (2); \ (3); \ (5); \ (9); \ 1'.\]

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>n</td>
<td>11'</td>
</tr>
<tr>
<td>16</td>
<td>m</td>
<td>.m1'</td>
</tr>
<tr>
<td>8</td>
<td>l</td>
<td>.21'</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>.21'</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
<td>.21'</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
& (1) \ x, y, z [0, 0, 0] \quad (2) \ x, y, z [0, 0, 0] \\
& (3) \ y+1/2, x+1/2, z+1/2 [0, 0, 0] \quad (4) \ y+1/2, x+1/2, z+1/2 [0, 0, 0] \\
& (5) \ x, y, z [0, 0, 0] \quad (6) \ x, y, z [0, 0, 0] \\
& (7) \ y+1/2, x+1/2, z+1/2 [0, 0, 0] \quad (8) \ y+1/2, x+1/2, z+1/2 [0, 0, 0] \\
& (9) \ x+1/2, y+1/2, z+1/2 [0, 0, 0] \quad (10) \ x+1/2, y+1/2, z+1/2 [0, 0, 0] \\
& (11) \ y, x, z [0, 0, 0] \quad (12) \ y, x, z [0, 0, 0] \\
& (13) \ x+1/2, y+1/2, z+1/2 [0, 0, 0] \quad (14) \ x+1/2, y+1/2, z+1/2 [0, 0, 0] \\
& (15) \ x, x, z [0, 0, 0] \quad (16) \ x, x, z [0, 0, 0] \\
\end{align*}
\]
Symmetry of Special Projections

Along [0,0,1] p4mm1'
\(a^* = (a - b)/2 \quad b^* = (a + b)/2 \)
Origin at 0,0,z

Along [1,0,0] c2mm1'
\(a^* = b \quad b^* = c \)
Origin at x,0,0

Along [1,1,0] p2mm1'
\(a^* = (-a + b)/2 \quad b^* = c \)
Origin at x,x,1/4
Origin at $\overline{4}^* 2'm$ at $-1/4,1/4,-1/4$ from center ($2'm$)

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4; \quad x < y; \quad y \leq 1-x$

Symmetry Operations

1. (1) 1
 - $(1|0,0,0)$
2. (2) $2' \ 0,0,z$
 - $(2_z|0,0,0)$
3. (3) $4'^+ (0,0,1/2) \ 0,1/2,z$
 - $(4_z|1/2,1/2,1/2)$
4. (4) $4' (0,0,1/2) \ 1/2,0,z$
 - $(4_z^{-1}|1/2,1/2,1/2)$
5. (5) $2' \ 0,y,0$
 - $(2_z|0,0,0)'$
6. (6) $2' \ x,0,0$
 - $(2_z|0,0,0)'$
7. (7) $2' (1/2,1/2,0) \ x,x,1/4$
 - $(2_{xy}|1/2,1/2,1/2)'$
8. (8) $2' x,x+1/2,1/4$
 - $(2_{xy}|1/2,1/2,1/2)'$
9. (9) $\overline{1}' \ 1/4,1/4,1/4$
 - $(1|1/2,1/2,1/2)'$
10. (10) $n' (1/2,1/2,0) \ x,y,1/4$
 - $(m_z|1/2,1/2,1/2)'$
11. (11) $\overline{4}'^+ \ 0,0,z; \ 0,0,0$
 - $(\overline{4}_z|0,0,0)'$
12. (12) $\overline{4}' \ 0,0,z; \ 0,0,0$
 - $(\overline{4}_z^{-1}|0,0,0)'$
13. (13) $n (1/2,0,1/2) \ x,1/4,z$
 - $(m_y|1/2,1/2,1/2)$
14. (14) $n (0,1/2,1/2) \ 1/4,y,z$
 - $(m_y|1/2,1/2,1/2)$
15. (15) $m \ x,x,z$
 - $(m_{xy}|0,0,0)$
16. (16) $m \ x,x,z$
 - $(m_{xy}|0,0,0)$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>m</td>
<td>..m</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
<td>x,y,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
<td>x,y,z [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>l</td>
<td>..2'</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,3/4 [u,u,w]</td>
<td>x,x+1/2,3/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,3/4 [u,u,w]</td>
<td>x,x+1/2,3/4 [u,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>k</td>
<td>..2'</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,1/4 [u,u,w]</td>
<td>x,x+1/2,1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,1/4 [u,u,w]</td>
<td>x,x+1/2,1/4 [u,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
<td>..2'</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [v,w]</td>
<td>x,0,1/2 [v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [v,w]</td>
<td>x,0,1/2 [v,w]</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
<td>..2'</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [v,w]</td>
<td>x,0,0 [v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [v,w]</td>
<td>x,0,0 [v,w]</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>2..</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>2.mm</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>..2'/m</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,3/4 [0,0,0]</td>
<td>1/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,3/4 [0,0,0]</td>
<td>3/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>..2'/m</td>
</tr>
<tr>
<td></td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,1/4 [0,0,0]</td>
<td>1/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>2.22'</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p4mm
\[\mathbf{a}^* = \frac{(\mathbf{a} - \mathbf{b})}{2} \quad \mathbf{b}^* = \frac{(\mathbf{a} + \mathbf{b})}{2} \]
Origin at 0,0,z

Along [1,0,0] \(c_p \) 2'mm'
\[\mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at x,0,0

Along [1,1,0] p2mm1'
\[\mathbf{a}^* = \frac{(-\mathbf{a} + \mathbf{b})}{2} \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,x,1/4
Origin at $\bar{4} \bar{2} \bar{m}$ at -1/4, 1/4, -1/4 from center (2/m)

Asymmetric unit

$x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4; \quad x < y; \quad y \leq 1-x$

Symmetry Operations

1. 1

2. $2 \cdot 0,0,z$
 $(2_z \cdot 0,0,0)$

3. $4' \cdot (0,0,1/2) \quad 0,1/2,z$
 $(4_z \cdot 1/2,1/2,1/2)'$

4. $4' \cdot (0,0,1/2) \quad 1/2,0,z$
 $(4_z \cdot 1/2,1/2,1/2)'$

5. $2' \cdot 0,y,0$
 $(2_z \cdot 0,0,0)'$

6. $2' \cdot x,0,0$
 $(2_x \cdot 0,0,0)'$

7. $2 \cdot (1/2,1/2,0) \quad x,x,1/4$
 $(2_{xy} \cdot 1/2,1/2,1/2)$

8. $2 \cdot x,x+1/2,1/4$
 $(2_{xy} \cdot 1/2,1/2,1/2)$

9. $T \cdot 1/4,1/4,1/4$
 $(T \cdot 1/2,1/2,1/2)$

10. $n \cdot (1/2,1/2,0) \quad x,y,1/4$
 $(m_x \cdot 1/2,1/2,1/2)$

11. $\bar{4} \cdot -0,0,z; \quad 0,0,0$
 $(\bar{4}_z \cdot 0,0,0)'$

12. $\bar{4} \cdot -0,0,z; \quad 0,0,0$
 $(\bar{4}_z \cdot 0,0,0)'$

13. $n' \cdot (1/2,0,1/2) \quad x,1/4,z$
 $(m_y \cdot 1/2,1/2,1/2)'$

14. $n' \cdot (0,1/2,1/2) \quad 1/4,y,z$
 $(m_{xy} \cdot 0,0,0)$

15. $m \cdot x,x,z$
 $(m_{xy} \cdot 0,0,0)$

16. $m \cdot x,x,z$
 $(m_{xy} \cdot 0,0,0)$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>16 n 1</td>
<td>((1) x,y,z \ [u,v,w]) ((2) \tilde{x},\tilde{y},\tilde{z} \ [\tilde{u},\tilde{v},w])</td>
</tr>
<tr>
<td></td>
<td>((3) \tilde{y} + 1/2, x+1/2, z+1/2 \ [v,u,w]) ((4) y+1/2, x+1/2, z+1/2 \ [v,u,w])</td>
</tr>
<tr>
<td></td>
<td>((5) \tilde{x},\tilde{y},\tilde{z} \ [u,\tilde{v},w]) ((6) x,\tilde{y},\tilde{z} \ [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>((7) y+1/2, x+1/2, z+1/2 \ [v,u,w]) ((8) y+1/2, x+1/2, z+1/2 \ [v,u,\tilde{w}])</td>
</tr>
<tr>
<td></td>
<td>((9) x+1/2, y+1/2, z+1/2 \ [u,v,w]) ((10) x+1/2, y+1/2, z+1/2 \ [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>((11) \tilde{x},\tilde{y},\tilde{z} \ [v,u,w]) ((12) \tilde{y},x,\tilde{z} \ [v,u,\tilde{w}])</td>
</tr>
<tr>
<td></td>
<td>((13) x+1/2, \tilde{y} + 1/2, z+1/2 \ [u,\tilde{v},w]) ((14) x+1/2, y+1/2, z+1/2 \ [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>((15) \tilde{x},\tilde{y},\tilde{z} \ [v,\tilde{u},w]) ((16) y,x,z \ [\tilde{v},u,w])</td>
</tr>
<tr>
<td>8 m .m</td>
<td>(x,x,z \ [u,u,0]) (x,x,z \ [\tilde{u},u,0]) (\tilde{x}+1/2, x+1/2, z+1/2 \ [u,u,0]) (x+1/2, x+1/2, z+1/2 \ [\tilde{u},u,0])</td>
</tr>
<tr>
<td></td>
<td>(\tilde{x},x,z \ [u,u,0]) (x,x,z \ [u,u,0]) (x+1/2, x+1/2, z+1/2 \ [\tilde{u},u,0]) (\tilde{x}+1/2, x+1/2, z+1/2 \ [u,u,0])</td>
</tr>
<tr>
<td>8 l .2</td>
<td>(x,x+1/2,3/4 \ [u,u,0]) (x,x+1/2,3/4 \ [u,u,0]) (\tilde{x},x+1/2,1/4 \ [\tilde{u},u,0]) (x+1/2, x+1/2,1/4 \ [\tilde{u},u,0])</td>
</tr>
<tr>
<td></td>
<td>(x,x+1/2,3/4 \ [u,u,0]) (x,x+1/2,3/4 \ [u,u,0]) (\tilde{x},x+1/2,1/4 \ [\tilde{u},u,0]) (x+1/2, x+1/2,1/4 \ [\tilde{u},u,0])</td>
</tr>
<tr>
<td>8 k .2</td>
<td>(x,x+1/2,1/4 \ [u,u,0]) (x,x+1/2,1/4 \ [u,u,0]) (\tilde{x},x+1/2,3/4 \ [\tilde{u},u,0]) (x+1/2, x+1/2,3/4 \ [\tilde{u},u,0])</td>
</tr>
<tr>
<td></td>
<td>(x,x+1/2,1/4 \ [u,u,0]) (x,x+1/2,1/4 \ [u,u,0]) (\tilde{x},x+1/2,3/4 \ [\tilde{u},u,0]) (x+1/2, x+1/2,3/4 \ [\tilde{u},u,0])</td>
</tr>
<tr>
<td>8 j .2'</td>
<td>(x,0,1/2 \ [0,v,w]) (x,0,1/2 \ [0,v,w]) (\tilde{x},0,1/2 \ [0,\tilde{v},w]) (1/2, x+1/2,0 \ [v,0,w])</td>
</tr>
<tr>
<td></td>
<td>(x,0,1/2 \ [0,v,w]) (x,0,1/2 \ [0,v,w]) (\tilde{x},0,1/2 \ [0,\tilde{v},w]) (1/2, x+1/2,0 \ [v,0,w])</td>
</tr>
<tr>
<td>8 i .2'</td>
<td>(x,0,0 \ [0,v,w]) (x,0,0 \ [0,\tilde{v},w]) (x+1/2,1/2,1/2 \ [0,\tilde{v},w]) (1/2, x+1/2,1/2 \ [v,0,w])</td>
</tr>
<tr>
<td></td>
<td>(x,0,0 \ [0,v,w]) (x,0,0 \ [0,\tilde{v},w]) (x+1/2,1/2,1/2 \ [0,\tilde{v},w]) (1/2, x+1/2,1/2 \ [v,0,w])</td>
</tr>
<tr>
<td>8 h 2.</td>
<td>(0,1/2,z \ [0,0,w]) (0,1/2,z+1/2 \ [0,0,w]) (0,1/2,z \ [0,0,w]) (0,1/2,z+1/2 \ [0,0,w])</td>
</tr>
<tr>
<td></td>
<td>(0,1/2,z \ [0,0,w]) (0,1/2,z+1/2 \ [0,0,w]) (0,1/2,z \ [0,0,w]) (0,1/2,z+1/2 \ [0,0,w])</td>
</tr>
<tr>
<td>4 g 2.mm</td>
<td>(0,0,z \ [0,0,0]) (1/2,1/2,z+1/2 \ [0,0,0]) (0,0,z \ [0,0,0]) (1/2,1/2,z+1/2 \ [0,0,0])</td>
</tr>
<tr>
<td>4 f .2/m</td>
<td>(3/4,3/4,3/4 \ [\tilde{u},u,0]) (1/4,1/4,3/4 \ [u,u,0]) (3/4,1/4,1/4 \ [u,u,0]) (1/4,3/4,1/4 \ [u,u,0])</td>
</tr>
<tr>
<td>4 e .2/m</td>
<td>(1/4,1/4,1/4 \ [\tilde{u},u,0]) (3/4,3/4,1/4 \ [u,u,0]) (1/4,3/4,3/4 \ [u,u,0]) (3/4,1/4,3/4 \ [\tilde{u},u,0])</td>
</tr>
<tr>
<td>4 d 2.22</td>
<td>(0,1/2,1/4 \ [0,0,0]) (0,1/2,3/4 \ [0,0,0]) (1/2,0,1/4 \ [0,0,0]) (1/2,0,3/4 \ [0,0,0])</td>
</tr>
</tbody>
</table>
Continued

4 c 22'2'. 0,1/2,0 [0,0,0] 0,1/2,1/2 [0,0,0] 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,0,0 [0,0,0]
2 b 4'2'm 0,0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0]
2 a 4'2'm 0,0,0 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p₄, 4mm
\[\mathbf{a}^* = \frac{(\mathbf{a} - \mathbf{b})}{2} \quad \mathbf{b}^* = \frac{(\mathbf{a} + \mathbf{b})}{2} \]
Origin at 0,0,z

Along [1,0,0] c₂'mm'
\[\mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at x,0,0

Along [1,1,0] p₂mm¹'
\[\mathbf{a}^* = \frac{(-\mathbf{a} + \mathbf{b})}{2} \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,x,1/4
Origin at $\overline{4}'2m'$ at $-1/4, 1/4, -1/4$ from center ($2'm'$)

Asymmetric unit

\[
0 ≤ x ≤ 1/2; \quad 0 ≤ y ≤ 1; \quad 0 ≤ z ≤ 1/4; \quad x ≤ y; \quad y ≤ 1-x
\]

Symmetry Operations

1. \(1\)
 \((1|0,0,0)\)

2. \(2\)
 \((0,0,z)\)
 \((2_z|0,0,0)\)

3. \(4'\)
 \((0,0,1/2)\)
 \(0,1/2,z\)
 \((4_z|1/2,1/2,1/2)\)

4. \(4'\)
 \((0,0,1/2)\)
 \(1/2,0,z\)
 \((4_z|1/2,1/2,1/2)\)

5. \(2\)
 \(0,y,0\)
 \((2_y|0,0,0)\)

6. \(2\)
 \(x,0,0\)
 \((2_x|0,0,0)\)

7. \(2'\)
 \((1/2,1/2,0)\)
 \(x,x,1/4\)
 \((2_x|1/2,1/2,1/2)\)

8. \(2'\)
 \(x,x+1/2,1/4\)
 \((2_x|1/2,1/2,1/2)\)

9. \(1/4,1/4,1/4\)
 \((1|1/2,1/2,1/2)\)

10. \(n\)
 \((1/2,1/2,0)\)
 \(x,y,1/4\)
 \((m_x|1/2,1/2,1/2)\)

11. \(\overline{4}'\)
 \(0,0,z\)
 \(0,0,0\)
 \((\overline{4}_z|0,0,0)\)

12. \(\overline{4}'\)
 \(0,0,z\)
 \(0,0,0\)
 \((\overline{4}_z|0,0,0)\)

13. \(n\)
 \((1/2,0,1/2)\)
 \(x,1/4,z\)
 \((m_y|1/2,1/2,1/2)\)

14. \(n\)
 \((0,1/2,1/2)\)
 \(1/4,y,z\)
 \((m_y|1/2,1/2,1/2)\)

15. \(m'\)
 \(x,x,z\)
 \((m_x|0,0,0)\)

16. \(m'\)
 \(x,x,z\)
 \((m_y|0,0,0)\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 n 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2,y+1/2,z+1/2 [v,u,w]</td>
<td>(8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(10) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(11) y,x,z [v,u,w]</td>
<td>(12) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) y+1/2,x+1/2,z+1/2 [u,v,w]</td>
<td>(14) y+1/2,x+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) y,x,z [v,u,w]</td>
<td>(16) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 m ..m'</td>
<td>x,x,z [u,u,w]</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,z+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2,z+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w]</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w]</td>
<td>x+1/2,x+1/2,z+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,z+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2,z+1/2 [u,u,w]</td>
</tr>
<tr>
<td>8 l ..2'</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td>8 k ..2'</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td>8 j ..2.</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td>8 i ..2.</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td>8 h ..2.</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td>4 g 2.m'm'</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td>4 f ..2'm'</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td>4 e ..2'm'</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
</tbody>
</table>
Continued

4	c	222.	0,1/2,0 [0,0,0]	0,1/2,1/2 [0,0,0]	1/2,0,1/2 [0,0,0]	1/2,0,0 [0,0,0]
2	b	4'2m'	0,0,1/2 [0,0,0]	1/2,1/2,0 [0,0,0]		
2	a	4'2m'	0,0,0 [0,0,0]	1/2,1/2,1/2 [0,0,0]		

Symmetry of Special Projections

Along [0,0,1] p, 4m'm'

\[{\mathbf{a}}^* = (\mathbf{a} - \mathbf{b})/2 \]
\[{\mathbf{b}}^* = (\mathbf{a} + \mathbf{b})/2 \]

Origin at 0,0,z

Along [1,0,0] c, 2m'm'

\[{\mathbf{a}}^* = \mathbf{b} \]
\[{\mathbf{b}}^* = \mathbf{c} \]

Origin at 0,0,0

Along [1,1,0] p2mm'

\[{\mathbf{a}}^* = -\mathbf{c} \]
\[{\mathbf{b}}^* = (-\mathbf{a} + \mathbf{b})/2 \]

Origin at x,x,1/4
Origin at $\overline{4}2m$ at -1/4, 1/4, -1/4 from center (2/m)

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/4; x ≤ y; y ≤ 1-x

Symmetry Operations

1. 1
 (1 0 0 0)
2. 2 0,0,z
 (2z 0 0 0)
3. 4^+ (0,0,1/2) 0,1/2,z
 (4z 1/2,1/2,1/2)'
4. 4^- (0,0,1/2) 1/2,0,z
 (4z -1/2,1/2,1/2)'
5. 2 0,y,0
 (2y 0 0 0)
6. 2 x,0,0
 (2z 0 0 0)
7. 2' (1/2,1/2,0) x,x,1/4
 (2xy 1/2,1/2,1/2)'
8. 2' x,x+1/2,1/4
 (2xy 1/2,1/2,1/2)'
9. $\overline{3}$ 1/4, 1/4, 1/4
 (1 1/2,1/2,1/2)'
10. $\overline{3}'$ (1/2,1/2,0) x,y,1/4
 (mz 1/2,1/2,1/2)'
11. $\overline{4}^+$ 0,0,z; 0,0,0
 (4z 0,0,0)
12. $\overline{4}^-$ 0,0,z; 0,0,0
 (4z -1/0,0,0)
13. n' (1/2,0,1/2) x,1/4,z
 (mz 1/2,1/2,1/2)'
14. n' (0,1/2,1/2) 1/4,y,z
 (mz 1/2,1/2,1/2)'
15. m x,x,z
 (mx 0,0,0)
16. m x,x,z
 (mx 0,0,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x̅,y,z [u̅,v̅,w]</td>
</tr>
<tr>
<td>(3) y̅+1/2,x+1/2,z+1/2 [v̅,u̅,w]</td>
<td>(4) y+1/2,x̅+1/2,z+1/2 [v̅,u̅,w]</td>
</tr>
<tr>
<td>(5) x̅,y,z [u̅,v̅,w]</td>
<td>(6) x̅,y,z [u̅,v̅,w]</td>
</tr>
<tr>
<td>(7) y+1/2,x+1/2,z+1/2 [v̅,u̅,w]</td>
<td>(8) y+1/2,x̅+1/2,z+1/2 [v̅,u̅,w]</td>
</tr>
<tr>
<td>(9) x̅+1/2,y+1/2,z+1/2 [u̅,v̅,w]</td>
<td>(10) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(11) x̅,y,z [v̅,u̅,w]</td>
<td>(12) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(13) x+1/2,y̅+1/2,z+1/2 [u̅,v,w]</td>
<td>(14) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(15) y̅,x,z [v,u,w]</td>
<td>(16) y,x,z [v,u,w]</td>
</tr>
</tbody>
</table>

8 m ..m
x,x,z [u,u,0] x̅,x,z [u̅,u̅,0] x+1/2,x+1/2,z+1/2 [u,u,0] x+1/2,x+1/2,z+1/2 [u,u,0] x+1/2,x+1/2,z+1/2 [u,u,0] x+1/2,x+1/2,z+1/2 [u,u,0]

8 l ..2'
x,x+1/2,3/4 [u,u,w] x̅,x+1/2,3/4 [u̅,u̅,w] x̅,x+1/2,1/4 [u̅,u̅,w] x+1/2,x̅+1/2,1/4 [u̅,u̅,w] x+1/2,x+1/2,1/4 [u,u,0] x+1/2,x+1/2,1/4 [u,u,0] x+1/2,x+1/2,1/4 [u,u,0] x+1/2,x+1/2,1/4 [u,u,0]

8 k ..2'
x,x+1/2,1/4 [u,u,w] x̅,x+1/2,1/4 [u̅,u̅,w] x̅,x+1/2,3/4 [u̅,u̅,w] x+1/2,x̅+1/2,3/4 [u̅,u̅,w] x+1/2,x+1/2,3/4 [u,u,0] x+1/2,x+1/2,3/4 [u,u,0] x+1/2,x+1/2,3/4 [u,u,0] x+1/2,x+1/2,3/4 [u,u,0]

8 j ..2
x,0,1/2 [u,u,0] x̅,0,1/2 [u̅,u̅,0] 1/2,x+1/2,0 [0,u,0] 1/2,x+1/2,0 [0,u,0] 1/2,x+1/2,0 [0,u,0] 1/2,x+1/2,0 [0,u,0] 1/2,x+1/2,0 [0,u,0] 1/2,x+1/2,0 [0,u,0]

8 i ..2
x,0,0 [u,u,0] x̅,0,0 [u̅,u̅,0] 1/2,x+1/2,1/2 [0,u,0] 1/2,x+1/2,1/2 [0,u,0] 1/2,x+1/2,1/2 [0,u,0] 1/2,x+1/2,1/2 [0,u,0] 1/2,x+1/2,1/2 [0,u,0] 1/2,x+1/2,1/2 [0,u,0]

8 h 2..
0,1/2,z [0,0,w] 0,1/2,z+1/2 [0,0,w] 0,1/2,z [0,0,w] 0,1/2,z+1/2 [0,0,w] 0,1/2,z [0,0,w] 0,1/2,z+1/2 [0,0,w] 0,1/2,z [0,0,w] 0,1/2,z+1/2 [0,0,w]

1/2,0,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w]

4 g 2mm
0,0,z [0,0,0] 1/2,1/2,z+1/2 [0,0,0] 0,0,z [0,0,0] 1/2,1/2,z+1/2 [0,0,0] 0,0,z [0,0,0] 1/2,1/2,z+1/2 [0,0,0] 0,0,z [0,0,0] 1/2,1/2,z+1/2 [0,0,0]

4 f ..2'm
3/4,3/4,3/4 [0,0,0] 1/4,1/4,3/4 [0,0,0] 3/4,1/4,1/4 [0,0,0] 1/4,3/4,1/4 [0,0,0] 3/4,1/4,3/4 [0,0,0] 1/4,3/4,1/4 [0,0,0] 3/4,1/4,3/4 [0,0,0] 1/4,3/4,1/4 [0,0,0]

4 e ..2'm
1/4,1/4,1/4 [0,0,0] 3/4,3/4,1/4 [0,0,0] 1/4,3/4,3/4 [0,0,0] 3/4,1/4,3/4 [0,0,0] 3/4,1/4,3/4 [0,0,0] 1/4,3/4,1/4 [0,0,0] 3/4,1/4,3/4 [0,0,0] 1/4,3/4,1/4 [0,0,0]

4 d 222'
0,1/2,1/4 [0,0,w] 0,1/2,3/4 [0,0,w] 0,1/2,1/4 [0,0,w] 0,1/2,3/4 [0,0,w] 0,1/2,1/4 [0,0,w] 0,1/2,3/4 [0,0,w] 0,1/2,1/4 [0,0,w] 0,1/2,3/4 [0,0,w]
Symmetry of Special Projections

Along [0,0,1] p4'2/m
\[a^* = (a - b)/2, \quad b^* = (a + b)/2\]
Origin at 0,0,z

Along [1,0,0] c2/m'm'
\[a^* = b, \quad b^* = c\]
Origin at x,0,0

Along [1,1,0] p2m1'
\[a^* = (-a + b)/2, \quad b^* = c\]
Origin at x,x,1/4
Origin at $\bar{4}2'm'$ at -1/4,1/4,-1/4 from center ($2'm'$)

Asymmetric unit:

$$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4; \quad x < y; \quad y \leq 1-x$$

Symmetry Operations:

1. 1

 (1) $0,0,0$

2. $2' \cdot 0,z$
 (2) $2'? \cdot 0,0,0$

3. $4' \cdot (0,0,1/2)$
 (3) $4' \cdot 0,1/2,z$

4. $4' \cdot (0,0,1/2)$
 (4) $4' \cdot 1/2,1/2,1/2$

5. $2' \cdot 0,y,0$
 (5) $2' \cdot (0,0,0)'$

6. $2' \cdot x,0,0$
 (6) $2' \cdot x,0,0$

7. $2' \cdot (1/2,1/2,0)$
 (7) $2' \cdot (1/2,1/2,0)$

8. $2' \cdot x+1/2,1/2$
 (8) $2' \cdot x+1/2,1/2$

9. $\bar{1} \cdot 1/4,1/4,1/4$
 (9) $\bar{1} \cdot 1/2,1/2,1/2$

10. $n \cdot (1/2,1/2,0)$
 (10) $n \cdot (1/2,1/2,0)$

11. $\bar{n} \cdot 0,0,0$
 (11) $\bar{n} \cdot 0,0,0$

12. $\bar{n} \cdot 0,0,0$
 (12) $\bar{n} \cdot 0,0,0$

13. $n' \cdot (1/2,0,1/2)$
 (13) $n' \cdot (1/2,0,1/2)$

14. $n' \cdot 1/4,1/4,z$
 (14) $n' \cdot 1/4,1/4,z$

15. $m' \cdot x,x,z$
 (15) $m' \cdot x,x,z$

16. $m' \cdot x,x,z$
 (16) $m' \cdot x,x,z$
Continued

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>n</td>
<td>1</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>134.7.1138</td>
<td>2 /nn'm'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

(1)	x,y,z [u,v,w]
(2)	x,y,z [u,v,w]
(3)	y+1/2,x+1/2,z+1/2 [v,u,w]
(4)	y+1/2,x+1/2,z+1/2 [v,u,w]
(5)	x,y,z [u,v,w]
(6)	x,y,z [u,v,w]
(7)	y+1/2,x+1/2,z+1/2 [v,u,w]
(8)	y+1/2,x+1/2,z+1/2 [v,u,w]
(9)	x+1/2,y+1/2,z+1/2 [u,v,w]
(10)	x+1/2,y+1/2,z+1/2 [u,v,w]
(11)	y,x,z [u,v,w]
(12)	y,x,z [u,v,w]
(13)	x+1/2,y+1/2,z+1/2 [u,v,w]
(14)	x+1/2,y+1/2,z+1/2 [u,v,w]
(15)	y,x,z [u,v,w]
(16)	y,x,z [u,v,w]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Parameters</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along ([0,0,1]) (p_1), 4mm</td>
<td>(a^* = (a - b)/2) (\quad b^* = (a + b)/2)</td>
<td>(1/2,0,0)</td>
</tr>
<tr>
<td>Along ([1,0,0]) (c2'mm')</td>
<td>(a^* = -c) (\quad b^* = b)</td>
<td>(x,0,0)</td>
</tr>
<tr>
<td>Along ([1,1,0]) (p2'mm')</td>
<td>(a^* = -c) (\quad b^* = (-a + b)/2)</td>
<td>(x,x,1/4)</td>
</tr>
</tbody>
</table>

Details

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (c)</td>
<td>22''</td>
</tr>
<tr>
<td>0,1/2,0</td>
<td>([0,0,w])</td>
</tr>
<tr>
<td>0,1/2,1/2</td>
<td>([0,0,w])</td>
</tr>
<tr>
<td>1/2,0,0</td>
<td>([0,0,w])</td>
</tr>
<tr>
<td>1/2,0,1/2</td>
<td>([0,0,w])</td>
</tr>
<tr>
<td>2 (b)</td>
<td>4</td>
</tr>
<tr>
<td>2''</td>
<td>([0,0,w])</td>
</tr>
<tr>
<td>0,0,1/2</td>
<td>([0,0,w])</td>
</tr>
<tr>
<td>1/2,1,2,0</td>
<td>([0,0,w])</td>
</tr>
<tr>
<td>1/2,1,2,0</td>
<td>([0,0,w])</td>
</tr>
<tr>
<td>2 (a)</td>
<td>4</td>
</tr>
<tr>
<td>2''</td>
<td>([0,0,w])</td>
</tr>
<tr>
<td>0,0,0</td>
<td>([0,0,w])</td>
</tr>
<tr>
<td>1/2,1,2,1/2</td>
<td>([0,0,w])</td>
</tr>
</tbody>
</table>
Origin at \(-\frac{1}{4},\frac{1}{4},\frac{1}{4}\) from center \((\overline{2/m'})\)

Symmetry Operations

1. \((1)\) 1
 \((1\mid 0,0,0)\)

2. \((2)\) \(2,0,0,z\)
 \((2_z\mid 0,0,0)\)

3. \((3)\) \(4^{+}\) \((0,0,1/2)\) \(0,1/2,z\)
 \((4_z\mid 1/2,1/2,1/2)\)

4. \((4)\) \(4^{-}\) \((0,0,1/2)\) \(1/2,0,z\)
 \((4_z^{-}\mid 1/2,1/2,1/2)\)

5. \((5)\) \(2'\) \(0,y,0\)
 \((2_y\mid 0,0,0)\)

6. \((6)\) \(2'\) \(x,0,0\)
 \((2_x\mid 0,0,0)\)

7. \((7)\) \(2\) \((1/2,1/2,0)\) \(x,x,1/4\)
 \((2_x\mid 1/2,1/2,1/2)\)

8. \((8)\) \(2\) \(x,x+1/2,1/4\)
 \((2_x\mid 1/2,1/2,1/2)\)

9. \((9)\) \(\bar{1}\) \(1/4,1/4,1/4\)
 \((\bar{1}\mid 1/2,1/2,1/2)\)

10. \((10)\) \(n'\) \((1/2,1/2,0)\) \(x,y,1/4\)
 \((m_y\mid 1/2,1/2,1/2)\)

11. \((11)\) \(\bar{4}^+\) \(0,0,z\) \(0,0,0\)
 \((\bar{4}_z\mid 0,0,0)\)

12. \((12)\) \(\bar{4}^-\) \(0,0,0\) \(0,0,0\)
 \((\bar{4}_z^{-}\mid 0,0,0)\)

13. \((13)\) \(n\) \((1/2,0,1/2)\) \(x,1/4,z\)
 \((m_x\mid 1/2,1/2,1/2)\)

14. \((14)\) \(n\) \((0,1/2,1/2)\) \(1/4,y,z\)
 \((m_y\mid 1/2,1/2,1/2)\)

15. \((15)\) \(m'\) \(x,x,z\)
 \((m_x\mid 0,0,0)\)

16. \((16)\) \(m'\) \(x,x,z\)
 \((m_x\mid 0,0,0)\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>Generators</td>
<td>x,y,z</td>
<td>n+1/2,x+1/2,z+1/2</td>
</tr>
</tbody>
</table>

Continued

Coordinates

<table>
<thead>
<tr>
<th>16</th>
<th>n</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(2)</td>
<td>x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(3)</td>
<td>y+1/2,x+1/2,z+1/2</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(4)</td>
<td>y+1/2,x+1/2,z+1/2</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(5)</td>
<td>x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(6)</td>
<td>x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(7)</td>
<td>y+1/2,x+1/2,z+1/2</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(8)</td>
<td>y+1/2,x+1/2,z+1/2</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(9)</td>
<td>x+1/2,y+1/2,z+1/2</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(10)</td>
<td>x+1/2,y+1/2,z+1/2</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(11)</td>
<td>y,x,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(12)</td>
<td>y,x,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(13)</td>
<td>x+1/2,y+1/2,z+1/2</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(14)</td>
<td>x+1/2,y+1/2,z+1/2</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(15)</td>
<td>y,x,z</td>
<td>[v,u,w]</td>
</tr>
<tr>
<td>(16)</td>
<td>y,x,z</td>
<td>[v,u,w]</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>8</th>
<th>m</th>
<th>..m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,x,z</td>
<td>[u,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>8</th>
<th>l</th>
<th>..2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,x+1/2,3/4</td>
<td>[u,u,0]</td>
<td></td>
</tr>
<tr>
<td>x,x+1/2,3/4</td>
<td>[u,u,0]</td>
<td></td>
</tr>
<tr>
<td>x,x,3/4</td>
<td>[u,u,0]</td>
<td></td>
</tr>
<tr>
<td>x,x,3/4</td>
<td>[u,u,0]</td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>8</th>
<th>k</th>
<th>..2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,x+1/2,1/4</td>
<td>[u,u,0]</td>
<td></td>
</tr>
<tr>
<td>x,x+1/2,1/4</td>
<td>[u,u,0]</td>
<td></td>
</tr>
<tr>
<td>x,x+1/2,3/4</td>
<td>[u,u,0]</td>
<td></td>
</tr>
<tr>
<td>x,x+1/2,3/4</td>
<td>[u,u,0]</td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>8</th>
<th>j</th>
<th>..2'</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,0,1/2</td>
<td>[0,v,w]</td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>8</th>
<th>i</th>
<th>..2'</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,0,0</td>
<td>[0,v,w]</td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>8</th>
<th>h</th>
<th>2..</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1/2,z</td>
<td>[0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>4</th>
<th>g</th>
<th>2.m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,z</td>
<td>[0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>4</th>
<th>f</th>
<th>..2/m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4,3/4,3/4</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>3/4,3/4,3/4</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>3/4,3/4,1/4</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>3/4,3/4,1/4</td>
<td>[0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>4</th>
<th>e</th>
<th>..2/m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4,1/4,1/4</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1/4,1/4,1/4</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1/4,3/4,3/4</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1/4,3/4,3/4</td>
<td>[0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>4</th>
<th>d</th>
<th>2.22</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1/2,1/4</td>
<td>[0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>
Continued

4 c 22'2'. 0,1/2,0 [0,0,w] 0,1/2,1/2 [0,0,w] 1/2,0,1/2 [0,0,w] 1/2,0,0 [0,0,w]
2 b 4'2'm' 0,0,1/2 [0,0,w] 1/2,1/2,0 [0,0,w]
2 a 4'2'm' 0,0,0 [0,0,w] 1/2,1/2,1/2 [0,0,w]

Symmetry of Special Projections

Along [0,0,1] p4'm'm
a* = (a - b)/2 b* = (a + b)/2
Origin at 0,0,z

Along [1,0,0] c2mm1'
a* = b b* = c
Origin at x,0,0

Along [1,1,0] p2m'm'
a* = (-a + b)/2 b* = c
Origin at x,x,1/4
Origin at \(\bar{4} \cdot 2/m' \) at \(-1/4, 1/4, -1/4\) from center \((2/m')\)

Asymmetric unit

\[
\begin{align*}
0 \leq x & \leq 1/2; & 0 \leq y & \leq 1; & 0 \leq z & \leq 1/4; & x & \leq y; & y & \leq 1-x
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) \quad 1 & \\
(2) \quad 2 & x,0,0 & (2_z,0,0) \\
(3) \quad 4 & (0,0,1/2) & 0,1/2,z & (4_z,1/2,1/2,1/2) \\
(4) \quad 4 & (0,0,1/2) & 1/2,0,z & (4_z,1/2,1/2,1/2) \\
(5) \quad 2 & 0,y,0 & (2_z,0,0) \\
(6) \quad 2 & x,0,0 & (2_z,0,0) \\
(7) \quad 2 & (1/2,1/2,0) & x,x,1/4 & (2_y,1/2,1/2,1/2) \\
(8) \quad 2 & x,y+1/2,1/4 & (2_y,1/2,1/2,1/2) \\
(9) \quad \bar{1} & 1/4,1/4,1/4 & (1,2,1/2,1/2) \\
(10) \quad n' & (1/2,1/2,0) & x,y,1/4 & (m_z,1/2,1/2,1/2)' \\
(11) \quad 4^{+} & 0,0,0 & 0,0,0 & (4_z,0,0,0)' \\
(12) \quad 4^{+} & 0,0,0 & 0,0,0 & (4_z,0,0,0)' \\
(13) \quad n' & (1/2,0,1/2) & x,1/4,z & (m_y,1/2,1/2,1/2)' \\
(14) \quad n' & (0,1/2,1/2) & 1/4,y,z & (m_y,1/2,1/2,1/2)' \\
(15) \quad m' & x,x,z & (m_y,0,0,0)' \\
(16) \quad m' & x,x,z & (m_y,0,0,0)'
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>16 n 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w] (4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w] (6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w] (8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x+1/2,y+1/2,z+1/2 [u,v,w] (10) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(11) y,x,z [v,u,w] (12) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x+1/2,y+1/2,z+1/2 [u,v,w] (14) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) y,x,z [v,u,w] (16) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 m ..m'</td>
<td>x,x,z [u,u,w] x,x,z [u,u,w] x+1/2,x+1/2,z+1/2 [u,u,w] x+1/2,x+1/2,z+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w] x,x,z [u,u,w] x+1/2,x+1/2,z+1/2 [u,u,w] x+1/2,x+1/2,z+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,z+1/2 [u,u,w] x+1/2,x+1/2,z+1/2 [u,u,w]</td>
</tr>
<tr>
<td>8 l ..2</td>
<td>x,x+1/2,3/4 [u,u,0] x,x+1/2,3/4 [u,u,0] x,x+1/2,1/2 [u,u,0] x,x+1/2,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,3/4 [u,u,0] x,x+1/2,3/4 [u,u,0] x,x+1/2,1/2 [u,u,0] x,x+1/2,1/2 [u,u,0]</td>
</tr>
<tr>
<td>8 k ..2</td>
<td>x,x+1/2,1/4 [u,u,0] x,x+1/2,1/4 [u,u,0] x,x+1/2,3/4 [u,u,0] x,x+1/2,3/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,1/4 [u,u,0] x,x+1/2,1/4 [u,u,0] x,x+1/2,3/4 [u,u,0] x,x+1/2,3/4 [u,u,0]</td>
</tr>
<tr>
<td>8 j ..2</td>
<td>x+1/2,1/2 [u,u,0] x+1/2,1/2 [u,u,0] 1/2,x+1/2,1/2 [0,u,0] 1/2,x+1/2,1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2 [u,u,0] x+1/2,1/2 [u,u,0] 1/2,x+1/2,1/2 [0,u,0] 1/2,x+1/2,1/2 [0,u,0]</td>
</tr>
<tr>
<td>8 i ..2</td>
<td>x+1/2,1/2,1/2 [u,u,0] x+1/2,1/2,1/2 [u,u,0] 1/2,x+1/2,1/2 [0,u,0] 1/2,x+1/2,1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,1/2 [u,u,0] x+1/2,1/2,1/2 [u,u,0] 1/2,x+1/2,1/2 [0,u,0] 1/2,x+1/2,1/2 [0,u,0]</td>
</tr>
<tr>
<td>8 h 2..</td>
<td>0,1/2,z [0,0,0] 0,1/2,z [0,0,0] 1/2,0,z+1/2 [1/2,0,0] 1/2,0,z+1/2 [1/2,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,0] 0,1/2,z [0,0,0] 1/2,0,z+1/2 [1/2,0,0] 1/2,0,z+1/2 [1/2,0,0]</td>
</tr>
<tr>
<td>4 g 2.m'm'</td>
<td>0,0,z [0,0,0] 1/2,1/2,z+1/2 [0,0,0] 0,0,z [0,0,0] 1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0] 1/2,1/2,z+1/2 [0,0,0] 0,0,z [0,0,0] 1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 f ..2/m'</td>
<td>3/4,3/4,3/4 [0,0,0] 1/4,1/4,1/4 [0,0,0] 3/4,1/4,1/4 [0,0,0] 1/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,3/4 [0,0,0] 1/4,1/4,1/4 [0,0,0] 3/4,1/4,1/4 [0,0,0] 1/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 e ..2/m'</td>
<td>1/4,1/4,1/4 [0,0,0] 3/4,3/4,3/4 [0,0,0] 1/4,3/4,3/4 [0,0,0] 3/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/4,1/4 [0,0,0] 3/4,3/4,3/4 [0,0,0] 1/4,3/4,3/4 [0,0,0] 3/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 d 2.22</td>
<td>0,1/2,1/4 [0,0,0] 0,1/2,1/4 [0,0,0] 1/2,0,1/4 [0,0,0] 1/2,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/4 [0,0,0] 0,1/2,1/4 [0,0,0] 1/2,0,1/4 [0,0,0] 1/2,0,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Projection</th>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>([0,0,1])</td>
<td>p4m'</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>Symmetry</td>
<td>(a^* = \frac{a - b}{2})</td>
<td>(b^* = \frac{a + b}{2})</td>
</tr>
<tr>
<td>Origin</td>
<td>at (0,0,z)</td>
<td></td>
</tr>
<tr>
<td>([1,0,0])</td>
<td>c2m'</td>
<td>(x,0,0)</td>
</tr>
<tr>
<td>Symmetry</td>
<td>(a^* = b)</td>
<td>(b^* = c)</td>
</tr>
<tr>
<td>Origin</td>
<td>at (x,0,0)</td>
<td></td>
</tr>
<tr>
<td>([1,1,0])</td>
<td>p2m'</td>
<td>(x,x,\frac{1}{4})</td>
</tr>
<tr>
<td>Symmetry</td>
<td>(a^* = \frac{-a + b}{2})</td>
<td>(b^* = c)</td>
</tr>
<tr>
<td>Origin</td>
<td>at (x,x,\frac{1}{4})</td>
<td></td>
</tr>
</tbody>
</table>
Origin at $\overline{4}2m$ at $-1/4,1/-4,-1/4$ from center (2/m)

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/4; \quad x \leq y; \quad y \leq 1-x$

Symmetry Operations

For $(0,0,0) +$ set

(1) 1
(1) $0,0,0$

(2) $2 \quad 0,0,z$
(2) $0,0,z$

(3) $4^* \quad (0,0,1/2) \quad 0,1/2,z$
(4) $2 \quad (0,1/2,1/2) \quad 1/2,0,z$

(4) $4^* \quad (0,0,1/2) \quad 1/2,0,z$
(4) $4^* \quad (0,1/2,1/2) \quad 1/2,0,z$

(5) $2 \quad 0,y,0$
(2) $0,y,0$

(6) $2 \quad x,0,0$
(2) $x,0,0$

(7) $2 \quad (1/2,1/2,0) \quad x,x,1/4$
(8) $2 \quad (1/2,1/2,0) \quad x,x,1/4$

(11) $m \quad x,x,z$
(11) $m \quad 1/2,1/2,1/2 +$ (1/2,1/2,1/2)

(12) $4 \quad 0,0,z; \quad 0,0,0$
(12) $4 \quad 0,0,z; \quad 0,0,0$

(9) $\overline{T} \quad 1/4,1/4,1/4$
(1) $1/2,1/2,1/2$

(10) $n \quad (1/2,1/2,0) \quad x,y,1/4$
(10) $n \quad (1/2,1/2,0) \quad x,y,1/4$

(11) $4^* \quad 0,0,z; \quad 0,0,0$
(11) $4^* \quad 0,0,z; \quad 0,0,0$

(13) $n \quad (1/2,0,1/2) \quad x,1/4,z$
(1) $1/2,1/2,1/2$

(14) $n \quad (0,1/2,1/2) \quad 1/4,y,z$
(14) $n \quad (0,1/2,1/2) \quad 1/4,y,z$

For $(1,0,0)' +$ set

(1) $t'(1,0,0)$
(1) $1,0,0$'

(2) $2' \quad 1/2,0,z$
(2) $1,0,0$'

(3) $4' \quad (0,0,1/2) \quad -1/2,0,z$
(4) $4' \quad (0,1/2,1/2) \quad -1/2,0,z$

(4) $4' \quad (0,0,1/2) \quad 1/2,0,z$
(4) $4' \quad (0,1/2,1/2) \quad 1/2,0,z$

(5) $2' \quad 1/2,y,0$
(2') $1,0,0$'

(6) $2' \quad (1,0,0) \quad x,0,0$
(2') $1,0,0$'

(7) $2' \quad (1/2,1/2,0) \quad x,x,1/4$
(8) $2' \quad (1/2,1/2,0) \quad x,x,1/4$

(9) $\overline{T} \quad 3/4,1/4,1/4$
(1) $3/2,1/2,1/2$

(10) $n' \quad (3/2,1/2,0) \quad x,y,1/4$
(10) $n' \quad (3/2,1/2,0) \quad x,y,1/4$

(11) $4^* \quad 1/2,-1/2,z; \quad 1/2,-1/2,0$
(11) $4^* \quad 1/2,-1/2,z; \quad 1/2,-1/2,0$

(12) $4^* \quad 1/2,1/2,1/2'$
(12) $4^* \quad 1/2,1/2,1/2'$

(13) $n' \quad (3/2,0,1/2) \quad x,1/4,z$
(1) $3/2,1/2,1/2$

(14) $n' \quad (0,1/2,1/2) \quad 3/4,y,z$
(14) $n' \quad (0,1/2,1/2) \quad 3/4,y,z$

Generators selected (1); $t'(1,0,0)$; $t'(0,1,0)$; $t'(0,0,1)$; (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 n 1</td>
<td>(0,0,0) + (1,0,0)' +</td>
</tr>
</tbody>
</table>

(1) $x,y,z \quad [u,v,w]$
(2) $x',y,z \quad [u',v',w]$
(3) $y+1/2,x+1/2,z+1/2 \quad [v,u,w]$
(4) $y+1/2,x+1/2,z+1/2 \quad [v,u,w]$
(5) $x,y,z \quad [u,v,w]$
(6) $x,y,z \quad [u,v,w]$
(7) $y+1/2,x+1/2,z+1/2 \quad [v,u,w]$
(8) $y+1/2,x+1/2,z+1/2 \quad [v,u,w]$
(9) $x+1/2,y+1/2,z+1/2 \quad [u,v,w]$
(10) $x+1/2,y+1/2,z+1/2 \quad [u,v,w]$
(11) $y,x,z \quad [v,u,w]$
(12) $y,x,z \quad [v,u,w]$
(13) $x+1/2,y+1/2,z+1/2 \quad [u,v,w]$
(14) $x+1/2,y+1/2,z+1/2 \quad [u,v,w]$

134.10.1141 - 2 - 2390
Continued

(15) \(\overline{y}, x, z \) \([v,u,w]\)

\(16 \ m \ .m \ x, x, z [u, u, 0] \)
\(\overline{x}, \overline{x}, z [u, u, 0] \)
\(x + 1/2, x + 1/2, z + 1/2 [u, u, 0] \)
\(x + 1/2, x + 1/2, z + 1/2 [u, u, 0] \)

(16) \(y, x, z \) \([\overline{v}, u, w]\)

\(16 \ l \ .2 \ x + 1/2, 3/4 [u, u, 0] \)
\(\overline{x}, \overline{x} + 1/2, 3/4 [u, u, 0] \)
\(x + 1/2, x, 3/4 [u, u, 0] \)
\(x + 1/2, x, 3/4 [u, u, 0] \)

Symmetry of Special Projections

Along [0,0,1] \(p4mm1' \)
\(a^* = (a - b)/2 \quad b^* = (a + b)/2 \)
Origin at 0,0,z

Along [1,0,0] \(c2mm1' \)
\(a^* = b \quad b^* = c \)
Origin at x,0,0

Along [1,1,0] \(p2mm1' \)
\(a^* = (a + b)/2 \quad b^* = c \)
Origin at x,x,1/4

134.10.1141 - P, 4_2/nmm
134.11.1142

$P_1 4_2 /n'n'm'$

4/mmm$1'$

Tetragonal

134.11.1142

$P_1 4_2 /n'2'n'2'm'$
Origin at $\bar{4}2'm'$ at -1/4,1/4,-1/4 from center ($2'm'$)

Asymmetric unit $0 \leq x \leq 1/2$; $0 \leq y \leq 1$; $0 \leq z \leq 1/4$; $x \leq y$; $y \leq 1-x$

Symmetry Operations

<table>
<thead>
<tr>
<th>Symmetry Operations</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1 (1</td>
<td>0,0,0)</td>
</tr>
<tr>
<td>(5) 2' x,0,0 (2z</td>
<td>0,0,0')</td>
</tr>
<tr>
<td>(9) $\bar{1}$/4,1/4,1/4 (1</td>
<td>1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(13) n' (1/2,0,1/2) x,1/4,z (m</td>
<td>1/2,1/2,1/2)'</td>
</tr>
</tbody>
</table>

For (1,0,0)' + set

(1) t'(1,0,0) (1	0,0,0)	(2) 2' 1/2,0,z (2z	1,0,0)	(3) 4' - (0,0,1/2) -1/2,2/0,z (4	3/2,1/2,1/2)	(4) 4' - (0,0,1/2) 0,1/2,z (4z + 3/2,1/2,1/2)	
(5) 2' 1/2,0,0 (2	0,0,0)	(6) 2' (1,0,0) x,0,0 (2z	1,0,0)	(7) 2' x-1/2,x,1/4 (2	3/2,1/2,1/2)	(8) 2' (1/2,-1/2,0) x,\bar{x}+1/2,1/4 (2\bar{x}	3/2,1/2,1/2)
(9) $\bar{1}$/3,4,1/4,1/4 (1	3/2,1/2,1/2)	(10) n' (3/2,1/2,0) x,y,1/4 (m	3/2,1/2,1/2)	(11) 4' - 1/2,-1/2,z; 1/2,-1/2,0 (4z	1,0,0)'	(12) 4' - 1/2,1/2,z; 1/2,1/2,0 (4z - 1,0,0)	
(13) n (3/2,0,1/2) x,1/4,z (m	3/2,1/2,1/2)	(14) n (0,1/2,1/2) 3/4,y,z (m	3/2,1/2,1/2)	(15) g (1/2,-1/2,0) x+1/2,\bar{x},z (m	1,0,0)	(16) g (1/2,1/2,0) x+1/2,\bar{x},z (m	1,0,0)

Generators selected

(1); t'(1,0,0); t'(0,1,0); t'(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>n 1</td>
<td>(0,0,0) + (1,0,0)' + (1,0,0), (0,0,1)', (0,1,0), (1,0,0)'</td>
</tr>
</tbody>
</table>

32

(1) x,y,z [u,v,w] (2) \bar{x},\bar{y},\bar{z} [u,\bar{v},\bar{w}] (3) \bar{y}+1/2,x+1/2,z+1/2 [v,\bar{u},\bar{w}] (4) y+1/2,\bar{x}+1/2,z+1/2 [v,u,w] (5) \bar{x},\bar{y},\bar{z} [u,\bar{v},\bar{w}] (6) x,\bar{y},\bar{z} [u,v,w] (7) y+1/2,x+1/2,z+1/2 [v,\bar{u},\bar{w}] (8) \bar{y}+1/2,\bar{x}+1/2,z+1/2 [v,u,w] (9) \bar{x}+1/2,\bar{y}+1/2,z+1/2 [u,v,w] (10) x+1/2,y+1/2,z+1/2 [u,\bar{v},\bar{w}] (11) y,x,z [v,u,w] (12) \bar{y},x,z [v,\bar{u},\bar{w}] (13) x+1/2,\bar{y}+1/2,z+1/2 [u,\bar{v},\bar{w}] (14) \bar{x}+1/2,y+1/2,z+1/2 [u,\bar{v},\bar{w}]
Continued

(15) \(y, x, z [v, u, w] \)

(16) \(y, x, z [v, u, w] \)

16 m .m'
\(x, x, z [u, u, w] \)

\(x, x, z [u, u, w] \)
\(x + 1/2, x + 1/2, z + 1/2 [u, u, w] \)
\(x + 1/2, x + 1/2, z + 1/2 [u, u, w] \)

16 l .2'
\(x, x + 1/2, 3/4 [u, u, w] \)

\(x, x + 1/2, 1/4 [u, u, w] \)
\(x + 1/2, x + 1/2, z + 1/2 [u, u, w] \)
\(x + 1/2, x + 1/2, z + 1/2 [u, u, w] \)

16 k .2
\(x, x + 1/2, 1/4 [u, u, w] \)

\(x, x + 1/2, 1/4 [u, u, w] \)
\(x + 1/2, x + 1/2, z + 1/2 [u, u, w] \)
\(x + 1/2, x + 1/2, z + 1/2 [u, u, w] \)

16 j .2,
\(x, 0, 1/2 [u, 0, 0] \)

\(x, 0, 1/2 [u, 0, 0] \)
\(x + 1/2, 1/2, 0 [u, 0, 0] \)
\(0, x + 1/2, [0, 0, 0] \)

16 i .2',
\(x, 0, 1/2 [u, 0, 0] \)

\(x, 0, 1/2 [u, 0, 0] \)
\(x + 1/2, 1/2, 0 [u, 0, 0] \)
\(0, x, 1/2 [0, 0, 0] \)

16 h .2',
\(x, 0, 1/2 [u, u, w] \)

\(x, 0, 1/2 [u, u, w] \)
\(x + 1/2, x + 1/2, 1/2 [u, u, w] \)
\(x + 1/2, x + 1/2, 1/2 [u, u, w] \)

8 g 2.m'm'
\(0, 0, z [0, 0, w] \)

\(0, 0, z [0, 0, w] \)
\(0, 0, z [0, 0, w] \)
\(0, 0, z [0, 0, w] \)

8 f .2/m'
\(3/4, 3/4, 3/4 [0, 0, 0] \)

\(1/4, 1/4, 3/4 [0, 0, 0] \)
\(3/4, 1/4, 1/4 [0, 0, 0] \)
\(1/4, 3/4, 1/4 [0, 0, 0] \)

8 e .2/m'
\(1/4, 1/4, 1/4 [u, u, w] \)

\(1/4, 3/4, 3/4 [u, u, w] \)
\(3/4, 1/4, 3/4 [u, u, w] \)
\(3/4, 1/4, 3/4 [u, u, w] \)

8 d .2',
\(0, 1/2, 1/4 [u, u, w] \)

\(0, 1/2, 1/4 [u, u, w] \)
\(1/2, 0, 1/4 [u, u, w] \)
\(1/2, 0, 1/4 [u, u, w] \)

8 c .2',
\(0, 1/2, 0 [u, u, w] \)

\(0, 1/2, 1/2 [0, 0, 0] \)
\(1/2, 0, 1/2 [0, 0, 0] \)
\(1/2, 0, 1/2 [0, 0, 0] \)

4 b \(\bar{4}2m' \)
\(0, 0, 1/2 [0, 0, 0] \)

\(0, 1/2, 0 [0, 0, 0] \)
\(1/2, 1/2, 0 [0, 0, 0] \)
\(1/2, 1/2, 0 [0, 0, 0] \)

4 a \(\bar{4}2m' \)
\(0, 0, 0 [0, 0, w] \)

\(0, 1/2, 0 [0, 0, 0] \)
\(1/2, 1/2, 0 [0, 0, 0] \)
\(1/2, 1/2, 0 [0, 0, 0] \)

Symmetry of Special Projections

Along [0,0,1] p4mm1'
\(a^* = (a - b)/2 \quad b^* = (a + b)/2 \)
Origin at 0,0,z

Along [1,0,0] c2mm1'
\(a^* = b \quad b^* = c \)
Origin at x,0,0

Along [1,1,0] p \(\bar{c} \) 2mm
\(a^* = -(a + b)/2 \quad b^* = c \)
Origin at x-1/4,x+1/4,1/4
Origin at center (2/m) at 42/m1n

Asymmetric unit: $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations:

1. 1
2. $2 \cdot 0,0,z$
 \[(2_z \cdot 0,0,0) \]
3. $4^+ (0,0,1/2) \cdot 0,0,z$
 \[(4_z \cdot 0,0,1/2) \]
4. $4^- (0,0,1/2) \cdot 0,0,z$
 \[(4_z^- \cdot 0,0,1/2) \]
5. $2 \cdot (0,1/2,0) \cdot 1/4,y,0$
 \[(2_{z'} \cdot 1/2,1/2,0) \]
6. $2 \cdot (1/2,0,0) \cdot x,1/4,0$
 \[(2_{z'} \cdot 1/2,1/2,0) \]
7. $2 \cdot (1/2,1,2,0) \cdot x,x,1/4$
 \[(2_{y'} \cdot 1/2,1/2,1/2) \]
8. $2 \cdot x, x+1/2,1/4$
 \[(2_{y'} \cdot 1/2,1/2,1/2) \]
9. $\bar{2} \cdot 0,0,0$
 \[(\bar{2}_z \cdot 0,0,0) \]
10. $m \cdot x,y,0$
 \[(m_z \cdot 0,0,0) \]
11. $4^+ \cdot 0,0,z; 0,0,1/4$
 \[(4_z \cdot 0,0,1/2) \]
12. $4^- \cdot 0,0,z; 0,0,1/4$
 \[(4_z^- \cdot 0,0,1/2) \]
13. $a \cdot (1/2,0,0) \cdot x,1/4,z$
 \[(m_z \cdot 1/2,1/2,0) \]
14. $b \cdot (0,1/2,0) \cdot 1/4,y,z$
 \[(m_z \cdot 1/2,1/2,0) \]
15. $c \cdot (0,0,1/2) \cdot x+1/2,\bar{x},z$
 \[(m_{y'} \cdot 1/2,1/2,1/2) \]
16. $n \cdot (1/2,1/2,1/2) \cdot x,x,z$
 \[(m_{y'} \cdot 1/2,1/2,1/2) \]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions
Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>i</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) x+1/2,y+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) x+1/2,y+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(11) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(13) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(15) x+1/2,y+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>m..</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y+1/2,x+1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>..2</td>
<td>x,x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/2,x+1/2,3/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/2,x+1/2,3/4 [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>2..</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>2.22</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4gm1' a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p222 2mm a* = b/2 b* = c
Origin at x,1/4,0

Along [1,1,0] p222 2m'm' a* = -c/2 b* = (-a + b)/2
Origin at x,x,1/4

135.1.1143 - 2 - 2396
Origin at center (2/m1') at 4/m1n1'

Asymmetric unit

Asymmetric unit:
$$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$$

Symmetry Operations

For 1 + set

1. 1
 (1) $0,0,0$

2. 2
 (2) $0,0,z$
 (2) $0,0,0$

3. 4^+
 (3) $(0,0,1/2)$
 (4) $(0,0,1/2)$

4. 4^-
 (4) $(0,0,1/2)$
 (4) $(0,0,1/2)$

5. 2
 (5) $(0,1/2,0)$
 (5) $(1/2,1/2,0)$

6. 2
 (6) $(1/2,0,0)$
 (6) $(1/2,1/2,0)$

7. 2
 (7) $(1/2,1/2,0)$
 (7) $(1/2,1/2,1/2)$

8. 2
 (8) $(x,x+1/2,1/2)$
 (8) $(x,x+1/2,1/2)$

9. 2
 (9) $0,0,0$
 (9) $0,0,0$

10. m
 (10) $x,y,0$
 (10) $x,y,0$

11. 4^+
 (11) $0,0,1/4$
 (11) $0,0,1/4$

12. 4^-
 (12) $0,0,1/4$
 (12) $0,0,1/4$

13. a
 (13) $(1/2,0,0)$
 (13) $(1/2,1/2,0)$

14. b
 (14) $(0,1/2,0)$
 (14) $(0,1/2,0)$

15. c
 (15) $(0,0,1/2)$
 (15) $(0,0,1/2)$

16. n
 (16) $(1/2,1/2,1/2)$
 (16) $(1/2,1/2,1/2)$
For 1' + set

<table>
<thead>
<tr>
<th>Generators selected</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1); t(0,0,0); t(0,1,0); t(1,0,0); (2); (3); (5); (9); 1'.</td>
<td></td>
</tr>
</tbody>
</table>

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>i</td>
<td>11'</td>
</tr>
</tbody>
</table>

(1)	1'	x,y,z [0,0,0]
(2)	4'	x,y,z [0,0,0]
(3)	2'	x,y,z [0,0,0]
(4)	4'	x,y,z [0,0,0]
(5)	2'	x,y,z [0,0,0]
(6)	2'	x,y,z [0,0,0]
(7)	2'	x,y,z [0,0,0]
(8)	2'	x,y,z [0,0,0]

<table>
<thead>
<tr>
<th>8</th>
<th>h</th>
<th>m..1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(9)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(10)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(11)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(12)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(13)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(14)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(15)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>g</th>
<th>..21'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(16)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(17)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(18)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(19)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(20)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>f</th>
<th>2..1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(21)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(22)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(23)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>e</th>
<th>2..1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(24)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(25)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(26)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>d</th>
<th>2.22'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(27)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(28)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(29)</td>
<td>2'</td>
<td>x,y,z [0,0,0]</td>
</tr>
</tbody>
</table>

| 135.2.1144 - 2 - 2398 |
4 c 2/m..1' 0,1/2,0 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,0,0 [0,0,0] 0,1/2,1/2 [0,0,0]

4 b 4..1' 0,0,1/4 [0,0,0] 0,0,3/4 [0,0,0] 1/2,1/2,3/4 [0,0,0] 1/2,1/2,1/4 [0,0,0]

4 a 2/m..1' 0,0,0 [0,0,0] 0,0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p4gm1'</th>
<th>Along [1,0,0] p2mm1'</th>
<th>Along [1,1,0] p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a) (b^* = b)</td>
<td>(a^* = b/2) (b^* = c)</td>
<td>(a^* = (-a + b)/2) (b^* = c/2)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,1/4</td>
</tr>
</tbody>
</table>
Origin at center (2/m') at $4_2/m'1n$

Asymmetric unit
$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

(1) 1
(1 0,0,0)

(2) $2' \begin{pmatrix} 0,0,z \\ (2_z,0,0,0) \end{pmatrix}$

(3) $4' \begin{pmatrix} (0,0,1/2) \quad 0,0,z \\ (4_z,0,0,1/2) \end{pmatrix}$

(4) $4' \begin{pmatrix} (0,0,1/2) \quad 0,0,z \\ (4_z,0,0,1/2) \end{pmatrix}$

(5) $2' \begin{pmatrix} (0,1/2,0) \quad 1/4,y,0 \\ (2_y,1/2,1/2,0) \end{pmatrix}$

(6) $2' \begin{pmatrix} (1/2,0,0) \quad x,1/4,0 \\ (2_y,1/2,1/2,0) \end{pmatrix}$

(7) $2' \begin{pmatrix} (1/2,1/2,0) \quad x,x,1/4 \\ (2_y,1/2,1/2,1/2) \end{pmatrix}$

(8) $2' \begin{pmatrix} x,x+1/2,1/4 \\ (2_y,1/2,1/2,1/2) \end{pmatrix}$

(9) $\overline{1} \begin{pmatrix} 0,0,0 \\ (1,0,0,0) \end{pmatrix}$

(10) $m' \begin{pmatrix} x,y,0 \\ (m_z,0,0,0) \end{pmatrix}$

(11) $\overline{4} \begin{pmatrix} 0,0,z; 0,0,1/4 \\ (4_z,0,0,1/2) \end{pmatrix}$

(12) $\overline{4} \begin{pmatrix} 0,0,z; 0,0,1/4 \\ (4_z,0,0,1/2) \end{pmatrix}$

(13) $a \begin{pmatrix} (1/2,0,0) \quad x,1/4,z \\ (m_y,1/2,1/2,0) \end{pmatrix}$

(14) $b \begin{pmatrix} (0,1/2,0) \quad 1/4,y,z \\ (m_z,1/2,1/2,0) \end{pmatrix}$

(15) $c \begin{pmatrix} (0,0,1/2) \quad x+1/2,x,z \\ (m_y,1/2,1/2,1/2) \end{pmatrix}$

(16) $n \begin{pmatrix} (1/2,1/2,1/2) \quad x,x,z \\ (m_y,1/2,1/2,1/2) \end{pmatrix}$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions
Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>i</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x,y,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y+1/2,x+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y+1/2,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x+1/2,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) y,x,1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>h</td>
<td>m'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y+1/2,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,x+1/2 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,x+1/2 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,y+1/2,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y+1/2,x+1/2,z+1/2 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y+1/2,x+1/2,z+1/2 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x+1/2 [u,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>g</td>
<td>.2'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x+1/2,1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x+1/2,1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x+1/2,3/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x+1/4 [u,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>f</td>
<td>2'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [u,v,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>d</td>
<td>2.2'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,3/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,3/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections
Along [0,0,1] p4gm
Origin at 0,0,z

Along [1,0,0] p2ar 2m'm'
a* = b
b* = c
Origin at x,0,0

Along [1,1,0] p2ar 2m'm'
a* = -c/2
b* = (-a + b)/2
Origin at x,x,0
Origin at center (2/m) at 42'/m1n

Asymmetric unit

\[0 < x < \frac{1}{2}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{4}\]

Symmetry Operations

1. \[1\]
 \[
 (1 \mid 0,0,0)
 \]
2. \[2\]
 \[
 0,0,z

 (2_z \mid 0,0,0)
 \]
3. \[4^+\]
 \[
 (0,0,1/2) \quad 0,0,z

 (4_z \mid 0,0,1/2)'
 \]
4. \[4^-\]
 \[
 (0,0,1/2) \quad 0,0,z

 (4_z \mid 0,0,1/2)'
 \]
5. \[2'\]
 \[
 (0,1/2,0) \quad 1/4,y,0

 (2_z \mid 1/2,1/2,0)'
 \]
6. \[2'\]
 \[
 (1/2,0,0) \quad x,1/4,0

 (2_z \mid 1/2,1/2,0)'
 \]
7. \[2\]
 \[
 (1/2,1/2,0) \quad x,x,1/4

 (2_{xy} \mid 1/2,1/2,1/2)
 \]
8. \[2\]
 \[
 x,x+1/2,1/4

 (2_{xy} \mid 1/2,1/2,1/2)
 \]
9. \[\bar{1}\]
 \[
 0,0,0

 (1 \mid 0,0,0)
 \]
10. \[m\]
 \[
 x,y,0

 (m_o \mid 0,0,0)
 \]
11. \[\bar{4}^+\]
 \[
 0,0,z

 (4_z \mid 0,0,1/2)'
 \]
12. \[\bar{4}^-\]
 \[
 0,0,z

 (4_z \mid 0,0,1/2)'
 \]
13. \[a'\]
 \[
 (1/2,0,0) \quad x,1/4,z

 (m_y \mid 1/2,1/2,0)'
 \]
14. \[b'\]
 \[
 (0,1/2,0) \quad 1/4,y,z

 (m_x \mid 1/2,1/2,0)'
 \]
15. \[c\]
 \[
 (0,0,1/2) \quad x+1/2,x,z

 (m_{xy} \mid 1/2,1/2,1/2)
 \]
16. \[n\]
 \[
 (1/2,1/2,1/2) \quad x,x,z

 (m_{xy} \mid 1/2,1/2,1/2)
 \]

135.4.1146 - 1 - 2402
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>i</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) y+1/2,x+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14) y+1/2,x+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>(1) x,y,z [u,v,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(11) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(12) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) y+1/2,x+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(14) y+1/2,x+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: p4gm1'
 - $a^* = a$
 - $b^* = b$
 - Origin at 0,0,z

- **Along [1,0,0]**: p2'2'm'
 - $a^* = -c$
 - $b^* = b/2$
 - Origin at x,0,0

- **Along [1,1,0]**: p2'2'm'
 - $a^* = -c/2$
 - $b^* = (-a + b)/2$
 - Origin at x,x,1/4
Origin at center (2/m) at 4/m1n'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \]

Symmetry Operations

1. 1
2. \[2 \; 0,0,z \]
 \[(z_1:0,0,0) \]
3. \[4^+ \cdot (0,0,1/2) \; 0,0,z \]
 \[(z_2:0,0,1/2') \]
4. \[4^- \cdot (0,0,1/2) \; 0,0,z \]
 \[(z_2:-1:0,0,1/2') \]
5. \[2 \; (0,1/2,0) \; 1/4,y,0 \]
 \[(z_1:1/2,1/2,0) \]
6. \[2 \; (1/2,0,0) \; x,1/4,0 \]
 \[(z_1:1/2,1/2,0) \]
7. \[2' \; (1/2,1/2,0) \; x,x,1/4 \]
 \[(z_{xy}:1/2,1/2,1/2') \]
8. \[2' \; x,x+1/2,1/4 \]
 \[(z_{xy}:1/2,1/2,1/2') \]
9. \[\overline{1} \; 0,0,0 \]
 \[(1:0,0,0) \]
10. \[m \; x,y,0 \]
 \[(m_1:0,0,0) \]
11. \[4^+ \cdot \; 0,0,z \; 0,0,1/4 \]
 \[(z_2:0,0,1/2') \]
12. \[4^- \cdot \; 0,0,z \; 0,0,1/4 \]
 \[(z_2:-1:0,0,1/2') \]
13. \[a \; (1/2,0,0) \; x,1/4,z \]
 \[(m_3:1/2,1/2,0) \]
14. \[b \; (0,1/2,0) \; 1/4,y,z \]
 \[(m_3:1/2,2,2,0) \]
15. \[c' \; (0,0,1/2) \; x+1/2,\overline{z},z \]
 \[(m_{xy}:1/2,1/2,1/2') \]
16. \[n' \; (1/2,1/2,1/2) \; x,x,z \]
 \[(m_{xy}:1/2,1/2,1/2') \]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Generators

- **(1)**: \(x, y, z\ [u, v, w]\)
- **(2)**: \(x, y, z\ [u, v, w]\)
- **(3)**: \(y, x, z + 1/2\ [v, u, w]\)
- **(4)**: \(y, x, z + 1/2\ [v, u, w]\)
- **(5)**: \(x + 1/2, y + 1/2, z\ [u, v, w]\)
- **(6)**: \(y + 1/2, x + 1/2, z + 1/2\ [v, u, w]\)
- **(7)**: \(y + 1/2, x + 1/2, z\ [u, v, w]\)
- **(8)**: \(y + 1/2, x + 1/2, z\ [u, v, w]\)
- **(9)**: \(x + 1/2, y + 1/2, z\ [u, v, w]\)
- **(10)**: \(x, y, z\ [u, v, w]\)
- **(11)**: \(y, x, z + 1/2\ [v, u, w]\)
- **(12)**: \(y, x, z + 1/2\ [v, u, w]\)
- **(13)**: \(y + 1/2, y + 1/2, z\ [u, v, w]\)
- **(14)**: \(y + 1/2, x + 1/2, z\ [u, v, w]\)
- **(15)**: \(y + 1/2, x + 1/2, z + 1/2\ [v, u, w]\)
- **(16)**: \(y + 1/2, x + 1/2, z + 1/2\ [v, u, w]\)

Symmetry of Special Projections

- **Along [0,0,1] p4gm1'**
 - **a = a**
 - **b' = b**
 - **Origin at 0,0,z**

- **Along [1,0,0] p2a 2mm**
 - **a' = b/2**
 - **b' = c**
 - **Origin at x,1/4,0**

- **Along [1,1,0] p2m'**
 - **a' = (-a + b)/2**
 - **b' = c/2**
 - **Origin at x,x,1/4**

135.5.1147 - 2 - 2405
Origin at center \((2/m')\) at \(4_2'/m'1n\)

Asymmetric unit

\[
0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4
\]

Symmetry Operations

\begin{align*}
(1) \, & (1 | 0,0,0) \\
(2) \, & \begin{pmatrix} 2 \quad 0,0,z \\ 2_z \quad 0,0,0 \end{pmatrix} \\
(3) \, & 4' \cdot (0,0,1/2) \quad 0,0,z \\
& \quad (4_z \quad 0,0,1/2') \\
(4) \, & 4' \cdot (0,0,1/2) \quad 0,0,z \\
& \quad (4_z \quad 0,0,1/2') \\
(5) \, & \begin{pmatrix} 2 \quad (0,1/2,0) \\ (2_z) \quad 1/2,1/2,0 \end{pmatrix} \\
(6) \, & \begin{pmatrix} 2 \quad (1/2,0,0) \\ (2_z) \quad 1/2,1/2,0 \end{pmatrix} \\
(9) \, & \begin{pmatrix} 1' \quad 0,0,0 \\ (1' \quad 0,0,0)' \end{pmatrix} \\
(10) \, & \begin{pmatrix} m' \quad x,y,0 \\ (m_z) \quad 0,0,0)' \end{pmatrix} \\
(11) \, & \begin{pmatrix} 4' \quad 0,0,z; 0,0,1/4 \\ (4_z) \quad 0,0,1/2 \end{pmatrix} \\
(12) \, & \begin{pmatrix} 4' \quad 0,0,z; 0,0,1/4 \\ (4_z') \quad 0,0,1/2 \end{pmatrix} \\
(13) \, & \begin{pmatrix} a' \quad (1/2,0,0) \\ (m_z) \quad 1/2,1/2,0)' \end{pmatrix} \\
(14) \, & \begin{pmatrix} b' \quad (0,1/2,0) \\ (m_z) \quad 1/2,1/2,0)' \end{pmatrix} \\
(15) \, & \begin{pmatrix} c \quad (0,0,1/2) \\ (m_{xy}) \quad 1/2,1/2,1/2 \end{pmatrix} \\
(16) \, & \begin{pmatrix} n \quad (1/2,1/2,1/2) \\ x,x,z \end{pmatrix}
\end{align*}
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
</table>
| 16 | i | 1 (1) x,y,z [u,v,w]
| | | (2) x,y,z [u,v,w]
| | | (3) y,x,z+1/2 [v,u,w]
| | | (4) y,x,z+1/2 [v,u,w]
| | | (5) x+1/2,y+1/2,z [u,v,w]
| | | (6) y+1/2,x+1/2,z+1/2 [v,u,w]
| | | (7) x+1/2,y+1/2,z [u,v,w]
| | | (8) y+1/2,x+1/2,z+1/2 [v,u,w]
| | | (9) x,y,z [u,v,w]
| | | (10) x,y,z [u,v,w]
| | | (11) y,x,z+1/2 [v,u,w]
| | | (12) y,x,z+1/2 [v,u,w]
| | | (13) y+1/2,x+1/2,z [u,v,w]
| | | (14) y,x,z+1/2 [v,u,w]
| | | (15) y+1/2,x+1/2,z+1/2 [v,u,w]
| | | (16) y+1/2,x+1/2,z+1/2 [v,u,w]
| 8 | h | m'.. x,y,0 [u,v,0]
| | | x,y,0 [u,v,0]
| | | y,x,1/2 [v,u,0]
| | | y,x,1/2 [v,u,0]
| | | y+1/2,x+1/2,1/2 [v,u,0]
| | | x+1/2,y+1/2,0 [v,u,0]
| 8 | g | ..2' x,x+1/2,1/4 [u,u,w]
| | | x,x+1/2,1/4 [u,u,w]
| | | x+1/2,x,3/4 [u,u,w]
| | | x+1/2,x,1/4 [u,u,w]
| | | x+1/2,x,1/4 [u,u,w]
| 8 | f | 2.. 0,1/2,z [0,0,w]
| | | 0,1/2,z [0,0,w]
| | | 0,1/2,z [0,0,w]
| | | 0,1/2,z [0,0,w]
| 8 | e | 2.. 0,0,z [0,0,w]
| | | 0,0,z+1/2 [0,0,w]
| 4 | d | 2.2'2' 0,1/2,1/4 [0,0,w]
| | | 0,1/2,1/4 [0,0,w]
| | | 0,1/2,1/4 [0,0,w]
| | | 0,1/2,1/4 [0,0,w]
| 4 | c | 2/m'.. 0,1/2,0 [0,0,0]
| | | 1/2,0,0 [0,0,0]
| | | 1/2,0,0 [0,0,0]
| | | 1/2,0,0 [0,0,0]
| 4 | b | 4.. 0,0,1/4 [0,0,w]
| | | 0,0,3/4 [0,0,w]
| | | 0,0,3/4 [0,0,w]
| | | 0,0,3/4 [0,0,w]
| 4 | a | 2/m'.. 0,0,0 [0,0,0]
| | | 0,0,1/2 [0,0,0]
| | | 0,0,1/2 [0,0,0]
| | | 0,0,1/2 [0,0,0]

Symmetry of Special Projections

- **Along [0,0,1]**: p4'g'm
 - \(\mathbf{a}^* = \mathbf{a} \)
 - \(\mathbf{b}^* = \mathbf{b} \)
 - Origin at 0,0,z

- **Along [1,0,0]**: p2m'm'
 - \(\mathbf{a}^* = \mathbf{b}/2 \)
 - \(\mathbf{b}^* = \mathbf{c} \)
 - Origin at x,0,0

- **Along [1,1,0]**: \(p_{2x} \)
 - \(\mathbf{a}^* = -\mathbf{c}/2 \)
 - \(\mathbf{b}^* = (-\mathbf{a} + \mathbf{b})/2 \)
 - Origin at x,x,0
Origin at center (2/m) at 4/m21'\slash b'2'/c'

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

(1) 1
(1 | 0,0,0)

(5) 2' (0,1/2,0) 1/4,y,0
(2,1/2,1/2,0')

(9) 0,0,0
(1 | 0,0,0)

(13) a' (1/2,0,0) x,1/4,z
(m,1/2,1/2,0')

(2) 2 0,0,z
(2z|0,0,0)

(6) 2' (1/2,0,0) x,1/4,0
(2z|1/2,1/2,0')

(10) m x,y,0
(m|0,0,0)

(14) b' (0,1/2,0) 1/4,y,z
(m,1/2,1/2,0')

(3) 4' (0,0,1/2) 0,0,z
(4z|0,0,1/2)

(7) 2' (1/2,1/2,0) x,x,1/4
(2xy|1/2,1/2,1/2')

(11) 4' 0,0,z; 0,0,1/4
(4z|0,0,1/2)

(15) c' (0,0,1/2) x+1/2,\bar{z},z
(m,1/2,1/2,1/2')

(4) 4' (0,0,1/2) 0,0,z
(4z|0,0,1/2)

(8) 2' x,x+1/2,1/4
(2xy|1/2,1/2,1/2')

(12) 4' 0,0,z; 0,0,1/4
(4z|0,0,1/2)

(16) n' (1/2,1/2,1/2) x,x,z
(m,1/2,1/2,1/2')
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>i 1</td>
</tr>
<tr>
<td>(1)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3)</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(4)</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(5)</td>
<td>x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(6)</td>
<td>x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(7)</td>
<td>y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(8)</td>
<td>y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(9)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(10)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(11)</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(12)</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(13)</td>
<td>y+1/2,x+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(14)</td>
<td>y+1/2,x+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(15)</td>
<td>y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(16)</td>
<td>y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

8 h m.. x,y,0 [0,0,w] x,y,0 [0,0,w] y,x,1/2 [0,0,w] y,x,1/2 [0,0,w] x+1/2,y+1/2,0 [0,0,w] x+1/2,y+1/2,0 [0,0,w] y+1/2,x+1/2,1/2 [0,0,w] y+1/2,x+1/2,1/2 [0,0,w]

8 g ..2' x,x+1/2,1/4 [u,u,w] x,x+1/2,1/4 [u,u,w] x+1/2,x,3/4 [u,u,w] x+1/2,x,3/4 [u,u,w] x+1/2,x,3/4 [u,u,w] x+1/2,x,3/4 [u,u,w] x+1/2,x,1/4 [u,u,w] x+1/2,x,1/4 [u,u,w]

8 f 2.. 0,1/2,z [0,0,w] 0,1/2,z [0,0,w] 1/2,0,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w]

8 e 2.. 0,0,z [0,0,w] 0,0,z+1/2 [0,0,w] 1/2,1/2,z [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 1/2,1/2,z+1/2 [0,0,w] 1/2,1/2,z+1/2 [0,0,w]

4 d 2.2'2' 0,1/2,1/4 [0,0,w] 0,1/2,1/4 [0,0,w] 1/2,0,3/4 [0,0,w] 1/2,0,3/4 [0,0,w] 0,1/2,3/4 [0,0,w] 0,1/2,3/4 [0,0,w] 0,1/2,3/4 [0,0,w] 0,1/2,3/4 [0,0,w]

4 c 2/m.. 0,1/2,0 [0,0,w] 0,1/2,0 [0,0,w] 1/2,0,1/2 [0,0,w] 1/2,0,1/2 [0,0,w] 1/2,0,1/2 [0,0,w] 1/2,0,1/2 [0,0,w] 1/2,0,1/2 [0,0,w] 1/2,0,1/2 [0,0,w]

4 b 4.. 0,0,1/4 [0,0,w] 0,0,3/4 [0,0,w] 1/2,1/2,3/4 [0,0,w] 1/2,1/2,3/4 [0,0,w] 1/2,1/2,3/4 [0,0,w] 1/2,1/2,3/4 [0,0,w] 1/2,1/2,3/4 [0,0,w] 1/2,1/2,3/4 [0,0,w]

4 a 2/m.. 0,0,0 [0,0,w] 0,0,1/2 [0,0,w] 1/2,1/2,0 [0,0,w] 1/2,1/2,0 [0,0,w] 1/2,1/2,0 [0,0,w] 1/2,1/2,0 [0,0,w] 1/2,1/2,0 [0,0,w] 1/2,1/2,0 [0,0,w]

Symmetry of Special Projections

Along [0,0,1] p4gm1’

a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p2mm’

a* = -c b* = b/2
Origin at x,0,0

Along [1,1,0] p2m’m’

a* = -(a + b)/2 b* = c/2
Origin at x,x,1/4
Origin at center (2/m') at 4_2/m'1m'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

(1) 1
(1) 0,0,0

(5) 2' (0,1/2,0) 1/4,y,0
(2_z) 1/2,1/2,0,

(9) 11' 0,0,0
(1) 0,0,0,

(13) a (1/2,0,0) x,1/4,z
(m_y) 1/2,1/2,0,

(1) 0,0,0

(2) 2 0,0,z
(2_z) 0,0,0

(6) 2' (1/2,0,0) x,1/4,0
(2_z) 1/2,1/2,0,

(10) m' x,y,0
(m_z) 0,0,0,

(11) 4+ * (0,0,1/2) 0,0,z
(4_z) 0,0,1/2

(14) b (0,1/2,0) 1/4,y,z
(m_y) 1/2,1/2,0,

(3) 4+ * (0,0,1/2) 0,0,z
(4_z) 0,0,1/2

(7) 2 (1/2,1/2,0) x,x,1/4
(2_y) 1/2,1/2,1/2

(15) c' (0,0,1/2) x+1/2,x,z
(m_y) 1/2,1/2,1/2,

(4) 4+ * (0,0,1/2) 0,0,z
(4_z) 0,0,1/2

(8) 2 x,x+1/2,1/4
(2_y) 1/2,1/2,1/2

(12) 4+ * 0,0,z; 0,0,1/4
(4_z) 0,0,1/2

(13) a (1/2,0,0) x,1/4,z
(m_y) 1/2,1/2,0,

(16) n' (1/2,1/2,1/2) x,x,z
(m_y) 1/2,1/2,1/2,

(14) b (0,1/2,0) 1/4,y,z
(m_y) 1/2,1/2,0,
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>i</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) y+1/2,x+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,x,1/2 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,x,1/2 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,y+1/2,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y+1/2,x+1/2,1/2 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y+1/2,x+1/2,1/2 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x+3/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x+3/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x+1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x+1/4 [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>e</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>0,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,3/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,3/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,3/4 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin</th>
<th>[0,0,1]</th>
<th>4p4'gm'</th>
<th>Along [1,0,0]</th>
<th>p2m'm'</th>
<th>Along [1,1,0]</th>
<th>p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td></td>
<td>a* = b/2</td>
<td>b* = c</td>
<td>a* = (a + b)/2</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Along [1,0,0]</td>
<td>p2m'm'</td>
<td>Along [1,1,0]</td>
<td>p2m'm'</td>
<td>Origin at x,x,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>

135.8.1150 - 2 - 2411
Origin at center (2/m') at 4/m'm'1n'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4

Symmetry Operations

(1) 1
 (1|0,0,0)
(5) 2 (0,1/2,0) 1/4,y,0
 (2,1/2,1/2,0)
(9) 1' 0,0,0
 (1|0,0,0)
(13) a' (1/2,0,0) x,1/4,z
 (m,1/2,1/2,0)
(2) 2 0,0,z
 (2,0,0,0)
(6) 2 (1/2,0,0) x,1/4,0
 (2,1/2,1/2,0)
(10) m' x,y,0
 (m,0,0,0)
(14) b' (0,1/2,0) 1/4,y,z
 (m,1/2,1/2,0)
(3) 4' (0,0,1/2) 0,0,z
 (4,0,0,1/2)
(7) 2 (1/2,1/2,0) x,x,1/4
 (2,1/2,1/2,1/2)
(11) 4' 0,0,z
 (4,0,0,1/2)
(8) 2 x,x+1/2,1/4
 (2,2,1/2,1/2)
(12) 4' 0,0,z
 (4,0,0,1/2)
(15) c' (0,0,1/2) x+1/2,x,z
 (m,1/2,1/2,1/2)
(16) n' (1/2,1/2,1/2) x,x,z
 (m,1/2,1/2,1/2)

P4₁/m'b'c'
135.9.1151

4/m'm'm'

P4₁/m'2₁/b'2/c'

Tetragonal
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>i</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) y+1/2,x+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14) y+1/2,x+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,x,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,x,1/2 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,x,1/2 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,y+1/2,0 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,y+1/2,0 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,y+1/2,0 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y+1/2,x+1/2,1/2 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y+1/2,x+1/2,1/2 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y+1/2,x+1/2,1/2 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x,3/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4g'm'
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] p 2m'm'
\(a^* = b/2 \quad b^* = c \)
Origin at x,0,0

Along [1,1,0] p2m'm'
\(a^* = (-a + b)/2 \quad b^* = c/2 \)
Origin at x,x,0

135.9.1151 - 2 - 2413
Origin at center (mmm) at 2/m12/m

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq y \]

Symmetry Operations

(1) 1
(1|0,0,0)

(5) 2 (0,1/2,0) 1/4,y,1/4
(2|1/2,1/2,1/2)

(9) \(\overline{1}\) 0,0,0
(1|0,0,0)

(13) n (1/2,0,1/2) x,1/4,z
(0|1/2,1/2,1/2)

(2) 2 0,0,z
(2z|0,0,0)

(6) 2 (1/2,0,0) x,1/4,1/4
(2z|1/2,1/2,1/2)

(10) m x,y,0
(m|0,0,0)

(14) n (0,1/2,1/2) 1/4,y,z
(m|1/2,1/2,1/2)

(3) 4^+ (0,0,1/2) 0,1/2,z
(4z|1/2,1/2,1/2)

(7) 2 x,x,0
(2xy|0,0,0)

(11) 4^- 1/2,0,z; 1/2,0,1/4
(4z^-|1/2,1/2,1/2)

(15) m x,x,z
(mxy|0,0,0)

(4) 4^- (0,0,1/2) 1/2,0,z
(4z^-|1/2,1/2,1/2)

(8) 2 x,x,0
(2xy|0,0,0)

(12) 4^- 0,1/2,z; 0,1/2,1/4
(4z^-|1/2,1/2,1/2)

(16) m x,x,z
(mxy|0,0,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>16 k 1</td>
<td>(1) (x,y,z \ [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(3) (y+1/2,x+1/2,z+1/2 \ [v,u,w])</td>
</tr>
<tr>
<td></td>
<td>(5) (x+1/2,y+1/2,z+1/2 \ [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(7) (y,x,z \ [v,u,w])</td>
</tr>
<tr>
<td></td>
<td>(9) (x,y,z \ [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(11) (y+1/2,x+1/2,z+1/2 \ [v,u,w])</td>
</tr>
<tr>
<td></td>
<td>(13) (x+1/2,y+1/2,z+1/2 \ [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(15) (y,x,z \ [v,u,w])</td>
</tr>
<tr>
<td>8 j ..m</td>
<td>(x,x,z \ [u,u,0])</td>
</tr>
<tr>
<td></td>
<td>(x+1/2,x+1/2,z+1/2 \ [u,u,0])</td>
</tr>
<tr>
<td></td>
<td>(x+1/2,x+1/2,z+1/2 \ [u,u,0])</td>
</tr>
<tr>
<td></td>
<td>(x,x,z \ [u,u,0])</td>
</tr>
<tr>
<td>8 i m..</td>
<td>(x,y,0 \ [0,0,w])</td>
</tr>
<tr>
<td></td>
<td>(y+1/2,x+1/2,1/2 \ [0,0,w])</td>
</tr>
<tr>
<td></td>
<td>(x+1/2,y+1/2,1/2 \ [0,0,w])</td>
</tr>
<tr>
<td></td>
<td>(y,x,0 \ [0,0,w])</td>
</tr>
<tr>
<td>8 h 2..</td>
<td>(0,1/2,z \ [0,0,w])</td>
</tr>
<tr>
<td></td>
<td>(1/2,0,z+1/2 \ [0,0,w])</td>
</tr>
<tr>
<td></td>
<td>(1/2,0,z+1/2 \ [0,0,w])</td>
</tr>
<tr>
<td></td>
<td>(0,1/2,z \ [0,0,w])</td>
</tr>
<tr>
<td>4 g m.2m</td>
<td>(x,\bar{x},0 \ [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(\bar{x},x,0 \ [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(\bar{x},x,0 \ [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(\bar{x},x,0 \ [0,0,0])</td>
</tr>
<tr>
<td>4 f m.2m</td>
<td>(x,\bar{x},0 \ [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(\bar{x},x,0 \ [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(\bar{x},x,0 \ [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(\bar{x},x,0 \ [0,0,0])</td>
</tr>
<tr>
<td>4 e 2.mm</td>
<td>(0,0,z \ [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,z+1/2 \ [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,z+1/2 \ [0,0,0])</td>
</tr>
<tr>
<td>4 d 4..</td>
<td>(0,1/2,1/4 \ [0,0,w])</td>
</tr>
<tr>
<td></td>
<td>(1/2,0,1/4 \ [0,0,w])</td>
</tr>
<tr>
<td></td>
<td>(1/2,0,1/4 \ [0,0,w])</td>
</tr>
<tr>
<td>4 c 2/m..</td>
<td>(0,1/2,0 \ [0,0,w])</td>
</tr>
<tr>
<td></td>
<td>(1/2,0,1/2 \ [0,0,w])</td>
</tr>
<tr>
<td></td>
<td>(1/2,0,1/2 \ [0,0,w])</td>
</tr>
<tr>
<td>2 b m.mm</td>
<td>(0,0,1/2 \ [0,0,0])</td>
</tr>
</tbody>
</table>
Continued

2 a m.mm 0,0,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4gm1’
\[\mathbf{a}^* = \mathbf{a}, \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,1/2,z

Along [1,0,0] c_p 2’mm’
\[\mathbf{a}^* = -\mathbf{c}, \quad \mathbf{b}^* = \mathbf{b} \]
Origin at x,0,0

Along [1,1,0] p2mm1’
\[\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2, \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,x,0
Origin at center (mmm1\') at 2/m12/m1'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq y \]

Symmetry Operations

\[1 + \text{set} \]

1. \(1 \) \[(1 | 0,0,0) \]
2. \(2 \) \[(0,0,z) \]
3. \(4^+ (0,0,1/2) \) \[0,1/2,z \]
4. \(4^- (0,0,1/2) \) \[1/2,0,z \]
5. \(2 \) \[(0.1/2,0) \] \[1/4,y,z \]
6. \(2 \) \[(1/2,0,0) \] \[1/4,y,z \]
7. \(2 \) \[x,x,0 \]
8. \(2 \) \[x,x,0 \]
9. \(\bar{1} \) \[0,0,0 \]
10. \(m \) \[x,y,0 \]
11. \(4^+ 1/2,0,z \) \[1/2,1/2,1/2 \]
12. \(4^- 0,1/2,z \) \[0,1/2,1/2 \]
13. \(n \) \[(1/2,0,1/2) \] \[x,1/4,z \]
14. \(n \) \[(0,1/2,1/2) \] \[1/4,y,z \]
15. \(m \) \[x,x,z \]
16. \(m \) \[x,x,z \]
Continued

$P4_{2}/mnm1'$

1' + set

(1) 1' (1) 0,0,0')
(2) 2' 0,0,z (2) 0,0,0')
(3) 4' (0,0,1/2) 0,1/2,z (4) 4' (0,0,1/2) 1/2,0,z
(5) 2' (0,1/2,0) 1/4,y,1/4 (6) 2' (1/2,0,0) x,1/4,1/4
(7) 2' x,x,0 (8) 2' x,x,0
(9) 1' 0,0,0' (10) m' x,y,0 (11) 4' 1/2,0,z; 1/2,0,1/4
(12) 4' 0,1/2,z; 0,1/2,1/4
(13) n' (1/2,0,1/2) x,1/4,z (14) n' (0,1/2,1/2) 1/4,y,z
(15) m' x,x,z (16) m' x,x,z

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9); 1'.

Positions

Multiplicity
Wyckoff letter
Site Symmetry.

1 + 1' +

16 k 11'

(1) x,y,z [0,0,0]
(2) x,y,z [0,0,0]
(3) y+1/2,x+1/2,z+1/2 [0,0,0]
(4) y+1/2,x+1/2,z+1/2 [0,0,0]
(5) x+1/2,y+1/2,z+1/2 [0,0,0]
(6) x+1/2,y+1/2,z+1/2 [0,0,0]
(7) y,x,z [0,0,0]
(8) y,x,z [0,0,0]
(9) x,y,z [0,0,0]
(10) x,y,z [0,0,0]
(11) y+1/2,x+1/2,z+1/2 [0,0,0]
(12) y+1/2,x+1/2,z+1/2 [0,0,0]
(13) x+1/2,y+1/2,z+1/2 [0,0,0]
(14) x+1/2,y+1/2,z+1/2 [0,0,0]
(15) y,x,z [0,0,0]
(16) y,x,z [0,0,0]

8 j .m1'

x,x,z [0,0,0] x,x,z [0,0,0]
(2) x,y,z [0,0,0]
(4) y+1/2,x+1/2,z+1/2 [0,0,0]
(6) x+1/2,y+1/2,z+1/2 [0,0,0]
(9) x,x,z [0,0,0]
(11) y+1/2,x+1/2,z+1/2 [0,0,0]
(13) x+1/2,y+1/2,z+1/2 [0,0,0]
(15) y,x,z [0,0,0]

8 i m..1'

x,y,0 [0,0,0] x,y,0 [0,0,0]
(2) x,y,0 [0,0,0]
(4) y+1/2,x+1/2,1/2 [0,0,0]
(6) x+1/2,y+1/2,1/2 [0,0,0]
(9) x,x,0 [0,0,0]
(11) y+1/2,x+1/2,1/2 [0,0,0]
(13) x+1/2,y+1/2,1/2 [0,0,0]
(15) y,x,0 [0,0,0]
8	h	2..1'	0,1/2,z [0,0,0]	0,1/2,z+1/2 [0,0,0]	1/2,0, z+1/2 [0,0,0]	1/2,0, z [0,0,0]
4	g	m.2m1'	x,x,0 [0,0,0]	x+1/2,x+1/2,1/2 [0,0,0]	x+1/2,x,1/2,1/2 [0,0,0]	
4	f	m.2m1'	x,x,0 [0,0,0]	x+1/2,x+1/2,1/2 [0,0,0]	x+1/2,x,1/2,1/2 [0,0,0]	
4	e	2.mm1'	0,0,z [0,0,0]	1/2,1/2,z+1/2 [0,0,0]	1/2,1/2,z+1/2 [0,0,0]	
4	d	4'..1'	0,1/2,1/4 [0,0,0]	1/2,0,1/4 [0,0,0]	1/2,0,3/4 [0,0,0]	
4	c	2/m..1'	0,1/2,0 [0,0,0]	1/2,0,1/2 [0,0,0]	1/2,0,0 [0,0,0]	
2	b	m.mm1'	0,0,1/2 [0,0,0]	1/2,1/2,0 [0,0,0]		
2	a	m.mm1'	0,0,0 [0,0,0]	1/2,1/2,1/2 [0,0,0]		

Symmetry of Special Projections

- **Along [0,0,1] p4gm1'**
 - \(a^* = a \quad b^* = b \)
 - Origin at 0,1/2,z

- **Along [1,0,0] c2mm1'**
 - \(a^* = b \quad b^* = c \)
 - Origin at x,0,0

- **Along [1,1,0] p2mm1'**
 - \(a^* = (-a + b)/2 \quad b^* = c \)
 - Origin at x,x,0
Origin at center (mmm') at 2/m'12'/m

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x ≤ y

Symmetry Operations

(1) 1
(1) 0,0,0

(2) 2 0,0,z
(2) 0,0,0

(3) 4' (0,0,1/2) 0,1/2,z
(3) 0,1/2,1/2,1/2

(4) 4' (0,0,1/2) 1/2,0,z
(4) 1/2,1/2,1/2

(5) 2' (0,1/2,0) 1/4,y,1/4
(5) 1/2,1/2,1/2

(6) 2' (1/2,0,0) x,1/4,1/4
(6) x,x,0

(7) 2' x,x,0
(7) 0,0,0

(8) 2' x,x,0
(8) 2,0,0

(9) T' 0,0,0
(9) 1/2,1/2,1/2

(10) m' x,y,0
(10) m,0,0

(11) 4' m' 1/2,0,z; 1/2,0,1/4
(11) 1/2,1/2,1/2

(12) 4' m' 0,1/2,z; 0,1/2,1/4
(12) 1/2,1/2,1/2

(13) n (1/2,0,1/2) x,1/4,z
(13) m,0,0

(14) n (0,1/2,1/2) 1/4,y,z
(14) 0,0,0

(15) m x,x,z
(15) 0,0,0

(16) m x,x,z
(16) 0,0,0
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) y + 1/2, x + 1/2, z + 1/2 [v,u,w]</td>
<td>(4) y + 1/2, x + 1/2, z + 1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x, y + 1/2, z + 1/2 [u,v,w]</td>
<td>(6) x, y + 1/2, z + 1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) y, x, z [v,u,w]</td>
<td>(8) y, x, z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9) x, y, z [u,v,w]</td>
<td>(10) x, y, z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(11) y + 1/2, x + 1/2, z + 1/2 [v,u,w]</td>
<td>(12) y + 1/2, x + 1/2, z + 1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(13) x + 1/2, y + 1/2, z + 1/2 [u,v,w]</td>
<td>(14) x + 1/2, y + 1/2, z + 1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(15) y, x, z [v,u,w]</td>
<td>(16) y, x, z [v,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

8 j ..m x,x,z [u,u,0] x,x,z [u,u,0] |
	x + 1/2, x + 1/2, z + 1/2 [u,u,0]	x + 1/2, x + 1/2, z + 1/2 [u,u,0]
	x + 1/2, x + 1/2, z + 1/2 [u,u,0]	x + 1/2, x + 1/2, z + 1/2 [u,u,0]
	x,x,z [u,u,0]	x,x,z [u,u,0]

8 i m'.. x,y,0 [u,v,0] x,y,0 [u,v,0] |
	y + 1/2, x + 1/2, 1/2 [v,u,0]	y + 1/2, x + 1/2, 1/2 [v,u,0]
	x + 1/2, y + 1/2, 1/2 [u,v,0]	x + 1/2, y + 1/2, 1/2 [u,v,0]
	y,x,0 [v,u,0]	y,x,0 [v,u,0]

8 h 2.. 0,1/2,z [0,0,w] 0,1/2,z + 1/2 [0,0,w] 1/2,0,z + 1/2 [0,0,w] 1/2,0,z [0,0,w] |
| | 0,1/2,z [0,0,w] | 0,1/2,z [0,0,w] |
| | 0,1/2,z [0,0,w] | 0,1/2,z [0,0,w] |

4 g m'.2m x, x,0 [u,u,0] x, x,0 [u,u,0] |
| | x + 1/2, x + 1/2, 1/2 [u,u,0] | x + 1/2, x + 1/2, 1/2 [u,u,0] |

4 f m'.2m x,x,0 [u,u,0] x,x,0 [u,u,0] |
| | x + 1/2, x + 1/2, 1/2 [u,u,0] | x + 1/2, x + 1/2, 1/2 [u,u,0] |

4 e 2.mm 0,0,z [0,0,0] 1/2,1/2, z + 1/2 [0,0,0] 1/2,1/2, z + 1/2 [0,0,0] 0,0,z [0,0,0] |

4 d 4'.. 0,1/2,1/4 [0,0,0] 0,1/2,3/4 [0,0,0] 1/2,0,1/4 [0,0,0] 1/2,0,3/4 [0,0,0] |

4 c 2/m'.. 0,1/2,0 [0,0,0] 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,0,0 [0,0,0] |

2 b m.mm 0,0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0]
Symmetry of Special Projections

Along [0,0,1] p4gm
\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,1/2,z

Along [1,0,0] \quad c_p \quad 2m'm'
\[\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,0,0

Along [1,1,0] \quad p2mm1'
\[\mathbf{a}^* = (\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,x,0
Origin at center (mmm) at 2/m12/m

Asymmetric unit

\[0 \leq x \leq 1/2;\quad 0 \leq y \leq 1/2;\quad 0 \leq z \leq 1/2;\quad x \leq y\]

Symmetry Operations

1. \((1) \ 1\)

 \((1|0,0,0)\)

2. \((2) \ 2 \quad 0,0,z\)

 \((2z|0,0,0)\)

3. \((3) \ 4^{-} \ (0,0,1/2)\quad 0,1/2,z\)

 \((4z|1/2,1/2,1/2)\)

4. \((4) \ 4^{-} \ (0,0,1/2)\quad 1/2,0,z\)

 \((4z^{-1}|1/2,1/2,1/2)\)

5. \((5) \ 2' \ (0,1/2,0)\quad 1/4,y,1/4\)

 \((2y_1|1/2,1/2,1/2)\)

6. \((6) \ 2' \ (1/2,0,0)\quad x,1/4,1/4\)

 \((2xy_0|0,0,0)\)

7. \((7) \ 2 \quad x,x,0\)

 \((2xy|0,0,0)\)

8. \((8) \ 2 \quad x,x,0\)

 \((2xy_0|0,0,0)\)

9. \((9) \ 1 \quad 0,0,0\)

 \((1|0,0,0)\)

10. \((10) \ m \quad x,y,0\)

 \((mz_0|0,0,0)\)

11. \((11) \ 4^{-} \quad 1/2,0,z;\quad 1/2,0,1/4\)

 \((4z|1/2,1/2,1/2)\)

12. \((12) \ 4^{-} \quad 0,1/2,z;\quad 0,1/2,1/4\)

 \((4z^{-1}|1/2,1/2,1/2)\)

13. \((13) \ n' \ (1/2,0,1/2)\quad x,1/4,z\)

 \((mz_1|1/2,1/2,1/2)\)

14. \((14) \ n' \ (0,1/2,1/2)\quad 1/4,y,z\)

 \((mxy_0|0,0,0)\)

15. \((15) \ m \quad x,x,z\)

 \((mxy|0,0,0)\)

16. \((16) \ m \quad x,x,z\)

 \((mxy_0|0,0,0)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(11) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(12) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(14) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) y,x,z [v,u,w]</td>
<td>(16) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>8 j .m</td>
<td>x,x,z [u,u,0]</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,z+1/2 [u,u,0]</td>
<td>x+1/2,x+1/2,z+1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,z+1/2 [u,u,0]</td>
<td>x+1/2,x+1/2,z+1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>8 i m..</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>y+1/2,x+1/2,1/2 [0,0,0]</td>
<td>y+1/2,x+1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,y+1/2,1/2 [0,0,0]</td>
<td>x+1/2,y+1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,0 [0,0,w]</td>
<td>y,x,0 [0,0,w]</td>
</tr>
<tr>
<td>8 h 2..</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 g m.2m</td>
<td>x,x,0 [0,0,0]</td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/2 [0,0,0]</td>
<td>x+1/2,x+1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/2 [0,0,0]</td>
<td>x+1/2,x+1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/2 [0,0,0]</td>
<td>x+1/2,x+1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 f m.2m</td>
<td>x,x,0 [0,0,0]</td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/2 [0,0,0]</td>
<td>x+1/2,x+1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/2 [0,0,0]</td>
<td>x+1/2,x+1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 e 2.mm</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 d 4'..</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 c 2/m..</td>
<td>0,1/2,0 [0,0,w]</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0,w]</td>
<td>1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2 [0,0,w]</td>
<td>1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 b m.mm</td>
<td>0,0,1/2 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>
Continued

2 a m.mm 0,0,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4gm1’

\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]

Origin at 0,1/2,z

Along [1,0,0] c2’mm’

\[\mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = \mathbf{b} \]

Origin at x,0,0

Along [1,1,0] p2mm1’

\[\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c} \]

Origin at x,x,0
Origin at center (m'm'm) at 2/m12'/m'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x ≤ y

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 2 0,0,z
(2z | 0,0,0)

(3) 4 ' (0,0,1/2) 0,1/2,z
(4z | 1/2,1/2,1/2)'

(4) 4 ' (0,0,1/2) 1/2,0,z
(4z | 1/2,1/2,1/2)'

(5) 2 (0,1/2,0) 1/4,y,1/4
(2z | 1/2,1/2,1/2)

(6) 2 (1/2,0,0) x,1/4,1/4
(2z | 1/2,1/2,1/2)

(7) 2' x,x,0
(2xy | 0,0,0)'

(8) 2' x,x,0
(2xy | 0,0,0)'

(9) $\bar{1}$ 0,0,0
(1 | 0,0,0)

(10) m x,y,0
(mz | 0,0,0)

(11) $\bar{4}$ ' (1/2,0,z) 1/2,0,1/4
(4z | 1/2,1/2,1/2)'

(12) $\bar{4}$ ' (1/2,0,z) 0,1/2,1/4
(4z | 1/2,1/2,1/2)'

(13) n (1/2,0,1/2) x,1/4,z
(mz | 1/2,1/2,1/2)

(14) n (0,1/2,1/2) 1/4,y,z
(mz | 1/2,1/2,1/2)

(15) m' x,x,z
(mxy | 0,0,0)'

(16) m' x,x,z
(mxy | 0,0,0)'

P4_1/mnm' 4'/mmm'

Tetragonal

136.5.1156 P4_1/m2_/n2'/m'
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>k</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>j</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>h</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along \([0,0,1]\) p4gm1'

\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at \(0,1/2,z\)

Along \([1,0,0]\) \(c'2mm'\)

\[\mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at \(x,0,0\)

Along \([1,1,0]\) p2'\(\bar{m}\)m'

\[\mathbf{a}^* = -\mathbf{c} \quad \mathbf{b}^* = (-\mathbf{a} + \mathbf{b})/2 \]
Origin at \(x,x,0\)
P4₁/m'2/m'2/m

Tetragonal

136.6.1157

4'/m'm'm

Origin at center (mmm') at 2/m'12'/m

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x ≤ y

Symmetry Operations

(1) 1
(1 | 0,0,0)

(5) 2 (0,1/2,0) 1/4,y,1/4
(2z | 1/2,1/2,1/2)

(9) T' 0,0,0
(1 | 0,0,0)'

(13) n' (1/2,0,1/2) x,1/4,z
(my | 1/2,1/2,1/2)'

(2) 2' 0,0,z
(2'z | 0,0,0)

(6) 2 (1/2,0,0) x,1/4,1/4
(2'z | 1/2,1/2,1/2)

(10) m' x,y,0
(m | 0,0,0)'

(11) 4' 1/2,0,z; 1/2,0,1/4
(4z | 1/2,1/2,1/2)

(14) n' (0,1/2,1/2) 1/4,y,z
(m'y | 1/2,1/2,1/2)'

(3) 4' (0,0,1/2) 0,1/2,z
(4z | 1/2,1/2,1/2)'

(4) 4' (0,0,1/2) 1/2,0,z
(4z | 1/2,1/2,1/2)'

(7) 2' x,x,0
(2'y | 0,0,0)'

(12) 4' - 0,1/2,z; 0,1/2,1/4
(4z | -1/2,1/2,1/2)

(8) 2' x,x,0
(2'y | 0,0,0)'

(15) m x,x,z
(m | 0,0,0)
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>k 1</td>
</tr>
<tr>
<td>8</td>
<td>j ..m</td>
</tr>
<tr>
<td>8</td>
<td>i m'..</td>
</tr>
<tr>
<td>8</td>
<td>h 2..</td>
</tr>
<tr>
<td>4</td>
<td>g m'.2'm</td>
</tr>
<tr>
<td>4</td>
<td>f m'.2'm</td>
</tr>
<tr>
<td>4</td>
<td>e 2.mm</td>
</tr>
<tr>
<td>4</td>
<td>d 4..</td>
</tr>
<tr>
<td>4</td>
<td>c 2/m'..</td>
</tr>
<tr>
<td>2</td>
<td>b m'.mm</td>
</tr>
</tbody>
</table>

Continued
Continued

Symmetry of Special Projections

Along [0,0,1] p4'g'm
\[\mathbf{a}^* = \mathbf{a}, \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,1/2,z

Along [1,0,0] c 2m'm'
\[\mathbf{a}^* = \mathbf{b}, \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,0,0

Along [1,1,0] p2mm1'
\[\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2, \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,x,0

2 a m'.mm 0,0,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]
Origin at center (m'm'm') at 2/m12'/m'

Asymmetric unit

\[
0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x < y
\]

Symmetry Operations

1. 1
 - (1) 1
 - (1|0,0,0)

2. 2
 - (2) 2 0,0,z
 - (2\text{_z}|0,0,0)

3. 4\text{~}
 - (3) 4\text{~} (0,0,1/2) 0,1/2,z
 - (4\text{~}_z|1/2,1/2,1/2)

4. 4
 - (4) 4 (0,0,1/2) 1/2,0,z
 - (4\text{~}_z|1/2,1/2,1/2)

5. 2' (0,1/2,0) 1/4,y,1/4
 - (5) 2' (0,1/2,0) 1/4,y,1/4
 - (2\text{z}_y|0,0,0)

6. 2' (1/2,0,0) x,1/4,1/4
 - (6) 2' (1/2,0,0) x,1/4,1/4
 - (2\text{z}_y|0,0,0)

7. 2' x,x,0
 - (7) 2' x,x,0
 - (2\text{z}_y|0,0,0)

8. 2' x,x,0
 - (8) 2' x,x,0
 - (2\text{z}_y|0,0,0)

9. 1/2,0,0
 - (9) 1/2,0,0
 - (1|0,0,0)

10. m x,y,0
 - (10) m x,y,0
 - (m_z|0,0,0)

11. 4\text{~}
 - (11) 4\text{~} (1/2,0,1/2) z,1/2,0,1/4
 - (4\text{~}_z|1/2,1/2,1/2)

12. 4\text{~}
 - (12) 4\text{~} (1/2,0,1/2) z,1/2,0,1/4
 - (4\text{~}_z|1/2,1/2,1/2)

13. n' (1/2,0,1/2) x,1/4,z
 - (13) n' (1/2,0,1/2) x,1/4,z
 - (m_y|1/2,1/2,1/2)

14. n' (0,1/2,1/2) 1/4,y,z
 - (14) n' (0,1/2,1/2) 1/4,y,z
 - (m_y|0,0,0)

15. m' x,x,z
 - (15) m' x,x,z
 - (m_y|0,0,0)

16. m' x,x,z
 - (16) m' x,x,z
 - (m_y|0,0,0)
Generators selected

(1); \(t(1,0,0) \); \(t(0,1,0) \); \(t(0,0,1) \); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k 1</td>
<td>(1) (x,y,z, [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(3) (\bar{y} + 1/2, x + 1/2, z + 1/2, [\bar{v}, u, w])</td>
</tr>
<tr>
<td></td>
<td>(5) (\bar{x} + 1/2, y + 1/2, z + 1/2, [u, \bar{v}, w])</td>
</tr>
<tr>
<td></td>
<td>(7) (y, x, \bar{z}, [v, \bar{u}, w])</td>
</tr>
<tr>
<td></td>
<td>(9) (x, y, \bar{z}, [u, v, w])</td>
</tr>
<tr>
<td></td>
<td>(11) (y + 1/2, x + 1/2, z + 1/2, [v, u, w])</td>
</tr>
<tr>
<td></td>
<td>(13) (x + 1/2, y + 1/2, z + 1/2, [u, \bar{v}, w])</td>
</tr>
<tr>
<td></td>
<td>(15) (y, x, z, [v, u, w])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 j ..m'</th>
<th>x, x, z [u, u, w]</th>
<th>(x, \bar{x}, z [u, \bar{u}, w])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{x} + 1/2, x + 1/2, z + 1/2, [u, u, w])</td>
<td>(x + 1/2, \bar{x} + 1/2, z + 1/2, [\bar{u}, u, w])</td>
</tr>
<tr>
<td></td>
<td>(\bar{x} + 1/2, x + 1/2, \bar{z} + 1/2, [u, u, w])</td>
<td>(x + 1/2, \bar{x} + 1/2, \bar{z} + 1/2, [\bar{u}, u, w])</td>
</tr>
<tr>
<td></td>
<td>(x, x, z, [u, u, w])</td>
<td>(\bar{x}, \bar{x}, z [u, \bar{u}, w])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 i m..</th>
<th>x, y, 0 [0, 0, w]</th>
<th>(\bar{x}, \bar{y}, 0 [0, 0, w])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{y} + 1/2, x + 1/2, 1/2, [0, 0, w])</td>
<td>(y + 1/2, \bar{x} + 1/2, 1/2, [0, 0, w])</td>
</tr>
<tr>
<td></td>
<td>(\bar{x} + 1/2, y + 1/2, 1/2, [0, 0, w])</td>
<td>(x + 1/2, \bar{y} + 1/2, 1/2, [0, 0, w])</td>
</tr>
<tr>
<td></td>
<td>(y, x, 0 [0, 0, w])</td>
<td>(\bar{y}, x, 0 [0, 0, w])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 h 2..</th>
<th>0, 1/2, z [0, 0, w]</th>
<th>(0, 1/2, z + 1/2, [0, 0, w])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0, 1/2, (\bar{z}) [0, 0, w]</td>
<td>(1/2, 0, \bar{z} + 1/2, [0, 0, w])</td>
</tr>
<tr>
<td></td>
<td>0, 1/2, (\bar{z} + 1/2) [0, 0, w]</td>
<td>(1/2, 0, z + 1/2, [0, 0, w])</td>
</tr>
<tr>
<td></td>
<td>0, 1/2, (\bar{z} + 1/2) [0, 0, w]</td>
<td>(0, 1/2, z + 1/2, [0, 0, w])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 g m.2' (\text{m}')</th>
<th>x, (\bar{x}, \bar{x}) [0, 0, w]</th>
<th>(x, x, 0 [0, 0, w])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{x} + 1/2, x + 1/2, 1/2, [0, 0, w])</td>
<td>(x + 1/2, \bar{x} + 1/2, 1/2, [0, 0, w])</td>
</tr>
<tr>
<td></td>
<td>(\bar{x} + 1/2, x + 1/2, 1/2, [0, 0, w])</td>
<td>(x + 1/2, \bar{x} + 1/2, 1/2, [0, 0, w])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 f m.2' (\text{m}')</th>
<th>x, x, 0 [0, 0, w]</th>
<th>(\bar{x}, \bar{x}, 0 [0, 0, w])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{x} + 1/2, x + 1/2, 1/2, [0, 0, w])</td>
<td>(x + 1/2, \bar{x} + 1/2, 1/2, [0, 0, w])</td>
</tr>
<tr>
<td></td>
<td>(\bar{x} + 1/2, x + 1/2, 1/2, [0, 0, w])</td>
<td>(x + 1/2, \bar{x} + 1/2, 1/2, [0, 0, w])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 e 2.m (\text{m}')</th>
<th>0, 0, z [0, 0, w]</th>
<th>(1/2, 1/2, z + 1/2, [0, 0, w])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1/2, 1/2, z + 1/2, [0, 0, w])</td>
<td>(1/2, 1/2, \bar{z} + 1/2, [0, 0, w])</td>
</tr>
<tr>
<td></td>
<td>(0, 0, \bar{z} [0, 0, w])</td>
<td>(0, 0, \bar{z} [0, 0, w])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 d 4..</th>
<th>0, 1/2, 1/4 [0, 0, w]</th>
<th>(0, 1/2, 3/4, [0, 0, w])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1/2, 0, 1/4 [0, 0, w])</td>
<td>(1/2, 0, 3/4 [0, 0, w])</td>
</tr>
<tr>
<td></td>
<td>(1/2, 0, 1/2 [0, 0, w])</td>
<td>(1/2, 0, 0 [0, 0, w])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 c 2/m..</th>
<th>0, 1/2, 0 [0, 0, w]</th>
<th>(1/2, 1/2, 0 [0, 0, w])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1/2, 0, 0 [0, 0, w])</td>
<td>(1/2, 0, 0 [0, 0, w])</td>
</tr>
</tbody>
</table>

| 2 b m.m \(\text{m}' \) | 0, 0, 1/2 [0, 0, w] | \(1/2, 1/2, 0 [0, 0, w] \) |
2 a m.m'm' 0,0,0 [0,0,w] 1/2,1/2,1/2 [0,0,w]

Symmetry of Special Projections

Along [0,0,1] p4gm1'
\[a^* = a, \quad b^* = b\]
Origin at 0,1/2,z

Along [1,0,0] c2mm
\[a^* = b, \quad b^* = c\]
Origin at x,0,0

Along [1,1,0] p2'mm'
\[a^* = -c, \quad b^* = (-a + b)/2\]
Origin at x,x,0
Origin at center (m'm'm') at 2/m'12/m'

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x < y

Symmetry Operations

(1) 1 (1 | 0,0,0)
(2) 2 0,0,z (2z | 0,0,0)
(3) 4' + (0,0,1/2) 0,1/2,z (4z | 1/2,1/2,1/2')
(4) 4' - (0,0,1/2) 1/2,0,z (4z^-1 | 1/2,1/2,1/2')
(5) 2' (0,1/2,0) 1/4,y,1/4 (2y | 1/2,1/2,1/2')
(6) 2' (1/2,0,0) x,1/4,1/4 (2x | 1/2,1/2,1/2')
(7) 2 x,x,0 (2y | 0,0,0)
(8) 2 x,x,0 (2y | 0,0,0)
(9) T | 0,0,0'
(10) m' x,y,0 (mz | 0,0,0')
(11) 4' + 1/2,0,z; 1/2,0,1/4 (4z^-1 | 1/2,1/2,1/2)
(12) 4' - 0,1/2,z; 0,1/2,1/4 (4z^-1 | 1/2,1/2,1/2)
(13) n (1/2,0,1/2) x,1/4,z (mz | 1/2,1/2,1/2)
(14) n (0,1/2,1/2) 1/4,y,z (mz | 1/2,1/2,1/2)
(15) m' x,x,z (mz | 0,0,0')
(16) m' x,x,z (mz | 0,0,0')
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
</table>
| 16 k 1 | (1) x,y,z [u,v,w]
(2) x',y',z [u',v',w]
(3) y+1/2,x+1/2,z+1/2 [v,u,w]
(4) y+1/2,x+1/2,z+1/2 [v,u,w]
(5) x+1/2,y+1/2,z+1/2 [u,v,w]
(6) x+1/2,y+1/2,z+1/2 [u,v,w]
(7) y,x,z [v,u,w]
(8) y,x,z [v,u,w]
(9) x,y,z [u,v,w]
(10) x,y,z [u,v,w]
(11) y+1/2,x+1/2,z+1/2 [v,u,w]
(12) y+1/2,x+1/2,z+1/2 [v,u,w]
(13) x+1/2,y+1/2,z+1/2 [u,v,w]
(14) x+1/2,y+1/2,z+1/2 [u,v,w]
(15) y,x,z [v,u,w]
(16) y,x,z [v,u,w] |
| 8 j ..m' | x,x,z [u,u,w]
x+1/2,x+1/2,z+1/2 [u,u,w]
x+1/2,x+1/2,z+1/2 [u,u,w]
x+1/2,x+1/2,z+1/2 [u,u,w]
x+1/2,x+1/2,z+1/2 [u,u,w]
x,x,z [u,u,w]
x,x,z [u,u,w] |
| 8 i m'.. | x,y,0 [u,v,0]
 y+1/2,x+1/2,1/2 [v,u,0]
x+1/2,y+1/2,1/2 [u,v,0]
y,x,0 [u,v,0]
y,x,0 [u,v,0]
y,x,0 [u,v,0] |
| 8 h 2.. | 0,1/2,z [0,0,w]
0,1/2,z [0,0,w]
0,1/2,z [0,0,w]
0,1/2,z [0,0,w]
0,1/2,z [0,0,w]
1/2,0,z+1/2 [0,0,w]
1/2,0,z+1/2 [0,0,w]
1/2,0,z+1/2 [0,0,w]
1/2,0,z+1/2 [0,0,w]
1/2,0,z+1/2 [0,0,w]
1/2,0,z+1/2 [0,0,w] |
| 4 g m'.2m' | x,x,0 [u,u,0]
x,x,0 [u,u,0]
x+1/2,x+1/2,1/2 [u,u,0]
x+1/2,x+1/2,1/2 [u,u,0]
x+1/2,x+1/2,1/2 [u,u,0]
x+1/2,x+1/2,1/2 [u,u,0] |
| 4 f m'.2m' | x,x,0 [u,u,0]
x,x,0 [u,u,0]
x+1/2,x+1/2,1/2 [u,u,0]
x+1/2,x+1/2,1/2 [u,u,0]
x+1/2,x+1/2,1/2 [u,u,0]
x+1/2,x+1/2,1/2 [u,u,0] |
| 4 e 2.m'm' | 0,0,z [0,0,w]
1/2,1/2,z+1/2 [0,0,w]
1/2,1/2,z+1/2 [0,0,w]
1/2,1/2,z+1/2 [0,0,w]
1/2,1/2,z+1/2 [0,0,w]
0,0,z [0,0,w]
0,0,z [0,0,w] |
| 4 d 4.. | 0,1/2,1/4 [0,0,w]
0,1/2,1/4 [0,0,w]
0,1/2,1/4 [0,0,w]
0,1/2,1/4 [0,0,w]
1/2,0,1/4 [0,0,w]
1/2,0,1/4 [0,0,w]
1/2,0,1/4 [0,0,w] |
| 4 c 2/m'.. | 0,1/2,0 [0,0,0]
0,1/2,1/2 [0,0,0]
0,1/2,1/2 [0,0,0]
0,1/2,1/2 [0,0,0]
1/2,0,1/2 [0,0,0]
1/2,0,1/2 [0,0,0]
1/2,0,1/2 [0,0,0] |
| 2 b m'.m'm' | 0,0,1/2 [0,0,0]
1/2,1/2,0 [0,0,0]
1/2,1/2,0 [0,0,0]
1/2,1/2,0 [0,0,0]
1/2,1/2,0 [0,0,0]
1/2,1/2,0 [0,0,0]
1/2,1/2,0 [0,0,0] |
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry Group</th>
<th>Relations</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p4'gm'</td>
<td>$a^* = a$</td>
<td>0,1/2,z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b^* = b$</td>
<td></td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>c$_p$: 2m'm'</td>
<td>$a^* = b$</td>
<td>x,0,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b^* = c$</td>
<td></td>
</tr>
<tr>
<td>Along [1,1,0]</td>
<td>p2m'm'</td>
<td>$a^* = (-a + b)/2$</td>
<td>x,x,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b^* = c$</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (m'm'm') at 2/m'12/m'

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x < y \]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(1 | 0,0,0) & \\
(5) & \quad 2 \ (0,1/2,0) \quad 1/4,y,1/4 \\
& \quad (2_z | 1/2,1/2,1/2) \\
(9) & \quad \bar{1} \quad 0,0,0 \\
& \quad (\bar{1} | 0,0,0)' \\
(13) & \quad n' \ (1/2,0,1/2) \quad x,1/4,z \\
& \quad (m_y | 1/2,1/2,1/2)' \\
(14) & \quad n' \ (0,1/2,1/2) \quad 1/4,y,z \\
& \quad (m_z | 1/2,1/2,1/2)' \\
(15) & \quad m' \quad x,1/4,z \\
& \quad (m_x | 0,0,0)' \\
(16) & \quad m' \quad x,y,z \\
& \quad (m_y | 0,0,0)' \\
\end{align*}
\]
Generators selected

\[(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9). \]

Positions

Multiplicities, Wyckoff letters, Site Symmetries.

<table>
<thead>
<tr>
<th>Number</th>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1</td>
<td>k</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>j</td>
<td>0.5</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>i</td>
<td>0.5</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>h</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>g</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>f</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>e</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>d</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>c</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>b</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Coordinates

1. \((1) x, y, z \) \([u, v, w]\)
2. \((2) x, y, z \) \([u, v, w]\)
3. \((3) y + 1/2, x + 1/2, z + 1/2 \) \([v, u, w]\)
4. \((4) x + 1/2, y + 1/2, z + 1/2 \) \([u, v, w]\)
5. \((5) y, x, z \) \([v, u, w]\)
6. \((6) x, y, z \) \([u, v, w]\)
7. \((7) y + 1/2, x, z + 1/2 \) \([v, u, w]\)
8. \((8) y, x, z \) \([v, u, w]\)
9. \((9) x, y, z \) \([u, v, w]\)
10. \((10) y, x + 1/2, z + 1/2 \) \([u, v, w]\)
11. \((11) y + 1/2, x + 1/2, z + 1/2 \) \([v, u, w]\)
12. \((12) y, x + 1/2, z + 1/2 \) \([v, u, w]\)
13. \((13) x + 1/2, y + 1/2, z + 1/2 \) \([u, v, w]\)
14. \((14) x, y + 1/2, z + 1/2 \) \([u, v, w]\)
15. \((15) y, x + 1/2, z + 1/2 \) \([u, v, w]\)
16. \((16) y, x, z \) \([v, u, w]\)
Symmetry of Special Projections

Along [0,0,1] p4g'm'
\(a^* = a\) \(b^* = b\)
Origin at 0,1/2,z

Along [1,0,0] c2m'm'
\(a^* = b\) \(b^* = c\)
Origin at x,0,0

Along [1,1,0] p2m'm'
\(a^* = (-a + b)/2\) \(b^* = c\)
Origin at x,x,0
Origin at $\bar{4}$m2/n, at -1/4,1/4,-1/4 from 1

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

(1) 1

(1) 0,0,0

(2) 2 0,0,z

(2) $z|0,0,0$

(3) 4+ (0,0,1/2) 0,1/2,z

(3) $4|z_1/2,1/2,1/2$

(4) 4+ (0,0,1/2) 1/2,0,z

(4) $4|z_1/2,1/2,1/2$

(5) 2 (0,1/2,0) 1/4,y,1/4

(5) $2|1/2,1/2,1/2$

(6) 2 (1/2,0,0) x,1/4,1/4

(6) $2_{xy}|0,0,0$

(7) 2 x,x,0

(7) $2_{xy}|0,0,0$

(8) 2 x,x,0

(8) $2_{xy}|0,0,0$

(9) $\bar{4}$ 1/4,1/4,1/4

(9) $1/2,1/2,1/2$

(10) n (1/2,1/2,0) x,y,1/4

(10) $m_{xy}|1/2,1/2,1/2$

(11) $\bar{4}|z_1/2,0,0$

(11) $\bar{4}|z_0,0,0$

(12) $\bar{4}$ 0,0,z; 0,0,0

(12) $\bar{4}|z_0,0,0$

(13) m x,z

(13) $m_{xy}|0,0,0$

(14) m 0,y,z

(14) $m_{xy}|0,0,0$

(15) c (0,0,1/2) x+1/2,x,z

(15) $m_{xy}|1/2,1/2,1/2$

(16) n (1/2,1/2,1/2) x,x,z

(16) $m_{xy}|1/2,1/2,1/2$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>h</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x+1/2,y+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14) x+1/2,y+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) x+1/2,y+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>.m.</td>
<td>0,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y+1/2,1/2,z+1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,y+1/2,z+1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,y+1/2,z+1/2 [0,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>.2</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x+1/2,z+1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,x+1/2,z+1/2 [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>e</td>
<td>1/4,1/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3/4,3/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4,3/4,3/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4,1/4,3/4 [v,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>2mm</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>2mm</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>4m2</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>4m2</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>4m'</td>
</tr>
<tr>
<td>[1,0,0]</td>
<td>p2mg1'</td>
</tr>
<tr>
<td>[1,1,0]</td>
<td>p2a</td>
</tr>
<tr>
<td>[0,0,1]</td>
<td>p2a</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,1/4,1/4
Origin at x,x,0
Origin at \(\overline{4} m2/n1' \), at \(-1/4,1/4,-1/4\) from \(\overline{1} 1' \)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4 \)

Symmetry Operations

For \(1 + \) set

\[
\begin{align*}
(1) & \quad 1 \\
(1 | 0,0,0) \\
(5) & \quad 2 \quad (0,1/2,0) \\
(2y | 1/2,1/2,1/2) \\
(9) & \quad \overline{1} \quad 1/4,1/4,1/4 \\
(1/2,1/2,1/2) \\
(13) & \quad m \quad x,0,z \\
(m | 0,0,0) \\
(2) & \quad 2 \quad 0,0,z \\
(2z | 0,0,0) \\
(6) & \quad 2 \quad (1/2,0,0) \\
(2x | 1/2,1/2,1/2) \\
(10) & \quad n \quad (1/2,1/2,0) \\
(x,y,1/4) \\
(3) & \quad 4^+ \quad (0,0,1/2) \\
(4_x | 1/2,1/2,1/2) \\
(4) & \quad 4^- \quad (0,0,1/2) \\
(4_z \overline{1} | 1/2,1/2,1/2) \\
(7) & \quad 2 \quad x,x,0 \\
(2_{xy} | 0,0,0) \\
(8) & \quad 2 \quad x,x,0 \\
(2_{xy} | 0,0,0) \\
(11) & \quad 4^+ \quad 0,0,z; \quad 0,0,0 \\
(4_z | 0,0,0) \\
(12) & \quad 4^- \quad 0,0,z; \quad 0,0,0 \\
(4_z \overline{1} | 0,0,0) \\
(14) & \quad m \quad 0,y,z \\
(m_y | 0,0,0) \\
(15) & \quad c \quad (0,0,1/2) \\
(x+1/2,\overline{x},z) \\
(3) & \quad 4^+ \quad (0,0,1/2) \\
(4_x | 1/2,1/2,1/2) \\
(16) & \quad n \quad (1/2,1/2,1/2) \\
(x,x,z) \\
(2_{xy} | 0,0,0)
\end{align*}
\]
Continued

<table>
<thead>
<tr>
<th>Generators selected</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coordinates</td>
</tr>
<tr>
<td></td>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
</tr>
</tbody>
</table>

For 1' + set

1. \(t'(1,0,0); t(0,1,0); t(0,0,1); \)
2. \(1'(2); (3); (5); (9); \)

Generators selected

- (1); \(t(1,0,0); t(0,1,0); t(0,0,1) \)
- (2); (3); (5); (9); 1'.

Positions

Coordinates

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 h 11'</td>
</tr>
<tr>
<td>(1) (x,y,z [0,0,0])</td>
</tr>
<tr>
<td>(2) (x,y,z [0,0,0])</td>
</tr>
<tr>
<td>(3) (\bar{y}+1/2,x+1/2,z+1/2 [0,0,0])</td>
</tr>
<tr>
<td>(4) (y+1/2,x+1/2,z+1/2 [0,0,0])</td>
</tr>
<tr>
<td>(5) (x+1/2,y+1/2,z+1/2 [0,0,0])</td>
</tr>
<tr>
<td>(6) (x+1/2,y+1/2,z+1/2 [0,0,0])</td>
</tr>
<tr>
<td>(7) (y,x,z [0,0,0])</td>
</tr>
<tr>
<td>(8) (y,x,z [0,0,0])</td>
</tr>
<tr>
<td>(9) (x+1/2,y+1/2,z+1/2 [0,0,0])</td>
</tr>
<tr>
<td>(10) (x+1/2,y+1/2,z+1/2 [0,0,0])</td>
</tr>
<tr>
<td>(11) (y,x,z [0,0,0])</td>
</tr>
<tr>
<td>(12) (y,x,z [0,0,0])</td>
</tr>
<tr>
<td>(13) (x,y,z [0,0,0])</td>
</tr>
<tr>
<td>(14) (x,y,z [0,0,0])</td>
</tr>
<tr>
<td>(15) (y+1/2,x+1/2,z+1/2 [0,0,0])</td>
</tr>
<tr>
<td>(16) (y+1/2,x+1/2,z+1/2 [0,0,0])</td>
</tr>
</tbody>
</table>

| 8 g .m.1' |
| 0,y,z [0,0,0] |
| 0,y,z [0,0,0] |
| \(\bar{y}+1/2,1/2,z+1/2 [0,0,0] \) |
| \(y+1/2,1/2,z+1/2 [0,0,0] \) |
| 1/2,y+1/2,z+1/2 [0,0,0] |
| 1/2,y+1/2,z+1/2 [0,0,0] |
| \(y,0,z [0,0,0] \) |
| \(y,0,z [0,0,0] \) |
| \(\bar{y},0,z [0,0,0] \) |
| \(\bar{y},0,z [0,0,0] \) |

| 8 f .21' |
| x,x,0 [0,0,0] |
| x,x,0 [0,0,0] |
| \(\bar{x}+1/2,x+1/2,1/2 [0,0,0] \) |
| \(x+1/2,\bar{x}+1/2,1/2 [0,0,0] \) |
| \(x+1/2,\bar{x}+1/2,1/2 [0,0,0] \) |
| \(x+1/2,\bar{x}+1/2,1/2 [0,0,0] \) |
| \(x,0 [0,0,0] \) |
| \(x,0 [0,0,0] \) |

| 8 e 11' |
| 1/4,1/4,1/4 [0,0,0] |
| 3/4,3/4,3/4 [0,0,0] |
| 1/4,3/4,3/4 [0,0,0] |
| 3/4,1/4,3/4 [0,0,0] |
| 1/4,3/4,3/4 [0,0,0] |
| 3/4,1/4,3/4 [0,0,0] |

| 4 d 2mm.1' |
| 0,1/2,z [0,0,0] |
| 0,1/2,z+1/2 [0,0,0] |
| 1/2,0,z+1/2 [0,0,0] |
| 1/2,0,z+1/2 [0,0,0] |

| 4 c 2mm.1' |
| 0,0,z [0,0,0] |
| 1/2,1/2,z+1/2 [0,0,0] |
| 1/2,1/2,z+1/2 [0,0,0] |
| 0,0,z [0,0,0] |

| 2 b 4m21' |
| 0,0,1/2 [0,0,0] |
| 1/2,1/2,0 [0,0,0] |
| 137.2.1162 - 2 - 2444 |
Continued

Symmetry of Special Projections

Along [0,0,1] p4mm1'
\[a^* = \frac{a - b}{2}, \ b^* = \frac{a + b}{2} \]
Origin at 0,0,z

Along [1,0,0] p2mg1'
\[a^* = b, \ b^* = c \]
Origin at x,1/4,1/4

Along [1,1,0] p2mm1'
\[a^* = \frac{-a + b}{2}, \ b^* = \frac{c}{2} \]
Origin at x,x,0

2 a 4m21' 0,0,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]
Origin at $\overline{4}m2'/n$, at -1/4,1/4,-1/4 from 1'.

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

1. 1
 - $(1|0,0,0)$

2. $2' \ 0,0,z$
 - $(2_x|0,0,0)$

3. $4' (0,0,1/2) \ 0,1/2,z$
 - $(4_z|1/2,1/2,1/2)$

4. $4' (0,0,1/2) \ 1/2,0,z$
 - $(4_z^{-1}|1/2,1/2,1/2)$

5. $2' (0,1/2,0) \ 1/4,y,1/4$
 - $(2_z|1/2,1/2,1/2)'$

6. $2' (1/2,0,0) \ x,1/4,1/4$
 - $(2_y|0,0,0)'$

7. $2' \ x,x,0$
 - $(2_{xy}|0,0,0)'$

8. $2' \ x,x,0$
 - $(2_{xy}|0,0,0)'$

9. $\overline{1} \ 1/4,1/4,1/4$
 - $(\overline{1}|1/2,1/2,1/2)'$

10. $n' (1/2,1/2,0) \ x,y,1/4$
 - $(m_z|1/2,1/2,1/2)'$

11. $\overline{4} \ 0,0,z; \ 0,0,0$
 - $(\overline{4}_z|0,0,0)'$

12. $\overline{4} \ 0,0,z; \ 0,0,0$
 - $(\overline{4}_z^{-1}|0,0,0)'$

13. $m \ x,0,z$
 - $(m_{xy}|0,0,0)$

14. $m \ 0,y,z$
 - $(m_{xy}|0,0,0)$

15. $c (0,0,1/2) \ x+1/2,x,z$
 - $(m_{xy}|1/2,1/2,1/2)$

16. $n (1/2,1/2,1/2) \ x,x,z$
 - $(m_{xy}|1/2,1/2,1/2)$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>h</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>.m.</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>..2'</td>
</tr>
<tr>
<td>8</td>
<td>e</td>
<td>1'</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>2mm.</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>2mm.</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4'm2'</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4'm2'</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) x,y,z [u,v,w]</th>
<th>(3) y+1/2,x+1/2,z+1/2 [u,v,w]</th>
<th>(4) y+1/2,x+1/2,z+1/2 [u,v,w]</th>
<th>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</th>
<th>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</th>
<th>(7) y,x,z [u,v,w]</th>
<th>(8) y,x,z [u,v,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,y,z [u,0,0]</td>
<td>1/2,y,z+1/2 [0,0,0]</td>
<td>1/2,y+1/2,z+1/2 [0,0,0]</td>
<td>0,y,z [0,0,0]</td>
<td>0,y,z [0,0,0]</td>
<td>0,y,z [0,0,0]</td>
<td>0,y,z [0,0,0]</td>
<td>0,y,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p4mm</th>
<th>Along [1,0,0] p2mg1'</th>
<th>Along [1,1,0] p2a 2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (a - b)/2</td>
<td>a* = b</td>
<td>a* = -c/2</td>
</tr>
<tr>
<td>b* = (a + b)/2</td>
<td>b* = c</td>
<td>b* = (-a + b)/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z

Origin at x,1/4,1/4

Origin at x,x,0
Origin at $\bar{4}m'n$, at $-1/4,1/4,-1/4$ from $\bar{1}$

Asymmetric unit $\quad 0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

(1) 1
 (1 0 0, 0, 0)

(2) 2 0, 0, z
 (2z 0, 0, 0)

(3) $4^+ \cdot (0,0,1/2) \quad 0,1/2,z$
 ($4_z 1/2,1/2,1/2'$)

(4) $4^- \cdot (0,0,1/2) \quad 1/2,0,z$
 ($4_{z^-} 1/2,1/2,1/2'$)

(5) $2' \cdot (0,1/2,0) \quad 1/4, y, 1/4$
 ($2_y 1/2,1/2,1/2'$)

(6) $2' \cdot (1/2,0,0) \quad x, 1/4, 1/4$
 ($2_{xy} 0, 0, 0$)

(7) $2 \cdot x, x, 0$
 ($2_{xy} 0, 0, 0$)

(8) $2 \cdot x, x, 0$
 ($2_{xy} 0, 0, 0$)

(9) $\bar{1} \cdot 1/4,1/4,1/4$
 ($\bar{1} 1/2,1/2,1/2$)

(10) n (1/2,1/2,0) \quad x, y, 1/4
 (m_{xy} 1/2,1/2,1/2)

(11) $\overline{4}^+ \cdot 0,0,z; 0,0,0$
 ($\overline{4}_z 0,0,0$)

(12) $\overline{4}^- \cdot 0,0,z; 0,0,0$
 ($\overline{4}_{z^-} 0,0,0$)

(13) $m' \cdot x, 0, z$
 (m_{x} 0, 0, 0)

(14) $m' \cdot 0, y, z$
 (m_{y} 0, 0, 0)

(15) $c \cdot (0,0,1/2) \quad x+1/2, x, z$
 ($m_{xy} 1/2,1/2,1/2$)

(16) n (1/2,1/2,1/2) \quad x, x, z
 ($m_{xy} 1/2,1/2,1/2$)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 h 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [v,u,w] (3) y+1/2,x+1/2,z+1/2 [v,u,w] (4) y+1/2,x+1/2,z+1/2 [v,u,w] (5) x+1/2,y+1/2,z+1/2 [u,v,w] (6) x+1/2,y+1/2,z+1/2 [u,v,w] (7) y+1/2,x+1/2,z+1/2 [v,u,w] (8) y+1/2,x+1/2,z+1/2 [v,u,w] (9) y+1/2,x+1/2,z+1/2 [v,u,w] (10) y+1/2,x+1/2,z+1/2 [v,u,w] (11) y+1/2,x+1/2,z+1/2 [v,u,w] (12) y+1/2,x+1/2,z+1/2 [v,u,w] (13) y+1/2,x+1/2,z+1/2 [v,u,w] (14) y+1/2,x+1/2,z+1/2 [v,u,w] (15) y+1/2,x+1/2,z+1/2 [v,u,w] (16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_0, 4m'm'
along [1,0,0] p_2'm'g
along [1,1,0] p_2a, 2m'm'

a^* = (a - b)/2
b^* = (a + b)/2
Origin at $\overline{4}m2'n'$, at $-\frac{1}{4},\frac{1}{4},-\frac{1}{4}$ from $\overline{1}$

Asymmetric unit

$0 \leq x \leq \frac{1}{2}$; $0 \leq y \leq \frac{1}{2}$; $0 \leq z \leq \frac{1}{4}$

Symmetry Operations

1. $(1) \ 1$

2. $(2) \ 2 \ 0,0,z$

3. $(3) \ 4' \cdot (0,0,1/2) \ 0,1/2,z$

4. $(4) \ 4' \cdot (0,0,1/2) \ 1/2,0,z$

5. $(5) \ 2 \ (0,1/2,0) \ 0,0,0$

6. $(6) \ 2 \ (1/2,0,0) \ x,1/4,1/4$

7. $(7) \ 2' \ x,x,0$

8. $(8) \ 2' \ x,x,0$

9. $(9) \ \overline{1} \ 1/4,1/4,1/4$

10. $(10) \ n \ (1/2,1/2,0) \ x,y,1/4$

11. $(11) \ 4 \cdot \ 0,0,z; 0,0,0$

12. $(12) \ 4 \cdot \ 0,0,z; 0,0,0$

13. $(13) \ m \ x,0,z$

14. $(14) \ m \ 0,y,z$

15. $(15) \ c' \ (0,0,1/2) \ x+1/2,x,z$

16. $(16) \ n' \ (1/2,1/2,1/2) \ x,x,z$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 h 1</td>
<td>(1) x,y,z [u,v,w] (2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w] (4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w] (6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w] (8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) y+1/2,x+1/2,z+1/2 [u,v,w] (10) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(11) y,x,z [v,u,w] (12) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z [u,v,w] (14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) y+1/2,x+1/2,z+1/2 [v,u,w] (16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8 g .m.</td>
<td>0,y,z [u,0,0] 0,y,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>y+1/2,1/2,z+1/2 [0,u,0] y+1/2,1/2,z+1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,y+1/2,z+1/2 [u,0,0] 1/2,y+1/2,z+1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>y,0,z [0,u,0] y,0,z [0,u,0]</td>
</tr>
<tr>
<td>8 f .2'</td>
<td>x,x,0 [u,u,w] x,x,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/2 [u,u,w] x+1/2,x+1/2,1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>y+1/2,x+1/2,1/2 [u,u,w] y+1/2,x+1/2,1/2 [u,u,w]</td>
</tr>
<tr>
<td>8 e .1</td>
<td>1/4,1/4,1/4 [u,v,w] 3/4,3/4,1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,3/4 [v,u,w] 3/4,1/4,3/4 [v,u,w]</td>
</tr>
<tr>
<td>4 d 2mm.</td>
<td>0,1/2,z [0,0,0] 0,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z+1/2 [0,0,0] 1/2,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 c 2mm.</td>
<td>0,0,z [0,0,0] 1/2,1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,0] 0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 b 4'm2'</td>
<td>0,0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 a 4'm2'</td>
<td>0,0,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_o, 4mm
\(a^* = (a - b)/2 \quad b^* = (a + b)/2\):
Along [1,0,0] p2mg1'
\(a^* = b \quad b^* = c\):
Along [1,1,0] p2mm'
\(a^* = -c/2 \quad b^* = (-a + b)/2\):
Origin at 0,0,z
Origin at x,1/4,1/4
Origin at x,x,0
Origin at $\overline{4}m'2'n$, at $-1/4,1/4,-1/4$ from $\overline{1}'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

(1) 1
(1) $0,0,0$

(5) 2 (0.1,2,0) $1/4,y,1/4$
(2, $1/2,1/2,1/2$

(9) $\overline{1} 1/4,1/4,1/4$
(1 $1/2,1/2,1/2'$

(13) m $x,0,z$
(m $0,0,0'$

(2) 2 0,0,z
(2 $z,0,0,0$

(6) 2 (1/2,0,0) $x,1/4,1/4$
(2 $x,1/2,1/2,1/2$

(10) n' (1/2,1/2,0) $x,y,1/4$
(m $1/2,1/2,1/2'$

(14) m' $0,y,z$
(m $0,0,0'$

(3) $4' \cdot (0,0,1/2) 0,1/2,z$
($4',1/2,1/2,1/2'$

(4) $4' \cdot (0,0,1/2) 1/2,0,z$
($4',1/2,1/2,1/2'$

(7) 2' $x,x,0$
($2',0,0,0$

(8) 2' $x,x,0$
($2',0,0,0'$

(11) $\overline{4} \cdot 0,0,z; 0,0,0$
($\overline{4},0,0,0$

(12) $\overline{4} \cdot 0,0,z; 0,0,0$
($\overline{4},0,0,0'$

(15) c (0.0,1/2) $x+1/2,x,z$
(m $1/2,1/2,1/2$

(16) n (1/2,1/2,1/2) x,x,z
(m $1/2,1/2,1/2$

P4$_2'/n'm'c$

137.6.1166

$4'/m'm'm$

P4$_2'/n'm'2'/c$

137.6.1166 - 1 - 2452
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 h 1 (1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(9) x+1/2,y+1/2,z+1/2 [v,u,w]</td>
<td>(10) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(11) y,x,z [v,u,w]</td>
<td>(12) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(13) x,y,z [u,v,w]</td>
<td>(14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8 g .m'. 0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>1/2,y+1/2,z+1/2 [0,v,w]</td>
<td>1/2,y+1/2,z+1/2 [0,v,w]</td>
</tr>
<tr>
<td>(11) y,x,z [v,u,w]</td>
<td>(12) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(13) x,y,z [u,v,w]</td>
<td>(14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8 f .2' x,x,0 [u,u,w]</td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td>x+1/2,x+1/2,1/2 [u,u,w]</td>
<td>x+1/2,x+1/2,1/2 [u,u,w]</td>
</tr>
<tr>
<td>x+1/2,x+1/2,1/2 [u,u,w]</td>
<td>x+1/2,x+1/2,1/2 [u,u,w]</td>
</tr>
<tr>
<td>x+1/2,x+1/2,1/2 [u,u,w]</td>
<td>x+1/2,x+1/2,1/2 [u,u,w]</td>
</tr>
<tr>
<td>8 e 1' 1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>1/4,3/4,1/4 [0,0,0]</td>
<td>1/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4 d 2m'm'. 0,1/2,z [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>1/2,0,z+1/2 [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 c 2m'm'. 0,0,z [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 b 4m'2' 0,0,1/2 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>2 a 4m'2' 0,0,0 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p4' mm'
 \(\mathbf{a}' = (\mathbf{a} - \mathbf{b})/2 \)
 \(\mathbf{b}' = (\mathbf{a} + \mathbf{b})/2 \)
 Origin at 0,0,z

- Along [1,0,0] p2m'g'
 \(\mathbf{a}' = \mathbf{b} \)
 \(\mathbf{b}' = \mathbf{c} \)
 Origin at x,1/4,1/4

- Along [1,1,0] p_{2a} 2m'm'
 \(\mathbf{a}' = -c/2 \)
 \(\mathbf{b}' = -(\mathbf{a} + \mathbf{b})/2 \)
 Origin at x,x,0
Origin at $\bar{4}m'2'/n'$, at $-1/4,1/4,-1/4$ from $\bar{1}$

Asymmetric unit

$0 \leq x < 1/2; \quad 0 \leq y < 1/2; \quad 0 \leq z < 1/4$

Symmetry Operations

(1) 1

(1) $\bar{1}$

(5) $2' (0,1/2,0) \quad 1/4,y,1/4$

(2) $2' (1/2,0,0) \quad x,1/4,1/4$

(2) $2' (1/2,0,0) \quad x,1/4,1/4$

(9) $\bar{1} 1/4,1/4,1/4$

(10) $n (1/2,1/2,0) \quad x,y,1/4$

(10) $n (1/2,1/2,0) \quad x,y,1/4$

(13) $m' \quad x,0,z$

(14) $m' \quad 0,y,z$

(15) $c' (0,0,1/2) \quad x+1/2,x,z$

(16) $n' (1/2,1/2,1/2) \quad x,x,z$

(1) 1

(1) $\bar{1}$

(5) $2' (0,1/2,0) \quad 1/4,y,1/4$

(2) $2' (1/2,0,0) \quad x,1/4,1/4$

(2) $2' (1/2,0,0) \quad x,1/4,1/4$

(9) $\bar{1} 1/4,1/4,1/4$

(10) $n (1/2,1/2,0) \quad x,y,1/4$

(10) $n (1/2,1/2,0) \quad x,y,1/4$

(13) $m' \quad x,0,z$

(14) $m' \quad 0,y,z$

(15) $c' (0,0,1/2) \quad x+1/2,x,z$

(16) $n' (1/2,1/2,1/2) \quad x,x,z$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 h 1</td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x',y',z [u',v',w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y' + 1/2, x + 1/2, z + 1/2 [u,v,w]</td>
<td>(4) y + 1/2, x + 1/2, z + 1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x' + 1/2, y + 1/2, z + 1/2 [u,v,w]</td>
<td>(6) x + 1/2, y' + 1/2, z + 1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y, x, z [u,v,w]</td>
<td>(8) y, x, z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x, y, z [u,v,w]</td>
<td>(10) x + 1/2, y + 1/2, z + 1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) y, x, z [v,u,w]</td>
<td>(12) y, x, z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x, y, z [u,v,w]</td>
<td>(14) x, y, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) y + 1/2, x + 1/2, z + 1/2 [v,u,w]</td>
<td>(16) y + 1/2, x + 1/2, z + 1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

8 g .m'. | 0, y, z [0, v, w] | 0, y, z [0, v, w] | y + 1/2, 1/2, z + 1/2 [v, 0, w] | y + 1/2, 1/2, z + 1/2 [v, 0, w] |
| | 1/2, y + 1/2, z + 1/2 [0, v, w] | 1/2, y + 1/2, z + 1/2 [0, v, w] | y, 0, z [v, 0, w] | y, 0, z [v, 0, w] |

8 f .2' | x, x, 0 [u, u, w] | x, x, 0 [u, u, w] | x + 1/2, x + 1/2, 1/2 [u, u, w] | x + 1/2, x + 1/2, 1/2 [u, u, w] |
| | x + 1/2, x + 1/2, 1/2 [u, u, w] | x + 1/2, x + 1/2, 1/2 [u, u, w] | x, x, 0 [u, u, w] | x, x, 0 [u, u, w] |

4 d 2m' m' | 0, 1/2, z [0, 0, w] | 0, 1/2, z + 1/2 [0, 0, w] | 1/2, 0, z + 1/2 [0, 0, w] | 1/2, 0, z [0, 0, w] |

4 c 2m' m' | 0, 0, z [0, 0, w] | 1/2, 1/2, z + 1/2 [0, 0, w] | 1/2, 1/2, z + 1/2 [0, 0, w] | 0, 0, z [0, 0, w] |

2 b 4m' 2' | 0, 0, 1/2 [0, 0, w] | 1/2, 1/2, 0 [0, 0, w] | 1/2, 1/2, 0 [0, 0, w] | 0, 0, z [0, 0, w] |

2 a 4m' 2' | 0, 0, 0 [0, 0, w] | 1/2, 1/2, 1/2 [0, 0, w] | 1/2, 1/2, 1/2 [0, 0, w] | 0, 0, z [0, 0, w] |

Symmetry of Special Projections

Along [0,0,1] p_c 4m' m'

\[\mathbf{a}^* = (\mathbf{a} - \mathbf{b})/2 \quad \mathbf{b}^* = (\mathbf{a} + \mathbf{b})/2 \]

Origin at 0, 1/2, z

Along [1,0,0] p2'm' g

\[\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c} \]

Origin at x, 1/4, 1/4

Along [1,1,0] p2' mm' g

\[\mathbf{a}^* = -\mathbf{c}/2 \quad \mathbf{b}^* = (-\mathbf{a} + \mathbf{b})/2 \]

Origin at x, x, 0
Origin at $\bar{4}m2/n'$, at $-1/4,1/4,-1/4$ from $\bar{1}'$.

Asymmetric unit

$0 \leq x \leq 1/2$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1/4$

Symmetry Operations

1. 1

 Origin

2. $2' (0,0,0)$

 $x,0,0$ (2 $z,0,0$)

3. $4' (0,0,1/2) 0,1/2,z$

 $4 (z_1,1/2,1,1/2')$ ($2,0,0$)

4. $4' (0,0,1/2) 1/2,0,z$

 $4 (1/2,1/2,1/2')$ ($2,1/2,1/2')$

5. $2' (1/2,0,0) x,1/4,1/4$

 $2 (2,1/2,1/2')$

6. $2' (1/2,0,0) x,1/4,1/4$

 $2 (2,1/2,1/2')$

7. $x,x,0$

 $2 (2,0,0)$

8. $x,x,0$

 $2 (2,0,0)$

9. $1/4,1/4,1/4$

 $1/4,1/4,1/4$

10. $1/2,1/2,1/2'$

 $1/2,1/2,1/2'$

11. $0,0,0$

 $0,0,0$

12. $0,0,0$

 $0,0,0$

13. $x,0,z$

 $2 (m,0,0)$

14. $0,y,z$

 $2 (m,0,0)$

15. $0,0,1/2$ x+1/2, x, z

 $0,0,1/2$ x+1/2, x, z

16. $1/2,1/2,1/2$

 $1/2,1/2,1/2'$

137.8.1168 - 1 - 2456
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>16 h 1</td>
<td>(1) x, y, z [u, v, w] (2) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(3) y + 1/2, x + 1/2, z + 1/2 [v, u, w] (4) y + 1/2, x + 1/2, z + 1/2 [v, u, w]</td>
</tr>
<tr>
<td></td>
<td>(5) x + 1/2, y + 1/2, z + 1/2 [u, v, w] (6) x + 1/2, y + 1/2, z + 1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(7) y, x, z [v, u, w] (8) y, x, z [v, u, w]</td>
</tr>
<tr>
<td></td>
<td>(9) y + 1/2, x + 1/2, z + 1/2 [v, u, w] (10) x + 1/2, y + 1/2, z + 1/2 [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(11) y, x, z [v, u, w] (12) y, x, z [v, u, w]</td>
</tr>
<tr>
<td></td>
<td>(13) x, y, z [u, v, w] (14) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(15) y + 1/2, x + 1/2, z + 1/2 [v, u, w] (16) y + 1/2, x + 1/2, z + 1/2 [v, u, w]</td>
</tr>
<tr>
<td>8 g .m.</td>
<td>0, y, z [u, 0, 0] 0, y, z [u, 0, 0] y + 1/2, x + 1/2, z + 1/2 [0, u, 0] y + 1/2, x + 1/2, z + 1/2 [0, u, 0]</td>
</tr>
<tr>
<td></td>
<td>1/2, y + 1/2, z + 1/2 [u, 0, 0] 1/2, y + 1/2, z + 1/2 [u, 0, 0] y, z [0, u, 0] y, z [0, u, 0]</td>
</tr>
<tr>
<td>8 f .2</td>
<td>x, x, 0 [u, u, 0] x, x, 0 [u, u, 0] x + 1/2, x + 1/2, 1/2 [u, u, 0] x + 1/2, x + 1/2, 1/2 [u, u, 0]</td>
</tr>
<tr>
<td></td>
<td>x + 1/2, x + 1/2, 1/2 [u, u, 0] x + 1/2, x + 1/2, 1/2 [u, u, 0] x, x, 0 [u, u, 0] x, x, 0 [u, u, 0]</td>
</tr>
<tr>
<td>8 e 1'</td>
<td>1/4, 1/4, 1/4 [0, 0, 0] 3/4, 3/4, 1/4 [0, 0, 0] 1/4, 3/4, 3/4 [0, 0, 0] 3/4, 1/4, 3/4 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td>1/4, 3/4, 1/4 [0, 0, 0] 3/4, 1/4, 3/4 [0, 0, 0] 1/4, 1/4, 3/4 [0, 0, 0] 3/4, 3/4, 3/4 [0, 0, 0]</td>
</tr>
<tr>
<td>4 d 2mm.</td>
<td>0, 1/2, z [0, 0, 0] 0, 1/2, z + 1/2 [0, 0, 0] 1/2, 0, z + 1/2 [0, 0, 0] 1/2, 0, z + 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td>1/2, 1/2, z + 1/2 [0, 0, 0] 1/2, 1/2, z + 1/2 [0, 0, 0] 0, 0, z [0, 0, 0] 0, 0, z [0, 0, 0]</td>
</tr>
<tr>
<td>2 b 4mm</td>
<td>0, 0, 1/2 [0, 0, 0] 1/2, 1/2, 0 [0, 0, 0]</td>
</tr>
<tr>
<td>2 a 4mm</td>
<td>0, 0, 0 [0, 0, 0] 1/2, 1/2, 1/2 [0, 0, 0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections
Along [0,0,1] p4'm'm
along [1,0,0] p2mg1'
along [1,1,0] p2'2mm'
a* = (a - b)/2 b* = (a + b)/2
Origin at 0,0,z

Along [1,0,0] p2mg1'
a* = b b* = c
Origin at x,1/4,1/4

Along [1,1,0] p2'2mm'
a* = -c/2 b* = (-a + b)/2
Origin at x,x,0
Origin at $\overline{4}m'2/n'$, at $-1/4,1/4,-1/4$ from $1'$

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4$

Symmetry Operations

(1) 1
(1') 0,0,0

(2) 2 0,0,z
(2_z) 0,0,0

(3) 4^+ (0,0,1/2) 0,1/2,z
(4_z) 1/2,1/2,1/2

(4) 4^- (0,0,1/2) 1/2,0,z
(4_z^-1) 1/2,1/2,1/2

(5) 2 (0,1/2,0) 1/4,y,1/4
(2_y) 1/2,1/2,1/2

(6) 2 (1/2,0,0) x,1/4,1/4
(2_x) 1/2,1/2,1/2

(7) 2 x,x,0
(2_x) 0,0,0

(8) 2 x,x,0
(2_x) 0,0,0

(9) $\overline{1}$ 1/4,1/4,1/4
(1') 1/2,1/2,1/2

(10) n' (1/2,1/2,0) x,y,1/4
(m_z) 1/2,1/2,1/2

(11) $\overline{4}^+$ 0,0,z; 0,0,0
(4_z) 0,0,0

(12) $\overline{4}^-$ 0,0,z; 0,0,0
(4_z^-1) 0,0,0

(13) m' x,0,z
(m_z) 0,0,0

(14) m' 0,y,z
(m_y) 0,0,0

(15) c' (0,0,1/2) x+1/2,z
(m_{xy}) 1/2,1/2,1/2

(16) n' (1/2,1/2,1/2) x,x,z
(m_{xy}) 1/2,1/2,1/2
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Wyckoff letter</th>
<th>Position</th>
<th>Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>h</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y + 1/2, x + 1/2, z + 1/2 [v,u,w]</td>
<td>(4) y + 1/2, x + 1/2, z + 1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x + 1/2, y + 1/2, z + 1/2 [u,v,w]</td>
<td>(6) x + 1/2, y + 1/2, z + 1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x + 1/2, y + 1/2, z + 1/2 [u,v,w]</td>
<td>(10) x + 1/2, y + 1/2, z + 1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) y,x,z [v,u,w]</td>
<td>(12) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
<td>(14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) y + 1/2, x + 1/2, z + 1/2 [v,u,w]</td>
<td>(16) y + 1/2, x + 1/2, z + 1/2 [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y + 1/2, 1/2, z + 1/2 [v,0,w]</td>
<td>y + 1/2, 1/2, z + 1/2 [v,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2, y + 1/2, z + 1/2 [0,v,w]</td>
<td>1/2, y + 1/2, z + 1/2 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,y, z [0,v,w]</td>
<td>0,y, z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y, 0, z [v,0,w]</td>
<td>y, 0, z [v,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x + 1/2, x + 1/2, 1/2 [u,u,0]</td>
<td>x + 1/2, x + 1/2, 1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x + 1/2, x + 1/2, 1/2 [u,u,0]</td>
<td>x + 1/2, x + 1/2, 1/2 [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>e</td>
<td>1/4, 1/4, 1/4 [0,0,0]</td>
<td>3/4, 3/4, 1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4, 1/4, 1/4 [0,0,0]</td>
<td>3/4, 1/4, 3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4, 1/4, 1/4 [0,0,0]</td>
<td>3/4, 1/4, 3/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>0,1/2, z [0,0,w]</td>
<td>0,1/2, z + 1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2, 0, z + 1/2 [0,0,w]</td>
<td>1/2, 0, z + 1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>0,0, z [0,0,w]</td>
<td>1/2, 1/2, z + 1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2, 1/2, z + 1/2 [0,0,w]</td>
<td>1/2, 1/2, z + 1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>0,0, 1/2 [0,0,0]</td>
<td>1/2, 1/2, 0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>0,0, 0 [0,0,0]</td>
<td>1/2, 1/2, 1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p4m’m’</th>
<th>Along [1,0,0] p2m’g’</th>
<th>Along [1,1,0] p2m’m’</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (a - b)/2</td>
<td>a* = b</td>
<td>a* = (-a + b)/2</td>
</tr>
<tr>
<td>b* = (a + b)/2</td>
<td>b* = c</td>
<td>b* = c/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,1/4,1/4
Origin at x,x,0
Origin at $\overline{4}cg$, at $-1/4,1/4,-1/4$ from center (2/m)

Asymmetric unit

\[
0 \leq x < 1/4; \quad 0 \leq y < 1/2; \quad 0 \leq z < 1; \quad x < y; \quad y < 1/2 - x
\]

Symmetry Operations

1. 1

2. $2 \cdot 0,0,z$

3. $4^+ (0,0,1/2) 0,1/2,z$

4. $4^- (0,0,1/2) 1/2,0,z$

5. $2 \cdot (0,1/2,0) 1/4,y,0$

6. $2 \cdot (1/2,0,0) x,1/4,0$

7. $2 \cdot x,x,1/4$

8. $2 \cdot x,x,1/4$

9. $\overline{1} \cdot 1/4,1/4,1/4$

10. $n \cdot (1/2,1/2,0) x,y,1/4$

11. $\overline{4}^+ 0,0,z; 0,0,0$

12. $\overline{4}^- 0,0,z; 0,0,0$

13. $c \cdot (0,0,1/2) x,0,z$

14. $c \cdot (0,0,1/2) 0,y,z$

15. $m \cdot x+1/2,x,z$

16. $g \cdot (1/2,1/2,0) x,x,z$

P4$_2$/nmc

4/mmm

Tetragonal

138.1.1170
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>j</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) x̅,y̅,z̅ [u̅,v̅,w̅]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) y̅+1/2,x+1/2,z+1/2 [v̅,u̅,w̅]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) x̅+1/2,y+1/2,z̅ [u̅,v̅,w̅]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6) x+1/2,y̅,z̅ [u,v̅,w̅]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) y,x̅+1/2,x+1/2,z+1/2 [v,u̅,w̅]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8) y̅,x+1/2,z̅ [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
<td>..m</td>
<td>(1) x̅,y+1/2,x+1/2,z [u̅,v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) x̅,y̅,z [u̅,v̅,w̅]</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>..2</td>
<td>(1) x̅,y+1/2,x+1/2,z [u̅,v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) x̅,x+1/2,z [u̅,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>..2</td>
<td>(1) x̅,y+1/2,x+1/2,z [u̅,v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) x̅,x,1/4 [u̅,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>2..</td>
<td>(1) x̅,y+1/2,x+1/2,z [u̅,v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) x̅,y+1/2,x+1/2,z [u̅,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>2.mm</td>
<td>(1) x̅,y+1/2,x+1/2,z [u̅,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) x̅,y+1/2,x+1/2,z [u̅,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>..2/m</td>
<td>(1) x̅,y+1/2,x+1/2,z [u̅,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>..2/m</td>
<td>(1) x̅,y+1/2,x+1/2,z [u̅,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>4..</td>
<td>(1) x̅,y+1/2,x+1/2,z [u̅,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>2.22</td>
<td>(1) x̅,y+1/2,x+1/2,z [u̅,0,0]</td>
</tr>
</tbody>
</table>

138.1.1170 - 2 - 2461
Symmetry of Special Projections

Along [0,0,1] \(p_{4m} \) 4mm
\[a^* = \frac{(a - b)}{2} \quad b^* = \frac{(a + b)}{2} \]
Origin at 0,0,z

Along [1,0,0] \(p_{2m1} \) 2m'g'
\[a^* = b \quad b^* = \frac{c}{2} \]
Origin at x,1/4,0

Along [1,1,0] \(p_{2mm1} \)
\[a^* = \frac{-a + b}{2} \quad b^* = c \]
Origin at x,x,1/4
Origin at \(\overline{4} \)c1', at \(-1/4,1/4,-1/4\) from center (2/m1')

Asymmetric unit

\[
0 < x < 1/4; \quad 0 < y < 1/2; \quad 0 < z < 1; \quad x < y; \quad y < 1/2 - x
\]

Symmetry Operations

For 1 + set

1. \[(1) \quad 1 \quad (1|0,0,0)\]
2. \[(2) \quad 2 \quad 0,0,z \quad (2z|0,0,0)\]
3. \[(3) \quad 4^+ \quad (0,0,1/2) \quad 0,1/2,z \quad (4_z|1/2,1/2,1/2)\]
4. \[(4) \quad 4^- \quad (0,0,1/2) \quad 1/2,0,z \quad (4_z^-|1/2,1/2,1/2)\]
5. \[(5) \quad 2 \quad (0,1/2,0) \quad 1/4,y,0 \quad (2_y|1/2,1/2,0)\]
6. \[(6) \quad 2 \quad (1/2,0,0) \quad x,1/4,0 \quad (2_x|1/2,1/2,0)\]
7. \[(7) \quad 2 \quad x,x,1/4 \quad (2_{xy}|0,0,1/2)\]
8. \[(8) \quad 2 \quad x,x,1/4 \quad (2_{xy}|0,0,1/2)\]
9. \[(9) \quad \overline{1} \quad 1/4,1/4,1/4 \quad (1\overline{1}|1/2,1/2,1/2)\]
10. \[(10) \quad n \quad (1/2,1/2,0) \quad x,y,1/4 \quad (m_z|1/2,1/2,1/2)\]
11. \[(11) \quad 4^+ \quad 0,0,z; \quad 0,0,0 \quad (4_z|0,0,0)\]
12. \[(12) \quad 4^- \quad 0,0,z; \quad 0,0,0 \quad (4_z^-|0,0,0)\]
13. \[(13) \quad c \quad (0,0,1/2) \quad x,0,z \quad (m|0,0,1/2)\]
14. \[(14) \quad c \quad (0,0,1/2) \quad 0,y,z \quad (m_y|0,0,1/2)\]
15. \[(15) \quad m \quad x+1/2,\overline{x},z \quad (4_{xy}|1/2,1/2,0)\]
16. \[(16) \quad g \quad (1/2,1/2,0) \quad x,x,z \quad (m_{xy}|1/2,1/2,0)\]
For 1' + set

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [0,0,0]</td>
<td>(4) y+1/2,x+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [0,0,0]</td>
<td>(6) x+1/2,y+1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [0,0,0]</td>
<td>(8) y,x,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(9) x+1/2,y+1/2,z+1/2 [0,0,0]</td>
<td>(10) x+1/2,y+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(11) y,x,z [0,0,0]</td>
<td>(12) y,x,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z+1/2 [0,0,0]</td>
<td>(14) x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(15) y+1/2,x+1/2,z [0,0,0]</td>
<td>(16) y+1/2,x+1/2,z [0,0,0]</td>
</tr>
</tbody>
</table>

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9); 1'.

Positions

Multiplicity
Wyckoff letter
Site Symmetry

1 +

16 j 11'

(1) x,y,z [0,0,0]
(2) x,y,z [0,0,0]
(3) y+1/2,x+1/2,z+1/2 [0,0,0]
(4) y+1/2,x+1/2,z+1/2 [0,0,0]
(5) x+1/2,y+1/2,z [0,0,0]
(6) x+1/2,y+1/2,z [0,0,0]
(7) y,x,z+1/2 [0,0,0]
(8) y,x,z+1/2 [0,0,0]
(9) x+1/2,y+1/2,z+1/2 [0,0,0]
(10) x+1/2,y+1/2,z+1/2 [0,0,0]
(11) y,x,z [0,0,0]
(12) y,x,z [0,0,0]
(13) x,y,z+1/2 [0,0,0]
(14) x,y,z+1/2 [0,0,0]
(15) y+1/2,x+1/2,z [0,0,0]
(16) y+1/2,x+1/2,z [0,0,0]
<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>d</td>
<td>.2/m1'</td>
<td>1/4,1/4,3/4 [0,0,0]</td>
<td>3/4,3/4,3/4 [0,0,0]</td>
<td>1/4,3/4,1/4 [0,0,0]</td>
<td>3/4,1/4,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>.2/m1'</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,1/4 [0,0,0]</td>
<td>1/4,3/4,3/4 [0,0,0]</td>
<td>3/4,1/4,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>4..1'</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>2.221'</td>
<td>0,0,1/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
<td>1/2,1/2,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1'

- $a^* = (a - b)/2$
- $b^* = (a + b)/2$

Origin at 0,0,z

Along [1,0,0] p2mg1'

- $a^* = b$
- $b^* = c/2$

Origin at x,1/4,0

Along [1,1,0] p2mm1'

- $a^* = (-a + b)/2$
- $b^* = c$

Origin at x,x,1/4
Origin at $4\bar{4}cg$, at $-1/4,1/4,-1/4$ from center (2/m)

Asymmetric unit

$0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y; \quad y \leq 1/2 - x$

Symmetry Operations

(1) 1
(1 0 0)

(5) 2 (0,1/2,0) 1/4,y,0
(2x | 1/2,1/2,0)

(9) $\bar{1}$ 1/4,1/4,1/4
(1 1/2,1/2,1/2)

(13) c (0,0,1/2) x,0,z
(my | 0,0,1/2)

(2) 2 0,0,z
(2x | 0,0,0)

(6) 2' (1/2,0,0) x,1/4,0
(2x | 1/2,1/2,0)

(10) n' (1/2,1/2,0) x,y,1/4
(mz | 1/2,1/2,1/2)

(3) 4' (0,0,1/2) 0,1/2,z
(4x | 1/2,1/2,1/2)

(7) 2' x,x,1/4
(2y | 0,1/2)

(11) $\bar{4}'$ 0,0,z; 0,0,0
(4x | 0,0,0)

(14) c (0,0,1/2) 0,y,z
(mz | 0,0,1/2)

(4) 4' (0,0,1/2) 1/2,0,z
(4x | 1/2,1/2,1/2)

(8) 2' x,x,1/4
(2y | 0,0,1/2)

(15) m x+1/2,x,z
(my | 1/2,1/2,0)

(12) $\bar{4}'$ 0,0,z; 0,0,0
(4x | 0,0,0)

(16) g (1/2,1/2,0) x,x,z
(my | 1/2,1/2,0)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

16 j 1

(1) x,y,z [u,v,w]
(2) x,y,z [u,v,w]
(3) y+1/2,x+1/2,z+1/2 [v,u,w]
(4) y+1/2,x+1/2,z+1/2 [v,u,w]
(5) x+1/2,y+1/2,z [u,v,w]
(6) x+1/2,y+1/2,z [u,v,w]
(7) x+1/2,y+1/2,z+1/2 [v,u,w]
(8) x+1/2,y+1/2,z+1/2 [v,u,w]
(9) x+1/2,y+1/2,z+1/2 [u,v,w]
(10) x+1/2,y+1/2,z+1/2 [u,v,w]
(11) y,x,z [v,u,w]
(12) y,x,z [v,u,w]
(13) y,x,z [v,u,w]
(14) y,x,z [v,u,w]
(15) y+1/2,x+1/2,z [v,u,w]
(16) y+1/2,x+1/2,z [v,u,w]

8 i ..m

x,x+1/2,z [u,u,0]
(1/2,1/2,z+1/2 [u,u,0]

8 h ..2'

x,x,3/4 [u,u,w]
(1/2,1/2,3/4 [u,u,w]

8 g ..2'

x,x,1/4 [u,u,w]
(1/2,1/2,3/4 [u,u,w]

8 f ..2

0,0,z [0,0,w]
(1/2,1/2,3/4 [0,0,w]

4 e 2.mm

0,1/2,z [0,0,0]
(1/2,0,z+1/2 [0,0,0]

4 d ..2'm

1/4,1/4,3/4 [0,0,0]
(3/4,3/4,1/4 [0,0,0]
(3/4,3/4,1/4 [0,0,0]
(3/4,3/4,1/4 [0,0,0]
(3/4,3/4,1/4 [0,0,0]
(3/4,3/4,1/4 [0,0,0]
(3/4,3/4,1/4 [0,0,0]
(3/4,3/4,1/4 [0,0,0]
(3/4,3/4,1/4 [0,0,0]

4 c ..2'm

1/4,1/4,1/4 [0,0,0]
(3/4,3/4,1/4 [0,0,0]
(3/4,3/4,1/4 [0,0,0]
(3/4,3/4,1/4 [0,0,0]
(3/4,3/4,1/4 [0,0,0]
(3/4,3/4,1/4 [0,0,0]
(3/4,3/4,1/4 [0,0,0]
(3/4,3/4,1/4 [0,0,0]
(3/4,3/4,1/4 [0,0,0]

4 b 4'..

0,0,0 [0,0,0]
(1/2,1/2,1/2 [0,0,0]
(1/2,1/2,1/2 [0,0,0]
(1/2,1/2,1/2 [0,0,0]
(1/2,1/2,1/2 [0,0,0]
(1/2,1/2,1/2 [0,0,0]
(1/2,1/2,1/2 [0,0,0]
(1/2,1/2,1/2 [0,0,0]
(1/2,1/2,1/2 [0,0,0]

4 a 2.2'2

0,0,1/4 [0,0,w]
(1/2,1/2,3/4 [0,0,w]

Continued 138.3.1172 P4₂/n'cm
Continued

Symmetry of Special Projections

Along [0,0,1] p4mm
\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]
Origin at 0,0,z

Along [1,0,0] \(p_{2b} \) 2m'g'
\[a^* = b \quad b^* = c/2 \]
Origin at x,1/4,1/4

Along [1,1,0] p2mm1'
\[a^* = (-a + b)/2 \quad b^* = c \]
Origin at x,x,1/4
Origin at $\bar{4}c'g$, at $-1/4,1/4,-1/4$ from center (2/m)

Symmetry Operations

(1) 1
(1, 0, 0, 0)

(2) $2', 0,0,z$
(2, 0, 0, 0)

(3) $4^+ \cdot (0,0,1/2), 0,1/2,z$
(4, 1/2, 1, 1/2, 1/2, 1/2)'

(4) $4^- \cdot (0,0,1/2), 1/2,0,z$
(4, 1/2, 1/2, 1/2, 1/2)'

(5) $2' (0,1/2,0)$

(6) $2' (1/2,0,0)$

(7) 2x, x, 1/4
(2, x, 0, 1/2)

(8) 2 x, x, 1/4
(2, x, 0, 1/2)

(9) $\bar{1} 1/4,1/4,1/4$

(10) n (1/2, 1/2, 0)

(11) $\bar{4}^- \cdot 0,0,z; 0,0,0$

(12) $\bar{4}^- \cdot 0,0,z; 0,0,0$

(13) $c' (0,0,1/2)$

(14) $c' (0,0,1/2)$

(15) m x+1/2, x, z

(16) g (1/2, 1/2, 0)

Asymmetric unit

$0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y; \quad y \leq 1/2 - x$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8 i ..m</td>
<td>(9) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8 h ..2</td>
<td>(11) y,x,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(12) y,x,z [u,v,w]</td>
</tr>
<tr>
<td>8 g ..2</td>
<td>(13) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(14) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>8 f 2..</td>
<td>(15) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(16) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>4 e 2.mm</td>
<td>x,x+1/2,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,0]</td>
</tr>
<tr>
<td>4 d .2/m</td>
<td>x+1/2,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,z [u,u,0]</td>
</tr>
<tr>
<td>4 c .2/m</td>
<td>x+1/2,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,z [u,u,0]</td>
</tr>
<tr>
<td>4 b 4 ..</td>
<td>x+1/2,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,z [u,u,0]</td>
</tr>
<tr>
<td>4 a 2.22</td>
<td>x+1/2,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,z [u,u,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p_{\infty} 4mm
\(a^* = \frac{a - b}{2} \quad b^* = \frac{a + b}{2} \)
Origin at 0,0,z

Along [1,0,0] p2m'g
\(a^* = b \quad b^* = \frac{c}{2} \)
Origin at x,1/4,0

Along [1,1,0] p2mm1'
\(a^* = \frac{-a + b}{2} \quad b^* = c \)
Origin at x,x,1/4
Origin at \(\overline{4}c'g \), at \(-1/4, 1/4, -1/4\) from center (\(2'm'\))

Asymmetric unit
\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x < y; \quad y < 1/2 - x \]

Symmetry Operations

1. \(1\)
 \((1|0,0,0) \)

2. \(2\)
 \((0,0,z) \)
 \((2_z|0,0,0) \)

3. \(4^+\)
 \((0,0,1/2) \)
 \((0,1/2,z) \)
 \((4_z|1/2,1/2,1/2') \)

4. \(4^-\)
 \((0,0,1/2) \)
 \((1/2,0,z) \)
 \((4_z|1/2,1/2,1/2') \)

5. \(2\)
 \((0,1/2,0) \)
 \((1/2,1,2,0) \)

6. \(2\)
 \((1,2,0,0) \)
 \((1,2,1,2,0) \)

7. \(2\)
 \((x,x,1/4) \)
 \((2_{xy}|0,0,1/2') \)

8. \(2\)
 \((x,x,1/4) \)
 \((2_{xy}|0,0,1/2') \)

9. \(\overline{1}\)
 \(1/4,1/4,1/4 \)
 \((1|1/2,1/2,1/2) \)

10. \(n\)
 \((1/2,1/2,0) \)
 \((x,y,1/4) \)
 \((m_z|1/2,1/2,1/2) \)

11. \(\overline{4}^+\)
 \((0,0,0) \)
 \((0,0,0) \)
 \((4_z|0,0,0') \)

12. \(\overline{4}^-\)
 \((0,0,0) \)
 \((0,0,0) \)
 \((4_z|0,0,0') \)

13. \(c\)
 \((0,0,1/2) \)
 \(x,0,z \)
 \((m_j|0,0,1/2) \)

14. \(c\)
 \((0,0,1/2) \)
 \(0,y,z \)
 \((m_j|0,0,1/2) \)

15. \(m'\)
 \(x+1/2, x, z \)
 \((m_{xy}|1/2,1/2,0) \)

16. \(g'\)
 \((1/2,1/2,0) \)
 \(x,x,z \)
 \((m_{xy}|1/2,1/2,0) \)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(10) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(11) y,x,z [v,u,w]</td>
<td>(12) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z+1/2 [u,v,w]</td>
<td>(14) x,y,z+1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(15) y+1/2,x+1/2,z [v,u,w]</td>
<td>(16) y+1/2,x+1/2,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 i ..m'</td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z+1/2 [u,u,w]</td>
<td>x,x+1/2,z+1/2 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,z [u,u,w]</td>
<td>x+1/2,x,z [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,z+1/2 [u,u,w]</td>
<td>x+1/2,x,z+1/2 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 h ..2'</td>
<td>x,x,3/4 [u,u,w]</td>
<td>x,x,3/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,3/4 [u,u,w]</td>
<td>x+1/2,x,3/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/4 [u,u,w]</td>
<td>x+1/2,x+1/2,1/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 g ..2'</td>
<td>x,x,1/4 [u,u,w]</td>
<td>x,x,1/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,1/4 [u,u,w]</td>
<td>x+1/2,x,1/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,3/4 [u,u,w]</td>
<td>x+1/2,x+1/2,3/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/4 [u,u,w]</td>
<td>x+1/2,x+1/2,1/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 f 2..</td>
<td>0,0,z [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 e 2.m'm'</td>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 d ..2'/m'</td>
<td>1/4,1/4,3/4 [u,u,w]</td>
<td>3/4,3/4,1/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [u,u,w]</td>
<td>1/4,1/4,3/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [u,u,w]</td>
<td>1/4,1/4,3/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>4 c ..2'/m'</td>
<td>1/4,1/4,3/4 [u,u,w]</td>
<td>3/4,3/4,1/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [u,u,w]</td>
<td>1/4,1/4,3/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [u,u,w]</td>
<td>1/4,1/4,3/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>4 b 4'..</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 a 2.2'2'</td>
<td>0,0,1/4 [0,0,w]</td>
<td>1/2,1/2,3/4 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,3/4 [0,0,w]</td>
<td>1/2,1/2,1/4 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/4 [0,0,w]</td>
<td>0,0,3/4 [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>a^*</th>
<th>b^*</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[0,0,1]$</td>
<td>p_{4mm}</td>
<td>$(a - b)/2$</td>
<td>$(a + b)/2$</td>
<td>0,0,z</td>
</tr>
<tr>
<td>$[1,0,0]$</td>
<td>$p_{2m'}$</td>
<td>b</td>
<td>$c/2$</td>
<td>x,1/4,0</td>
</tr>
<tr>
<td>$[1,1,0]$</td>
<td>$p_{2mm'}$</td>
<td>$-c$</td>
<td>$(-a + b)/2$</td>
<td>x,x,1/4</td>
</tr>
</tbody>
</table>
Origin at $\overline{4}c'g$, at $-1/4,1/4,-1/4$ from center $2'm$)

Asymmetric unit

\begin{align*}
0 \leq x & \leq 1/4; & 0 \leq y & \leq 1/2; & 0 \leq z & \leq 1; & x < y; & y \leq 1/2 - x
\end{align*}

Symmetry Operations

\begin{align*}
(1) & \ 1 \quad (1 \ | \ 0,0,0) \\
(2) & \ 2 \ 0,0,z \quad (2_z \ | \ 0,0,0) \\
(3) & \ 4\times' \ (0,0,1/2) \ 0,1/2,z \quad (4_z \ | \ 1/2,1/2,1/2') \\
(4) & \ 4\times' \ (0,0,1/2) \ 1/2,0,z \quad (4_z \ | \ 1/2,1/2,1/2') \\
(5) & \ 2 \ (0,1/2,0) \ 1/4,y,0 \quad (2_y \ | \ 1/2,1/2,0) \\
(6) & \ 2 \ (1/2,0,0) \ x,1/4,0 \quad (2_x \ | \ 1/2,1/2,0) \\
(7) & \ 2' \ x,x,1/4 \quad (2_{xy} \ | \ 0,0,1/2') \\
(8) & \ 2' \ x,x,1/4 \quad (2_{xy} \ | \ 0,0,1/2') \\
(9) & \ \overline{1} \ 1/4,1/4,1/4 \quad (1 \ | \ 1/2,1/2,1/2') \\
(10) & \ n' \ (1/2,1/2,0) \ x,y,1/4 \quad (m_x \ | \ 1/2,1/2,1/2') \\
(11) & \ 4\times' \ 0,0,z; \ 0,0,0 \quad (4_z \ | \ 0,0,0) \\
(12) & \ \overline{4}\times \ 0,0,z; \ 0,0,0 \quad (4_{yz} \ | \ 0,0,0) \\
(13) & \ c' \ (0,0,1/2) \ x,0,z \quad (m_y \ | \ 0,0,1/2') \\
(14) & \ c' \ (0,0,1/2) \ 0,y,z \quad (m_y \ | \ 0,0,1/2') \\
(15) & \ m \ x+1/2,x,z \quad (m_{yx} \ | \ 1/2,1/2,0) \\
(16) & \ g \ (1/2,1/2,0) \ x,x,z \quad (m_{yx} \ | \ 1/2,1/2,0)
\end{align*}
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>j</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) x+1/2,y+1/2,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9) x+1/2,y+1/2,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10) x+1/2,y+1/2,z+1/2 [v,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>i</th>
<th>..m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z+1/2 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z+1/2 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,z [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,z [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,y+1/2,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,y+1/2,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,z [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,z [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,z+1/2 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,z+1/2 [u,u,0]</td>
<td></td>
</tr>
</tbody>
</table>

(11) y,x,z [v, u, w]

(12) y,x,z [v, u, w]

(13) x,y,z+1/2 [u, v, w]

(14) x,y+1/2 [u, v, w]

(15) x+1/2,x+1/2,z [v, u, w]

(16) x+1/2,x+1/2,z [v, u, w]

<table>
<thead>
<tr>
<th>8</th>
<th>h</th>
<th>..2'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x,x,3/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,x+1/2,3/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,x+1/2,3/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,1/4 [u,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>g</th>
<th>..2'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x,x,1/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x,1/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,3/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,x+1/2,3/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [u,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>f</th>
<th>2..</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>e</th>
<th>2.mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>d</th>
<th>..2'/m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/4,1/4,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,3/4 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>c</th>
<th>..2'/m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/4,1,4,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4,1,4,3/4 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>b</th>
<th>..</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,0,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>a</th>
<th>2.2'2'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,0,1/4 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,3/4 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/4 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0,3/4 [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Formula 1</th>
<th>Formula 2</th>
<th>Formula 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p4'mm'</td>
<td>(a^* = (a - b)/2)</td>
<td>(b^* = (a + b)/2)</td>
<td>Origin at 0,0,z</td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>p 2m'g'</td>
<td>(a^* = b)</td>
<td>(b^* = c/2)</td>
<td>Origin at 1/4,0</td>
</tr>
<tr>
<td>Along [1,1,0]</td>
<td>p2mm1'</td>
<td>(a^* = (-a + b)/2)</td>
<td>(b^* = c)</td>
<td>Origin at x,x,1/4</td>
</tr>
</tbody>
</table>
Origin at $\bar{4}c'g'$, at $-1/4,1/4,-1/4$ from center (2'/m')

Asymmetric unit

$0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x < y; \quad y \leq 1/2 - x$

Symmetry Operations

1. 1

2. $2 \quad 0,0,z$

3. $4^+ (0,0,1/2) \quad 0,1/2,z$

4. $4^- (0,0,1/2) \quad 1/2,0,z$

5. $2' (0,1/2,0) \quad 1/4,y,0$

6. $2' (1/2,0,0) \quad x,1/4,0$

7. $2' x, x, 1/4$

8. $2' x, x, 1/4$

9. $\bar{1} 1/4,1/4,1/4$

10. $n (1/2,1/2,0) \quad x,y,1/4$

11. $\bar{4}^+ 0,0,z; \quad 0,0,0$

12. $\bar{4}^- 0,0,z; \quad 0,0,0$

13. $c' (0,0,1/2) \quad x,0,z$

14. $c' (0,0,1/2) \quad 0,y,z$

15. $m' x+1/2, x,z$

16. $g' (1/2,1/2,0) \quad x,x,z$

138.7.1176 - 1 - 2478
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j 1</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x+1/2,y+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
</tbody>
</table>

8 i .m'	8	(1) x+1/2,z [u,u,w]
		(2) x+1/2,z [u,u,w]
		(3) x+1/2,z [u,u,w]
		(4) x+1/2,z [u,u,w]
		(5) x+1/2,z [u,u,w]
		(6) x+1/2,z [u,u,w]
		(7) x+1/2,z [u,u,w]
		(8) x+1/2,z [u,u,w]
		(9) x+1/2,z [u,u,w]
		(10) x+1/2,z [u,u,w]
		(11) x+1/2,z [u,u,w]
		(12) x+1/2,z [u,u,w]

8 h .2'	8	(1) x+1/2,z [u,u,w]
		(2) x+1/2,z [u,u,w]
		(3) x+1/2,z [u,u,w]
		(4) x+1/2,z [u,u,w]
		(5) x+1/2,z [u,u,w]
		(6) x+1/2,z [u,u,w]
		(7) x+1/2,z [u,u,w]
		(8) x+1/2,z [u,u,w]

8 g .2'	8	(1) x+1/2,z [u,u,w]
		(2) x+1/2,z [u,u,w]
		(3) x+1/2,z [u,u,w]
		(4) x+1/2,z [u,u,w]
		(5) x+1/2,z [u,u,w]
		(6) x+1/2,z [u,u,w]
		(7) x+1/2,z [u,u,w]
		(8) x+1/2,z [u,u,w]

8 f 2..	8	(1) 0,0,z [0,0,w]
		(2) 0,0,z [0,0,w]
		(3) 0,0,z [0,0,w]
		(4) 0,0,z [0,0,w]
		(5) 0,0,z [0,0,w]
		(6) 0,0,z [0,0,w]
		(7) 0,0,z [0,0,w]
		(8) 0,0,z [0,0,w]

4 e 2.m'	4	(1) 0,1/2,z [0,0,w]
		(2) 0,1/2,z [0,0,w]
		(3) 0,1/2,z [0,0,w]
		(4) 0,1/2,z [0,0,w]
		(5) 0,1/2,z [0,0,w]
		(6) 0,1/2,z [0,0,w]
		(7) 0,1/2,z [0,0,w]
		(8) 0,1/2,z [0,0,w]

4 d .2'/m'	4	(1) 1/4,1/4,3/4 [u,u,w]
		(2) 1/4,1/4,3/4 [u,u,w]
		(3) 1/4,1/4,3/4 [u,u,w]
		(4) 1/4,1/4,3/4 [u,u,w]
		(5) 1/4,1/4,3/4 [u,u,w]
		(6) 1/4,1/4,3/4 [u,u,w]
		(7) 1/4,1/4,3/4 [u,u,w]
		(8) 1/4,1/4,3/4 [u,u,w]

4 c .2'/m'	4	(1) 1/4,1/4,1/4 [u,u,w]
		(2) 1/4,1/4,1/4 [u,u,w]
		(3) 1/4,1/4,1/4 [u,u,w]
		(4) 1/4,1/4,1/4 [u,u,w]
		(5) 1/4,1/4,1/4 [u,u,w]
		(6) 1/4,1/4,1/4 [u,u,w]
		(7) 1/4,1/4,1/4 [u,u,w]
		(8) 1/4,1/4,1/4 [u,u,w]

4 b 4..	4	(1) 0,0,0 [0,0,w]
		(2) 0,0,0 [0,0,w]
		(3) 0,0,0 [0,0,w]
		(4) 0,0,0 [0,0,w]
		(5) 0,0,0 [0,0,w]
		(6) 0,0,0 [0,0,w]
		(7) 0,0,0 [0,0,w]
		(8) 0,0,0 [0,0,w]

4 a 2.2'	4	(1) 0,0,1/4 [0,0,w]
		(2) 0,0,1/4 [0,0,w]
		(3) 0,0,1/4 [0,0,w]
		(4) 0,0,1/4 [0,0,w]
		(5) 0,0,1/4 [0,0,w]
		(6) 0,0,1/4 [0,0,w]
		(7) 0,0,1/4 [0,0,w]
		(8) 0,0,1/4 [0,0,w]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p4, 4m'</td>
<td>a* = (a - b)/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b* = (a + b)/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Origin at 0,0,z</td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>p2mg</td>
<td>a* = b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b* = c/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Origin at x,1/4,0</td>
</tr>
<tr>
<td>Along [1,1,0]</td>
<td>p2'mm'</td>
<td>a* = -c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b* = (-a + b)/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Origin at x,x,1/4</td>
</tr>
</tbody>
</table>

Explanation:
- \(a^* = \frac{a - b}{2} \)
- \(b^* = \frac{a + b}{2} \)
- \(a^* = b \)
- \(b^* = \frac{c}{2} \)
- \(a^* = -c \)
- \(b^* = \frac{-a + b}{2} \)
Origin at $\overline{4}cg'$, at $-1/4,1/4,-1/4$ from center (2/m')

Asymmetric unit $0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq y; \quad y \leq 1/2 - x$

Symmetry Operations

1. 1

2. $2 \cdot \begin{pmatrix} 0,0,0 \end{pmatrix}$

3. $4^{+} \cdot \begin{pmatrix} 0,0,1/2 \end{pmatrix}$
4. $4^{-} \cdot \begin{pmatrix} 0,0,1/2 \end{pmatrix}$

5. $2' \cdot \begin{pmatrix} 0,1/2,0 \end{pmatrix}$
6. $2' \cdot \begin{pmatrix} 1/2,0,0 \end{pmatrix}$
7. $2 \cdot \begin{pmatrix} x,x,1/4 \end{pmatrix}$
8. $2 \cdot \begin{pmatrix} x,y,1/4 \end{pmatrix}$

9. $\overline{1} \cdot \begin{pmatrix} 1/4,1/4,1/4 \end{pmatrix}$
10. $\overline{1} \cdot \begin{pmatrix} 1/2,1/2,1/2 \end{pmatrix}$
11. $\overline{4}^{-} \cdot \begin{pmatrix} 0,0,0 \end{pmatrix}$
12. $\overline{4}^{+} \cdot \begin{pmatrix} 0,0,0 \end{pmatrix}$

13. $c \cdot \begin{pmatrix} 0,0,1/2 \end{pmatrix}$
14. $c \cdot \begin{pmatrix} 0,0,1/2 \end{pmatrix}$
15. $m' \cdot \begin{pmatrix} x+1/2,y,z \end{pmatrix}$
16. $g' \cdot \begin{pmatrix} 1/2,1/2,0 \end{pmatrix}$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

Positions
Multplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 j 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,z +1/2 [v,u,w]</td>
<td>(8) y,z +1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(10) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(11) y,z +1/2 [u,v,w]</td>
<td>(12) y,z +1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z+1/2 [u,v,w]</td>
<td>(14) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) y+1/2,x+1/2,z [v,u,w]</td>
<td>(16) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>8 i .m'</td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td>8 h .2</td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td>8 g .2</td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td>8 f 2..</td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td>4 e 2.m'm'</td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td>4 d .2/m'</td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td>4 c .2/m'</td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td>4 b 4..</td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
</tbody>
</table>

138.8.1177 - 2 - 2482
Symmetry of Special Projections

Along [0,0,1] p4'm'm
\[\mathbf{a}^* = \frac{(\mathbf{a} - \mathbf{b})}{2}, \quad \mathbf{b}^* = \frac{(\mathbf{a} + \mathbf{b})}{2} \]
Origin at 0,0,z

Along [1,0,0] p2m'2m'g'
\[\mathbf{a}^* = \mathbf{b}, \quad \mathbf{b}^* = \mathbf{c}/2 \]
Origin at x,1/4,1/4

Along [1,1,0] p2m'm'
\[\mathbf{a}^* = \frac{-(\mathbf{a} + \mathbf{b})}{2}, \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,x,1/4
Origin at \(\overline{4}c'g' \), at -1/4,1/4,-1/4 from center (2/m')

Asymmetric unit
\[0 \leq x \leq 1/4; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x < y; \quad y < 1/2 - x \]

Symmetry Operations

1. 1
 (1) 1
 (1 0 0)

2. 2 0 0, z
 (2) 2 0 0, z
 (2z 0 0, 0)

3. \(4' \) (0, 0, 1/2) 0, 1/2, z
 (3) \(4' \) (0, 0, 1/2) 0, 1/2, z
 (4z 1/2, 1/2, 1/2)

4. \(4' \) (0, 0, 1/2) 1/2, 0, z
 (4' \(1/2, 1/2, 1/2 \))

5. (0, 1/2, 0) 1/4, y, 0
 (5) (0, 1/2, 0) 1/4, y, 0
 (2y 1/2, 1/2, 0)

6. \(4' \) (0, 1/2, 0) x, 1/4, 0
 (6) (0, 1/2, 0) x, 1/4, 0
 (2x 1/2, 1/2, 0)

7. \(4' \) (0, 0, 1/2) 0, 0, z
 (7) \(4' \) (0, 0, 1/2) 0, 0, z
 (4z 0, 0, 1/2)

8. \(4' \) (0, 0, 1/2) 0, 0, z
 (8) \(4' \) (0, 0, 1/2) 0, 0, z
 (2z 0, 0, 1/2)

9. (1/4, 1/4, 1/4)
 (9) (1/4, 1/4, 1/4)
 (4z 0, 0, 0)

10. (1/2, 1/2, 0)
 (10) (1/2, 1/2, 0) x, y, 1/4
 (mz 1/2, 1/2, 1/2)

11. (1/2, 1/2, 0)
 (11) (1/2, 1/2, 0) x, y, 1/4
 (mz 1/2, 1/2, 1/2)

12. (1/2, 1/2, 0)
 (12) (1/2, 1/2, 0) x, y, 1/4
 (mz 1/2, 1/2, 1/2)

13. (0, 0, 1/2)
 (13) (0, 0, 1/2) x, 0, z
 (my 0, 0, 1/2)

14. (0, 0, 1/2)
 (14) (0, 0, 1/2) 0, y, z
 (mz 0, 0, 1/2)

15. (0, 0, 1/2)
 (15) (0, 0, 1/2) x, 1/2, x, z
 (mz 0, 0, 1/2)

16. (0, 0, 1/2)
 (16) (0, 0, 1/2) x, x, z
 (my 1/2, 1/2, 0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>j</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(4) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(5) x+1/2,y+1/2,z [u,v,w]</td>
<td>(6) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(9) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(10) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(11) y,x,z [v,u,w]</td>
<td>(12) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(13) x,y,z+1/2 [u,v,w]</td>
<td>(14) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z [v,u,w]</td>
<td>(16) y+1/2,x+1/2,z [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
</tr>
<tr>
<td>x,x+1/2,z [u,u,w]</td>
<td>x,x+1/2,z [u,u,w]</td>
</tr>
<tr>
<td>x+1/2,x,z [u,u,w]</td>
<td>x+1/2,x,z [u,u,w]</td>
</tr>
<tr>
<td>y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
</tr>
<tr>
<td>x,x,3/4 [u,u,0]</td>
<td>x,x,3/4 [u,u,0]</td>
</tr>
<tr>
<td>x+1/2,x,1/4 [u,u,0]</td>
<td>x+1/2,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td>x+1/2,1/4 [u,u,0]</td>
<td>x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
</tr>
<tr>
<td>x,x,1/4 [u,u,0]</td>
<td>x,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td>x+1/2,x,3/4 [u,u,0]</td>
<td>x+1/2,x,3/4 [u,u,0]</td>
</tr>
<tr>
<td>x+1/2,1/4 [u,u,0]</td>
<td>x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
</tr>
<tr>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>0,0,z+1/2 [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
</tr>
<tr>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>2,0,z+1/2 [0,0,w]</td>
<td>2,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
</tr>
<tr>
<td>1/4,1/4,3/4 [0,0,0]</td>
<td>1/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>3/4,3/4,1/4 [0,0,0]</td>
<td>3/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>3/4,1/4,3/4 [0,0,0]</td>
<td>3/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
</tr>
<tr>
<td>1/4,1/4,3/4 [0,0,0]</td>
<td>1/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>3/4,3/4,1/4 [0,0,0]</td>
<td>3/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>3/4,1/4,3/4 [0,0,0]</td>
<td>3/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
</tr>
<tr>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
</tr>
<tr>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>1/2,1/2,3/4 [0,0,0]</td>
<td>1/2,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>0,0,3/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p4m'm'
\[a^* = \frac{(a - b)}{2}, \quad b^* = \frac{(a + b)}{2} \]
Origin at 0,0,z

Along [1,0,0] p2m'g'
\[a^* = b, \quad b^* = \frac{c}{2} \]
Origin at x,1/4,0

Along [1,1,0] p2m'm'
\[a^* = \frac{(-a + b)}{2}, \quad b^* = c \]
Origin at x,x,1/4
Origin at center (4/mmm)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad x < y\]

Symmetry Operations

For \((0,0,0) + \) set

1. \(1\)
 \((1|0,0,0)\)

2. \(2\)
 \((0,0,z)\)
 \((2_z|0,0,0)\)

3. \(4^+\)
 \((0,0,z)\)
 \((4_z|0,0,0)\)

4. \(4^-\)
 \((0,0,z)\)
 \((4_z^{-1}|0,0,0)\)

5. \(2\)
 \((0,y,0)\)
 \((2_y|0,0,0)\)

6. \(2\)
 \((x,0,0)\)
 \((2_x|0,0,0)\)

7. \(2\)
 \((x,x,0)\)
 \((2_{xy}|0,0,0)\)

8. \(m\)
 \((x,y,0)\)
 \((m_x|0,0,0)\)

9. \(m\)
 \((0,y,0)\)
 \((m_y|0,0,0)\)

10. \(m\)
 \((x,0,z)\)
 \((m_x|0,0,0)\)

11. \(m\)
 \((x,x,0)\)
 \((m_{xy}|0,0,0)\)

12. \(m\)
 \((0,0,z)\)
 \((m_{z}|0,0,0)\)
Continued

For $(1/2,1/2,1/2) + \text{ set}$

(1) $t (1/2,1/2,1/2)$
(1) $2 (0,0,1/2)$
(1) $4^* (0,0,1/2)$
(1) $4^* (0,0,1/2)$
(1) $1/2,0,z$

(2) $2 (1/2,1/2,1/2)$
(2) $2 (1/2,1/2,1/2)$
(2) $2 (1/2,1/2,1/2)$
(2) $2 (1/2,1/2,1/2)$
(2) $1/2,0,z$

(3) $4^* (0,0,1/2)$
(3) $4^* (0,0,1/2)$
(3) $4^* (0,0,1/2)$
(3) $4^* (0,0,1/2)$
(3) $1/2,0,z$

(4) $4^* (0,0,1/2)$
(4) $4^* (0,0,1/2)$
(4) $4^* (0,0,1/2)$
(4) $4^* (0,0,1/2)$
(4) $1/2,0,z$

Generators selected
(1); $t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>o 1</td>
<td>$(1) x,y,z [u,v,w]$</td>
<td>$(0,0,0) + (1/2,1/2,1/2) +$</td>
</tr>
<tr>
<td>16</td>
<td>n.m.</td>
<td>$(5) x,y,z [u,v,w]$</td>
<td>$(0,0,0)$</td>
</tr>
<tr>
<td>16</td>
<td>m ..m</td>
<td>$(9) x,y,z [u,v,w]$</td>
<td>$0,y,z [u,0,0]$</td>
</tr>
<tr>
<td>16</td>
<td>l ..m</td>
<td>$(10) x,y,z [u,v,w]$</td>
<td>$x,x,z [u,u,0]$</td>
</tr>
<tr>
<td>16</td>
<td>k ..2</td>
<td>$(11) x,y,z [u,v,w]$</td>
<td>$y,x,z [v,u,w]$</td>
</tr>
<tr>
<td>8</td>
<td>j m2m.</td>
<td>$(12) y,z [v,u,w]$</td>
<td>$y,x,z [v,u,w]$</td>
</tr>
<tr>
<td>8</td>
<td>i m2m.</td>
<td>$(13) x,y,z [u,v,w]$</td>
<td>$y,x,z [v,u,w]$</td>
</tr>
<tr>
<td>8</td>
<td>h m2m.</td>
<td>$(14) x,y,z [u,v,w]$</td>
<td>$y,x,z [v,u,w]$</td>
</tr>
<tr>
<td>8</td>
<td>g 2mm.</td>
<td>$(15) x,y,z [u,v,w]$</td>
<td>$y,x,z [v,u,w]$</td>
</tr>
<tr>
<td>8</td>
<td>f ..2/m</td>
<td>$(16) y,x,z [v,u,w]$</td>
<td>$y,x,z [v,u,w]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4mm</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>4mm</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>4/mmm 1'</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>mm. 1'</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4/mmm 1'</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4/mmm 1'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p4mm1'</th>
<th>Along [1,0,0] c2mm1'</th>
<th>Along [1,1,0] p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{a}^* = \frac{\mathbf{a} - \mathbf{b}}{2}) \quad \mathbf{b}^* = \frac{\mathbf{a} + \mathbf{b}}{2}</td>
<td>\mathbf{a}^* = \mathbf{b} \quad \mathbf{b}^* = \mathbf{c}</td>
<td>\mathbf{a}^* = -\frac{\mathbf{a} + \mathbf{b}}{2} \quad \mathbf{b}^* = \frac{\mathbf{c}}{2}</td>
</tr>
<tr>
<td>Origin at 0,0,0</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Origin at center \((4/mmm1')\)

Asymmetric unit \(0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1/4; \ x \leq y\)

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \begin{pmatrix} 1 \\ 0,0,0 \end{pmatrix} \\
(2) & \begin{pmatrix} 2 \\ 0,0,z \\ 2z,0,0,0 \end{pmatrix} \\
(3) & \begin{pmatrix} 4^+ \\ 0,0,z \\ 4z,0,0,0 \end{pmatrix} \\
(4) & \begin{pmatrix} 4^- \\ 0,0,z \\ 4z^{-1},0,0,0 \end{pmatrix} \\
(5) & \begin{pmatrix} 2 \\ 0,y,0 \\ 2y,0,0,0 \end{pmatrix} \\
(6) & \begin{pmatrix} 2 \\ x,0,0 \\ 2x,0,0,0 \end{pmatrix} \\
(7) & \begin{pmatrix} 2 \\ x,x,0 \\ 2zx,0,0,0 \end{pmatrix} \\
(8) & \begin{pmatrix} 2 \\ x,x,0 \\ 2x,0,0,0 \end{pmatrix} \\
(9) & \begin{pmatrix} \bar{1} \\ 0,0,0 \end{pmatrix} \\
(10) & \begin{pmatrix} m \\ x,y,0 \\ m_y,0,0,0 \end{pmatrix} \\
(11) & \begin{pmatrix} \bar{4}^+ \\ 0,0,z \\ \bar{4}z,0,0,0 \end{pmatrix} \\
(12) & \begin{pmatrix} \bar{4}^- \\ 0,0,z \\ \bar{4}z^{-1},0,0,0 \end{pmatrix} \\
(13) & \begin{pmatrix} m \\ x,0,z \\ m_y,0,0,0 \end{pmatrix} \\
(14) & \begin{pmatrix} m \\ 0,y,z \\ m_y,0,0,0 \end{pmatrix} \\
(15) & \begin{pmatrix} m \\ x,x,z \\ m_{xy},0,0,0 \end{pmatrix} \\
(16) & \begin{pmatrix} m \\ x,x,z \\ m_{xy},0,0,0 \end{pmatrix}
\end{align*}
\]
Continued

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2) (2) 2 (0,0,1/2) 1/4,1/4,z (3) 4^+ (0,0,1/2) 0,1/2,z (4) 4^- (0,0,1/2) 1/2,0,z
 (1/2,1/2,1/2) (2z 1/2,1/2,1/2) (4z 1/2,1/2,1/2) (4z^-1 1/2,1/2,1/2)

(5) 2 (0,1/2,0) 1/4,y,1/4 (6) 2 (1/2,0,0) x,1/4,1/4 (7) 2 (1/2,1/2,0) x,x,1/4
 (2z 1/2,1/2,1/2) (2z 1/2,1/2,1/2) (2x 1/2,1/2,1/2)

(9) T 1/4,1/4,1/4 (10) n (1/2,1/2,0) x,y,1/4 (11) 4^- 1/2,0,z; 1/2,0,1/4
 (T 1/2,1/2,1/2) (mz 1/2,1/2,1/2) (4z^-1 1/2,1/2,1/2)

(13) n (1/2,0,1/2) x,1/4,z (mz 1/2,1/2,1/2) (14) n (0,1/2,1/2) 1/4,y,z (15) c (0,0,1/2) x+1/2,x

 (mz 1/2,1/2,1/2) (mx 1/2,1/2,1/2) (mxy 1/2,1/2,1/2)

For (0,0,0)' + set

(1') 1' (2') 0,0,z (3') 4'^+ 0,0,z (4') 4'^- 0,0,z
 (1' 0,0,0)' (2' 0,0,0)' (4' 0,0,0)' (4' 0,0,0)' (4' 0,0,0)' (4' 0,0,0)' (4' 0,0,0)'

(5') 2' 0,y,0 (6') 2' x,0,0 (7') 2' x,x,0
 (2'y 0,0,0)' (2'z 0,0,0)' (2'z 0,0,0)'

(9') T' 0,0,0 (10') m' x,y,0 (11') 4'^- 0,0,z; 0,0,0
 (T' 0,0,0)' (m'z 0,0,0)' (4'z^-1 0,0,0)'

(13') m' x,0,z (mz 0,0,0)' (14') m' 0,y,z (m'z 0,0,0)' (15') m' x,x,z (m'xy 0,0,0)'

 (mz 1/2,1/2,1/2) (mx 0,0,0)' (m'x 0,0,0)'

For (1/2,1/2,1/2)' + set

(1) t' (1/2,1/2,1/2) (2) 2' (0,0,1/2) 1/4,1/4,z (3) 4'^+ (0,0,1/2) 0,1/2,z (4) 4'^- (0,0,1/2) 1/2,0,z
 (1/2,1/2,1/2)' (2z 1/2,1/2,1/2)' (4z 1/2,1/2,1/2)' (4z^-1 1/2,1/2,1/2)'

(5') 2' (0,1/2,0) 1/4,y,1/4 (6') 2' (1/2,0,0) x,1/4,1/4 (7') 2' (1/2,1/2,0) x,x,1/4
 (2z 1/2,1/2,1/2)' (2z 1/2,1/2,1/2)' (2x 1/2,1/2,1/2)'

(9') T' 1/4,1/4,1/4 (10') n' (1/2,1/2,0) x,y,1/4 (11') 4'^- 1/2,0,z; 1/2,0,1/4
 (T' 1/2,1/2,1/2)' (mz 1/2,1/2,1/2)' (4z^-1 1/2,1/2,1/2)'

(13') n' (1/2,0,1/2) x,1/4,z (mz 1/2,1/2,1/2)' (14') n' (0,1/2,1/2) 1/4,y,z (15') c' (0,0,1/2) x+1/2,x

 (mz 1/2,1/2,1/2)' (mx 1/2,1/2,1/2)' (m'xy 1/2,1/2,1/2)'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

(0,0,0) + (1/2,1/2,1/2) +

(0,0,0)' + (1/2,1/2,1/2)' +
32 o 11' (1) x,y,z [0,0,0] (2) \bar{x},\bar{y},z [0,0,0] (3) y,x,z [0,0,0] (4) y,\bar{x},z [0,0,0] \\
(5) x,\bar{y},z [0,0,0] (6) x,\bar{y},z [0,0,0] (7) y,\bar{x},z [0,0,0] (8) y,\bar{x},z [0,0,0] \\
(9) x,\bar{y},z [0,0,0] (10) x,\bar{y},z [0,0,0] (11) y,\bar{x},z [0,0,0] (12) y,\bar{x},z [0,0,0] \\
(13) x,\bar{y},z [0,0,0] (14) x,\bar{y},z [0,0,0] (15) y,\bar{x},z [0,0,0] (16) y,\bar{x},z [0,0,0] \\
16 n .m.1' 0,y,z [0,0,0] (0,y,z [0,0,0] (y,0,z [0,0,0]) \\
(0,y,z [0,0,0] (0,y,z [0,0,0] (y,0,z [0,0,0] (y,0,z [0,0,0] \\
16 m ..m1' x,x,z [0,0,0] (x,x,z [0,0,0] (x,x,z [0,0,0] \\
(x,x,z [0,0,0] (x,x,z [0,0,0] (x,x,z [0,0,0] (x,x,z [0,0,0] \\
16 l m..1' x,y,0 [0,0,0] (x,y,0 [0,0,0] (y,x,0 [0,0,0] \\
(x,y,0 [0,0,0] (x,y,0 [0,0,0] (y,x,0 [0,0,0] (y,x,0 [0,0,0] \\
16 k ..21' x,x+1/2,1/4 [0,0,0] (x,x+1/2,1/4 [0,0,0] (x,x+1/2,1/4 [0,0,0] \\
(x,x+1/2,1/4 [0,0,0] (x,x+1/2,1/4 [0,0,0] (x,x+1/2,1/4 [0,0,0] (x,x+1/2,1/4 [0,0,0] \\
8 j m2m.1' x,1/2,0 [0,0,0] (x,1/2,0 [0,0,0] (1/2,x,0 [0,0,0] \\
(x,1/2,0 [0,0,0] (x,1/2,0 [0,0,0] (1/2,x,0 [0,0,0] (1/2,x,0 [0,0,0] \\
8 i m2m.1' x,0,0 [0,0,0] (x,0,0 [0,0,0] (0,x,0 [0,0,0] \\
(x,0,0 [0,0,0] (x,0,0 [0,0,0] (0,x,0 [0,0,0] (0,x,0 [0,0,0] \\
8 h m.2m1' x,x,0 [0,0,0] (x,x,0 [0,0,0] (x,x,0 [0,0,0] \\
(x,x,0 [0,0,0] (x,x,0 [0,0,0] (x,x,0 [0,0,0] (x,x,0 [0,0,0] \\
8 g 2mm.1' 0,1/2,z [0,0,0] (1/2,0,z [0,0,0] (0,1/2,z [0,0,0] \\
(0,1/2,z [0,0,0] (0,1/2,z [0,0,0] (0,1/2,z [0,0,0] (0,1/2,z [0,0,0] \\
8 f ..2/m1' 1/4,1/4,1/4 [0,0,0] (3/4,3/4,1/4 [0,0,0] (3/4,1/4,1/4 [0,0,0] \\
(3/4,1/4,1/4 [0,0,0] (3/4,1/4,1/4 [0,0,0] (3/4,1/4,1/4 [0,0,0] (3/4,1/4,1/4 [0,0,0] \\
4 e 4mm1' 0,0,z [0,0,0] (0,0,z [0,0,0] \\
4 d 4mm1' 0,1/2,1/4 [0,0,0] (1/2,0,1/4 [0,0,0] \\
4 c 4mm1' 0,1/2,0 [0,0,0] (1/2,0,0 [0,0,0] \\
2 b 4mm1' 0,0,0 [0,0,0] \\
2 a 4mm1' 0,0,0 [0,0,0] \\

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p4mm1'</th>
<th>Along [1,0,0] c2mm1'</th>
<th>Along [1,1,0] p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (a - b)/2</td>
<td>a* = b</td>
<td>a* = (-a + b)/2</td>
</tr>
<tr>
<td>b* = (a + b)/2</td>
<td>b* = c</td>
<td>b* = c/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,0,0
Origin at x,x,0
Origin at center (4/m'mm)

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; x < y

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(5) 2' 0,y,0
(2y|0,0,0)'

(9) T' 0,0,0
(1|0,0,0)'

(13) m x,0,z
(m|0,0,0)

(2) 2 0,0,z
(2z|0,0,0)

(6) 2' x,0,0
(2x|0,0,0)'

(10) m' x,y,0
(mz|0,0,0)'

(3) 4' 0,0,z
(4z|0,0,0)

(7) 2' x,x,0
(2xy|0,0,0)'

(11) 4'' 0,0,z; 0,0,0
(4z|0,0,0)'

(14) m 0,y,z
(mz|0,0,0)

(4) 4' 0,0,z
(4z|0,0,0)

(8) 2' x,x,0
(2xy|0,0,0)'

(12) 4'' 0,0,z; 0,0,0
(4z|0,0,0)'

(15) m x,x,z
(mxy|0,0,0)

(16) m x,x,z
(mxy|0,0,0)
Continued

<table>
<thead>
<tr>
<th>(1) t (1/2,1/2,1/2)</th>
<th>(2) t (1/2,1/2,1/2)</th>
<th>(3) t (1/2,1/2,1/2)</th>
<th>(4) t (1/2,1/2,1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t (1/2,1/2,1/2)</td>
<td>(2) t (1/2,1/2,1/2)</td>
<td>(3) t (1/2,1/2,1/2)</td>
<td>(4) t (1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(5) 2' (0,1/2,0) 1/4,y,1/4</td>
<td>(6) 2' (0,1/2,0) 1/4,y,1/4</td>
<td>(7) 2' (0,1/2,0) 1/4,y,1/4</td>
<td>(8) 2' (0,1/2,0) 1/4,y,1/4</td>
</tr>
<tr>
<td>(5) 2' (0,1/2,0) 1/4,y,1/4</td>
<td>(6) 2' (0,1/2,0) 1/4,y,1/4</td>
<td>(7) 2' (0,1/2,0) 1/4,y,1/4</td>
<td>(8) 2' (0,1/2,0) 1/4,y,1/4</td>
</tr>
<tr>
<td>(9) T 1/2,1/2,1/2'</td>
<td>(10) n' (1/2,1/2,1/2) x,y,z</td>
<td>(11) 4^+ 1/2,0,z 1/2,0,1/4</td>
<td>(12) 4^- 1/2,1/2,1/2'</td>
</tr>
<tr>
<td>(9) T 1/2,1/2,1/2'</td>
<td>(10) n' (1/2,1/2,1/2) x,y,z</td>
<td>(11) 4^+ 1/2,0,z 1/2,0,1/4</td>
<td>(12) 4^- 1/2,1/2,1/2'</td>
</tr>
<tr>
<td>(13) n (1/2,0,1/2) x,1/4,z</td>
<td>(14) n (0,1/2,1/2) 1/4,y,z</td>
<td>(15) c (0,0,1/2) x+1/2,x,z</td>
<td>(16) n (1/2,1/2,1/2) x,x,z</td>
</tr>
<tr>
<td>(13) n (1/2,0,1/2) x,1/4,z</td>
<td>(14) n (0,1/2,1/2) 1/4,y,z</td>
<td>(15) c (0,0,1/2) x+1/2,x,z</td>
<td>(16) n (1/2,1/2,1/2) x,x,z</td>
</tr>
</tbody>
</table>

Generators selected

| (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9). |

Positions

| Multiplicity, Wyckoff letter, Site Symmetry. |

| Coordinates |

| (0,0,0) + | (1/2,1/2,1/2) + |

<table>
<thead>
<tr>
<th>32 o 1</th>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) x,y,z [u,v,w]</th>
<th>(3) x,y,z [v,u,w]</th>
<th>(4) x,y,z [v,u,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 n .m. 0,y,z [u,0,0]</td>
<td>0,y,z [u,0,0]</td>
<td>y,0,z [0,u,0]</td>
<td>y,0,z [0,u,0]</td>
<td></td>
</tr>
<tr>
<td>16 m ..m x,x,z [u,0,0]</td>
<td>x,x,z [u,0,0]</td>
<td>x,x,z [u,0,0]</td>
<td>x,x,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td>16 l m'.. x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
<td>y,x,0 [v,u,0]</td>
<td>y,x,0 [v,u,0]</td>
<td></td>
</tr>
<tr>
<td>16 k ..2' x,x+1/2,1/4 [u,u,w]</td>
<td>x,x+1/2,1/4 [u,u,w]</td>
<td>x+1/2,x,1/4 [u,u,w]</td>
<td>x+1/2,x,1/4 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>8 j m'2.m. x,1/2,0 [0,v,0]</td>
<td>x,1/2,0 [0,v,0]</td>
<td>1/2,x,0 [v,0,0]</td>
<td>1/2,x,0 [v,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 i m'2.m. x,0,0 [0,v,0]</td>
<td>x,0,0 [0,v,0]</td>
<td>x,0,0 [0,v,0]</td>
<td>x,0,0 [0,v,0]</td>
<td></td>
</tr>
<tr>
<td>8 h m'2'm x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>8 g 2mm. 0,1/2,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 f ..2'm 1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,1/4 [0,0,0]</td>
<td>3/4,3/4,1/4 [0,0,0]</td>
<td>3/4,3/4,1/4 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>
4 e 4mm 0,0,z [0,0,0] 0,0,z [0,0,0]

4 d 4_m2' 0,1/2,1/4 [0,0,0] 1/2,0,1/4 [0,0,0]

4 c m'_mm. 0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0]

2 b 4/m'_mm 0,0,1/2 [0,0,0]

2 a 4/m'_mm 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm
\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]
Origin at 0,0,z

Along [1,0,0] c2mm1'
\[a^* = b \quad b^* = c \]
Origin at x,0,0

Along [1,1,0] p2mm1'
\[a^* = (-a + b)/2 \quad b^* = c/2 \]
Origin at x,x,0
I4'/mm'm
139.4.1182

4'/mm'm

Tetragonal
I4'/m2'/m'2/m

Origin at center (4'/mm'm)

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; x ≤ y

Symmetry Operations
For (0,0,0) + set

(1) 1
(1 0,0,0)

(5) 2' 0,y,0
(2z 0,0,0)'

(9) 1 0,0,0
(1 0,0,0)

(13) m' x,0,z
(m 0,0,0)'

(2) 2 0,0,z
(2z 0,0,0)

(6) 2' x,0,0
(2z 0,0,0)'

(10) m x,y,0
(m 0,0,0)

(14) m' 0,y,z
(m 0,0,0)'

(3) 4' 0,0,z
(4z 0,0,0)'

(7) 2 x,x,0
(2xy 0,0,0)

(11) 4' 0,0,z
(4z 0,0,0)'

(8) 2 x,x,0
(2xy 0,0,0)

(12) 4' 0,0,z
(4z 0,0,0)'

(15) m x,x,0
(mxy 0,0,0)

(16) m x,x,0
(mxy 0,0,0)
Continued

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2) (2) 2 (0,0,1/2) (3) 4* (0,0,1/2) (4) 4* (0,0,1/2)
(1/2,1/2,1/2) 1/4,1/4,z 0,1/2,z 1/2,0,z

(5) 2' (0,1/2,0) 1/4,y,1/4 (6) 2' (1/2,0,0) x,1/4,1/4 (7) 2 (1/2,1/2,0) x,x,1/4 (8) 2 x, x+1/2,1/4
(2',1/2,1/2,1/2) (2',1/2,1/2,1/2) 1/2,1/2,1/2) 1/2,1/2,1/2)

(9) 1/4,1/4,1/4 (10) n (1/2,1/2,0) x,y,z (11) 4* ' 1/2,0,1/4 (12) 4* ' 0,1/2,1/2 (13) n' (1/2,0,1/2) x,1/4,z (14) n' (0,1/2,1/2) 1/4,y,z (15) c (0,0,1/2) x+1/2,x (16) n (1/2,1/2,1/2) x,1/2,1/2,1/2)

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter, Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>16 n .m'</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>y,0,z [v,0,w]</td>
</tr>
<tr>
<td></td>
<td>y,0,z [v,0,w]</td>
</tr>
<tr>
<td>16 m .m</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>16 l .m</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>y,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>y,x,0 [0,0,w]</td>
</tr>
<tr>
<td>16 k .2</td>
<td>x,x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+1/2,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td>8 j m2m'</td>
<td>x,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,x,0 [0,0,w]</td>
</tr>
<tr>
<td>8 i m2m'</td>
<td>x,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,x,0 [0,0,w]</td>
</tr>
<tr>
<td>8 h m.2m</td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td>8 g 2m'</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 f ..2/m</td>
<td>1/4,1/4,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,1/4 [u,u,0]</td>
</tr>
</tbody>
</table>

139.4.1182 - 2 - 2497
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>沿 [0,0,1] p4mm1'</th>
<th>沿 [1,0,0] c2'mm'</th>
<th>沿 [1,1,0] p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = (a - b)/2 b = (a + b)/2</td>
<td>a = b b = c</td>
<td>a = (-a + b)/2 b = c/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Origin at center (4/mmm')

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; x ≥ y

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) 2 0,0,z
(2|0,0,0)

(3) 4' 0,0,z
(4|0,0,0)

(4) 4' 0,0,z
(4|0,0,0)

(5) 2 0,y,0
(2|0,0,0)

(6) 2 x,0,0
(2|0,0,0)

(7) 2' x,x,0
(2|0,0,0)

(8) 2' x,x,0
(2|0,0,0)

(9) m 0,0,0
(1|0,0,0)

(10) m x,y,0
(m|0,0,0)

(11) 4* 0,0,z
(4|0,0,0)

(12) 4* 0,0,z
(4|0,0,0)

(13) m x,0,z
(m|0,0,0)

(14) m 0,y,z
(m|0,0,0)

(15) m' x,x,z
(m|0,0,0)

(16) m' x,x,z
(m|0,0,0)
For $(1/2,1/2,1/2) + \text{set}$

(1) $t\ (1/2,1/2,1/2)
(1/2,1/2,1/2)$

(2) $2\ (0,0,1/2)\ 1/4,1/4,z$

(3) $4^+\ (0,0,1/2)\ 0,1/2,z$

(4) $4^-\ (0,0,1/2)\ 1/2,0,z$

(5) $2\ (0,1/2,0)\ 1/4,y,1/4$

(6) $2\ (1/2,0,0)\ x,1/4,1/4$

(7) $2'\ (1/2,1/2,0)\ x,x,1/4$

(8) $2^-\ x,x+1/2,1/4$

(9) $\overline{1}\ 1/4,1/4,1/4$

(10) $n\ (1/2,1/2,0)\ x,y,1/4$

(11) $4^-\ 1/2,0,z; 1/2,0,1/4$

(12) $\overline{4}^-\ 0,1/2,z; 0,1/2,1/4$

(13) $n\ (1/2,0,1/2)\ x,1/4,z$

(14) $n\ (0,1/2,1/2)\ 1/4,y,z$

(15) $c\ (0,0,1/2)\ x+1/2,x,z$

(16) $n'\ (1/2,1/2,1/2)\ x,x,z$

Generators selected

(1); $t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>(0,0,0) +</th>
<th>(1/2,1/2,1/2) +</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>y,x,z [u,v,w]</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(9) x,y,z [u,v,w]</td>
<td>y,x,z [v,u,w]</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(13) x,y,z [u,v,w]</td>
<td>y,x,z [v,u,w]</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(16) y,x,z [v,u,w]</td>
<td>y,x,z [v,u,w]</td>
<td>y,x,z [v,u,w]</td>
</tr>
</tbody>
</table>

18 m .m'

16 l ..m.

16 k ..2'

8 j m2m.

8 i m2m.

8 h m.2'm'

8 g 2mm.

8 f ..2'/m'

Continued
Symmetry of Special Projections

Along [0,0,1] p4mm1'
\(a^* = \frac{(a - b)}{2} \quad b^* = \frac{(a + b)}{2} \)
Origin at 0,0,z

Along [1,0,0] c2mm1'
\(a^* = b \quad b^* = c \)
Origin at x,0,0

Along [1,1,0] p2'mm'
\(a^* = -\frac{c}{2} \quad b^* = \frac{(-a + b)}{2} \)
Origin at x,x,0
Origin at center (4'/m'm'm)

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; x ≤ y

Symmetry Operations

For (0,0,0) + set

1. 1
 (1) 0,0,0

2. 2' 0,0,z
 (2) x,0,0
 (2x,0,0)

3. 4' 0,0,z
 (3) z,0,0
 (4z,0,0)

4. 4' 0,0,z
 (4) z,0,0
 (4z,0,0)

5. 2 0,y,0
 (2y,0,0)

6. 2' 0,z,0
 (2z,0,0)

7. 2' x,x,0
 (2x,0,0)

8. 2' x,x,0
 (2x,0,0)

9. 1 0,0,0
 (1) 0,0,0

10. m' x,y,0
 (10) x,y,0
 (mz,0,0)

11. 4' z,0,0
 (11) 0,0,z
 (4z,0,0)

12. 4' z,0,0
 (12) 0,0,z
 (4z,0,0)

13. m' x,0,z
 (mz,0,0)

14. m' 0,0,z
 (14) x,0,0
 (mz,0,0)

15. m x,x,0
 (15) x,y,0
 (mz,0,0)

16. m x,x,0
 (16) x,y,0
 (mz,0,0)
For \((1/2,1/2,1/2) + \) set

<table>
<thead>
<tr>
<th>((1/2,1/2,1/2) +)</th>
<th>((1/2,1/2,1/2) +)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1)) t ((1/2,1/2,1/2))</td>
<td>((1)) t ((1,0,0))</td>
</tr>
<tr>
<td>((2)) 2 ((0,0,1/2))</td>
<td>((2)) t ((0,1,0))</td>
</tr>
<tr>
<td>((3)) 4(\cdot) ((0,0,1/2)) ((0,1/2,z))</td>
<td>((3)) 4(\cdot) ((0,0,1/2)) ((1/2,0,z))</td>
</tr>
<tr>
<td>((4)) 4(\cdot) ((0,0,1/2)) ((1/2,1/2,1/2))</td>
<td>((4)) 4(\cdot) ((0,0,1/2)) ((1/2,1/2,1/2))</td>
</tr>
</tbody>
</table>

Generators selected
\((1)\); \(t(1,0,0)\); \(t(0,1,0)\); \(t(0,0,1)\); \(t(1/2,1/2,1/2)\); \((2)\); \((3)\); \((5)\); \((9)\).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry letter.

<table>
<thead>
<tr>
<th>((0,0,0) +)</th>
<th>((1/2,1/2,1/2) +)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 o 1 ((1)) x, y, z ([u,v,w])</td>
<td>((3)) y, x, z ([v,u,w])</td>
</tr>
<tr>
<td>((5)) x, y, z ([u,v,w])</td>
<td>((7)) y, x, z ([v,u,w])</td>
</tr>
<tr>
<td>((6)) x, y, z ([u,v,w])</td>
<td>((8)) y, x, z ([v,u,w])</td>
</tr>
<tr>
<td>((9)) x, y, z ([u,v,w])</td>
<td>((10)) x, y, z ([u,v,w])</td>
</tr>
<tr>
<td>((11)) y, x, z ([v,u,w])</td>
<td>((12)) y, x, z ([v,u,w])</td>
</tr>
<tr>
<td>((13)) x, y, z ([u,v,w])</td>
<td>((14)) x, y, z ([u,v,w])</td>
</tr>
<tr>
<td>((15)) y, x, z ([v,u,w])</td>
<td>((16)) y, x, z ([v,u,w])</td>
</tr>
</tbody>
</table>

16 n \(\cdot m'\)	\(0, y, z [0, v, w]\)
\(0, y, z [0, v, w]\)	\(y, 0, z [v, 0, w]\)
\(y, 0, z [v, 0, w]\)	\(y, 0, z [v, 0, w]\)

16 m \(\cdot m\)	\([x, x, z [u, u, 0]\)
\([x, x, z [u, u, 0]\)	\([x, x, z [u, u, 0]\)
\([x, x, z [u, u, 0]\)	\([x, x, z [u, u, 0]\)

16 l \(\cdot m'\)	\(x, y, z [u,v,0]\)
\(x, y, z [u,v,0]\)	\(y, x, z [v,u,0]\)
\(y, x, z [v,u,0]\)	\(y, x, z [v,u,0]\)

16 k \(\cdot 2'\)	\(x,x+1/2,1/4 [u,u,w]\)
\(x,x+1/2,1/4 [u,u,w]\)	\(x+1/2,x,1/4 [u,u,w]\)
\(x+1/2,x,1/4 [u,u,w]\)	\(x+1/2,x,3/4 [u,u,w]\)

8 j \(m'2m'\)	\(x,1/2,0 [u,0,0]\)
\(x,1/2,0 [u,0,0]\)	\(1/2,x,0 [0,1,u,0]\)
\(1/2,x,0 [0,1,u,0]\)	\(1/2,x,0 [0,1,u,0]\)

8 i \(m'2m'\)	\(x,0,0 [u,0,0]\)
\(x,0,0 [u,0,0]\)	\(0,x,0 [0,u,0]\)
\(0,x,0 [0,u,0]\)	\(0,x,0 [0,u,0]\)

8 h \(m'2m'\)	\(x,0,0 [u,0,0]\)
\(x,0,0 [u,0,0]\)	\(x,x,0 [u,0,0]\)
\(x,x,0 [u,0,0]\)	\(x,x,0 [u,0,0]\)

8 g \(2m'2m'\)	\(0,1/2,z [0,0,w]\)
\(0,1/2,z [0,0,w]\)	\(1/2,0,z [0,0,w]\)
\(1/2,0,z [0,0,w]\)	\(1/2,0,z [0,0,w]\)

8 f \(\cdot 2'm\)	\(1/4,1/4,1/4 [0,0,0]\)
\(3/4,3/4,1/4 [0,0,0]\)	\(3/4,1/4,1/4 [0,0,0]\)
\(3/4,1/4,1/4 [0,0,0]\)	\(1/4,3/4,1/4 [0,0,0]\)
4 e 4'm'm' 0,0,z [0,0,0] 0,0,z [0,0,0]
4 d 4'm'2' 0,1/2,1/4 [0,0,w] 1/2,0,1/4 [0,0,w]
4 c m'm'm' 0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0]
2 b 4'/m'm'm' 0,0,1/2 [0,0,0]
2 a 4'/m'm'm' 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4'mm'
\[a^* = \frac{a - b}{2}\] \[b^* = \frac{a + b}{2}\]
Origin at 0,0,z

Along [1,0,0] c2m'm'
\[a^* = b\] \[b^* = c\]
Origin at x,0,0

Along [1,1,0] p2mm1'
\[a^* = \frac{-a + b}{2}\] \[b^* = \frac{c}{2}\]
Origin at x,x,0
Origin at center (4/mm'm')

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad x < y \]

Symmetry Operations

For (0,0,0) + set

1. \(\bar{1} \quad (0,0,0) \)
2. \(\bar{2} \quad 0,0,z \)
3. \(\bar{4} \quad 0,0,z \)
4. \(\bar{4}^{-1} \quad 0,0,z \)
5. \(2' \quad 0,y,0 \)
6. \(2' \quad x,0,0 \)
7. \(2' \quad x,x,0 \)
8. \(2' \quad x,x,0 \)
9. \(\bar{1} \quad 0,0,0 \)
10. \(\bar{m} \quad x,y,0 \)
11. \(\bar{4} \quad 0,0,z; 0,0,0 \)
12. \(\bar{4}^{-1} \quad 0,0,z; 0,0,0 \)
13. \(\bar{m}' \quad x,0,z \)
14. \(\bar{m}' \quad 0,y,z \)
15. \(\bar{m}' \quad x,x,z \)
16. \(\bar{m}' \quad x,x,z \)
Continued

For \((1/2,1/2,1/2)\) + set

\begin{align*}
(1) & \ t (1/2,1/2,1/2) \\
(2) & \ 2 (0,0,1/2) \\
(3) & \ 4^+ (0,0,1/2) \\
(4) & \ 4^+ (0,0,1/2) \\
& \ t (1/2,1/2,1/2) \\
& \ t (1/2,1/2,1/2) \\
& \ (4^+_z) 1/2,1/2,1/2) \\
(5) & \ 2' (0,1/2,0) \\
(6) & \ 2' (1/2,0,0) \\
(7) & \ 2' (1/2,1/2,0) \\
(8) & \ 2' (0,1/2,1/2) \\
& \ (2,1/2,1/2') \\
& \ (2,1/2,1/2') \\
& \ (2,1/2,1/2') \\
& \ (2,1/2,1/2') \\
& \ (2,1/2,1/2') \\
(9) & \ 1/4,1/4,1/4 \\
(10) & \ 1/4,1/4,1/4 \\
(11) & \ 1/4,1/4,1/4 \\
(12) & \ 1/4,1/4,1/4 \\
& \ (1/2,1/2,1/2') \\
& \ (1/2,1/2,1/2') \\
& \ (1/2,1/2,1/2') \\
& \ (1/2,1/2,1/2') \\
(13) & \ 1/4,1/4,1/4 \\
(14) & \ 1/4,1/4,1/4 \\
(15) & \ 1/4,1/4,1/4 \\
& \ (1/2,1/2,1/2') \\
& \ (1/2,1/2,1/2') \\
& \ (1/2,1/2,1/2') \\
& \ (1/2,1/2,1/2') \\
(16) & \ 1/4,1/4,1/4 \\
& \ (1/2,1/2,1/2') \\
& \ (1/2,1/2,1/2') \\
& \ (1/2,1/2,1/2') \\
\end{align*}

Generators selected \((1)\); \((t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9)).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 o 1</td>
<td>((0,0,0) +)</td>
<td>((1/2,1/2,1/2) +)</td>
<td></td>
</tr>
<tr>
<td>(1) x,y,z ([u,v,w])</td>
<td>(x, y, z)</td>
<td>([u,v,w])</td>
<td></td>
</tr>
<tr>
<td>(5) (x, y, z)</td>
<td>(0, y, z)</td>
<td>([0, v, w])</td>
<td></td>
</tr>
<tr>
<td>(9) (x, y, z)</td>
<td>(0, y, z)</td>
<td>([0, v, w])</td>
<td></td>
</tr>
<tr>
<td>(13) (x, y, z)</td>
<td>(0, y, z)</td>
<td>([0, v, w])</td>
<td></td>
</tr>
<tr>
<td>16 n .m'</td>
<td>(0, y, z)</td>
<td>([0, v, w])</td>
<td></td>
</tr>
<tr>
<td>(10) (0, y, z)</td>
<td>(y, 0, z)</td>
<td>([0, v, w])</td>
<td></td>
</tr>
<tr>
<td>(14) (0, y, z)</td>
<td>(y, 0, z)</td>
<td>([0, v, w])</td>
<td></td>
</tr>
<tr>
<td>16 m ..m'</td>
<td>(x, x, z)</td>
<td>([u, u, w])</td>
<td></td>
</tr>
<tr>
<td>(6) (x, x, z)</td>
<td>(x, x, z)</td>
<td>([u, u, w])</td>
<td></td>
</tr>
<tr>
<td>(10) (x, x, z)</td>
<td>(x, x, z)</td>
<td>([u, u, w])</td>
<td></td>
</tr>
<tr>
<td>(13) (x, x, z)</td>
<td>(x, x, z)</td>
<td>([u, u, w])</td>
<td></td>
</tr>
<tr>
<td>16 l m..</td>
<td>(x, x, z)</td>
<td>([0, 0, w])</td>
<td></td>
</tr>
<tr>
<td>(7) (0, x, z)</td>
<td>(0, x, z)</td>
<td>([0, 0, w])</td>
<td></td>
</tr>
<tr>
<td>(11) (0, x, z)</td>
<td>(0, x, z)</td>
<td>([0, 0, w])</td>
<td></td>
</tr>
<tr>
<td>(15) (0, x, z)</td>
<td>(0, x, z)</td>
<td>([0, 0, w])</td>
<td></td>
</tr>
<tr>
<td>16 k ..2'</td>
<td>(x, x+1/2,1/4)</td>
<td>([u, u, w])</td>
<td></td>
</tr>
<tr>
<td>(8) (x, x+1/2,1/4)</td>
<td>(x, x+1/2,1/4)</td>
<td>([u, u, w])</td>
<td></td>
</tr>
<tr>
<td>(12) (x, x+1/2,1/4)</td>
<td>(x, x+1/2,1/4)</td>
<td>([u, u, w])</td>
<td></td>
</tr>
<tr>
<td>(16) (x, x+1/2,1/4)</td>
<td>(x, x+1/2,1/4)</td>
<td>([u, u, w])</td>
<td></td>
</tr>
<tr>
<td>8 j m2m'</td>
<td>(x, 1/2,0)</td>
<td>([0, 0, w])</td>
<td></td>
</tr>
<tr>
<td>(9) (x, 1/2,0)</td>
<td>(1/2, x, 0)</td>
<td>([0, 0, w])</td>
<td></td>
</tr>
<tr>
<td>(13) (x, 1/2,0)</td>
<td>(1/2, x, 0)</td>
<td>([0, 0, w])</td>
<td></td>
</tr>
<tr>
<td>8 i m2m'</td>
<td>(x, 0,0)</td>
<td>([0, 0, w])</td>
<td></td>
</tr>
<tr>
<td>(10) (x, 0,0)</td>
<td>(0, x, 0)</td>
<td>([0, 0, w])</td>
<td></td>
</tr>
<tr>
<td>(14) (x, 0,0)</td>
<td>(0, x, 0)</td>
<td>([0, 0, w])</td>
<td></td>
</tr>
<tr>
<td>8 h m2m'</td>
<td>(x, x,0)</td>
<td>([0, 0, w])</td>
<td></td>
</tr>
<tr>
<td>(11) (x, x,0)</td>
<td>(x, x,0)</td>
<td>([0, 0, w])</td>
<td></td>
</tr>
<tr>
<td>(15) (x, x,0)</td>
<td>(x, x,0)</td>
<td>([0, 0, w])</td>
<td></td>
</tr>
<tr>
<td>8 g 2m'</td>
<td>(0,1/2,z)</td>
<td>([0, 0, w])</td>
<td></td>
</tr>
<tr>
<td>(12) (0,1/2,z)</td>
<td>(0,1/2,z)</td>
<td>([0, 0, w])</td>
<td></td>
</tr>
<tr>
<td>(16) (0,1/2,z)</td>
<td>(0,1/2,z)</td>
<td>([0, 0, w])</td>
<td></td>
</tr>
<tr>
<td>8 f ..2/m'</td>
<td>(1/4,1/4,1/4)</td>
<td>([u, u, w])</td>
<td></td>
</tr>
<tr>
<td>(13) (1/4,1/4,1/4)</td>
<td>(3/4,3/4,1/4)</td>
<td>([u, u, w])</td>
<td></td>
</tr>
<tr>
<td>(14) (1/4,1/4,1/4)</td>
<td>(3/4,3/4,1/4)</td>
<td>([u, u, w])</td>
<td></td>
</tr>
</tbody>
</table>

139.7.1185 - 2 - 2506
Symmetry of Special Projections

Along [0, 0, 1] p4mm1'
\[a^* = \frac{(a - b)}{2} \quad b^* = \frac{(a + b)}{2} \]
Origin at 0, 0, z

Along [1, 0, 0] c2mm
\[a^* = b \quad b^* = c \]
Origin at x, 0, 0

Along [1, 1, 0] p2'mm'
\[a^* = -\frac{c}{2} \quad b^* = -\frac{(a + b)}{2} \]
Origin at x, x, 0
I4'/m'2/m'

Origin at center (I4'/m'2/m')

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad x < y \]

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. \(1 \quad (1|0,0,0)\)
2. \(2 \quad 0,0,z \quad (2_z|0,0,0)\)
3. \(4' \quad 0,0,z \quad (4_z|0,0,0)\)
4. \(4' \quad 0,0,z \quad (4_z^{-1}|0,0,0)\)
5. \(2' \quad 0,y,0 \quad (2_y|0,0,0)\)
6. \(2' \quad x,0,0 \quad (2_x|0,0,0)\)
7. \(2 \quad x,x,0 \quad (2_x|0,0,0)\)
8. \(2 \quad x,x,0 \quad (2_x|0,0,0)\)
9. \(\bar{1}' \quad 0,0,0 \quad (1|0,0,0)\)
10. \(m' \quad x,y,0 \quad (m_z|0,0,0)\)
11. \(\bar{4}^+ \quad 0,0,z; 0,0,0 \quad (\bar{4}_z|0,0,0)\)
12. \(\bar{4}^+ \quad 0,0,z; 0,0,0 \quad (\bar{4}_z^{-1}|0,0,0)\)
13. \(m \quad x,0,z \quad (m_z|0,0,0)\)
14. \(m \quad 0,y,z \quad (m_z|0,0,0)\)
15. \(m' \quad x,x,z \quad (m_{xy}|0,0,0)\)
16. \(m' \quad x,x,z \quad (m_{xy}|0,0,0)\)
Continued

(1) t (1/2,1/2,1/2)
(1 | 1/2,1/2,1/2)

<table>
<thead>
<tr>
<th>For (1/2,1/2,1/2) + set</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t (1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(2) 2 (0,0,1/2)</td>
</tr>
<tr>
<td>(3) 4⁺⁺ (0,0,1/2)</td>
</tr>
<tr>
<td>(4) 4⁺⁺ (0,0,1/2)</td>
</tr>
<tr>
<td>(5) 2⁺⁺ (0,1/2,0)</td>
</tr>
<tr>
<td>(6) 2⁺⁺ (1/2,0,0)</td>
</tr>
<tr>
<td>(7) 2 (1/2,1/2,0)</td>
</tr>
<tr>
<td>(8) 2 x,x + 1/2,1/4</td>
</tr>
<tr>
<td>(9) 1⁺⁺ 1/4,1/4,1/4</td>
</tr>
<tr>
<td>(10) n⁺⁺ (1/2,1/2,0)</td>
</tr>
<tr>
<td>(11) 4⁺⁺ 1/2,0,1/4</td>
</tr>
<tr>
<td>(12) 4⁺⁺ 0,1/2,1/4</td>
</tr>
<tr>
<td>(13) n⁺⁺ (1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(14) n⁺⁺ (0,1/2,1/2)</td>
</tr>
<tr>
<td>(15) c⁺⁺ (0,0,1/2)</td>
</tr>
<tr>
<td>(16) n⁺⁺ (1/2,1/2,1/2)</td>
</tr>
</tbody>
</table>

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x⁺⁺ y⁺⁺ z⁺⁺ [u⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(3) y⁺⁺ x⁺⁺ z⁺⁺ [v⁺⁺ u⁺⁺ w⁺⁺]</td>
<td>(4) y⁺⁺ x⁺⁺ z⁺⁺ [v⁺⁺ u⁺⁺ w⁺⁺]</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16 n .m.</td>
<td>(5) x⁺⁺ y⁺⁺ z⁺⁺ [u⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(6) x⁺⁺ y⁺⁺ z⁺⁺ [u⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(7) y⁺⁺ x⁺⁺ z⁺⁺ [v⁺⁺ u⁺⁺ w⁺⁺]</td>
<td>(8) y⁺⁺ x⁺⁺ z⁺⁺ [v⁺⁺ u⁺⁺ w⁺⁺]</td>
<td>y⁺⁺ 0⁺⁺ z⁺⁺ [0⁺⁺ u⁺⁺ 0⁺⁺]</td>
</tr>
<tr>
<td>16 m ..m'</td>
<td>(9) x⁺⁺ y⁺⁺ z⁺⁺ [u⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(10) x⁺⁺ y⁺⁺ z⁺⁺ [u⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(11) y⁺⁺ x⁺⁺ z⁺⁺ [v⁺⁺ u⁺⁺ w⁺⁺]</td>
<td>(12) y⁺⁺ x⁺⁺ z⁺⁺ [v⁺⁺ u⁺⁺ w⁺⁺]</td>
<td>y⁺⁺ 0⁺⁺ z⁺⁺ [0⁺⁺ u⁺⁺ 0⁺⁺]</td>
</tr>
<tr>
<td>16 l m'.</td>
<td>(13) x⁺⁺ y⁺⁺ z⁺⁺ [u⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(14) x⁺⁺ y⁺⁺ z⁺⁺ [u⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(15) y⁺⁺ x⁺⁺ z⁺⁺ [v⁺⁺ u⁺⁺ w⁺⁺]</td>
<td>(16) y⁺⁺ x⁺⁺ z⁺⁺ [v⁺⁺ u⁺⁺ w⁺⁺]</td>
<td>y⁺⁺ 0⁺⁺ z⁺⁺ [0⁺⁺ u⁺⁺ 0⁺⁺]</td>
</tr>
<tr>
<td>16 k .2</td>
<td>(17) x⁺⁺ x⁺⁺ 1/2,1/4 [u⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(18) x⁺⁺ x⁺⁺ 1/2,1/4 [u⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(19) x⁺⁺ x⁺⁺ 1/2,1/4 [u⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(20) x⁺⁺ x⁺⁺ 1/2,1/4 [u⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>y⁺⁺ 0⁺⁺ z⁺⁺ [0⁺⁺ u⁺⁺ 0⁺⁺]</td>
</tr>
<tr>
<td>8 j m'2.m.</td>
<td>(21) x⁺⁺ 1/2,0 [0⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(22) x⁺⁺ 1/2,0 [0⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(23) x⁺⁺ 1/2,0 [0⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(24) x⁺⁺ 1/2,0 [0⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>y⁺⁺ 0⁺⁺ z⁺⁺ [0⁺⁺ u⁺⁺ 0⁺⁺]</td>
</tr>
<tr>
<td>8 i m'2.m.</td>
<td>(25) x⁺⁺ 0⁺⁺ [0⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(26) x⁺⁺ 0⁺⁺ [0⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(27) x⁺⁺ 0⁺⁺ [0⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(28) x⁺⁺ 0⁺⁺ [0⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>y⁺⁺ 0⁺⁺ z⁺⁺ [0⁺⁺ u⁺⁺ 0⁺⁺]</td>
</tr>
<tr>
<td>8 h m'2.m'</td>
<td>(29) x⁺⁺ 0⁺⁺ [0⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(30) x⁺⁺ 0⁺⁺ [0⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(31) x⁺⁺ 0⁺⁺ [0⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>(32) x⁺⁺ 0⁺⁺ [0⁺⁺ v⁺⁺ w⁺⁺]</td>
<td>y⁺⁺ 0⁺⁺ z⁺⁺ [0⁺⁺ u⁺⁺ 0⁺⁺]</td>
</tr>
<tr>
<td>8 g 2mm.</td>
<td>(33) 1/2,0,z [0⁺⁺ 0⁺⁺]</td>
<td>(34) 1/2,0,z [0⁺⁺ 0⁺⁺]</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(35) 1/2,0,z [0⁺⁺ 0⁺⁺]</td>
<td>(36) 1/2,0,z [0⁺⁺ 0⁺⁺]</td>
<td>y⁺⁺ 0⁺⁺ z⁺⁺ [0⁺⁺ u⁺⁺ 0⁺⁺]</td>
</tr>
<tr>
<td>8 f .2/m'</td>
<td>(37) 1/4,1/4,1/4 [0⁺⁺ 0⁺⁺]</td>
<td>(38) 1/4,1/4,1/4 [0⁺⁺ 0⁺⁺]</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(39) 1/4,1/4,1/4 [0⁺⁺ 0⁺⁺]</td>
<td>(40) 1/4,1/4,1/4 [0⁺⁺ 0⁺⁺]</td>
<td>y⁺⁺ 0⁺⁺ z⁺⁺ [0⁺⁺ u⁺⁺ 0⁺⁺]</td>
</tr>
</tbody>
</table>
Continued

4	e	4'/mm'	0,0,z [0,0,0]	0,0,z [0,0,0]
4	d	m2	0,1/2,1/4 [0,0,0]	1/2,0,1/4 [0,0,0]
4	c	m'mm.	0,1/2,0 [0,0,0]	1/2,0,0 [0,0,0]
2	b	4'/m'mm'	0,0,1/2 [0,0,0]	
2	a	4'/m'mm'	0,0,0 [0,0,0]	

Symmetry of Special Projections

- **Along [0,0,1] p4'm'm**
 \[
a^* = \frac{a - b}{2} \quad b^* = \frac{a + b}{2}
\]
 Origin at 0,0,z
- **Along [1,0,0] c2mm1'**
 \[
a^* = b \quad b^* = c
\]
 Origin at x,0,0
- **Along [1,1,0] p2m'm'**
 \[
a^* = \frac{-a + b}{2} \quad b^* = \frac{c}{2}
\]
 Origin at x,x,0
Origin at center (4/m'm'm')

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; x ≤ y

Symmetry Operations

For (0,0,0) + set

1. (1) 1

 (1) 0,0,0

2. (2) 2 0,0,z

 (2) 0,0,0

3. (3) 4+ 0,0,z

 (4) 0,0,0

4. (4) 4- 0,0,z

 (4) 0,0,0

5. (5) 2 0,y,0

 (2) 0,0,0

6. (6) 2 x,0,0

 (2) 0,0,0

7. (7) 2 x,x,0

 (2) 0,0,0

8. (8) 2 x,x,0

 (2) 0,0,0

9. (9) \bar{1} 0,0,0

 (1) 0,0,0

10. (10) m' x,y,0

11. (11) \bar{4}+··0,0,z; 0,0,0

12. (12) \bar{4}··0,0,z; 0,0,0

13. (13) m' x,0,z

14. (14) m' 0,y,0

15. (15) m' x,x,z

16. (16) m' x,x,z
Continued

For \((1/2, 1/2, 1/2) + \) set

\[
\begin{align*}
(1) & \ t (1/2, 1/2, 1/2) \\
& (1/2, 1/2, 1/2) \\
(2) & \ 2 (0, 0, 1/2) \\
& (1/2, 1/2, 1/2) \\
(3) & \ 4^* (0, 0, 1/2) \\
& (1/2, 1/2, 1/2) \\
(4) & \ 4^* (0, 0, 1/2) \\
& (1/2, 1/2, 1/2) \\
(5) & \ 2 (0, 1/2, 0) \\
& (1/2, 1/2, 1/2) \\
& x, 1/4, 1/4 \\
(6) & \ 2 (1/2, 0, 0) \\
& (1/2, 1/2, 1/2) \\
(7) & \ 2 (1/2, 1/2, 0) \\
& (1/2, 1/2, 1/2) \\
(8) & \ 2 x, x + 1/2, 1/4 \\
& (1/2, 1/2, 1/2) \\
(9) & \ 2 y \\
& (1/2, 1/2, 1/2) \\
& x, y, 1/4 \\
(10) & \ 2 y \\
& (1/2, 1/2, 1/2) \\
& x, y, 1/4 \\
(11) & \ 4^* (1/2, 0, 1/2) \\
& (1/2, 1/2, 1/2) \\
(12) & \ 4^* (0, 0, 1/2) \\
& (1/2, 1/2, 1/2) \\
(13) & \ n' (1/2, 0, 1/2) \\
& (1/2, 1/2, 1/2) \\
& x, 1/4, z \\
(14) & \ n' (0, 1/2, 1/2) \\
& (1/2, 1/2, 1/2) \\
& x, 1/4, z \\
(15) & \ c' (0, 0, 1/2) \\
& (1/2, 1/2, 1/2) \\
(16) & \ n' (1/2, 1/2, 1/2) \\
& (1/2, 1/2, 1/2) \\
& x, x, z \\
\end{align*}
\]

Generators selected

\((1); \ t(1, 0, 0); \ t(0, 1, 0); \ t(0, 0, 1); \ t(1/2, 1/2, 1/2); \ (2); \ (3); \ (5); \ (9).\)

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry letter.

\[
\begin{array}{cccc}
32 & o & 1 & (1) x, y, z [u, v, w] \\
& & & (2) x, y, z [u, v, w] \\
& & & (3) y, x, z [v, u, w] \\
& & & (4) y, x, z [v, u, w] \\
& & & (5) x, y, z [u, v, w] \\
& & & (6) x, y, z [u, v, w] \\
& & & (7) y, x, z [v, u, w] \\
& & & (8) y, x, z [v, u, w] \\
& & & (9) x, y, z [u, v, w] \\
& & & (10) x, y, z [u, v, w] \\
& & & (11) y, x, z [v, u, w] \\
& & & (12) y, x, z [v, u, w] \\
& & & (13) x, y, z [u, v, w] \\
& & & (14) x, y, z [u, v, w] \\
& & & (15) y, x, z [v, u, w] \\
& & & (16) y, x, z [v, u, w] \\
16 & n & .m' & 0, y, z [0, v, w] \\
& & & 0, y, z [0, v, w] \\
& & & y, 0, z [0, v, w] \\
& & & y, 0, z [0, v, w] \\
16 & m & ..m' & x, x, z [u, u, w] \\
& & & x, x, z [u, u, w] \\
& & & x, x, z [u, u, w] \\
& & & x, x, z [u, u, w] \\
16 & l & m'.. & x, y, 0 [u, v, 0] \\
& & & x, y, 0 [u, v, 0] \\
& & & y, x, 0 [v, u, 0] \\
& & & y, x, 0 [v, u, 0] \\
16 & k & ..2 & x, x + 1/2, 1/4 [u, u, 0] \\
& & & x, x + 1/2, 1/4 [u, u, 0] \\
& & & x + 1/2, x, 1/4 [u, u, 0] \\
& & & x + 1/2, x, 1/4 [u, u, 0] \\
8 & j & m'2m' & x, 1/2, 0 [u, 0, 0] \\
& & & x, 1/2, 0 [u, 0, 0] \\
& & & 1/2, x, 0 [0, u, 0] \\
& & & 1/2, x, 0 [0, u, 0] \\
8 & i & m'2m' & x, 0, 0 [u, 0, 0] \\
& & & x, 0, 0 [u, 0, 0] \\
& & & 0, x, 0 [0, u, 0] \\
& & & 0, x, 0 [0, u, 0] \\
8 & h & m'.2m' & x, x, 0 [u, u, 0] \\
& & & x, x, 0 [u, u, 0] \\
& & & x, x, 0 [u, u, 0] \\
& & & x, x, 0 [u, u, 0] \\
8 & g & 2m'2m' & 0, 1/2, z [0, 0, w] \\
& & & 1/2, 0, z [0, 0, w] \\
& & & 0, 1/2, z [0, 0, w] \\
& & & 1/2, 0, z [0, 0, w] \\
8 & f & .2/m' & 1/4, 1/4, 1/4 [0, 0, 0] \\
& & & 3/4, 3/4, 1/4 [0, 0, 0] \\
& & & 3/4, 3/4, 1/4 [0, 0, 0] \\
& & & 1/4, 3/4, 1/4 [0, 0, 0]
\end{array}
\]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Along [0,0,1] p4m'm'</th>
<th>Along [1,0,0] c2m'm'</th>
<th>Along [1,1,0] p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 e</td>
<td>4m'm'</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z $[0,0,w]$</td>
<td></td>
</tr>
<tr>
<td>4 d</td>
<td>4'/m'2</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4 c</td>
<td>m'm'm'</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 b</td>
<td>4/m'm'm'</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a</td>
<td>4/m'm'm'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Solutions

- Origin at 0,0,z
- Origin at 0,0,1/2
- Origin at 0,0,0
Origin at center (4/mmm)

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; x ≤ y

Symmetry Operations

For (0,0,0) + set

1. (1) 1
 (1) 0,0,0

2. (2) 2 0,0,z
 (2) 2z 0,0,0

3. (3) 4⁺ 0,0,z
 (4z) 0,0,0

4. (4) 4⁻ 0,0,z
 (4z⁻¹) 0,0,0

5. (5) 2 0,y,0
 (2z) 0,0,0

6. (6) 2 x,0,0
 (2z) 0,0,0

7. (7) 2 x,x,0
 (2xy) 0,0,0

8. (8) 2 x,x,0
 (2xy) 0,0,0

9. (9) m 0,0,0
 (1) 0,0,0

10. (10) m x,y,0
 (mz) 0,0,0

11. (11) 4⁺ 0,0,z; 0,0,0
 (4z) 0,0,0

12. (12) 4⁻ 0,0,z; 0,0,0
 (4z⁻¹) 0,0,0

(13) m x,0,z
 (mz) 0,0,0

(14) m 0,y,z
 (mz) 0,0,0

(15) m x,x,z
 (mxy) 0,0,0

(16) m x,x,z
 (mxy) 0,0,0
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>o,1</td>
<td>(0,0) +</td>
</tr>
<tr>
<td>16</td>
<td>n,.m</td>
<td>(1,2,1,2,1,2)' +</td>
</tr>
<tr>
<td>16</td>
<td>m,.m</td>
<td>(0,1/2,1/2,1/2)'</td>
</tr>
<tr>
<td>16</td>
<td>l,.m</td>
<td>(0,0,1/2,1/2,1/2)'</td>
</tr>
<tr>
<td>8</td>
<td>m2m</td>
<td>(1/2,1/2,1/2,1/2)'</td>
</tr>
<tr>
<td>8</td>
<td>j</td>
<td>(0,0,1/2,1/2,1/2)'</td>
</tr>
<tr>
<td>8</td>
<td>i</td>
<td>(0,0,1/2,1/2,1/2)'</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>(0,0,1/2,1/2,1/2)'</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>(0,0,1/2,1/2,1/2)'</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>(0,0,1/2,1/2,1/2)'</td>
</tr>
</tbody>
</table>

For (1/2,1/2,1/2)' + set

(1) 1' (1/2,1/2,1/2)' (2) 2' (0,0,1/2) 1/4,1/4,z (3) 4' (0,0,1/2) 0,1/2,z (4) 4' (0,0,1/2) 1/2,0,z (5) 2' (0,1/2,0) 1/4,y,1/4 (6) 2' (0,1/2,0) 1/4,y,1/4 (7) 2' (0,1/2,0) 1/4,y,1/4 (8) 2' (0,1/2,0) 1/4,y,1/4 (9) 2' (0,1/2,0) 1/4,y,1/4 (10) 2' (0,1/2,0) 1/4,y,1/4 (11) 2' (0,1/2,0) 1/4,y,1/4 (12) 2' (0,1/2,0) 1/4,y,1/4 (13) 2' (0,1/2,0) 1/4,y,1/4 (14) 2' (0,1/2,0) 1/4,y,1/4 (15) 2' (0,1/2,0) 1/4,y,1/4 (16) 2' (0,1/2,0) 1/4,y,1/4
4 e 4mm 0,0,z [0,0,0] 0,0,z [0,0,0]
4 d 4'm2' 0,1/2,1/4 [0,0,0] 1/2,0,1/4 [0,0,0]
4 c mmm. 0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0]
2 b 4/mmm 0,0,1/2 [0,0,0]
2 a 4/mmm 0,0,0 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Origin</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1] p4mm1'</td>
<td>Origin at 0,0,z</td>
<td>$a^* = (a - b)/2$ $b^* = (a + b)/2$</td>
</tr>
<tr>
<td>Along [1,0,0] c2mm1'</td>
<td>Origin at x,0,0</td>
<td>$a^* = b$ $b^* = c$</td>
</tr>
<tr>
<td>Along [1,1,0] p2mm1'</td>
<td>Origin at x,x,0</td>
<td>$a^* = (-a + b)/2$ $b^* = c/2$</td>
</tr>
</tbody>
</table>
Origin at center (4/m'mm)

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad x < y \]

Symmetry Operations

For \((0,0,0) + \) set

1. \(1 \quad (1|0,0,0)\)
2. \(2 \quad 0,0,z \quad (2_{z}|0,0,0)\)
3. \(4^+ \quad 0,0,z \quad (4_{z}|0,0,0)\)
4. \(4^- \quad 0,0,z \quad (4_{-z}|0,0,0)\)
5. \(2' \quad 0,y,0 \quad (2_{y}|0,0,0)'\)
6. \(2' \quad x,0,0 \quad (2_{x}|0,0,0)'\)
7. \(2' \quad x,x,0 \quad (2_{x}|0,0,0)'\)
8. \(2' \quad x,x,0 \quad (2_{-x}|0,0,0)'\)
9. \(\bar{T}^+ \quad 0,0,0 \quad (1|0,0,0)'\)
10. \(m' \quad x,y,0 \quad (m_{y}|0,0,0)'\)
11. \(\bar{4}^+ \quad 0,0,z; 0,0,0 \quad (4_{z}|0,0,0)'\)
12. \(\bar{4}^- \quad 0,0,z; 0,0,0 \quad (4_{-z}|0,0,0)'\)
13. \(m \quad x,0,z \quad (m_{z}|0,0,0)\)
14. \(m \quad 0,y,z \quad (m_{y}|0,0,0)\)
15. \(m \quad x,x,z \quad (m_{x}|0,0,0)\)
16. \(m \quad x,x,z \quad (m_{y}|0,0,0)\)
Continued

For \((1/2,1/2,1/2)^t\) + set

\[
\begin{align*}
(1) \ t'(1/2,1/2,1/2) \\
(2) \ 2'(0,0,1/2) \ 1/4,1/4,z \\
(3) \ 4^t'(0,0,1/2) \ 0,1/2,z \\
(4) \ 4^t'(0,0,1/2) \ 1/2,0,z \\
(4^t_2)(1/2,1/2,1/2)^t \\
(5) \ 2(0,1/2,0) \ 1/4,y,1/4 \\
(6) \ 2(1/2,0,0) \ x,1/4,1/4 \\
(7) \ 2(1/2,1/2,0) \ x,x,1/4 \\
(8) \ x,x+1/2,1/4 \\
(2) \ 2(1/2,1/2,1/2) \\
(2) \ 1/2,1/2,1/2 \\
(9) \ t \ 1/4,1/4,1/4 \\
(10) \ n \ (1/2,1/2,0) \ x,y,1/4 \\
(11) \ n^-1 \ 1/2,0,1/4 \ 1/2,0,1/4 \\
(12) \ n^-1 \ 0,1/2,1/4 \\
(T) \ 1/2,1/2,1/2 \\
(13) \ n' \ (1/2,0,1/2) \ x,1/4,z \\
(14) \ n' \ (0,1/2,1/2) \ 1/4,y,z \\
(15) \ c' \ (0,0,1/2) \ x+1/2,x,z \\
(16) \ n' \ (1/2,1/2,1/2) \ x,x,z \\
\end{align*}
\]

Generators selected

\((1); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (9).\)

Positions

\[
\begin{array}{cccc}
\text{Multiplicity} & \text{Wyckoff letter} & \text{Site Symmetry} & \text{Coordinates} \\
& & & (0,0,0) + (1/2,1/2,1/2)^t + \\
32 & o & 1 & x,y,z \ [u,v,w] \\
& & (2) & \bar{x},y,z \ [\bar{u},\bar{v},\bar{w}] \\
& & (3) & \bar{y},x,z \ [v,u,w] \\
& & (4) & y,x,z \ [v,\bar{u},\bar{w}] \\
& & (5) & \bar{x},y,z \ [u,v,w] \\
& & (6) & x,y,z \ [u,v,w] \\
& & (7) & y,x,z \ [v,u,w] \\
& & (8) & y,x,z \ [v,\bar{u},\bar{w}] \\
& & (9) & \bar{x},y,z \ [u,v,w] \\
& & (10) & x,y,z \ [u,v,w] \\
& & (11) & y,x,z \ [v,u,w] \\
& & (12) & y,x,z \ [v,\bar{u},\bar{w}] \\
& & (13) & \bar{x},y,z \ [u,v,w] \\
& & (14) & x,y,z \ [u,v,w] \\
& & (15) & \bar{y},x,z \ [v,u,w] \\
& & (16) & y,x,z \ [v,\bar{u},\bar{w}] \\
16 & n & \cdot.m. & 0,y,z \ [u,0,0] \\
& & (2) & \bar{y},z,0 \ [\bar{u},0,0] \\
& & (3) & y,0,z \ [0,u,0] \\
& & (4) & y,0,z \ [0,\bar{u},\bar{0}] \\
& & (5) & 0,y,z \ [u,0,0] \\
& & (6) & 0,y,z \ [u,0,0] \\
& & (7) & y,0,z \ [0,u,0] \\
& & (8) & y,0,z \ [0,\bar{u},\bar{0}] \\
16 & m & \cdot.m. & x,x,z \ [u,u,0] \\
& & (2) & x,z,0 \ [u,0,0] \\
& & (3) & x,z,0 \ [u,0,0] \\
& & (4) & x,z,0 \ [u,0,0] \\
& & (5) & x,x,z \ [u,u,0] \\
& & (6) & x,x,z \ [u,u,0] \\
& & (7) & x,x,z \ [u,u,0] \\
& & (8) & x,x,z \ [u,u,0] \\
16 & I & m'. & x,y,0 \ [u,v,0] \\
& & (2) & x,0,\bar{y} \ [\bar{u},v,0] \\
& & (3) & \bar{y},x,0 \ [\bar{v},u,0] \\
& & (4) & \bar{y},x,0 \ [\bar{v},u,0] \\
16 & k & \cdot.2 & \bar{x},x+1/2,1/4 \ [\bar{u},u,0] \\
& & (2) & \bar{x},x+1/2,1/4 \ [\bar{u},u,0] \\
& & (3) & \bar{x},x+1/2,1/4 \ [\bar{u},u,0] \\
& & (4) & \bar{x},x+1/2,1/4 \ [\bar{u},u,0] \\
& & (5) & x,x+1/2,1/4 \ [u,u,0] \\
& & (6) & x,x+1/2,1/4 \ [u,u,0] \\
& & (7) & x,x+1/2,1/4 \ [u,u,0] \\
& & (8) & x,x+1/2,1/4 \ [u,u,0] \\
8 & j & m'2.m. & x,1/2,0 \ [0,v,0] \\
& & (2) & \bar{x},x,0 \ [\bar{u},0,0] \\
& & (3) & \bar{x},x,0 \ [\bar{u},0,0] \\
& & (4) & \bar{x},x,0 \ [\bar{u},0,0] \\
8 & i & m'2.m. & x,0,0 \ [0,v,0] \\
& & (2) & x,0,0 \ [0,v,0] \\
& & (3) & x,0,0 \ [0,v,0] \\
& & (4) & x,0,0 \ [0,v,0] \\
8 & h & m'.2'm & x,x,0 \ [0,0,u] \\
& & (2) & \bar{x},x,0 \ [\bar{u},0,0] \\
& & (3) & \bar{x},x,0 \ [\bar{u},0,0] \\
& & (4) & \bar{x},x,0 \ [\bar{u},0,0] \\
8 & g & 2mm. & 0,1/2,z \ [0,0,0] \\
& & (2) & 0,1/2,z \ [0,0,0] \\
& & (3) & 0,1/2,z \ [0,0,0] \\
& & (4) & 0,1/2,z \ [0,0,0] \\
8 & f & .2/m & 1/4,1/4,1/4 \ [u,u,0] \\
& & (2) & 3/4,3/4,1/4 \ [u,u,0] \\
& & (3) & 3/4,1/4,1/4 \ [u,u,0] \\
& & (4) & 3/4,3/4,1/4 \ [u,u,0] \\
\end{array}
\]

\(139.11.1189\) - 2 - 2518
Symmetry of Special Projections

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>e</td>
<td>4mm</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>m2</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>m' mm.</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4/m' mm</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4/m' mm</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p_4. 4mm
a^* = (a - b)/2 b^* = (a + b)/2
Origin at 0,0,z

Along [1,0,0] c2mm1'
a^* = b b^* = c
Origin at x,0,0

Along [1,1,0] p2mm1'
a^* = (-a + b)/2 b^* = c/2
Origin at x,x,0
Origin at center (4'/mm'm)

Asymmetric unit

\(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad x < y\)

Symmetry Operations

For \((0,0,0) + \) set

1. \(1 \quad (1 | 0,0,0)\)
2. \(2^{'} \quad 0,0,z \quad (2_{z} | 0,0,0)'\)
3. \(4^{+-'} \quad 0,0,z \quad (4_{z} | 0,0,0)'\)
4. \(4^{+'} \quad 0,0,z \quad (4_{z} | 0,0,0)'\)
5. \(2^{'} \quad 0,y,0 \quad (2_{z} | 0,0,0)'\)
6. \(2^{'} \quad x,0,0 \quad (2_{y} | 0,0,0)'\)
7. \(2^{'} \quad x,x,0 \quad (2_{x,y} | 0,0,0)'\)
8. \(2^{'} \quad x,x,0 \quad (2_{x,y} | 0,0,0)'\)
9. \(\overline{1} \quad 0,0,0 \quad (1 | 0,0,0)\)
10. \(m \quad x,y,0 \quad (m_{z} | 0,0,0)\)
11. \(4^{+} \quad 0,0,z; 0,0,0 \quad (4_{z} | 0,0,0)'\)
12. \(4^{+} \quad 0,0,z; 0,0,0 \quad (4_{z} | 0,0,0)'\)
13. \(m' \quad x,0,z \quad (m_{z} | 0,0,0)'\)
14. \(m' \quad 0,y,z \quad (m_{y} | 0,0,0)'\)
15. \(m \quad x,x,z \quad (m_{x,y} | 0,0,0)\)
16. \(m \quad x,x,z \quad (m_{x,y} | 0,0,0)\)
Continued

For \((1/2,1/2,1/2)^*\) + set

<table>
<thead>
<tr>
<th>(1)</th>
<th>(t') ((1/2,1/2,1/2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(t') ((1/2,1/2,1/2))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2)</th>
<th>(2') ((0,0,1/2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>(2') ((0,0,1/2))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(3)</th>
<th>(4^*) ((0,0,1/2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>(4^*) ((0,0,1/2))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4)</th>
<th>(4^*) ((1/2,1/2,1/2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4)</td>
<td>(4^*) ((1/2,1/2,1/2))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(5)</th>
<th>(2) ((0,1/2,0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5)</td>
<td>(2) ((0,1/2,0))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(6)</th>
<th>(2) ((1/2,0,0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6)</td>
<td>(2) ((1/2,0,0))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(7)</th>
<th>(2') ((1,2,1/2,0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7)</td>
<td>(2') ((1,2,1/2,0))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(8)</th>
<th>(2^*) ((0,1,2,1/2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8)</td>
<td>(2^*) ((0,1,2,1/2))</td>
</tr>
</tbody>
</table>

Generators selected

(1); \(t(1,0,0);\) \(t(0,1,0);\) \(t'(1/2,1/2,1/2);\) (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry letter.</th>
<th>Coordinates</th>
<th>(0,0,0) + set</th>
<th>(1/2,1/2,1/2)^* + set</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 o 1 (x,y,z) ([u,v,w])</td>
<td>(x,y,z) ([u,v,w])</td>
<td>(x,y,z) ([v,u,w])</td>
<td>(y,x,z) ([v,u,w])</td>
</tr>
<tr>
<td>(5) (x,y,\bar{z}) ([u,v,w])</td>
<td>(x,y,\bar{z}) ([u,v,w])</td>
<td>(y,z,\bar{v}) ([v,u,w])</td>
<td>(y,z,\bar{v}) ([v,u,w])</td>
</tr>
<tr>
<td>(9) (x,\bar{y},z) ([u,v,w])</td>
<td>(x,\bar{y},z) ([u,v,w])</td>
<td>(y,\bar{z},v) ([v,u,w])</td>
<td>(y,\bar{z},v) ([v,u,w])</td>
</tr>
<tr>
<td>(13) (x,\bar{y},z) ([u,v,w])</td>
<td>(x,\bar{y},z) ([u,v,w])</td>
<td>(y,z,\bar{v}) ([v,u,w])</td>
<td>(y,z,\bar{v}) ([v,u,w])</td>
</tr>
<tr>
<td>16 n (.m'.) (0,y,z) ([0,v,w])</td>
<td>(0,y,z) ([0,v,w])</td>
<td>(y,0,z) ([v,0,w])</td>
<td>(y,0,z) ([v,0,w])</td>
</tr>
<tr>
<td>16 m (m..) (x,x,\bar{z}) ([u,u,0])</td>
<td>(x,x,\bar{z}) ([u,u,0])</td>
<td>(x,x,\bar{z}) ([u,u,0])</td>
<td>(x,x,\bar{z}) ([u,u,0])</td>
</tr>
<tr>
<td>16 l (m..) (x,y,0) ([0,0,w])</td>
<td>(x,y,0) ([0,0,w])</td>
<td>(y,x,0) ([0,0,w])</td>
<td>(y,x,0) ([0,0,w])</td>
</tr>
<tr>
<td>16 k (m2m'.) (x,x+1/2,1/4) ([u,u,w])</td>
<td>(x,x+1/2,1/4) ([u,u,w])</td>
<td>(x,x+1/2,1/4) ([u,u,w])</td>
<td>(x,x+1/2,1/4) ([u,u,w])</td>
</tr>
<tr>
<td>8 j (m2m'.) (x,1/2,0) ([0,0,w])</td>
<td>(x,1/2,0) ([0,0,w])</td>
<td>(1/2,x,0) ([0,0,w])</td>
<td>(1/2,x,0) ([0,0,w])</td>
</tr>
<tr>
<td>8 i (m2m'.) (x,0,0) ([0,0,w])</td>
<td>(x,0,0) ([0,0,w])</td>
<td>(0,x,0) ([0,0,w])</td>
<td>(0,x,0) ([0,0,w])</td>
</tr>
<tr>
<td>8 h (m2m) (x,x,0) ([0,0,0])</td>
<td>(x,x,0) ([0,0,0])</td>
<td>(x,x,0) ([0,0,0])</td>
<td>(x,x,0) ([0,0,0])</td>
</tr>
<tr>
<td>8 g (2m'.) (0,1/2,0) ([0,0,w])</td>
<td>(0,1/2,0) ([0,0,w])</td>
<td>(0,1/2,0) ([0,0,w])</td>
<td>(0,1/2,0) ([0,0,w])</td>
</tr>
<tr>
<td>8 f (.2'm) (1/4,1/4,1/4) ([0,0,0])</td>
<td>(1/4,1/4,1/4) ([0,0,0])</td>
<td>(1/4,3/4,1/4) ([0,0,0])</td>
<td>(1/4,3/4,1/4) ([0,0,0])</td>
</tr>
<tr>
<td>4 e</td>
<td>4’m’m</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,ζ [0,0,0]</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>4 d</td>
<td>4’m’2’</td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>1/2,0,1/4 [0,0,ν]</td>
</tr>
<tr>
<td>4 c</td>
<td>mm’m’</td>
<td>0,1/2,0 [0,0,w]</td>
<td>1/2,0,0 [0,0,ν]</td>
</tr>
<tr>
<td>2 b</td>
<td>4’/mm’</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a</td>
<td>4’/mm’</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p4mm1’</th>
<th>Along [1,0,0] c2’mm’</th>
<th>Along [1,1,0] p2mm1’</th>
</tr>
</thead>
<tbody>
<tr>
<td>a’ = (a - b)/2</td>
<td>a’ = -c</td>
<td>a’ = (-a + b)/2</td>
</tr>
<tr>
<td>b’ = (a + b)/2</td>
<td>b’ = b</td>
<td>b’ = c/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,ζ | Origin at x,0,0 | Origin at x,x,0
Origin at center (4'/mmm')

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad x < y \]

Symmetry Operations

For \((0,0,0) + \) set

1. \(1 \quad (1|0,0,0) \)
2. \(2 \quad 0,0,z \quad (2_z|0,0,0) \)
3. \(4'^+ \quad 0,0,z \quad (4_z|0,0,0)' \)
4. \(4' \quad 0,0,z \quad (4_z^{-1}|0,0,0)' \)
5. \(2 \quad 0,y,0 \quad (2_y|0,0,0) \)
6. \(2 \quad x,0,0 \quad (2_x|0,0,0) \)
7. \(2' \quad x,x,0 \quad (2_{xy}|0,0,0)' \)
8. \(2' \quad x,x,0 \quad (2_{xy}|0,0,0)' \)
9. \(1 \quad 0,0,0 \quad (1|0,0,0) \)
10. \(m \quad x,y,0 \quad (m_{yz}|0,0,0) \)
11. \(4' \quad 0,0,z; 0,0,0 \quad (4_z|0,0,0)' \)
12. \(4' \quad 0,0,z; 0,0,0 \quad (4_z^{-1}|0,0,0)' \)
13. \(m \quad x,0,z \quad (m_{y}|0,0,0) \)
14. \(m \quad 0,y,z \quad (m_{x}|0,0,0) \)
15. \(m' \quad x,x,z \quad (m_{xy}|0,0,0)' \)
16. \(m' \quad x,x,z \quad (m_{xy}|0,0,0)' \)
Generators selected
1: \((1,0,0)\); 2: \((0,1,0)\); 3: \((0,0,1)\); 4: \((1/2,1/2,1/2)\); 5: \((1/2,1/2,1/2)\); 6: \((1/2,1/2,1/2)\); 7: \((1/2,1/2,1/2)\); 8: \((1/2,1/2,1/2)\); 9: \((1/2,1/2,1/2)\); 10: \((1/2,1/2,1/2)\); 11: \((1/2,1/2,1/2)\); 12: \((1/2,1/2,1/2)\); 13: \((1/2,1/2,1/2)\); 14: \((1/2,1/2,1/2)\); 15: \((1/2,1/2,1/2)\); 16: \((1/2,1/2,1/2)\); 17: \((1/2,1/2,1/2)\);

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 0 1</td>
<td>((x,y,z))</td>
<td>(u,v,w)</td>
<td>((0,0,0))</td>
<td>((1/2,1/2,1/2)) + set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>((x,y,z))</td>
<td>(u,v,w)</td>
<td>((0,0,0))</td>
<td>((1/2,1/2,1/2)) + set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 m ..m'</td>
<td>(x,x,z)</td>
<td>(u,u,w)</td>
<td>((1/2,0,1/2))</td>
<td>((1/2,1/2,1/2)) + set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 m ..m'</td>
<td>(x,x,z)</td>
<td>(u,u,w)</td>
<td>((1/2,0,1/2))</td>
<td>((1/2,1/2,1/2)) + set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 l ..m'</td>
<td>(x,y,0)</td>
<td>(0,0,0)</td>
<td>((1/2,0,1/2))</td>
<td>((1/2,1/2,1/2)) + set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 l ..m'</td>
<td>(x,y,0)</td>
<td>(0,0,0)</td>
<td>((1/2,0,1/2))</td>
<td>((1/2,1/2,1/2)) + set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 k ..2</td>
<td>(x,x+1/2,1/4)</td>
<td>(u,u,0)</td>
<td>((1/2,0,1/2))</td>
<td>((1/2,1/2,1/2)) + set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 j m2m.</td>
<td>(x,1/2,0)</td>
<td>(0,0,0)</td>
<td>((1/2,0,1/2))</td>
<td>((1/2,1/2,1/2)) + set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 i m2m.</td>
<td>(x,0,0)</td>
<td>(0,0,0)</td>
<td>((1/2,0,1/2))</td>
<td>((1/2,1/2,1/2)) + set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 h m.2'm'</td>
<td>(x,x,0)</td>
<td>(0,0,0)</td>
<td>((1/2,0,1/2))</td>
<td>((1/2,1/2,1/2)) + set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 g 2mm.</td>
<td>(1/2,0,2)</td>
<td>(0,0,0)</td>
<td>((1/2,0,1/2))</td>
<td>((1/2,1/2,1/2)) + set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 f ..2/m'</td>
<td>(1/4,1/4,1/4)</td>
<td>(0,0,0)</td>
<td>((1/2,0,1/2))</td>
<td>((1/2,1/2,1/2)) + set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>e</td>
<td>4'\text{mm}'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,\overline{z} [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>\text{\overline{4}m2}</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>\text{mmm}</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4'/\text{mmm}'</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4'/\text{mmm}'</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Origin at 0,0,z

Origin at x,0,0

Origin at x,x,1/4

Along [0,0,1] p4mm1'

\[a^* = \frac{a - b}{2} \]

\[b^* = \frac{a + b}{2} \]

Along [1,0,0] c2mm1'

\[a^* = b \]

\[b^* = c \]

Along [1,1,0] p_{2a} 2m'm'

\[a^* = -c/2 \]

\[b^* = \frac{-a + b}{2} \]
I₄/m'm'm 139.14.1192
4/mmm1' 139.14.1192
I₄/m'2/m'2/m Tetragonal

Origin at center (4'/m'm'm)

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; x ≤ y

Symmetry Operations
For (0,0,0) + set

(1) 1 (1|0,0,0)
(5) 2 0,y,0 (2|0,0,0)
(9) 1' 0,0,0 (1|0,0,0)'
(13) m' x,0,z (m'|0,0,0)'

(2) 2 0,0,z (2z|0,0,0)
(6) 2 x,0,0 (2x|0,0,0)
(10) m' x,y,0 (m'|0,0,0)'
(14) m' 0,y,z (m'|0,0,0)'

(3) 4' 0,0,z (4z|0,0,0)'
(7) 2' x,x,0 (2x|0,0,0)'
(11) 4' 0,0,z; 0,0,0 (4z|0,0,0)
(15) m x,x,z (m|0,0,0)

(4) 4' 0,0,z (4z|0,0,0)'
(8) 2' x,x,0 (2x|0,0,0)'
(12) 4' 0,0,z; 0,0,0 (4z|0,0,0)
(16) m x,x,z (m|0,0,0)
Continued

For (1/2,1/2,1/2') + set

(1) t' (1/2,1/2,1/2) (2) 2' (0,0,1/2) 1/4,1/4,z (3) 4' (0,0,1/2) 0,1/2,z (4) 4' (0,0,1/2) 1/2,0,z
(1 | 1/2,1/2,1/2') (2 | 1/2,1/2,1/2') (4 | 1/2,1/2,1/2')

(5) 2' (0,1/2,0) 1/4,y,1/4 (6) 2' (1/2,0,0) x,1/4,1/4 (7) 2 (1/2,1/2,0) x,x,1/4
(2 | 1/2,1/2,1/2') (2 | 1/2,1/2,1/2') (2 | 1/2,1/2,1/2')

(9) \(\frac{1}{2} \) 1/4,1/4,1/4 (10) n (1/2,1/2,0) x,y,z
\(\frac{1}{2} \) 1/2,1/2,1/2' \(\frac{1}{2} \) 1/2,1/2,1/2'

(13) n (1/2,0,1/2) x,1/4,z (14) n (0,1/2,1/2) 1/4,y,z (15) c' (0,0,1/2) x+1/2,x',z
(\(\frac{1}{2} \) 1/2,1/2,1/2) (\(\frac{1}{2} \) 1/2,1/2,1/2') (\(\frac{1}{2} \) 1/2,1/2,1/2')

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2') +</td>
</tr>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2') +</td>
</tr>
<tr>
<td>32 o 1</td>
<td>32 o 1</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x',y',z [u',v',w]</td>
</tr>
<tr>
<td>(3) y,x,z [v,u,w]</td>
<td>(4) y,x',z [v',u,w]</td>
</tr>
<tr>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x',y',z [u',v',w]</td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) y,x',z [v',u,w]</td>
</tr>
<tr>
<td>(9) x,y,z [u,v,w]</td>
<td>(10) x',y',z [u',v',w]</td>
</tr>
<tr>
<td>(11) y,x,z [v,u,w]</td>
<td>(12) y,x',z [v',u,w]</td>
</tr>
<tr>
<td>(13) x,y,z [u,v,w]</td>
<td>(14) x',y',z [u',v',w]</td>
</tr>
<tr>
<td>(15) y,x,z [v,u,w]</td>
<td>(16) y,x,z [v',u,w]</td>
</tr>
<tr>
<td>16 n ..m'..</td>
<td>16 n ..m'..</td>
</tr>
<tr>
<td>0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>16 m ..m</td>
<td>16 m ..m</td>
</tr>
<tr>
<td>x,x,z [u,u,0]</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>x,x,z [u,u,0]</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>16 l ..m'..</td>
<td>16 l ..m'..</td>
</tr>
<tr>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>x,y,0 [u,v,0]</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>16 k ..2</td>
<td>16 k ..2</td>
</tr>
<tr>
<td>x,x+1/2,1/4 [u,u,0]</td>
<td>x,x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td>x,x+1/2,1/4 [u,u,0]</td>
<td>x,x+1/2,1/4 [u,u,0]</td>
</tr>
<tr>
<td>8 j m'2m'..</td>
<td>8 j m'2m'..</td>
</tr>
<tr>
<td>x,1/2,0 [u,u,0]</td>
<td>x,1/2,0 [u,u,0]</td>
</tr>
<tr>
<td>x,1/2,0 [u,u,0]</td>
<td>x,1/2,0 [u,u,0]</td>
</tr>
<tr>
<td>8 i m'2m'..</td>
<td>8 i m'2m'..</td>
</tr>
<tr>
<td>x,0,0 [u,u,0]</td>
<td>x,0,0 [u,u,0]</td>
</tr>
<tr>
<td>x,0,0 [u,u,0]</td>
<td>x,0,0 [u,u,0]</td>
</tr>
<tr>
<td>8 h m'.2m</td>
<td>8 h m'.2m</td>
</tr>
<tr>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>x,x,0 [u,u,0]</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>8 g 2m'm'..</td>
<td>8 g 2m'm'..</td>
</tr>
<tr>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>0,1/2,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8 f ..2/m</td>
<td>8 f ..2/m</td>
</tr>
<tr>
<td>1/4,1/4,1/4 [u,u,0]</td>
<td>1/4,1/4,1/4 [u,u,0]</td>
</tr>
<tr>
<td>1/4,1/4,1/4 [u,u,0]</td>
<td>1/4,1/4,1/4 [u,u,0]</td>
</tr>
</tbody>
</table>

139.14.1192 - 2 - 2527
4 e 4' m'm 0,0,z [0,0,0] 0,0,z [0,0,0]
4 d 4' m'2 0,1/2,1/4 [0,0,0] 1/2,0,1/4 [0,0,0]
4 c m'm'm' 0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0]
2 b 4'/m'm'm 0,0,1/2 [0,0,0]
2 a 4'/m'm'm 0,0,0 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Operation</th>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p, 4'mm'</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>a* = (a - b)/2</td>
<td>b* = (a + b)/2</td>
<td>Origin at 0,0,z</td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>c, 2m'm'</td>
<td>x,0,0</td>
</tr>
<tr>
<td>a* = b</td>
<td>b* = c</td>
<td>Origin at x,0,0</td>
</tr>
<tr>
<td>Along [1,1,0]</td>
<td>p2mm1'</td>
<td>x,x,0</td>
</tr>
<tr>
<td>a* = (-a + b)/2</td>
<td>b* = c/2</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Origin at center (4/mm'm')

Asymmetric unit: $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad x \leq y$

Symmetry Operations

For $(0,0,0)$ + set

1. 1
 \[1(0,0,0)\]

2. $2 \cdot 0,0,z$
 \[2(2z,0,0,0)\]

3. $4^+ \cdot 0,0,z$
 \[4^+(4z,0,0,0)\]

4. $4^- \cdot 0,0,z$
 \[4^-(4z^{-1},0,0,0)\]

5. $2' \cdot 0,y,0$
 \[(2y,0,0,0)\]

6. $2' \cdot x,0,0$
 \[(2x,0,0,0)\]

7. $2' \cdot x,x,0$
 \[(2x,0,0,0)\]

8. $2' \cdot x,x,0$
 \[(2x,0,0,0)\]

9. $m' \cdot x,0,z$
 \[(m_x,0,0,0)\]

10. $m' \cdot y,z$
 \[(m_y,0,0,0)\]

11. $m' \cdot x,x,z$
 \[(m_{xy},0,0,0)\]

12. $m' \cdot x,x,z$
 \[(m_{xy},0,0,0)\]

13. $m' \cdot x,0,z$
 \[(m_x,0,0,0)\]

14. $m' \cdot y,z$
 \[(m_y,0,0,0)\]

15. $m' \cdot x,x,z$
 \[(m_{xy},0,0,0)\]

16. $m' \cdot x,x,z$
 \[(m_{xy},0,0,0)\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2') +</td>
</tr>
<tr>
<td>16</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16</td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16</td>
<td>(9) x,y,z [u,v,w]</td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16</td>
<td>(13) x,y,z [u,v,w]</td>
<td>(14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16</td>
<td>(17) x,y,z [u,v,w]</td>
<td>(18) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>(5) x,y,z [u,v,w]</td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>(9) x,y,z [u,v,w]</td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>(13) x,y,z [u,v,w]</td>
<td>(14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>8</td>
<td>(17) x,y,z [u,v,w]</td>
<td>(18) x,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

Continued

For (1/2,1/2,1/2') + set

(1) t' (1/2,1/2,1/2)
(2) 2' (0,0,1/2) 1/4,1/4,z
(3) 4' (0,0,1/2) 0,1/2,z
(4) 4' (0,0,1/2) 1/2,0,z
(5) 2 (0,1/2,0) 1/4,1/4,z
(6) 2 (1/2,0,0) 1/2,0,1/4
(7) 2 (1/2,1/2,0) 1/2,0,1/4
(8) 2 (1/2,1/2,0) 1/2,0,1/4
(9) 1' 1/2,1/2,1/2')
(10) n' (1/2,1/2,0) x,1/4,1/4
(11) 4' (1/2,0,1/2) 1/2,0,1/4
(12) 4' (1/2,1/2,0) 1/2,0,1/4
(13) n (1/2,0,1/2) x,1/4,z
(14) n (0,1/2,1/2) 1/4,y,z
(15) c (0,0,1/2) x+1/2,x,z
(16) n (1/2,1/2,1/2) x,x,z
(17) n (0,1/2,1/2) 1/4,y,z
(18) n (1/2,1/2,1/2) x,x,z

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (9).
4 e 4m'm' 0,0,z [0,0,w] 0,0,z [0,0,w]
4 d 4'm'2 0,1/2,1/4 [0,0,0] 1/2,0,1/4 [0,0,0]
4 c mm'm'. 0,1/2,0 [0,0,w] 1/2,0,0 [0,0,w]
2 b 4/mm'm' 0,0,1/2 [0,0,w]
2 a 4/mm'm' 0,0,0 [0,0,w]

Symmetry of Special Projections

Along [0,0,1] p4mm1'
\[a^* = (a - b)/2 \quad b^* = (a + b)/2\]
Origin at 0,0,z

Along [1,0,0] c_p, 2'mm'
\[a^* = -c \quad b^* = b\]
Origin at x,0,0

Along [1,1,0] p_2a, 2m'm'
\[a^* = -c/2 \quad b^* = (-a + b)/2\]
Origin at x,x,1/4
Origin at center (4/m'nm')

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{4} \; \text{and} \; x \leq y \]

Symmetry Operations

For \((0,0,0) + \text{set}\)

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1</td>
<td>((1</td>
</tr>
<tr>
<td>(2)</td>
<td>2' 0,0,z</td>
<td>((2_z</td>
</tr>
<tr>
<td>(3)</td>
<td>4' 0,0,z</td>
<td>((4_z</td>
</tr>
<tr>
<td>(4)</td>
<td>4' -1 0,0,z</td>
<td>((4_{z'}</td>
</tr>
<tr>
<td>(5)</td>
<td>2' 0,y,0</td>
<td>((2_y</td>
</tr>
<tr>
<td>(6)</td>
<td>2' x,0,0</td>
<td>((2_x</td>
</tr>
<tr>
<td>(7)</td>
<td>2 (x,x,0)</td>
<td>((2_{xx}</td>
</tr>
<tr>
<td>(8)</td>
<td>2 (x,\bar{x},0)</td>
<td>((2_{x\bar{x}}</td>
</tr>
<tr>
<td>(9)</td>
<td>(\bar{1}) 0,0,0</td>
<td>((1'</td>
</tr>
<tr>
<td>(10)</td>
<td>(m) x,y,0</td>
<td>((m_z</td>
</tr>
<tr>
<td>(11)</td>
<td>(\bar{4}) 0,0,z</td>
<td>((\bar{4}_z</td>
</tr>
<tr>
<td>(12)</td>
<td>(\bar{4}) -1 0,0,z</td>
<td>((\bar{4}_{z'}</td>
</tr>
<tr>
<td>(13)</td>
<td>m x,0,z</td>
<td>((m_x</td>
</tr>
<tr>
<td>(14)</td>
<td>m 0,y,z</td>
<td>((m_y</td>
</tr>
<tr>
<td>(15)</td>
<td>m' (x,x,z)</td>
<td>((m_{xx}</td>
</tr>
<tr>
<td>(16)</td>
<td>m' (x,\bar{x},z)</td>
<td>((m_{x\bar{x}}</td>
</tr>
</tbody>
</table>
For \((1/2,1/2,1/2)'+\) + set

\[
\begin{align*}
(1) \ t' (1/2,1/2,1/2)
(2) \ 2' (0,0,1/2) \\
(3) \ 4^+ (0,0,1/2)
(4) \ 4^+ (0,0,1/2)
\end{align*}
\]

\[
\begin{align*}
(5) \ 2 (0,1/2,0) \\
(6) \ 2 (1/2,0,0) \\
(7) \ 2' (1/2,1/2,0)
(8) \ 2' x,x+1/2,1/4
(2,1/2,1/2)'
\end{align*}
\]

\[
\begin{align*}
(9) \ \bar{1} \ 1/4,1/4,1/4 \\
(10) \ n (1/2,1/2,0) \\
(11) \ 4^+ \ 1/2,0,z; 1/2,0,1/4
(2,1/2,1/2)'
(4,z) \ 1/2,1/2,1/2)'
\end{align*}
\]

\[
\begin{align*}
(13) \ n' (1/2,0,1/2) \\
(14) \ n' (0,1/2,1/2) \\
(15) \ c (0,0,1/2) \\
(16) \ n (1/2,1/2,1/2)
\end{align*}
\]

\[
\begin{align*}
(12) \ 4^- \ 0,1/2,z; 0,1/2,1/4
(4,z) \ 1/2,1/2,1/2)'
\end{align*}
\]

\[
\begin{align*}
(13) \ x,y,z \\
(14) \ x,y,z \\
(15) \ x,y,z \\
(16) \ y,x,z
\end{align*}
\]

\[
\begin{align*}
(13) \ x,y,z \\
(14) \ x,y,z \\
(15) \ y,x,z \\
(16) \ y,x,z
\end{align*}
\]

\[
\begin{align*}
(13) \ x,y,z \\
(14) \ x,y,z \\
(15) \ y,x,z \\
(16) \ y,x,z
\end{align*}
\]

Generators selected (1); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry, Coordinates

\[
\begin{align*}
(0,0,0) + & \quad (1/2,1/2,1/2)'+ \\
32 & \ o \ 1 \\
(1) \ x,y,z [u,v,w] & \quad (2) \ x,y,z [u,v,w] \\
(5) \ x,y,z [u,v,w] & \quad (6) \ x,y,z [u,v,w] \\
(9) \ x,y,z [u,v,w] & \quad (10) \ x,y,z [u,v,w] \\
(13) \ x,y,z [u,v,w] & \quad (14) \ x,y,z [u,v,w] \\
16 & \ n \ .m. \\
(0,y,z [u,0,0] & \quad (1/y,z [0,0,0] \\
0,y,z [u,0,0] & \quad 0,y,z [0,0,0] \\
0,y,z [u,0,0] & \quad 0,y,z [0,0,0] \\
0,y,z [u,0,0] & \quad 0,y,z [0,0,0] \\
16 & \ m \ .m' \\
(x,x,z [u,u,w] & \quad (x,x,z [u,u,w] \\
(x,x,z [u,u,w] & \quad (x,x,z [u,u,w] \\
(x,x,z [u,u,w] & \quad (x,x,z [u,u,w] \\
16 & \ l \ .m' \\
(x,y,0 [u,v,0] & \quad (x,y,0 [u,v,0] \\
(x,y,0 [u,v,0] & \quad (x,y,0 [u,v,0] \\
(x,y,0 [u,v,0] & \quad (x,y,0 [u,v,0] \\
16 & \ k \ .2' \\
(x,x+1/2,1/4 [u,u,w] & \quad (x,x+1/2,1/4 [u,u,w] \\
(x,x+1/2,1/4 [u,u,w] & \quad (x,x+1/2,1/4 [u,u,w] \\
(x,x+1/2,1/4 [u,u,w] & \quad (x,x+1/2,1/4 [u,u,w] \\
8 & \ j \ m'2.m. \\
(x,1/2,0 [u,v,0] & \quad (x,1/2,0 [u,v,0] \\
(x,1/2,0 [u,v,0] & \quad (x,1/2,0 [u,v,0] \\
(x,1/2,0 [u,v,0] & \quad (x,1/2,0 [u,v,0] \\
8 & \ i \ m'2.m. \\
(x,0,0 [v,0,0] & \quad (x,0,0 [v,0,0] \\
(x,0,0 [v,0,0] & \quad (x,0,0 [v,0,0] \\
(x,0,0 [v,0,0] & \quad (x,0,0 [v,0,0] \\
8 & \ h \ m'.2m' \\
(x,x,0 [u,u,0] & \quad (x,x,0 [u,u,0] \\
(x,x,0 [u,u,0] & \quad (x,x,0 [u,u,0] \\
(x,x,0 [u,u,0] & \quad (x,x,0 [u,u,0] \\
8 & \ g \ 2mm. \\
(0,1/2,z [0,0,0] & \quad (0,1/2,z [0,0,0] \\
(0,1/2,z [0,0,0] & \quad (0,1/2,z [0,0,0] \\
(0,1/2,z [0,0,0] & \quad (0,1/2,z [0,0,0] \\
8 & \ f \ .2'/m' \\
3/4,1/4,1/4 [u,u,0] & \quad 3/4,1/4,1/4 [u,u,0] \\
3/4,1/4,1/4 [u,u,0] & \quad 3/4,1/4,1/4 [u,u,0] \\
3/4,1/4,1/4 [u,u,0] & \quad 3/4,1/4,1/4 [u,u,0]
\end{align*}
\]

139.16.1194 - 2 - 2533
Symmetry of Special Projections

Along \([0,0,1]\) \(p_{\rho}, 4'm'm\)
\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]
Origin at 0,0,z

Along \([1,0,0]\) \(c2mm1'\)
\[a^* = b \quad b^* = c \]
Origin at x,0,0

Along \([1,1,0]\) \(p_{2\alpha}, 2m'm'\)
\[a^* = -c/2 \quad b^* = (a + b)/2 \]
Origin at x,x,0
Origin at center (4/m'm'm')

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; x ≤ y

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1|0,0,0)

(5) 2 0,y,0
 (2|0,0,0)

(9) 1' 0,0,0
 (1'|0,0,0)'

(13) m' x,0,z
 (m'|0,0,0)'

(2) 2 0,0,z
 (2z|0,0,0)

(6) 2 x,0,0
 (2z|0,0,0)

(10) m' x,y,0
 (m|0,0,0)'

(11) 4' 0,0,z
 (4z|0,0,0)

(15) m' x,x,z
 (mxy|0,0,0)'

(3) 4' 0,0,z
 (4z|0,0,0)

(7) 2 x,x,0
 (2xy|0,0,0)

(11) 4' 0,0,z
 (4z|0,0,0)'

(15) m' x,x,z
 (mxy|0,0,0)'

(4) 4' 0,0,z
 (4z|0,0,0)

(8) 2 x,x,0
 (2xy|0,0,0)

(12) 4' 0,0,z
 (4z|0,0,0)'

(16) m' x,x,z
 (mxy|0,0,0)'
Continued

For (1/2,1/2,1/2)' + set

(1) t' (1/2,1/2,1/2)
 1/4,1/4,z
(1,1/2,1/2,1/2)

(2) 2' (0,0,1/2)
 1/4,1/4,z
(2,1/2,1/2,1/2)

(3) 4' (0,0,1/2)
 0,1/2,z
(4,1/2,1/2,1/2)

(4) 4' (0,0,1/2)
 1/2,0,z
(4,1/2,1/2,1/2)

(5) 2' (0,1/2,0)
 1/4,y,1/4
(2,1/2,1/2,1/2)

(6) 2' (1/2,1/2,0)
 x,1/4,1/4
(2,1/2,1/2,1/2)

(7) 2' (1/2,1/2,0)
 x,x,1/4
(2,1/2,1/2,1/2)

(8) 2' x,x+1/2,1/4
(2,1/2,1/2,1/2)

(9) T 1/4,1/4,1/4
(1/2,1/2,1/2)

(10) n' (1/2,1/2,1/2)
 x,x,z
(1/2,1/2,1/2)

(11) 4' (0,0,1/2)
 1/2,0,z
(4,1/2,1/2,1/2)

(12) 4' 1/2,0,z; 1/2,0,1/4
(4,1/2,1/2,1/2)

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>32 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>16 n .m'</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>16 m .m'</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>16 l .m'</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>16 k .2'</td>
<td>x,x+1/2,1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,1/4 [u,u,w]</td>
</tr>
<tr>
<td>8 j .m'2m'</td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>8 i .m'2m'</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>8 h .m'2m'</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>8 g 2m'm'</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 f .2'm'</td>
<td>1/4,1/4,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,3/4,1/4 [u,u,0]</td>
</tr>
</tbody>
</table>

139.17.1195 - 2 - 2536
Symmetry of Special Projections

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>e</td>
<td>4/m'm'm'</td>
<td>0,0,z</td>
<td>[0,0,w]</td>
<td>0,0,z</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>4/m'2'</td>
<td>0,1/2,1/4</td>
<td>[0,0,w]</td>
<td>1/2,0,1/4</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>m'm'm'.</td>
<td>0,1/2,0</td>
<td>[0,0,0]</td>
<td>1/2,0,0</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>4/m'm'm'</td>
<td>0,0,1/2</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4/m'm'm'</td>
<td>0,0,0</td>
<td>[0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** p4/m'm'
 - \(a^* = \frac{a - b}{2}\)
 - \(b^* = \frac{a + b}{2}\)
 - Origin at 0,0,z

- **Along [1,0,0]** c_p 2m'm'
 - \(a^* = b\)
 - \(b^* = c\)
 - Origin at x,0,0

- **Along [1,1,0]** p_2a_2 2m'm'
 - \(a^* = -\frac{c}{2}\)
 - \(b^* = -\frac{a + b}{2}\)
 - Origin at x,x,0
Origin

Origin at center (4/m) at 4/mc₂/c

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{4}; \quad y \leq \frac{1}{2} - x \]

Symmetry Operations

For \((0,0,0) + \) set

<table>
<thead>
<tr>
<th>Index</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4⁺⁺ 0,0,z</td>
</tr>
<tr>
<td>4</td>
<td>4⁻⁻ 0,0,z</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>m</td>
</tr>
<tr>
<td>11</td>
<td>4⁺⁺ 0,0,z</td>
</tr>
<tr>
<td>12</td>
<td>4⁻⁻ 0,0,z</td>
</tr>
<tr>
<td>13</td>
<td>c</td>
</tr>
<tr>
<td>14</td>
<td>c</td>
</tr>
<tr>
<td>15</td>
<td>c</td>
</tr>
<tr>
<td>16</td>
<td>c</td>
</tr>
</tbody>
</table>

Diagram

[Diagram showing the crystal structure with symmetry operations indicated]
Continued

For $(1/2,1/2,1/2) + \text{ set}$

<table>
<thead>
<tr>
<th>(1) t $(1/2,1/2,1/2)$</th>
<th>(2) 2 $(0,0,1/2)$</th>
<th>1/4,1/4,z</th>
<th>(3) 4^+ $(0,0,1/2)$</th>
<th>0,1/2,z</th>
<th>(4) 4^- $(0,0,1/2)$</th>
<th>1/2,0,z</th>
<th>(4) z^{-1}</th>
<th>1/2,1,2,1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1/2,1/2,1/2)$</td>
<td>$(2,1/2,1/2,1/2)$</td>
<td></td>
<td>$(3,1/2,1/2,1/2)$</td>
<td></td>
<td>$(4,1/2,1/2,1/2)$</td>
<td></td>
<td>$(4,1/2,1/2,1/2)$</td>
<td></td>
</tr>
</tbody>
</table>

| (5) 2 $(0,1/2,0)$ | 1/4,y,0 | | (6) 2 $(1/2,0,0)$ | x,1/4,0 | (7) 2 $(1/2,1/2,0)$ | x,x,0 | (8) $2 \bar{x},\bar{x}+1/2,0$ | |
| $(2,1/2,1/2,0)$ | $(2,1/2,1/2,0)$ | | $(2,1/2,1/2,0)$ | | $(2,1/2,1/2,0)$ | | $(2,1/2,1/2,0)$ | |

| (9) Γ 1/4,1,4/4 | (10) n $(1/2,1/2,0)$ | x,y,1/4 | (11) 4^+ 1/2,0,z | 1/2,0,1/4 | (12) 4^- 0,1/2,z | 0,1/2,1/4 | (4) z^{-1} | 1/2,1,2,1/2 |
| $1/2,1,2,1/2$ | $(m,1/2,1,2,1/2)$| | $(4,1/2,1,2,1/2)$| | $(4,1/2,1,2,1/2)$| | $(4,1/2,1,2,1/2)$| |

| (13) a $(1/2,0,0)$ | x,1/4,z | | (14) b $(0,1/2,0)$ | 1/4,y,z | (15) m x+1/2, x,z | | (16) g $(1/2,1/2,0)$ | x,x,z |
| $(m,1/2,1,2,0)$ | $(m,1/2,1,2,0)$ | | $(m,1/2,1,2,0)$ | | $(m,1/2,1,2,0)$ | | $(m,1/2,1,2,0)$ | |

Generators selected

$(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1,2,1/2); (2); (3); (5); (9).$

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>m 1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>l m..</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>k m..</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>j .2</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>i .2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>h m.2m</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>g 2.mm</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>f 4..</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>e .2/m</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>d m.mm</td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th></th>
<th>(0,0,0) +</th>
<th>(1/2,1/2,1/2) +</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(2) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(3) y,x,z [v,u,w]</td>
<td>y,x,z [v,u,w]</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(4) y,x,z [v,u,w]</td>
<td>y,x,z [v,u,w]</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(5) x,y,z+1/2 [u,v,w]</td>
<td>x,y,z+1/2 [u,v,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(6) x,y,z+1/2 [u,v,w]</td>
<td>x,y,z+1/2 [u,v,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(7) y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(8) y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(9) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(10) x,y,z [u,v,w]</td>
<td>x,y,z [u,v,w]</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(11) y,x,z [v,u,w]</td>
<td>y,x,z [v,u,w]</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(12) y,x,z [v,u,w]</td>
<td>y,x,z [v,u,w]</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(13) x,y,z+1/2 [u,v,w]</td>
<td>x,y,z+1/2 [u,v,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(14) x,y,z+1/2 [u,v,w]</td>
<td>x,y,z+1/2 [u,v,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(15) y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(16) y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(17) x,y,z+1/2 [u,v,w]</td>
<td>x,y,z+1/2 [u,v,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(18) x,y,z+1/2 [u,v,w]</td>
<td>x,y,z+1/2 [u,v,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(19) y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(20) y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(21) x,y,z+1/2 [u,v,w]</td>
<td>x,y,z+1/2 [u,v,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(22) x,y,z+1/2 [u,v,w]</td>
<td>x,y,z+1/2 [u,v,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(23) y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(24) y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(25) x,y,z+1/2 [u,v,w]</td>
<td>x,y,z+1/2 [u,v,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(26) x,y,z+1/2 [u,v,w]</td>
<td>x,y,z+1/2 [u,v,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(27) y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(28) y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(29) x,y,z+1/2 [u,v,w]</td>
<td>x,y,z+1/2 [u,v,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(30) x,y,z+1/2 [u,v,w]</td>
<td>x,y,z+1/2 [u,v,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(31) y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(32) y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
</tbody>
</table>

Wyckoff letter, Site Symmetry.
Continued

4	c	4/m..	0,0,0 [0,0,w]	0,0,1/2 [0,0,w]
4	b	42m	0,1/2,1/4 [0,0,0]	1/2,0,1/4 [0,0,0]
4	a	422	0,0,1/4 [0,0,0]	0,0,3/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm1'
\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]
Origin at 0,0,z

Along [1,0,0] p_a2mm
\[a^* = b/2 \quad b^* = c/2 \]
Origin at x,1/4,0

Along [1,1,0] p2mm1'
\[a^* = (-a + b)/2 \quad b^* = c/2 \]
Origin at x,x,0
Origin at center (4/m1') at 4/mc21/c1'

Asymmetric unit

\[0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/4; \quad y < 1/2 - x \]

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. \((1) 1\)

2. \((2) z, 0, 0, 0\)

3. \((3) 4^+ z, 0, 0, 0\)

4. \((4) 4^- z, 0, 0, 0\)

5. \((5) 2 z, 0, 0, 0\)

6. \((6) 2 z, 0, 0, 0\)

7. \((7) 2 z, 0, 0, 0\)

8. \((8) 2 z, 0, 0, 0\)

9. \((9) 2 y, 0, 0, 0\)

10. \((10) 2 y, 0, 0, 0\)

11. \((11) 2 y, 0, 0, 0\)

12. \((12) 2 y, 0, 0, 0\)

13. \((13) c x, 0, 0, 0\)

14. \((14) c x, 0, 0, 0\)

15. \((15) c x, 0, 0, 0\)

16. \((16) c x, 0, 0, 0\)
Continued

For \((1/2,1/2,1/2) +\) set

\[
\begin{align*}
(1) & \ t (1/2,1/2,1/2) \\
(1) & \ t (1/2,1/2,1/2) \\
(2) & \ 2 (0,0,1/2) \ 1/4,1/4,z \\
(2) & \ 2 (0,0,1/2) \ 1/4,1/4,z \\
(3) & \ 4^+ (0,0,1/2) \ 0,1/2,z \\
(4) & \ 4^+ (0,0,1/2) \ 1/2,0,z \\
(4) & \ 4^- (0,0,1/2) \ 1/2,0,z \\
(4) & \ 4^- (0,0,1/2) \ 1/2,0,z \\
(5) & \ 2 (0,1/2,0) \ 1/4,y,0 \\
(2) & \ 2 (1/2,1/2,0) \ x,1/4,0 \\
(2) & \ 2 (1/2,1/2,0) \ x,1/4,0 \\
(6) & \ 2 (1/2,1/2,0) \ x,1/4,0 \\
(7) & \ 2 (1/2,1/2,0) \ x,x,0 \\
(2) & \ 2 (1/2,1/2,0) \ x,x,0 \\
(8) & \ 2 \ x,x+1/2,0 \\
(2) & \ 2 \ x,x+1/2,0 \\
(9) & \ \bar{T} 1/4,1/4,1/4 \\
(T) & \ \bar{T} 1/2,1/2,1/2 \\
(10) & \ n (1/2,1/2,0) \ x,y,0 \\
(11) & \ 4^- 1/2,0,1/4 ; 1/2,0,1/4 \\
(4) & \ 4^- z 1/2,1/2,1/2 \\
(12) & \ 4^- 0,1/2,z ; 0,1/2,1/4 \\
(4) & \ 4^- z 1/2,1/2,1/2 \\
(13) & \ a (1/2,0,0) \ x,1/4,z \\
(m) & \ a (1/2,0,0) \ x,1/4,z \\
(14) & \ b (0,1/2,0) \ 1/4,y,0 \\
(15) & \ m \ x+1/2,x,z \\
(16) & \ g (1/2,1/2,0) \ x,x,z \\
(17) & \ m (1/2,1/2,0) \ x,x,z \\
\end{align*}
\]

For \((0,0,0)' +\) set

\[
\begin{align*}
(1) & \ t' (1/2,1/2,1/2) \\
(1) & \ t' (1/2,1/2,1/2) \\
(2) & \ 2' (0,0,0)' \ 1/4,1/4,z \\
(2) & \ 2' (0,0,0)' \ 1/4,1/4,z \\
(3) & \ 4^+ (0,0,0)' \ 0,1/2,z \\
(4) & \ 4^+ (0,0,0)' \ 1/2,0,z \\
(4) & \ 4^+ (0,0,0)' \ 1/2,0,z \\
(5) & \ 2' (0,1/2,0) \ 1/4,y,0 \\
(2) & \ 2' (1/2,1/2,0) \ x,1/4,0 \\
(2) & \ 2' (1/2,1/2,0) \ x,1/4,0 \\
(6) & \ 2' (1/2,1/2,0) \ x,1/4,0 \\
(7) & \ 2' (1/2,1/2,0) \ x,x,0 \\
(2) & \ 2' (1/2,1/2,0) \ x,x,0 \\
(8) & \ 2' \ x,x+1/2,0 \\
(2) & \ 2' \ x,x+1/2,0 \\
(9) & \ \bar{T} 1/4,1/4,1/4 \\
(T) & \ \bar{T} 1/2,1/2,1/2 \\
(10) & \ n' (1/2,1/2,0) \ x,y,0 \\
(11) & \ 4^- 1/2,0,1/4 ; 1/2,0,1/4 \\
(4) & \ 4^- z 1/2,1/2,1/2 \\
(12) & \ 4^- 0,1/2,z ; 0,1/2,1/4 \\
(4) & \ 4^- z 1/2,1/2,1/2 \\
(13) & \ a' (1/2,0,0) \ x,1/4,z \\
(m) & \ a' (1/2,0,0) \ x,1/4,z \\
(14) & \ b' (0,1/2,0) \ 1/4,y,0 \\
(15) & \ m' \ x+1/2,x,z \\
(16) & \ g' (1/2,1/2,0) \ x,x,z \\
(17) & \ m (1/2,1/2,0) \ x,x,z \\
\end{align*}
\]

For \((1/2,1/2,1/2)' +\) set

\[
\begin{align*}
(1) & \ t' (1/2,1/2,1/2) \\
(1) & \ t' (1/2,1/2,1/2) \\
(2) & \ 2' (0,0,1/2) \ 1/4,1/4,z \\
(2) & \ 2' (0,0,1/2) \ 1/4,1/4,z \\
(3) & \ 4^+ (0,0,1/2) \ 0,1/2,z \\
(4) & \ 4^+ (0,0,1/2) \ 1/2,0,z \\
(4) & \ 4^+ (0,0,1/2) \ 1/2,0,z \\
(5) & \ 2' (0,1/2,0) \ 1/4,y,0 \\
(2) & \ 2' (1/2,1/2,0) \ x,1/4,0 \\
(2) & \ 2' (1/2,1/2,0) \ x,1/4,0 \\
(6) & \ 2' (1/2,1/2,0) \ x,1/4,0 \\
(7) & \ 2' (1/2,1/2,0) \ x,x,0 \\
(2) & \ 2' (1/2,1/2,0) \ x,x,0 \\
(8) & \ 2' \ x,x+1/2,0 \\
(2) & \ 2' \ x,x+1/2,0 \\
(9) & \ \bar{T} 1/4,1/4,1/4 \\
(T) & \ \bar{T} 1/2,1/2,1/2 \\
(10) & \ n' (1/2,1/2,0) \ x,y,0 \\
(11) & \ 4^- 1/2,0,1/4 ; 1/2,0,1/4 \\
(4) & \ 4^- z 1/2,1/2,1/2 \\
(12) & \ 4^- 0,1/2,z ; 0,1/2,1/4 \\
(4) & \ 4^- z 1/2,1/2,1/2 \\
(13) & \ a' (1/2,0,0) \ x,1/4,z \\
(m) & \ a' (1/2,0,0) \ x,1/4,z \\
(14) & \ b' (0,1/2,0) \ 1/4,y,0 \\
(15) & \ m' \ x+1/2,x,z \\
(16) & \ g' (1/2,1/2,0) \ x,x,z \\
(17) & \ m (1/2,1/2,0) \ x,x,z \\
\end{align*}
\]

Generators selected

\((1); \ t(1,0,0); \ t(0,1,0); \ t(0,0,1); \ t(1/2,1/2,1/2); (2); (3); (5); (9); 1'\)

Positions

\[
\begin{align*}
\text{Multiplicity,} & \quad \text{Wyckoff letter,} \\
\text{Site Symmetry.} & \quad \text{Coordinates}
\end{align*}
\]

\[
\begin{align*}
(0,0,0) + & \quad (1/2,1/2,1/2) + \\
(0,0,0)' + & \quad (1/2,1/2,1/2)' +
\end{align*}
\]
32 m 11' (1) x,y,z [0,0,0] (2) x̅,y̅,z [0,0,0] (3) y,x,z [0,0,0] (4) y̅,x̅,z [0,0,0]
 (5) x̅,y̅,z+1/2 [0,0,0] (6) x̅,y̅,z+1/2 [0,0,0] (7) y,x̅,z+1/2 [0,0,0] (8) y̅,x̅,z+1/2 [0,0,0]
 (9) x̅,y̅,z [0,0,0] (10) x,y,z [0,0,0] (11) y,x̅,z [0,0,0] (12) y̅,x̅,z [0,0,0]
 (13) x̅,y̅,z+1/2 [0,0,0] (14) x̅,y̅,z+1/2 [0,0,0] (15) y,x̅,z+1/2 [0,0,0] (16) y,x,0,0,0)

16 l ..m1' x,x+1/2,z [0,0,0] x̅,x+1/2,z [0,0,0] x̅+1/2,x,z [0,0,0] x̅+1/2,x̅,z [0,0,0]
 x̅,x+1/2,z+1/2 [0,0,0] x,x+1/2,z+1/2 [0,0,0] x+1/2,x,z+1/2 [0,0,0] x+1/2,x̅,z+1/2 [0,0,0]

16 k m..1' x,y,0 [0,0,0] x̅,y,0 [0,0,0] y,x̅,0 [0,0,0] y̅,x̅,0 [0,0,0]
 x̅,y,1/2 [0,0,0] x,y,1/2 [0,0,0] y,x,1/2 [0,0,0] y̅,x̅,1/2 [0,0,0]

16 j ..2.1' x,0,1/4 [0,0,0] x̅,0,1/4 [0,0,0] 0,x,1/4 [0,0,0] 0,x,1/4 [0,0,0]
 x̅,0,3/4 [0,0,0] x,0,3/4 [0,0,0] 0,x̅,3/4 [0,0,0] 0,x,3/4 [0,0,0]

16 i ..21' x,x,1/4 [0,0,0] x̅,x,1/4 [0,0,0] x̅,x,1/4 [0,0,0] x,x,1/4 [0,0,0]
 x̅,x̅,3/4 [0,0,0] x,x̅,3/4 [0,0,0] x,x̅,3/4 [0,0,0] x,x,3/4 [0,0,0]

8 h m.2m1' x,x+1/2,0 [0,0,0] x̅,x+1/2,0 [0,0,0] x+1/2,x̅,0 [0,0,0] x+1/2,x,0 [0,0,0]

8 g 2.mm1' 0,1/2,z [0,0,0] 1/2,0,z [0,0,0] 0,1/2,z̅+1/2 [0,0,0] 1/2,0,z̅+1/2 [0,0,0]

8 f 4..1' 0,0,z [0,0,0] 0,0,z+1/2 [0,0,0] 0,0,z [0,0,0] 0,0,z+1/2 [0,0,0]

8 e ..2/m1' 1/4,1/4,1/4 [0,0,0] 3/4,3/4,1/4 [0,0,0] 3/4,1/4,1/4 [0,0,0] 1/4,3/4,1/4 [0,0,0]

4 d m.mm1' 0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0]

4 c 4/m..1' 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]

4 b 42m1' 0,1/2,1/4 [0,0,0] 1/2,0,1/4 [0,0,0]

4 a 4221' 0,0,1/4 [0,0,0] 0,0,3/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm1' a* = (a - b)/2 b* = (a + b)/2
Origin at 0,0,z

Along [1,0,0] p2mm1' a* = b/2 b* = c/2
Origin at x,0,0

Along [1,1,0] p2mm1' a* = -(a + b)/2 b* = c/2
Origin at x,x,0

140.2.1197 - 3 - 2543
I4/m'cm
140.3.1198

4/m'nm
I4/m'2'/c2'/m

Tetragonal

Origin at center (4/m') at 4/m'c2'/c

Asymmetric unit
0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad y < 1/2 - x

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(5) 2’ 0,y,1/4
(2z | 0,0,1/2)’

(9) 1’ 0,0,0
(1 | 0,0,0)’

(13) c (0,0,1/2) x,0,z
(mz | 0,0,1/2)

(2) 2 0,0,z
(2z | 0,0,0)

(6) 2’ x,0,1/4
(2z | 0,0,1/2)’

(10) m’ x,y,0
(mz | 0,0,0)’

(14) c (0,0,1/2) 0,y,z
(mz | 0,0,1/2)

(3) 4’ 0,0,z
(4z | 0,0,0)

(7) 2’ x,x,1/4
(2xy | 0,0,1/2)’

(11) 4’ 0,0,z; 0,0,0
(4z | 0,0,0)’

(12) 4’ 0,0,0; 0,0,0
(4z | 0,0,0)’

(4) 4’ 0,0,z
(4z | 0,0,0)

(8) 2’ x,x,1/4
(2xy | 0,0,1/2)’

(15) c (0,0,1/2) x,x,z
(mxy | 0,0,1/2)

(16) c (0,0,1/2) x,x,z
(mxy | 0,0,1/2)
Continued

For (1/2,1/2,1/2) + set

<table>
<thead>
<tr>
<th>Positions selected</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t (1/2,1/2,1/2)</td>
<td>(0,0,0) + (1/2,1/2,1/2)</td>
</tr>
<tr>
<td>(2) 2' 0,0,1/2</td>
<td>1/4,1/4,z</td>
</tr>
<tr>
<td>(3) 4' 0,0,1/2</td>
<td>0,1/2,z</td>
</tr>
<tr>
<td>(4) 4' 0,0,1/2</td>
<td>1/2,0,z</td>
</tr>
<tr>
<td>(5) 2' 0,1/2,0</td>
<td>1/4,y,0</td>
</tr>
<tr>
<td>(6) 2' 1/2,0,0</td>
<td>x,1/4,0</td>
</tr>
<tr>
<td>(7) 2' 1/2,1/2,0</td>
<td>x,0,0</td>
</tr>
<tr>
<td>(8) 2' x,x+1/2,0</td>
<td></td>
</tr>
<tr>
<td>(9) 1/4,1/4,1/4</td>
<td>(10) n' 1/2,1/2,0</td>
</tr>
<tr>
<td>(11) 4' 1/2,0,0, z</td>
<td>1/2,0,1/4</td>
</tr>
<tr>
<td>(12) 4' 0,1/2,0, z</td>
<td>0,1/2,1/2</td>
</tr>
<tr>
<td>(13) a 1/2,0,0</td>
<td>x,1/4,z</td>
</tr>
<tr>
<td>(14) b 0,1/2,0</td>
<td>1/4,y,z</td>
</tr>
<tr>
<td>(15) m</td>
<td>x+1/2,x,z</td>
</tr>
<tr>
<td>(16) g 1/2,1/2,0</td>
<td>x,x,z</td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).

Multiplicities:

<table>
<thead>
<tr>
<th>Generators</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>m 1</td>
<td>32</td>
</tr>
<tr>
<td>m'..</td>
<td>16</td>
</tr>
<tr>
<td>h m'..2'm</td>
<td>8</td>
</tr>
<tr>
<td>g 2.mm</td>
<td>8</td>
</tr>
<tr>
<td>f 4..</td>
<td>8</td>
</tr>
<tr>
<td>e ..2'm</td>
<td>8</td>
</tr>
<tr>
<td>d m.mm</td>
<td>4</td>
</tr>
</tbody>
</table>

Wyckoff letter, Site Symmetry, Coordinates.
4 c 4/m'.. 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]
4 b 4'2'm 0,1/2,1/4 [0,0,0] 1/2,0,1/4 [0,0,0]
4 a 42'2' 0,0,1/4 [0,0,w] 0,0,3/4 [0,0,w]

Symmetry of Special Projections

Along [0,0,1] p4mm1' Along [1,0,0] p2m.. Along [1,1,0] p2mm1'
\(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \) \(a^* = (-a + b)/2 \) \(b^* = c/2 \)
Origin at 0,0,z Origin at 1/4,1/4 Origin at x,x,0
Origin at center (4/m) at 4/mc'2/c

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; y ≤ 1/2 - x

Symmetry Operations

For (0,0,0) + set

1. 1
 (1 | 0,0,0)

2. 2 0,0,z
 (2z | 0,0,0)

3. 4' 0,0,z
 (4z | 0,0,0)

4. 4 0,0,z
 (4z | 0,0,0)

5. 2' 0,y,1/4
 (2' | 0,0,1/2)

6. 2' x,0,1/4
 (2' | 0,0,1/2)

7. 2 x,y,1/4
 (2 | 0,0,1/2)

8. 2 x,y,1/4
 (2 | 0,0,1/2)

9. 1 0,0,0
 (1 | 0,0,0)

10. m x,y,0
 (mz | 0,0,0)

11. 4' 0,0,z; 0,0,0
 (4z | 0,0,0)

12. 4' 0,0,z; 0,0,0
 (4z | 0,0,0)

13. c' (0,0,1/2) x,0,z
 (m | 0,0,1/2)

14. c' (0,0,1/2) 0,y,z
 (m | 0,0,1/2)

15. c (0,0,1/2) x,0,z
 (mxy | 0,0,1/2)

16. c (0,0,1/2) x,0,z
 (mxy | 0,0,1/2)
For \((1/2,1/2,1/2) + \) set

\[
\begin{align*}
(1) \ t (1/2,1/2,1/2) & (2) \ 2 (0,0,1/2) 1/4,1/4,z \\
(1/2,1/2,1/2) & (2) \ 1/2,1/2,1/2) \\
(1) \ t (1/2,1/2,1/2) & (3) \ 4^+ \ (0,0,1/2) 0,1/2,z \\
(2) \ 1/2,1/2,1/2) & (4) \ 4^+ \ (0,0,1/2) 1/2,0,z \\
(2) \ 1/2,1/2,1/2) & (4) \ 1/2,1/2,1/2) \\
(5) \ 2^* (0,1/2,0) 1/4,y,0 & (6) \ 2^* (1/2,0,0) x,1/4,0 \\
(2) \ 1/2,1/2,0) & (7) \ 2 (1/2,1/2,0) x,x,0 \\
(2) \ 1/2,1/2,0) & (8) \ 2 x,x+1/2,0 \\
(2) \ 1/2,1/2,0) & (2) \ 1/2,1/2,0) \\
(9) \ 1/4,1/4,1/4 & (10) \ 1/4,1/4,1/4 \\
(1/2,1/2,1/2) & (11) \ 1/2,0,1/4 \\
(1/2,1/2,1/2) & (12) \ 1/2,0,1/4 \\
(4) \ 1/2,1/2,1/2) & (4) \ 1/2,1/2,1/2) \\
(4) \ 1/2,1/2,1/2) & (4) \ 1/2,1/2,1/2) \\
(13) \ a^* (1/2,0,0) x,1/4,z & (14) \ b^* (0,1/2,0) 1/4,y,z \\
(m) \ 1/2,1/2,0) & (15) \ m x+1/2,x,z \\
(m) \ 1/2,1/2,0) & (16) \ g (1/2,1/2,0) x,x,z \\
(m) \ 1/2,1/2,0) & (m) \ 1/2,1/2,0) \\
\end{align*}
\]

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 m 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z+1/2 [u,v,w]</td>
<td>(6) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z+1/2 [u,v,w]</td>
<td>(14) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>16 l ..m</td>
<td>x,x+1/2,z [u,u,0]</td>
<td>x,x+1/2,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,z [u,u,0]</td>
<td>x+1/2,x,z [u,u,0]</td>
</tr>
<tr>
<td>16 k m..</td>
<td>x,y,0 [0,0,w]</td>
<td>x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [0,0,w]</td>
<td>y,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>16 j ..2'</td>
<td>x,0,1/4 [0,v,w]</td>
<td>x,0,1/4 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,3/4 [0,v,w]</td>
<td>x,0,3/4 [0,v,w]</td>
</tr>
<tr>
<td>16 i ..2</td>
<td>x,x,1/4 [u,u,0]</td>
<td>x,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [u,u,0]</td>
<td>x,x,3/4 [u,u,0]</td>
</tr>
<tr>
<td>8 h m.2m</td>
<td>x,x,1/2,0 [0,0,0]</td>
<td>x,x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+1/2,0 [0,0,0]</td>
<td>x+1/2,x,0 [0,0,0]</td>
</tr>
<tr>
<td>8 g 2.mm</td>
<td>0,1/2,z [0,0,0]</td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>8 f ..4'</td>
<td>0,0,3 [0,0,0]</td>
<td>0,0,3 [0,0,0]</td>
</tr>
<tr>
<td>8 e ..2/m</td>
<td>1/4,1/4,1/4 [u,u,0]</td>
<td>3/4,3/4,1/4 [u,u,0]</td>
</tr>
<tr>
<td>4 d m.mm</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along $[0,0,1]$ $p4'm'm'$

$\mathbf{a}^* = \frac{\mathbf{a} - \mathbf{b}}{2}$
$\mathbf{b}^* = \frac{\mathbf{a} + \mathbf{b}}{2}$

Origin at 0,0,z

Along $[1,0,0]$ $p2m'm'$

$\mathbf{a}^* = \frac{\mathbf{b}}{2}$
$\mathbf{b}^* = \frac{\mathbf{c}}{2}$

Origin at x,0,0

Along $[1,1,0]$ $p2mm'1'$

$\mathbf{a}^* = \frac{-\mathbf{a} + \mathbf{b}}{2}$
$\mathbf{b}^* = \frac{\mathbf{c}}{2}$

Origin at x,x,0
I4'/mcm'
140.5.1200

I4'/mmm'
4'/m2/c2'/m'

Tetragonal

Origin at center (4'/m) at 4'/mc21'/c'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; y ≤ 1/2 - x

Symmetry Operations

For (0,0,0) + set

1. 1 (1) 1 0,0,0
2. 2 0,0,z (2) 2 0,0,0 (2z 0,0,0)
3. 4' 0,0,z (3) 4 0,0,0' (4 0,0,0')
4. 4' 0,0,z (4 0,0,0') (4 0,0,0)
5. 2 0,y,1/4 (5) 2 0,0,1/2 (2z 0,0,1/2)
6. 2' x,0,1/4 (6) 2 0,0,1/2 (2z 0,0,1/2)
7. 2' x,x,1/4 (7) 2' 0,0,1/2 (2z 0,0,1/2)
8. 2' x,x,1/4 (8) 2' 0,0,1/2 (2z 0,0,1/2)
9. 0,0,0 (9) 0,0,0 (1 0,0,0)
10. m x,y,0 (10) m 0,0,0 (mz 0,0,0)
11. 4' 0,0,z; 0,0,0 (11) 4' 0,0,0' (4'z 0,0,0')
12. 4' 0,0,z; 0,0,0 (12) 4' 0,0,0' (4'z 0,0,0')
13. c (0,0,1/2) x,0,z (m 0,0,1/2)
14. c (0,0,1/2) 0,y,z (m 0,0,1/2)
15. c' (0,0,1/2) x,x,z (m 0,0,1/2)
16. c' (0,0,1/2) x,x,z (m 0,0,1/2)
Continued

For \((1/2,1/2,1/2) + \text{ set}\)

<table>
<thead>
<tr>
<th>Positions selected</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1; t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9)).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generators</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (x, \bar{y}, \bar{z}, [u, v, w])</td>
<td>32 (m) (1)</td>
</tr>
<tr>
<td>(2) (\bar{x}, \bar{y}, \bar{z}, [\bar{u}, \bar{v}, \bar{w}])</td>
<td>(1, x, y, z, [u, v, w])</td>
</tr>
<tr>
<td>(3) (\bar{y}, x, z, [v, u, w])</td>
<td>(1/2,1/2,1/2, z)</td>
</tr>
<tr>
<td>(4) (\bar{y}, \bar{x}, \bar{z}, [v, u, w])</td>
<td>(0, 0, 0, z+1/2)</td>
</tr>
<tr>
<td>(5) (x, \bar{y}, z+1/2, [u, v, w])</td>
<td>(x, y, 0, [0, 0, w])</td>
</tr>
<tr>
<td>(6) (x, \bar{y}, z+1/2, [u, v, w])</td>
<td>(x, y, 1/2, [0, 0, w])</td>
</tr>
<tr>
<td>(7) (x, y, x, 1/2, [0, 0, w])</td>
<td>(y, x, z, [v, u, w])</td>
</tr>
<tr>
<td>(8) (x, y, x, 1/2, [0, 0, w])</td>
<td>(y, x, 1/2, [0, 0, w])</td>
</tr>
<tr>
<td>(9) (x, y, z, [u, v, w])</td>
<td>(x, 0, 1/4, [u, 0, 0])</td>
</tr>
<tr>
<td>(10) (x, y, z, [u, v, w])</td>
<td>(x, 0, 3/4, [u, 0, 0])</td>
</tr>
<tr>
<td>(11) (x, y, x, 1/4, [u, 0, 0])</td>
<td>(x, 3/4, [u, 0, 0])</td>
</tr>
<tr>
<td>(12) (x, y, z, [v, u, w])</td>
<td>(x, x, 1/4, [u, u, w])</td>
</tr>
<tr>
<td>(13) (x, y, z+1/2, [v, u, w])</td>
<td>(x, x, 1/4, [u, u, w])</td>
</tr>
<tr>
<td>(14) (x, y, z+1/2, [v, u, w])</td>
<td>(x, x, 3/4, [u, u, w])</td>
</tr>
<tr>
<td>(15) (x, y, x, 1/2, [v, u, w])</td>
<td>(x, x, 3/4, [u, u, w])</td>
</tr>
<tr>
<td>(16) (x, y, z, [v, u, w])</td>
<td>(x, x, 1/4, [u, u, w])</td>
</tr>
<tr>
<td>(17) (x, y, x, 1/2, [v, u, w])</td>
<td>(x, x, 3/4, [u, u, w])</td>
</tr>
<tr>
<td>(18) (x, y, x, 1/2, [v, u, w])</td>
<td>(x, x, 3/4, [u, u, w])</td>
</tr>
<tr>
<td>(19) (x, y, x, 1/2, [v, u, w])</td>
<td>(x, x, 3/4, [u, u, w])</td>
</tr>
<tr>
<td>(20) (x, y, x, 1/2, [v, u, w])</td>
<td>(x, x, 3/4, [u, u, w])</td>
</tr>
</tbody>
</table>

\[140.5.1200 - 2 - 2551\]
Continued

140.5.1200

\[\text{l4}'/\text{mcm}' \]

4 \hspace{0.5cm} c \hspace{0.5cm} \text{4'/m}.. \hspace{0.5cm} 0,0,0 [0,0,0] \hspace{0.5cm} 0,0,1/2 [0,0,0]

4 \hspace{0.5cm} b \hspace{0.5cm} \overline{4}'2m' \hspace{0.5cm} 0,1/2,1/4 [0,0,0] \hspace{0.5cm} 1/2,0,1/4 [0,0,0]

4 \hspace{0.5cm} a \hspace{0.5cm} \text{4'22'} \hspace{0.5cm} 0,0,1/4 [0,0,0] \hspace{0.5cm} 0,0,3/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] \(\text{p4mm}' \)
\[\mathbf{a}^* = (\mathbf{a} - \mathbf{b})/2 \quad \mathbf{b}^* = (\mathbf{a} + \mathbf{b})/2 \]
Origin at 0,0,z

Along [1,0,0] \(\text{p}_{c*2mm} \)
\[\mathbf{a}^* = \mathbf{b}/2 \quad \mathbf{b}^* = \mathbf{c}/2 \]
Origin at x,1/4,0

Along [1,1,0] \(\text{p2'2m}' \)
\[\mathbf{a}^* = -\mathbf{c}/2 \quad \mathbf{b}^* = (-\mathbf{a} + \mathbf{b})/2 \]
Origin at x,x,0
Origin at center (4'/m') at 4'/m'c'2'/c

Asymmetric unit

\[\begin{align*}
0 & \leq x \leq 1/2; \\
0 & \leq y \leq 1/2; \\
0 & \leq z \leq 1/4; \\
y & \leq 1/2 - x
\end{align*} \]

Symmetry Operations

For \((0,0,0) + \text{ set}\)

\[
\begin{align*}
(1) & \quad 1 \\
& \quad (1,0,0,0) \\
(2) & \quad 2 \quad 0,0,z \\
& \quad (2_z,0,0,0) \\
(3) & \quad 4^{+} \quad 0,0,z \\
& \quad (4_z,0,0,0)' \\
(4) & \quad 4^{-} \quad 0,0,z \\
& \quad (4_z^{-1},0,0,0)'
\end{align*}
\]

\[
\begin{align*}
(5) & \quad 2 \quad 0,y,1/4 \\
& \quad (2_y,0,0,1/2) \\
(6) & \quad 2 \quad x,0,1/4 \\
& \quad (2_x,0,0,1/2) \\
(7) & \quad 2' \quad x,x,1/4 \\
& \quad (2_{xy},0,0,1/2)'
\end{align*}
\]

\[
\begin{align*}
(8) & \quad 2' \quad x,x,1/4 \\
& \quad (2_{xy},0,0,1/2)'
\end{align*}
\]

\[
\begin{align*}
(9) & \quad \bar{1} \quad 0,0,0 \\
& \quad (1,0,0,0)'
\end{align*}
\]

\[
\begin{align*}
(10) & \quad m' \quad x,y,0 \\
& \quad (m_x,0,0,0)'
\end{align*}
\]

\[
\begin{align*}
(11) & \quad \bar{4} \quad 0,0,z; 0,0,0 \\
& \quad (4_z,0,0,0)
\end{align*}
\]

\[
\begin{align*}
(12) & \quad \bar{4} \quad 0,0,z; 0,0,0 \\
& \quad (4_z^{-1},0,0,0)
\end{align*}
\]

\[
\begin{align*}
(13) & \quad c' \quad (0,0,1/2) \quad x,0,z \\
& \quad (m_y,0,0,1/2)'
\end{align*}
\]

\[
\begin{align*}
(14) & \quad c' \quad (0,0,1/2) \quad 0,y,z \\
& \quad (m_y,0,0,1/2)'
\end{align*}
\]

\[
\begin{align*}
(15) & \quad c \quad (0,0,1/2) \quad x,x,z \\
& \quad (m_x,0,0,1/2)
\end{align*}
\]

\[
\begin{align*}
(16) & \quad c \quad (0,0,1/2) \quad x,x,z \\
& \quad (m_x,0,0,1/2)
\end{align*}
\]
For \((1/2,1/2,1/2)+\) set

\[
\begin{align*}
(1) & \ t(1/2,1/2,1/2) \\
(2) & \ 2 (0,0,1/2) \hspace{1cm} 1/4,1/4,z \\
(3) & \ 4^+ \ (0,0,1/2) \hspace{1cm} 0,1/2,z \\
(4) & \ 4^+ \ (0,0,1/2) \hspace{1cm} 1/2,0,z \\
(5) & \ 2 (0,1/2,0) \hspace{1cm} 1/4,y,0 \\
(6) & \ 2 (1/2,0,0) \hspace{1cm} x,1/4,0 \\
(7) & \ 2' (1/2,1/2,0) \hspace{1cm} x,x,0 \\
(8) & \ 2' \ x,x+1/2,0 \\
(9) & \ \bar{T} \hspace{1cm} \bar{1}/4,1/4,1/4 \\
(10) & \ n' (1/2,1/2,0) \hspace{1cm} x,y,1/4 \\
(11) & \ \bar{4}^+ \ 1/2,0,z; \hspace{1cm} 1/2,0,1/4 \\
(12) & \ \bar{4} \hspace{1cm} 0,1/2,z; \hspace{1cm} 0,1/2,1/4 \\
(13) & \ a' (1/2,0,0) \hspace{1cm} x,1/4,z \\
(14) & \ b' (0,1/2,0) \hspace{1cm} 1/4,y,z \\
(15) & \ m \hspace{1cm} x+1/2,x,z \\
(16) & \ g (1/2,1/2,0) \hspace{1cm} x,x,z
\end{align*}
\]

Generators selected \((1); \ t(1,0,0); \ t(0,1,0); \ t(0,0,1); \ t(1/2,1/2,1/2); (2); (3); (5); (9).\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(32)</td>
<td>(m \ 1) (x,y,z [u,v,w])</td>
<td>((0,0,0) + (1/2,1/2,1/2) +)</td>
</tr>
<tr>
<td>(16)</td>
<td>(l \ ..m) (x,x+1/2,z [u,u,0])</td>
<td>(x,x+1/2,z [u,u,0])</td>
</tr>
</tbody>
</table>

Generators selected

\((1); \ t(1,0,0); \ t(0,1,0); \ t(0,0,1); \ t(1/2,1/2,1/2); (2); (3); (5); (9).\)
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>442m</th>
<th>442m'</th>
<th>22m</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0,0,0</td>
<td>0,0,1/4</td>
<td>0,1/2,1/4</td>
</tr>
<tr>
<td>b</td>
<td>0,0,1/4</td>
<td>0,0,3/4</td>
<td></td>
</tr>
</tbody>
</table>

Along [0,0,1] p4mm'
- \(a^* = (a - b)/2 \)
- \(b^* = (a + b)/2 \)

Along [1,0,0] p2m'm'
- \(a^* = b/2 \)
- \(b^* = c/2 \)

Along [1,1,0] p2mm1'
- \(a^* = (-a + b)/2 \)
- \(b^* = c/2 \)
I4/mc' \, m'
140.7.1202

4/mm' \, m'
I4/m2'/c'2'/m'

Origin at center (4/m) at 4/mc'2'/c'

Asymmetric unit
0 \leq x \leq 1/2;
0 \leq y \leq 1/2;
0 \leq z \leq 1/4;
y \leq 1/2 - x

Symmetry Operations

For (0,0,0) + set

1. \((1) \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \)
2. \((2) \begin{pmatrix} 2 & 0,0,z \\ z & 0,0,0 \end{pmatrix} \)
3. \((3) \begin{pmatrix} 4^+ & 0,0,z \\ 4_z & 0,0,0 \end{pmatrix} \)
4. \((4) \begin{pmatrix} 4^- & 0,0,z \\ 4_z^{-1} & 0,0,0 \end{pmatrix} \)
5. \((5) 2^\prime \begin{pmatrix} 0,0,1/4 \\ 0,0,1/2 \end{pmatrix} \)
6. \((6) 2^\prime \begin{pmatrix} x,0,1/4 \\ z,0,0,1/2 \end{pmatrix} \)
7. \((7) 2^\prime \begin{pmatrix} x,x,1/4 \\ 2_{xy} & 0,0,1/2 \end{pmatrix} \)
8. \((8) 2^\prime \begin{pmatrix} x,x,1/4 \\ 2_{xy} & 0,0,1/2 \end{pmatrix} \)
9. \((9) \begin{pmatrix} 1 & 0,0,0 \end{pmatrix} \)
10. \((10) \begin{pmatrix} m & x,y,0 \\ m_z & 0,0,0 \end{pmatrix} \)
11. \((11) \begin{pmatrix} 4^+ & 0,0,z; 0,0,0 \\ 4_z & 0,0,0 \end{pmatrix} \)
12. \((12) \begin{pmatrix} 4^- & 0,0,z; 0,0,0 \\ 4_z^{-1} & 0,0,0 \end{pmatrix} \)
13. \((13) \begin{pmatrix} c' & (0,0,1/2) \begin{pmatrix} x,0,z \\ m_y & 0,0,1/2 \end{pmatrix} \)
14. \((14) \begin{pmatrix} c' & (0,0,1/2) \begin{pmatrix} 0,y,z \\ m_y & 0,0,1/2 \end{pmatrix} \)
15. \((15) \begin{pmatrix} c' & (0,0,1/2) \begin{pmatrix} x,x,z \\ m_{xy} & 0,0,1/2 \end{pmatrix} \)
16. \((16) \begin{pmatrix} c' & (0,0,1/2) \begin{pmatrix} x,x,z \\ m_{xy} & 0,0,1/2 \end{pmatrix} \)

Tetragonal
Continued

For $(1/2,1/2,1/2) + set$

<table>
<thead>
<tr>
<th>(1) t (1/2,1/2,1/2)</th>
<th>(2) 2 (0,0,1/2)</th>
<th>1/4,1/4,z</th>
<th>(3) 4^* (0,0,1/2)</th>
<th>0,1/2,z</th>
<th>(4) 4^* (0,0,1/2)</th>
<th>1/2,0,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1/2,1/2,1/2)$</td>
<td>$(2_z,1/2,1/2,1/2)$</td>
<td></td>
<td>$(4_z,1/2,1/2,1/2)$</td>
<td></td>
<td>$(4_z,1/2,1/2,1/2)$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(5) $2'$ (0,1/2,0)</th>
<th>1/4,y,0</th>
<th>(2) $2'$ (1/2,0,0)</th>
<th>x,1/4,0</th>
<th>(7) $2'$ (1/2,1/2,0)</th>
<th>x,x,0</th>
<th>(8) $2'$ x,x+1/2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(2_z,1/2,1/2,0)''$</td>
<td></td>
<td>$(2_z,1/2,1/2,0)''$</td>
<td></td>
<td>$(2_{xy},1/2,1/2,0)''$</td>
<td></td>
<td>$(2_{xy},1/2,1/2,0)''$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(9) \bar{T} 1/4,1/4,1/4</th>
<th>(10) n (1/2,1/2,0)</th>
<th>x,y,1/4</th>
<th>(11) $\bar{4}^*$ 1/2,0,1/4</th>
<th>1/2,0,1/4</th>
<th>(12) $\bar{4}^*$ 0,1/2,1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(2 \bar{z},1/2,1/2,1/2)$</td>
<td>$(m_{xy},1/2,1/2,1/2)$</td>
<td></td>
<td>$(4_z,1/2,1/2,1/2)$</td>
<td></td>
<td>$(4_z,1/2,1/2,1/2)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(13) a' (1/2,0,0)</th>
<th>x,1/4,z</th>
<th>(14) b' (0,1/2,0)</th>
<th>1/4,y,z</th>
<th>(15) m' x+1/2,x,z</th>
<th>(16) g' (1/2,1/2,0)</th>
<th>x,x,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(m_{xy},1/2,1/2,0)''$</td>
<td></td>
<td>$(m_{xy},1/2,1/2,0)''$</td>
<td></td>
<td>$(m_{xy},1/2,1/2,0)''$</td>
<td></td>
<td>$(m_{xy},1/2,1/2,0)''$</td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 m 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) \bar{x},\bar{y},\bar{z} [u,v,w]</td>
<td>(3) \bar{y},\bar{x},\bar{z} [v,u,w]</td>
</tr>
<tr>
<td>(5) $\bar{x},\bar{y},\bar{z}+1/2$ [u,v,w]</td>
<td>(6) $\bar{x},\bar{y},\bar{z}+1/2$ [u,v,w]</td>
<td>(7) $\bar{y},\bar{x},\bar{z}+1/2$ [v,u,w]</td>
</tr>
<tr>
<td>(9) \bar{x},\bar{y},\bar{z} [u,v,w]</td>
<td>(10) \bar{x},\bar{y},\bar{z} [u,v,w]</td>
<td>(11) \bar{y},\bar{x},\bar{z} [v,u,w]</td>
</tr>
<tr>
<td>(13) $\bar{x},\bar{y},\bar{z}+1/2$ [u,v,w]</td>
<td>(14) $\bar{x},\bar{y},\bar{z}+1/2$ [u,v,w]</td>
<td>(15) $\bar{y},\bar{x},\bar{z}+1/2$ [v,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16 l .m'</th>
<th>$x,x+1/2,z,[u,u,w]$</th>
<th>$\bar{x},\bar{x}+1/2,z,[u,u,w]$</th>
<th>$x+1/2,x,z,[u,u,w]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 k .m..</td>
<td>$x,y,0,[0,0,w]$</td>
<td>$\bar{x},\bar{y},0,[0,0,w]$</td>
<td>$\bar{y},\bar{x},0,[0,0,w]$</td>
</tr>
<tr>
<td>16 j .2'</td>
<td>$x,0,1/4,[0,v,w]$</td>
<td>$\bar{x},0,1/4,[0,v,w]$</td>
<td>$0,x,1/4,[v,0,w]$</td>
</tr>
<tr>
<td>16 i .2'</td>
<td>$x,x,1/4,[u,u,w]$</td>
<td>$\bar{x},\bar{x},1/4,[u,u,w]$</td>
<td>$\bar{x},x,1/4,[u,u,w]$</td>
</tr>
<tr>
<td>8 h m.2'm'</td>
<td>$x,x+1/2,0,[0,0,w]$</td>
<td>$\bar{x},\bar{x}+1/2,0,[0,0,w]$</td>
<td>$x+1/2,\bar{x},0,[0,0,w]$</td>
</tr>
<tr>
<td>8 g 2.m'm'</td>
<td>0,1/2,z,[0,0,w]</td>
<td>1/2,0,z,[0,0,w]</td>
<td>0,1/2,\bar{z}+1/2,[0,0,w]</td>
</tr>
<tr>
<td>8 f 4.m..'</td>
<td>0,0,z,[0,0,w]</td>
<td>0,0,\bar{z}+1/2,[0,0,w]</td>
<td>0,0,z,[0,0,w]</td>
</tr>
<tr>
<td>8 e .2'm'</td>
<td>1/4,1/4,1/4,[u,u,w]</td>
<td>3/4,3/4,1/4,[u,u,w]</td>
<td>3/4,1/4,1/4,[u,u,w]</td>
</tr>
<tr>
<td>4 d m.m'm'</td>
<td>0,1/2,0,[0,0,w]</td>
<td>1/2,0,0,[0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along ([0,0,1])</td>
<td>(p4mm')</td>
<td>(0,0,z)</td>
</tr>
<tr>
<td>(a^* = (a - b)/2)</td>
<td>(b^* = (a + b)/2)</td>
<td></td>
</tr>
<tr>
<td>Along ([1,0,0])</td>
<td>(p2'mm')</td>
<td>(x,0,0)</td>
</tr>
<tr>
<td>(a^* = -c/2)</td>
<td>(b^* = b/2)</td>
<td></td>
</tr>
<tr>
<td>Along ([1,1,0])</td>
<td>(p2'mm')</td>
<td>(x,x,0)</td>
</tr>
<tr>
<td>(a^* = -c/2)</td>
<td>(b^* = (-a + b)/2)</td>
<td></td>
</tr>
</tbody>
</table>

\(4\ c\ 4/m..\ 0,0,0\ [0,0,w]\ 0,0,1/2\ [0,0,w]\)

\(4\ b\ 42'm'\ 0,1/2,1/4\ [0,0,w]\ 1/2,0,1/4\ [0,0,w]\)

\(4\ a\ 42'2'\ 0,0,1/4\ [0,0,w]\ 0,0,3/4\ [0,0,w]\)
Origin at center (4/m') at 4'/m'c2'/c'

Asymmetric unit

\[\begin{align*}
0 \leq x &\leq 1/2; \\
0 \leq y &\leq 1/2; \\
0 \leq z &\leq 1/4; \\
y &\leq 1/2 - x
\end{align*} \]

Symmetry Operations

For \((0,0,0) + \) set

\begin{align*}
(1) &
1 \\
& (1|0,0,0) \\
(5) &
2' \\
& 0,y,1/4 \\
& (2_{y'}|0,0,1/2)' \\
(9) &
\overline{3}' \\
& 0,0,0 \\
& (1|0,0,0)' \\
(13) &
c (0,0,1/2) \\
& x,0,z \\
& (m_{y'}|0,0,1/2) \\
(2) &
2 \\
& 0,0,z \\
& (2_{z}|0,0,0) \\
(6) &
2' \\
& x,0,1/4 \\
& (2_{x'}|0,0,1/2)' \\
(10) &
m' \\
& x,y,0 \\
& (m_{z}|0,0,0)' \\
(14) &
c (0,0,1/2) \\
& 0,y,z \\
& (m_{x}|0,0,1/2) \\
(3) &
4^{+} \\
& 0,0,z \\
& (4_{z}|0,0,0)' \\
(7) &
2 \\
& x,x,1/4 \\
& (2_{x'}|0,0,1/2) \\
(11) &
\overline{4}^{+} \\
& 0,0,z; 0,0,0 \\
& (4_{z}|0,0,0) \\
(15) &
c' (0,0,1/2) \\
& x,x,z \\
& (m_{y}|0,0,1/2)' \\
(4) &
4^{-} \\
& 0,0,z \\
& (4_{z}^{-}|0,0,0)' \\
(8) &
2 \\
& x,x,1/4 \\
& (2_{x'}|0,0,1/2) \\
(12) &
\overline{4}^{-} \\
& 0,0,z; 0,0,0 \\
& (4_{z}^{-}|0,0,0) \end{align*}
For $(1/2,1/2,1/2) + \text{set}$

(1) $t(1/2,1/2,1/2)$
(2) $t(0,0,1/2)$
(3) $4^+ (0,0,1/2)$
(4) $4^+ (0,0,1/2)$
(5) $2' (0,1/2,0)$
(6) $2' (1/2,0,0)$
(7) $2 (1/2,1/2,0)$
(8) $2 (0,1/2,0)$
(9) $\bar{1}$
(10) $n' (1/2,1/2,0)$
(11) $4\bar{m}' (1/2,1/2,0)$
(12) $4\bar{m}' (0,1/2,0)$
(13) $a (1/2,0,0)$
(14) $b (0,1/2,0)$
(15) $m' (1/2,1/2,0)$
(16) $g' (1/2,1/2,0)$

Generators selected

$(1); t(1,0,0); t(0,1,0); t(1/2,1/2,1/2); (2); (3); (5); (9).$

Positions

Multiplicity, Wyckoff letter, Site Symmetry, Coordinates

<table>
<thead>
<tr>
<th>m</th>
<th>1</th>
<th>(1) $x,y,z [u,v,w]$</th>
<th>(2) $\bar{x},\bar{y},\bar{z} [\bar{u},\bar{v},\bar{w}]$</th>
<th>(3) $\bar{y},x,z [v,u,w]$</th>
<th>(4) $y,x,z [\bar{v},\bar{u},\bar{w}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>m</td>
<td>(1) $x,y,z [u,v,w]$</td>
<td>(2) $\bar{x},\bar{y},\bar{z} [\bar{u},\bar{v},\bar{w}]$</td>
<td>(3) $\bar{y},x,z [v,u,w]$</td>
<td>(4) $y,x,z [\bar{v},\bar{u},\bar{w}]$</td>
</tr>
<tr>
<td>16</td>
<td>m'</td>
<td>$x+1/2,z [u,u,w]$</td>
<td>$\bar{x}+1/2,z [\bar{u},\bar{u},\bar{w}]$</td>
<td>$x+1/2,z [u,u,w]$</td>
<td>$\bar{x}+1/2,z [\bar{u},\bar{u},\bar{w}]$</td>
</tr>
<tr>
<td>16</td>
<td>m''</td>
<td>$x,y,0 [u,v,0]$</td>
<td>$\bar{x},\bar{y},\bar{0} [\bar{u},\bar{v},\bar{0}]$</td>
<td>$y,\bar{x},0 [v,\bar{u},0]$</td>
<td>$\bar{y},x,0 [\bar{v},u,0]$</td>
</tr>
<tr>
<td>16</td>
<td>m'''</td>
<td>$x,0,1/4 [0,v,w]$</td>
<td>$\bar{x},0,1/4 [\bar{0},\bar{v},\bar{w}]$</td>
<td>$0,x,1/4 [v,0,\bar{w}]$</td>
<td>$\bar{0},x,1/4 [\bar{v},0,\bar{w}]$</td>
</tr>
<tr>
<td>16</td>
<td>m''''</td>
<td>$\bar{x},x,1/4 [u,u,0]$</td>
<td>$x,\bar{x},1/4 [u,0,\bar{u}]$</td>
<td>$\bar{x},x,1/4 [u,u,0]$</td>
<td>$x,\bar{x},1/4 [u,0,\bar{u}]$</td>
</tr>
<tr>
<td>8</td>
<td>m'.2m'</td>
<td>$x+1/2,0 [u,u,0]$</td>
<td>$\bar{x}+1/2,0 [\bar{u},\bar{u},\bar{0}]$</td>
<td>$\bar{x}+1/2,0 [\bar{u},\bar{u},\bar{0}]$</td>
<td>$x+1/2,0 [u,u,0]$</td>
</tr>
<tr>
<td>8</td>
<td>m'.2m''</td>
<td>$0,1/2,z [0,0,\bar{w}]$</td>
<td>$1/2,0,z [0,0,\bar{w}]$</td>
<td>$0,1/2,z [0,0,\bar{w}]$</td>
<td>$1/2,0,z [0,0,\bar{w}]$</td>
</tr>
<tr>
<td>8</td>
<td>m'.2m'''</td>
<td>$0,0,z [0,0,\bar{0}]$</td>
<td>$0,0,z [0,0,\bar{0}]$</td>
<td>$0,0,z [0,0,\bar{0}]$</td>
<td>$0,0,z [0,0,\bar{0}]$</td>
</tr>
<tr>
<td>8</td>
<td>m'.2m''''</td>
<td>$1/4,1/4,1/4 [0,0,0]$</td>
<td>$3/4,3/4,1/4 [0,0,0]$</td>
<td>$3/4,3/4,1/4 [0,0,0]$</td>
<td>$1/4,3/4,1/4 [0,0,0]$</td>
</tr>
<tr>
<td>4</td>
<td>m'.m'</td>
<td>$0,1/2,0 [0,0,\bar{0}]$</td>
<td>$1/2,0,0 [0,0,\bar{0}]$</td>
<td>$1/2,0,0 [0,0,\bar{0}]$</td>
<td>$1/2,0,0 [0,0,\bar{0}]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>4'/m'..</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>4'2'm'</td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>1/2,0,1/4 [0,0,\bar{w}]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>4'2'2</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>p4'm'm</td>
<td>0,0,z</td>
</tr>
<tr>
<td></td>
<td>a* = (a - b)/2 b* = (a + b)/2</td>
<td></td>
</tr>
<tr>
<td>[1,0,0]</td>
<td>p_c'2mm</td>
<td>x,1/4,1/4</td>
</tr>
<tr>
<td></td>
<td>a* = b/2 b* = c/2</td>
<td></td>
</tr>
<tr>
<td>[1,1,0]</td>
<td>p2m'm'</td>
<td>x,x,0</td>
</tr>
<tr>
<td></td>
<td>a* = (-a + b)/2 b* = c/2</td>
<td></td>
</tr>
</tbody>
</table>
I4/m'c'm'

140.9.1204

4/m'm'm'

I4/m'2/c'2/m'

Tetragonal

Origin at center (4/m') at 4/m'c'2/c'

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; y ≤ 1/2 - x

Symmetry Operations

For (0,0,0) + set

(1) 1 (1 | 0,0,0)

(2) 2 0,0,z (2z | 0,0,0)

(3) 4+ 0,0,z (4z | 0,0,0)

(4) 4- 0,0,z (4z⁻¹ | 0,0,0)

(5) 2 0,y,1/4 (2y | 0,0,1/2)

(6) 2 x,0,1/4 (2z | 0,0,1/2)

(7) 2 x,x,1/4 (2x | 0,0,1/2)

(8) 2 x,x,1/4 (2x | 0,0,1/2)

(9) 1' 0,0,0 (1 | 0,0,0)'

(10) m' x,y,0 (m | 0,0,0)'

(11) 4+ 0,0,z; 0,0,0 (4z | 0,0,0)'

(12) 4- 0,0,z; 0,0,0 (4z⁻¹ | 0,0,0)'

(13) c' (0,0,1/2) 0,y,z (m | 0,0,1/2)'

(14) c' (0,0,1/2) 0,y,z (m | 0,0,1/2)'

(15) c' (0,0,1/2) x,x,z (m | 0,0,1/2)'

(16) c' (0,0,1/2) x,x,z (m | 0,0,1/2)'

140.9.1204 - 1 - 2562
For \(1/2,1/2,1/2 \) + set

(1) \(t \) \((1/2,1/2,1/2) \) \((2) \) \((0,0,1/2) \) \((3) \) \(4^* \) \((0,0,1/2) \) \((4) \) \(4^* \) \((0,1/2) \)

(5) \(2 \) \((0,1/2,0) \) \((6) \) \((1/2,0,0) \) \((7) \) \((1/2,1/2,0) \) \((8) \) \(x, x+1/2, 0 \)

(9) \(T \) \((1/2,1/2,1/2) \) \((10) \) \((1/2,1/2,1/2)' \) \((11) \) \((4)^* \) \((1/2,0, z) \) \((12) \) \((4)^* \) \((1/2,1/2,1/2)' \)

(13) \(a' \) \((1/2,0,0) \) \((14) \) \((0,1/2,0) \) \((15) \) \((1/2,1/2,0) \) \((16) \) \(x, x, z \)

Generators selected \((1); \) \((1,0,0); \) \((0,1,0); \) \((0,0,1); \) \((1/2,1/2,1/2); \) \((2); \) \((3); \) \((5); \) \((9).\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Wyckoff letter, Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 m 1</td>
<td>((1) x, y, z [u, v, w])</td>
<td>((2) x, y, z [u, v, w])</td>
<td>((3) y, x, z [v, u, w])</td>
</tr>
<tr>
<td></td>
<td>((5) x, y, z+1/2 [u, v, w])</td>
<td>((6) x, y, z+1/2 [u, v, w])</td>
<td>((7) y, x, z+1/2 [v, u, w])</td>
</tr>
<tr>
<td></td>
<td>((9) x, y, z [u, v, w])</td>
<td>((10) x, y, z [u, v, w])</td>
<td>((11) y, x, z [v, u, w])</td>
</tr>
<tr>
<td></td>
<td>((13) x, y, z+1/2 [u, v, w])</td>
<td>((14) x, y, z+1/2 [u, v, w])</td>
<td>((15) y, x, z+1/2 [v, u, w])</td>
</tr>
<tr>
<td></td>
<td>((16) x, x+1/2, z [u, u, w])</td>
<td>((17) x, x+1/2, z [u, u, w])</td>
<td>((18) x, x+1/2, z+1/2 [u, u, w])</td>
</tr>
<tr>
<td></td>
<td>((19) x, x+1/2, z+1/2 [u, u, w])</td>
<td>((20) x, x+1/2, z+1/2 [u, u, w])</td>
<td>((21) x, x+1/2, z+1/2 [u, u, w])</td>
</tr>
<tr>
<td>16 l ..m'..</td>
<td>((8) x, y, 0 [u, v, 0])</td>
<td>((9) x, y, 0 [u, v, 0])</td>
<td>((10) y, x, 0 [v, u, 0])</td>
</tr>
<tr>
<td></td>
<td>((11) y, x, 1/2 [v, u, 0])</td>
<td>((12) x, y, 1/2 [u, v, 0])</td>
<td>((13) x, y, 1/2 [u, v, 0])</td>
</tr>
<tr>
<td>16 j .2.</td>
<td>((14) x, 0, 1/4 [u, 0, 0])</td>
<td>((15) x, 0, 1/4 [u, 0, 0])</td>
<td>((16) x, 0, 1/4 [u, 0, 0])</td>
</tr>
<tr>
<td></td>
<td>((17) x, 0, 3/4 [u, 0, 0])</td>
<td>((18) x, 0, 3/4 [u, 0, 0])</td>
<td>((19) x, 0, 3/4 [u, 0, 0])</td>
</tr>
<tr>
<td>16 i .2</td>
<td>((20) x, x, 1/4 [u, u, 0])</td>
<td>((21) x, x, 1/4 [u, u, 0])</td>
<td>((22) x, x, 1/4 [u, u, 0])</td>
</tr>
<tr>
<td></td>
<td>((23) x, x, 3/4 [u, u, 0])</td>
<td>((24) x, x, 3/4 [u, u, 0])</td>
<td>((25) x, x, 3/4 [u, u, 0])</td>
</tr>
<tr>
<td>8 h m'.2m'</td>
<td>((26) x, x+1/2, 0 [u, u, 0])</td>
<td>((27) x, x+1/2, 0 [u, u, 0])</td>
<td>((28) x+1/2, x, 0 [u, u, 0])</td>
</tr>
<tr>
<td>8 g 2.m'm'</td>
<td>((29) 0, 1/2, 0 [0, w])</td>
<td>((30) 0, 1/2, 0 [0, w])</td>
<td>((31) x, 1/2, z+1/2 [0, 0, w])</td>
</tr>
<tr>
<td>8 f .4..</td>
<td>((32) 0, 0, z [0, w])</td>
<td>((33) 0, 0, z [0, w])</td>
<td>((34) 0, 0, z [0, w])</td>
</tr>
<tr>
<td>8 e .2/m'</td>
<td>((35) 1/4, 1/4, 1/4 [0, 0, 0])</td>
<td>((36) 1/4, 1/4, 1/4 [0, 0, 0])</td>
<td>((37) 1/4, 3/4, 1/4 [0, 0, 0])</td>
</tr>
<tr>
<td>4 d m'.m'm'</td>
<td>((38) 0, 1/2, 0 [0, 0, 0])</td>
<td>((39) 1/2, 0, 0 [0, 0, 0])</td>
<td>((40) 1/2, 0, 0 [0, 0, 0])</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>4/m' ..</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>4</td>
<td>0,1/2,1/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>422</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Continued

Symmetry of Special Projections

Along [0,0,1] p4m'm'
\[\mathbf{a}^* = \frac{(\mathbf{a} - \mathbf{b})}{2} \quad \mathbf{b}^* = \frac{(\mathbf{a} + \mathbf{b})}{2} \]
Origin at 0,0,z

Along [1,0,0] p2m'm'
\[\mathbf{a}^* = \frac{\mathbf{b}}{2} \quad \mathbf{b}^* = \frac{\mathbf{c}}{2} \]
Origin at x,0,0

Along [1,1,0] p2m'm'
\[\mathbf{a}^* = \frac{(-\mathbf{a} + \mathbf{b})}{2} \quad \mathbf{b}^* = \frac{\mathbf{c}}{2} \]
Origin at x,x,0
Origin at center (4/m) at 4/mc21/c

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad y < 1/2 - x\]

Symmetry Operations

For (0,0,0) + set

1. \(1\) 1
 \(1\) 0,0,0
2. \(2\) \(0,0,z\)
 \(2\) 0,0,0
3. \(4\) \(0,0,z\)
 \(4\) 0,0,0
4. \(4\) \(0,0,z\)
 \(4\) 0,0,0
5. \(2\) \(0, y, 1/4\)
 \(2\) 0,0,1/2
6. \(2\) \(x, 0, 1/4\)
 \(2\) 0,0,1/2
7. \(2\) \(x, x, 1/4\)
 \(2\) 0,0,1/2
8. \(2\) \(x, x, 1/4\)
 \(2\) 0,0,1/2
9. \(3\) \(0,0,0\)
 \(3\) 0,0,0
10. \(m\) \(x, y, 0\)
 \(m\) 0,0,0
11. \(4\) \(0,0,z; 0,0,0\)
 \(4\) 0,0,0
12. \(4\) \(0,0,z; 0,0,0\)
 \(4\) 0,0,0
13. \(c\) \((0,0,1/2)\) \(x, 0, z\)
 \(c\) \((0,0,1/2)\) 0,0,1/2
14. \(c\) \((0,0,1/2)\) \(0, y, z\)
 \(c\) \((0,0,1/2)\) 0,0,1/2
15. \(c\) \((0,0,1/2)\) \(x, x, z\)
 \(c\) \((0,0,1/2)\) 0,0,1/2
16. \(c\) \((0,0,1/2)\) \(x, x, z\)
 \(c\) \((0,0,1/2)\) 0,0,1/2
Continued

For \((1/2,1/2,1/2)' + \text{ set}\)

<table>
<thead>
<tr>
<th>(1) \text{t}' (1/2,1/2,1/2)</th>
<th>(2) \text{t}' (0,0,1/2)</th>
<th>(3) \text{t}' (0,1/2,0)</th>
<th>(4) \text{t}' (0,0,1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/2,1/2,1/2)'</td>
<td>(1/2,1/2,1/2)'</td>
<td>(1/2,1/2,1/2)'</td>
<td>(1/2,1/2,1/2)'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(5) \text{2}' (0,1/2,0)</th>
<th>(6) \text{2}' (1/2,0,0)</th>
<th>(7) \text{2}' (1/2,1/2,0)</th>
<th>(8) \text{2}' (1/2,1/2,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/2,1/2,1/2)'</td>
<td>(1/2,1/2,1/2)'</td>
<td>(1/2,1/2,1/2)'</td>
<td>(1/2,1/2,1/2)'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(9) \text{1}' (1/2,1/2,1/2)</th>
<th>(10) \text{1}' (0,1/2,0)</th>
<th>(11) \text{1}' (0,0,1/2)</th>
<th>(12) \text{1}' (0,0,1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/2,1/2,1/2)'</td>
<td>(1/2,1/2,1/2)'</td>
<td>(1/2,1/2,1/2)'</td>
<td>(1/2,1/2,1/2)'</td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>(m 1)</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>16</td>
<td>(l \ldots m')</td>
<td>(x,y,z [u,v,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(x+1/2,z [u,v,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+1/2,x,z [u,v,w])</td>
</tr>
<tr>
<td>8</td>
<td>(h m.2'm')</td>
<td>(x,x+1/2,0 [0,0,0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(x+1/2,0 [0,0,0])</td>
</tr>
<tr>
<td>8</td>
<td>(g 2.m'm')</td>
<td>(1/2,z [0,0,0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+1/2,z [0,0,0])</td>
</tr>
<tr>
<td>8</td>
<td>(f \ldots 4)</td>
<td>(0,z [0,0,0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+1/2,z [0,0,0])</td>
</tr>
<tr>
<td>4</td>
<td>(d m.m'm')</td>
<td>(0,1/2,0 [0,0,0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1/2,0 [0,0,0])</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
</tr>
</tbody>
</table>

140.10.1205 - 2 - 2566
Continued

4	c	4/m.	0,0,0 [0,0,w]	0,0,1/2 [0,0,w]
4	b	4'2m'	0,1/2,1/4 [0,0,0]	1/2,0,1/4 [0,0,0]
4	a	422	0,0,1/4 [0,0,0]	0,0,3/4 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4mm1'</th>
<th>Along [1,0,0]</th>
<th>p22'2m'm'</th>
<th>Along [1,1,0]</th>
<th>p22'2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (a - b)/2</td>
<td>b* = (a + b)/2</td>
<td>a* = -c/2</td>
<td>b* = b/2</td>
<td>a* = -c/2</td>
<td>b* = (-a + b)/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,0,1/4
Origin at x,x,1/4
Origin at center (4/m') at 4/m'c2'/c

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; y ≤ 1/2 - x

Symmetry Operations

For (0,0,0) + set

1. 1
 (1 | 0,0,0)

2. 2 0,0,z
 (2z | 0,0,0)

3. 4 0,0,z
 (4z | 0,0,0)

4. 4' 0,0,z
 (4'z | 0,0,0)

(1) 1
 (1 | 0,0,0)

(2) 2 0,0,z
 (2z | 0,0,0)

(3) 4 0,0,z
 (4z | 0,0,0)

(4) 4' 0,0,z
 (4'z | 0,0,0)

5. 2' 0,y,1/4
 (2y | 0,0,1/2)'

6. 2' x,0,1/4
 (2x | 0,0,1/2)'

7. 2' x,y,1/4
 (2x | 0,0,1/2)'

8. 2' x,y,1/4
 (2x | 0,0,1/2)'

(5) 2' 0,y,1/4
 (2y | 0,0,1/2)'

(6) 2' x,0,1/4
 (2x | 0,0,1/2)'

(7) 2' x,y,1/4
 (2x | 0,0,1/2)'

(8) 2' x,y,1/4
 (2x | 0,0,1/2)'

9. 1 0,0,0
 (1 | 0,0,0)'

10. m' x,y,0
 (mz | 0,0,0)'

11. 4' 0,0,z
 (4'z | 0,0,0)'

12. 4' 0,0,z
 (4'z | 0,0,0)'

(9) 1 0,0,0
 (1 | 0,0,0)'

(10) m' x,y,0
 (mz | 0,0,0)'

(11) 4' 0,0,z
 (4'z | 0,0,0)'

(12) 4' 0,0,z
 (4'z | 0,0,0)'

13. c (0,0,1/2) x,0,z
 (my | 0,0,1/2)

14. c (0,0,1/2) 0,y,z
 (my | 0,0,1/2)

15. c (0,0,1/2) x,y,z
 (my | 0,0,1/2)

16. c (0,0,1/2) x,x,z
 (my | 0,0,1/2)
Continued

For (1/2,1/2,1/2)' + set

(1) t' (1/2,1/2,1/2)
(1/2,1/2,1/2)'
(2) 2' (0,0,1/2) 1/4,1/4,z
(2' 1/2,1/2,1/2)'
(3) 4' (0,0,1/2) 0,1/2,z
(4) 4' (0,0,1/2) 1/2,0,z
(4'_z' 1/2,1/2,1/2)'

(5) z (0,1/2,0) 1/4,y,0
(2_z 1/2,1/2,0)
(6) 2 (1/2,0,0) x,1/4,0
(2' 1/2,1/2,0)
(7) 2 (1/2,1/2,0) x,x,0
(2' 1/2,1/2,0)
(8) x,x+1/2,0
(2' 1/2,1/2,0)

(9) t' 1/4,1/4,1/4
(2' 1/2,1/2,1/2)
(10) n (1/2,1/2,0) x,y,1/4
(m_z 1/2,1/2,1/2)
(11) 4' 1/2,0,0; 1/2,0,1/4
(4') 1/2,1/2,1/2)
(12) 3' -0,1/2,0; 0,1/2,1/4
(3' -1/2,1/2,1/2)

(13) a' (1/2,0,0) x,1/4,z
(m_z 1/2,1/2,0)'
(14) b' (0,1/2,0) 1/4,y,z
(m_z 1/2,1/2,0)'
(15) m' x+1/2,x,z
(m_z 1/2,1/2,0)'
(16) g' (1/2,1/2,0) x,x,z
(m_z 1/2,1/2,0)'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry letter.

Coordinates

(0,0,0) + (1/2,1/2,1/2)'

32 m 1
(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) y,x,z [v,u,w] (4) y,x,z [v,u,w]
(5) x,y,z+1/2 [u,v,w] (6) x,y,z+1/2 [u,v,w] (7) y,x,z+1/2 [v,u,w] (8) y,x,z+1/2 [v,u,w]
(9) x,y,z [u,v,w] (10) x,y,z [u,v,w] (11) y,x,z [v,u,w] (12) y,x,z [v,u,w]
(13) x,y,z+1/2 [u,v,w] (14) x,y,z+1/2 [u,v,w] (15) y,x,z+1/2 [v,u,w] (16) y,x,z+1/2 [v,u,w]

16 l ..m'
x,x,1/2,z [u,u,w] x,x,1/2,z [u,u,w] x+1/2,x,z [u,u,w] x+1/2,x,z [u,u,w]

16 k m''
x,y,0 [u,v,0] x,y,0 [u,v,0] y,x,0 [v,u,0] y,x,0 [v,u,0]

16 i ..2'
x,0,1/4 [0,v,w] x,0,1/4 [0,v,w] 0,x,1/4 [v,0,w] 0,x,1/4 [v,0,w]

16 h m'.2m'
x,x,1/2,0 [u,u,0] x,x,1/2,0 [u,u,0] x,1/2,x,0 [u,u,0] x+1/2,x,0 [u,u,0]

8 g 2.m''
0,1/2,0 [0,0,w] 1/2,0,0 [0,0,w] 0,1/2,0 [0,0,w] 1/2,0,0 [0,0,w]

8 f 4..
0,0,0 [0,0,w] 0,0,0 [0,0,w] 0,0,0 [0,0,w] 0,0,0 [0,0,w]

8 e ..2'm'
1/4,1/4,1/4 [u,u,w] 3/4,3/4,1/4 [u,u,w] 3/4,3/4,1/4 [u,u,w] 1/4,3/4,1/4 [u,u,w]

4 d m.m''
0,1/2,0 [0,0,w] 1/2,0,0 [0,0,w]
<table>
<thead>
<tr>
<th>4</th>
<th>c</th>
<th>4/m'..</th>
<th>0,0,0 [0,0,0]</th>
<th>0,0,1/2 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>b</td>
<td>4'/2m'</td>
<td>0,1/2,1/4 [0,0,w]</td>
<td>1/2,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>42'2'</td>
<td>0,0,1/4 [0,0,w]</td>
<td>0,0,3/4 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

| **Along [0,0,1]** | p
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (a - b)/2</td>
<td>-c/2</td>
</tr>
<tr>
<td>b* = (a + b)/2</td>
<td>b/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2a 2m' m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -c/2</td>
<td>(a - b)/2</td>
</tr>
<tr>
<td>b* = b/2</td>
<td>(a + b)/2</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p2a 2m' m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = -c/2</td>
<td>(a - b)/2</td>
</tr>
<tr>
<td>b* = (a + b)/2</td>
<td>b/2</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Origin at center (4'/m) at 4'/mc'21/c

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; y < 1/2 - x

Symmetry Operations

For (0,0,0) + set

1. (1) 1 (1 | 0,0,0)
2. (2) 2 0,0,z (2z | 0,0,0)
3. (3) 4+ 0,0,z (4z | 0,0,0)
4. (4) 4- 0,0,z (4z-1 | 0,0,0)

(5) 2' 0,y,1/4 (2z | 0,0,1/2)
6. (6) 2' x,0,1/4 (2z | 0,0,1/2)
7. (7) 2 x,x,1/4 (2xy | 0,0,1/2)
8. (8) 2 x,x,1/4 (2xy | 0,0,1/2)

(9) 1 0,0,0 (1 | 0,0,0)
10. (10) m x,y,0 (m | 0,0,0)
11. (11) 4' 0,0,z; 0,0,0 (4z | 0,0,0)
12. (12) 4' 0,0,z; 0,0,0 (4z-1 | 0,0,0)

(13) c' (0,0,1/2) x,0,z (m | 0,0,1/2)
14. (14) c' (0,0,1/2) 0,y,z (m | 0,0,1/2)
15. (15) c (0,0,1/2) x,x,z (mxy | 0,0,1/2)
16. (16) c (0,0,1/2) x,x,z (mxy | 0,0,1/2)
Continued

For \((1/2,1/2,1/2)' + \text{set}\)

\[
\begin{align*}
(1) & \ t' (1/2,1/2,1/2) \\
(1) & (1,1,1) \\
(2) & 2' (0,0,1/2) \\
(2) & 1/4,1/4,z \\
(3) & 4' (0,0,1/2) \\
(3) & 0,1/2,z \\
(4) & 4' (0,0,1/2) \\
(4) & 1/2,0,z \\
(5) & 2 (0,1/2,0) \\
(5) & 1/4,y,0 \\
(6) & 2 (1/2,0,0) \\
(6) & x,1/4,0 \\
(7) & 2' (1/2,1/2,0) \\
(7) & x,x,0 \\
(8) & 2' x,x +1/2,0 \\
(8) & (2,1/2,1/2)' \\
(9) & \tilde{T} 1/4,1/4,1/4 \\
(9) & x,y,1/4 \\
(10) & 4' (1/2,0,0,z; 1/2,0,1/4) \\
(10) & (4,1/2,1/2,1/2)' \\
(11) & 4' (0,1/2,0; 1/2,1,1/2) \\
(11) & (4,0,1/2,1/2)' \\
(12) & 4' 0,1/2,z; 0,1/2,1/4 \\
(12) & (4,0,1/2,1/2)' \\
(13) & a (1/2,0,0) x,1/4,z \\
(13) & (m,1/2,1/2,0) x,y,1/4,0 \\
(14) & b (0,1/2,0) 1/4,y,z \\
(14) & (m,1/2,1/2,0) x,x,0 \\
(15) & m' x+1/2,x,z \\
(15) & (m_{xy},1/2,1/2,0)' \\
(16) & g' (1/2,1/2,0) x,x,z \\
(16) & (m_{xy},1/2,1/2,0)' \\
\end{align*}
\]

Generators selected

\(1); \ t(1,0,0); \ t(0,1,0); \ t(0,0,1); \ t'(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter, Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>m 1</td>
</tr>
<tr>
<td>16</td>
<td>l .m'</td>
</tr>
<tr>
<td>16</td>
<td>k m..</td>
</tr>
<tr>
<td>8</td>
<td>h m.2'm'</td>
</tr>
<tr>
<td>8</td>
<td>g 2.m'm'</td>
</tr>
<tr>
<td>8</td>
<td>f 4'..</td>
</tr>
<tr>
<td>8</td>
<td>e .2/m'</td>
</tr>
<tr>
<td>4</td>
<td>d m.m'm'</td>
</tr>
</tbody>
</table>

Coordinates

\[
\begin{align*}
(0,0,0) + & \\
(1/2,1/2,1/2)' + & \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>(x,y,z[u,v,w])</th>
<th>(x,y,z[u,v,w])</th>
<th>(y,x,z[v,u,w])</th>
<th>(y,x,z[v,u,w])</th>
<th>(y,x,z[v,u,w])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x,y,0[0,0,w])</td>
<td>(x,y,0[0,0,w])</td>
<td>(y,x,0[0,0,w])</td>
<td>(y,x,0[0,0,w])</td>
<td>(y,x,0[0,0,w])</td>
</tr>
<tr>
<td>(x,y,1/2[0,0,w])</td>
<td>(x,y,1/2[0,0,w])</td>
<td>(y,x,1/2[0,0,w])</td>
<td>(y,x,1/2[0,0,w])</td>
<td>(y,x,1/2[0,0,w])</td>
</tr>
<tr>
<td>(x,0,1/4[0,v,w])</td>
<td>(x,0,1/4[0,v,w])</td>
<td>(0,x,1/4[0,v,w])</td>
<td>(0,x,1/4[0,v,w])</td>
<td>(0,x,1/4[0,v,w])</td>
</tr>
<tr>
<td>(x,0,3/4[0,v,w])</td>
<td>(x,0,3/4[0,v,w])</td>
<td>(0,x,3/4[0,v,w])</td>
<td>(0,x,3/4[0,v,w])</td>
<td>(0,x,3/4[0,v,w])</td>
</tr>
<tr>
<td>(x,1/4[u,u,0])</td>
<td>(x,1/4[u,u,0])</td>
<td>(x,1/4[u,u,0])</td>
<td>(x,1/4[u,u,0])</td>
<td>(x,1/4[u,u,0])</td>
</tr>
<tr>
<td>(x,1/4[u,u,0])</td>
<td>(x,3/4[u,u,0])</td>
<td>(x,3/4[u,u,0])</td>
<td>(x,3/4[u,u,0])</td>
<td>(x,3/4[u,u,0])</td>
</tr>
<tr>
<td>(x,x+1/2[0,0,w])</td>
<td>(x,x+1/2[0,0,w])</td>
<td>(x+1/2,x,0[0,0,w])</td>
<td>(x+1/2,x,0[0,0,w])</td>
<td>(x+1/2,x,0[0,0,w])</td>
</tr>
<tr>
<td>(x,2,z[0,0,w])</td>
<td>(x,2,z[0,0,w])</td>
<td>(0,1/2,z+1/2[0,0,w])</td>
<td>(0,1/2,z+1/2[0,0,w])</td>
<td>(0,1/2,z+1/2[0,0,w])</td>
</tr>
<tr>
<td>(x,2,0[0,0,w])</td>
<td>(x,2,0[0,0,w])</td>
<td>(0,0,z+1/2[0,0,0])</td>
<td>(0,0,z+1/2[0,0,0])</td>
<td>(0,0,z+1/2[0,0,0])</td>
</tr>
<tr>
<td>(x,2,1/4[0,0,0])</td>
<td>(x,2,1/4[0,0,0])</td>
<td>(3/4,3/4,1/4[0,0,0])</td>
<td>(3/4,3/4,1/4[0,0,0])</td>
<td>(3/4,3/4,1/4[0,0,0])</td>
</tr>
<tr>
<td>(x,2,0[0,0,w])</td>
<td>(x,2,0[0,0,w])</td>
<td>(1/2,0,0[0,0,w])</td>
<td>(1/2,0,0[0,0,w])</td>
<td>(1/2,0,0[0,0,w])</td>
</tr>
</tbody>
</table>
4 c 4′/m.. 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]
4 b 4′2′m′ 0,1/2,1/4 [0,0,w] 1/2,0,1/4 [0,0, w]
4 a 4′2′2 0,0,1/4 [0,0,0] 0,0,3/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm1′
\[\mathbf{a}^* = (\mathbf{a} - \mathbf{b})/2 \]
\[\mathbf{b}^* = (\mathbf{a} + \mathbf{b})/2 \]
Origin at 0,0,z

Along [1,0,0] p2a* 2mm
\[\mathbf{a}^* = \mathbf{b}/2 \]
\[\mathbf{b}^* = \mathbf{c}/2 \]
Origin at x,1/4,0

Along [1,1,0] p2a* 2m′m′
\[\mathbf{a}^* = -\mathbf{c}/2 \]
\[\mathbf{b}^* = (-\mathbf{a} + \mathbf{b})/2 \]
Origin at x,x,1/4
Origin at center (4'/m) at 4'/mc2'/c'

Asymmetric unit

\[
0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad y \leq 1/2 - x
\]

Symmetry Operations

For (0,0,0) + set

1. \((1)\ 1\ (1 \ 0,0,0)\)
2. \((2)\ 2\ 0,0,z\ (2_z,0,0,0)\)
3. \((3)\ 4'\ 0,0,z\ (4_z,0,0,0)'\)
4. \((4)\ 4'\ 0,0,z\ (4_z,0,0,0)'\)
5. \((5)\ 2\ 0,y,1/4\ (2_y,0,0,1/2)\)
6. \((6)\ 2\ x,0,1/4\ (2_z,0,0,1/2)\)
7. \((7)\ 2'\ x,x,1/4\ (2_{xy},0,0,1/2)'\)
8. \((8)\ 2'\ x,\bar{x},1/4\ (2_{xy},0,0,1/2)'\)
9. \((9)\ \bar{1}\ 0,0,0\ (1 \ 0,0,0)\)
10. \((10)\ m\ x,y,0\ (m_z,0,0,0)\)
11. \((11)\ 4''\ 0,0,z; 0,0,0\ (4_z,0,0,0)'\)
12. \((12)\ 4''\ 0,0,z; 0,0,0\ (4_z,0,0,0)'\)
13. \((13)\ c\ (0,0,1/2)\ x,0,z\ (m_y,0,0,1/2)\)
14. \((14)\ c\ (0,0,1/2)\ 0,y,z\ (m_z,0,0,1/2)\)
15. \((15)\ c'\ (0,0,1/2)\ x,\bar{x},z\ (m_{xy},0,0,1/2)'\)
16. \((16)\ c'\ (0,0,1/2)\ x,x,z\ (m_{xy},0,0,1/2)'\)
For \((1/2,1/2,1/2)'+\) + set

\[
\begin{align*}
(1) & \ t' (1/2,1/2,1/2) \\
(2) & \ 2' (0,0,1/2) 1/4,1/4,z \\
(3) & \ 4' (0,0,1/2) 0,1/2,z \\
(4) & \ 4' (0,0,1/2) 1/2,0,z \\
(5) & \ 2' (0,1/2,0) 1/4,y,0 \\
(6) & \ 2' (1/2,0,0) 0,y,z \\
(7) & \ 2' (1/2,0,0) x,z \\
(8) & \ 2' (0,0,1/2) 1/2,0,z \\
(9) & \ y,x+1/2,0 \\
(10) & \ x,y,z+1/2 [u,v,w] \\
(11) & \ y,x,z+1/2 [u,v,w] \\
(12) & \ y,x,z+1/2 [u,v,w] \\
(13) & \ a' (1/2,0,0) x,y,z+1/2 [u,v,w] \\
(14) & \ b' (0,1/2,0) x,y,z+1/2 [u,v,w] \\
(15) & \ g (1/2,1/2,0) x,y,z+1/2 [u,v,w] \\
(16) & \ g (1/2,1/2,0) x,y,z+1/2 [u,v,w] \\
\end{align*}
\]

Generators selected
\((1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (9).\)

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generators</td>
<td>((0,0,0) + (1/2,1/2,1/2)' + (1/2,1/2,1/2))</td>
</tr>
<tr>
<td>((1)) x,y,z [u,v,w]</td>
<td>((2)) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>((3)) y,x,z [v,u,w]</td>
<td>((4)) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>((5)) x,y,z+1/2 [u,v,w]</td>
<td>((6)) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>((7)) y,x,z+1/2 [v,u,w]</td>
<td>((8)) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>((9)) x,y,z [u,v,w]</td>
<td>((10)) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>((11)) x,y,z [v,u,w]</td>
<td>((12)) x,y,z [v,u,w]</td>
</tr>
<tr>
<td>((13)) x,y,z+1/2 [u,v,w]</td>
<td>((14)) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>((15)) x,y,z+1/2 [v,u,w]</td>
<td>((16)) x,y,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>((16)) x,y,z+1/2 [u,v,w]</td>
<td>((17)) x,y,z+1/2 [u,v,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generators</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>((16)) m.. x,y,0 [0,0,w]</td>
<td>((16)) m.. x,y,0 [0,0,w]</td>
</tr>
<tr>
<td>((16)) x,y,1/2 [0,0,w]</td>
<td>((16)) x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>((16)) x,0,1/4 [u,0,0]</td>
<td>((16)) x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td>((16)) x,0,3/4 [u,0,0]</td>
<td>((16)) x,0,3/4 [u,0,0]</td>
</tr>
<tr>
<td>((16)) x,0,1/4 [u,0,0]</td>
<td>((16)) x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td>((8)) x,x,1/4 [u,0,0]</td>
<td>((8)) x,x,1/4 [u,0,0]</td>
</tr>
<tr>
<td>((8)) x,x,3/4 [u,0,0]</td>
<td>((8)) x,x,3/4 [u,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generators</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>((8)) m.2m x,x+1/2,0 [0,0,0]</td>
<td>((8)) m.2m x,x+1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>((8)) m.2m x,x+1/2,0 [0,0,0]</td>
<td>((8)) m.2m x,x+1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>((8)) m.2m x,x+1/2,0 [0,0,0]</td>
<td>((8)) m.2m x,x+1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>((8)) m.2m x,x+1/2,0 [0,0,0]</td>
<td>((8)) m.2m x,x+1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>((8)) m.2m x,x+1/2,0 [0,0,0]</td>
<td>((8)) m.2m x,x+1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along \([0,0,1]\) p4mm1'
\[a^* = (a - b)/2 \quad b^* = (a + b)/2\]
Origin at 0,0,z

Along \([1,0,0]\) p_{22}m'm'
\[a^* = b/2 \quad b^* = c/2\]
Origin at x,0,1/4

Along \([1,1,0]\) p2mm1'
\[a^* = (-a + b)/2 \quad b^* = c/2\]
Origin at x,x,0
Origin at center (4'/m') at 4'/m'c'2'/c

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; y ≤ 1/2 - x

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1|0,0,0)

(5) 2 0,y,1/4
 (2_y|0,0,1/2)

(9) 1' 0,0,0
 (1|0,0,0)'

(13) c' (0,0,1/2) x,0,z
 (m_x|0,0,1/2)'

(2) 2 0,0,z
 (2_z|0,0,0)

(6) 2 x,0,1/4
 (2_x|0,0,1/2)

(10) m' x,y,0
 (m_z|0,0,0)'

(14) c' (0,0,1/2) 0,y,z
 (m_y|0,0,1/2)'

(3) 4+ 0,0,z
 (4_z|0,0,0)'

(7) 2' x,x,1/4
 (2_x|0,0,1/2)'

(11) 4+ 0,0,z; 0,0,0
 (4_z|0,0,0)

(12) 4- 0,0,z; 0,0,0
 (4_z^-1|0,0,0)

(4) 4- 0,0,z
 (4_z^-1|0,0,0)'

(8) 2' x,x,1/4
 (2_x|0,0,1/2)'

(15) c (0,0,1/2) x,x,z
 (m_y|0,0,1/2)

(16) c (0,0,1/2) x,x,z
 (m_y|0,0,1/2)
Continued

For \((1/2,1/2,1/2)' + \text{ set}\)

<table>
<thead>
<tr>
<th>(m)</th>
<th>(l)</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>m</td>
<td>(x,y,z[u,v,w]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(x',y',z'[u',v',w]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y',x',z'[v',u,w]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y',x,z[v,u,w]~)</td>
</tr>
<tr>
<td>16</td>
<td>l</td>
<td>(x,x+1/2,z[u,u,w]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(x+x+1/2,z[u,u,w]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(x+x+1/2,z[u,u,w]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(x+1/2,x,z[u,u,w]~)</td>
</tr>
<tr>
<td>16</td>
<td>k</td>
<td>(x,y,0[u,v,0]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(x,y,0[u,v,0]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y,x,0[v,u,0]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(y,x,0[v,u,0]~)</td>
</tr>
<tr>
<td>16</td>
<td>j</td>
<td>(x,x+1/4[u,u,w]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(x,x+1/4[u,u,w]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(x,x+1/4[u,u,w]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,x,1/4[0,u,0]~)</td>
</tr>
<tr>
<td>16</td>
<td>i</td>
<td>(x,x,3/4[u,u,w]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(x,x,3/4[u,u,w]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(x,x,3/4[u,u,w]~)</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>(x,x+1/2,0[u,u,0]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(x,x+1/2,0[u,u,0]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(x,x+1/2,0[u,u,0]~)</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>(0,1/2,z[0,0,w]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,1/2,z[0,0,w]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,1/2,z[0,0,w]~)</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>(0,0,z[0,0,0]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,0,z[0,0,0]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,0,z[0,0,0]~)</td>
</tr>
<tr>
<td>8</td>
<td>e</td>
<td>(1/4,1/4,1/4[u,v,0]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3/4,3/4,1/4[u,v,0]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3/4,3/4,1/4[v,u,0]~)</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>(0,1/2,0[0,0,0]~)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1/2,0,0[0,0,0]~)</td>
</tr>
</tbody>
</table>

Generators selected

(1); \((1,0,0)\); \((0,1,0)\); \((0,0,1)\); \((1/2,1/2,1/2)\); (2); (3); (5); (9).
4 c 4'/m'.. 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]
4 b 4'2m' 0,1/2,1/4 [0,0,0] 1/2,0,1/4 [0,0,0]
4 a 4'22' 0,0,1/4 [0,0,0] 0,0,3/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] \(p_{c'} \cdot 4m'm' \)
\(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \)
Origin at 0,1/2,z

Along [1,0,0] \(p_{2a'} \cdot 2m'm' \)
\(a^* = b/2 \) \(b^* = c/2 \)
Origin at x,0,0

Along [1,1,0] \(p_{2a'} \cdot 2m'm' \)
\(a^* = -c/2 \) \(b^* = (-a + b)/2 \)
Origin at x,x,0
Origin at center (4/m) at 4/mc'2'/c'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; y ≤ 1/2 - x

Symmetry Operations

For (0,0,0) + set

(1) 1
(1) 0,0,0

(2) 2 0,0,z
(2z) 0,0,0

(3) 4⁺ 0,0,z
(4z) 0,0,0

(4) 4⁻ 0,0,z
(4z⁻¹) 0,0,0

(5) 2’ 0,y,1/4
(2y) 0,0,1/2’

(6) 2’ x,0,1/4
(2x) 0,0,1/2’

(7) 2’ x,x,1/4
(2xx) 0,0,1/2’

(8) 2’ x,x,1/4
(2x) 0,0,1/2’

(9) 1 0,0,0
(1) 0,0,0

(10) m x,y,0
(m) 0,0,0

(11) 4⁺ 0,0,z; 0,0,0
(4x) 0,0,0

(12) 4⁻ 0,0,z; 0,0,0
(4x⁻¹) 0,0,0

(13) c’ (0,0,1/2) x,0,z
(m) 0,0,1/2’

(14) c’ (0,0,1/2) 0,y,z
(m) 0,0,1/2’

(15) c’ (0,0,1/2) x,x,z
(m) 0,0,1/2’

(16) c’ (0,0,1/2) x,x,z
(m) 0,0,1/2’
For $(1/2,1/2,1/2)' + \text{set}$

(1) $t'(1/2,1/2,1/2)$
(2) $2'(0,0,1/2) 1/4,1/4,z$
(3) $4^{+},' (0,0,1/2) 0,1/2,z$
(4) $4^{+} (0,0,1/2) 1/2,0,z$
(5) $2 (0,1/2,0) 1/4,y,0$
(6) $2 (0,1/2,0) 1/4,y,0$
(7) $2 (0,1/2,0) x,x,0$
(8) $2 x, x+1/2,0$
(9) $1/4,1/4,1/4$ $x,y,0$
(10) $1/4,1/4,1/4$ $x,y,0$
(11) $1/4,1/4,1/4$ $x,y,0$
(12) $1/4,1/4,1/4$ $x,y,0$
(13) $a (1/2,0,0) x,1/4,z$
(14) $b (0,1/2,0) 1/4,y,z$
(15) $m x+1/2,x,1/4$
(16) $g (1/2,1/2,0) x,x,z$

Generators selected (1); $t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (9).$

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>$x,y,z [u,v,w]$</td>
</tr>
</tbody>
</table>

16 l $..m$

16 k $m..$

16 j $..2'$

16 i $..2'$

8 h $m.2m$

8 g $2.mm$

8 f $4.$

8 e $..2'/m$

4 d $m.mm$

140.15.1210 - 2 - 2581
4 c 4/m.. 0,0,0 [0,0,w] 0,0,1/2 [0,0,w]
4 b 4'2'm 0,1/2,1/4 [0,0,0] 1/2,0,1/4 [0,0,0]
4 a 42'2' 0,0,1/4 [0,0,w] 0,0,3/4 [0,0,w]

Symmetry of Special Projections

Along [0,0,1] p4mm1'
\[\mathbf{a}^* = (\mathbf{a} - \mathbf{b})/2 \quad \mathbf{b}^* = (\mathbf{a} + \mathbf{b})/2 \]
Origin at 0,0,z

Along [1,0,0] p2a*2mm
\[\mathbf{a}^* = \mathbf{a}/2 \quad \mathbf{b}^* = \mathbf{b}/2 \]
Origin at x,1/4,0

Along [1,1,0] p2mm1'
\[\mathbf{a}^* = (\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c}/2 \]
Origin at x,x,0
Origin at center (4/m’¹) at 4/m’c2,/c’

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad y \leq 1/2 - x \]

Symmetry Operations

For (0,0,0) + set

1. \(1\) origin
2. \(2\) \((0,0,z)\)\((0,0,0)\)
3. \(2'\) \((0,0,1/2)\)
4. \(2'\) \((0,0,1/2)\)
5. \(2'\) \((0,0,1/2)\)
6. \(2'\) \((0,0,1/2)\)
7. \(2'\) \((0,0,1/2)\)
8. \(2'\) \((0,0,1/2)\)
9. \(\mathbf{m}'\) \((0,0,0)\)
10. \(\mathbf{m}'\) \((0,0,0)\)
11. \(\mathbf{m}'\) \((0,0,0)\)
12. \(\mathbf{m}'\) \((0,0,0)\)
13. \(\mathbf{m}'\) \((0,0,0)\)
14. \(\mathbf{m}'\) \((0,0,0)\)
15. \(\mathbf{m}'\) \((0,0,0)\)
16. \(\mathbf{m}'\) \((0,0,0)\)
Continued

For $(1/2,1/2,1/2)' + \text{set}$

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) $t'(1/2,1/2,1/2)$</td>
<td>$(0,0,0) + (1/2,1/2,1/2)' +$</td>
</tr>
<tr>
<td>(2) $2'(0,0,1/2)$</td>
<td>$1/4,1/4,z$</td>
</tr>
<tr>
<td>(3) $4^+ (0,0,1/2)$</td>
<td>$0,1/2,z$</td>
</tr>
<tr>
<td>(4) $2'(0,1/2,0)$</td>
<td>$1/2,0,z$</td>
</tr>
<tr>
<td>(5) $x'(0,1/2,0)$</td>
<td>$1/4,y,0$</td>
</tr>
<tr>
<td>(6) $2'(0,1/2,0)$</td>
<td>$x,1/4,0$</td>
</tr>
<tr>
<td>(7) $2'(1/2,1/2,0)$</td>
<td>$x,x,0$</td>
</tr>
<tr>
<td>(8) $2' x,x+1/2,0$</td>
<td>(2_{xy})</td>
</tr>
<tr>
<td>(9) $1/4,1/4,1/4$</td>
<td>(m_{zy})</td>
</tr>
<tr>
<td>(10) $n(1/2,1/2,0)$</td>
<td>$x,y,1/4$</td>
</tr>
<tr>
<td>(11) $4^+(1/2,0,0); z; 1/2,0,1/4$</td>
<td>$(4z)$</td>
</tr>
<tr>
<td>(12) $4^+ (1/2,1/2,1/2)'$</td>
<td>$(4z)$</td>
</tr>
<tr>
<td>(13) $a'(1/2,0,0)$</td>
<td>$x,1/4,z$</td>
</tr>
<tr>
<td>(m_{zy})</td>
<td>$(1/2,1/2,0)'$</td>
</tr>
<tr>
<td>(14) $b'(0,1/2,0)$</td>
<td>$1/4,y,z$</td>
</tr>
<tr>
<td>(m_{zy})</td>
<td>$(1/2,1/2,0)'$</td>
</tr>
<tr>
<td>(15) $m x+1/2,x,z$</td>
<td>(mx)</td>
</tr>
<tr>
<td>(16) $g (1/2,1/2,0)$</td>
<td>x,x,z</td>
</tr>
</tbody>
</table>

Generators selected

(1); $t(1,0,0)$; $t(0,1,0)$; $t(0,0,1)$; $t'(1/2,1/2,1/2)$; (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry letter.

<table>
<thead>
<tr>
<th>m</th>
<th>32</th>
<th>1</th>
<th>(1) $x,y,z [u,v,w]$</th>
<th>(2) $x,y,z [u,v,w]$</th>
<th>(3) $y,x,z [v,u,w]$</th>
<th>(4) $y,x,z [v,u,w]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>16</td>
<td>m'..</td>
<td>$x,y,0 [u,v,0]$</td>
<td>$x,y,0 [u,v,0]$</td>
<td>$y,x,0 [v,u,0]$</td>
<td>$y,x,0 [v,u,0]$</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>j ..2'.</td>
<td>$x,0,1/4 [0,v,w]$</td>
<td>$x,0,1/4 [0,v,w]$</td>
<td>$0,x,1/4 [v,0,w]$</td>
<td>$0,x,1/4 [v,0,w]$</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>i ..2</td>
<td>$x,x,1/4 [u,u,0]$</td>
<td>$x,x,1/4 [u,u,0]$</td>
<td>$x,x,1/4 [u,u,0]$</td>
<td>$x,x,1/4 [u,u,0]$</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>h m'..2'm</td>
<td>$x,x+1/2,0 [u,u,0]$</td>
<td>$x,x+1/2,0 [u,u,0]$</td>
<td>$x+1/2,x,0 [u,u,0]$</td>
<td>$x+1/2,x,0 [u,u,0]$</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>g 2.mm</td>
<td>$0,1/2,z [0,0,0]$</td>
<td>$1/2,0,z [0,0,0]$</td>
<td>$0,1/2,z+1/2 [0,0,0]$</td>
<td>$1/2,0,z+1/2 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>f 4'. ..</td>
<td>$0,0,z [0,0,0]$</td>
<td>$0,0,z [0,0,0]$</td>
<td>$0,0,z [0,0,0]$</td>
<td>$0,0,z [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>e ..2/m</td>
<td>$1/4,1/4,1/4 [0,0,0]$</td>
<td>$3/4,3/4,1/4 [0,0,0]$</td>
<td>$3/4,3/4,1/4 [0,0,0]$</td>
<td>$1/4,3/4,1/4 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>d m'.mm</td>
<td>$0,1/2,0 [0,0,0]$</td>
<td>$1/2,0,0 [0,0,0]$</td>
<td>$1/2,0,0 [0,0,0]$</td>
<td>$1/2,0,0 [0,0,0]$</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] \(p_{4mm} \)
\[
a^* = \frac{(a - b)}{2} \quad b^* = \frac{(a + b)}{2}
\]
Origin at 0,0,z

Along [1,0,0] \(p_{2m'm'} \)
\[
a^* = -\frac{c}{2} \quad b^* = \frac{b}{2}
\]
Origin at x,0,0

Along [1,1,0] \(p_{2mm1'} \)
\[
a^* = -\frac{a + b}{2} \quad b^* = \frac{c}{2}
\]
Origin at x,x,0
Tetragonal

140.17.1212

\[\text{Origin at center } (4/m') \text{ at } 4/m'c'2/c'/c' \]

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad y < 1/2 - x \]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \quad (1|0,0,0) \\
(2) & \quad 2 \quad 0,0,z \quad (2_2|0,0,0) \\
(3) & \quad 4^+ \quad 0,0,z \quad (4_2|0,0,0) \\
(4) & \quad 4^- \quad 0,0,z \quad (4_2^-|0,0,0) \\
(5) & \quad 2 \quad 0,y,1/4 \quad (2_y|0,0,1/2) \\
(6) & \quad 2 \quad x,0,1/4 \quad (2_x|0,0,1/2) \\
(7) & \quad 2 \quad x,x,1/4 \quad (2_{xy}|0,0,1/2) \\
(8) & \quad 2 \quad x,x,1/4 \quad (2_{xy}|0,0,1/2) \\
(9) & \quad \bar{1} \quad 0,0,0 \quad (1|0,0,0)' \\
(10) & \quad m' \quad x,y,0 \quad (m_x|0,0,0)' \\
(11) & \quad \bar{4}^+ \quad 0,0,z; 0,0,0 \quad (4_2|0,0,0)' \\
(12) & \quad \bar{4}^- \quad 0,0,z; 0,0,0 \quad (4_2^-|0,0,0)' \\
(13) & \quad c' \quad (0,0,1/2) \quad x,0,z \quad (m_y|0,0,1/2)' \\
(14) & \quad c' \quad (0,0,1/2) \quad 0,y,z \quad (m_y|0,0,1/2)' \\
(15) & \quad c' \quad (0,0,1/2) \quad x,x,z \quad (m_{xy}|0,0,1/2)' \\
(16) & \quad c' \quad (0,0,1/2) \quad x,x,z \quad (m_{xy}|0,0,1/2)' \\
\end{align*}
\]
For $(1/2,1/2,1/2)' + \text{ set}$

$(1) \ t'(1/2,1/2,1/2)$

$(2) 2'(0,0,1/2) 1/4,1/4,z$

$(3) 4' (0,0,1/2) 0,1/2,z$

$(4) 4' (0,0,1/2) 1/2,0,z$

$(5) 2'(0,1/2,0) 1/4,y,0$

$(6) 2'(1/2,0,0) x,1/4,0$

$(7) 2'(1/2,1/2,0) x,x,0$

$(8) 2' x,x+1/2,0$

$(9) \ T 1/4,1/4,1/4$

$(10) n (1/2,1/2,0) x,y,1/4$

$(11) 4' (1/2,1/2,0) 1/2,0,1/4$

$(12) 4' (1/2,1/2,0) 0,1/2,z$

$(13) a (1/2,0,0) x,1/4,z$

$(14) b (0,1/2,0) 1/4,y,z$

$(15) m x+1/2,x,z$

$(16) g (1/2,1/2,0) x,x,z$

Generators selected

(1); $t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (9)$.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinate(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 m 1</td>
<td>$x,y,z [u,v,w]$</td>
</tr>
<tr>
<td></td>
<td>$(1/2,1/2,1/2)' +$</td>
</tr>
<tr>
<td>16 l .m</td>
<td>$x,x+1/2,z [u,u,0]$</td>
</tr>
<tr>
<td></td>
<td>$x+1/2,x,z [u,u,0]$</td>
</tr>
<tr>
<td>16 k m'.2</td>
<td>$x,y,0 [u,v,0]$</td>
</tr>
<tr>
<td></td>
<td>$x,y,0 [u,v,0]$</td>
</tr>
<tr>
<td>16 j .2</td>
<td>$x,0,1/4 [u,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$0,x,1/4 [u,0,0]$</td>
</tr>
<tr>
<td>16 i .2</td>
<td>$x,x,1/4 [u,u,0]$</td>
</tr>
<tr>
<td></td>
<td>$x,x,1/4 [u,u,0]$</td>
</tr>
<tr>
<td>8 h m'.2$m</td>
<td>$x,x+1/2,0 [u,u,0]$</td>
</tr>
<tr>
<td></td>
<td>$x+1/2,x,0 [u,u,0]$</td>
</tr>
<tr>
<td>8 g 2.mm</td>
<td>$0,1/2,z [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$1/2,0,z [0,0,0]$</td>
</tr>
<tr>
<td>8 f 4..</td>
<td>$0,0,z [0,0,w]$</td>
</tr>
<tr>
<td></td>
<td>$0,0,z [0,0,w]$</td>
</tr>
<tr>
<td>8 e .2/m</td>
<td>$1/4,1/4,1/4 [0,0,w]$</td>
</tr>
<tr>
<td></td>
<td>$3/4,1/4,1/4 [0,0,w]$</td>
</tr>
<tr>
<td>4 d m'.mm</td>
<td>$0,1/2,0 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$1/2,0,0 [0,0,0]$</td>
</tr>
</tbody>
</table>
4 c 4/m'.. 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]
4 b 2/m 0,1/2,1/4 [0,0,0] 1/2,0,1/4 [0,0,0]
4 a 422 0,0,1/4 [0,0,0] 0,0,3/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p_4' 4m'm'
\[\mathbf{a}^* = (\mathbf{a} - \mathbf{b})/2 \quad \mathbf{b}^* = (\mathbf{a} + \mathbf{b})/2 \]
Origin at 0,0,z

Along [1,0,0] p_{2a'} 2m'm'
\[\mathbf{a}^* = \mathbf{b}/2 \quad \mathbf{b}^* = \mathbf{c}/2 \]
Origin at x,0,0

Along [1,1,0] p_{2mm1'}
\[\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c}/2 \]
Origin at x,x,0
Origin at $\overline{4}m2$ at $0,1/4,1/8$ from center (2/m)

Asymmetric unit

\[0 \leq x < 1/2; \quad 0 \leq y < 1/2; \quad 0 \leq z < 1/8 \]

Symmetry Operations

For \((0,0,0) + \text{set}\)

\[
\begin{align*}
(1) & \quad 1 \quad (1,0,0,0) \\
(2) & \quad 2 \quad 0,0,z \quad (2_z,0,0,0) \\
(3) & \quad 4^+ \quad (0,0,1/4) \quad -1/4,1/4,z \quad (4_z,0,1/2,1/4) \\
(4) & \quad 4^- \quad (0,0,1/4) \quad 1/4,1/4,z \quad (4_z^{-1},0,1/2,1/4) \\
(5) & \quad 2 \quad (0,1/2,0) \quad 0,y,1/8 \quad (2_y,0,1/2,1/4) \\
(6) & \quad 2 \quad x,1/4,1/8 \quad (2_x,0,1/2,1/4) \\
(7) & \quad 2 \quad x,x,0 \quad (2_{xx},0,0,0) \\
(8) & \quad 2 \quad x,x,0 \quad (2_{xx},0,0,0) \\
(9) & \quad \overline{1} \quad 0,1/4,1/8 \quad (1,0,1/2,1/4) \\
(10) & \quad b \quad (0,1/2,0) \quad x,y,1/8 \quad (m_y,0,1/2,1/4) \\
(11) & \quad \overline{4}^+ \quad 0,0,z; 0,0,0 \quad (4_z,0,0,0) \\
(12) & \quad \overline{4}^- \quad 0,0,z; 0,0,0 \quad (4_z^{-1},0,0,0) \\
(13) & \quad m \quad x,0,z \quad (m_x,0,0,0) \\
(14) & \quad m \quad 0,y,z \quad (m_y,0,0,0) \\
(15) & \quad d \quad (-1/4,1/4,1/4) \quad x+1/4,\overline{x},z \quad (m_{xy},0,1/2,1/4) \\
(16) & \quad d \quad (1/4,1/4,1/4) \quad x-1/4,\overline{x},z \quad (m_{xy},0,1/2,1/4)
\end{align*}
\]
For \((1/2,1/2,1/2) + \) set

1. \(t(1/2,1/2,1/2)
2. \(2(0,0,1/2)\)
3. \(4^+(0,0,3/4)\)
4. \(4^-(0,0,3/4)\)

(1) \(t(1/2,1/2,1/2)\)
(2) \(2(0,0,1/2)\)
(3) \(4^+(0,0,3/4)\)
(4) \(4^-(0,0,3/4)\)

Generators selected

1; \(t(1,0,0)\); \(t(0,1,0)\); \(t(0,0,1)\); \(t(1/2,1/2,1/2)\); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>(i)</td>
<td>(1)</td>
</tr>
<tr>
<td>16</td>
<td>(h)</td>
<td>(0.0,0))</td>
</tr>
<tr>
<td>16</td>
<td>(g)</td>
<td>(0.0,1/2)z+1/4)</td>
</tr>
<tr>
<td>16</td>
<td>(f)</td>
<td>(x,1/4,1/8)</td>
</tr>
<tr>
<td>8</td>
<td>(e)</td>
<td>(0,0,z)</td>
</tr>
<tr>
<td>8</td>
<td>(d)</td>
<td>(0,1/4,5/8)</td>
</tr>
<tr>
<td>8</td>
<td>(c)</td>
<td>(0,1/4,1/8)</td>
</tr>
</tbody>
</table>

Coordinates

- \((0,0,0) + (1/2,1/2,1/2) + (1,0,0)\)

- \(x,y,z\) \([u,v,w]\)
- \(y,y,z\) \([u,v,w]\)
- \(y,y,z\) \([u,v,w]\)
- \(x,y+1/2,z+1/4\) \([u,v,w]\)
- \(y,x+1/2,z+1/4\) \([v,u,w]\)
- \(x,y+1/2,z+1/4\) \([u,v,w]\)
- \(y,x,z\) \([v,u,w]\)
- \(x,y,z\) \([v,u,w]\)
- \(x,y,z\) \([v,u,w]\)
- \(x,y+1/2,z+1/4\) \([v,u,w]\)
- \(y,x+1/2,z+1/4\) \([v,u,w]\)

Generators

- \(1\); \(t(1,0,0)\); \(t(0,1,0)\); \(t(0,0,1)\); \(t(1/2,1/2,1/2)\); (2); (3); (5); (9).
Symmetry of Special Projections

Along [0,0,1] \(p_{\parallel} \) 4m'\(m' \)
\(a^* = a/2 \quad b^* = b/2 \)
Origin at 1/4,1/4,z

Along [1,0,0] c2mm1'
\(a^* = b \quad b^* = c \)
Origin at x,0,3/8

Along [1,1,0] \(c_{p'} \) 2m'\(m' \)
\(a^* = (-a + b)/2 \quad b^* = c/2 \)
Origin at x,x,0
Origin at $\overline{4}m2$ at 0,1/4,-1/8 from center (2/m)

Asymmetric unit: $0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1/8$

Symmetry Operations

For $(0,0,0) +$ set

1. 1
 $(1 | 0,0,0)$

2. 2
 $(0,0,z) (2_z|0,0,0)$

3. 4^+
 $(0,0,1/4) -1/4,1/4,z (4_z|0,1/2,1/4)$

4. 4^-
 $(0,0,1/4) 1/4,1/4,z (4_z^{-1}|0,1/2,1/4)$

5. 2
 $(0,1/2,0) 0,y,1/8 (2_y|0,1/2,1/4)$

6. 2
 $x,1/4,1/8 (2_z|0,1/2,1/4)$

7. 2
 $x,x,0 (2_{xy}|0,0,0)$

8. 2
 $x,x,0 (2_{xy}|0,0,0)$

9. $\overline{1}$
 $0,1/4,1/8 (\bar{1}|0,1/2,1/4)$

10. b
 $(0,1/2,0) x,y,1/8 (m_{xy}|0,1/2,1/4)$

11. $\overline{4}^+$
 $0,0,z; 0,0,0 (\bar{4}_z|0,0,0)$

12. $\overline{4}^-$
 $0,0,z; 0,0,0 (\bar{4}_z^{-1}|0,0,0)$

13. m
 $x,0,z (m_{x}|0,0,0)$

14. m
 $0,y,z (m_y|0,0,0)$

15. d
 $(-1/4,1/4,1/4) x+1/4,\bar{x},z (m_{xy}|0,1/2,1/4)$

16. d
 $(1/4,1/4,1/4) x-1/4,\bar{x},z (m_{xy}|0,1/2,1/4)$
Generators selected
(1): (1,0,0); (0,1,0); (0,0,1); (1/2,1,2,1/2); (2); (3); (5); (9); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
</table>

Continued 141.2.1214

For (1/2,1/2,1/2) + set

<table>
<thead>
<tr>
<th>(1) t (1/2,1/2,1/2)</th>
<th>(2) 2 (0,0,1/2)</th>
<th>1/4,1/4,z (3) 4' (0,0,3/4)</th>
<th>1/4,1/4,z (4) 4' (0,0,3/4)</th>
<th>1/4,-1/4,z (4') 1/2,0,3/4</th>
<th>1/2,0,3/4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>(1) t (1/2,1/2,1/2)</th>
<th>(2) 2 (0,0,1/2)</th>
<th>1/4,1/4,z (3) 4' (0,0,3/4)</th>
<th>1/4,1/4,z (4) 4' (0,0,3/4)</th>
<th>1/4,-1/4,z (4') 1/2,0,3/4</th>
<th>1/2,0,3/4</th>
</tr>
</thead>
</table>

For (0,0,0) + set

<table>
<thead>
<tr>
<th>(1) t (1/2,1/2,1/2)</th>
<th>(2) 2 (0,0,1/2)</th>
<th>1/4,1/4,z (3) 4' (0,0,3/4)</th>
<th>1/4,1/4,z (4) 4' (0,0,3/4)</th>
<th>1/4,-1/4,z (4') 1/2,0,3/4</th>
<th>1/2,0,3/4</th>
</tr>
</thead>
</table>

For (1/2,1,2,1/2) + set

<table>
<thead>
<tr>
<th>(1) t' (1/2,1/2,1/2)</th>
<th>(2) 2' (0,0,1/2)</th>
<th>1/4,1/4,z (3) 4' (0,0,3/4)</th>
<th>1/4,1/4,z (4) 4' (0,0,3/4)</th>
<th>1/4,-1/4,z (4') 1/2,0,3/4</th>
<th>1/2,0,3/4</th>
</tr>
</thead>
</table>

141.2.1214 - 2 - 2593
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Operation</th>
<th>Symmetry</th>
<th>Origin</th>
<th>a*</th>
<th>b*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p4mm1'</td>
<td>0,0,0</td>
<td>a/2</td>
<td>b/2</td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>c2mm1'</td>
<td>0,0,0</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>Along [1,1,0]</td>
<td>c2mm1'</td>
<td>x,x,0</td>
<td>(-a + b)/2</td>
<td>c/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z

32 i 11'

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Notation</th>
<th>Origin</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z</td>
<td>[0,0,0]</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) x,y,z</td>
<td>[0,0,0]</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) y,x+1/2,z+1/4</td>
<td>[0,0,0]</td>
<td>y,x,z</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) y,x+1/2,z+1/4</td>
<td>[0,0,0]</td>
<td>y,x,z</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) x,y+1/2,z+1/4</td>
<td>[0,0,0]</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) x,y+1/2,z+1/4</td>
<td>[0,0,0]</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) y,x,z</td>
<td>[0,0,0]</td>
<td>y,x,z</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) y,x,z</td>
<td>[0,0,0]</td>
<td>y,x,z</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9) x,y+1/2,z+1/4</td>
<td>[0,0,0]</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10) x,y+1/2,z+1/4</td>
<td>[0,0,0]</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11) y,x,z</td>
<td>[0,0,0]</td>
<td>y,x,z</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12) y,x,z</td>
<td>[0,0,0]</td>
<td>y,x,z</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(13) x,y,z</td>
<td>[0,0,0]</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(14) x,y,z</td>
<td>[0,0,0]</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(15) y,x+1/2,z+1/4</td>
<td>[0,0,0]</td>
<td>y,x+1/2,z+1/4</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(16) y,x+1/2,z+1/4</td>
<td>[0,0,0]</td>
<td>y,x+1/2,z+1/4</td>
<td>[0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Operation</th>
<th>Symmetry</th>
<th>Origin</th>
<th>a*</th>
<th>b*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p4mm1'</td>
<td>0,0,0</td>
<td>a/2</td>
<td>b/2</td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>c2mm1'</td>
<td>0,0,0</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>Along [1,1,0]</td>
<td>c2mm1'</td>
<td>x,x,0</td>
<td>(-a + b)/2</td>
<td>c/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at $\overline{4}m2'$ at 0,1/4,-1/8 from center ($2'm$)

Asymmetric unit

$0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1/8$

Symmetry Operations

For $(0,0,0) +$ set

(1) 1
(1 0,0,0)

(5) $2' (0,1/2,0) \ 0,y,1/8$
($2'_y | 0,1/2,1/4)'

(9) $\overline{1}' 0,1/4,1/8$
($\overline{1} | 0,1/2,1/4)'

(13) m $x,0,z$
($m_y | 0,0,0)$

(2) $2 \ 0,0,z$
($2_z | 0,0,0)$

(6) $2' \ x,1/4,1/8$
($2_z | 0,1/2,1/4)'

(10) $b' (0,1/2,0) \ x,y,1/8$
($m_y | 0,1/2,1/4)'

(14) m $0,y,z$
($m_y | 0,0,0)$

(3) $4^+ (0,0,1/4) \ -1/4,1/4,z$
($4_z | 0,1/2,1/4)$

(7) $2' \ x,x,0$
($2_{xy} | 0,0,0)'$

(11) $\overline{4}^\prime \ 0,0,z; 0,0,0$
($\overline{4}_z | 0,0,0)'$

(15) d $(-1/4,1/4,1/4) \ 1/4, x,z$
($m_{xy} | 0,1/2,1/4)$

(16) d $(1/4,1/4,1/4) \ -x,1/4,x,z$
($m_{xy} | 0,1/2,1/4)$
Continued

<table>
<thead>
<tr>
<th>Generators selected</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1); t(1,0,0); t(0,1,0); t(1/2,2,1/2); (2); (3); (5); (9).</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
</tbody>
</table>

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 i 1</td>
<td>x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>32</td>
<td>y,x+1/2,z+1/4 [v,u,w]</td>
<td>(4) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td>32</td>
<td>x,y+1/2,z+1/4 [u,v,w]</td>
<td>(6) x,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td>32</td>
<td>y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>32</td>
<td>x,y+1/2,z+1/4 [u,v,w]</td>
<td>(10) x,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td>32</td>
<td>y,x,z [v,u,w]</td>
<td>(12) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>32</td>
<td>x,y,z [u,v,w]</td>
<td>(14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>32</td>
<td>y,x+1/2,z+1/4 [v,u,w]</td>
<td>(16) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
</tbody>
</table>

16 h .m.	0,y,z [u,0,0] 0,y,z [u,0,0]	0,y,z [u,0,0]
16	0,y+1/2,z+1/4 [u,0,0] 0,y+1/2,z+1/4 [u,0,0]	0,y+1/2,z+1/4 [u,0,0]
16	x,x,0 [u,u,w] x,x,0 [u,u,w]	x,x,0 [u,u,w]
16	x,x+1/2,1/4 [u,u,w] x,x+1/2,1/4 [u,u,w]	x,x+1/2,1/4 [u,u,w]
16	x,1/4,1/8 [0,v,w] x,3/4,1/8 [0,v,w]	3/4,x+1/2,3/8 [0,v,0,w]
16	x,1/4,1/8 [0,v,w] x,3/4,1/8 [0,v,w]	1/4,x,7/8 [v,0,w]
16	0,0,z [0,0,0] 0,1/2,z+1/4 [0,0,0]	0,0,z [0,0,0]
8 e 2mm.	0,1/4,5/8 [0,0,0] 0,3/4,5/8 [0,0,0]	0,1/4,2,7/8 [0,0,0]
8 d .2/m'.	0,1/4,1/8 [0,0,0] 0,3/4,1/8 [0,0,0]	0,1/4,2,3/8 [0,0,0]
8 c .2/m'.	0,1/4,1/8 [0,0,0] 0,3/4,1/8 [0,0,0]	0,1/4,2,3/8 [0,0,0]

141.3.1215 - 2 - 2596
4 b \(\overline{4}2'm \) 0,0,1/2 [0,0,0] 0,1/2,3/4 [0,0,0]
4 a \(\overline{4}2'm \) 0,0,0 [0,0,0] 0,1/2,1/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm \(a^* = a/2 \) \(b^* = b/2 \)
Origin at 0,0,z

Along [1,0,0] c2mm1' \(a^* = b \) \(b^* = c \)
Origin at x,0,3/8

Along [1,1,0] \(c_p' \) 2'mm' \(a^* = -c/2 \) \(b^* = (-a + b)/2 \)
Origin at x,x,0
I4₁/am'd
141.4.1216

4'/mm'm
I4₁/a2'/m'2/d

Tetragonal

Origin at \(\overline{2}m'2 \) at 0,1/4,-1/8 from center (2'/m')

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/8

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(5) 2' (0,1/2,0) 0,y,1/8
 (2', 0,1/2,1/4')

(9) \(\overline{1} \) 0,1/4,1/8
 (\(\overline{1} \) | 0,1/2,1/4)

(13) m' x,0,z
 (m', 0,0,0)'

(2) 2 0,0,z
 (2z, 0,0,0)

(6) 2' x,1/4,1/8
 (2z, 0,1/2,1/4)'

(10) b (0,1/2,0) x,y,1/8
 (m, 0,1/2,1/4)

(14) m' 0,y,z
 (m', 0,0,0)'

(3) 4⁺ (0,0,1/4) -1/4,1/4,z
 (4z, 0,1/2,1/4)'

(7) 2 x,x,0
 (2z, 0,0,0)

(8) 2 x,x,0
 (2z, 0,0,0)

(4) 4⁻ (0,0,1/4) 1/4,1/4,z
 (4z⁻¹, 0,1/2,1/4)'

(11) 4⁻ (0,0,1/4) 0,z; 0,0,0
 (4z⁻¹, 0,0,0)'

(12) 4⁻ (0,0,1/4) 0,z; 0,0,0
 (4z⁻¹, 0,0,0)'

(15) d (-1/4,1/4,1/4) x+1/4,x,z
 (m, 0,1/2,1/4)

(16) d (1/4,1/4,1/4) x-1/4,x,z
 (m, 0,1/2,1/4)
Generators selected
(1): t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>32</td>
<td>i</td>
<td>1</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(2)</td>
<td>x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(3)</td>
<td>y,x+1/2,z+1/4 [v,u,w]</td>
<td>(4) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(5)</td>
<td>x,y+1/2,z+1/4 [u,v,w]</td>
<td>(6) x,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(7)</td>
<td>y,x+1/2 [v,u,w]</td>
<td>(8) y,x+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(9)</td>
<td>x,y+1/2,z+1/4 [u,v,w]</td>
<td>(10) x,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(11)</td>
<td>y,x+1/2 [v,u,w]</td>
<td>(12) y,x+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(13)</td>
<td>x,y+1/2 [v,u,w]</td>
<td>(14) x,y+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(15)</td>
<td>y,x+1/2,z+1/4 [v,u,w]</td>
<td>(16) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>16</td>
<td>h</td>
<td>.m'</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(2)</td>
<td>0,y,z [0,v,w]</td>
<td>0,y,z [0,v,w]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(3)</td>
<td>0,y+1/2,z+1/4 [0,v,w]</td>
<td>0,y+1/2,z+1/4 [0,v,w]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(4)</td>
<td>0,y,0 [v,w]</td>
<td>0,y,0 [v,w]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(5)</td>
<td>x,x,0 [u,u,u]</td>
<td>x,x,0 [u,u,u]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(6)</td>
<td>x,x+1/2,1/4 [u,u,u]</td>
<td>x,x+1/2,1/4 [u,u,u]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(7)</td>
<td>x,x,0 [u,u,u]</td>
<td>x,x,0 [u,u,u]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(8)</td>
<td>x,x,0 [u,u,u]</td>
<td>x,x,0 [u,u,u]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(9)</td>
<td>x,1/4,1/8 [0,v,w]</td>
<td>x,3/4,1/8 [0,v,w]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(10)</td>
<td>x,1/4,1/8 [0,v,w]</td>
<td>x,1/4,1/8 [0,v,w]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(11)</td>
<td>x,1/4,1/8 [0,v,w]</td>
<td>x,1/4,1/8 [0,v,w]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(12)</td>
<td>x,1/4,1/8 [0,v,w]</td>
<td>x,1/4,1/8 [0,v,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>8</td>
<td>e</td>
<td>2mm</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(2)</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(3)</td>
<td>0,1/2,z+1/4 [0,0,0]</td>
<td>0,1/2,z+1/4 [0,0,0]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(4)</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(5)</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(6)</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(7)</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(8)</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>
4 b 4‘2‘m 0,0,1/2 [0,0,0] 0,1/2,3/4 [0,0,0]
4 a 4‘2‘m 0,0,0 [0,0,0] 0,1/2,1/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p$_{\text{c}$, 4mm
a* = a/2 b* = b/2
Origin at 0,0,z

Along [1,0,0] c2m‘m‘

a* = b b* = c
Origin at x,0,3/8

Along [1,1,0] c$_{\text{p‘}$ 2m‘m‘

a* = (-a + b)/2 b* = c/2
Origin at x,x,0
Origin at $\overline{4}m2'$ at 0,1/4,-1/8 from center (2/m)

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/8$

Symmetry Operations

For $(0,0,0) +$ set

(1) 1

(2) $\overline{4}' (0,0,1/4); -1/4,1/4,z$

(3) $4' (0,0,1/4); -1/4,1/4,z$

(4) $4' (0,0,1/4); 1/4,1/4,z$

(5) $2 (0,1/2,0); 0,y,1/8$

(6) $x,1/4,1/8$

(7) $2' x,x,0$

(8) $2' x,x,0$

(9) $\overline{1} 0,1/4,1/8$

(10) $b (0,1/2,0); x,y,1/8$

(11) $\overline{4}'; 0,0,z; 0,0,0$

(12) $\overline{4}'; 0,0,z; 0,0,0$

(13) $m x,0,z$

(14) $m 0,y,z$

(15) $d' (-1/4,1/4,1/4) \overline{x+1/4, \overline{x},z}$

(16) $d'(1/4,1/4,1/4) \overline{x-1/4, x,z}$
For \((1/2,1/2,1/2) + \) set

<table>
<thead>
<tr>
<th>(1) t</th>
<th>1/2,1/2,1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) 2</td>
<td>0,0,1/2</td>
</tr>
<tr>
<td>(3) 4'</td>
<td>(0,0,3/4)</td>
</tr>
<tr>
<td>(4) 4'</td>
<td>(0,0,3/4)</td>
</tr>
<tr>
<td>(5) 2</td>
<td>1/2,0,3/4</td>
</tr>
<tr>
<td>(6) 2</td>
<td>0,0,1/2</td>
</tr>
<tr>
<td>(7) 2'</td>
<td>(1/2,1/2,0)</td>
</tr>
<tr>
<td>(8) 2'</td>
<td>(0,0,1/2)</td>
</tr>
</tbody>
</table>

Generators selected:
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 i 1</td>
<td>x,y,z [u,v,w]</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>y,x+1/2,z+1/4 [v,u,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>x,y+1/2,z+1/4 [u,v,w]</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>y,x,z [v,u,w]</td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,y+1/2,z+1/4 [u,v,w]</td>
<td>(5) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>y,x,z [v,u,w]</td>
<td>(6) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,z [v,u,w]</td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,z [v,u,w]</td>
<td>(9) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,z [v,u,w]</td>
<td>(10) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,z [v,u,w]</td>
<td>(11) x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,y,z [v,u,w]</td>
<td>(12) x,y,z [v,u,w]</td>
</tr>
<tr>
<td>16 h .m.</td>
<td>y,z [u,0,0]</td>
<td>(13) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>y,z [u,0,0]</td>
<td>(14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>y,z [u,0,0]</td>
<td>(15) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>y,z [u,0,0]</td>
<td>(16) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>y,z [u,0,0]</td>
<td>(17) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>y,z [u,0,0]</td>
<td>(18) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>y,z [u,0,0]</td>
<td>(19) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>y,z [u,0,0]</td>
<td>(20) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 g .2'</td>
<td>x,0 [u,u,w]</td>
<td>(21) x,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,0 [u,u,w]</td>
<td>(22) x,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,0 [u,u,w]</td>
<td>(23) x,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,0 [u,u,w]</td>
<td>(24) x,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,0 [u,u,w]</td>
<td>(25) x,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,0 [u,u,w]</td>
<td>(26) x,0 [u,u,w]</td>
</tr>
<tr>
<td>16 f .2</td>
<td>x,1/4,1/8 [u,0,0]</td>
<td>(27) x,1/4,1/8 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/4,1/8 [u,0,0]</td>
<td>(28) x,1/4,1/8 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/4,1/8 [u,0,0]</td>
<td>(29) x,1/4,1/8 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/4,1/8 [u,0,0]</td>
<td>(30) x,1/4,1/8 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/4,1/8 [u,0,0]</td>
<td>(31) x,1/4,1/8 [u,0,0]</td>
</tr>
<tr>
<td>8 e 2mm.</td>
<td>0,0,z [0,0,0]</td>
<td>(32) 0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
<td>(33) 0,0,z [0,0,0]</td>
</tr>
<tr>
<td>8 d .2/m.</td>
<td>0,1/4,5/8 [0,v,w]</td>
<td>(34) 0,1/4,5/8 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/4,5/8 [0,v,w]</td>
<td>(35) 0,1/4,5/8 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/4,5/8 [0,v,w]</td>
<td>(36) 0,1/4,5/8 [0,v,w]</td>
</tr>
<tr>
<td>8 c .2/m.</td>
<td>0,1/4,1/8 [0,v,w]</td>
<td>(37) 0,1/4,1/8 [0,v,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/4,1/8 [0,v,w]</td>
<td>(38) 0,1/4,1/8 [0,v,w]</td>
</tr>
</tbody>
</table>

Coordinates:

<table>
<thead>
<tr>
<th>(0,0,0) + (1/2,1/2,1/2) +</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
</tbody>
</table>
Continued

4 b $\bar{4}2m'$ 0,0,1/2 [0,0,0] 0,1/2,3/4 [0,0,0]
4 a $\bar{4}2m'$ 0,0,0 [0,0,0] 0,1/2,1/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p$_{\bar{4}m}$ 4mm
a* = a/2 b* = b/2
Origin at 0,0,z

Along [1,0,0] c2mm1'
a* = b b* = c
Origin at x,0,3/8

Along [1,1,0] c2'mm'
a* = -c/2 b* = (-a + b)/2
Origin at x,x,0
Origin at $\overline{4}m'2'$ at $0,1/4,-1/8$ from center ($2/m'$)

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/8$

Symmetry Operations

For $(0,0,0) +$ set

1. 1
2. $2' \quad x,1/4,1/8$
3. $4' \quad (0,0,1/4) \rightarrow -1/4,1/4,z$
4. $4' \quad (0,0,1/4) \rightarrow 1/4,1/4,z$
5. $2 \quad (0,1/2,0) \rightarrow 0,y,1/8$
6. $2' \quad x,x,0$
7. $2' \quad x,x,0$
8. $2' \quad x,x,0$
9. $1' \quad 0,1/4,1/8$
10. $b' \quad (0,1/2,0) \rightarrow x,y,1/8$
11. $4' \quad 0,0,z; 0,0,0$
12. $4' \quad 0,0,z; 0,0,0$
13. $m' \quad x,0,z$
14. $m' \quad 0,y,z$
15. $d \quad (-1/4,1/4,1/4) \rightarrow x+1/4,\overline{x},z$
16. $d \quad (1/4,1/4,1/4) \rightarrow x-1/4,\overline{x},z$
For (1/2,1/2,1/2) + set

<table>
<thead>
<tr>
<th>No.</th>
<th>Coordinates</th>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(x,y,z) [u,v,w]</td>
<td>32</td>
<td>(i)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(x,y,z) [u,v,w]</td>
<td>16</td>
<td>(.m')</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>(y,x+1/2,z+1/4) [v,u,w]</td>
<td>16</td>
<td>(.2')</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>(y,x+1/2,z+1/4) [v,u,w]</td>
<td>16</td>
<td>(.2')</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>(x,y+1/2,z+1/4) [u,v,w]</td>
<td>8</td>
<td>(e)</td>
<td>2m'</td>
</tr>
<tr>
<td>6</td>
<td>(x,y+1/2,z+1/4) [u,v,w]</td>
<td>8</td>
<td>(d)</td>
<td>.2'm'</td>
</tr>
<tr>
<td>7</td>
<td>(y,z) [v,u,w]</td>
<td>16</td>
<td>(.m')</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>(y,z) [v,u,w]</td>
<td>16</td>
<td>(.m')</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>(x,y+1/2,z+1/4) [u,v,w]</td>
<td>16</td>
<td>(.m')</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>(0,y+1/2,z+1/4) [u,v,w]</td>
<td>16</td>
<td>(.m')</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>(y,z) [v,u,w]</td>
<td>16</td>
<td>(.m')</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>(y,z) [v,u,w]</td>
<td>16</td>
<td>(.m')</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>(x,y,z) [u,v,w]</td>
<td>8</td>
<td>(e)</td>
<td>2m'</td>
</tr>
<tr>
<td>14</td>
<td>(x,y,z) [u,v,w]</td>
<td>8</td>
<td>(d)</td>
<td>.2'm'</td>
</tr>
<tr>
<td>15</td>
<td>(x,y+1/2,z+1/4) [v,u,w]</td>
<td>16</td>
<td>(.m')</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>(y,x+1/2,z+1/4) [v,u,w]</td>
<td>16</td>
<td>(.m')</td>
<td>1</td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).
4 b 42m 0,0,1/2 [0,0,0] 0,1/2,3/4 [0,0,0]
4 a 42m 0,0,0 [0,0,0] 0,1/2,1/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p, 4m'm'
\[a^* = a/2 \quad b^* = b/2 \]
Origin at 0,0,z

Along [1,0,0] c2m'm'
\[a^* = b \quad b^* = c \]
Origin at x,0,3/8

Along [1,1,0] c, 2mm'
\[a^* = -c/2 \quad b^* = (-a + b)/2 \]
Origin at x,x,0
Origin at 4\text{m'2'} at 0,1/4,-1/8 from center (2'/m')

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/8 \]

Symmetry Operations

For \((0,0,0) + \) set

1. \(1 \quad 0,0,0 \)
2. \(2 \quad 0,0,z \)
3. \(4^+ \quad (0,0,1/4) \quad -1/4,1/4,z \)
4. \(4^+ \quad (0,0,1/4) \quad 1/4,1/4,z \)
5. \(2' \quad (0,1/2,0) \quad x,1/4,1/8 \)
6. \(2' \quad x,1/4,1/8 \)
7. \(2' \quad x,x,0 \)
8. \(2' \quad x,x,0 \)
9. \(m' \quad x,0,z \)
10. \(m' \quad 0,y,z \)
11. \(d' \quad -1/4,1/4,1/4 \quad x+1/4,x,z \)
12. \(d' \quad -1/4,1/4,1/4 \quad x-1/4,x,z \)
For (1/2,1/2,1/2) + set

<table>
<thead>
<tr>
<th>Generators selected</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter, Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>i 1</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) (\bar{x},y,z [\bar{u},\bar{v},\bar{w}])</td>
</tr>
<tr>
<td>(3) (\bar{y},x+1/2,z+1/4 [\bar{v},u,w])</td>
<td>(4) (y,x+1/2,z+1/4 [v,u,w])</td>
</tr>
<tr>
<td>(5) (\bar{x},y+1/2,z+1/4 [u,\bar{v},w])</td>
<td>(6) (x,\bar{y}+1/2,z+1/4 [u,v,w])</td>
</tr>
<tr>
<td>(7) (y,\bar{x},z [\bar{v},\bar{u},w])</td>
<td>(8) (\bar{y},\bar{x},z [v,u,w])</td>
</tr>
<tr>
<td>(9) (\bar{x},\bar{y}+1/2,z+1/4 [u,v,w])</td>
<td>(10) (x,y+1/2,\bar{z}+1/4 [\bar{u},\bar{v},w])</td>
</tr>
<tr>
<td>(11) (y,\bar{x},\bar{z} [\bar{v},\bar{u},w])</td>
<td>(12) (\bar{y},x,\bar{z} [v,u,w])</td>
</tr>
<tr>
<td>(13) (x,y,z [u,v,w])</td>
<td>(14) (x,y,z [u,v,w])</td>
</tr>
<tr>
<td>(15) (\bar{y},x+1/2,z+1/4 [\bar{v},\bar{u},w])</td>
<td>(16) (y,x+1/2,z+1/4 [v,u,w])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>h .m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,y,z [0,v,w])</td>
<td>(0,(\bar{y},z [0,\bar{v},w]))</td>
</tr>
<tr>
<td>0,y+1/4,z+1/2 [0,v,w]</td>
<td>(\bar{y},1/2,z+1/4 [\bar{v},0,w]))</td>
</tr>
<tr>
<td>(y,1/2,z+1/4 [v,0,w])</td>
<td>(y,0,z [v,0,w])</td>
</tr>
<tr>
<td>0,(\bar{y},+1/2,z+1/4 [\bar{v},0,w])</td>
<td>0,(\bar{y},0,z [\bar{v},0,w])</td>
</tr>
<tr>
<td>16</td>
<td>g .2'</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>(x,x,0 [\bar{u},\bar{u},w])</td>
<td>((\bar{x},\bar{x},0 [u,u,w]))</td>
</tr>
<tr>
<td>(\bar{x},x,0 [u,u,w])</td>
<td>(\bar{x},\bar{x}+1/2,1/4 [u,u,w])</td>
</tr>
<tr>
<td>(x,\bar{x}+1/2,1/4 [u,u,w])</td>
<td>(x,\bar{x}+1/2,1/4 [u,u,w])</td>
</tr>
<tr>
<td>16</td>
<td>f .2'</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>(x,1/4,1/8 [0,v,w])</td>
<td>(x,3/4,1/8 [0,\bar{v},w])</td>
</tr>
<tr>
<td>3/4,x+1/2,3/8 [\bar{v},0,w]</td>
<td>1/4,(\bar{x},1/2,3/8 [v,0,w])</td>
</tr>
<tr>
<td>1/4,(\bar{x},1/2,3/8 [v,0,w])</td>
<td>3/4,(\bar{x},1/2,3/8 [v,0,w])</td>
</tr>
<tr>
<td>8</td>
<td>e 2m'm'</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>(0,0,z [0,0,w])</td>
<td>(0,(1/2,z+1/4 [0,0,w]))</td>
</tr>
<tr>
<td>0,(1/2,z+1/4 [0,0,w])</td>
<td>(0,0,z [0,0,w])</td>
</tr>
<tr>
<td>8</td>
<td>d .2'm'</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>(0,1/4,5/8 [0,0,w])</td>
<td>(0,3/4,5/8 [0,0,w])</td>
</tr>
<tr>
<td>3/4,1/2,7/8 [0,0,w]</td>
<td>1/4,(1/2,7/8 [0,0,w])</td>
</tr>
<tr>
<td>1/4,(1/2,7/8 [0,0,w])</td>
<td>3/4,(1/2,3/8 [0,0,w])</td>
</tr>
<tr>
<td>8</td>
<td>c .2'm'</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>(0,1/4,1/8 [0,0,w])</td>
<td>(0,3/4,1/8 [0,0,w])</td>
</tr>
<tr>
<td>3/4,1/2,3/8 [0,0,w]</td>
<td>1/4,(1/2,3/8 [0,0,w])</td>
</tr>
<tr>
<td>141.7.1219 - 2 - 2608</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] \(p_{m} \) \(4m'm' \)
\(a^* = a/2 \quad b^* = b/2 \)
Origin at 1/4,1/4,z

Along [1,0,0] \(c_{2}mm' \)
\(a^* = -c \quad b^* = b \)
Origin at x,0,3/8

Along [1,1,0] \(c_{2}mm' \)
\(a^* = -c/2 \quad b^* = (-a + b)/2 \)
Origin at x,x,0
Origin

at \(\overline{4} m 2 \) at 0,1/4,-1/8 from center (2'/m)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/8 \]

Symmetry Operations

For \((0,0,0) + \) set

1. \(1 \)
 \(\begin{align*}
 & (1|0,0,0) \\

 & (2) \begin{array}{c} \begin{pmatrix} z \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \end{array} \begin{pmatrix} 0 \end{pmatrix} \\
 \end{align*} \)

2. \(2 \begin{pmatrix} 0,0,0 \end{pmatrix} \)
 \(\begin{align*}
 & (2) \begin{pmatrix} z \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \end{align*} \)

3. \(4^+ \begin{pmatrix} 0,0,1/4 \end{pmatrix} \begin{pmatrix} -1/4,1/4,1/4 \end{pmatrix} \)
 \(\begin{align*}
 & (4) \begin{pmatrix} 0,1/1/2,1/4 \end{pmatrix} \\
 \begin{pmatrix} z \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \end{align*} \)

4. \(4^- \begin{pmatrix} 0,0,1/4 \end{pmatrix} \begin{pmatrix} 1/4,1/4,1/4 \end{pmatrix} \)
 \(\begin{align*}
 & (4) \begin{pmatrix} 0,1/1/2,1/4 \end{pmatrix} \\
 \begin{pmatrix} z \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \end{align*} \)

5. \(2' \begin{pmatrix} 0,1/2,0 \end{pmatrix} \begin{pmatrix} 0,y,1/8 \end{pmatrix} \)
 \(\begin{align*}
 & (2) \begin{pmatrix} x \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \begin{pmatrix} 1/4 \end{pmatrix} \\
 \end{align*} \)

6. \(2' \begin{pmatrix} x,1/4,1/8 \end{pmatrix} \begin{pmatrix} 1/2,1/4 \end{pmatrix} \)
 \(\begin{align*}
 & (2) \begin{pmatrix} x \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \begin{pmatrix} 1/4 \end{pmatrix} \\
 \end{align*} \)

7. \(2' \begin{pmatrix} x,x,0 \end{pmatrix} \begin{pmatrix} 0,0,0 \end{pmatrix} \)
 \(\begin{align*}
 & (2) \begin{pmatrix} x \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \end{align*} \)

8. \(2' \begin{pmatrix} x,x,0 \end{pmatrix} \begin{pmatrix} 0,0,0 \end{pmatrix} \)
 \(\begin{align*}
 & (2) \begin{pmatrix} x \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \end{align*} \)

9. \(\overline{1} \begin{pmatrix} 0,1/4,1/8 \end{pmatrix} \begin{pmatrix} 0,1/2,1/4 \end{pmatrix} \)
 \(\begin{align*}
 & (10) b' \begin{pmatrix} 0,1/2,0 \end{pmatrix} \begin{pmatrix} x,y,1/8 \end{pmatrix} \)
 \begin{align*}
 & (m) \begin{pmatrix} z \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \begin{pmatrix} 1/2 \end{pmatrix} \\
 \end{align*} \)

10. \(b' \begin{pmatrix} 0,1/2,0 \end{pmatrix} \begin{pmatrix} x,y,1/8 \end{pmatrix} \)
 \(\begin{align*}
 & (m) \begin{pmatrix} z \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \begin{pmatrix} 1/2 \end{pmatrix} \\
 \end{align*} \)

11. \(\overline{4}^+ \begin{pmatrix} 0,0,1/2 \end{pmatrix} \begin{pmatrix} 0,0,0 \end{pmatrix} \)
 \(\begin{align*}
 & (4) \begin{pmatrix} 0,0,0 \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \end{align*} \)

12. \(\overline{4}^- \begin{pmatrix} 0,0,1/2 \end{pmatrix} \begin{pmatrix} 0,0,0 \end{pmatrix} \)
 \(\begin{align*}
 & (4) \begin{pmatrix} 0,0,0 \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \end{align*} \)

13. \(m \begin{pmatrix} x,0,z \end{pmatrix} \begin{pmatrix} m \end{pmatrix} \)
 \(\begin{align*}
 & (m) \begin{pmatrix} 0 \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \end{align*} \)

14. \(m \begin{pmatrix} 0,y,z \end{pmatrix} \begin{pmatrix} m \end{pmatrix} \)
 \(\begin{align*}
 & (m) \begin{pmatrix} 0 \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \end{align*} \)

15. \(d' \begin{pmatrix} -1/4,1/4,1/4 \end{pmatrix} \begin{pmatrix} x+1/4,x,z \end{pmatrix} \)
 \(\begin{align*}
 & (4) \begin{pmatrix} 0,1/2,1/4 \end{pmatrix} \\
 \begin{pmatrix} m \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \end{align*} \)

16. \(d' \begin{pmatrix} 1/4,1/4,1/4 \end{pmatrix} \begin{pmatrix} x-1/4,x,z \end{pmatrix} \)
 \(\begin{align*}
 & (4) \begin{pmatrix} 0,1/2,1/4 \end{pmatrix} \\
 \begin{pmatrix} m \end{pmatrix} \\
 \begin{pmatrix} 0 \end{pmatrix} \\
 \end{align*} \)
Continued

For (1/2,1/2,1/2) + set

<table>
<thead>
<tr>
<th>(1) t (1/2,1/2,1/2)</th>
<th>(2) 2 (0,0,1/2) 1/4,1/4,z</th>
<th>(3) 4' (0,0,3/4) 1/4,1/4,z</th>
<th>(4) 4' (0,0,3/4) 1/4,-1/4,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/2,1/2,1/2)</td>
<td>(2z, 1/2,1/2,1/2)</td>
<td>(4z, 1/2,0,3/4)</td>
<td>(4z, 1/2,0,3/4)</td>
</tr>
</tbody>
</table>

(5) 2' 1/4,y,3/8
 (2z, 1/2,0,3/4)'
(6) 2' (1/2,0,0) x,0,3/8
 (2z, 1/2,0,3/4)'
(7) (1/2,1/2,0) x,x,1/4
 (2z, 1/2,1/2,1/2)
(8) 2 x,x+1/2,1/4
 (2z, 1/2,1/2,1/2)

(9) 1/2,0,3/4)
 (1/2,0,3/4)'
(10) a' (1/2,0,0) x,y,3/8
 (mz, 1/2,0,3/4)'
(11) 4' 1/2,0,1/4 z,1/2,0,1/4
 (4z, 1/2,1/2,1/2)
(12) 4' 0,1/2,z; 0,1/2,1/4
 (4z, 1/2,1/2,1/2)

(13) n (1/2,0,1/2) x,1/4,z
 (mz, 1/2,1/2,1/2)
(14) n (0,1/2,1/2) 1/4,y,z
 (mz, 1/2,1/2,1/2)
(15) d' (1/4,-1/4,3/4) x+1/4,x
 (mz, 1/2,0,3/4)'
(16) d'(1/4,1/4,3/4) x+1/4,x,z
 (mz, 1/2,1/2,1/2)

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y,x+1/2,z+1/4 [v,u,w]</td>
<td>(3) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x+1/2,z+1/4 [v,u,w]</td>
<td>(4) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y+1/2,z+1/4 [u,v,w]</td>
<td>(5) x,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y+1/2,z+1/4 [u,v,w]</td>
<td>(6) x,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,x,z [v,u,w]</td>
<td>(8) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y+1/2,z+1/4 [u,v,w]</td>
<td>(9) x,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) x,y+1/2,z+1/4 [u,v,w]</td>
<td>(10) x,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(11) y,x,z [v,u,w]</td>
<td>(11) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(12) y,x,z [v,u,w]</td>
<td>(12) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
<td>(13) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(14) x,y,z [u,v,w]</td>
<td>(14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) y,x+1/2,z+1/4 [v,u,w]</td>
<td>(15) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(16) y,x+1/2,z+1/4 [v,u,w]</td>
<td>(16) y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
</tbody>
</table>

16 h .m. 0,y,z [u,0,0] 0,y,z [u,0,0] y,1/2,z+1/4 [0,u,0] y,1/2,z+1/4 [0,u,0]
0,y+1/2,z+1/4 [u,0,0] 0,y+1/2,z+1/4 [u,0,0] y,0,z [0,u,0] y,0,z [0,u,0]
16 g .2 x,x,0 [u,u,0] x,x,0 [u,u,0] x,x+1/2,1/4 [u,u,0] x,x+1/2,1/4 [u,u,0]
- x,x+1/2,1/4 [u,u,0] x,x+1/2,1/4 [u,u,0] x,x,0 [u,u,0] x,x,0 [u,u,0]
16 f .2' x,1/4,1/8 [0,v,w] x,3/4,1/8 [0,v,w] 3/4,x+1/2,3/8 [v,0,w] 1/4,x+1/2,3/8 [v,0,w]
 x,1/4,1/8 [0,v,w] x,3/4,1/8 [0,v,w] 3/4,x+1/2,3/8 [v,0,w] 1/4,x+1/2,3/8 [v,0,w]
8 e 2mm. 0,0,z [0,0,0] 0,1/2,z+1/4 [0,0,0] 0,1/2,z+1/4 [0,0,0] 0,0,z [0,0,0]
8 d .2'/m. 0,1/4,5/8 [0,0,0] 0,3/4,5/8 [0,0,0] 3/4,1/2,7/8 [0,0,0] 1/4,1/2,7/8 [0,0,0]
8 c .2'/m. 0,1/4,1/8 [0,0,0] 0,3/4,1/8 [0,0,0] 3/4,1/2,3/8 [0,0,0] 1/4,1/2,3/8 [0,0,0]
Symmetry of Special Projections

Along [0,0,1] p4'm'
\(a^* = \frac{a}{2} \quad b^* = \frac{b}{2}\)
Origin at 0,0,z

Along [1,0,0] c2mm1'
\(a^* = b \quad b^* = c\)
Origin at x,0,3/8

Along [1,1,0] c2m'm'
\(a^* = \frac{(-a + b)}{2} \quad b^* = \frac{c}{2}\)
Origin at x,x,0

\[
\begin{array}{llll}
4 & b & \bar{4}2'm' & 0,0,1/2 \ [0,0,w] \\
4 & a & \bar{4}2'm' & 0,0,0 \ [0,0,w] \\
\end{array}
\]

\[
\begin{array}{llll}
& & 0,1/2,3/4 \ [0,0,\bar{w}] & \\
& & 0,1/2,1/4 \ [0,0,\bar{w}] & \\
\end{array}
\]
Origin at $\overline{4}m'2$ at 0,1/4,-1/8 from center (2/m')

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/8$

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1) 0,0,0
(5) 2 (0,1/2,0) 0,y,1/8
 (2) x,1/4,1/8
 (2) x,1/4,1/8
(9) $\overline{1}$ 0,1/4,1/8
 (10) b' (0,1/2,0) x,y,1/8
 (10) b' (0,1/2,0) x,y,1/8
(13) m' x,0,z
 (14) m' 0,y,z
 (14) m' 0,y,z

(2) 0,0,z
 (2) z,0,0
 (2) 0,0,z
(6) x,1/4,1/8
 (6) x,1/4,1/8
(10) b' (0,1/2,0) x,y,1/8
 (10) b' (0,1/2,0) x,y,1/8
(13) m' x,0,z
 (14) m' 0,y,z
 (14) m' 0,y,z

(3) $4'$ (0,0,1/4) -1/4,1/4,z
 (3) $4'$ (0,0,1/4) -1/4,1/4,z
 (4) $4'$ (0,0,1/4) 1/4,1/4,z
 (4) $4'$ (0,0,1/4) 1/4,1/4,z
(7) 2 x,y,0
 (7) 2 x,y,0
(8) 2 x,y,0
 (8) 2 x,y,0
(11) $4'$ 0,0,0; 0,0,0
 (11) $4'$ 0,0,0; 0,0,0
(12) $4'$ 0,0,0; 0,0,0
 (12) $4'$ 0,0,0; 0,0,0

(15) d' (-1/4,1/4,1/4) x+1/4,x,z
 (15) d' (-1/4,1/4,1/4) x+1/4,x,z
(16) $d'(1/4,1/4,1/4) x-1/4,x,z
 (16) $d'(1/4,1/4,1/4) x-1/4,x,z
(17) m 0,1/2,1/4')
 (17) m 0,1/2,1/4')
(18) m 0,1/2,1/4')
 (18) m 0,1/2,1/4')

141.9.1221 - 1 - 2613
For (1/2,1/2,1/2) + set

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t (1/2,1/2,1/2)</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(2) 2 (0,0,1/2)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(3) 4*(0,0,3/4)</td>
<td>y,x,z [u,v,w]</td>
</tr>
<tr>
<td>(4) 4*(0,0,3/4)</td>
<td>y,1/2,x,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td>(5) 2 1/4,y,3/8</td>
<td>y,x+1/2,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td>(6) 2 (1/2,0,0)</td>
<td>x,y+1/2,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td>(7) 2 (1/2,1/2,0)</td>
<td>x,x+1/4,1/2,3/8 [0,u,0]</td>
</tr>
<tr>
<td>(8) 2 x,x+1/2,1/4</td>
<td></td>
</tr>
<tr>
<td>(9) T</td>
<td>x,y,3/8</td>
</tr>
<tr>
<td>(10) a' (1/2,0,0)</td>
<td>x,y,1/2,z+1/4 [v,0,w]</td>
</tr>
<tr>
<td>(11) 4*</td>
<td>x,y,1/2,z</td>
</tr>
<tr>
<td>(12) 4*</td>
<td>0,1/2,z</td>
</tr>
<tr>
<td>(13) n' (1/2,0,1/2)</td>
<td>x,1/4,z</td>
</tr>
<tr>
<td>(14) n' (0,1/2,1/2)</td>
<td>1/4,y,z</td>
</tr>
<tr>
<td>(15) d' (1/4,-1/4,3/4)</td>
<td>x+1/4, x,z</td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry letter.

Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Generators</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>16 h .m'</td>
<td>(0,y,z [0,v,w]</td>
</tr>
<tr>
<td>16 g .2</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>16 f .2</td>
<td>x,1/4,1/8 [u,0,0]</td>
</tr>
<tr>
<td>8 e 2m'm'</td>
<td>0,0,0 [0,0,w]</td>
</tr>
<tr>
<td>8 d .2m'</td>
<td>0,1/4,5/8 [0,0,0]</td>
</tr>
<tr>
<td>8 c .2m'</td>
<td>0,1/4,1/8 [0,0,0]</td>
</tr>
</tbody>
</table>
Continued

4 b 4'2m' 0,0,1/2 [0,0,0] 0,1/2,3/4 [0,0,0]
4 a 4'2m' 0,0,0 [0,0,0] 0,1/2,1/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4m'm'
\[\mathbf{a}' = \frac{\mathbf{a}}{2}, \quad \mathbf{b}' = \frac{\mathbf{b}}{2} \]
Origin at 0,0,z

Along [1,0,0] c2m'm'
\[\mathbf{a}' = \mathbf{b}, \quad \mathbf{b}' = \mathbf{c} \]
Origin at x,0,3/8

Along [1,1,0] c2mm'
\[\mathbf{a}' = \frac{-\mathbf{c}}{2}, \quad \mathbf{b}' = \frac{(-\mathbf{a} + \mathbf{b})}{2} \]
Origin at x,x,0
I4₁/acd

4/mmm

Tetragonal

I4₁/a2/c2/d

Origin at $\bar{4}c2$, at 0,1/4,-1/8 from $\bar{1}$

Asymmetric unit

$0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1/8$

Symmetry Operations

For (0,0,0) + set

(1) 1
(1) 0,0,0

(5) 2 (0,1/2,0) 0,y,3/8
(2, 0,1/2,3/4)

(9) $\bar{1}$ 0,1/4,1/8
(1) 0,1/2,1/4)

(13) c (0,0,1/2) x,0,z
(m,0,0,1/2)

(14) c (0,0,1/2) x,0,y
(m,0,0,1/2)

(15) d (-1/4,1/4,3/4) x+1/4,y,z
(m,0,1/2,3/4)

(6) 2 x,1/4,3/8
(2, 0,1/2,3/4)

(10) b (0,1/2,0) x,y,1/8
(m,0,1/2,1/4)

(11) $\bar{4}^+$ 0,0,z; 0,0,0
(4,0,0,0)

(12) $\bar{4}^+$ 0,0,z; 0,0,0
(4,0,0,0)

(16) d (1/4,1/4,3/4) x-1/4,y,z
(m,0,1/2,3/4)
For (1/2, 1/2, 1/2) + set

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t (1/2, 1/2, 1/2)</td>
<td>(0, 0, 0) + (1/2, 1/2, 1/2) +</td>
</tr>
<tr>
<td>(2) 2 (0, 0, 1/2)</td>
<td>1/4, 1/4, z</td>
</tr>
<tr>
<td>(3) 4* (0, 0, 3/4)</td>
<td>1/4, 1/4, z</td>
</tr>
<tr>
<td>(4) 4* (0, 0, 3/4)</td>
<td>1/4, 1/4, z</td>
</tr>
<tr>
<td>(5) 2 1/4, y, 1/8</td>
<td></td>
</tr>
<tr>
<td>(6) 2 (1/2, 0, 0)</td>
<td>x, 0, 1/8</td>
</tr>
<tr>
<td>(7) 2 (1/2, 1/2, 0)</td>
<td>x, x, 0</td>
</tr>
<tr>
<td>(8) 2 x, x + 1/2, 0</td>
<td></td>
</tr>
<tr>
<td>(9) 1/4, y, 1/8</td>
<td></td>
</tr>
<tr>
<td>(10) a (1/2, 0, 0)</td>
<td>x, y, 3/8</td>
</tr>
<tr>
<td>(11) 1/4, y, 1/8</td>
<td>z, 1/2, 0, 1/4</td>
</tr>
<tr>
<td>(12) 1/4, y, 1/8</td>
<td>z, 1/2, 1/2, 1/2</td>
</tr>
<tr>
<td>(13) a (1/2, 0, 0)</td>
<td>x, 1/4, z</td>
</tr>
<tr>
<td>(14) b (0, 1/2, 0)</td>
<td>1/4, y, z</td>
</tr>
<tr>
<td>(15) d (1/4, 1/4, 1/4)</td>
<td>x + 1/4, x, z</td>
</tr>
<tr>
<td>(16) d (1/4, 1/4, 1/4)</td>
<td>x + 1/4, x, z</td>
</tr>
</tbody>
</table>

Generators selected

(1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 1/2, 1/2); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>g 1</td>
<td>(x, y, z) [u, v, w]</td>
</tr>
<tr>
<td>(3)</td>
<td>y, x + 1/2, z + 1/4 [v, u, w]</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>x, y + 1/2, z + 3/4 [u, v, w]</td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>y, x + 1/2 [v, u, w]</td>
<td></td>
</tr>
<tr>
<td>(9)</td>
<td>x, y + 1/2, z + 1/4 [u, v, w]</td>
<td></td>
</tr>
<tr>
<td>(11)</td>
<td>y, x + 1/2 [v, u, w]</td>
<td></td>
</tr>
<tr>
<td>(13)</td>
<td>x, y, z + 1/2 [u, v, w]</td>
<td></td>
</tr>
<tr>
<td>(15)</td>
<td>x, x + 1/2, z + 3/4 [u, v, w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>f .2</th>
<th>x, x, 1/4 [u, u, 0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>x, x, 1/4 [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>x, x + 1/2, 1/2 [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>y, x + 1/2, 1/2 [v, u, w]</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>x, x + 1/2, 0 [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>x, x, 3/4 [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>x, x + 1/2, 0 [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>(8)</td>
<td>x, x, 3/4 [u, u, 0]</td>
<td></td>
</tr>
<tr>
<td>(9)</td>
<td>y, x, z [v, u, w]</td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td>x, y + 1/2, z + 1/4 [v, u, w]</td>
<td></td>
</tr>
<tr>
<td>(11)</td>
<td>y, x, z [v, u, w]</td>
<td></td>
</tr>
<tr>
<td>(12)</td>
<td>y, x, z [v, u, w]</td>
<td></td>
</tr>
<tr>
<td>(13)</td>
<td>x, y, z + 1/2 [u, v, w]</td>
<td></td>
</tr>
<tr>
<td>(14)</td>
<td>x, y, z + 1/2 [u, v, w]</td>
<td></td>
</tr>
<tr>
<td>(15)</td>
<td>y, x + 1/2, z + 3/4 [v, u, w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>e .2</th>
<th>1/4, y, 1/8 [0, v, 0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>1/4, y, 1/8 [0, v, 0]</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>3/4, y, 1/8 [0, v, 0]</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>3/4, y, 1/8 [0, v, 0]</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>y, 1/4, 3/8 [v, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>y, 1/4, 3/8 [v, 0, 0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>d .2</th>
<th>0, 0, z [0, 0, w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>0, 0, z [0, 0, w]</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>0, 0, z + 1/2 [0, 0, w]</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>0, 0, z + 1/2 [0, 0, w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>c .1</th>
<th>0, 1/4, 1/8 [u, v, w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>0, 1/4, 1/8 [u, v, w]</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>0, 1/4, 1/8 [u, v, w]</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>0, 1/4, 1/8 [u, v, w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>b 2.22</th>
<th>0, 0, 1/4 [0, 0, 0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>0, 1/2, 1/2 [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>0, 1/2, 1/2 [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>0, 1/2, 1/2 [0, 0, 0]</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] \(p_{\|} \) 4\(m'm' \)
\(a^* = a/2 \) \(b^* = b/2 \)
Origin at 1/4,1/4,z

Along [1,0,0] \(p_{\|} \) 2mm
\(a^* = b/2 \) \(b^* = c/2 \)
Origin at x,0,1/8

Along [1,1,0] \(c_{\|} \) 2\(m'm' \)
\(a^* = (-a + b)/2 \) \(b^* = c/2 \)
Origin at x,x,0
I4₁/acd₁'
142.2.1223

4/mmm₁'
Tetragonal

I4₁/a2/c2/d₁'
142.2.1223

Origin at $\bar{4}c2₁$ at 0,1/4,-1/8 from $\bar{1} 1'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/8$

Symmetry Operations

For (0,0,0) + set

(1) 1
(1' | 0,0,0)

(5) 2 (0,1/2,0) 0,y,3/8
(2, | 0,1/2,3/4)

(9) $\bar{1}$ 0,1/4,1/8
(1' | 0,1/2,1/4)

(13) c (0,0,1/2) x,0,z
(m, | 0,0,1/2)

(2) 2 0,0,z
(2, | 0,0,0)

(6) 2 x,1/4,3/8
(2, | 0,1/2,3/4)

(10) b (0,1/2,0) x,y,1/8
(m, | 0,1/2,1/4)

(3) 4^+ (0,0,1/4) -1/4,1/4,z
(4,z | 0,1/2,1/4)

(7) 2 x,x,1/4
(2, | 0,0,1/2)

(11) $\bar{4}^+$ 0,0,z; 0,0,0
(4,z | 0,0,0)

(8) 2 x,x,1/4
(2, | 0,0,1/2)

(12) $\bar{4}^+$ 0,0,z; 0,0,0
(4,z | 0,0,0)

(14) c (0,0,1/2) 0,y,z
(m, | 0,0,1/2)

(15) d (-1/4,1/4,3/4) x+1/4,x,z
(m, | 0,1/2,3/4)

(16) d (1/4,1/4,3/4) x-1/4,x,z
(m, | 0,1/2,3/4)
Continued

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2) (2) 2 (0,0,1/2) 1/4,1/4,z (3) 4 t (0,0,3/4) 1/4,1/4,z (4) 4' (0,0,3/4) 1/4,-1/4,z
(1 1/2,1/2,1/2) (2z z 1/2,1/2,1/2) (4z 1/2,0,3/4) (4z 1/2,0,3/4)

(5) 2 1/4,y,1/8 (6) 2 (1/2,0,0) x,0,1/8 (7) 2 (1/2,1/2,0) x,x,0
(2z 1/2,0,1/4) (2z 1/2,0,1/4) (2y 1/2,1/2,0) (2y 1/2,1/2,0)

(9) 1/4,0,3/8 (10) a (1/2,0,0) x,y,3/8 (11) 4 * (1/2,0,2,0)z; 1/2,0,1/4
(1/2,0,3/4) (mz 1/2,0,3/4) (4z 1/2,1/2,1/2) (4z 1/2,1/2,1/2)

(13) a (1/2,0,0) x,1/4,z (14) b (0,1/2,0) 1/4,y,z
(mz 1/2,1/2,0) (mx 1/2,1/2,0) (my 1/2,1/2,0)

For (0,0,0)' + set

(1) 1' (2) 2' 0,0,z (3) 4' (0,0,1/4) -1/4,1/4,z (4) 4' (0,0,1/4) 1/4,1/4,z
(1 0,0,0)' (2z 0,0,0)' (4z 0,1/2,1/4)' (4z 0,1/2,1/4)'

(5) 2' (0,1/2,0) 0,0,1/8 (6) 2' x,1/4,3/8 (7) 2' x,x,1/4
(2z 0,1/2,3/4)' (2z 0,1/2,3/4)' (2y 0,0,1/2)'

(9) 1/4,1/8 (10) b' (0,1/2,0) x,y,1/8 (11) 4 - (0,0,0,0)z; 0,0,0
(1/2,1/4) (mz 1/2,1/2,1/4)' (4z 0,0,0)'

(13) c' (0,0,1/2) x,0,z (14) c' (0,0,1/2) 0,y,z
(mz 0,0,1/2) (mx 0,0,1/2) (my 0,0,1/2)

For (1/2,1/2,1/2)' + set

(1) t' (1/2,1/2,1/2) (2) 2' (0,0,1/2) 1/4,1/4,z (3) 4' (0,0,3/4) 1/4,1/4,z (4) 4' (0,0,3/4) 1/4,-1/4,z
(1 1/2,1/2,1/2)' (2z 1/2,1/2,1/2)' (4z 1/2,0,3/4)' (4z 1/2,0,3/4)'

(5) 2' 1/4,y,1/8 (6) 2' (1/2,0,0) x,0,1/8 (7) 2' (1/2,1/2,0) x,x,0
(2z 1/2,0,1/4)' (2z 1/2,0,1/4)' (2y 1/2,1/2,0)'

(9) 1/4,0,3/8 (10) a' (1/2,0,0) x,y,3/8 (11) 4' * (1/2,0,2,0)z; 1/2,0,1/4
(1/2,0,3/4)' (mz 1/2,0,3/4)' (4z 1/2,1/2,1/2)' (4z 1/2,1/2,1/2)'

(13) a' (1/2,0,0) x,1/4,z (14) b' (0,1/2,0) 1/4,y,z
(mz 1/2,1/2,0)' (mx 1/2,1/2,0)' (my 1/2,1/2,0)'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9); 1'.

Coordinates

(0,0,0) + (1/2,1/2,1/2) +
(0,0,0)' + (1/2,1/2,1/2)'

142.2.1223 - 2 - 2620
32 g 11' (1) x,y,z [0,0,0] (2) x, y,z [0,0,0]
(3) y,x+1/2,z+1/4 [0,0,0] (4) y,x+1/2,z+1/4 [0,0,0]
(5) x,y+1/2,z+3/4 [0,0,0] (6) x,y+1/2,z+3/4 [0,0,0]
(7) y,x,z+1/2 [0,0,0] (8) y,x,z+1/2 [0,0,0]
(9) x,y+1/2,z+1/4 [0,0,0] (10) x,y+1/2,z+1/4 [0,0,0]
(11) y,x,z [0,0,0] (12) y,x,z [0,0,0]
(13) x,y,z+1/2 [0,0,0] (14) x,y,z+1/2 [0,0,0]
(15) y,x,z+1/2,z+3/4 [0,0,0] (16) y,x,z+1/2,z+3/4 [0,0,0]
16 f .21' x,x,1/4 [0,0,0] x,x,1/4 [0,0,0] x,x+1/2,1/2 [0,0,0] x,x+1/2,1/2 [0,0,0]
x,x+1/2,0 [0,0,0] x,x+1/2,0 [0,0,0] x,x,3/4 [0,0,0] x,x,3/4 [0,0,0]
16 e .2.1' 1/4,y,1/8 [0,0,0] 3/4,y,1/8 [0,0,0] y,3/4,3/8 [0,0,0] y,1/4,3/8 [0,0,0]
3/4,y+1/2,1/8 [0,0,0] 1/4,y+1/2,1/8 [0,0,0] y,3/4,7/8 [0,0,0] y,1/4,7/8 [0,0,0]
16 d 2..1' 0,0,z [0,0,0] 0,1/2,z+1/4 [0,0,0] 0,1/2,z+3/4 [0,0,0] 0,0,z+1/2 [0,0,0]
0,1/2,z+1/4 [0,0,0] 0,0,z [0,0,0] 0,0,z+1/2 [0,0,0] 0,1/2,z+3/4 [0,0,0]
16 c 11' 0,1/4,1/8 [0,0,0] 0,3/4,1/8 [0,0,0] 3/4,1/2,3/8 [0,0,0] 1/4,1/2,3/8 [0,0,0]
0,3/4,5/8 [0,0,0] 0,1/4,5/8 [0,0,0] 1/4,0,3/8 [0,0,0] 3/4,0,3/8 [0,0,0]
8 b 2.221' 0,0,1/4 [0,0,0] 0,1/2,1/2 [0,0,0] 0,1/2,0 [0,0,0] 0,0,3/4 [0,0,0]
4 a 4..1' 0,0,0 [0,0,0] 0,1/2,1/4 [0,0,0] 0,1/2,3/4 [0,0,0] 0,0,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm1'
\[a^* = a/2 \quad b^* = b/2 \]
Origin at 0,0,z

Along [1,0,0] p2mm1'
\[a^* = b/2 \quad b^* = c/2 \]
Origin at x,0,1/8

Along [1,1,0] c2mm1'
\[a^* = (-a + b)/2 \quad b^* = c/2 \]
Origin at x,x,0
Tetragonal

I4₁/a'cd

142.3.1224

4/m'mm

I4₁/a'2'/c2'/d

Origin

at \(\bar{4} 'c2' \) at 0,1/4,-1/8 from \(\bar{1} ' \)

Asymmetric unit

\[0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/8 \]

Symmetry Operations

For \((0,0,0) + \text{ set} \)

\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \quad 0,0,z \\
& \quad (2_z \vert 0,0,0) \\
(3) & \quad 4^+ \quad (0,0,1/4) \quad -1/4,1/4,z \\
& \quad (4_z \vert 0,1/2,1/4) \\
(4) & \quad 4^- \quad (0,0,1/4) \quad 1/4,1/4,z \\
& \quad (4_z' \vert 0,1/2,1/4) \\
(5) & \quad 2' \quad (0,1/2,0) \quad 0,y,3/8 \\
& \quad (2_z \vert 0,1/2,3/4) \\
(6) & \quad 2' \quad x,1/4,3/8 \\
& \quad (2_z \vert 0,1/2,3/4) \\
(7) & \quad 2' \quad x,x,1/4 \\
& \quad (2_{xy} \vert 0,0,1/2) \\
(8) & \quad 2' \quad x,x,1/4 \\
& \quad (2_{xy} \vert 0,0,1/2) \\
(9) & \quad \bar{1}' \quad 0,1/4,1/8 \\
& \quad (1 \vert 0,1/2,1/4) \\
(10) & \quad b' \quad (0,1/2,0) \quad x,y,1/8 \\
& \quad (m_z \vert 0,1/2,1/4) \\
(11) & \quad \bar{4}^+ \quad x,0,z; \quad 0,0,0 \\
& \quad (4_z \vert 0,0,0) \\
(12) & \quad \bar{4}^- \quad x,0,z; \quad 0,0,0 \\
& \quad (4_{z'} \vert 0,0,0) \\
(13) & \quad c \quad (0,0,1/2) \quad x,0,z \\
& \quad (m_{xy} \vert 0,0,1/2) \\
(14) & \quad c \quad (0,0,1/2) \quad 0,y,z \\
& \quad (m_{xy} \vert 0,0,1/2) \\
(15) & \quad d \quad (-1/4,1/4,3/4) \quad x+1/4,\bar{x},z \\
& \quad (m_{x} \vert 0,1/2,3/4) \\
(16) & \quad d \quad (1/4,1/4,3/4) \quad x-1/4,\bar{x},z \\
& \quad (m_{x} \vert 0,1/2,3/4)
\end{align*}
Continued

For (1/2,1/2,1/2) + set

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Generator(s)</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) y + x + 1/2, z + 1/4 [v,u,w]</td>
<td>(4) y + x + 1/2, z + 1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x + y + 1/2, z + 3/4 [u,v,w]</td>
<td>(6) x + y + 1/2, z + 3/4 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y + x + 1/2 [v,u,w]</td>
<td>(8) y + x + 1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x + y + 1/2, z + 1/4 [v,u,w]</td>
<td>(10) x + y + 1/2, z + 1/4 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(11) x + y, z [v,u,w]</td>
<td>(12) x + y, z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x + y, z + 1/2 [v,u,w]</td>
<td>(14) x + y, z + 1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(15) x + y + 1/2, z + 3/4 [v,u,w]</td>
<td>(16) x + y + 1/2, z + 3/4 [v,u,w]</td>
</tr>
</tbody>
</table>

Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Generator(s)</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 f .2'</td>
<td>x + 1/4 [u,u,w]</td>
<td>x + 1/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x + 1/2 [u,u,w]</td>
<td>x + 1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x + 3/4 [u,u,w]</td>
<td>x + 3/4 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x + 1/2,1/2 [u,u,w]</td>
<td>x + 1/2,1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>1/4,y + 1/8 [u,0,w]</td>
<td>1/4, y + 1/8 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>3/4,y + 1/2,1/8 [u,0,w]</td>
<td>3/4,y + 1/2,1/8 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z + 1/4 [0,0,w]</td>
<td>0,1/2,z + 1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z + 3/4 [0,0,w]</td>
<td>0,1/2,z + 3/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z + 1/2 [0,0,w]</td>
<td>0,0,z + 1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z + 3/4 [0,0,w]</td>
<td>0,1/2,z + 3/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,3/4,1/8 [0,0,0]</td>
<td>0,3/4,1/8 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/2,3/8 [0,0,0]</td>
<td>3/4,1/2,3/8 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/4,5/8 [0,0,0]</td>
<td>0,1/4,5/8 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,0,3/8 [0,0,0]</td>
<td>1/4,0,3/8 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,0,3/8 [0,0,0]</td>
<td>3/4,0,3/8 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/4 [0,0,w]</td>
<td>0,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,w]</td>
<td>0,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,w]</td>
<td>0,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,3/4 [0,0,w]</td>
<td>0,0,3/4 [0,0,w]</td>
</tr>
</tbody>
</table>
Continued 142.3.1224 I4, /a'cd

| 4 | a | \(4'\) | 0,0,0 [0,0,0] | 0,1/2,1/4 [0,0,0] | 0,1/2,3/4 [0,0,0] | 0,0,1/2 [0,0,0] |

Symmetry of Special Projections

- **Along [0,0,1] p4mm**
 \[a^* = a/2 \quad b^* = b/2\]
 Origin at 0,0,z

- **Along [1,0,0] p2mm**
 \[a^* = b/2 \quad b^* = c/2\]
 Origin at x,1/4,3/8

- **Along [1,1,0] c2'mm'**
 \[a^* = -c/2 \quad b^* = (-a + b)/2\]
 Origin at x,x,0
Origin at $\bar{4}$c$'$2, at 0,1/4,-1/8 from 1

Asymmetric unit $0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1/8$

Symmetry Operations

For (0,0,0) + set

(1) 1
 (1 0 0)

(5) 2' (0,1/2,0) 0,y,3/8
 (2, 0,1/2,3/4)

(9) $\bar{1}$ 0,1/4,1/8
 (1 0,1/2,1/4)

(13) c' (0,0,1/2) x,0,z
 (m, 0,0,1/2)

(2) 2 0,0,z
 (2z, 0,0,0)

(6) 2' x,1/4,3/8
 (2z, 0,1/2,3/4)

(10) b (0,1/2,0) x,y,1/8
 (m, 0,1/2,1/4)

(14) c' (0,0,1/2) 0,y,z
 (m, 0,0,1/2)

(3) 4' (0,0,1/4) -1/4,1/4,z
 (4z 0,1/2,1/4)

(7) 2 x,x,1/4
 (2y, 0,0,1/2)

(11) $\bar{4}$' 0,0,z
 (4z 0,0,0)

(15) d (-1/4,1/4,3/4) x+1/4,x,z
 (m 0,1/2,3/4)

(4) 4' (0,0,1/4) 1/4,1/4,z
 (4z 1/2,1/4)

(8) 2 x,x,1/4
 (2y, 0,0,1/2)

(12) $\bar{4}$' 0,0,z
 (4z 0,0,0)

(16) d (1/4,1/4,3/4) x-1/4,x,z
 (m 0,1/2,3/4)
Continued

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(2) 2 (0,0,1/2) 1/4,1/4,z
(3) 4* (0,0,3/4) 1/4,1/4,z
(4) 4* (0,0,3/4) 1/4,-1/4,z

(5) 2' 1/4,y,1/8
(6) 2' (1/2,0,0) x,0,1/8
(7) 2 (1/2,0,1/2) x,x,0
(8) 2 (0,0,3/4) 1/4,-1/4,z

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>g 1</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(3) y,x+1/2,z+1/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(5) x,y+1/2,z+3/4 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(7) y,x+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(9) x,y+1/2,z+1/4 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(11) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(13) x,y,z+1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(15) y,x+1/2,z+3/4 [v,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>f .2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,x,1/4 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>x,x+1/2,1/2 [u,u,0]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>e .2'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4,y,1/8 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td>3/4,y,1/8 [u,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>d 2..</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>0,1/2,z+1/4 [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>c .1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1,4,1/8 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>0,3/4,1/8 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>0,3/4,5/8 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>0,1,4,1/8 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>0,3/4,3/8 [v,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>b 2.22</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,1,2/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,1,2/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,0,3/4 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] \(p^* \) 4m'm'
\(a^* = a/2 \quad b^* = b/2 \)
Origin at 0,0,z

Along [1,0,0] \(p^* \) 2mm
\(a^* = b/2 \quad b^* = c/2 \)
Origin at x,1/4,1/8

Along [1,1,0] \(c^* \) 2m'm'
\(a^* = (-a + b)/2 \quad b^* = c/2 \)
Origin at x,x,0
I4₁'/ac₁'d

142.5.1226

I4₁'/a₂/c₂'d

Tetragonal

4'/mmm'

Origin at \(4'c₂', \) at 0,1/4,-1/8 from \(1' \)

Asymmetric unit: \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/8 \)

Symmetry Operations

For \((0,0,0) + \) set

(1) \(1 \)

(1|0,0,0)

(5) \(2 \) \((0,1/2,0) \) \(0,\text{y},3/8 \)

(2,1/2,3/4)

(9) \(\bar{1} \) \(0,1/4,1/8 \)

(1|0,1/2,1/4)

(13) \(c \) \((0,0,1/2) \) \(x,0,z \)

(m,1/2,0)

(2) \(2 \) \(0,0,z \)

(2Z|0,0,0)

(6) \(2 \) \(x,1/4,3/8 \)

(2Z|0,1/2,3/4)

(10) \(b \) \((0,1/2,0) \) \(x,y,1/8 \)

(mZ|0,1/2,1/4)

(2) \(2' \)

(2Z|0,1/2,3/4)

(14) \(c \) \((0,0,1/2) \) \(0,\text{y},z \)

(m,0,0,1/2)

(15) \(d' \) \((1/4,1/4,3/4)\) \(x+1/4,\text{x},z \)

(4mZ|0,1/2,3/4)

(11) \(4^+ \) \((0,0,1/4)\) \(-1/4,1/4,z \)

(4Z|0,1/2,1/4)

(12) \(4^+ \) \((0,0,1/4)\) \(1/4,1/4,z \)

(4Z^-1|0,1/2,1/4)

(16) \(d' \) \((1/4,1/4,3/4)\) \(x-1/4,\text{x},z \)

(4mZ|0,1/2,3/4)

(17) \(4^+ \) \((0,0,1/4)\) \(1/4,1/4,z \)

(4Z^-1|0,0,0)
For \((1/2, 1/2, 1/2) + \) set

\[
\begin{align*}
(1) & \ t(1/2, 1/2, 1/2) \\
(2) & \ 2(0, 0, 1/2) \\
(3) & \ 4' (0, 0, 3/4) \\
(4) & \ 4' (0, 0, 3/4) \\
& \ 4' (1/2, 2/0, 3/4) \\
& \ 4' (1/2, 2/0, 3/4) \\
(5) & \ 2(1/4, y, 1/8) \\
(6) & \ 2(1/2, 0, 0) \\
(7) & \ 2' (1/2, 1/2, 0) \\
(8) & \ 2' x, x + 1/2, 0 \\
(9) & \ 1/4, 0, 3/8 \\
(10) & \ a(1/2, 0, 0) \\
(11) & \ 4' (1/2, 0, 2/0, 1/4) \\
(12) & \ 4' (1/2, 0, 2/0, 1/4) \\
(13) & \ a(1/2, 0, 0) \\
(14) & \ b(0, 1/2, 0) \\
(15) & \ d'(1/4, -1/4, 1/4) \\
(16) & \ d'(1/4, 1/4, 1/4) \\
\end{align*}
\]

Generators selected \((1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); t(1/2, 1/2, 1/2); (2); (3); (5); (9).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

\[
\begin{align*}
(0, 0, 0) + & \ (1/2, 1/2, 1/2) + \\
32 & \ g \ 1 \ \\
(1) & \ x, y, z [u, v, w] \\
(2) & \ y, x, z [u, v, w] \\
(3) & \ y, x, +1/2, z +1/4 [v, u, w] \\
(4) & \ y, x, +1/2, z +1/4 [v, u, w] \\
(5) & \ x, y, +1/2, z +3/4 [u, v, w] \\
(6) & \ x, y, +1/2, z +3/4 [u, v, w] \\
(7) & \ y, x, +1/2 [v, u, w] \\
(8) & \ y, x, +1/2 [v, u, w] \\
(9) & \ x, y, z +1/2 [u, v, w] \\
(10) & \ y, x, z +1/2 [v, u, w] \\
(11) & \ y, x, z +1/2 [v, u, w] \\
(12) & \ x, y, z +1/2 [u, v, w] \\
(13) & \ x, y, z +1/2 [u, v, w] \\
(14) & \ x, y, z +1/2 [u, v, w] \\
(15) & \ x, y, z +1/2, z +3/4 [v, u, w] \\
(16) & \ x, y, z +1/2, z +3/4 [v, u, w] \\
\end{align*}
\]
Symmetry of Special Projections

Along [0,0,1] \(p_c \) 4mm
\[a^* = \frac{a}{2}, \quad b^* = \frac{b}{2} \]
Origin at 0,0,z

Along [1,0,0] \(p_a \) 2mm
\[a^* = \frac{b}{2}, \quad b^* = \frac{c}{2} \]
Origin at x,1/4,1/8

Along [1,1,0] \(c \) 2mm'
\[a^* = -\frac{c}{2}, \quad b^* = \frac{-a + b}{2} \]
Origin at x,x,0
Origin at $\bar{4}c'2'$ at \(0,1/4,-1/8\) from $\bar{1}'$.

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/8\]

Symmetry Operations

For \((0,0,0) + \) set

1. \(1\)
 \(1\) \(0,0,0\)

2. \(2\)

 \(0,0,z\)
 \(\left(\bar{2}_z|0,0,0\right)\)

3. \(4'\)

 \((0,0,1/4)\)
 \(-1/4,1/4,z\)
 \(\left(4_z|0,1/2,1/4\right)'\)

4. \(4'\)

 \((0,0,1/4)\)
 \(1/4,1/4,z\)
 \(\left(4_z^{-1}|0,1/2,1/4\right)'\)

5. \(2\)

 \((0,1/2,0)\)
 \(0,y,3/8\)
 \(\left(2_y|0,1/2,3/4\right)\)

6. \(2\)

 \((0,1/2,0)\)
 \(x,1/4,3/8\)
 \(\left(2_x|0,1/2,3/4\right)\)

7. \(2'\)

 \((x,x,1/4)\)
 \((2_{xy}|0,0,1/2)'\)

8. \(2'\)

 \((x,x,1/4)\)
 \((2_{xy}|0,0,1/2)'\)

9. \(\bar{1}'\)

 \((1/2,0,1/4)\)
 \(0,1/4,1/8\)
 \(\left(\bar{1}_x|0,1/2,1/4\right)'\)

10. \(2'\)

 \((0,1/2,0)\)
 \(x,y,1/8\)
 \(\left(m_y|0,1/2,1/4\right)\)

11. \(4'\)

 \((0,0,0)\)
 \(0,0,0\)
 \(\left(4_z|0,0,0\right)'\)

12. \(4'\)

 \((0,0,0)\)
 \(0,0,0\)
 \(\left(4_z^{-1}|0,0,0\right)'\)

13. \(c'\)

 \((0,0,1/2)\)
 \(x,0,z\)
 \(\left(m_x|0,0,1/2\right)'\)

14. \(c'\)

 \((0,0,1/2)\)
 \(0,y,z\)
 \(\left(m_x|0,0,1/2\right)'\)

15. \(d\)

 \((-1/4,1/4,3/4)\)
 \(x+1/4,x,z\)
 \(\left(m_{xy}|0,1/2,3/4\right)\)

16. \(d\)

 \((1/4,1/4,3/4)\)
 \(x-1/4,x,z\)
 \(\left(m_{xy}|0,1/2,3/4\right)\)

For \((1/2,1/2,1/2) + \) set

1. \(t\)

 \((1/2,1/2,1/2)\)
 \((1/2,1/2,1/2)\)

2. \(2\)

 \((0,0,1/2)\)
 \(1/4,1/4,z\)
 \(\left(2_z|1/2,1/2,1/2\right)\)

3. \(4'\)

 \((0,0,3/4)\)
 \(1/4,1/4,z\)
 \(\left(4_z|1/2,0,3/4\right)'\)

4. \(4'\)

 \((0,0,3/4)\)
 \(1/4,-1/4,z\)
 \(\left(4_z^{-1}|1/2,0,3/4\right)'\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td>(2) x, y, z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) y, x+1/2, z+1/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) y, x+1/2, z+1/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x, y+1/2, z+3/4 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x, y+1/2, z+3/4 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) y, x, z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) y, x, z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9) x, y+1/2, z+1/4 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10) x, y+1/2, z+1/4 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(11) x, y, z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(12) x, y, z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(13) x, y, z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(14) x, y, z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(15) y, x+1/2, z+3/4 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(16) y, x+1/2, z+3/4 [v,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

16 f 2'	x, x+1/1 [u,u,w]
	x, x, 1/1 [u,u,w]
	x, x+1/2, 1/2 [u,u,w]
	x, x, 1/1 [u,u,w]

16 e .2	1/4, y, 1/8 [0,v,0]
	3/4, 1/8 [0,v,0]
	3/4, 1/8 [0,v,0]

16 d 2.	0, 0, z [0,0,0]
	0, 1/2, z+1/4 [0,0,0]
	0, 1/2, z+1/4 [0,0,0]

16 c 1'	0, 1/4, 1/8 [0,0,0]
	0, 3/4, 1/8 [0,0,0]
	0, 3/4, 1/8 [0,0,0]

8 b 2.2'	0, 0, 1/4 [0,0,0]
	0, 1/2, 1/2 [0,0,0]
	0, 0, 1/2 [0,0,0]

4 a 2'	0, 0, 0 [0,0,0]
	0, 1/2, 1/4 [0,0,0]
	0, 0, 1/2 [0,0,0]

Continued
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Orientation</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>p4'm'm</td>
<td>a* = a/2, b* = b/2</td>
<td>0,0,z</td>
</tr>
<tr>
<td>[1,0,0]</td>
<td>p2m'm'</td>
<td>a* = b/2, b* = c/2</td>
<td>x,0,1/8</td>
</tr>
<tr>
<td>[1,1,0]</td>
<td>c_p 2m'm'</td>
<td>a* = (-a + b)/2, b* = c/2</td>
<td>x,x,0</td>
</tr>
</tbody>
</table>
I41/ac'd'
142.7.1228

I41/ac'd'

Tetragonal

Origin at $\overrightarrow{c}2'$, at 0,1/4,-1/8 from $\overrightarrow{1}$

Asymmetric unit
$0 \leq x \leq 1/2; \ 0 \leq y \leq 1/2; \ 0 \leq z \leq 1/8$

Symmetry Operations

For (0,0,0) + set

1. 1

2. $2\cdot 0,0,z$
 $(2_{z}\cdot 0,0,0)$

3. $4^+ (0,0,1/4) -1/4,1/4,z$
 $(4_{z}\cdot 0,1/2,1/4)$

4. $4^- (0,0,1/4) 1/4,1/4,z$
 $(4_{z}^{-1}\cdot 0,1/2,1/4)$

5. $2' (0,1/2,0) 0,y,3/8$
 $(2_{y}\cdot 0,1/2,3/4)'

6. $2' \cdot x,1/4,3/8$
 $(2_{x}\cdot 0,1/2,3/4)'$

7. $2' \cdot x,x,1/4$
 $(2_{y}\cdot 0,0,1/2)'$

8. $2' \cdot x,x,1/4$
 $(2_{y}\cdot 0,0,1/2)'$

9. $\overrightarrow{1} 0,1/4,1/8$
 $(\overrightarrow{1}\cdot 0,1/2,1/4)$

10. $b (0,1/2,0) \cdot x,y,1/8$
 $(m_{x}\cdot 0,1/2,1/4)$

11. $4^+ 0,0,z; 0,0,0$
 $(4_{x}\cdot 0,0,0)$

12. $4^- 0,0,z; 0,0,0$
 $(4_{x}^{-1}\cdot 0,0,0)$

13. $c' (0,0,1/2) \cdot x,0,z$
 $(m_{x}\cdot 0,0,1/2)'$

14. $c' (0,0,1/2) \cdot 0,y,z$
 $(m_{x}\cdot 0,0,1/2)'$

15. $d' (-1/4,1/4,3/4) \cdot x+1/4,x,z$
 $(m_{x}\cdot 0,1/2,3/4)'$

16. $d' (1/4,1/4,3/4) \cdot x-1/4,x,z$
 $(m_{x}\cdot 0,1/2,3/4)'$
Continued

(1) t (1/2,1/2,1/2) + set
(1) 1/4,1/4,1/4
(2) 1/2,1/2,1/2
(3) 1/2,1/2,1/2
(4) 1/2,1/2,1/2

For (1/2,1/2,1/2) + set

(1) 1/2,1/2,1/2
(2) 1/2,1/2,1/2
(3) 1/2,1/2,1/2
(4) 1/2,1/2,1/2

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
</table>

| (0,0,0) + (1/2,1/2,1/2) + |
|----------------|----------------|---------------|

32 g 1

(1) x,y,z [u,v,w] (2) x,y,z [u,v,w]
(3) y,x+1/2,z+1/4 [v,u,w] (4) y,x+1/2,z+1/4 [v,u,w]
(5) x,y+1/2,z+3/4 [u,v,w] (6) x,y+1/2,z+3/4 [u,v,w]
(7) y,x,z+1/2 [v,u,w] (8) y,x,z+1/2 [v,u,w]
(9) x,y+1/2,z+1/4 [u,v,w] (10) x,y+1/2,z+1/4 [u,v,w]
(11) y,x,z [v,u,w] (12) y,x,z [v,u,w]
(13) x,y,z+1/2 [u,v,w] (14) x,y,z+1/2 [u,v,w]
(15) x,y+1/2,z+3/4 [v,u,w] (16) x,y+1/2,z+3/4 [v,u,w]

16 f .2’

x,x,1/4 [u,u,w] x,x+1/2,z+1/2 [u,u,w] x,x+1/2,z+1/2 [u,u,w] x,x+1/2,z+1/2 [u,u,w]

16 e .2’

1/4,y,1/8 [u,0,w] 3/4,y,1/8 [u,0,w] y,3/4,3/8 [0,u,w] y,1/4,3/8 [0,u,w]

16 d 2

0,0,z [0,0,w] 0,1/2,z+1/4 [0,0,w] 0,1/2,z+1/4 [0,0,w] 0,0,z+1/2 [0,0,w]

16 c T

0,1/4,1/8 [u,v,w] 0,3/4,1/8 [u,v,w] 3/4,1/2,3/8 [v,u,w] 1/4,1/2,3/8 [v,u,w]

8 b 2.2’

0,0,1/4 [0,0,w] 0,1/2,1/2 [0,0,w] 0,1/2,1/2 [0,0,w] 0,0,3/4 [0,0,w]
Symmetry of Special Projections

Along [0,0,1] \(p_4 \), 4\(m' \)n
\[a^* = a/2 \quad b^* = b/2 \]
Origin at \(1/4,1/4,z \)

Along [1,0,0] \(p2'm \)m'
\[a^* = -c/2 \quad b^* = b/2 \]
Origin at \(x,0,1/8 \)

Along [1,1,0] \(c2'm' \)m'
\[a^* = -c/2 \quad b^* = -(a + b)/2 \]
Origin at \(x,x,0 \)
I4₁'/a'cd' 142.8.1229

Tetragonal

4'/m'mm'
I4₁'/a'2'/c2/d'

Origin at 4c2, at 0,1/4,-1/8 from 1

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/8

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(5) 2' (0,1/2,0) 0,y,3/8
(2|0,1/2,3/4')

(9) 1' 0,1/4,1/8
(1|0,1/2,1/4')

(13) c (0,0,1/2) x,0,z
(m|0,0,1/2)

(2) 2 0,0,z
(2z|0,0,0)

(6) 2' x,1/4,3/8
(2z|0,1/2,3/4')

(10) b' (0,1/2,0) x,y,1/8
(m|0,1/2,1/4')

(3) 4+ (0,0,1/4) -1/4,1/4,z
(4z|0,1/2,1/4')

(7) 2 x,x,1/4
(2x|0,0,1/2)

(11) 4+ 0,0,z; 0,0,0
(4z|0,0,0)

(14) c (0,0,1/2) 0,y,z
(m|0,0,1/2)

(4) 4' (0,0,1/4) 1/4,1/4,z
(4z|0,1/2,1/4')

(8) 2 x,x,1/4
(2x|0,0,1/2)

(12) 4- 0,0,z; 0,0,0
(4z-1|0,0,0)

(15) d' (-1/4,1/4,3/4) x+1/4,x,z
(m|0,1/2,3/4')

(16) d' (1/4,1/4,3/4) x-1/4,x,z
(m|0,1/2,3/4')
For \((1/2,1/2,1/2) + \) set

\begin{align*}
(1) \ t & (1/2,1/2,1/2) \\
(2) \ 2 & (0,0,1/2) \ 1/4,1/4,z \\
(3) \ 4^* & (0,0,3/4) \ 1/4,1/4,z \\
(4) \ 4^* & (0,0,3/4) \ 1/4,1/4,z \\
(5) \ 2' & 1/4,y,1/8 \\
(6) \ 2' & (1/2,0,0) \ x,0,1/8 \\
(7) \ 2 & (1/2,1/2,0) \ x,x,0 \\
(8) \ 2 & x,x+1/2,0 \\
(9) \ a' & (1/2,0,0) \ x,y,z \\
(10) \ a' & (1/2,0,0) \ x,y+1/2,0 \\
(11) \ a' & (1/2,0,0) \ x,y+1/2,z+1/4 \\
(12) \ a' & (1/2,0,0) \ x,y+1/2,z+1/4 \\
(13) \ b & (0,1/2,0) \ 1/4,y,z \\
(14) \ b & (0,1/2,0) \ 1/4,y,z \\
(15) \ d' & (1/4,-1/4,1/4) \ x+1/4,x,z \\
(16) \ d' & (1/4,1/4,1/4) \ x+1/4,x,z \\
\end{align*}

Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9). \)

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>((0,0,0) + (1/2,1/2,1/2) +)</td>
</tr>
<tr>
<td>16</td>
<td>((0,0,0) + (1/2,1/2,1/2) +)</td>
</tr>
<tr>
<td>8</td>
<td>((0,0,0) + (1/2,1/2,1/2) +)</td>
</tr>
</tbody>
</table>

Positions

\begin{align*}
\text{Wyckoff letter} & \quad \text{Site Symmetry} \\
(1) \ x,y,z [u,v,w] & \quad (2) \ x,y,z [u,v,w] \\
(3) \ y,x+1/2,z+1/4 [v,u,w] & \quad (4) \ y,x+1/2,z+1/4 [v,u,w] \\
(5) \ x,y+1/2,z+3/4 [u,v,w] & \quad (6) \ x,y+1/2,z+3/4 [u,v,w] \\
(7) \ y,x,z+1/2 [v,u,w] & \quad (8) \ y,x,z+1/2 [v,u,w] \\
(9) \ x,y,z+1/2 [v,u,w] & \quad (10) \ x,y,z+1/2 [v,u,w] \\
(11) \ y,x,z [v,u,w] & \quad (12) \ y,x,z [v,u,w] \\
(13) \ x,y,z+1/2 [u,v,w] & \quad (14) \ x,y,z+1/2 [u,v,w] \\
(15) \ y,x+1/2,z+3/4 [v,u,w] & \quad (16) \ y,x+1/2,z+3/4 [v,u,w] \\
\end{align*}

Groups

\begin{align*}
\text{Continued} & \quad 142.8.1229 \\
\text{i4,'a'cd'} & \quad 142.8.1229 - 2 - 2638
\end{align*}
Symmetry of Special Projections

Along [0,0,1] p4'mm'
\[\mathbf{a}^* = \mathbf{a}/2 \quad \mathbf{b}^* = \mathbf{b}/2 \]
Origin at 0,0,z

Along [1,0,0] p4 2mm
\[\mathbf{a}^* = \mathbf{b}/2 \quad \mathbf{b}^* = \mathbf{c}/2 \]
Origin at x,1/4,1/8

Along [1,1,0] c2m'm'
\[\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c}/2 \]
Origin at x,x,0
Tetragonal

Origin at $\bar{4}c'2$, at $0,1/4,-1/8$ from $\bar{1}'$

Asymmetric unit $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/8$

Symmetry Operations

For $(0,0,0) +$ set

1. $1 \quad (1|0,0,0)$
2. $2 \quad 0,0,z \quad (2_z|0,0,0)$
3. $4^+ (0,0,1/4) \quad -1/4,1/4,z \quad (4_z|0,1/2,1/4)$
4. $4' (0,0,1/4) \quad 1/4,1/4,z \quad (4_z^{-1}|0,1/2,1/4)$
5. $2 \quad (0,1/2,0) \quad 0,y,3/8 \quad (2_x|0,1/2,3/4)$
6. $2 \quad x,1/4,3/8 \quad (2_x|0,1/2,3/4)$
7. $2 \quad x,x,1/4 \quad (2_{xy}|0,0,1/2)$
8. $2 \quad x,x,1/4 \quad (2_{xy}|0,0,1/2)$
9. $\bar{1}' \quad 0,1/4,1/8 \quad (\bar{1}|0,1/2,1/4)$
10. $b' (0,1/2,0) \quad x,y,1/8 \quad (m_x|0,1/2,1/4)$
11. $\bar{4}^+ \quad 0,0,z \quad 0,0,0 \quad (\bar{4}_x|0,0,0)$
12. $\bar{4}' \quad 0,0,z \quad 0,0,0 \quad (\bar{4}_x^{-1}|0,0,0)$
13. $c' (0,0,1/2) \quad x,0,z \quad (m_y|0,0,1/2)$
14. $c' (0,0,1/2) \quad 0,y,z \quad (m_y|0,0,1/2)$
15. $d^+ (-1/4,1/4,3/4) \quad x+1/4,y,z \quad (m_{xy}|0,1/2,3/4)$
16. $d' (1/4,1/4,3/4) \quad x-1/4,y,z \quad (m_{xy}|0,1/2,3/4)$
Continued

For (1/2,1/2,1/2) + set

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>t (1/2,1/2,1/2)</td>
<td>(1) t (1/2,1/2,1/2)</td>
<td>(2) 2 (0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td>(2z</td>
<td>1/2,1/2,1/2)</td>
<td>1/4,1/4,z</td>
</tr>
<tr>
<td></td>
<td>(4z</td>
<td>1/2,0,3/4)</td>
<td>1/4,1/4,z</td>
</tr>
<tr>
<td></td>
<td>(4z^2</td>
<td>1/2,0,3/4)</td>
<td>1/4,1/4,z</td>
</tr>
<tr>
<td>2</td>
<td>1/4,y,1/8</td>
<td>(6) 2 (1/2,0,0)</td>
<td>x,x,0</td>
</tr>
<tr>
<td></td>
<td>(2z</td>
<td>1/2,0,1/4)</td>
<td>1/4,1/4,z</td>
</tr>
</tbody>
</table>
| 3 | T 1/4,0,3/8 | (11) 4^+ · 1/2,0,z | 1/2,0,1/4 | (12) 4^+ · 1/2,1/2,1/2)
| | (4z) | 1/2,2,3/4) | 1| z | 1/2,1/2,1/2) |
| 4 | a' (1/2,0,0) | (13) a' (1/2,0,0) | x,y,z | (14) b' (0,1/2,0) |
| | (mz | 1/2,1/2,1/2) | 3/4,y,3/8 | (15) d' (1/2,1/2,1/2) |
| | (mz | 1/2,1/2,1/2) | 3/4,y,3/8 | (mz | 1/2,0,1/4) |
| 5 | x,y+1/2,z+1/4 | (15) d' (1/2,1/2,1/2) | x+1/4,x,z | (16) d' (1/2,1/2,1/2) |
| | (mx | 1/2,1/2,1/2) | x,x,1/4 | (n | 1/2,0,1/4) |
| | (mx | 1/2,0,1/4) | x,x,1/4 | (n | 1/2,0,1/4) |
| 6 | x,x+1/2,z+1/4 | (16) d' (1/2,1/2,1/2) | x+1/4,x,z | (16) d' (1/2,1/2,1/2) |
| | (mx | 1/2,1/2,1/2) | x,x,1/4 | (n | 1/2,0,1/4) |
| | (mx | 1/2,0,1/4) | x,x,1/4 | (n | 1/2,0,1/4) |
| 7 | x+1/4,y,z+3/4 | (15) d' (1/2,1/2,1/2) | x+1/4,x,z | (16) d' (1/2,1/2,1/2) |
| | (mx | 1/2,1/2,1/2) | x,x,1/4 | (n | 1/2,0,1/4) |
| | (mx | 1/2,0,1/4) | x,x,1/4 | (n | 1/2,0,1/4) |
| 8 | y,x,z+1/2 | (16) d' (1/2,1/2,1/2) | x+1/4,x,z | (16) d' (1/2,1/2,1/2) |
| | (y | 1/2,1/2,1/2) | x,x,1/4 | (n | 1/2,0,1/4) |
| | (y | 1/2,1/2,1/2) | x,x,1/4 | (n | 1/2,0,1/4) |
| 10 | x,y+1/2,z+1/4 | (16) d' (1/2,1/2,1/2) | x+1/4,x,z | (16) d' (1/2,1/2,1/2) |
| | (y | 1/2,1/2,1/2) | x,x,1/4 | (n | 1/2,0,1/4) |
| | (y | 1/2,1/2,1/2) | x,x,1/4 | (n | 1/2,0,1/4) |
| 11 | y,x,z+1/2 | (16) d' (1/2,1/2,1/2) | x+1/4,x,z | (16) d' (1/2,1/2,1/2) |
| | (y | 1/2,1/2,1/2) | x,x,1/4 | (n | 1/2,0,1/4) |
| | (y | 1/2,1/2,1/2) | x,x,1/4 | (n | 1/2,0,1/4) |
| 12 | y,x,z+1/2 | (16) d' (1/2,1/2,1/2) | x+1/4,x,z | (16) d' (1/2,1/2,1/2) |
| | (y | 1/2,1/2,1/2) | x,x,1/4 | (n | 1/2,0,1/4) |
| | (y | 1/2,1/2,1/2) | x,x,1/4 | (n | 1/2,0,1/4) |
| 13 | y,x,z+1/2 | (16) d' (1/2,1/2,1/2) | x+1/4,x,z | (16) d' (1/2,1/2,1/2) |
| | (y | 1/2,1/2,1/2) | x,x,1/4 | (n | 1/2,0,1/4) |
| | (y | 1/2,1/2,1/2) | x,x,1/4 | (n | 1/2,0,1/4) |

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (9).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>g</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>16</td>
<td>f</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>16</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p4m'm'
\[a^* = \frac{a}{2} \quad b^* = \frac{b}{2} \]
Origin at 0,0,z

Along [1,0,0] p2m'm'
\[a^* = \frac{b}{2} \quad b^* = \frac{c}{2} \]
Origin at x,0,1/8

Along [1,1,0] c2m'm'
\[a^* = \frac{a + b}{2} \quad b^* = \frac{c}{2} \]
Origin at x,x,0
Origin

On 3

Asymmetric unit

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ≤ x ≤ 2/3;</td>
<td>0 ≤ y ≤ 2/3;</td>
<td>0 ≤ z ≤ 1;</td>
</tr>
<tr>
<td>x ≤ (1+y)/2;</td>
<td>y ≤ min(1-x,(1+x)/2)</td>
<td></td>
</tr>
</tbody>
</table>

Vertices

| 0,0,0 | 1/2,0,0 | 2/3,1/3,0 | 1/3,2/3,0 | 0,1/2,0 |
| 0,0,1 | 1/2,0,1 | 2/3,1/3,1 | 1/3,2/3,1 | 0,1/2,1 |

Symmetry Operations

(1) 1
(1|0,0,0)

(2) 3* 0,0,z
(3z|0,0,0)

(3) 3 0,0,z
(3z⁻¹|0,0,0)
Continued 143.1.1231 P3

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(3) x +y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td>1 c 3..</td>
<td>2/3,1/3,z [0,0,w]</td>
<td>(2) y,x-y,z [v-u,v,w]</td>
</tr>
<tr>
<td>1 b 3..</td>
<td>1/3,2/3,z [0,0,w]</td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td>1 a 3..</td>
<td>0,0,z [0,0,w]</td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p3
a = **a**
b = **b**
Origin at 0,0,z

Along [1,0,0] p1
a = **c**
b = (a + 2b)/2
Origin at x,0,0

Along [2,1,0] p1
a = **c**
b = **b**/2
Origin at x,x/2,0
Origin on $31'$

Asymmetric unit

$$0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2)$$

Vertices

$$0,0,0 \quad 1/2,0,0 \quad 2/3,1/3,0 \quad 1/3,2/3,0 \quad 0,1/2,0$$

$$0,0,1 \quad 1/2,0,1 \quad 2/3,1/3,1 \quad 1/3,2/3,1 \quad 0,1/2,1$$

Symmetry Operations

For 1 set

$$(1) \quad 1$$

$$(1') \quad 3'$$

$$(1' | 0,0,0)$$

$$(1' | 0,0,0)'$$

$$(1' | 0,0,0)'$$

$$(2) \quad 3'$$

$$(2 | 0,0,z)$$

$$(2 | 0,0,z)'$$

$$(3) \quad 3'$$

$$(3 | 0,0,z)$$

$$(3 | 0,0,z)'$$

$$(3 | 0,0,z)'$$

For $1'$ set

$$(1) \quad 1'$$

$$(1 | 0,0,0)'$$

$$(1 | 0,0,0)'$$

$$(2) \quad 3'$$

$$(2 | 0,0,z)$$

$$(2 | 0,0,z)'$$

$$(3) \quad 3'$$

$$(3 | 0,0,z)$$

$$(3 | 0,0,z)'$$

$$(3 | 0,0,z)'$$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry.</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 d</td>
<td>11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) y,x-y,z [0,0,0]</td>
<td>(3) x+y,x,z [0,0,0]</td>
</tr>
<tr>
<td>1 c</td>
<td>3..1'</td>
<td>2/3,1/3,z [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 b</td>
<td>3..1'</td>
<td>1/3,2/3,z [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 a</td>
<td>3..1'</td>
<td>0,0,z [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p31'
 \[\mathbf{a} = \mathbf{a}, \mathbf{b} = \mathbf{b} \]
 Origin at 0,0,z

- Along [1,0,0] p11'
 \[\mathbf{a} = \mathbf{c}, \mathbf{b} = (\mathbf{a} + 2\mathbf{b})/2 \]
 Origin at x,0,0

- Along [2,1,0] p11'
 \[\mathbf{a} = \mathbf{c}, \mathbf{b} = \mathbf{b}/2 \]
 Origin at x,x/2,0
Origin on 3

Asymmetric unit

$$0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{2}{3}; \quad 0 \leq z \leq 1; \quad x \leq \frac{1+y}{2}; \quad y \leq \min(1-x,(1+x)/2)$$

Vertices

$$\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 & \quad 0,1/2,0 \\
0,0,1 & \quad 1/2,0,1 & \quad 2/3,1/3,1 & \quad 1/3,2/3,1 & \quad 0,1/2,1
\end{align*}$$

Symmetry Operations

For (0,0,0) +set

$$(1) \; 1 \quad (2) \; 3^* \quad 0,0,z \quad (3) \; 3^* \quad 0,0,z \quad (3_z^3) \quad 0,0,0$$

For (0,0,1)’ +set

$$(1) \; t'(0,0,1) \quad (2) \; 3' \; (0,0,1) \; 0,0,z \quad (3) \; 3' \; (0,0,1) \; 0,0,z \quad (3_z^3) \; (0,0,1)'$$
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,0,1)' +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td>2 c 3..</td>
<td>2/3,1/3,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 b 3..</td>
<td>1/3,2/3,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 a 3..</td>
<td>0,0,z [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p31' Along [1,0,0] p2a 1 Along [2,1,0] p2a 1

a* = a b* = b a* = c b* = (a + 2b)/2 a* = c b* = b/2

Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Symmetry Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Symmetry Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
<td>(2) 3* (0,0,1/3) 0,0,z</td>
</tr>
<tr>
<td>(1</td>
<td>0,0,0)</td>
</tr>
<tr>
<td></td>
<td>(3*z</td>
</tr>
<tr>
<td></td>
<td>(3*z</td>
</tr>
</tbody>
</table>

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 a 1</td>
<td>x,y,z [u,v,w]</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>y-x,y,z+1/3 [v,u-v,w]</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>x+y,x,z+2/3 [u+v,u,w]</td>
<td>(3)</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin</th>
<th>Projection 1</th>
<th>Projection 2</th>
<th>Projection 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>$a^* = a$</td>
<td>$b^* = b$</td>
<td></td>
</tr>
<tr>
<td>$a^* = a$</td>
<td>$b^* = b$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>$a^* = c$</td>
<td>$b^* = (a + 2b)/2$</td>
<td>$a^* = c$</td>
</tr>
<tr>
<td></td>
<td>$b^* = c$</td>
<td></td>
<td>$b^* = b/2$</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
<td></td>
<td>Origin at x,x/2,0</td>
</tr>
<tr>
<td>Along [2,1,0]</td>
<td>$a^* = c$</td>
<td>$b^* = b/2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b^* = c$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at x,x/2,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin on 3,1'

Asymmetric unit

\[
\begin{array}{cccc}
0 \leq x \leq 1; & 0 \leq y \leq 1; & 0 \leq z \leq 1/3 \\
Vertices & 0,0,0 & 1,0,0 & 1,1,0 & 0,1,0 \\
& 0,0,1/3 & 1,0,1/3 & 1,1,1/3 & 0,1,1/3 \\
\end{array}
\]

Symmetry Operations

For 1 + set

(1) \(t(1,0,0) \)

(2) \(t(0,0,1/3) \)

(3) \(t(0,0,2/3) \)

For 1' + set

(1) \(t(1,0,0)' \)

(2) \(t(0,0,1/3)' \)

(3) \(t(0,0,2/3)' \)

Generators selected

(1); \(t(1,0,0) \); \(t(0,1,0) \); \(t(0,0,1) \); (2); \(1' \).
Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1' +</td>
<td>a</td>
<td>11'</td>
</tr>
</tbody>
</table>

3 | | |

| 1 | x,y,z [0,0,0] | 2 | y-x,y,z+1/3 [0,0,0] | 3 | x+y,x,z+2/3 [0,0,0] |

Symmetry of Special Projections

Along [0,0,1] p31' Along [1,0,0] p11' Along [2,1,0] p11'

a* = a b* = b a* = c b* = (a + 2b)/2 a* = c b* = b/2

Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin on 3_2

Asymmetric unit $0 \leq x \leq 1; 0 \leq y \leq 1; 0 \leq z \leq 1/3$

Vertices 0,0,0 1,0,0 1,1,0 0,1,0 0,0,1/3 1,0,1/3 1,1,1/3 0,1,1/3

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) $3' (0,0,1/3)$ 0,0,z
 $(3_z |0,0,1/3')$

(3) $3' (0,0,2/3)$ 0,0,z
 $(3_z^{-1} |0,0,2/3')$

For (0,0,1)' + set

(1) $t' (0,0,1)$
 (1|0,0,1)'

(2) $3' (0,0,4/3)$ 0,0,z
 $(3_z |0,0,4/3')$

(3) $3' (0,0,5/3)$ 0,0,z
 $(3_z^{-1} |0,0,5/3')$

Generators selected $(1); t(1,0,0); t(0,1,0); t(0,0,1); (2).
Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>a</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y,x-y,z+1/3 [v,u+v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z+2/3 [u+v,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p31'

\[a^* = a \quad b^* = b \]

Origin at 0,0,z

Along [1,0,0] p2x1 1

\[a^* = c \quad b^* = (a + 2b)/2 \]

Origin at x,0,0

Along [2,1,0] p2x1 1

\[a^* = c \quad b^* = b/2 \]

Origin at x,x/2,0
Origin on 3

Asymmetric unit
\[
\begin{array}{ccc}
0 \leq x \leq 1; & 0 \leq y \leq 1; & 0 \leq z \leq 1/3 \\
\end{array}
\]

Vertices
\[
\begin{array}{cccc}
0,0,0 & 1,0,0 & 1,1,0 & 0,1,0 \\
0,0,1/3 & 1,0,1/3 & 1,1,1/3 & 0,1,1/3 \\
\end{array}
\]

Symmetry Operations
\[
\begin{align*}
(1) & 1 \\
(2) & 3^* (0,0,2/3) \\
(3) & 3^* (0,0,1/3) \\
\end{align*}
\]

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[
\begin{align*}
3 & \text{ a 1} \\
(1) & x,y,z [u,v,w] \\
(2) & \bar{y},x-y,z+2/3 [\bar{v},u-v,w] \\
(3) & x+y,\bar{x},z+1/3 [u+v,\bar{u},w] \\
\end{align*}
\]

145.1.1237 - 1 - 2655
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Projection</th>
<th>p3</th>
<th>p1</th>
<th>p1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>(a^* = a)</td>
<td>(a^* = c)</td>
<td>(a^* = c)</td>
</tr>
<tr>
<td></td>
<td>(b^* = b)</td>
<td>(b^* = (a + 2b)/2)</td>
<td>(b^* = b/2)</td>
</tr>
<tr>
<td>Origin</td>
<td>at 0,0,z</td>
<td>at x,0,0</td>
<td>at x,x/2,0</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin on $3_1'$

Asymmetric unit $\begin{align*} &0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/3 \\
&\text{Vertices} \quad 0,0,0 \quad 1,0,0 \quad 1,1,0 \quad 0,1,0 \\
&\quad 0,0,1/3 \quad 1,0,1/3 \quad 1,1,1/3 \quad 0,1,1/3 \end{align*}$

Symmetry Operations

For $1 +$ set

\begin{align*}
(1) \ 1 \\
(1 \ 0,0,0)
\end{align*}

$\begin{align*}
(2) \ 3' \ (0,0,2/3) \quad 0,0,z \\
(3) \ 3' \ (0,0,1/3) \quad 0,0,z
\end{align*}$

For $1' +$ set

\begin{align*}
(1) \ 1' \\
(1 \ 0,0,0')
\end{align*}

$\begin{align*}
(2) \ 3' \ (0,0,2/3) \quad 0,0,z \\
(3) \ 3' \ (0,0,1/3) \quad 0,0,z
\end{align*}$

Generators selected $\begin{align*}
(1) \ : t(1,0,0); \ t(0,1,0); \ t(0,0,1); \ (2) \ : 1'.
\end{align*}$
Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1' +</td>
<td>1'</td>
<td>a</td>
</tr>
</tbody>
</table>

3 a 11'
(1) x,y,z [0,0,0]
(2) y,x-y,z+2/3 [0,0,0]
(3) x+y,x,z+1/3 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p31'
\(a' = a \) \(b' = b \)
Origin at 0,0,z

Along [1,0,0] p11'
\(a' = c \) \(b' = (a + 2b)/2 \)
Origin at x,0,0

Along [2,1,0] p11'
\(a' = c \) \(b' = b/2 \)
Origin at x,x/2,0
Origin on 3_1

Asymmetric unit $0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/3$

Vertices $0,0,0 \quad 1,0,0 \quad 1,1,0 \quad 0,1,0$
$0,0,1/3 \quad 1,0,1/3 \quad 1,1,1/3 \quad 0,1,1/3$

Symmetry Operations

For $(0,0,0) +$ set

1. $t(0,0,0)$
2. $3^* (0,0,2/3) \quad 0,0,z$
3. $3^- (0,0,1/3) \quad 0,0,z$

For $(0,0,1)' +$ set

1. $t'(0,0,1)$
2. $3^* (0,0,5/3) \quad 0,0,z$
3. $3^- (0,0,4/3) \quad 0,0,z$

Generators selected

1. $t(1,0,0); \ t(0,1,0); \ t'(0,0,1)$; (2).
Continued

145.3.1239

P\textsubscript{2e} \textsubscript{31}

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

\begin{align*}
\text{Multiplicity} & \quad \text{Wyckoff letter} \quad \text{Site Symmetry.} \\
(0,0,0) & + (0,0,1)' + \\
\end{align*}

\begin{align*}
6 & \quad a \quad 1 \\
1 & \quad (1) \quad & \text{x},y,z \ [u,v,w] \\
2 & \quad (2) \quad & \text{y},x-y,z+2/3 \ [v,u-v,w] \\
3 & \quad (3) \quad & \text{x}+y,x,z+1/3 \ [u-v,u,w] \\
\end{align*}

Symmetry of Special Projections

Along [0,0,1] \quad p31'

\begin{align*}
\text{a} & = \text{a} \quad \text{b} & = \text{b} \\
\text{Origin at } 0,0,0 & \quad \text{Origin at } x,0,0 \\
\end{align*}

Along [1,0,0] \quad p_{2a}.1

\begin{align*}
\text{a} & = c \quad \text{b} & = (\text{a} + \text{2b})/2 \\
\text{Origin at } 0,0,0 & \quad \text{Origin at } x,0,0 \\
\end{align*}

Along [2,1,0] \quad p_{2a}.1

\begin{align*}
\text{a} & = c \quad \text{b} & = \text{b}/2 \\
\text{Origin at } 0,0,0 & \quad \text{Origin at } x,x/2,0 \\
\end{align*}
Origin on 3

Asymmetric unit

- \(0 \leq x \leq \frac{2}{3} \); \(0 \leq y \leq \frac{2}{3} \); \(0 \leq z \leq \frac{1}{3} \); \(x \leq \frac{(1+y)}{2} \); \(y \leq \min(1-x,(1+x)/2) \)

Vertices

- \((0,0,0)\)
- \((0,0,\frac{1}{3})\)
- \((\frac{1}{2},0,0)\)
- \((\frac{1}{2},0,\frac{1}{3})\)
- \(\frac{2}{3},\frac{1}{3},0\)
- \(\frac{1}{3},\frac{2}{3},0\)
- \(\frac{2}{3},\frac{1}{3},\frac{1}{3}\)
- \(\frac{1}{3},\frac{2}{3},\frac{1}{3}\)
- \(0,\frac{1}{2},0\)
- \(0,\frac{1}{2},\frac{1}{3}\)
Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)
(2) 3* 0,0,z
(3) 3' 0,0,z
(3z | 0,0,0)
(3z' | 0,0,0)

For (2/3,1/3,1/3) + set

(1) t (2/3,1/3,1/3)
(1 | 2/3,1/3,1/3)
(2) 3* (0,0,1/3) 1/3,1/3,z
(3) 3' (0,0,1/3) 1/3,0,z
(3z | 2/3,1/3,1/3)
(3z' | 2/3,1/3,1/3)

For (1/3,2/3,2/3) + set

(1) t (1/3,2/3,2/3)
(1 | 1/3,2/3,2/3)
(2) 3* (0,0,2/3) 0,1/3,z
(3) 3' (0,0,2/3) 1/3,1/3,z
(3z | 1/3,2/3,2/3)
(3z' | 1/3,2/3,2/3)

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); (2).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>9</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) y,x-z [v,u-w,v]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,z [u+v,u+w]</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (-a - 2b + c)/3</td>
<td>b* = (a + 2b)/2</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [2,1,0]</th>
<th>p1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c/3</td>
<td>b* = b/2</td>
</tr>
<tr>
<td>Origin at x,x/2,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 31'
Symmetry Operations

For (0,0,0) + set

\[(1) \text{ t } (2) \text{ t' } (3) \text{ t' } \]
\[(1,0,0) \quad (0,0,z) \quad (0,0,z) \]

For (2/3,1/3,1/3) + set

\[(1) \text{ t' } (2) \text{ t'} (3) \text{ t'} \]
\[(2/3,1/3,1/3) \quad (0,0,1/3) \quad (0,0,1/3) \]

For (1/3,2/3,2/3) + set

\[(1) \text{ t' } (2) \text{ t'} (3) \text{ t'} \]
\[(1/3,2/3,2/3) \quad (0,0,2/3) \quad (0,0,2/3) \]

For (0,0,0)' + set

\[(1) \text{ t' } (2) \text{ t' } (3) \text{ t'} \]
\[(0,0,0)' \quad (0,0,0)' \quad (0,0,0)' \]

Generators selected

\(1); \text{ t}(1,0,0); \text{ t}(0,1,0); \text{ t}(0,0,1); \text{ t}(2/3,1/3,1/3);(2);1'.\)

Positions

\begin{array}{cccc}
\text{Multiplicity,} & \text{Wyckoff letter,} & \text{Site Symmetry.} \\
9 & b & 11' & \text{ (1) x,y,z [0,0,0] (2) } y,x-y,z [0,0,0] (3) x+y,x,z [0,0,0] \\
3 & a & 3..1' & 0,0,z [0,0,0] \\
\end{array}

Symmetry of Special Projections

Along [0,0,1] p31' \quad \text{Along [1,0,0] p11' \quad Along [2,1,0] p11'}
\[a^* = a \quad b^* = b \quad a^* = (-a - 2b + c)/3 \quad b^* = (a + 2b)/2 \quad a^* = c/3 \quad b^* = b/2 \]
Origin at 0,0,z \quad \text{Origin at x,0,0} \quad \text{Origin at x,x/2,0}
Origin on 3

Asymmetric unit:

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/3; \quad x \leq (1+y)/2; \quad y \leq \min(1-x, (1+x)/2) \]

Vertices:
- \(0,0,0\)
- \(0,0,1/3\)
- \(1/2,0,0\)
- \(1/2,0,1/3\)
- \(2/3,1/3,0\)
- \(2/3,1/3,1/3\)
- \(1/3,2/3,0\)
- \(1/3,2/3,1/3\)
- \(0,1/2,0\)
- \(0,1/2,1/3\)
Continued

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & & 1 & & (2) & & 3' & & 0,0,z & & (3) & & 3' & & 0,0,z \\
(1') & & (0,0,0) & & (3_z) & & 0,0,0 & & (3_z') & & 0,0,0
\end{align*}
\]

For \((2/3,1/3,1/3)' + \) set

\[
\begin{align*}
(1') & & t'(2/3,1/3,1/3) & & (2) & & 3' & & (0,0,1/3) & & (3) & & 3' & & (0,0,1/3) & & 1/3,0,z \\
(1') & & (2/3,1/3,1/3)' & & (3_z) & & 2/3,1/3,1/3' & & (3_z') & & 2/3,1/3,1/3'
\end{align*}
\]

For \((1/3,2/3,2/3) + \) set

\[
\begin{align*}
(1) & & t(1/3,2/3,2/3) & & (2) & & 3' & & (0,0,2/3) & & (3) & & 3' & & (0,0,2/3) & & 1/3,1/3,z \\
(1') & & (1/3,2/3,2/3) & & (3_z) & & 1/3,2/3,2/3 & & (3_z') & & 1/3,2/3,2/3
\end{align*}
\]

Generators selected

\(1); \(t(1,0,0); \ t(0,1,0); \ t(0,0,1); \ t'(2/3,1/3,1/3); \(2).\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>3..</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0,0) + (2/3,1/3,1/3)' + (1/3,2/3,2/3) + (1/3,2/3,2/3) +)</td>
</tr>
<tr>
<td>((1) x,y,z \ [u,v,w] \quad (2) y-x,y,z \ [v-u,v,w] \quad (3) x+y,x,z \ [u+v,u,w])</td>
</tr>
<tr>
<td>(0,0,z \ [0,0,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1] \quad p31' \)
 - \(a^* = a \quad b^* = b \)
 - Origin at \(0,0,z \)

- Along \([1,0,0] \quad p_{31} \quad p_{31}^{-1} \)
 - \(a^* = (a + 2b)/2 \quad b^* = (a + 2b)/2 \)
 - Origin at \(x,0,0 \)

- Along \([2,1,0] \quad p_{2a} \quad p_{2a}^{-1} \)
 - \(a^* = c/3 \quad b^* = b/2 \)
 - Origin at \(x,x/2,0 \)
Origin on $\overline{3}$

Asymmetric unit: $0 \leq x \leq 2/3$; $0 \leq y \leq 2/3$; $0 \leq z \leq 1/2$; $x \leq (1+y)/2$; $y \leq \min(1-x,(1+x)/2)$

Vertices:
- $0,0,0$
- $1/2,0,0$
- $2/3,1/3,0$
- $1/3,2/3,0$
- $0,1/2,0$
- $0,0,1/2$
- $1/2,0,1/2$
- $2/3,1/3,1/2$
- $1/3,2/3,1/2$
- $0,1/2,1/2$

Symmetry Operations:

1. 1
2. $3^+ 0,0,z$
3. $3^- 0,0,z$
4. $\overline{1}$
5. $3^+ 0,0,z; 0,0,0$
6. $3^- 0,0,z; 0,0,0$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 g 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y ,x-y,z [v,u-v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) x ,y ,z [u,v,w]</td>
<td>(5) y,x +y,z [v,u-v,w]</td>
<td></td>
</tr>
<tr>
<td>3 f 1</td>
<td>1/2,0,1/2 [u,v,w]</td>
<td>0,1/2,1/2 [v,u-v,w]</td>
<td></td>
</tr>
<tr>
<td>3 e 1</td>
<td>1/2,0,0 [u,v,w]</td>
<td>0,1/2,0 [v,u-v,w]</td>
<td></td>
</tr>
<tr>
<td>2 d 3</td>
<td>1/3,2/3,z [0,0,w]</td>
<td>2/3,1/3,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 c 3</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>1 b 3</td>
<td>0,0,1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 a 3</td>
<td>0,0,0 [0,0,w]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6'</th>
<th>Along [1,0,0]</th>
<th>p2'11</th>
<th>Along [2,1,0]</th>
<th>p2'11</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = c b* = (a + 2b)/2</td>
<td>a* = c b* = b/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin on $\overline{3}1'$

Asymmetric unit

$$0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/2; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2)$$

Vertices

$$0,0,0 \quad 1/2,0,0 \quad 2/3,1/3,0 \quad 1/3,2/3,0 \quad 0,1/2,0$$
$$0,0,1/2 \quad 1/2,0,1/2 \quad 2/3,1/3,1/2 \quad 1/3,2/3,1/2 \quad 0,1/2,1/2$$

Symmetry Operations

For 1 +set

(1) 1

(1|0,0,0)

(2) $3^z \cdot 0,0,z$

(3 $\overline{3}$ $\cdot 0,0,z$

(3 \overline{z} $\cdot 0,0,z$

(1 $\cdot 0,0,0$)

(4) $\overline{1}$

(1 $\overline{1}$|0,0,0)

(5) $\overline{3}^z \cdot 0,0,z; \quad 0,0,0$

(6 $\overline{3}$ $\cdot 0,0,z; \quad 0,0,0$

(3 \overline{z} $\cdot 0,0,0$)

For $1'$ +set

(1) $1'$

(1|0,0,0')

(2) $3^z \cdot 0,0,z$

(3 $\overline{3}$ $\cdot 0,0,z$

(3 \overline{z} $\cdot 0,0,z$

(1 $\cdot 0,0,0$)

(4) $\overline{1}'$

(1 $\overline{1}$|0,0,0')

(5) $\overline{3}^z \cdot 0,0,z; \quad 0,0,0$

(6 $\overline{3}$ $\cdot 0,0,z; \quad 0,0,0$

(3 \overline{z} $\cdot 0,0,0$)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 g 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(2) y,x-y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(5) y,x+y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(6) x-y,x,z [0,0,0]</td>
</tr>
<tr>
<td>3 f 1'</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>3 e 1'</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 d 3..1'</td>
<td>1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>2/3,1/3,z [0,0,0]</td>
</tr>
<tr>
<td>2 c 3..1'</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>1 b 3..1'</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 a 3..1'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p61'</th>
<th>Along [1,0,0] p2111'</th>
<th>Along [2,1,0] p2111'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = c b* = (a + 2b)/2</td>
<td>a* = c b* = b/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,0</td>
</tr>
</tbody>
</table>
Origin on $\overline{3}'$

Asymmetric unit

\[
0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/2; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2)
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 & \quad 0,1/2,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2 & \quad 1/3,2/3,1/2 & \quad 0,1/2,1/2
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 & \quad (2) & \quad 3^+ & \quad 0,0,z & \quad 3^- & \quad 0,0,z \\
(1|0,0,0) & \quad (3_z|0,0,0) & \quad (3_z^{-1}|0,0,0) & \quad (3_z^{-1}|0,0,0)
\end{align*}
\]

\[
\begin{align*}
(4) & \quad \overline{1} & \quad (5) & \quad \overline{3}^+ & \quad 0,0,z; \quad 0,0,0 & \quad \overline{3}^- & \quad 0,0,z; \quad 0,0,0 \\
(1|0,0,0) & \quad (3_z|0,0,0) & \quad (3_z^{-1}|0,0,0) & \quad (3_z^{-1}|0,0,0)
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>g</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>1/2,0,1/2</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>1,0,0</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>1/3,2/3,z</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>0,0,z</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>0,0,1/2</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>0,0,0</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6

\[
a^* = a^* = b^* = b
\]

Origin at 0,0,z

Along [1,0,0] p211

\[
a^* = c^* = (a + 2b)/2
\]

Origin at x,0,0

Along [2,1,0] p211

\[
a^* = c^* = b^* = b/2
\]

Origin at x,x/2,0
Origin on $\overline{3}$

Asymmetric unit 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; 0 ≤ z ≤ 1/2; x ≤ (1+y)/2; y ≤ min(1-x,(1+x)/2)

Vertices 0,0,0 1/2,0,0 2/3,1/3,0 1/3,2/3,0 0,1/2,0
0,0,1/2 1/2,0,1/2 2/3,1/3,1/2 1/3,2/3,1/2 0,1/2,1/2

Symmetry Operations

For (0,0,0) + set
(1) $\overline{1}$
(1 | 0,0,0)
(2) 3^+ 0,0,z
(3) 3^- 0,0,z
(3 | 0,0,0)
(3 | 0,0,0)
(3 | 0,0,0)
(3 | 0,0,0)
(3 | 0,0,0)
(3 | 0,0,0)
(3 | 0,0,0)
(3 | 0,0,0)
(3 | 0,0,0)

For (0,0,1)' + set
(1) t' (0,0,1)
(1 | 0,0,1)'
(2) $3^+' (0,0,1) 0,0,z$
(3) $3^+ (0,0,1) 0,0,z$
(3 | 0,0,1)'
(3 | 0,0,1)'

147.4.1246 - 1 - 2676
Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>g 1</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,0,1)’ +</td>
</tr>
<tr>
<td>6</td>
<td>f 1</td>
<td>1/2,0,1/2</td>
</tr>
<tr>
<td>6</td>
<td>e 1</td>
<td>0,1/2,0</td>
</tr>
<tr>
<td>4</td>
<td>d 3</td>
<td>1/3,2/3,z</td>
</tr>
<tr>
<td>4</td>
<td>c 3</td>
<td>0,0,z</td>
</tr>
<tr>
<td>2</td>
<td>b 3’</td>
<td>0,0,1/2</td>
</tr>
<tr>
<td>2</td>
<td>a 3’</td>
<td>0,0,0</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p61’
\[a^* = a \quad b^* = b\]
Origin at 0,0,z

Along [1,0,0] p_{2a'} 211
\[a^* = c \quad b^* = (a + 2b)/2\]
Origin at x,0,1/2

Along [2,1,0] p_{2a'} 211
\[a^* = c \quad b^* = b/2\]
Origin at x,x/2,1/2
Origin on $\overline{3}$

Asymmetric unit

$0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/6; \quad x \leq (1+y)/2; \quad y \leq \min(1-x, (1+x)/2)$

Vertices

- 0,0,0
- 1/2,0,0
- 2/3,1/3,0
- 1/3,2/3,0
- 0,1/2,0
- 0,0,1/6
- 1/2,0,1/6
- 2/3,1/3,1/6
- 1/3,2/3,1/6
- 0,1/2,1/6
Symmetry Operations

For (0,0,0) + set

(1) 1
 (1) [0,0,0]

(2) 3* 0,0,z
 (3) 3* 0,0,z
 (3_2[0,0,0])
 (3_2[-1][0,0,0])

(4) T
 (T) [0,0,0]

(5) 3* 0,0,z; 0,0,0
 (3_2[0,0,0])
 (3_2[-1][0,0,0])

For (2/3,1/3,1/3) + set

(1) t (2/3,1/3,1/3)
 (1) [2/3,1/3,1/3]

(2) 3* (0,0,1/3) 1/3,1/3,z
 (3) 3* (0,0,1/3) 1/3,0,z
 (3_2[2/3,1/3,1/3])
 (3_2[-1][2/3,1/3,1/3])

(4) T 1/3,1/6,1/6
 (T) [1/3,1/6,1/6]

(5) 3* 1/3,-1/3,z; 1/3,-1/3,1/6
 (3_2[2/3,1/3,1/3])
 (3_2[-1][2/3,1/3,1/3])

For (1/3,2/3,2/3) + set

(1) t (1/3,2/3,2/3)
 (1) [1/3,2/3,2/3]

(2) 3* (0,0,2/3) 0,1/3,z
 (3) 3* (0,0,2/3) 1/3,1/3,z
 (3_2[1/3,2/3,2/3])
 (3_2[-1][1/3,2/3,2/3])

(4) T 1/6,1/3,1/3
 (T) [1/6,1/3,1/3]

(5) 3* 2/3,1/3,z; 2/3,1/3,1/3
 (3_2[1/3,2/3,2/3])
 (3_2[-1][1/3,2/3,2/3])

Generators selected

(1): t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); (2); (4).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>f</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>9</td>
<td>e</td>
<td>(2/3,1/3,1/3)</td>
</tr>
<tr>
<td>6</td>
<td>c</td>
<td>(1/3,2/3,2/3)</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>(1/3,1/6,1/6)</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1], p6'
Along [1,0,0], p2'11
Along [2,1,0], p2'11

a* = (2a + b)/3
b* = (-a + b)/3
a* = (-a - 2b + c)/3
b* = (a + 2b)/2
a* = c/3
b* = b/2
Origin at 0,0,z
Origin at x,0,0
Origin at x,x/2,0
Origin on $\overline{3}1'$

<table>
<thead>
<tr>
<th>Asymmetric unit</th>
<th>Vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \leq x \leq 2/3$; $0 \leq y \leq 2/3$; $0 \leq z \leq 1/6$; $x \leq (1+y)/2$; $y \leq \min(1-x,(1+x)/2)$</td>
<td>$0,0,0$</td>
</tr>
<tr>
<td></td>
<td>$1/2,0,0$</td>
</tr>
<tr>
<td></td>
<td>$2/3,1/3,0$</td>
</tr>
<tr>
<td></td>
<td>$1/3,2/3,0$</td>
</tr>
<tr>
<td></td>
<td>$0,1/2,0$</td>
</tr>
<tr>
<td>$0,0,1/6$</td>
<td>$1/2,0,1/6$</td>
</tr>
<tr>
<td>$2/3,1/3,1/6$</td>
<td>$1/3,2/3,1/6$</td>
</tr>
<tr>
<td>$0,1/2,1/6$</td>
<td>$0,1/2,1/6$</td>
</tr>
</tbody>
</table>
Symmetry Operations

For \((0,0,0)\) + set

<table>
<thead>
<tr>
<th>(1) (1)</th>
<th>(2) (3') 0,0,z</th>
<th>(3) (3') 0,0,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1</td>
<td>0,0,0))</td>
<td>((3,2,0,0,0))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4) (\bar{1})</th>
<th>(5) (3') 0,0,z</th>
<th>(6) (3') 0,0,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\bar{1}</td>
<td>0,0,0))</td>
<td>((3,2,0,0,0))</td>
</tr>
</tbody>
</table>

For \((2/3,1/3,1/3)\) + set

<table>
<thead>
<tr>
<th>(1) (t) ((2/3,1/3,1/3))</th>
<th>(2) (3') ((0,0,1/3)) 1/3,1/3,z</th>
<th>(3) (3') ((0,0,1/3)) 1/3,0,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1</td>
<td>2/3,1/3,1/3))</td>
<td>((3,2,0,0,0))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4) (\bar{1}) (1/3,1/6,1/6)</th>
<th>(5) (3') (-1/3,-1/3,z) 1/3,1/3,1/6</th>
<th>(6) (3') (-1/3,-1/3,z) 1/3,1/3,1/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\bar{1}</td>
<td>2/3,1/3,1/3))</td>
<td>((3,2,0,0,0))</td>
</tr>
</tbody>
</table>

For \((1/3,2/3,2/3)\) + set

<table>
<thead>
<tr>
<th>(1) (t) ((1/3,2/3,2/3))</th>
<th>(2) (3') ((0,0,2/3)) 0,1/3,z</th>
<th>(3) (3') ((0,0,2/3)) 1/3,1/3,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1</td>
<td>1/3,2/3,2/3))</td>
<td>((3,2,0,0,0))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4) (\bar{1}) (1/3,1/6,1/6)</th>
<th>(5) (3') (-1/3,-1/3,z) 1/3,1/3,1/6</th>
<th>(6) (3') (-1/3,-1/3,z) 1/3,1/3,1/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\bar{1}</td>
<td>1/3,2/3,2/3))</td>
<td>((3,2,0,0,0))</td>
</tr>
</tbody>
</table>

For \((0,0,0)\)' + set

<table>
<thead>
<tr>
<th>(1) (1')</th>
<th>(2) (3') 0,0,z</th>
<th>(3) (3') 0,0,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1</td>
<td>0,0,0)')</td>
<td>((3,2,0,0,0)')</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4) (\bar{1}')</th>
<th>(5) (3') 0,0,z</th>
<th>(6) (3') 0,0,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\bar{1}</td>
<td>0,0,0)')</td>
<td>((3,2,0,0,0)')</td>
</tr>
</tbody>
</table>

For \((2/3,1/3,1/3)\)' + set

<table>
<thead>
<tr>
<th>(1) (t) ((2/3,1/3,1/3)')</th>
<th>(2) (3') ((0,0,1/3)) 1/3,1/3,z</th>
<th>(3) (3') ((0,0,1/3)) 1/3,0,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1</td>
<td>2/3,1/3,1/3)')</td>
<td>((3,2,0,0,0)')</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4) (\bar{1}) (1/3,1/6,1/6)</th>
<th>(5) (3') (-1/3,-1/3,z) 1/3,1/3,1/6</th>
<th>(6) (3') (-1/3,-1/3,z) 1/3,1/3,1/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\bar{1}</td>
<td>2/3,1/3,1/3)')</td>
<td>((3,2,0,0,0)')</td>
</tr>
</tbody>
</table>

For \((1/3,2/3,2/3)\)' + set

<table>
<thead>
<tr>
<th>(1) (t) ((1/3,2/3,2/3)')</th>
<th>(2) (3') ((0,0,2/3)) 0,1/3,z</th>
<th>(3) (3') ((0,0,2/3)) 1/3,1/3,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1</td>
<td>1/3,2/3,2/3)')</td>
<td>((3,2,0,0,0)')</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4) (\bar{1}) (1/3,1/6,1/6)</th>
<th>(5) (3') (-1/3,-1/3,z) 1/3,1/3,1/6</th>
<th>(6) (3') (-1/3,-1/3,z) 1/3,1/3,1/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\bar{1}</td>
<td>1/3,2/3,2/3)')</td>
<td>((3,2,0,0,0)')</td>
</tr>
</tbody>
</table>

Generators selected
(1); \(t(1,0,0)\); \(t(0,1,0)\); \(t(0,0,1)\); \(t(2/3,1/3,1/3)\); (2); (4); \(1'\).
Continued

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>f</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(0,0,0)' +</td>
<td></td>
<td>(2) y,x-y,z [0,0,0]</td>
</tr>
<tr>
<td>(2/3,1/3,1/3) +</td>
<td></td>
<td>(3) x+y,x,z [0,0,0]</td>
</tr>
<tr>
<td>(2/3,1/3,1/3)' +</td>
<td></td>
<td>(4) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(1/3,2/3,2/3) +</td>
<td></td>
<td>(5) y,x+y,z [0,0,0]</td>
</tr>
<tr>
<td>(1/3,2/3,2/3)' +</td>
<td></td>
<td>(6) x-y,x,z [0,0,0]</td>
</tr>
</tbody>
</table>

18 f 11' (1) x,y,z [0,0,0] (2) y,x-y,z [0,0,0] (3) x+y,x,z [0,0,0]

9 e 1/2,0,0 [0,0,0] 0,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0]

9 d 1/2,0,1/2 [0,0,0] 0,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]

6 c 0,0,z [0,0,0] 0,0,z [0,0,0]

1 a 0,0,1/2 [0,0,0]

1 b 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p6' Along [1,0,0] p2111' Along [2,1,0] p2111'

a* = (2a + b)/3 b* = (-a + b)/3 a* = (-a - 2b + c)/3 b* = (a + 2b)/2

Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0

148.2.1248 - 4 - 2684

Continued
Origin on \(\bar{3} \)

Asymmetric unit

\[
0 \leq x < 2/3; \quad 0 \leq y < 2/3; \quad 0 \leq z < 1/6; \quad x < (1+y)/2; \quad y \leq \min(1-x,(1+x)/2)
\]

Vertices

<table>
<thead>
<tr>
<th></th>
<th>0,0,0</th>
<th>1/2,0,0</th>
<th>2/3,1/3,0</th>
<th>1/3,2/3,0</th>
<th>0,1/2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,1/6</td>
<td>1/2,0,1/6</td>
<td>2/3,1/3,1/6</td>
<td>1/3,2/3,1/6</td>
<td>0,1/2,1/6</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry Operations

For (0,0,0) + set

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3'</td>
</tr>
<tr>
<td>3</td>
<td>3'</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>3'</td>
</tr>
<tr>
<td>6</td>
<td>3'</td>
</tr>
</tbody>
</table>

For (2/3,1/3,1/3) + set

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>t</td>
</tr>
<tr>
<td>2</td>
<td>3'</td>
</tr>
<tr>
<td>3</td>
<td>3'</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>3'</td>
</tr>
<tr>
<td>6</td>
<td>3'</td>
</tr>
</tbody>
</table>

For (1/3,2/3,2/3) + set

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>t</td>
</tr>
<tr>
<td>2</td>
<td>3'</td>
</tr>
<tr>
<td>3</td>
<td>3'</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
</tr>
<tr>
<td>5</td>
<td>3'</td>
</tr>
<tr>
<td>6</td>
<td>3'</td>
</tr>
</tbody>
</table>

Generators selected

(1): t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); (2); (4).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>18</td>
<td>(0,0,0) + x,y,z [u,v,w] (2) y, x-y,z [v,u,v,w] (3) x+y, x, z [u+v,u,w]</td>
</tr>
<tr>
<td>(2/3,1/3,1/3)</td>
<td>9</td>
<td>(2/3,1/3,1/3) + (1/2,0,0) [0,0,0] (5) y, x+z [v,u+v,w] (6) x-y, z [u-v,u,w]</td>
</tr>
<tr>
<td>(1/3,2/3,2/3)</td>
<td>6</td>
<td>(1/3,2/3,2/3) + 0,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1], p6

<table>
<thead>
<tr>
<th>a*</th>
<th>b*</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2a + b)/3</td>
<td>(-a + b)/3</td>
<td>0,0,z</td>
</tr>
</tbody>
</table>

Along [1,0,0], p211

<table>
<thead>
<tr>
<th>a*</th>
<th>b*</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-a - 2b + c)/3</td>
<td>(a + 2b)/2</td>
<td>x,0,0</td>
</tr>
</tbody>
</table>

Along [2,1,0], p211

<table>
<thead>
<tr>
<th>a*</th>
<th>b*</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>c/3</td>
<td>b/2</td>
<td>x,x/2,0</td>
</tr>
</tbody>
</table>
Origin on $\overline{3}$

Asymmetric unit

- $0 \leq x \leq 2/3$;
- $0 \leq y \leq 2/3$;
- $0 \leq z \leq 1/6$;
- $x \leq (1+y)/2$;
- $y \leq \min(1-x, (1+x)/2)$

Vertices

- $0,0,0$
- $1/2,0,0$
- $2/3,1/3,0$
- $1/3,2/3,0$
- $0,1/2,0$
- $0,0,1/6$
- $1/2,0,1/6$
- $2/3,1/3,1/6$
- $1/3,2/3,1/6$
- $0,1/2,1/6$
Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 3° 0,0,z
(3) 3° 0,0,z
(4) T
(5) 3° 0,0,z; 0,0,0
(6) 3° 0,0,z; 0,0,0

For (2/3,1/3,1/3)' + set

(1) t (2/3,1/3,1/3)
(2) 3°' (0,0,1/3) 1/3,1/3,z
(3) 3°' (0,0,1/3) 1/3,0,z
(4) T'
(5) 3°' 1/3,-1/3,z; 1/3,-1/3,1/6
(6) 3°' 1/3,2/3,z; 1/3,2/3,1/6

For (1/3,2/3,2/3) + set

(1) t (1/3,2/3,2/3)
(2) 3° (0,0,2/3) 0,1/3,z
(3) 3° (0,0,2/3) 1/3,1/3,z
(4) T
(5) 3° 2/3,1/3,z; 2/3,1/3,1/3
(6) 3° -1/3,1/3,z; -1/3,1/3,1/3

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); (2); (4).

Positions

Multiplicity, Coordinates
Wyckoff letter, Site Symmetry.

(0,0,0) + (2/3,1/3,1/3)' + (1/3,2/3,2/3) +

18 f 1 (1) x,y,z [u,v,w] (2) y,x-y,z [v,u-v,w] (3) x+y,x,z [u+v,u,w]
(4) x,y,z [u,v,w] (5) y,x+y,z [v,u-v,w] (6) x-y,x,z [u,v,u-w]
10 e 1/2,0,0 [u,v,w] 0,1/2,0 [v,u-v,w] 1/2,1,2,0 [u+v,u,w]
9 d 1/2,0,1/2 [0,0,0] 0,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]
6 c 0,0,z [0,0,w] 0,0,z [0,0,w]
1 b 0,0,1/2 [0,0,0]
1 a 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p61′
a° = (2a + b)/3 b° = (-a + b)/3
Origin at 0,0,z

Along [1,0,0] p211
a° = (-a - 2b + c)/3 b° = (a + 2b)/2
Origin at x,0,1/2

Along [2,1,0] p211
a° = c/3 b° = b/2
Origin at x,x/2,1/2
Origin on 312

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{2}{3}; \quad 0 \leq z \leq \frac{1}{2}; \quad x \leq \frac{(1+y)}{2}; \quad y \leq \min(1-x,(1+x)/2) \]

Vertices

\begin{align*}
0,0,0 & & 1/2,0,0 & & 2/3,1/3,0 & & 1/3,2/3,0 & & 0,1/2,0 \\
0,0,1/2 & & 1/2,0,1/2 & & 2/3,1/3,1/2 & & 1/3,2/3,1/2 & & 0,1/2,1/2
\end{align*}

Symmetry Operations

\begin{align*}
(1) & & 1 \\
(1\cdot 0,0,0) & & (2) 3^+ & & 0,0,z \\
(3) & & (3_z) & & 0,0,0 \\
(3^{-1}) & & (3^{-1}_z) & & 0,0,0 \\
(4) & & 2 & & x,x,0 \\
(2_3 0,0,0) & & (5) & & x,2x,0 \\
(2_2 0,0,0) & & (6) & & 2x,x,0 \\
(2_1 0,0,0) & & (2_0 0,0,0)
\end{align*}
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>l</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>3</td>
<td>k</td>
<td>(4) (\bar{y},x,z [\bar{v},u,w])</td>
</tr>
<tr>
<td>3</td>
<td>j</td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td>2</td>
<td>i</td>
<td>x,0 [u,u,0]</td>
</tr>
<tr>
<td>2</td>
<td>h</td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>g</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>f</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>2/3,1/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>d</td>
<td>2/3,1/3,0 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>c</td>
<td>1/3,2/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p3m'1
\(\mathbf{a}^* = \mathbf{a}\) \(\mathbf{b}^* = \mathbf{b}\)
Origin at 0,0,z

Along [1,0,0] p1m'1
\(\mathbf{a}^* = \mathbf{c}\) \(\mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2\)
Origin at x,0,0

Along [2,1,0] p211
\(\mathbf{a}^* = \mathbf{c}\) \(\mathbf{b}^* = \mathbf{b}/2\)
Origin at x,x/2,0
Origin on 3121'

Asymmetric unit

\begin{align*}
0 & \leq x \leq 2/3; & 0 & \leq y \leq 2/3; & 0 & \leq z \leq 1/2; & x & \leq (1+y)/2; & y & \leq \min(1-x,(1+x)/2) \\
\end{align*}

Vertices

\begin{align*}
0,0,0 & & 1/2,0,0 & & 2/3,1/3,0 & & 1/3,2/3,0 & & 0,1/2,0 \\
0,0,1/2 & & 1/2,0,1/2 & & 2/3,1/3,1/2 & & 1/3,2/3,1/2 & & 0,1/2,1/2 \\
\end{align*}

Symmetry Operations

For 1 + set

\begin{align*}
(1) & \ 1 & (2) & 3^+ & 0,0,z & (3) & 3^- & 0,0,z \\
(1' | 0,0,0) & & (3_z | 0,0,0) & & (3_z^- | 0,0,0) & & (3_z^- | 0,0,0) \\
(4) & 2 & x,\bar{x},0 & (5) & 2 & x,2x,0 & (6) & 2 & 2x,x,0 \\
(2_z | 0,0,0) & & (2_z | 0,0,0) & & (2_1 | 0,0,0) & & (2_1 | 0,0,0) \\
\end{align*}

For 1' + set

\begin{align*}
(1) & \ 1' & (2) & 3^+ & 0,0,z & (3) & 3^- & 0,0,z \\
(1' | 0,0,0)' & & (3_z | 0,0,0)' & & (3_z^- | 0,0,0)' & & (3_z^- | 0,0,0)' \\
(4) & 2' & x,\bar{x},0 & (5) & 2' & x,2x,0 & (6) & 2' & 2x,x,0 \\
(2_z | 0,0,0)' & & (2_z | 0,0,0)' & & (2_1 | 0,0,0)' & & (2_1 | 0,0,0)' \\
\end{align*}
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>l</td>
<td>11'</td>
</tr>
<tr>
<td>3</td>
<td>k</td>
<td>21'</td>
</tr>
<tr>
<td>2</td>
<td>i</td>
<td>11'</td>
</tr>
<tr>
<td>2</td>
<td>h</td>
<td>31'</td>
</tr>
<tr>
<td>2</td>
<td>g</td>
<td>31'</td>
</tr>
<tr>
<td>1</td>
<td>f</td>
<td>3.21'</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>3.21'</td>
</tr>
<tr>
<td>1</td>
<td>d</td>
<td>3.21'</td>
</tr>
<tr>
<td>1</td>
<td>c</td>
<td>3.21'</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>3.21'</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>3.21'</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>+</td>
<td>(2) y,x-y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x+y,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,x-y,w [0,0,0]</td>
</tr>
<tr>
<td>3</td>
<td>k</td>
<td>x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>3</td>
<td>j</td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x,x,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>i</td>
<td>2/3,1/3,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>h</td>
<td>1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>g</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>f</td>
<td>2/3,1/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>2/3,1/3,0 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>d</td>
<td>1/3,2/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>c</td>
<td>1/3,2/3,0 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p3m11'
\[a^* = a, \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p1m11'
\[a^* = c, \quad b^* = (a + 2b)/2 \]
Origin at x,0,0

Along [2,1,0] p2111'
\[a^* = c, \quad b^* = b/2 \]
Origin at x,x/2,0
Origin on 312'

Asymmetric unit:

\[
0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{2}{3}; \quad 0 \leq z \leq \frac{1}{2}; \quad x \leq \frac{(1+y)}{2}; \quad y \leq \min(1-x,(1+x)/2)
\]

Vertices:

- 0,0,0
- 1/2,0,0
- 2/3,1/3,0
- 1/3,2/3,0
- 0,1/2,0
- 0,0,1/2
- 1/2,0,1/2
- 2/3,1/3,1/2
- 1/3,2/3,1/2
- 0,1/2,1/2

Symmetry Operations:

(1) 1
(1 | 0,0,0)

(2) 3^\ast\ 0,0,z
(3_z | 0,0,0)

(3) 3^-\ 0,0,z
(3_z^{-1} | 0,0,0)

(4) 2' \ x,\ x,\ 0
(2_z | 0,0,0)^\prime

(5) 2' \ x,2x,0
(2_z | 0,0,0)^\prime

(6) 2' \ 2x,x,0
(2_z | 0,0,0)^\prime
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>l</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>3</td>
<td>k</td>
<td>.2'</td>
<td>x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td>3</td>
<td>j</td>
<td>.2'</td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td>2</td>
<td>i</td>
<td>3..</td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>h</td>
<td>3..</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>g</td>
<td>3..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>f</td>
<td>3.2'</td>
<td>2/3,1/3,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>3.2'</td>
<td>2/3,1/3,0 [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>d</td>
<td>3.2'</td>
<td>1/3,2/3,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>c</td>
<td>3.2'</td>
<td>1/3,2/3,0 [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>3.2'</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>3.2'</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p3m1
\[a^* = a, \ b^* = b \]
Origin at 0,0,z

Along [1,0,0] p1m1
\[a^* = c, \ b^* = (a+2b)/2 \]
Origin at x,0,0

Along [2,1,0] p2'11
\[a^* = c, \ b^* = b/2 \]
Origin at x,x/2,0
Origin on 312

Asymmetric unit

$$0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{2}{3}; \quad 0 \leq z \leq \frac{1}{2}; \quad x \leq \frac{(1+y)}{2}; \quad y \leq \min(1-x,(1+x)/2)$$

Vertices

\[
\begin{align*}
0,0,0 & & 1/2,0,0 & & 2/3,1/3,0 & & 1/3,2/3,0 & & 0,1/2,0 \\
0,0,1/2 & & 1/2,0,1/2 & & 2/3,1/3,1/2 & & 1/3,2/3,1/2 & & 0,1/2,1/2
\end{align*}
\]

Symmetry Operations

For (0,0,0) + set

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad 0,0,0 \\
(2) & \quad 3^* \quad 0,0,z \\
(3) & \quad 3' \quad 0,0,z \\
(4) & \quad 2 \quad x,x,0 \\
(5) & \quad 2 \quad x,2x,0 \\
(6) & \quad 2 \quad 2x,x,0
\end{align*}
\]

For (0,0,1)' + set

\[
\begin{align*}
(1) & \quad t' \quad (0,0,1) \\
(1) & \quad (0,0,1)' \\
(2) & \quad 3' \quad (0,0,1) \quad 0,0,z \\
(3) & \quad 3' \quad (0,0,1) \quad 0,0,z \\
(4) & \quad 2' \quad x,x,1/2 \\
(5) & \quad 2' \quad x,2x,1/2 \\
(6) & \quad 2' \quad 2x,x,1/2
\end{align*}
\]
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4).

Positions
Multiplicity, Wyckoff letter, Site Symmetry, Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>l</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) x+y,y,z [u+v,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6) x,x-y,z [u,u-v,w]</td>
</tr>
<tr>
<td>6</td>
<td>k</td>
<td>.2'</td>
<td>x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,2x,1/2 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2x,x,1/2 [0,u,w]</td>
</tr>
<tr>
<td>6</td>
<td>j</td>
<td>.2</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,2x,0 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2x,x,0 [2u,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>i</td>
<td>3..</td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>3..</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>3..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>3.2'</td>
<td>2/3,1/3,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/3,1/3,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>3.2</td>
<td>2/3,1/3,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/3,1/3,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>3.2'</td>
<td>1/3,2/3,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/3,2/3,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>3.2</td>
<td>1/3,2/3,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/3,2/3,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>3.2'</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>3.2</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p3m11'

a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p2a1m1

a* = a b* = (a + 2b)/2
Origin at x,0,0

Along [2,1,0] p2a211

a* = c b* = b/2
Origin at x,x/2,0
Origin on 321

Asymmetric unit
0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; 0 ≤ z ≤ 1/2; x ≤ (1+y)/2; y ≤ min(1-x,(1+x)/2)

Vertices
0,0,0 1/2,0,0 2/3,1/3,0 1/3,2/3,0 0,1/2,0 0,0,1/2 1/2,0,1/2 2/3,1/3,1/2 1/3,2/3,1/2 0,1/2,1/2

Symmetry Operations

(1) 1
(1|0,0,0)

(2) 3^+ 0,0,z
(3_z|0,0,0)

(3) 3^- 0,0,z
(3_z^-|0,0,0)

(4) 2 x,x,0
(2_xy|0,0,0)

(5) 2 x,0,0
(2_x|0,0,0)

(6) 2 0,y,0
(2_y|0,0,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>g</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) (\bar{y},x-y,z [v,u-v,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) (x+y,x,z [u+\bar{v},\bar{u},w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,(\bar{z}) [v,u,(\bar{w})]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x-y,(\bar{y},z [u-v,\bar{v},w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) (x,x+y,\bar{z} [u,\bar{u}+v,\bar{w}])</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>.2. x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\bar{x},\bar{x},1/2 [\bar{u},\bar{u},0])</td>
</tr>
<tr>
<td>3</td>
<td>g</td>
<td>.2. x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\bar{x},\bar{x},0 [\bar{u},\bar{u},0])</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>3.. 1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,(\bar{z} [0,0,\bar{w}])</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>3.. 0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,(\bar{z} [0,0,\bar{w}])</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>32. 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>32. 0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p31m’
 - \(\mathbf{a^*} = \mathbf{a}\) \(\mathbf{b^*} = \mathbf{b}\) Origin at 0,0,z

- Along [1,0,0] p211
 - \(\mathbf{a^*} = \mathbf{c}\) \(\mathbf{b^*} = (\mathbf{a} + 2\mathbf{b})/2\) Origin at x,0,0

- Along [2,1,0] p1m’1
 - \(\mathbf{a^*} = \mathbf{c}\) \(\mathbf{b^*} = \mathbf{b}/2\) Origin at x,x/2,0
Origin on 3211’

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{2}{3}; \quad 0 \leq z \leq \frac{1}{2}; \quad x \leq \frac{(1+y)}{2}; \quad y \leq \min(1-x,(1+x)/2)\]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 2/3,1/3,0 \quad 1/3,2/3,0 \quad 0,1/2,0 \]

\[0,0,1/2 \quad 1/2,0,1/2 \quad 2/3,1/3,1/2 \quad 1/3,2/3,1/2 \quad 0,1/2,1/2\]

Symmetry Operations

For 1 + set

(1) 1
(1) 0,0,0
(1) 0,0,0

(2) 3’ 0,0,z
(3) 3’ 0,0,z

(4) 2 x,x,0
(2) x,x,0

(5) 2’ x,0,0
(6) 2’ x,0,0

For 1’ + set

(1) 1’
(1) 0,0,0’
(1) 0,0,0’

(2) 3’ 0,0,z
(3) 3’ 0,0,z

(4) 2’ x,x,0
(5) 2’ x,x,0
(6) 2’ x,x,0

150.2.1256 - 1 - 2701
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2);(4); 1'.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>1 + 1' +</td>
</tr>
<tr>
<td>g</td>
<td>11'</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>y,x,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>f</td>
<td>.2.1'</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>x,0,1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>0,x,1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>0,x,0</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>0,x,0</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>0,x,0</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>0,x,0</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>0,x,0</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>c</td>
<td>.2.1'</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1/3,2/3,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>2/3,1/3,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>0,0,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>0,0,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td>0,0,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>0,0,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>0,0,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>b</td>
<td>32.1'</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0,0,1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>32.1'</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0,0,0</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Symmetry of Special Projections</td>
<td></td>
</tr>
<tr>
<td>Along [0,0,1]</td>
<td>p31m1'</td>
</tr>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>p2111'</td>
</tr>
<tr>
<td>a* = c</td>
<td>b* = (a + 2b)/2</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
<tr>
<td>Along [2,1,0]</td>
<td>p1m11'</td>
</tr>
<tr>
<td>a* = c</td>
<td>b* = b/2</td>
</tr>
<tr>
<td>Origin at x,x/2,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 32'1

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{2}{3}; \quad 0 \leq z \leq \frac{1}{2}; \quad x \leq \frac{(1+y)}{2}; \quad y \leq \min(1-x,\frac{(1+x)}{2}) \]

Vertices

\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 & \quad 0,1/2,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2 & \quad 1/3,2/3,1/2 & \quad 0,1/2,1/2
\end{align*}

Symmetry Operations

\begin{align*}
(1) & \quad 1 \\
(1|0,0,0) & \quad (2) & \quad 3^* & \quad 0,0,z \\
(3z|0,0,0) & \quad (3) & \quad 3^* & \quad 0,0,z \\
(2xy|0,0,0)' & \quad (5) & \quad 2^* & \quad x,0,0 \\
(2x|0,0,0)' & \quad (6) & \quad 2^* & \quad 0,y,0 \\
(2y|0,0,0)' & & & \quad (2y|0,0,0)'
\end{align*}
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>g</td>
<td>1 (1) x,y,z [u,v,w] (2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z [u+v,u,w] (4) y,x,z [v,u-w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x-y,y,z [u+v,v,w] (6) x,x+y,z [u,v,w]</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>.2' x,0,1/2 [u,2u,w] 0,x,1/2 [2u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td>3</td>
<td>g</td>
<td>.2' x,0,0 [u,2u,w] 0,x,0 [2u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>3.. 1/3,2/3,z [0,0,w] 2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>3.. 0,0,z [0,0,w] 0,0,z [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>32' 0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>32' 0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p31m Along [1,0,0] p2'11 Along [2,1,0] p1m1
\[a^* = a \quad b^* = b \quad a^* = c \quad b^* = (a + 2b)/2 \quad a^* = c \quad b^* = b/2 \]
Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin on 321

Asymmetric unit

\[
0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/2; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2)
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 & \quad 0,1/2,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2 & \quad 1/3,2/3,1/2 & \quad 0,1/2,1/2
\end{align*}
\]

Symmetry Operations

For \((0,0,0) + \text{set}\)

\[
\begin{align*}
(1) & \quad 1 \\
(1') & \quad 0,0,0 \\
(2) & \quad 2 \quad x,x,0 \\
(2_{xy}) & \quad (0,0,0) \\
(3) & \quad 3^* \quad 0,0,z \\
(3_z) & \quad 0,0,0 \\
(4) & \quad 2^* \quad x,x,0 \\
(5) & \quad 2_{xy} \quad (0,0,0) \\
(6) & \quad 2 \quad 0,y,0 \\
(2_y) & \quad (0,0,0)
\end{align*}
\]

For \((0,0,1)' + \text{set}\)

\[
\begin{align*}
(1) & \quad t' \quad (0,0,1) \\
(1') & \quad (0,0,1)' \\
(2) & \quad 3^* \quad (0,0,1) \\
(3_z) & \quad 0,0,1' \\
(3) & \quad 3^* \quad (0,0,1) \\
(3_z) & \quad 0,0,1' \\
(4) & \quad 2^* \quad x,x,1/2 \\
(5) & \quad 2_{xy} \quad (0,0,1)' \\
(6) & \quad 2' \quad 0,y,1/2 \\
(2_y) & \quad (0,0,1)'
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>g 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y-y,x,z [v-u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td>6</td>
<td>f .2'</td>
<td>x,0,1/2 [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,1/2 [2u,u,w]</td>
</tr>
<tr>
<td>6</td>
<td>g .2</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td>4</td>
<td>d 3..</td>
<td>1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,z [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>c 3..</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b 32'</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a 32</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p31m1'
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] p_{2a}.211
\(a^* = c \quad b^* = (a + 2b)/2 \)
Origin at x,0,0

Along [2,1,0] p_{2a}.1m1
\(a^* = c \quad b^* = b/2 \)
Origin at x,x/2,1/2
Origin on 2 [210] at 3,1(1,1,2)

Asymmetric unit

\begin{align*}
\text{Vertices} & \quad 0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/6 \\
0,0,0 & \quad 1,0,0 \quad 1,1,0 \quad 0,1,0 \\
0,0,1/6 & \quad 1,0,1/6 \quad 1,1,1/6 \quad 0,1,1/6
\end{align*}

Symmetry Operations

\begin{align*}
(1) & \quad 1 \\
(1) & \quad 0,0,0 \\
(23) & \quad x,x,1/3 \\
(23) & \quad 0,0,2/3
\end{align*}

\begin{align*}
(1) & \quad 1 \\
(2) & \quad 3^* \quad 0,0,1/3 \\
(2) & \quad 0,0,1/3
\end{align*}

\begin{align*}
(3) & \quad 3^- \quad 0,0,2/3 \\
(3) & \quad 0,0,2/3
\end{align*}

\begin{align*}
(4) & \quad 2x,x,1/3 \\
(2) & \quad 0,0,1/3
\end{align*}

\begin{align*}
(5) & \quad 2x,x,0 \\
(2) & \quad 0,0,0
\end{align*}
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 c 1</td>
<td>(1) x,y,z [u,v,w] (2) y,x-y,z+1/3 [v,u-v,w] (3) x+y,x,z+2/3 [u+v,u,w] (4) y,x,z+2/3 [v,u,w] (5) x+y,y,z+1/3 [u+v,v,w] (6) x,y,z+2/3 [v,u,w]</td>
</tr>
<tr>
<td>3 b 0.2</td>
<td>x,x,5/6 [u,u,0] x,2x,1/6 [u,2u,0] 2x,x,1/2 [2u,u,0]</td>
</tr>
<tr>
<td>3 a 0.2</td>
<td>x,x,1/3 [u,u,0] x,2x,2/3 [u,2u,0] 2x,x,0 [2u,u,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p3m'1</th>
<th>Along [1,0,0] p1m'1</th>
<th>Along [2,1,0] p211</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a) b^* = b</td>
<td>a^* = c b^* = (a + 2b)/2</td>
<td>a^* = c b^* = b/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,1/6</td>
<td>Origin at x,x/2,0</td>
</tr>
</tbody>
</table>
Origin on 21'[210] at 3,1(1,1,2)1'

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq \frac{1}{6}\]

Vertices

\[0,0,0 \quad 1,0,0 \quad 1,1,0 \quad 0,1,0\]

\[0,0,\frac{1}{6} \quad 1,0,\frac{1}{6} \quad 1,1,\frac{1}{6} \quad 0,1,\frac{1}{6}\]

Symmetry Operations

For 1 + set

\[(1) \quad 1 \quad (2) \quad 3^* (0,0,1/3) \quad 0,0,z\]

\[(3) \quad 3^* (0,0,2/3) \quad 0,0,z\]

\[(4) \quad 2 \quad x,x,1/3 \quad (2_3|0,0,2/3)\]

\[(5) \quad 2 \quad x,2x,1/6 \quad (2_3|0,0,1/3)\]

\[(6) \quad 2 \quad 2x,x,0\]

For 1' + set

\[(1) \quad 1' \quad (2) \quad 3^* '(0,0,1/3) \quad 0,0,z\]

\[(3) \quad 3^* '(0,0,2/3) \quad 0,0,z\]

\[(4) \quad 2' \quad x,x,1/3 \quad (2_3|0,0,2/3)\]

\[(5) \quad 2' \quad x,2x,1/6 \quad (2_3|0,0,1/3)\]

\[(6) \quad 2' \quad 2x,x,0\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); 1'.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>1 + 1' +</td>
</tr>
<tr>
<td>6 c 1' 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+2/3 [0,0,0]</td>
</tr>
<tr>
<td>3 b ..21'</td>
<td>x,x,5/6 [0,0,0]</td>
</tr>
<tr>
<td>3 a ..21'</td>
<td>x,x,1/3 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p3m11'
Origin at 0,0,z

Along [1,0,0] p1m11'
Origin at x,0,1/6

Along [2,1,0] p2111'
Origin at x,x/2,0

\[\mathbf{a^*} = \mathbf{a} \quad \mathbf{b^*} = \mathbf{b} \]

\[\mathbf{a^*} = \mathbf{a} \quad \mathbf{b^*} = (\mathbf{a} + 2\mathbf{b})/2 \]

\[\mathbf{a^*} = \mathbf{b} \quad \mathbf{b^*} = \mathbf{b}/2 \]
Origin on 2' [210] at 3,1(1,1,2')

Asymmetric unit: 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/6

Vertices: 0,0,0; 1,0,0; 1,1,0; 0,1,0; 0,0,1/6; 1,0,1/6; 1,1,1/6; 0,1,1/6

Symmetry Operations:

1. 1
 1 0,0,0

2. 3' (0,0,1/3) 0,0,z
 (3z) 0,0,1/3

3. 3' (0,0,2/3) 0,0,z
 (3z') 0,0,2/3

4. 2' x,x,1/3
 (2z) 0,0,2/3
 (2z') 0,0,1/3

5. 2' x,2x,1/6
 (2z) 0,0,1/3
 (2z') 0,0,0

6. 2' 2x,x,0
 (2z) 0,0,0
 (2z') 0,0,0

P3\(_{12}'\)

312' Trigonal
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y,x-y,z+1/3 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z+2/3 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z+2/3 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x+y,y,z+1/3 [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,y,z+1/3 [u,v,w]</td>
</tr>
</tbody>
</table>

3 b ..2' x,x,5/6 [u,u,w] x,2x,1/6 [u,0,w] 2x,x,1/2 [0,u,w]
3 a ..2' x,x,1/3 [u,u,w] x,2x,2/3 [u,0,w] 2x,x,0 [0,u,w]

Symmetry of Special Projections

Along [0,0,1] p3m1 Along [1,0,0] p1m1 Along [2,1,0] p211
a* = a b* = b a* = c b* = (a + 2b)/2 a* = c b* = b/2
Origin at 0,0,z Origin at x,0,1/6 Origin at x,x/2,0
Origin on 2 [210] at $3_2\{1,1,2\}$

Asymmetric unit

$0 \leq x \leq 1$; $0 \leq y \leq 1$; $0 \leq z \leq 1/6$

Vertices

<table>
<thead>
<tr>
<th>Vertices</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0,0,1/6</td>
<td>1</td>
<td>0</td>
<td>1/6</td>
</tr>
<tr>
<td>1,0,0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1,0,1/6</td>
<td>0</td>
<td>1</td>
<td>1/6</td>
</tr>
<tr>
<td>1,1,0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1,1,1/6</td>
<td>1</td>
<td>1</td>
<td>1/6</td>
</tr>
<tr>
<td>0,1,0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0,1,1/6</td>
<td>0</td>
<td>0</td>
<td>1/6</td>
</tr>
</tbody>
</table>

Symmetry Operations

For $(0,0,0)$ + set

1. 1
2. $3' \ (0,0,1/3)$
3. $3' \ (0,0,2/3)$

For $(0,0,1)'$ + set

1. $t' \ (0,0,1)$
2. $3' \ (0,0,4/3)$
3. $3' \ (0,0,5/3)$

151.4.1262 - 1 - 2713
Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>c</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>b</td>
<td>..2'</td>
</tr>
<tr>
<td>6</td>
<td>a</td>
<td>.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>(0,0,1)' +</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2) y,x-y,z+1/3 [v,u+v,w]</td>
</tr>
<tr>
<td>(3) x+y,x,z+2/3 [u+v,u,w]</td>
</tr>
<tr>
<td>(4) y,x,z+2/3 [v,u,w]</td>
</tr>
<tr>
<td>(5) x+y,y,z+1/3 [u-v,v,w]</td>
</tr>
<tr>
<td>(6) x,x-y,z [u,u-v,w]</td>
</tr>
<tr>
<td>x,x,5/6 [u,u,w]</td>
</tr>
<tr>
<td>x,2x,1/6 [u,0,w]</td>
</tr>
<tr>
<td>2x,x,1/2 [0,u,w]</td>
</tr>
<tr>
<td>x,x,1/3 [u,u,0]</td>
</tr>
<tr>
<td>x,2x,2/3 [u,2u,0]</td>
</tr>
<tr>
<td>2x,x,0 [2u,u,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p3m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td></td>
</tr>
<tr>
<td>b* = b</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2a1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c</td>
<td></td>
</tr>
<tr>
<td>b* = (a + 2b)/2</td>
<td></td>
</tr>
<tr>
<td>Origin at x,0,1/6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [2,1,0]</th>
<th>p2e 211</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c</td>
<td></td>
</tr>
<tr>
<td>b* = b/2</td>
<td></td>
</tr>
<tr>
<td>Origin at x,x/2,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 2 [110] at 3, (1,1,2) 1

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/6 \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1,0,0 & \quad 1,1,0 & \quad 0,1,0 \\
0,0,1/6 & \quad 1,0,1/6 & \quad 1,1,1/6 & \quad 0,1,1/6
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad (0,0,0) \\
(1) & \quad (0,0,0) \\
(2) & \quad (0,0,1/3) \\
(2) & \quad (0,0,1/3) \\
(3) & \quad (0,0,2/3) \\
(3) & \quad (0,0,2/3) \\
(4) & \quad (0,0,0) \\
(4) & \quad (2_{xy}|0,0,0) \\
(5) & \quad (0,0,2/3) \\
(5) & \quad (0,0,2/3) \\
(6) & \quad (0,0,1/6) \\
(6) & \quad (0,0,1/6)
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) y,x-y,z+1/3 [v-u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x-y,y,z+2/3 [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+y,x,z+1/3 [u+v,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 b .2.</td>
<td>x,0,5/6 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,1/6 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 a .2.</td>
<td>x,0,1/3 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,2/3 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p31m'
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p211
\[a^* = c \quad b^* = (a + 2b)/2 \]
Origin at x,0,1/3

Along [2,1,0] p1m'1
\[a^* = c \quad b^* = b/2 \]
Origin at x,x/2,1/6
Asymmetric unit
0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/6

Vertices
0,0,0 1,0,0 1,1,0 0,1,0 0,0,1/6 1,0,1/6 1,1,1/6 0,1,1/6

Symmetry Operations

For 1 + set

(1) 1
(1 | 0,0,0)

(2) 3' (0,0,1/3) 0,0,z
 (3z | 0,0,1/3)

(4) 2 x,x,0
 (2xy | 0,0,0)

(5) 2 x,0,1/3
 (2z | 0,0,2/3)

(6) 2 0,y,1/6
 (2y | 0,0,1/3)

For 1' + set

(1) 1'
(1 | 0,0,0)'

(2) 3' ' (0,0,1/3) 0,0,z
 (3z' | 0,0,1/3)'

(3) 3' ' (0,0,2/3) 0,0,z
 (3z'' | 0,0,2/3)'

(4) 2' x,x,0
 (2xy' | 0,0,0)'

(5) 2' x,0,1/3
 (2z' | 0,0,2/3)'

(6) 2' 0,y,1/6
 (2y' | 0,0,1/3)'

152.2.1264 - 1 - 2717
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1'</td>
<td></td>
</tr>
<tr>
<td>6 c 11'</td>
<td>(1) x,y,z [0,0,0] (2) y,x-y,z+1/3 [0,0,0] (3) x+y,x,z+2/3 [0,0,0]</td>
</tr>
<tr>
<td>(4) y,x,z [0,0,0]</td>
<td>(5) x-y,y,z+2/3 [0,0,0]</td>
</tr>
<tr>
<td>(6) x,x+y,z+1/3 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>3 b 0.2.1'</td>
<td>(1) x,0,5/6 [0,0,0] (2) 0,x,1/6 [0,0,0] (3) x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>3 a 0.2.1'</td>
<td>(1) x,0,1/3 [0,0,0] (2) 0,x,2/3 [0,0,0] (3) x,x,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p31m1'</th>
<th>Along [1,0,0] p2111'</th>
<th>Along [2,1,0] p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a, b* = b</td>
<td>a* = c, b* = (a + 2b)/2</td>
<td>a* = c, b* = b/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,1/3</td>
<td>Origin at x,x/2,1/6</td>
</tr>
</tbody>
</table>
Origin on 2' [110] at 3,(1,1,2') 1

Asymmetric unit

<table>
<thead>
<tr>
<th></th>
<th>0 ≤ x ≤ 1;</th>
<th>0 ≤ y ≤ 1;</th>
<th>0 ≤ z ≤ 1/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertices</td>
<td>0,0,0</td>
<td>1,0,0</td>
<td>1,1,0</td>
</tr>
<tr>
<td></td>
<td>0,0,1/6</td>
<td>1,0,1/6</td>
<td>1,1,1/6</td>
</tr>
</tbody>
</table>

Symmetry Operations

1. 1
2. 3' (0,0,1/3) 0,0,z
3. 3' (0,0,2/3) 0,0,z
4. 2' x,x,0
5. 2' x,0,1/3
6. 2' 0,y,1/6

152.3.1265 - 1 - 2719
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 c 1</td>
<td>(1) x,y,z [u,v,w] (2) y,x-y,z+1/3 [v-u-v,w] (3) x+y,x,z+2/3 [u+v,u,w] (4) y,x,z [v-u,w] (5) x-y,y,z+2/3 [u-v,u,w] (6) x+y,z+1/3 [u,u,v,w]</td>
</tr>
<tr>
<td>3 b .2'</td>
<td>x,0,5/6 [u,2u,w] 0,x,1/6 [2u,u,w] x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td>3 a .2'</td>
<td>x,0,1/3 [u,2u,w] 0,x,2/3 [2u,u,w] x,x,0 [u,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p31m</th>
<th>Along [1,0,0] p2'11</th>
<th>Along [2,1,0] p1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = c b* = (a + 2b)/2</td>
<td>a* = c b* = b/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,1/3</td>
<td>Origin at x,x/2,1/6</td>
</tr>
</tbody>
</table>
Origin on 2 [110] at $3_{2}(1,1,2)$

Asymmetric unit

$0 \leq x \leq 1$; $0 \leq y \leq 1$; $0 \leq z \leq \frac{1}{6}$

Vertices

- $0,0,0$
- $1,0,0$
- $1,1,0$
- $0,1,0$
- $0,0,\frac{1}{6}$
- $1,0,\frac{1}{6}$
- $1,1,\frac{1}{6}$
- $0,1,\frac{1}{6}$

Symmetry Operations

For $(0,0,0)$ + set

1. 1

 - $(1|0,0,0)$

2. 3^* $(0,0,1/3)$ $0,0,z$

 - $(3_z|0,0,1/3)^*$

3. 3^* $(0,0,2/3)$ $0,0,z$

 - $(3_z^-|0,0,2/3)$

For $(0,0,1)^*$ + set

1. t^* $(0,0,1)$

 - $(1|0,0,1)^*$

2. 3^* $(0,0,4/3)$ $0,0,z$

 - $(3_z|0,0,4/3)$

3. 3^* $(0,0,5/3)$ $0,0,z$

 - $(3_z^-|0,0,5/3)^*$

4. 2^* $x,x,1/2$

 - $(2_{xy}|0,0,0)$

5. 2^* $(0,0,5/6)$ $x,0,1/3$

 - $(2|x|0,0,2/3)$

6. 2^* $0,y,2/3$

 - $(2|y|0,0,4/3)^*$

$P_{2c} \ 3_{2} \ 21$

3211^*

Trigonal

152.4.1266

$P_{2c} \ 3_{2} \ 21$
Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>c 1</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td>12</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) y',x-y,z+1/3 [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x,z+2/3 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x-y,y,z+2/3 [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,x+y,z+1/3 [u,u-v,w]</td>
</tr>
<tr>
<td>6 b</td>
<td>0,x,5/6 [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td>0,x,1/6 [2u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x-,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td>6 a</td>
<td>x,0,1/3 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,2/3 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>x-,x,0 [u,u,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p31m1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a \ b* = b</td>
<td>Origin at 0,0,z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p_2c 211</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c \ b* = (a + 2b)/2</td>
<td>Origin at x,0,1/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [2,1,0]</th>
<th>p_2c 1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c \ b* = b/2</td>
<td>Origin at x,x/2,1/6</td>
</tr>
</tbody>
</table>
Origin on 2 [210] at $3_2 1(1,1,2)$

Asymmetric unit $0 \leq x \leq 1$; $0 \leq y \leq 1$; $0 \leq z \leq 1/6$

Vertices

<table>
<thead>
<tr>
<th></th>
<th>0,0</th>
<th>1,0</th>
<th>1,1</th>
<th>0,1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>,0,0</td>
<td>,0,0</td>
<td>,1,0</td>
<td>,0,1</td>
</tr>
<tr>
<td></td>
<td>,0,1/6</td>
<td>,1,0</td>
<td>,1,1/6</td>
<td>,0,1/6</td>
</tr>
</tbody>
</table>

Symmetry Operations

1. 1
2. 3^* $(0,0,2/3)$, $0,0,z$
3. $3^{-1} (0,0,1/3)$, $0,0,z$
4. $2x,x,1/6$
5. $2x,2x,1/3$
6. $2x,0$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) y,x-z,1/3 [v,u-w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x,z+1/3 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z+1/3 [v,u-w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+y,z+2/3 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,x-y,z+2/3 [v,u-w]</td>
</tr>
<tr>
<td>3 b ..2</td>
<td>x,x,1/6 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,2x,5/6 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td>2x,x,1/2 [2u,u,0]</td>
</tr>
<tr>
<td>3 a ..2</td>
<td>x,x,2/3 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,2x,1/3 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td>2x,x,0 [2u,u,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p3m'1</th>
<th>Along [1,0,0]</th>
<th>p1m'1</th>
<th>Along [2,1,0]</th>
<th>p211</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td></td>
<td>a* = c b* = (a + 2b)/2</td>
<td></td>
<td>a* = c b* = b/2</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,1/3</td>
<td></td>
<td>Origin at x,x/2,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 21' [210] at $3_21(1,1,2)1'$

Asymmetric unit

$0 \leq x \leq 1$; $0 \leq y \leq 1$; $0 \leq z \leq \frac{1}{6}$

Vertices

- $(0,0,0)$
- $(1,0,0)$
- $(1,1,0)$
- $(0,1,0)$
- $(0,0,\frac{1}{6})$
- $(1,0,\frac{1}{6})$
- $(1,1,\frac{1}{6})$
- $(0,1,\frac{1}{6})$

Symmetry Operations

For 1 + set

1. 1
 - $(1|0,0,0)$

2. 3^*
 - $(0,0,2/3)$
 - $(3z|0,0,2/3)$

3. $3'$
 - $(0,0,1/3)$
 - $(3z^-|0,0,1/3)$

4. 2
 - $x,x,1/6$
 - $(2z|0,0,1/3)$

5. 2
 - $x,2x,1/3$
 - $(2z|0,0,2/3)$

6. 2
 - $2x,x,0$
 - $(2|0,0,0)$

For 1' + set

1. $1'$
 - $(1|0,0,0)'$

2. 3^*
 - $(0,0,2/3)$
 - $(3z|0,0,2/3)'$

3. $3'$
 - $(0,0,1/3)$
 - $(3z^-|0,0,1/3)'$

4. $2'$
 - $x,x,1/6$
 - $(2z|0,0,1/3)'$

5. $2'$
 - $x,2x,1/3$
 - $(2z|0,0,2/3)'$

6. $2'$
 - $2x,x,0$
 - $(2|0,0,0)'$

153.2.1268 - 1 - 2725
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); 1'.

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 c 11'</td>
<td>(1) x, y, z 0,0,0</td>
</tr>
<tr>
<td></td>
<td>(2) y, x-y, z+2/3 0,0,0</td>
</tr>
<tr>
<td></td>
<td>(3) x+y, x, z+1/3 0,0,0</td>
</tr>
<tr>
<td></td>
<td>(4) y, x, z+1/3 0,0,0</td>
</tr>
<tr>
<td></td>
<td>(5) x+y, y, z+2/3 0,0,0</td>
</tr>
<tr>
<td></td>
<td>(6) x, x-y, z 0,0,0</td>
</tr>
<tr>
<td>3 b .21'</td>
<td>x, x, 1/6 0,0,0</td>
</tr>
<tr>
<td></td>
<td>x, 2x, 5/6 0,0,0</td>
</tr>
<tr>
<td></td>
<td>2x, x, 1/2 0,0,0</td>
</tr>
<tr>
<td>3 a .21'</td>
<td>x, x, 2/3 0,0,0</td>
</tr>
<tr>
<td></td>
<td>x, 2x, 1/3 0,0,0</td>
</tr>
<tr>
<td></td>
<td>2x, x, 0 0,0,0</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1]
p3m11'
a* = a b* = b
Origin at 0,0,z

Along [1,0,0]
p1m11'
a* = c b* = (a+2b)/2
Origin at x,0,1/3

Along [2,1,0]
p2111'
a* = c b* = b/2
Origin at x,x/2,0
Origin on 2' [210] at \(3_1(1,1,2')\)

Asymmetric unit: \(0 \leq x \leq 1; \ 0 \leq y \leq 1; \ 0 \leq z \leq 1/6\)

Vertices: 0,0,0, 1,0,0, 1,1,0, 0,1,0, 0,0,1/6, 1,0,1/6, 1,1,1/6, 0,1,1/6

Symmetry Operations:

1. \(1\)
2. \(3^* (0,0,2/3) \ 0,0,z\)
3. \(3^* (0,0,1/3) \ 0,0,z\)
4. \(2' \ x,x,1/6\)
5. \(2' \ x,2x,1/3\)
6. \(2' \ 2x,x,0\)

\((1|0,0,0) \)
\((3_z|0,0,2/3) \)
\((3_z^-|0,0,1/3) \)
\((2_z|0,0,1/3)' \)
\((2_z|0,0,2/3)' \)
\((2|0,0,0)' \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z+1/3 [v,u,w]</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>x,x,1/6 [u,u,w]</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>x,x,2/3 [u,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections
Along [0,0,1] p3m1
Along [1,0,0] p1m1
Along [2,1,0] p2'11
a* = a b* = b
a* = c b* = (a + 2b)/2
Origin at 0,0,z
Origin at x,0,1/3
Origin at x,x/2,0
Origin on 2 [210] at $3_21(1,1,2)$

Asymmetric unit: $0 \leq x < 1$; $0 \leq y < 1$; $0 \leq z < \frac{1}{6}$

Vertices:
- $0,0,0$
- $1,0,0$
- $1,1,0$
- $0,1,0$
- $0,0,\frac{1}{6}$
- $1,0,\frac{1}{6}$
- $1,1,\frac{1}{6}$
- $0,1,\frac{1}{6}$

Symmetry Operations

For $(0,0,0) +$ set

(1) 1
(1) $0,0,0$
(2) $3^* (0,0,2/3)$
(3) $0,0,z$
(3) $3^* (0,0,1/3)$
(4) $0,0,2/3$
(2) $0,0,0$
(5) $2^* x,x,1/3$
(5) $2^* x,x,2/3$
(6) $2^* x,x,0$
(6) $2^* x,x,0$
(2) $0,0,1/3$'
(2) $0,0,0$'

For $(0,0,1) +$ set

(1) $t' (0,0,1)$
(1) $0,0,1$'
(2) $3^* (0,0,5/3)$
(3) $0,0,z$
(3) $3^* (0,0,4/3)$
(4) $0,0,5/3$'
(2) $0,0,1/3$'
(5) $2^* x,x,5/6$
(5) $2^* x,x,5/3$'
(6) $2^* x,x,1/2$
(6) $2^* x,x,1/2$
(2) $0,0,1$'

$P_{2c}\ 3_{2}12$
$3121'$

Trigonal

$153.4.1270$
$153.4.1270 - 1 - 2729$
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y,-x-y,z+2/3 [v,u-v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z+3/3 [u-v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z +1/3 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>b .2'</td>
<td>x,-x,1/6 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,5/6 [u,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x,x,1/2 [0,u,w]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>a .2</td>
<td>x,-x,2/3 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,1/3 [u,2u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x,x,0 [2u,u,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p3m11'
- Along [1,0,0] p2_1 1m1
- Along [2,1,0] p2_1 211

<table>
<thead>
<tr>
<th>a* = a</th>
<th>b* = b</th>
<th>Origin at 0,0,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c</td>
<td>b* = (a + 2b)/2</td>
<td>Origin at x,0,5/6</td>
</tr>
<tr>
<td>a* = c</td>
<td>b* = b/2</td>
<td>Origin at x,x/2,0</td>
</tr>
</tbody>
</table>
Origin on 2 [110] at 3_2(1, 1, 2) 1

Asymmetric unit:

- Vertices:
 - 0, 0, 0
 - 1, 0, 0
 - 0, 0, 1/6
 - 1, 0, 1/6
 - 1, 1, 0
 - 0, 1, 0
 - 1, 1, 1/6
 - 0, 1, 1/6

Symmetry Operations:

1. $\mathbf{1}$
2. 3^* (0, 0, 2/3)
3. 3^* (0, 0, 1/3)
4. 2x, x, 0
5. 2x, x, 0, 1/6
6. 2x, x, 0, 2/3
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c 1</td>
<td>(1) x,y,z [u,v,w] (2) y,x-y,z+2/3 [v,u-v,w] (3) x+y,x,z+1/3 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w] (5) x-y,y,z+1/3 [u-v,v,w] (6) x,x+y,z+2/3 [u,u+v,w]</td>
</tr>
<tr>
<td>3</td>
<td>b .2.</td>
<td>x,0,1/6 [u,0,0] 0,x,5/6 [0,u,0] x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td>3</td>
<td>a .2.</td>
<td>x,0,2/3 [u,0,0] 0,x,1/3 [0,u,0] x,x,0 [u,u,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p31m' Along [1,0,0] p211 Along [2,1,0] p1m'1
a* = a b* = b a* = c b* = (a + 2b)/2 a* = c b* = b/2
Origin at 0,0,z Origin at x,0,1/6 Origin at x,x/2,1/3
Origin on 21' [110] at 3_2(1,1,2) 11'

Asymmetric unit

Vertices

<table>
<thead>
<tr>
<th></th>
<th>0,0,0</th>
<th>1,0,0</th>
<th>1,1,0</th>
<th>0,1,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,1/6</td>
<td>1,0,1/6</td>
<td>1,1,1/6</td>
<td>0,1,1/6</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Operations

For 1 + set

(1) 1
(1 | 0,0,0)

(2) 3' (0,0,2/3) 0,0,z
(3) 3' (0,0,1/3) 0,0,z
(4) 2' x,x,0
(5) 2' x,0,1/6
(6) 2' 0,y,1/3

(2_{xy} | 0,0,0)

(2_{xy} | 0,0,1/3)
(2_{y} | 0,0,2/3)

For 1' + set

(1) 1'
(1 | 0,0,0)'

(2) 3' (0,0,2/3) 0,0,z
(3) 3' (0,0,1/3) 0,0,z
(4) 2' x,x,0
(5) 2' x,0,1/6
(6) 2' 0,y,1/3

(2_{xy} | 0,0,0)'

(2_{xy} | 0,0,1/3)'
(2_{y} | 0,0,2/3)'

154.2.1272 - 1 - 2733
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td>11'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,z [0,0,0]</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,x-y,z+2/3 [0,0,0]</td>
<td>(2) y,x-y,z+2/3 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+y,z+1/3 [0,0,0]</td>
<td>(3) x+y,z+1/3 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>.2.1'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/6 [0,0,0]</td>
<td>(4) x,0,1/6 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,5/6 [0,0,0]</td>
<td>(5) x,0,5/6 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,1/2 [0,0,0]</td>
<td>(6) x,x,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p31m1'
\[a^* = a \quad b^* = b\]
Origin at 0,0,z
Along [1,0,0] p2111'
\[a^* = c \quad b^* = (a + 2b)/2\]
Origin at x,0,1/6
Along [2,1,0] p1m11'
\[a^* = c \quad b^* = b/2\]
Origin at x,x/2,1/3
Origin on 2' [110] at 3\(_{3}(1,1,2')\) 1

Asymmetric unit

<table>
<thead>
<tr>
<th>Vertices</th>
<th>0 ≤ x ≤ 1;</th>
<th>0 ≤ y ≤ 1;</th>
<th>0 ≤ z ≤ 1/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1,0,0</td>
<td>1,1,0</td>
<td>0,1,0</td>
</tr>
<tr>
<td>0,0,1/6</td>
<td>1,0,1/6</td>
<td>1,1,1/6</td>
<td>0,1,1/6</td>
</tr>
</tbody>
</table>

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 3' (0,0,2/3) 0,0,z
(3z | 0,0,2/3)

(3) 3' (0,0,1/3) 0,0,z
(3z⁻¹ | 0,0,1/3)

(4) 2' x,x,0
(2\(x\) | 0,0,0)'

(5) 2' x,0,1/6
(2\(x\) | 0,0,1/3)'

(6) 2' 0,y,1/3
(2\(y\) | 0,0,2/3)'

P3\(_2\) 2'1
154.3.1273
P3\(_2\) 2'1
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z+2/3 [v-u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
<td>(5) x-y,y,z+1/3 [u+v,v,w]</td>
</tr>
<tr>
<td>3 b .2'</td>
<td>x,0,1/6 [u,2u,w]</td>
<td>0,x,5/6 [2u,2u,w]</td>
</tr>
<tr>
<td>3 a .2'</td>
<td>x,0,2/3 [u,2u,w]</td>
<td>0,x,1/3 [2u,2u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p31m
\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along [1,0,0] p2'11
\[\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2 \]
Origin at x,0,1/6

Along [2,1,0] p1m1
\[\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = \mathbf{b}/2 \]
Origin at x,x/2,1/3
Origin on 2 [110] at 3/1,1,2 1

Asymmetric unit 0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/6

Vertices
0,0,0 1,0,0 1,1,0 0,1,0
0,0,1/6 1,0,1/6 1,1,1/6 0,1,1/6

Symmetry Operations

For (0,0,0) + set

1 (1 0,0,0)
3* (0,0,2/3) 0,0,z
3* (0,0,1/3) 0,0,z
2 x,x,0 (2xy 0,0,0)
2* x,0,1/6 (2y,0,0,1/3)
2' 0,y,1/3 (2y,0,1/2)

For (0,0,1)' + set

1' (0,0,1)
3* (0,0,5/3) 0,0,z
3 (0,0,4/3) 0,0,z
2' x,x,1/2 (2xy 0,0,1/2)
2 x,0,2/3 (2x,0,0,3/2)
2 0,y,5/6 (2y,0,5/6)
Generators selected \((1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>c</td>
<td>((0,0,0) + (0,0,1)' +)</td>
</tr>
<tr>
<td>6</td>
<td>b</td>
<td>((0,0,0) + (0,0,1)' +)</td>
</tr>
<tr>
<td>6</td>
<td>a</td>
<td>((0,0,0) + (0,0,1)' +)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z ([u,v,w])</td>
<td>((0,0,0) + (0,0,1)' +)</td>
</tr>
<tr>
<td>(2) (\bar{y},x-y,z+2/3 [\bar{v},u-v,w])</td>
<td>((0,0,0) + (0,0,1)' +)</td>
</tr>
<tr>
<td>(3) (x+y,x,z+1/3 [u-v,u,w])</td>
<td>((0,0,0) + (0,0,1)' +)</td>
</tr>
<tr>
<td>(4) (y,x,\bar{z} [v,u,\bar{w}])</td>
<td>((0,0,0) + (0,0,1)' +)</td>
</tr>
<tr>
<td>(5) (x-y,y,z+1/3 [u+v,v,w])</td>
<td>((0,0,0) + (0,0,1)' +)</td>
</tr>
<tr>
<td>(6) (x+y,z+2/3 [u,u+v,w])</td>
<td>((0,0,0) + (0,0,1)' +)</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Along [0,0,1]</th>
<th>p31m1'</th>
<th>Along [1,0,0]</th>
<th>p_{2c'}; 211</th>
<th>Along [2,1,0]</th>
<th>p_{2c';1m1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a \quad b^* = b)</td>
<td>(a^* = a \quad b^* = (a + 2b)/2)</td>
<td>(a^* = a \quad b^* = (a + 2b)/2)</td>
<td>(a^* = a \quad b^* = (a + 2b)/2)</td>
<td>(a^* = a \quad b^* = (a + 2b)/2)</td>
<td>(a^* = a \quad b^* = (a + 2b)/2)</td>
<td>(a^* = a \quad b^* = (a + 2b)/2)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,2/3</td>
</tr>
</tbody>
</table>
Origin on 32

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/6; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2) \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 & \quad 0,1/2,0 \\
0,0,1/6 & \quad 1/2,0,1/6 & \quad 2/3,1/3,1/6 & \quad 1/3,2/3,1/6 & \quad 0,1/2,1/6
\end{align*}
\]
Symmetry Operations

For (0,0,0) + set

(1) 1 (2) 3 0,0,z (3) 3 0,0,z
(1,0,0) (3; 0,0,0) (3; 0,0,0)

(4) 2 x,0,0 (5) 2 x,0,0 (6) 2 0,y,0
(2;x;0,0,0) (2;x;0,0,0) (2;y;0,0,0)

For (2/3,1/3,1/3) + set

(1) t (2/3,1/3,1/3) (2) 3* (0,0,1/3) 1/3,1/3,z
(1/2,3,1/3,1/3) (3; 2/3,1/3,1/3) (3; 0,0,1/3) 1/3,0,0,z

(4) 2 (1/2,1/2,0) x,x-1/6,1/6 (5) 2 (1/2,0,0) x,1/6,1/6
(2;x;2/3,1/3,1/3) (2;x;2/3,1/3,1/3)

For (1/3,2/3,2/3) + set

(1) t (1/3,2/3,2/3) (2) 3* (0,0,2/3) 0,1/3,z
(1/3,2/3,2/3) (3; 1/3,2/3,2/3) (3; 0,0,2/3) 1/3,1/3,z

(4) 2 (1/2,1/2,0) x,x+1/6,1/3 (5) 2 x,1/3,1/3
(2;x;1/3,2/3,2/3) (2;x;1/3,2/3,2/3)

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); (2); (4).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 f 1</td>
<td>(0,0,0) +</td>
<td>(2/3,1/3,1/3) +</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>9 e .2</td>
<td>x,0,1/2 [u,0,0]</td>
<td>0,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td>9 d .2</td>
<td>x,0,0 [u,0,0]</td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td>6 c 3..</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>3 b 32.</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>3 a 32.</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p3m'1

a* = (2a + b)/3 b* = (a + b)/3

Origin at 0,0,z

Along [1,0,0] p211

a* = (-a - 2b + c)/3 b* = (a + 2b)/2

Origin at x,0,0

Along [2,1,0] p1m'1

a* = c/3 b* = b/2

Origin at x,x/2,0
R321' 321' Trigonal
155.2.1276 R321'
Origin on 321'

Asymmetric unit: \(0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/6; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2) \)

Vertices:
- \((0,0,0)\)
- \((2/3,1/3,0)\)
- \((1/3,2/3,0)\)
- \((0,1/2,0)\)
- \((0,0,1/6)\)
- \((1/2,0,1/6)\)
- \((2/3,1/3,1/6)\)
- \((1/3,2/3,1/6)\)
- \((0,1/2,1/6)\)
Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0) (2) \(3^\prime \) 0,0,z (3) \(3^\prime \) 0,0,z
(3_z | 0,0,0) (3_z | 0,0,0)

(4) 2 x,x,0
(2_x | 0,0,0) (5) 2 x,0,0 (6) 2 0,y,0
(2_x | 0,0,0) (2_y | 0,0,0)

For (2/3,1/3,1/3) + set

(1) t (2/3,1/3,1/3) (2) \(3^\prime \) (0,0,1/3) 1/3,1/3,z (3) \(3^\prime \) (0,0,1/3) 1/3,0,z
(1 | 2/3,1/3,1/3) (3_z | 2/3,1/3,1/3) (3_z | 2/3,1/3,1/3)

(4) 2 (1/2,1/2,0) x,x-1/6,1/6 (5) 2 (1/2,0,0) x,1/6,1/6 (6) 2 1/3,y,1/6
(2_x | 2/3,1/3,1/3) (2_x | 2/3,1/3,1/3) (2_y | 2/3,1/3,1/3)

For (1/3,2/3,2/3) + set

(1) t (1/3,2/3,2/3) (2) \(3^\prime \) (0,0,2/3) 0,1/3,z (3) \(3^\prime \) (0,0,2/3) 1/3,1/3,z
(1 | 1/3,2/3,2/3) (3_z | 1/3,2/3,2/3) (3_z | 1/3,2/3,2/3)

(4) 2 (1/2,1/2,0) x,x+1/6,1/3 (5) 2 x,1/3,1/3 (6) 2 (0,1/2,0) 1/6,y,1/3
(2_x | 1/3,2/3,2/3) (2_x | 1/3,2/3,2/3) (2_y | 1/3,2/3,2/3)

For (0,0,0)' + set

(1) 1'
(1 | 0,0,0)' (2) \(3^\prime \) ' 0,0,z (3) \(3^\prime \) ' 0,0,z
(3_z | 0,0,0)' (3_z | 0,0,0)'

(4) 2' x,x,0
(2_x | 0,0,0)' (5) 2' x,0,0 (6) 2' 0,y,0
(2_x | 0,0,0)' (2_y | 0,0,0)'

For (2/3,1/3,1/3)' + set

(1) t' (2/3,1/3,1/3) (2) \(3^\prime \) ' (0,0,1/3) 1/3,1/3,z (3) \(3^\prime \) ' (0,0,1/3) 1/3,0,z
(1 | 2/3,1/3,1/3)' (3_z | 2/3,1/3,1/3)' (3_z | 2/3,1/3,1/3)'

(4) 2' (1/2,1/2,0) x,x-1/6,1/6 (5) 2' (1/2,0,0) x,1/6,1/6 (6) 2' 1/3,y,1/6
(2_x | 2/3,1/3,1/3)' (2_x | 2/3,1/3,1/3)' (2_y | 2/3,1/3,1/3)'

For (1/3,2/3,2/3)' + set

(1) t' (1/3,2/3,2/3) (2) \(3^\prime \) ' (0,0,2/3) 0,1/3,z (3) \(3^\prime \) ' (0,0,2/3) 1/3,1/3,z
(1 | 1/3,2/3,2/3)' (3_z | 1/3,2/3,2/3)' (3_z | 1/3,2/3,2/3)'

(4) 2' (1/2,1/2,0) x,x+1/6,1/3 (5) 2' x,1/3,1/3 (6) 2' (0,1/2,0) 1/6,y,1/3
(2_x | 1/3,2/3,2/3)' (2_x | 1/3,2/3,2/3)' (2_y | 1/3,2/3,2/3)'

Generators selected (1): t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3);(2); (4): 1'.

155.2.1276 - 3 - 2744
Continued

155.2.1276
R321'

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>f</td>
<td>(1) x,y,z [0,0,0]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y,-x-y,z [0,0,0]</td>
<td>(2/3,1/3,1/3) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z [0,0,0]</td>
<td>(1/3,2/3,2/3) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [0,0,0]</td>
<td>(0,0,0)' +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x-y,y,z [0,0,0]</td>
<td>(2/3,1/3,1/3) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,x+y,z [0,0,0]</td>
<td>(1/3,2/3,2/3) +</td>
</tr>
<tr>
<td>9</td>
<td>e</td>
<td>(1) x,0,1/2 [0,0,0]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 0,x,1/2 [0,0,0]</td>
<td>(2/3,1/3,1/3) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x,x,1/2 [0,0,0]</td>
<td>(1/3,2/3,2/3) +</td>
</tr>
<tr>
<td>6</td>
<td>c</td>
<td>(1) 0,0,z [0,0,0]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 0,0,1/2 [0,0,0]</td>
<td>(2/3,1/3,1/3) +</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>(1) 0,0,1/2 [0,0,0]</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>(1) 0,0,0 [0,0,0]</td>
<td>(0,0,0) +</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p3m1

\[a^* = (2a + b)/3 \]
\[b^* = (-a + b)/3 \]

Origin at 0,0,0

Along [1,0,0] p211

\[a^* = (-a - 2b + c)/3 \]
\[b^* = (a + 2b)/2 \]

Origin at x,0,0

Along [2,1,0] p1m1

\[a^* = c/3 \]
\[b^* = b/2 \]

Origin at x,x/2,0
Origin on 32'

Asymmetric unit
\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/6; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2) \]

Vertices
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 & \quad 0,1/2,0 \\
0,0,1/6 & \quad 1/2,0,1/6 & \quad 2/3,1/3,1/6 & \quad 1/3,2/3,1/6 & \quad 0,1/2,1/6
\end{align*}
Symmetry Operations

For \((0,0,0)\) + set

1. 1
2. 3' \(0,0,z\) (3) 3' \(0,0,z\)
 \((1,0,0)\) \((3z,0,0,0)\) \((3z,0,0,0)\)

4. 2' \(x,x,0\)
 \((2xy,0,0,0)\)
 \((2z,0,0,0)\)
 \((2y,0,0,0)\)

For \((2/3,1/3,1/3)\) + set

1. \(t(2/3,1/3,1/3)\)
 \((1,0,0)\)
 \((2z,2/3,1/3,1/3)\)
 \((3z,1/3,1/3,1/3)\)

4. 2' \((1/2,1/2,0)\)
 \((2xy,2/3,1/3,1/3)\)
 \((2z,2/3,1/3,1/3)\)
 \((2y,2/3,1/3,1/3)\)

For \((1/3,2/3,2/3)\) + set

1. \(t(1/3,2/3,2/3)\)
 \((1,0,0)\)
 \((2z,1/3,2/3,2/3)\)
 \((3z,1/3,2/3,2/3)\)

4. 2' \((1/2,1/2,0)\)
 \((2xy,1/3,2/3,2/3)\)
 \((2z,1/3,2/3,2/3)\)
 \((2y,1/3,2/3,2/3)\)

Generators selected

\((1); t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); (2); (4).\)

Positions

- Multiplicity
- Wyckoff letter
- Site Symmetry
- Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>f</td>
<td>((0,0,0)) + ((2/3,1/3,1/3)) + ((1/3,2/3,2/3))</td>
<td></td>
</tr>
<tr>
<td>9 e (2')</td>
<td>x,0,1/2 ([u,2u,w])</td>
<td>(0,x,1/2 ([2u,\bar{u},w])</td>
<td>(\bar{x},x,1/2 ([u,u,w])</td>
</tr>
<tr>
<td>9 d (2')</td>
<td>x,0,0 ([u,2u,w])</td>
<td>(0,x,0 ([2u,\bar{u},w])</td>
<td>(\bar{x},x,0 ([u,u,w])</td>
</tr>
<tr>
<td>6 c (3')</td>
<td>0,0,0 ([0,0,w])</td>
<td>0,0,0 ([0,0,w])</td>
<td></td>
</tr>
<tr>
<td>3 b (32')</td>
<td>0,0,1/2 ([0,0,w])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 a (32')</td>
<td>0,0,0 ([0,0,w])</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) \(p3m1\)
 \(a^* = (2a + b)/3\) \(b^* = (-a + b)/3\) \(a^* = (-a - 2b + c)/3\) \(b^* = (a + 2b)/2\)
 Origin at \(0,0,z\)

- Along \([1,0,0]\) \(p2'11\)
 \(a^* = (-a - 2b + c)/3\) \(b^* = (a + 2b)/2\)
 Origin at \(x,0,0\)

- Along \([2,1,0]\) \(p1m1\)
 \(a^* = c/3\) \(b^* = b/2\)
 Origin at \(x,x/2,0\)
Origin on 32

Asymmetric unit: $0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/6; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2)$

Vertices:
- $0,0,0$
- $1/2,0,0$
- $2/3,1/3,0$
- $1/3,2/3,0$
- $0,1/2,0$
- $0,0,1/6$
- $1/2,0,1/6$
- $2/3,1/3,1/6$
- $1/3,2/3,1/6$
- $0,1/2,1/6$
Symmetry Operations

For (0,0,0) + set

1 1 0,0,0
(1) 1 (2) 3 0,0,z
(3) 3 0,0,z
(1) (2,0,0,0) (2,0,0,0) (2,0,0,0)
(3) (2,0,0,0) (2,0,0,0) (2,0,0,0)
(4) 2 x,x,0 (5) 2 x,0,0
(6) 2 y,0,0
(2,x) (2,x) (2,x)
For (2/3,1/3,1/3)' + set

1 1/2,1/3,1/3
(1) t 2/3,1/3,1/3 (2) 3 0,0,1/3
(3) 3 0,0,1/3 (3) 3 0,0,1/3 (3) 3 0,0,1/3
(1) (2,0,0,0) (2,0,0,0) (2,0,0,0) (2,0,0,0)
For (1/3,2/3,2/3) + set

1 1/2,1/3,1/3
(1) t 1/3,2/3,2/3 (2) 3 0,0,2/3
(3) 3 0,0,1/3 (3) 3 0,0,1/3 (3) 3 0,0,1/3
(1) (2,0,0,0) (2,0,0,0) (2,0,0,0) (2,0,0,0)

Generators selected

1; t(1,0,0); t(0,1,0); t(0,0,1); t'(2/3,1/3,1/3);(2); (4).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>9</td>
<td>(2/3,1,3/3)' +</td>
</tr>
<tr>
<td>6</td>
<td>(1/3,2/3,2/3) +</td>
</tr>
</tbody>
</table>

18 f 1
(1) x,y,z [u,v,w] (2) y,x-y,z [v.u-w] (3) x+y,x,x [u+v,u+w]
(4) y,x,z [v.u,w] (5) x-y,y,z [u-v,v+w] (6) x,x+y,z [u+v,u+w]
9 e .2'
(7) x,0,1/2 [u,2u,w] (8) 0,x,1/2 [2u,u,w] x,x,1/2 [u,u,w]
9 d .2
9 e .2
3 c 3..
3 b 32'
3 a 32

Symmetry of Special Projections

Along [0,0,1] p3m11' a* = (2a + b)/3 b* = (-a + b)/3 Origin at 0,0,z
Along [1,0,0] p3211 a* = (-a - 2b + c)/3 b* = (a + 2b)/2 Origin at x,0,0
Along [2,1,0] p6m1 a* = c/3 b* = b/2 Origin at x,x/2,0

Along [2,1,0] p3211 a* = (2a + b)/3 b* = (-a + b)/3 Origin at 0,0,z
Along [1,0,0] p3211 a* = (-a - 2b + c)/3 b* = (a + 2b)/2 Origin at x,0,0
Along [2,1,0] p6m1 a* = c/3 b* = b/2 Origin at x,x/2,0
Origin on 3m1

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{2}{3}; \quad 0 \leq z \leq 1; \quad x \leq 2y; \quad y \leq \min(1-x,2x) \]

Vertices

- 0,0,0
- 2/3,1/3,0
- 1/3,2/3,0
- 0,0,1
- 2/3,1/3,1
- 1/3,2/3,1

Symmetry Operations

1. \[1\]
 - \([1\mid 0,0,0]\)

2. \[3^+\]
 - \([0,0,z]\)
 - \([3_z\mid 0,0,0]\)

3. \[3\]
 - \([0,0,z]\)
 - \([3_z^{-1}\mid 0,0,0]\)

4. \[m\]
 - \(x, x, z\)
 - \([m_{xy}\mid 0,0,0]\)

5. \[m\]
 - \(x, 2x, z\)
 - \([m_x\mid 0,0,0]\)

6. \[m\]
 - \(2x, x, z\)
 - \([m_y\mid 0,0,0]\)
Generators selected
\(1\); \(t(1,0,0); t(0,1,0); t(0,0,1); \) \((2); (4)\).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
</table>
| \(6\) | e | 1 | \((1)\) \(x,y,z\) \([u,v,w]\)
\((2)\) \(y , x-y,z\) \([v , u-v,w]\)
\((3)\) \(x+y,x ,z\) \([u+v,u,w]\)
\((4)\) \(y , x,z\) \([v,u,w]\)
\((5)\) \(x+y,y,z\) \([u-v,v,w]\)
\((6)\) \(y , x,z\) \([v,u,w]\) |
| \(3\) | d | .m. | \(x,x,z\) \([u,u,0]\)
\(x,2x,z\) \([u,0,0]\)
\(2x,x,z\) \([0,u,0]\) |
| \(1\) | c | 3m. | \(2/3,1/3,z\) \([0,0,0]\) |
| \(1\) | b | 3m. | \(1/3,2/3,z\) \([0,0,0]\) |
| \(1\) | a | 3m. | \(0,0,z\) \([0,0,0]\) |

Symmetry of Special Projections

- Along \([0,0,1]\) p3m1
- Along \([1,0,0]\) \(p11^*\)
- Along \([2,1,0]\) p1m1

\(a^* = a\)
\(b^* = b\)
\(a^* = c\)
\(b^* = (a + 2b)/2\)
\(a^* = b/2\)
\(b^* = c\)

Origin at \(0,0,z\)
Origin at \(x,0,0\)
Origin at \(x,x/2,0\)
Origin on 3m11' denotes the origin is on the 3m11' plane.

Asymmetric unit:

- 0 ≤ x ≤ 2/3;
- 0 ≤ y ≤ 2/3;
- 0 ≤ z ≤ 1;
- x < 2y;
- y ≤ min(1-x, 2x)

Vertices:

- 0,0,0
- 2/3,1/3,0
- 1/3,2/3,0
- 0,0,1
- 2/3,1/3,1
- 1/3,2/3,1

Symmetry Operations:

For 1 + set:

1. 1
2. 3* 0,0,z
3. 3' 0,0,z
4. m x,x,z
 (m_{xy}|0,0,0)
5. m x,2x,z
 (m_{x}|0,0,0)
6. m 2x,x,z
 (m_{y}|0,0,0)

For 1' + set:

1'. 1'
2. 3*' 0,0,z
3. 3' 0,0,z
4. m' x,x,z
 (m_{xy}|0,0,0)
5. m' x,2x,z
 (m_{x}|0,0,0)
6. m' 2x,x,z
 (m_{y}|0,0,0)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 e 11' x,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>3 d .m.1' x,x,z [0,0,0]</td>
<td>x,2x,z [0,0,0]</td>
</tr>
<tr>
<td>1 c 3m.1' 2/3,1/3,z [0,0,0]</td>
<td>2x,x,z [0,0,0]</td>
</tr>
<tr>
<td>1 b 3m.1' 1/3,2/3,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 a 3m.1' 0,0,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1] p3m11'**
 - \(a^* = a\) \(b^* = b\)
 - Origin at 0,0,z

- **Along [1,0,0] p11'**
 - \(a^* = c\) \(b^* = (a + 2b)/2\)
 - Origin at x,0,0

- **Along [2,1,0] p1m11'**
 - \(a^* = b/2\) \(b^* = c\)
 - Origin at x,x/2,0
Origin on 3m'1

Asymmetric unit:

0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; 0 ≤ z ≤ 1; x ≤ 2y; y ≤ min(1-x,2x)

Vertices:

0,0,0 2/3,1/3,0 1/3,2/3,0
0,0,1 2/3,1/3,1 1/3,2/3,1

Symmetry Operations:

(1) 1
 (1 | 0,0,0)

(2) 3
 (0,0,2x)
 (0,0,0)
(3) 3
 (0,0,0)
 (0,0,0)
(3) 3
 (0,0,0)
 (0,0,0)
(4) m' x,x,z
 (m,0,0,0)
(5) m' x,2x,z
 (m,0,0,0)
(6) m' 2x,x,z
 (m,0,0,0)
 (m,0,0,0)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>6 e 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>3 d .m'</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>1 c 3m'</td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td>1 b 3m'</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>1 a 3m'</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p3m'1</th>
<th>Along [1,0,0]</th>
<th>p1</th>
<th>Along [2,1,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = a, b = b</td>
<td>a = a, b = b</td>
<td>a = c, b = (a + 2b)/2</td>
<td>a = b/2, b = c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin on 3m1

Asymmetric unit

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 < x < 2/3;</td>
<td>0 < y < 2/3;</td>
<td>0 < z < 1;</td>
</tr>
<tr>
<td>x < 2y;</td>
<td>y < min(1-x,2x)</td>
<td></td>
</tr>
</tbody>
</table>

Vertices

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>2/3,1/3,0</td>
<td>1/3,2/3,0</td>
</tr>
<tr>
<td>0,0,1</td>
<td>2/3,1/3,1</td>
<td>1/3,2/3,1</td>
</tr>
</tbody>
</table>

Symmetry Operations

For (0,0,0) + set

1. 1
 (1)\(1\) 0,0,0

2. 3\(\ast\) 0,0,z
 (2) 3\(\ast\) 0,0,z
 \(3\) 3\(\ast\) 0,0,z

3. m\(\times\) ,x,z
 (4) m\(\times\) ,x,z
 \(m\)\(\times\) 0,0,0

4. c\(\times\) (0,0,1)
 (5) c\(\times\) (0,0,1)
 \(c\)\(\times\) 0,0,0

5. c\(\times\) (0,0,1)\(\ast\)
 (6) c\(\times\) (0,0,1)\(\ast\)
 \(c\)\(\times\) 0,0,0

For (0,0,1)\(\ast\) + set

1. t\(\ast\) (0,0,1)
 (1) t\(\ast\) (0,0,1)\(\ast\)

2. 3\(\ast\) \(\ast\) (0,0,1) 0,0,z
 (2) 3\(\ast\) \(\ast\) (0,0,1) 0,0,z
 \(3\) 3\(\ast\) \(\ast\) (0,0,1) 0,0,z

3. m\(\times\) ,x,z
 (4) m\(\times\) ,x,z
 \(m\)\(\times\) 0,0,0

4. c\(\times\) (0,0,1)\(\ast\)
 (5) c\(\times\) (0,0,1)\(\ast\)
 \(c\)\(\times\) 0,0,0

5. c\(\times\) (0,0,1)\(\ast\)
 (6) c\(\times\) (0,0,1)\(\ast\)
 \(c\)\(\times\) 0,0,0

156.4.1282 - 1 - 2758
Generators selected: (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>e</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x+y,y,z [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,x-y,z [u,u+v,w]</td>
</tr>
<tr>
<td>6</td>
<td>d</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>2/3,1/3,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p3m11'
 - a* = a \(b^* = b\)
 - Origin at 0,0,z

- Along [1,0,0] p11'
 - a* = c \(b^* = (a + 2b)/2\)
 - Origin at x,0,0

- Along [2,1,0] p2\(\gamma\) 1m1
 - a* = b/2 \(b^* = c\)
 - Origin at x,x/2,0
Origin on 3m'1

Asymmetric unit

\[0 < x < \frac{2}{3}; \quad 0 < y < \frac{2}{3}; \quad 0 < z < 1; \quad x < 2y; \quad y \leq \min(1-x,2x)\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 \\
0,0,1 & \quad 2/3,1/3,1 & \quad 1/3,2/3,1
\end{align*}
\]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \\
(1'0,0,0) & \quad (2) 3' \quad 0,0,z \\
& \quad (3_z'0,0,0) \\
& \quad (3_z'0,0,0') \\
(4) m' \quad x,x,z & \quad (5) m' \quad x,2x,z \\
(m_{xy}|0,0,0)' & \quad (m_{xy}|0,0,0)'
\end{align*}
\]

For \((0,0,1) + \) set

\[
\begin{align*}
(1) & \quad t' \quad (0,0,1) \\
(1'0,0,1) & \quad (2) 3' \quad (0,0,1) \quad 0,0,z \\
& \quad (3_z|0,0,1) \\
& \quad (3_z|0,0,1') \\
(4) c \quad (0,0,1) \quad x,x,z & \quad (5) c \quad (0,0,1) \quad x,2x,z \\
(m_{xy}|0,0,1) & \quad (m_{xy}|0,0,1) \\
& \quad (m_{xy}|0,0,1)'
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>e</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(1) x, y, z [u, v, w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) y, x-y, z [v, u-v, w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) x+y, x, z [u+v, u, w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) y', x, z [v, u, w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) x+y, y, z [u+v, v, w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x-y, x, z [u-v, v, w]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0, 0, 1] p3m11'</td>
</tr>
<tr>
<td>a* = a b* = b</td>
</tr>
<tr>
<td>Origin at 0, 0, z</td>
</tr>
</tbody>
</table>
Origin on 31m

Asymmetric unit
0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1;
x ≤ (1+y)/2; y ≤ min(1-x,x)

Vertices
0,0,0 1/2,0,0 2/3,1/3,0 1/2,1/2,0 1/2,1/2,1

0,0,1 1/2,0,1 2/3,1/3,1 1/2,1/2,1

Symmetry Operations

(1) 1
(1|0,0,0)

(2) 3^* 0,0,z
(3z*|0,0,0)

(3) $3'$ 0,0,z
(3z$^{-1}$|0,0,0)

(4) m x,x,z
(m$|_3$|0,0,0)

(5) m x,0,z
(m$|_2$|0,0,0)

(6) m 0,y,z
(m$_1$|0,0,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>d</td>
<td>1 (1) x,y,z [u,v,w] (2) y,x-y,z [v,u-v,w] (3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x-y,y,z [u+v,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x+y,z [u,u-v,w]</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>0,x,z [2u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,z [u,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,z [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p31m</th>
<th>Along [1,0,0]</th>
<th>p1m1</th>
<th>Along [2,1,0]</th>
<th>p11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = (a + 2b)/2</td>
<td>b* = c</td>
<td>a* = c</td>
<td>b* = b/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x/2,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 31m1'

Asymmetric unit

- $0 \leq x \leq 2/3$;
- $0 \leq y \leq 1/2$;
- $0 \leq z \leq 1$;
- $x \leq (1+y)/2$;
- $y \leq \min(1-x,x)$

Vertices

- $0,0,0$
- $1/2,0,0$
- $2/3,1/3,0$
- $1/2,1/2,0$
- $0,0,1$
- $1/2,0,1$
- $2/3,1/3,1$
- $1/2,1/2,1$

Symmetry Operations

For 1 + set

1. 1
 - $(1 | 0,0,0)$

2. $3 \cdot 0,0,z$
 - $(3_z | 0,0,0)$

3. $3 \cdot 0,0,z$
 - $(3_z^{-1} | 0,0,0)$

4. $m \cdot x,z$
 - $(m_3 | 0,0,0)$

5. $m \cdot x,0,z$
 - $(m_2 | 0,0,0)$

6. $m \cdot 0,y,z$
 - $(m_1 | 0,0,0)$

For 1' + set

1'. $1'$
 - $(1 | 0,0,0)'$

2'. $3 \cdot 0,0,z$
 - $(3_z | 0,0,0)'$

3'. $3 \cdot 0,0,z$
 - $(3_z^{-1} | 0,0,0)'$

4'. $m' \cdot x,z$
 - $(m_3 | 0,0,0)'$

5'. $m' \cdot x,0,z$
 - $(m_2 | 0,0,0)'$

6'. $m' \cdot 0,y,z$
 - $(m_1 | 0,0,0)'$
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4): 1'. \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>d</td>
<td>(1, x,y,z [0,0,0])</td>
<td>1 +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2, \bar{y},x-y,z [0,0,0])</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3, \bar{x}+y,\bar{x},z [0,0,0])</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4, y,x,z [0,0,0])</td>
<td>1' +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5, x-y,y,z [0,0,0])</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6, x,x+y,z [0,0,0])</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>(x,0,z [0,0,0])</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,x,z [0,0,0])</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\bar{x},\bar{x},z [0,0,0])</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>(1/3,2/3,z [0,0,0])</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2/3,1/3,z [0,0,0])</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>(0,0,z [0,0,0])</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) \(\text{p31m1'} \)
 - \(a^* = a\)
 - \(b^* = b\)
- Origin at 0,0,z

- Along \([1,0,0]\) \(\text{p1m11'} \)
 - \(a^* = (a+2b)/2\)
 - \(b^* = c\)
- Origin at x,0,0

- Along \([2,1,0]\) \(\text{p11'} \)
 - \(a^* = c\)
 - \(b^* = b/2\)
- Origin at x,x/2,0
Origin on 31m'

Asymmetric unit

\[
\begin{align*}
0 \leq x & \leq \frac{2}{3}; & 0 \leq y & \leq \frac{1}{2}; & 0 \leq z & \leq 1; & x & \leq \frac{1+y}{2}; & y & \leq \min(1-x,x)
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/2,1/2,0 \\
0,0,1 & \quad 1/2,0,1 & \quad 2/3,1/3,1 & \quad 1/2,1/2,1
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 3^z \quad 0,0,z \\
(3) & \quad 3^{-1} \quad 0,0,z \\
(4) & \quad m' \quad x,x,z \\
(5) & \quad m' \quad x,0,z \\
(6) & \quad m' \quad 0,y,z
\end{align*}
\]

\[
\begin{align*}
(1) & \quad 1 \quad (0,0,0) \\
(2) & \quad 3^z \quad 0,0,0 \\
(3) & \quad 3^{-1} \quad 0,0,0 \\
(4) & \quad m' \quad (0,0,0)' \\
(5) & \quad m' \quad (0,0,0)' \\
(6) & \quad m' \quad (0,0,0)'
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>d</td>
<td>1 (1) x,y,z [u,v,w] (2) y,x-y,z [v,u-v,w] (3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w] (5) x-y,y,z [u-v,v,w] (6) x,x+y,z [u,u+v,w]</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>.m' x,0,z [u,0,w] 0,x,z [0,u,w] x,x,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>3.. 1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>3..m' 0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p31m' Along [1,0,0] p1m'1 Along [2,1,0] p1

\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \quad \mathbf{a}^* = (\mathbf{a} + 2\mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c} \quad \mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = \mathbf{b}/2 \)

Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin on 31m

Asymmetric unit

\[0 < x < \frac{2}{3}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < 1; \quad x < \frac{1+y}{2}; \quad y \leq \min(1-x,x) \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/2,1/2,0 \\
0,0,1 & \quad 1/2,0,1 & \quad 2/3,1/3,1 & \quad 1/2,1/2,1
\end{align*}
\]

Symmetry Operations

For \((0,0,0) + \text{set}\)

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad 0,0,0 \\
(2) & \quad 3^* \quad 0,0,z \\
(2) & \quad (3_z,0,0,0) \\
(3) & \quad 3' \quad 0,0,z \\
(3) & \quad (3_z^{-1},0,0,0) \\
(4) & \quad m \quad x,x,z \\
(4) & \quad (m_3|0,0,0) \\
(5) & \quad m \quad x,0,z \\
(5) & \quad (m_2|0,0,0) \\
(6) & \quad m \quad 0,y,z \\
(6) & \quad (m_1|0,0,0)
\end{align*}
\]

For \((0,0,1)' + \text{set}\)

\[
\begin{align*}
(1) & \quad t' \quad (0,0,1) \\
(1) & \quad (0,0,1)' \\
(2) & \quad 3' \quad (0,0,1) \quad 0,0,z \\
(2) & \quad (3_z,0,0,1)' \\
(3) & \quad 3' \quad (0,0,1) \quad 0,0,z \\
(3) & \quad (3_z^{-1},0,0,1)' \\
(4) & \quad c' \quad (0,0,1) \quad x,x,z \\
(4) & \quad (m_3|0,0,1)' \\
(5) & \quad c' \quad (0,0,1) \quad x,0,z \\
(5) & \quad (m_2|0,0,1)' \\
(6) & \quad c' \quad (0,0,1) \quad 0,y,z \\
(6) & \quad (m_1|0,0,1)'
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>d</td>
<td>(0,0,0) + (0,0,1)' + (0,0,0)</td>
</tr>
<tr>
<td>6</td>
<td>c</td>
<td>x,0,z [u,2u,0]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Coordinates

| (1) x,y,z [u,v,w] | (2) y,z-x,y,z [v,u-v,w] | (3) x+u,y,z [u+v,u,w] |
| (4) y,x,z [v,u,w] | (5) x+y,z [u+v,v,w] | (6) x,y,z [u,u+v,w] |

Symmetry of Special Projections

- Along [0,0,1] p31m1'
 \(a^* = a \) \(b^* = b \)
 Origin at 0,0,z

- Along [1,0,0] p2b' 1m1
 \(a^* = (a + 2b)/2 \) \(b^* = c \)
 Origin at x,0,0

- Along [2,1,0] p11'
 \(a^* = c \) \(b^* = b/2 \)
 Origin at x,x/2,0
Origin on 31m'

Asymmetric unit:

\[0 < x < 2/3; \quad 0 < y < 1/2; \quad 0 < z < 1; \quad x < (1+y)/2; \quad y < \min(1-x,x) \]

Vertices:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1/2,0,0</td>
<td>2/3,1/3,0</td>
<td>1/2,1/2,0</td>
<td></td>
</tr>
<tr>
<td>0,0,1</td>
<td>1/2,0,1</td>
<td>2/3,1/3,1</td>
<td>1/2,1/2,1</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Operations:

For (0,0,0) + set:

(1) 1
(1) 0,0,0
(2) \(3^z\) 0,0,z
(3) \(3^{-1}\) 0,0,z
(4) \(m'\) x,x,z
(5) \(m'\) x,0,z
(6) \(m'\) 0,y,z
(7) \(m_1\) 0,0,0

For (0,0,1) + set:

(1) \(t'\) (0,0,1)
(1) (0,0,1)'
(2) \(3'\) (0,0,1) 0,0,z
(3) \(3'\) (0,0,1) 0,0,z
(4) \(c\) (0,0,1) x,x,z
(5) \(c\) (0,0,1) x,0,z
(6) \(c\) (0,0,1) 0,y,z
Generators selected: (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>d</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td>6</td>
<td>c</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p31m1' Along [1,0,0] p2a1 1m'1 Along [2,1,0] p2a1 1
\(a^* = a\) \(b^* = b\) \(a^* = (a + 2b)/2\) \(b^* = c\) \(a^* = c\) \(b^* = b/2\)
Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin on 3c1

Asymmetric unit

- $0 \leq x < 2/3;$
- $0 \leq y < 2/3;$
- $0 \leq z < 1/2;$
- $x < (1+y)/2;$
- $y \leq \min(1-x,(1+x)/2)$

Vertices

- $0,0,0$
- $0,0,1/2$
- $1/2,0,0$
- $1/2,0,1/2$
- $2/3,1/3,0$
- $2/3,1/3,1/2$
- $1/3,2/3,0$
- $1/3,2/3,1/2$
- $0,1/2,0$
- $0,1/2,1/2$

Symmetry Operations

1. 1
 - $(1|0,0,0)$
2. 3^{+} $0,0,z$
 - $(3_{z}|0,0,0)$
3. 3^{-} $0,0,z$
 - $(3_{z}^{-1}|0,0,0)$
4. c $(0,0,1/2)$ x,x,z
 - $(m_{y}|0,0,1/2)$
5. c $(0,0,1/2)$ $x,2x,z$
 - $(m_{x}|0,0,1/2)$
6. c $(0,0,1/2)$ $2x,x,z$
 - $(m_{y}|0,0,12)$
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4). \)

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
</tbody>
</table>
| 6 d 1 | \((1) x,y,z [u,v,w] \) \((2) y,x-y,z [v,u-v,w] \) \((3) x+y,x,z [u+v,u,w] \)
| | \((4) y,x,z+1/2 [v,u,w] \) \((5) x+y,y,z+1/2 [u-v,v,w] \) \((6) x,x-y,z+1/2 [u,u+v,w] \) |
| 2 c 3.. | \(2/3,1/3,z [0,0,w] \) \(2/3,1/3,z+1/2 [0,0,w] \) |
| 2 b 3.. | \(1/3,2/3,z [0,0,w] \) \(1/3,2/3,z+1/2 [0,0,w] \) |
| 2 a 3.. | \(0,0,z [0,0,w] \) \(0,0,z+1/2 [0,0,w] \) |

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p3m1</th>
<th>Along [1,0,0] p(\text{hex}^*), 1</th>
<th>Along [2,1,0] p1g1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a \quad b^* = b)</td>
<td>(a^* = c/2 \quad b^* = (a + 2b)/2)</td>
<td>(a^* = b/2 \quad b^* = c)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,0</td>
</tr>
</tbody>
</table>
Origin on 3c11'

Asymmetric unit

\[
\begin{align*}
0 & \leq x \leq 2/3; & 0 & \leq y \leq 2/3; & 0 & \leq z \leq 1/2; & x & \leq (1+y)/2; & y & \leq \min(1-x,(1+x)/2) \\
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & & 1/2,0,0 & & 2/3,1/3,0 & & 1/3,2/3,0 & & 0,1/2,0 \\
0,0,1/2 & & 1/2,0,1/2 & & 2/3,1/3,1/2 & & 1/3,2/3,1/2 & & 0,1/2,1/2 \\
\end{align*}
\]

Symmetry Operations

For 1 + set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 3^* \quad 0,0,z \\
(3) & \quad 3^* \quad 0,0,z \\
(4) & \quad c \quad (0,0,1/2) \quad x,x,z \\
(5) & \quad c \quad (0,0,1/2) \quad x,2x,z \\
(6) & \quad c \quad (0,0,1/2) \quad 2x,x,z \\
\end{align*}
\]

For 1' + set

\[
\begin{align*}
(1) & \quad 1' \\
(2) & \quad 3^{*'} \quad 0,0,z \\
(3) & \quad 3^{*'} \quad 0,0,z \\
(4) & \quad c' \quad (0,0,1/2) \quad x,x,z \\
(5) & \quad c' \quad (0,0,1/2) \quad x,2x,z \\
(6) & \quad c' \quad (0,0,1/2) \quad 2x,x,z \\
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>d</td>
<td>1' x,y,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>3..1' 2/3,1/3,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>3..1' 1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>3..1' 0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p3m11'
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p11'
\[a^* = c/2 \quad b^* = (a + 2b)/2 \]
Origin at x,0,0

Along [2,1,0] p1g11'
\[a^* = b/2 \quad b^* = c \]
Origin at x,x/2,0
Origin on 3c'1

Asymmetric unit

- $0 \leq x < 2/3$
- $0 \leq y < 2/3$
- $0 \leq z < 1/2$
- $x \leq (1+y)/2$
- $y \leq \min(1-x,(1+x)/2)$

Vertices

- $0,0,0$
- $1/2,0,0$
- $2/3,1/3,0$
- $1/3,2/3,0$
- $0,1/2,0$
- $0,0,1/2$
- $1/2,0,1/2$
- $2/3,1/3,1/2$
- $1/3,2/3,1/2$
- $0,1/2,1/2$

Symmetry Operations

1. 1
 - $(1 | 0,0,0)$
 - $(1 | 0,0,0)$
2. 3^*
 - $0,0,z$
 - $(3_z | 0,0,0)$
3. 3^*
 - $0,0,z$
 - $(3_z^{-1} | 0,0,0)$
4. c'
 - $(0,0,1/2)$
 - x,x,z
 - $(m_x | 0,0,1/2)'$
5. c'
 - $(0,0,1/2)$
 - $x,2x,z$
 - $(m_x | 0,0,1/2)'$
6. c'
 - $(0,0,1/2)$
 - $2x,x,z$
 - $(m_y | 0,0,12)'$

P3c'1 3m'1 Trigonal

158.3.1291

P3c'1
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) y, x-y,z [v, u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y, x, z [u+v, u, w]</td>
</tr>
<tr>
<td></td>
<td>(4) y, x, z+1/2 [v, u, w]</td>
</tr>
<tr>
<td></td>
<td>(5) x+y, y, z+1/2 [u+v, v, w]</td>
</tr>
<tr>
<td></td>
<td>(6) x-y, y, z+1/2 [u, u-v, w]</td>
</tr>
<tr>
<td>2 c 3..</td>
<td>2/3, 1/3, z [0,0, w]</td>
</tr>
<tr>
<td></td>
<td>2/3, 1/3, z+1/2 [0,0, w]</td>
</tr>
<tr>
<td>2 b 3..</td>
<td>1/3, 2/3, z [0,0, w]</td>
</tr>
<tr>
<td></td>
<td>1/3, 2/3, z+1/2 [0,0, w]</td>
</tr>
<tr>
<td>2 a 3..</td>
<td>0,0, z [0,0, w]</td>
</tr>
<tr>
<td></td>
<td>0,0, z+1/2 [0,0, w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p3m'1 Along [1,0,0] p1 Along [2,1,0] p1g'1

\(\mathbf{a}^* = \mathbf{a} \) \(\mathbf{b}^* = \mathbf{b} \) \(\mathbf{a}^* = \mathbf{c}/2 \) \(\mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2 \) \(\mathbf{a}^* = \mathbf{b}/2 \) \(\mathbf{b}^* = \mathbf{c} \)

Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin on 31c

Asymmetric unit

\[
\begin{align*}
0 & \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/2; \quad x \leq (1+y)/2; \quad y \leq \min(1-x, (1+x)/2)
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 & \quad 0,1/2,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2 & \quad 1/3,2/3,1/2 & \quad 0,1/2,1/2
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 & \quad (2) & \quad 3^+ & \quad (3) & \quad 3^- \\
(1 | 0,0,0) & \quad (0,0,z) & \quad (0,0,0) & \quad (0,0,z) & \quad (0,0,0) \\
(4) & \quad c & \quad (0,0,1/2) & \quad x,x,z & \quad (5) & \quad c & \quad (0,0,1/2) & \quad x,0,z & \quad (6) & \quad c & \quad (0,0,1/2) & \quad 0,y,z & \quad (m,0,0,1/2)
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x-y,y,z+1/2 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,x+y,z+1/2 [u,u-v,w]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p31m Along [1,0,0] p1g1 Along [2,1,0] p2a1
a* = a b* = b a* = (a + 2b)/2 b* = c a* = c/2 b* = b/2
Origin at 0,0,z Origin at 0,0,0 Origin at x,x/2,0
Origin on 31c'

Asymmetric unit

0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; 0 ≤ z ≤ 1/2; x ≤ (1+y)/2; y ≤ min(1-x,(1+x)/2)

Vertices

0,0,0 1/2,0,0 2/3,1/3,0 1/3,2/3,0 0,1/2,0 0,0,1/2 1/2,0,1/2 2/3,1/3,1/2 1/3,2/3,1/2 0,1/2,1/2

Symmetry Operations

For 1 + set

(1) 1
(1 | 0,0,0)

(2) 3' 0,0,z
(3'z | 0,0,0)

(4) c (0,0,1/2) x,x,z
(m_3 | 0,0,1/2)

(5) c (0,0,1/2) x,0,z
(m_2 | 0,0,1/2)

(6) c (0,0,1/2) 0,y,z
(m_1 | 0,0,1/2)

For 1' + set

(1) 1'
(1 | 0,0,0)'

(2) 3' 0,0,z
(3'z | 0,0,0)'

(4) c' (0,0,1/2) x,x,z
(m_3 | 0,0,1/2)'

(5) c' (0,0,1/2) x,0,z
(m_2 | 0,0,1/2)'

(6) c' (0,0,1/2) 0,y,z
(m_1 | 0,0,1/2)'

159.2.1293 - 1 - 2780
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y,x-y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x-y,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,x+y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p31m1'</th>
<th>Along [1,0,0]</th>
<th>p1g11'</th>
<th>Along [2,1,0]</th>
<th>p11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = (a + 2b)/2</td>
<td>b* = c</td>
<td>a* = c/2</td>
<td>b* = b/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x/2,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 31c'

Asymmetric unit

- $0 < x < \frac{2}{3}$; $0 < y < \frac{2}{3}$; $0 < z < \frac{1}{2}$; $x < \frac{1+y}{2}$; $y \leq \min(1-x,(1+x)/2)$

Vertices

- $0,0,0$
- $0,0,\frac{1}{2}$
- $\frac{1}{2},0,0$
- $\frac{1}{2},0,\frac{1}{2}$
- $\frac{2}{3},\frac{1}{3},0$
- $\frac{2}{3},\frac{1}{3},\frac{1}{2}$
- $\frac{1}{3},\frac{2}{3},0$
- $\frac{1}{3},\frac{2}{3},\frac{1}{2}$
- $0,\frac{1}{2},0$
- $0,\frac{1}{2},\frac{1}{2}$
- $\frac{1}{2},\frac{1}{2},0$
- $\frac{1}{2},\frac{1}{2},\frac{1}{2}$

Symmetry Operations

1. 1

 $(1 | 0,0,0)$

2. $3^+ 0,0,z$

 $(3_z | 0,0,0)$

3. $3^- 0,0,z$

 $(3_z^{-1} | 0,0,0)$

4. $c' (0,0,1/2) x,x,z$

 $(m_{3} | 0,0,1/2)'$

5. $c' (0,0,1/2) x,0,z$

 $(m_{2} | 0,0,1/2)'$

6. $c' (0,0,1/2) 0,y,z$

 $(m_{1} | 0,0,1/2)'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td>(1) x,y,z [u,v,w] (2) y,x,y,z [v,u-v,w] (3) x+y,x,z [u+v,u,w] (4) y,x,z+1/2 [v,u,w] (5) x,y,z+1/2 [u-v,v,w] (6) x,x,y,z+1/2 [u,u+v,w]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>1/3,2/3,z [0,0,w] 2/3,1/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>0,0,z [0,0,w] 0,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p31m'
 \[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]
 Origin at 0,0,z

- Along [1,0,0] p1g'1
 \[\mathbf{a}^* = (\mathbf{a} + 2\mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c} \]
 Origin at x,0,0

- Along [2,1,0] p1
 \[\mathbf{a}^* = \mathbf{c}/2 \quad \mathbf{b}^* = \mathbf{b}/2 \]
 Origin at x,x/2,0
Origin on 3m

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/3; \quad x \leq 2y; \quad y \leq \min(1-x,2x) \]

Vertices

\begin{align*}
0,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 \\
0,0,1/3 & \quad 2/3,1/3,1/3 & \quad 1/3,2/3,1/3
\end{align*}
Symmetry Operations

For (0,0,0) + set

(1) 1
(1) 0,0,0
(3) 3' 0,0,0
(3') 0,0,0
(3') 0,0,0
(2) 3' 0,0,0
(3) 3' 0,0,0
(3') 0,0,0
(4) m x,x,z
(mx 0,0,0)
(5) m x,2x,z
(mx 0,0,0)
(6) m 2x,x,z
(my 0,0,0)

For (2/3,1/3,1/3) + set

(1) t (2/3,1/3,1/3)
(1,2/3,1/3,1/3)
(2) 3' (0,0,1/3) 1/3,1/3,1/3
(3) 3' (0,0,1/3) 1/3,1/3,1/3
(3') 2/3,1/3,1/3
(4) g (1/6,-1/6,1/3) x+1/2,x,z
(my 2/3,1/3,1/3)
(5) g (1/6,1/3,1/3) x,2x-1/2,z
(mx 2/3,1/3,1/3)
(6) g (2/3,1/3,1/3) 2x,x,z
(my 2/3,1/3,1/3)

For (1/3,2/3,2/3) + set

(1) t (1/3,2/3,2/3)
(1,1/3,2/3,2/3)
(2) 3' (0,0,2/3) 0,1/3,1/3
(3) 3' (0,0,2/3) 0,1/3,1/3
(3') 1/3,2/3,2/3
(4) g (-1/6,1/6,2/3) x+1/2,x,z
(my 1/3,2/3,2/3)
(5) g (1/3,2/3,2/3) x,2x,z
(mx 1/3,2/3,2/3)
(6) g (1/3,1/6,2/3) 2x-1/2,x,z
(my 1/3,2/3,2/3)

Generators selected (1): t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); (2); (4).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

18 c 1
(0,0,0) +
(1) x,y,z [u,v,w]
(2) y,x-y,z [v,u-v,w]
(3) x+y,x,z [u+v,u,w]
(4) y,x,z [v,u,w]
(5) x+y,y,z [u-v,v,w]
(6) x,y-z [u,u+v,w]

9 b .m
(0,0,0) +
(1) x,x,z [u,u,0]
(2) x,x,z [u,0,0]
(3) x,x,z [0,u,0]

3 a 3m
(0,0,0) +
(0,0,0)

Symmetry of Special Projections

Along [0,0,1] p31m
a^* = (2a + b)/3 b^* = (-a + 2b)/3
Origin at 0,0,z

Along [1,0,0] p11'
a^* = (-a - 2b + c)/3 b^* = (a + 2b)/2
Origin at x,0,0

Along [2,1,0] p1m1
a^* = b/2 b^* = c/3
Origin at x,x/2,0
Origin on 3m'

Asymmetric unit

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2/3</td>
<td>1/3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1/3</td>
<td>2/3</td>
<td>1/3</td>
</tr>
<tr>
<td>0</td>
<td>2/3</td>
<td>1/3</td>
<td>1/3</td>
<td>2/3</td>
</tr>
</tbody>
</table>

y \leq \min(1-x,2x)
Continued 160.2.1296

Symmetry Operations

For (0,0,0) + set

1. 1 (1,0,0)
2. 3^* (0,0,0) (0,0,0)*
3. 3^* (0,0,0) (0,0,0)*
4. m_{xy} (0,0,0)
5. m_{xy} (0,0,0)
6. m_{xy} (0,0,0)

For (2/3,1/3,1/3) + set

1. t (2/3,1/3,1/3) (2/3,1/3,1/3)*
2. 3^* (0,0,1/3) (0,0,1/3)*
3. 3^* (0,0,1/3) (0,0,1/3)*
4. g (1/6,-1/6,1/3) (1/6,-1/6,1/3)*
5. g (1/6,1/3,1/3) (1/6,1/3,1/3)*
6. g (2/3,1/3,1/3) (2/3,1/3,1/3)*

For (1/3,2/3,2/3) + set

1. t (1/3,2/3,2/3) (1/3,2/3,2/3)*
2. 3^* (0,0,2/3) (0,0,2/3)*
3. 3^* (0,0,2/3) (0,0,2/3)*
4. g (-1/6,1/6,2/3) (1/6,1/6,2/3)*
5. g (1/3,2/3,2/3) (1/3,2/3,2/3)*
6. g (1/3,1/6,2/3) (1/3,1/6,2/3)*

For (0,0,0)' + set

1. $1'$ (0,0,0)$'$
2. 3^* (0,0,0)$'$ (0,0,0)$'$
3. 3^* (0,0,0)$'$ (0,0,0)$'$
4. m_{xy} (0,0,0)$'$
5. m_{xy} (0,0,0)$'$
6. m_{xy} (0,0,0)$'$

For (2/3,1/3,1/3)' + set

1. t' (2/3,1/3,1/3) (1/3,2/3,1/3)$'$
2. 3^* (0,0,1/3) (0,0,1/3)$'$
3. 3^* (0,0,1/3) (0,0,1/3)$'$
4. g' (1/6,-1/6,1/3) (1/6,-1/6,1/3)$'$
5. g' (1/6,1/3,1/3) (1/6,1/3,1/3)$'$
6. g' (2/3,1/3,1/3) (2/3,1/3,1/3)$'$

For (1/3,2/3,2/3)' + set

1. t' (1/3,2/3,2/3) (1/3,2/3,2/3)$'$
2. 3^* (0,0,2/3) (0,0,2/3)$'$
3. 3^* (0,0,2/3) (0,0,2/3)$'$
4. g' (-1/6,1/6,2/3) (1/6,1/6,2/3)$'$
5. g' (1/3,2/3,2/3) (1/3,2/3,2/3)$'$
6. g' (1/3,1/6,2/3) (1/3,1/6,2/3)$'$

Generators selected

(1); $t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); (2); (4); $1'$.

160.2.1296 - 3 - 2789
Continued

160.2.1296

R3m1'

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff Letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1,1/2,1/2) + (0,1/2,1/2) +</td>
<td>(2/3,1/3,1/3) + (1/3,2/3,2/3) +</td>
</tr>
<tr>
<td>(0,0,0)' + (1/3,2/3,2/3)' +</td>
<td>(2/3,1/3,1/3)' + (1/3,2/3,2/3)' +</td>
</tr>
</tbody>
</table>

18 c 11' (1) x,y,z [0,0,0] (2) y-x-y,z [0,0,0] (3) x+y,x,z [0,0,0]

(4) y-x,x,z [0,0,0] (5) x+y,y,z [0,0,0] (6) x,x-y,z [0,0,0]

9 b .m1' x,x,z [0,0,0] x,2x,z [0,0,0] 2x,x,z [0,0,0]

3 a 3m1' 0,0,z [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p31m1'

\(a^* = \frac{2a + b}{3}\) \(b^* = \frac{-a + b}{3}\)

Origin at 0,0,z

Along [1,0,0] p11'

\(a^* = \frac{-a - 2b + c}{3}\) \(b^* = \frac{a + 2b}{2}\)

Origin at x,0,0

Along [2,1,0] p1m11'

\(a^* = \frac{b}{2}\) \(b^* = \frac{c}{3}\)

Origin at x,x/2,0
R3m' 3m' Trigonal
160.3.1297 R3m'
Origin on 3m'

Asymmetric unit

\begin{align*}
0 \leq x & \leq 2/3; & 0 \leq y & \leq 2/3; & 0 \leq z & \leq 1/3; & x & \leq 2y; & y \leq \min(1-x, 2x) \\
\text{Vertices} & & & & & & & \\
0,0,0 & 2/3,1/3,0 & 1/3,2/3,0 \\
0,0,1/3 & 2/3,1/3,1/3 & 1/3,2/3,1/3
\end{align*}
Symmetry Operations

For (0,0,0) + set

1. 1
 (1) (0,0,0)

2. 3' 0,0,z
 (2) 3* 0,0,z
 (3) 3* 0,0,z
 (1,0,0)
 (3,0,0)
 (3,0,0)

3. m' x,x,z
 (4) m' x,x,z
 (5) m' x,x,z
 (6) m' x,x,z
 (m_x,0,0)' (-1)
 (m_x,0,0)'
 (m_y,0,0)'

For (2/3,1/3,1/3) + set

1. t (2/3,1/3,1/3)
 (1) (2/3,1/3,1/3)
 (2) 3* (0,0,1/3) 1/3,1/3,z
 (3) 3* (0,0,1/3) 1/3,0,z
 (3,0,0,1/3)
 (3,0,0,1/3)
 (3,0,0,1/3)

2. g' (1/6,-1/6,1/3) x+1/2,x,z
 (4) g' (1/6,-1/6,1/3) x+1/2,x,z
 (5) g' (1/6,-1/6,1/3) x+1/2,x,z
 (6) g' (1/6,-1/6,1/3) x+1/2,x,z
 (m_x,1/3,1/3,1/3)'
 (m_x,1/3,1/3,1/3)'
 (m_x,1/3,1/3,1/3)'

For (1/3,2/3,2/3) + set

1. t (1/3,2/3,2/3)
 (1) (1/3,2/3,2/3)
 (2) 3* (0,0,2/3) 0,1/3,z
 (3) 3* (0,0,2/3) 0,1/3,z
 (3,0,2/3,0,1/3)
 (3,0,2/3,0,1/3)
 (3,0,2/3,0,1/3)

2. g' (-1/6,1/6,2/3) x+1/2,x,z
 (4) g' (-1/6,1/6,2/3) x+1/2,x,z
 (5) g' (-1/6,1/6,2/3) x+1/2,x,z
 (6) g' (-1/6,1/6,2/3) x+1/2,x,z
 (m_x,1/3,2/3,2/3)'
 (m_x,1/3,2/3,2/3)'
 (m_x,1/3,2/3,2/3)'

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); (2); (4).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

(0,0,0) + (2/3,1/3,1/3) + (1/3,2/3,2/3) +

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>c</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x+y,y,z [u+v,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,x-y,z [u,u-v,w]</td>
</tr>
<tr>
<td>9</td>
<td>b</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,z [u,2u,w]</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x,x,z [2u,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p31m' Along [1,0,0] p1 Along [2,1,0] p1m'1

a*= (2a + b)/3 b*= (-a + b)/3 a* = (-a - 2b + c)/3 b* = (a + 2b)/2 a* = b/2 b* = c/3
Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin on 3m

Asymmetric unit

<table>
<thead>
<tr>
<th>Vertices</th>
<th>0,0,0</th>
<th>2/3,1/3,0</th>
<th>1/3,2/3,0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,0,1/3</td>
<td>2/3,1/3,1/3</td>
<td>1/3,2/3,1/3</td>
</tr>
</tbody>
</table>
Symmetry Operations

For (0,0,0) + set

(1) 1 (1) 0,0,0 (2) 3* 0,0,z (3) 3* 0,0,z
(3z) 0,0,0 (3z) 0,0,0

(4) m x,x,z (5) m x,2x,z (6) m 2x,x,z
(m_x,0,0) (m_x,0,0) (m_y,0,0)

For (2/3,1/3,1/3)' + set

(1) t' (2/3,1/3,1/3) (2) 3*'(0,0,1/3) 1/3,1/3,z (3) 3*'(0,0,1/3) 1/3,0,z (3z) 2/3,1/3,1/3)
(1/2,3,1/3,1/3)' (3z) 2/3,1/3,1/3)' (3z) 2/3,1/3,1/3)' (3z) 2/3,1/3,1/3)

(4) g' (1/6,-1/6,1/3) x+1/2,x,z (5) g'(1/6,1/3,1/3) x,2x-1/2,z (6) g'(2/3,1/3,1/3) 2x,x,z
(m_x,2/3,1/3,1/3)' (m_x,2/3,1/3,1/3)' (m_y,2/3,1/3,1/3)' (m_y,2/3,1/3,1/3)'

For (1/3,2/3,2/3) + set

(1) t (1/3,2/3,2/3) (2) 3* (0,0,2/3) 0,1/3,z (3) 3* (0,0,2/3) 1/3,1/3,z
(1/3,2/3,2/3) (3) 1/3,2/3,2/3) (3z) 1/3,2/3,2/3) (3z) 1/3,2/3,2/3)

(4) g (-1/6,1/6,2/3) x+1/2,x,z (5) g (1/3,2/3,2/3) x,2x,z (6) g (1/3,1/6,2/3) 2x-1/2,x,z
(m_x,1/3,2/3,2/3) (m_x,1/3,2/3,2/3) (m_x,1/3,2/3,2/3) (m_x,1/3,2/3,2/3)

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(2/3,1/3,1/3);(2); (4).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

(0,0,0) + (2/3,1,1/3)' + (1/3,2,2/3) +

18 c 1 (1) x,y,z [u,v,w] (2) y,x-y,z [v,u-v,w] (3) x+y,x,z [u+v,u,w]

(4) y,x,z [v,u,w] (5) x+y,y,z [u-v,v,w] (6) x-x,y,z [u,u+v,w]

9 b .m x,x,z [u,u,0] x,2x,z [u,0,0] 2x,x,z [0,u,0]

3 a 3m 0,0,z [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p31m1' Along [1,0,0] p11' Along [2,1,0] p2v 1m

a* = (2a+b)/3 b* = (a+b)/3 a* = (-a - 2b + c)/3 b* = (a + 2b)/2

Origin at 0,0,z Origin at 1,0,0 Origin at x,x/2,0
Origin on 3m'

Asymmetric unit

<table>
<thead>
<tr>
<th>Vertices</th>
<th>0 ≤ x ≤ 2/3;</th>
<th>0 ≤ y ≤ 2/3;</th>
<th>0 ≤ z ≤ 1/3;</th>
<th>x ≤ 2y;</th>
<th>y ≤ min(1-x,2x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>2/3,1/3,0</td>
<td>1/3,2/3,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0,1/3</td>
<td>2/3,1/3,1/3</td>
<td>1/3,2/3,1/3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Symmetry Operations

For (0,0,0) + set

(1) 1 (2) 3' 0,0,z (3) 3' 0,0,z
 (1,0,0) (3,0,0,0) (3,0,0,0)

(4) m' x,x,z (5) m' x,2x,z (6) m' 2x,x,z
 (m_x',0,0,0') (m_x,0,0,0') (m_y,0,0,0')

For (2/3,1/3,1/3)' + set

(1) t' (2/3,1/3,1/3) (2) 3' ' (0,0,1/3) 1/3,1/3,z (3) 3' ' (0,0,1/3) 1/3,0,z
 (1,2/3,1/3,1/3)' (3,0,1/3,0,1/3)' (3,0,1/3,0,1/3)'

(4) g (1/6,-1/6,1/3) x+1/2,x,z (5) g (1/6,1/3,1/3) x,2x-1/2,z (6) g (2/3,1/3,1/3) 2x,x,z
 (m_x,2/3,1/3,1/3) (m_x,2/3,1/3,1/3) (m_y,2/3,1/3,1/3)

For (1/3,2,3/2,3) + set

(1) t (1/3,2,3/2,3) (2) 3' (0,0,2/3) 0,1/3,z (3) 3' (0,0,2/3) 1/3,1/3,z
 (1,1/3,2,3/2,3) (3,1/3,2,3,2/3) (3,1/3,2,3,2/3)

(4) g' (-1/6,1/6,2/3) x+1/2,x,z (5) g' (1/3,2,3/2,3) x,2x,z (6) g' (1/3,1/6,2/3) 2x-1/2,x,z
 (m_x,1/3,2,3,2/3) (m_x,1/3,2,3,2/3) (m_y,1/3,2,3,2/3)'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(2/3,1/3,1/3);(2); (4).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>c</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2/3,1,3/1/3)' +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1/3,2,3/2,3) +</td>
</tr>
<tr>
<td>9</td>
<td>b</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>.m'</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>3m'</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p31m'
\(a^* = (2a + b)/3 \) \(b^* = (-a + b)/3 \)
Origin at 0,0,z

Along [1,0,0] \(p_{3\alpha} \)
\(a^* = (-a - 2b + c)/3 \) \(b^* = (a + 2b)/2 \)
Origin at x,0,0

Along [2,1,0] \(p_{2\nu} \)
\(a^* = b/2 \) \(b^* = c/3 \)
Origin at x,x/2,0
Origin on 3c

Asymmetric unit: $0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/6; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2)$

Vertices:
- $0,0,0$
- $1/2,0,0$
- $2/3,1/3,0$
- $1/3,2/3,0$
- $0,1/2,0$
- $0,0,1/6$
- $1/2,0,1/6$
- $2/3,1/3,1/6$
- $1/3,2/3,1/6$
- $0,1/2,1/6$
Symmetry Operations

For $(0,0,0)$ + set

1. $1 (0,0,0)$
2. $3^* 0,0,z (3,0,0,0)$
3. $3^* 0,0,z (3,z,0,0)$
4. $c (0,0,1/2) x,x,z (m_x|0,0,1/2)$
5. $c (0,0,1/2) x,2x,z (m_x|0,0,1/2)$
6. $c (0,0,1/2) 2x,x,z (m_y|0,0,1/2)$

For $(2/3,1/3,1/3)$ + set

1. $t (2/3,1/3,1/3) (1/2,3,1/3,1/3)$
2. $3^* (0,0,1/3) 1/3,1/3,z (3,z,2/3,1/3,1/3)$
3. $3^* (0,0,1/3) 1/3,0,z (3,z,2/3,1/3,1/3)$
4. $g (1/6,1/6,1/6) x+1/2,x,z (m_y|2/3,1/3,5/6)$
5. $g (1/6,1/3,1/6) x,2x-1/2,z (m_y|2/3,1/3,5/6)$
6. $g (2/3,1/3,1/6) 2x,x,z (m_y|2/3,1/3,5/6)$

For $(1/3,2/3,1/3)$ + set

1. $t (1/3,2/3,1/3) (1/1,3,2/3,2/3)$
2. $3^* (0,0,2/3) 0,1/3,z (3,z,1/3,2/3,2/3)$
3. $3^* (0,0,2/3) 1/3,1/3,z (3,z,1/3,2/3,2/3)$
4. $g (-1/6,1/6,1/6) x+1/2,x,z (m_y|1/3,2/3,3,1/6)$
5. $g (1/3,2/3,1/6) x,2x,z (m_y|1/3,2/3,3,1/6)$
6. $g (1/3,1/6,1/6) 2x-1/2,x,z (m_y|1/3,2/3,3,1/6)$

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); (2); (4).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>b 1</td>
<td>(1) (x, y, z [u, v, w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) (y, x-y, z [v, u-v, w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) (x+y, x, z [u+v, u, w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) (y, x, z+1/2 [v, u, w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) (x+y, y, z+1/2 [u-v, v, w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) (x, x+y, z+1/2 [u, u+v, w])</td>
</tr>
<tr>
<td>3</td>
<td>a 3</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) \(p31m\)
\(a^* = (2a + b)/3\)
Original at \(0,0,z\)

Along \([1,0,0]\) \(p_{2\bar{1}}\)
\(a^* = (2a + 4b + c)/6\)
Origin at \(x,0,0\)

Along \([2,1,0]\) \(p1g1\)
\(a^* = b/2\)
Origin at \(x,x/2,0\)
Origin on 3c1'

Asymmetric unit

<table>
<thead>
<tr>
<th></th>
<th>0 ≤ x ≤ 2/3;</th>
<th>0 ≤ y ≤ 2/3;</th>
<th>0 ≤ z ≤ 1/6;</th>
<th>x ≤ (1+y)/2;</th>
<th>y ≤ min(1-x,(1+x)/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertices</td>
<td>0,0,0</td>
<td>1/2,0,0</td>
<td>2/3,1/3,0</td>
<td>1/3,2/3,0</td>
<td>0,1/2,0</td>
</tr>
<tr>
<td></td>
<td>0,0,1/6</td>
<td>1/2,0,1/6</td>
<td>2/3,1/3,1/6</td>
<td>1/3,2/3,1/6</td>
<td>0,1/2,1/6</td>
</tr>
</tbody>
</table>
Symmetry Operations

For (0,0,0) + set

(1) \text{t}(0,0,0) \\
(2) 3^* 0,0,z \\
(3) 3^* 0,0,z \\
(4) c(0,0,1/2) x,x,z \\
(5) c(0,0,1/2) x,2x,z \\
(6) c(0,0,1/2) 2x,x,z

For (2/3,1/3,1/3) + set

(1) \text{t}(2/3,1/3,1/3) \\
(2) 3^* (0,0,1/3) 1/3,1/3,z \\
(3) 3^* (0,0,1/3) 1/3,0,z \\
(4) g(1/6,-1/6,5/6) x+1/2,x,z \\
(5) g(1/6,1/3,5/6) x,2x-1/2,z \\
(6) g(2/3,1/3,5/6) 2x,x,z

For (1/3,2,3/2) + set

(1) \text{t}(1/3,2,3/2) \\
(2) 3^* (0,0,2/3) 0,1/3,z \\
(3) 3^* (0,0,2/3) 1/3,1/3,z \\
(4) g(-1/6,1/6,1/6) x+1/2,x,z \\
(5) g(1/3,2,3/2,1/6) x,2x,z \\
(6) g(1/3,1/6,1/6) 2x-1/2,x,z

For (0,0,0)' + set

(1) \text{t}(0,0,0)' \\
(2) 3^* 0,0,z \\
(3) 3^* 0,0,z \\
(4) c'(0,0,1/2) x,x,z \\
(5) c'(0,0,1/2) x,2x,z \\
(6) c'(0,0,1/2) 2x,x,z

For (2/3,1/3,1/3)' + set

(1) \text{t}'(2/3,1/3,1/3) \\
(2) 3^*' (0,0,1/3) 1/3,1/3,z \\
(3) 3^*' (0,0,1/3) 1/3,0,z \\
(4) g'(1/6,-1/6,5/6) x+1/2,x,z \\
(5) g'(1/6,1/3,5/6) x,2x-1/2,z \\
(6) g'(2/3,1/3,5/6) 2x,x,z

For (1/3,2,3/2)'+ set

(1) \text{t}'(1/3,2,3/2) \\
(2) 3^*' (0,0,2/3) 0,1/3,z \\
(3) 3^*' (0,0,2/3) 1/3,1/3,z \\
(4) g'(-1/6,1/6,1/6) x+1/2,x,z \\
(5) g'(1/3,2,3/2,1/6) x,2x,z \\
(6) g'(1/3,1/6,1/6) 2x-1/2,x,z

Generators selected (1);
(1,0,0);
(0,0,1);
(2/3,1/3,1/3); (2);
(4); 1'.
Continued

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

(0,0,0) + (2/3,1/3,1/3) + (1/3,2/3,2/3) +
(0,0,0)' + (2/3,1/3,1/3)' + (1/3,2/3,2/3)' +

18 b 11' (1) x,y,z [0,0,0] (2) y,x-y,z [0,0,0] (3) x+y,x ,z [0,0,0]
(4) y,x,z+1/2 [0,0,0] (5) x+y,y,z+1/2 [0,0,0] (6) x,x-y,z+1/2 [0,0,0]

3 a 3.1' 0,0,z [0,0,0] 0,0,z+1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p31m1' a* = (2a + b)/3 b* = (-a + b)/3
Origin at 0,0,z
Along [1,0,0] p11' a* = (2a + 4b + c)/6 b* = (a + 2b)/2
Origin at x,0,0
Along [2,1,0] p1g11' a* = b/2 b* = c/3
Origin at x,x/2,0
R3c' 3m' Trigonal

161.3.1302 161.3.1302 R3c'
Origin on 3c'

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{2}{3}; \quad 0 \leq z \leq \frac{1}{6}; \quad x \leq \frac{(1+y)}{2}; \quad y \leq \min(1-x,\frac{1+x}{2}) \]

Vertices

\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 & \quad 0,1/2,0 \\
0,0,1/6 & \quad 1/2,0,1/6 & \quad 2/3,1/3,1/6 & \quad 1/3,2/3,1/6 & \quad 0,1/2,1/6
\end{align*}
Symmetry Operations

For (0,0,0) + set

(1) \(1\) \((0,0,0)\)
(2) \(3^+ 0,0,z\)
(3) \(3^- 0,0,z\)
(4) \(c' (0,0,1/2) x,x,z\)
\((m_x|0,0,1/2)'\)

For (2/3,1/3,1/3) + set

(1) \(t (2/3,1/3,1/3)\)
(2) \(3^+ (0,0,1/3) 1/3,1/3,z\)
(3) \(3^- (0,0,1/3) 1/3,0,z\)
(4) \(g' (1/6,-1/6,5/6) x+1/2,x,z\)
\((m_x|2/3,1/3,5/6)'\)

For (1/3,2/3,2/3) + set

(1) \(t (1/3,2/3,2/3)\)
(2) \(3^+ (0,0,2/3) 0,1/3,z\)
(3) \(3^- (0,0,2/3) 1/3,1/3,z\)
(4) \(g' (-1/6,1/6,1/6) x+1/2,x,z\)
\((m_x|1/3,2/3,1/6)'\)

Generators selected

(1): \((1,0,0); (0,1,0); (t(0,0,1); t(2/3,1/3,1/3);(2); (4).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 b 1</td>
<td>0,0,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\tilde{y},x-y,z) ([v,u-v,w])</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\tilde{x}+y,x,z) ([u+v,u,w])</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\tilde{y},x,z+1/2) ([v,u,w])</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x,y,z+1/2) ([u,v+w])</td>
<td></td>
</tr>
<tr>
<td>3 a 3.</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p31m'\)
\(a^* = (2a+b)/3\) \(b^* = (-a+b)/3\)
Origin at 0,0,z

Along [1,0,0] \(p1\)
\(a^* = (2a+4b+c)/6\) \(b^* = (a+2b)/2\)
Origin at x,0,0

Along [2,1,0] \(p1g'1\)
\(a^* = b/2\) \(b^* = c/3\)
Origin at x,x/2,0
Origin on center (31m)

Asymmetric unit

| 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x ≤ (1+y)/2; y ≤ min(1-x,x) |
|---------------------------------|---|---|---|---|
| Vertices | 0,0,0 | 1/2,0,0 | 2/3,1/3,0 | 1/2,1/2,0 |
| | 0,0,1/2 | 1/2,0,1/2 | 2/3,1/3,1/2 | 1/2,1/2,1/2 |

Symmetry Operations

(1) 1
(2) 3⁺ 0,0,z
(3) 3⁻ 0,0,z
(4) 2 x,x,0
(5) 2 x,2x,0
(6) 2 2x,x,0
(7) 1⁻ 0,0,0
(8) 3⁺ 0,0,z; 0,0,0
(9) 3⁻ 0,0,z; 0,0,0
(10) m x,x,z
(11) m x,0,z
(12) m 0,y,z
162.1.1303

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity,</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(x,y,z {u,v,w})</td>
</tr>
<tr>
<td>(2)</td>
<td>(\bar{y},x-y,z {\bar{v},u-v,w})</td>
</tr>
<tr>
<td>(3)</td>
<td>(\bar{x}+y,\bar{x},z {\bar{u}+\bar{v},\bar{u},w})</td>
</tr>
<tr>
<td>(4)</td>
<td>(\bar{y},x,\bar{z} {\bar{v},u,w})</td>
</tr>
<tr>
<td>(5)</td>
<td>(\bar{x}+y,y,x {\bar{v},\bar{u},w})</td>
</tr>
<tr>
<td>(6)</td>
<td>(\bar{y},x,\bar{z} {\bar{v},\bar{u},w})</td>
</tr>
<tr>
<td>(7)</td>
<td>(\bar{x},\bar{y},\bar{z} {\bar{u},v,w})</td>
</tr>
<tr>
<td>(8)</td>
<td>(\bar{y},x,\bar{z} {\bar{v},\bar{u},w})</td>
</tr>
<tr>
<td>(9)</td>
<td>(\bar{x},\bar{y},\bar{z} {\bar{u}+\bar{v},\bar{u},w})</td>
</tr>
<tr>
<td>(10)</td>
<td>(\bar{y},x,\bar{z} {\bar{v},\bar{u},w})</td>
</tr>
<tr>
<td>(11)</td>
<td>(\bar{x},\bar{y},\bar{z} {\bar{u}+\bar{v},\bar{u},w})</td>
</tr>
<tr>
<td>(12)</td>
<td>(\bar{x},\bar{y},\bar{z} {\bar{u},v,w})</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**
 \(p6\hat{m1}m\)
 \(a^* = a\)
 \(b^* = b\)
- **Along [1,0,0]**
 \(p2\hat{m}1\hat{m}\)
 \(a^* = (a+2b)/2\)
 \(b^* = c\)
- **Along [2,1,0]**
 \(p2111\)
 \(a^* = c\)
 \(b^* = b/2\)

Origin at 0,0,z
Origin at x,0,0
Origin at x,x/2,0
Origin on center (31m1')

Asymmetric unit

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>1/2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Symmetry Operations

For $1 +$ set

1. 1

2. 3^+ 0,0,0

3. 3^- 0,0,0

4. $2x$, ,0

5. $2x$,2x,0

6. $2x$, ,0

7. 3^- 0,0,0

8. 3^- 0,0,0

9. 3^- 0,0,0

10. m,x,z

11. m,x,0

12. m,y,z
For \(1' + \) set

\[
\begin{align*}
(1) & \quad 1' \quad (11') \quad (0,0,0)' \\
(2) & \quad 3' \quad 0,0,z \quad (3_2') \quad (0,0,0)' \\
(3) & \quad 3' \quad 0,0,z \quad (3_2') \quad (0,0,0)' \\
(4) & \quad 2' \quad x,x,0 \quad (2_2') \quad (0,0,0)' \\
(5) & \quad 2' \quad x,2x,0 \quad (2_2') \quad (0,0,0)' \\
(6) & \quad 2' \quad 2x,x,0 \quad (2_2') \quad (0,0,0)' \\
(7) & \quad 1' \quad (11') \quad (0,0,0)' \\
(8) & \quad 3' \quad 0,0,z; 0,0,0 \quad (3_2') \quad (0,0,0)' \\
(9) & \quad 3' \quad 0,0,z; 0,0,0 \quad (3_2') \quad (0,0,0)' \\
(10) & \quad m' \quad x,x,z \quad (m_2') \quad (0,0,0)' \\
(11) & \quad m' \quad x,0,z \quad (m_2') \quad (0,0,0)' \\
(12) & \quad m' \quad 0,y,z \quad (m_2') \quad (0,0,0)' \\
\end{align*}
\]

Generators selected

\(1\); \(t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); \(1'\).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 (l) (11')</td>
<td>(1) ((x,y,z) [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(2) ((y,x-y,z) [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(3) ((x+y,0,z) [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(4) ((y,x,z) [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(5) ((x+y,y,z) [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(6) ((x,y,x) [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(7) ((x+y,z) [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(8) ((y,x+y,z) [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(9) ((x,y,x) [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(10) ((y,x,z) [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(11) ((x+y,y,z) [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(12) ((x,x+y,z) [0,0,0])</td>
</tr>
<tr>
<td>6 (k) (.m1')</td>
<td>(x,0,z [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(0,x,z [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(0,x,z [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(x,0,z [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(x,x,z [0,0,0])</td>
</tr>
<tr>
<td>6 (j) (.21')</td>
<td>(x,x,1/2 [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(x,1/2,1/2 [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(x,2x,1/2 [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(2x,x,1/2 [0,0,0])</td>
</tr>
<tr>
<td>6 (i) (.21')</td>
<td>(x,x,0 [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(x,2x,0 [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(x,2x,0 [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(2x,x,0 [0,0,0])</td>
</tr>
<tr>
<td>4 (h) (.3,1')</td>
<td>(1/3,2/3,z [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(1/3,2/3,z [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(2/3,1/3,z [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(2/3,1/3,z [0,0,0])</td>
</tr>
<tr>
<td>3 (g) (.2/m1')</td>
<td>(1/2,0,1/2 [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(0,1/2,1/2 [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2 [0,0,0])</td>
</tr>
<tr>
<td>3 (f) (.2/m1')</td>
<td>(1/2,0,0 [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(0,1/2,0 [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,0 [0,0,0])</td>
</tr>
<tr>
<td>2 (e) (3.m1')</td>
<td>(0,0,z [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(0,0,z [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(0,0,z [0,0,0])</td>
</tr>
<tr>
<td>2 (d) (3.21')</td>
<td>(1/3,2/3,1/2 [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(2/3,1/3,1/2 [0,0,0])</td>
</tr>
<tr>
<td>2 (c) (3.21')</td>
<td>(1/3,2/3,0 [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(2/3,1/3,0 [0,0,0])</td>
</tr>
<tr>
<td>1 (b) (3.m1')</td>
<td>(0,0,1/2 [0,0,0])</td>
</tr>
<tr>
<td></td>
<td>(0,0,1/2 [0,0,0])</td>
</tr>
</tbody>
</table>
Continued

Synergy of Special Projections

<table>
<thead>
<tr>
<th>Projection</th>
<th>Symmetry</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p6mm1'</td>
<td>a* = a, b* = b</td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>p2mm1'</td>
<td>a* = c, b* = (a + 2b)/2</td>
</tr>
<tr>
<td>Along [2,1,0]</td>
<td>p2111'</td>
<td>a* = c, b* = b/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,0,0
Origin at x,x/2,0
Origin on center (3'1m)

Asymmetric unit

<table>
<thead>
<tr>
<th></th>
<th>0 ≤ x ≤ 2/3;</th>
<th>0 ≤ y ≤ 1/2;</th>
<th>0 ≤ z ≤ 1/2;</th>
<th>x ≤ (1+y)/2;</th>
<th>y ≤ min(1-x,x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0</td>
<td>1/2,0,0</td>
<td>2/3,1/3,0</td>
<td>1/2,1/2,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0,1/2</td>
<td>1/2,0,1/2</td>
<td>2/3,1/3,1/2</td>
<td>1/2,1/2,1/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 3' 0,0,z
(3' | 0,0,0)

(3) 3' 0,0,z
(3' | 0,0,0)

(4) 2' x,x,0
(2 | 0,0,0)
(2 | 0,0,0)

(5) 2' x,2x,0
(2 | 0,0,0)
(2 | 0,0,0)

(6) 2' 2x,x,0
(2 | 0,0,0)
(2 | 0,0,0)

(7) 3' 0,0,z
(3' | 0,0,0)

(8) 3' 0,0,z
(3' | 0,0,0)

(9) 3' 0,0,z
(3' | 0,0,0)

(10) m x,x,z
(m | 0,0,0)

(11) m x,0,z
(m | 0,0,0)

(12) m 0,y,z
(m | 0,0,0)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>l</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z [v-u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
<td>(5) x+y,y,z [u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
<td>(8) y,x+y,z [u,v+w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y,x,z [v,0,w]</td>
<td>(11) x-y,y,z [u+v,0]</td>
</tr>
<tr>
<td>6</td>
<td>k</td>
<td>x',0,z [u,2u,0]</td>
<td>0,x,z [2u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x',z [2u,0,0]</td>
<td>x',0,z [u,2u,0]</td>
</tr>
<tr>
<td>6</td>
<td>j</td>
<td>x',1/2 [u,u,0]</td>
<td>x,2x,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x',x,1/2 [u,u,0]</td>
<td>x',2x,1/2 [u,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>x',0 [u,u,0]</td>
<td>x,2x,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x',x,0 [u,u,0]</td>
<td>x',2x,0 [u,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>1/3,2/3,z [0,0,0]</td>
<td>1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td>3</td>
<td>g</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>1/3,2/3,1/2 [0,0,0]</td>
<td>2/3,1/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>1/3,2/3,0 [0,0,0]</td>
<td>2/3,1/3,0 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: p6mm
- **Along [1,0,0]**: p2mm
- **Along [2,1,0]**: p2111'

Symmetry Operators

- **a** = **a** \(\mathbf{b}^* = \mathbf{b} \)
- **a** = **c** \(\mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2 \)
- **a** = **c** \(\mathbf{b}^* = \mathbf{b}/2 \)

- Origin at 0,0,z
- Origin at x,0,0
- Origin at x,x/2,0
Origin on center (3'1m')

Asymmetric unit

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x ≤ (1+y)/2; y ≤ min(1-x,x)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vertices

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1/2,0,0</td>
<td>2/3,1/3,0</td>
</tr>
<tr>
<td>0,0,1/2</td>
<td>1/2,0,1/2</td>
<td>2/3,1/3,1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,1/2</td>
</tr>
</tbody>
</table>

Symmetry Operations

1. 1
2. 3' 0,0,z
3. 3' 0,0,z
4. 2 x,x,0
5. 2 x,2x,0
6. 2 2x,x,0
7. 1 0,0,0'
8. 3' ' 0,0,z; 0,0,0
9. 3' ' 0,0,z; 0,0,0
10. m' x,x,z
11. m' x,0,z
12. m' 0,y,z

162.4.1306 - 1 - 2817
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7)\).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>l</td>
</tr>
<tr>
<td>(4) y,x,z [v,u,w]</td>
<td>(5) x+y,y,z [u+v,v,w]</td>
</tr>
<tr>
<td>(7) x,y,z [u,v,w]</td>
<td>(8) y,x+y,z [v,u+v,w]</td>
</tr>
<tr>
<td>(10) y,x,z [v,u,w]</td>
<td>(11) x-y,y,z [u-v,v,w]</td>
</tr>
<tr>
<td>6</td>
<td>k</td>
</tr>
<tr>
<td>0,x,z [0,u,w]</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>6</td>
<td>j</td>
</tr>
<tr>
<td>x,x,1/2 [u,u,0]</td>
<td>x,2x,1/2 [u,2u,0]</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
</tr>
<tr>
<td>x,x,0 [u,u,0]</td>
<td>x,2x,0 [u,2u,0]</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
</tr>
<tr>
<td>1/3,2/3,z [0,0,w]</td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td>3</td>
<td>g</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** \(p6m'm'\)
 - \(a^* = a\) \(b^* = b\)
 - Origin at 0,0,z
- **Along [1,0,0]** \(p2m'm'\)
 - \(a^* = c\) \(b^* = (a + 2b)/2\)
 - Origin at x,0,0
- **Along [2,1,0]** \(p211\)
 - \(a^* = c\) \(b^* = b/2\)
 - Origin at x,x/2,0
Origin on center (\(\overline{3}1m'\))

Asymmetric unit

\[
\begin{align*}
0 \leq x & \leq 2/3; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,x)
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/2,1/2,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2 & \quad 1/2,1/2,1/2
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad (1|0,0,0) \\
(1) & \quad (0,x,x,0) \\
(4) & \quad (2,0,0,0)' \\
(5) & \quad (2x,0,0,0)' \\
(7) & \quad (1,0,0,0) \\
(8) & \quad (3,0,0,0) \\
(10) & \quad (m,0,0,0)' \\
(11) & \quad (m,0,0,0)' \\
(12) & \quad (m,0,0,0)'
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>l</td>
<td>1</td>
<td>(1) x,y,z [u,v,w] (2) y,x-z [v,u-w] (3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) y,x,z [v,u-w] (5) x+y,y,z [v-u-w] (6) x-x,y,z [u,u+v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) x+y,x,z [u+v,u-w] (10) y,x,z [v,u-w]</td>
</tr>
<tr>
<td></td>
<td>k</td>
<td>-m'</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,x,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,0 [0,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,0 [0,u,w]</td>
</tr>
<tr>
<td>6</td>
<td>j</td>
<td>-2'</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,2x,0 [0,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,0,2x [0,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,2x,0 [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>i</td>
<td>-2'</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,2x,0 [0,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,0,2x [0,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,2x,0 [0,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>3..</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>3</td>
<td>g</td>
<td>.2'/m'</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,2/0,1/2 [0,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1,2/0 [0,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1,2/0 [0,u,w]</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>3.m'</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>3.2'</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/3,2/3,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/3,1/3,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/3,1/3,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>3.2'</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/3,2/3,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/3,1/3,0 [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>3.m'</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>3.m'</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1], p6mm'
Along [1,0,0], p2mm'
Along [2,1,0], p2'11
a* = a b* = b
a* = c b* = (a + 2b)/2
Origin at 0,0,z
Origin at x,0,0
Origin at x,x/2,0
Origin on center (31m)

Asymmetric unit

\[
0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2}; \quad x \leq \frac{(1+y)}{2}; \quad y \leq \min(1-x,x)
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/2,1/2,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2 & \quad 1/2,1/2,1/2
\end{align*}
\]

Symmetry Operations

For (0,0,0) + set

\[
\begin{align*}
(1) & \quad \text{1} & \quad (2) & \quad 3^* & \quad 0,0,z \\
& \quad (1|0,0,0) & \quad & \quad (3_z|0,0,0) & \quad (3_{z}^{-1}|0,0,0) \\
(4) & \quad 2 & \quad x,x,0 & \quad (2_z|0,0,0) & \quad (2_{z}^{-1}|0,0,0) \\
& \quad (2|0,0,0) & \quad & \quad (2_{z}|0,0,0) & \quad (2_{z}^{-1}|0,0,0) \\
(7) & \quad \overline{1} & \quad (1|0,0,0) & \quad (8) & \quad 3^* & \quad 0,0,z; 0,0,0 \\
& \quad (1|0,0,0) & \quad & \quad (3_z|0,0,0) & \quad (3_{z}^{-1}|0,0,0) \\
(10) & \quad m & \quad x,x,z & \quad (m_{3}|0,0,0) & \quad (11) & \quad m & \quad x,0,z & \quad (m_{2}|0,0,0) \\
& \quad (m_{3}|0,0,0) & \quad & \quad (m_{2}|0,0,0) & \quad & \quad (m_{1}|0,0,0) \quad (12) & \quad m & \quad 0,y,z \\
& \quad (m_{3}|0,0,0) & \quad & \quad (m_{2}|0,0,0) & \quad & \quad (m_{1}|0,0,0)
\end{align*}
\]
Continued

For $(0,0,1)^\prime$ +set

$\begin{align*}
(1) & t'(0,0,1) \\
(2) & (0,0,1)^\prime \quad (3) & 3 \cdot (0,0,1) \quad 0,0,z \\
(4) & 2' \, x,x,1/2 \\
(5) & 2' \, x,2x,1/2 \\
(6) & 2' \, 2x,x,1/2 \\
(4) & \bar{T} \, 0,0,1/2 \\
(5) & 3^{+} \cdot 0,0,z; \, 0,0,1/2 \\
(6) & 3^{+} \cdot 0,0,z; \, 0,0,1/2 \\
(4) & c' (0,0,1) \quad x,x,z \\
(5) & c' (0,0,1) \quad x,0,z \\
(6) & c' (0,0,1) \quad 0,y,z \\
\end{align*}$

Generators selected

$(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7)$.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>l</td>
<td>$(0,0,0) + (0,0,1)^\prime$</td>
</tr>
</tbody>
</table>

$\begin{align*}
(1) & x,y,z \, [v,u,w] \\
(2) & \bar{y},x-y,z \, [\bar{v},u-v,w] \\
(3) & x+y,\bar{x},z \, [u+v,\bar{u},w] \\
(4) & \bar{y},x,z \, [\bar{v},u,w] \\
(5) & x+y,y,z \, [u+v,v,w] \\
(6) & x,x-y,z \, [u-v,\bar{u},w] \\
(7) & x,y,z \, [v,u,w] \\
(8) & y,x+y,z \, [v,u-v,w] \\
(9) & x-y,x,z \, [u+v,\bar{u},w] \\
(10) & y,x,z \, [v,u,w] \\
(11) & x-y,\bar{y},z \, [u+v,v,w] \\
(12) & x,x,1/2 \, [u,v,0] \\
(13) & x,2x,1/2 \, [u,v,0] \\
(14) & x,2x,0 \, [u,v,0] \\
(15) & x,2x,1/2 \, [u,v,0] \\
(16) & x,2x,0 \, [u,v,0] \\
\end{align*}$

$\begin{align*}
12 & k \quad .m \quad x,0,z \, [2u,0] \\
(17) & 0,\bar{x},z \, [2u,\bar{u},0] \\
(18) & \bar{x},z \, [u,0] \\
12 & j \quad .2' \quad x,x,1/2 \, [u,u,w] \\
(19) & \bar{x},2x,1/2 \, [\bar{u},0,w] \\
(20) & 2x,2x,1/2 \, [u,w] \\
12 & i \quad .2 \quad x,x,0 \, [u,\bar{u},0] \\
(21) & x,2x,0 \, [u,\bar{u},0] \\
(22) & 2x,2x,0 \, [u,\bar{u},0] \\
(23) & 2x,2x,1/2 \, [u,\bar{u},0] \\
8 & h \quad 3.. \quad 1/3,2/3,z \, [0,0,w] \\
(24) & 1/3,2/3,z \, [0,0,w] \\
(25) & 2/3,1/3,z \, [0,0,w] \\
(26) & 2/3,1/3,z \, [0,0,w] \\
6 & g \quad .2'm \quad 1/2,0,1/2 \, [0,0,0] \\
(27) & 0,1/2,1/2 \, [0,0,0] \\
(28) & 1/2,1/2,1/2 \, [0,0,0] \\
6 & f \quad .2'm \quad 1/2,0,0 \, [2u,0] \\
(29) & 0,1/2,0 \, [2u,\bar{u},0] \\
(30) & 1/2,1/2,0 \, [u,\bar{u},0] \\
2 & e \quad 3.m \quad 0,0,z \, [0,0,0] \\
(31) & 0,0,\bar{z} \, [0,0,0] \\
4 & d \quad 3.2 \quad 1/3,2/3,1/2 \, [0,0,0] \\
(32) & 2/3,1/3,1/2 \, [0,0,0] \\
4 & c \quad 3.2 \quad 1/3,2/3,0 \, [0,0,0] \\
(33) & 2/3,1/3,0 \, [0,0,0] \\
2 & b \quad 3.m \quad 0,0,1/2 \, [0,0,0] \\
\end{align*}$
Symmetry of Special Projections

Along [0,0,1] p6mm1'
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] p2\(a^*\) 2mm
\(\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2 \)
Origin at x,0,1/2

Along [2,1,0] p2111'
\(\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = \mathbf{b}/2 \)
Origin at x,x/2,0
Origin on center (31m')

Asymmetric unit

\[
\begin{align*}
0 \leq x & \leq \frac{2}{3}; & 0 \leq y & \leq \frac{1}{2}; & 0 \leq z & \leq \frac{1}{2}; & x & \leq \frac{(1+y)}{2}; & y & \leq \min(1-x,x)
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & & 1/2,0,0 & & 2/3,1/3,0 & & 1/2,1/2,0 \\
0,0,1/2 & & 1/2,0,1/2 & & 2/3,1/3,1/2 & & 1/2,1/2,1/2
\end{align*}
\]

Symmetry Operations

For \((0,0,0) + \text{set}\)

\[
\begin{align*}
(1) & \ 1 & \ (2) & \ 3^z & \ 0,0,z & \ (3) & \ 3^{-1} & \ 0,0,z \\
(1|0,0,0) & & (3|0,0,0) & & (3|0,0,0)
\end{align*}
\]

\[
\begin{align*}
(4) & \ 2' & \ x,x,0 & \ (5) & \ 2' & \ x,2x,0 & \ (6) & \ 2' & \ 2x,x,0 \\
(2_3|0,0,0)' & & (2_3|0,0,0)' & & (2|0,0,0)'
\end{align*}
\]

\[
\begin{align*}
(7) & \ 1 & \ (8) & \ 3^z & \ 0,0,z & \ 0,0,0 & \ (9) & \ 3^{-1} & \ 0,0,z & \ 0,0,0 \\
(1|0,0,0) & & (3|0,0,0) & & (3|0,0,0)
\end{align*}
\]

\[
\begin{align*}
(10) & \ m' & \ x,x,z & \ (11) & \ m' & \ x,0,z & \ (12) & \ m' & \ 0,y,z \\
(m_3|0,0,0)' & & (m_3|0,0,0)' & & (m_1|0,0,0)'
\end{align*}
\]

162.7.1309 - 1 - 2824
For \((0,0,1)\) + set

\[
\begin{align*}
(1) & \ t'(0,0,1) \\
(1) & \ t'(0,0,1) \\
(2) & \ 3' + (0,0,1) \ 0,0,z \\
(3) & \ 3' + (0,0,1) \ 0,0,z \\
(4) & \ x,\bar{x},1/2 \\
(2) & \ 2x,2x,1/2 \\
(5) & \ 2x,0,1/2 \\
(6) & \ 2x,2x,1/2 \\
(4) & \ \bar{T} \ 0,0,1/2 \\
(2) & \ 3^{-1} \ 0,0,1/2 \\
(3) & \ 3^{-1} \ 0,0,1/2 \\
4 & \ c(0,0,1) \ x,x,z \\
(3) & \ c(0,0,1) \ x,0,z \\
(2) & \ c(0,0,1) \ 0,y,z
\end{align*}
\]

Generators selected \((1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7). \)

Positions

- **Multiplicity, Wyckoff letter, Site Symmetry.**
 - **Coordinates**
 - **(0,0,0) + (0,0,1) +**

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>((0,0,0) +) ((0,0,1) +)</td>
</tr>
<tr>
<td>24</td>
<td>l 1</td>
<td>(1) (x,y,z) [u,v,w] (2) (\bar{y},x-y,z) (\bar{u},v,w) (3) (x+y,\bar{x},z) (u+v,\bar{u},w)</td>
</tr>
<tr>
<td></td>
<td>(4) (\bar{y},x,z) [v,u,w] (5) (x+y,y,z) [u-v,v,w] (6) (x,x-y,z) [v-u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) (x,y,z) [u,v,w] (8) (y,x+y,z) [v,u-v,v,w] (9) (x+y,x,\bar{z}) [u+v,u,\bar{w}]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10) (x,y,z) [v,u,w] (11) (x-y,y,z) [u-v,v,\bar{w}] (12) (\bar{x},x+y,z) [\bar{u},u+v,\bar{w}]</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>k ..m'</td>
<td>(x,0,z) [u,0,w] (0,0,\bar{z}) [u,0,w] (\bar{x},\bar{x},z) [\bar{u},\bar{u},w]</td>
</tr>
<tr>
<td></td>
<td>(0,0,\bar{z}) [u,0,w] (\bar{x},0,\bar{z}) [\bar{u},\bar{u},w] (x,\bar{x},z) [\bar{u},\bar{u},w]</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>j ..2</td>
<td>(x,\bar{x},1/2) [u,0,0] (x,2x,1/2) [u,2u,0] (2x,\bar{x},1/2) [2u,\bar{u},0]</td>
</tr>
<tr>
<td></td>
<td>(x,\bar{x},1/2) [u,0,0] (\bar{x},2x,1/2) [\bar{u},2\bar{u},0] (2x,\bar{x},1/2) [2u,0,0]</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>i ..2'</td>
<td>(x,\bar{x},0) [u,u,w] (x,2x,0) [u,0,w] (2x,\bar{x},0) [0,\bar{u},w]</td>
</tr>
<tr>
<td></td>
<td>(\bar{x},x,0) [u,u,w] (\bar{x},2x,0) [\bar{u},0,w] (2x,\bar{x},0) [0,\bar{u},w]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>h 3..</td>
<td>1/3,2/3,\bar{z} [0,0,w] (2/3,2/3,\bar{z}) [0,0,w] (2/3,1/3,\bar{z}) [0,0,w] (2/3,1/3,\bar{z}) [0,0,w]</td>
</tr>
<tr>
<td>6</td>
<td>g ..2/m'</td>
<td>1/2,0,1/2 [0,0,0] (0,1/2,1/2) [0,0,0] (1/2,1/2,1/2) [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>f ..2'/m'</td>
<td>1/2,0,0 [u,0,w] (0,1/2,0) [u,0,w] (1/2,1/2,0) [\bar{u},\bar{w},w]</td>
</tr>
<tr>
<td>4</td>
<td>e 3.m'</td>
<td>0,0,\bar{z} [0,0,w] (0,0,\bar{z}) [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>d 3.2'</td>
<td>1/3,2/3,1/2 [0,0,w] (2/3,1/3,1/2) [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>c 3.2'</td>
<td>1/3,2/3,0 [0,0,w] (2/3,1/3,0) [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b ..3,m'</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] \(\text{p}6\text{mm}1' \)
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] \(\text{p}2\text{a}* \text{2m}' \text{m}' \)
\(a^* = c \quad b^* = (a + 2b)/2 \)
Origin at x,0,1/2

Along [2,1,0] \(\text{p}2\text{a}* \text{211} \)
\(a^* = c \quad b^* = b/2 \)
Origin at x,x/2,0
Origin at center (3) at $\bar{3}1c$

Asymmetric unit

\[
0 < x < \frac{2}{3}; \quad 0 < y < \frac{2}{3}; \quad 0 < z < \frac{1}{4}; \quad x < \frac{(1+y)2}{2}; \quad y < \min(1-x,(1+x)/2)
\]

Vertices

| 0,0,0 | 1/2,0,0 | 2/3,1/3,0 | 1/3,2/3,0 | 0,1/2,0 |
| 0,0,1/4 | 1/2,0,1/4 | 2/3,1/3,1/4 | 1/3,2/3,1/4 | 0,1/2,1/4 |

Symmetry Operations

1. 1
2. 3^* $0,0,z$
3. 3 $0,0,z$
4. 2 $x,x,\frac{1}{4}$
5. 2 $x,2x,\frac{1}{4}$
6. 2 $2x,\frac{1}{4}$
7. $\bar{1}$ $0,0,0$
8. $\bar{3}^*$ $0,0,z; 0,0,0$
9. $\bar{3}$ $0,0,z; 0,0,0$
10. $c (0,0,1/2)$ $x,0,z$
11. $c (0,0,1/2)$ $x,0,z$
12. $c (0,0,1/2)$ $0,y,z$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>i</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>h .2</td>
<td>[v, u, 0]</td>
</tr>
<tr>
<td>6</td>
<td>g 1</td>
<td>[v, u, w]</td>
</tr>
<tr>
<td>4</td>
<td>f 3..</td>
<td>0,0,w</td>
</tr>
<tr>
<td>4</td>
<td>e 3..</td>
<td>0,0,z</td>
</tr>
<tr>
<td>2</td>
<td>d 3.2</td>
<td>2/3,1/3,1/4</td>
</tr>
<tr>
<td>2</td>
<td>c 3.2</td>
<td>1/3,2/3,1/4</td>
</tr>
<tr>
<td>2</td>
<td>b 3..</td>
<td>0,0,0</td>
</tr>
<tr>
<td>2</td>
<td>a 3.2</td>
<td>0,0,1/4</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>i</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>6</td>
<td>h .2</td>
<td>(2) y,x,y,z [v,u,w]</td>
</tr>
<tr>
<td>6</td>
<td>g 1</td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>f 3..</td>
<td>(4) x,y,z [v,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>e 3..</td>
<td>(5) x+y,y,z [u+v,w]</td>
</tr>
<tr>
<td>2</td>
<td>d 3.2</td>
<td>(6) x,x-y,z [v,u-w]</td>
</tr>
<tr>
<td>2</td>
<td>c 3.2</td>
<td>(7) x,y,z [v,u,w]</td>
</tr>
<tr>
<td>2</td>
<td>b 3..</td>
<td>(8) x,y,z [v,u-w]</td>
</tr>
<tr>
<td>2</td>
<td>a 3.2</td>
<td>(9) x,y,z [v,u-w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Along [0,0,1]</th>
<th>Along [1,0,0]</th>
<th>Along [2,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>p6</td>
<td>m</td>
<td>m</td>
<td>p2</td>
</tr>
<tr>
<td>a* = a</td>
<td>a* = c</td>
<td>a* = c/2</td>
<td>a* = c/2</td>
</tr>
<tr>
<td>b* = b</td>
<td>b* = (a + 2b)/2</td>
<td>b* = b/2</td>
<td>b* = b/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,1/4</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (3 1') at 3 1c1'

Asymmetric unit 0 \leq x \leq 2/3; 0 \leq y \leq 2/3; 0 \leq z \leq 1/4; x \leq (1+y)/2; y \leq \min(1-x,(1+x)/2)

Vertices 0,0,0 1/2,0,0 2/3,1/3,0 1/3,2/3,0 0,1/2,0 0,0,1/4 1/2,0,1/4 2/3,1/3,1/4 1/3,2/3,1/4 0,1/2,1/4

Symmetry Operations

For 1 + set

(1) 1 (1 0,0,0) (2) 3' 0,0,z (3z 0,0,0) (3) 3' 0,0,z (3z' 0,0,0)
(4) 2 x,x,1/4 (2z 0,0,1/2) (5) 2 x,2x,1/4 (2z 0,0,1/2) (6) 2 2x,x,1/4 (2z 0,0,1/2)
(7) 1 (1 0,0,0) (8) 3' 0,0,z; 0,0,0 (3z 0,0,0) (9) 3' 0,0,z; 0,0,0 (3z' 0,0,0)
(10) c (0,0,1/2) x,x,z (m3 0,0,1/2) (11) c (0,0,1/2) x,0,z (m3 0,0,1/2) (12) c (0,0,1/2) 0,y,z (m1 0,0,1/2)
For $1'$ + set

(1) $1'$
 $(1|0,0,0)'$

(2) $3'$
 $0,0,z$
 $(3_2|0,0,0)'$

(3) $3'$
 $0,0,z$
 $(3_z|0,0,0)'$

(4) $2'$
 $x,x,1/4$
 $(2_z|0,0,1/2)'$

(5) $2'$
 $x,2x,1/4$
 $(2_z|0,0,1/2)'$

(6) $2'$
 $2x,x,1/4$
 $(2_z|0,0,1/2)'$

(7) $\bar{1}'$
 $(\bar{1}|0,0,0)'

(8) $3'$
 $0,0,z$
 $0,0,0$
 $(3_z|0,0,0)'$

(9) $3'$
 $0,0,z$
 $0,0,0$
 $(3_z|0,0,0)'$

(10) c'
 $(0,0,1/2)$
 x,x,z
 $(m_3|0,0,1/2)'$

(11) c'
 $(0,0,1/2)$
 $x,0,z$
 $(m_2|0,0,1/2)'$

(12) c'
 $(0,0,1/2)$
 $0,y,z$
 $(m_1|0,0,1/2)'$

Generators selected
(1); $t(1,0,0)$; $t(0,1,0)$; $t(0,0,1)$; (2); (4); (7); $1'$.

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>i</td>
<td>$11'$</td>
</tr>
<tr>
<td>12 i</td>
<td>1</td>
<td>$x,y,z [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$(1</td>
<td>0,0,0)$</td>
</tr>
<tr>
<td></td>
<td>$(2</td>
<td>0,0,0)$</td>
</tr>
<tr>
<td></td>
<td>$(3</td>
<td>0,0,0)$</td>
</tr>
<tr>
<td></td>
<td>$(4</td>
<td>0,0,0)$</td>
</tr>
<tr>
<td></td>
<td>$(5</td>
<td>0,0,0)$</td>
</tr>
<tr>
<td></td>
<td>$(6</td>
<td>0,0,0)$</td>
</tr>
<tr>
<td></td>
<td>$(7</td>
<td>0,0,0)$</td>
</tr>
<tr>
<td></td>
<td>$(8</td>
<td>0,0,0)$</td>
</tr>
<tr>
<td></td>
<td>$(9</td>
<td>0,0,0)$</td>
</tr>
<tr>
<td></td>
<td>$(10</td>
<td>0,0,0)$</td>
</tr>
<tr>
<td></td>
<td>$(11</td>
<td>0,0,0)$</td>
</tr>
<tr>
<td></td>
<td>$(12</td>
<td>0,0,0)$</td>
</tr>
<tr>
<td>6</td>
<td>h</td>
<td>$21'$</td>
</tr>
<tr>
<td>6 h</td>
<td>$x,x,1/4$</td>
<td>$x,x,1/4 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>x,y,z</td>
<td>$x,y,z [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>x,z</td>
<td>$x,z [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>y,z</td>
<td>$y,z [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>z</td>
<td>$z [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$2x,2x,3/4$</td>
<td>$2x,2x,3/4 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$1/2,0,1/2$</td>
<td>$1/2,0,1/2 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$1/2,1/2$</td>
<td>$1/2,1/2 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$1/2,1/2$</td>
<td>$1/2,1/2 [0,0,0]$</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>$3.1'$</td>
</tr>
<tr>
<td>4 f</td>
<td>$1/3,2/3,z$</td>
<td>$1/3,2/3,z [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$1/2,0,1/2$</td>
<td>$1/2,0,1/2 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$1/2,1/2$</td>
<td>$1/2,1/2 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$2/3,1/3,z$</td>
<td>$2/3,1/3,z [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$1/3,2/3,z$</td>
<td>$1/3,2/3,z [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$2/3,1/3,z$</td>
<td>$2/3,1/3,z [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$2/3,1/3,z$</td>
<td>$2/3,1/3,z [0,0,0]$</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>$3.1'$</td>
</tr>
<tr>
<td>4 e</td>
<td>$0,0,z$</td>
<td>$0,0,z [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$0,0$</td>
<td>$0,0 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$0,0,z$</td>
<td>$0,0,z [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$0,0,z$</td>
<td>$0,0,z [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$0,0,z$</td>
<td>$0,0,z [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$0,0$</td>
<td>$0,0 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$1/2,0,1/2$</td>
<td>$1/2,0,1/2 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$1/2,1/2$</td>
<td>$1/2,1/2 [0,0,0]$</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>$3.21'$</td>
</tr>
<tr>
<td>2 d</td>
<td>$2/3,1/3,1/4$</td>
<td>$2/3,1/3,1/4 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$1/3,2/3,1/4$</td>
<td>$1/3,2/3,1/4 [0,0,0]$</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>$3.21'$</td>
</tr>
<tr>
<td>2 c</td>
<td>$1/3,2/3,1/4$</td>
<td>$1/3,2/3,1/4 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$2/3,1/3,1/4$</td>
<td>$2/3,1/3,1/4 [0,0,0]$</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>$3..1'$</td>
</tr>
<tr>
<td>1 b</td>
<td>$0,0,0$</td>
<td>$0,0,0 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$0,0,1/2$</td>
<td>$0,0,1/2 [0,0,0]$</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>$3.21'$</td>
</tr>
<tr>
<td>1 a</td>
<td>$0,0,1/4$</td>
<td>$0,0,1/4 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$0,0,3/4$</td>
<td>$0,0,3/4 [0,0,0]$</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along $[0,0,1]$
$a^* = a$
$b^* = b$
Origin at $0,0,z$

Along $[1,0,0]$
$a^* = c$
$b^* = (a + 2b)/2$
Origin at $x,0,0$

Along $[2,1,0]$
$a^* = c/2$
$b^* = b/2$
Origin at $x,x/2,0$
Origin at center \(3'c\) at \(3'1c\)

Asymmetric unit

\[
\begin{align*}
\text{Vertices} & : \quad 0,0,0 ; \quad 1/2,0,0 ; \quad 2/3,1/3,0 ; \quad 1/3,2/3,0 ; \quad 0,1/2,0 ; \\
 & \quad 0,0,1/4 ; \quad 1/2,0,1/4 ; \quad 2/3,1/3,1/4 ; \quad 1/3,2/3,1/4 ; \quad 0,1/2,1/4 \\
\text{Symmetry Operations} & : \\
(1) & : 1 \\
(2) & : 3^+ \text{ c}(0,0,z) \quad (3) & : 3^- \text{ c}(0,0,z) \\
(4) & : 2' \text{ c}(x,x,1/4) \quad (5) & : 2' \text{ c}(x,2x,1/4) \quad (6) & : 2' \text{ c}(2x,x,1/4) \\
(7) & : 1' \text{ c}(0,0,0)' \quad (8) & : 3'' \text{ c}(0,0,0)' \quad (9) & : 3'' \text{ c}(0,0,0)' \\
(10) & : c(0,0,1/2) \text{ c}(x,z) \quad (11) & : c(0,0,1/2) \text{ c}(0,0,z) \quad (12) & : c(0,0,1/2) \text{ c}(0,y,z) \\
(\text{m}_3 & : 0,0,1/2) \quad (\text{m}_2 & : 0,0,1/2) \quad (\text{m}_1 & : 0,0,1/2)
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>No.</th>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>i 1</td>
<td>(1) x,y,z [u,v,w] (2) y,x-y,z [v,u,v,w] (3) x+y,x,z [u+v,u,w] (4) y,x,z+1/2 [v,u,w] (5) x+y,y,z+1/2 [u-v,v,w] (6) x,x-y,z+1/2 [u-v,u,w] (7) x,y,z [u,v,w] (8) y,x+y,z [v,u+v,w] (9) x-y,x,z [u-v,u,w] (10) y,x,z+1/2 [v,u,w] (11) x-y,y,z+1/2 [u+v,v,w] (12) x,x-y,z+1/2 [u,u-v,w]</td>
</tr>
<tr>
<td>6 h</td>
<td>.2'</td>
<td>x,x,1/4 [u,u,w] x,2x,1/4 [u,0,w] 2x,x,1/4 [0,u,w]</td>
</tr>
<tr>
<td>6 g</td>
<td>1'</td>
<td>0,1/2,0 [0,0,0] 0,1/2,0 [0,0,0] 1/2,1,2 [0,0,0] 1/2,1,2 [0,0,0]</td>
</tr>
<tr>
<td>4 f</td>
<td>3..</td>
<td>1/3,2/3,z [0,0,w] 1/3,2/3,z+1/2 [0,0,w] 2/3,1/3,z [0,0,w] 2/3,1/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 e</td>
<td>3..</td>
<td>0,0,z [0,0,w] 0,0,z+1/2 [0,0,w] 0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 d</td>
<td>3.2'</td>
<td>2/3,1/3,1/4 [0,0,w] 1/3,2/3,3/4 [0,0,w]</td>
</tr>
<tr>
<td>2 c</td>
<td>3.2'</td>
<td>1/3,2/3,1/4 [0,0,w] 2/3,1,3/4 [0,0,w]</td>
</tr>
<tr>
<td>1 b</td>
<td>3..</td>
<td>0,0,0 [0,0,0] 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 a</td>
<td>3.2'</td>
<td>0,0,1/4 [0,0,w] 0,0,3/4 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6mm Along [1,0,0] p2mg Along [2,1,0] P2\(\text{a}_1\) 211
\(a^* = a \quad b^* = b\) \(a^* = c \quad b^* = (a + 2b)/2\) \(a^* = c/2 \quad b^* = b/2\)
Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin at center (3'') at $\bar{3}'1c'$

Asymmetric unit

\begin{align*}
0 \leq x & \leq 2/3; & 0 \leq y & \leq 2/3; & 0 \leq z & \leq 1/4; & x & \leq (1+y)/2; & y & \leq \min(1-x, (1+x)/2) \\
\end{align*}

Vertices

\begin{align*}
0,0,0 & & 1/2,0,0 & & 2/3,1/3,0 & & 1/3,2/3,0 & & 0,1/2,0 \\
0,0,1/4 & & 1/2,0,1/4 & & 2/3,1/3,1/4 & & 1/3,2/3,1/4 & & 0,1/2,1/4 \\
\end{align*}

Symmetry Operations

\begin{align*}
(1) & & 1 & & 1 & & 0,0,0 & & (1) & & 0,0,0 & & (1) & & 0,0,0 & \\
(2) & & 3' & & 0,0,z & & (3_z) & & 0,0,0 & & (3) & & 0,0,z & & (3_z) & & 0,0,0 & \\
(3) & & 3' & & 0,0,z & & (3_z) & & 0,0,0 & & (3) & & 0,0,z & & (3_z) & & 0,0,0 & \\
(4) & & 2 & & x,x,1/4 & & (2_z) & & 1/2,0,1/2 & & (2) & & x,x,1/4 & & (2_z) & & 1/2,0,1/2 & \\
(5) & & 2 & & x,2x,1/4 & & (2_z) & & 2/3,1/3,1/4 & & (2) & & x,2x,1/4 & & (2_z) & & 2/3,1/3,1/4 & \\
(6) & & 2 & & 2x,x,1/4 & & (2_z) & & 2/3,1/3,1/4 & & (2) & & 2x,x,1/4 & & (2_z) & & 2/3,1/3,1/4 & \\
(7) & & \bar{1}' & & 0,0,0 & & (1) & & 0,0,0 & & (1) & & 0,0,0 & & (1) & & 0,0,0 & \\
(8) & & 3'' & & 0,0,z & & (3_z) & & 0,0,0 & & (3) & & 0,0,z & & (3_z) & & 0,0,0 & \\
(9) & & 3'' & & 0,0,z & & (3_z) & & 0,0,0 & & (3) & & 0,0,z & & (3_z) & & 0,0,0 & \\
(10) & & c' & & (0,0,1/2) & & x,x,z & & (m_3) & & (0,0,1/2) & & (m_3) & & (0,0,1/2) & & (m_3) & & (0,0,1/2) & \\
(11) & & c' & & (0,0,1/2) & & x,0,z & & (m_3) & & (0,0,1/2) & & (m_3) & & (0,0,1/2) & & (m_3) & & (0,0,1/2) & \\
(12) & & c' & & (0,0,1/2) & & 0,y,z & & (m_3) & & (0,0,1/2) & & (m_3) & & (0,0,1/2) & & (m_3) & & (0,0,1/2) & \\
\end{align*}
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 i 1</td>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) x+y,y,z+1/2 [u+v,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6) x,x-y,z+1/2 [u,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8) y,x+y,z [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(9) x-y,x,z [u-v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(11) x-y,y,z+1/2 [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(12) x-x+y,z+1/2 [u+v,u,w]</td>
</tr>
<tr>
<td>6 h . .2</td>
<td></td>
<td></td>
<td>x,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,2x,1/4 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2x,1/4 [2u,u,0]</td>
</tr>
<tr>
<td>6 g 1</td>
<td></td>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1,2/2 [0,0,0]</td>
</tr>
<tr>
<td>4 f 3..</td>
<td></td>
<td></td>
<td>1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/3,2/3,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/3,1/3,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/3,1/3,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 e 3..</td>
<td></td>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 d 3.2</td>
<td></td>
<td></td>
<td>2/3,1/3,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/3,2/3,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 c 3.2</td>
<td></td>
<td></td>
<td>1/3,2/3,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/3,1/3,3/4 [0,0,0]</td>
</tr>
<tr>
<td>1 b 3'..</td>
<td></td>
<td></td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 a 3.2</td>
<td></td>
<td></td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6m'm'
- a* = a b* = b
- Origin at 0,0,z

Along [1,0,0] p2m'g'
- a* = c b* = (a + 2b)/2
- Origin at 0,0,1/2

Along [2,1,0] p 211
- a* = c/2 b* = b/2
- Origin at x,x/2,0
Origin at center \((3)\) at \(\text{3} \text{1c}'\)

Asymmetric unit
\[0 \leq x \leq 2/3;\quad 0 \leq y \leq 2/3;\quad 0 \leq z \leq 1/4;\quad x \leq (1+y)/2;\quad y \leq \min(1-x,(1+x)/2)\]

Vertices
0,0,0 \quad 1/2,0,0 \quad 2/3,1/3,0 \quad 1/3,2/3,0 \quad 0,1/2,0
0,0,1/4 \quad 1/2,0,1/4 \quad 2/3,1/3,1/4 \quad 1/3,2/3,1/4 \quad 0,1/2,1/4

Symmetry Operations

1. \((1)\) 1

2. \((2)\) 3* \((0,0,z)\)

3. \((3)\) 3* \((0,0,z)\)

4. \((4)\) 2' \(x,x,1/4\)

5. \((5)\) 2' \(x,2x,1/4\)

6. \((6)\) 2' \(x,1/2,x\)

7. \((7)\) \(\overline{1}\) \((0,0,0)\)

8. \((8)\) \(3'\) \((0,0,z;0,0,0)\)

9. \((9)\) \(\overline{3}'\) \((0,0,z;0,0,0)\)

10. \((10)\) \(c'\) \((0,0,1/2)\) \(x,x,z\)

11. \((11)\) \(c'\) \((0,0,1/2)\) \(x,0,z\)

12. \((12)\) \(c'\) \((0,0,1/2)\) \(0,y,z\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

12
Position

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>i</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) (y, \bar{x}, \bar{y}, z [\bar{v}, \bar{u}, w])</td>
<td>(3) (\bar{x} + y, \bar{x}, z [\bar{u} + v, \bar{u}, w])</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) (\bar{y}, x, z + 1/2 [v,u,w])</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) (x + y, y, z + 1/2 [u-v, \bar{v}, w])</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) (x, y, z [u,v,w])</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) (y, x + y, z [\bar{v}, u-v, w])</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) (x-y, x-z [u+v, u, w])</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) (y, x+z+1/2 [v,u,w])</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) (x-y, y, z+1/2 [u-v, \bar{v}, w])</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6
Position

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>h</td>
<td>2'</td>
<td>x, 1/4 [u,u,w]</td>
<td>x,2x,1/4 [(\bar{u}, 0, w)]</td>
<td>2x, x,1/4 [0, u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x, 3/4 [u,u,w]</td>
<td>x,2x,3/4 [(\bar{u}, 0, w)]</td>
<td>2x, x,3/4 [0, u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>g</td>
<td>\bar{1}</td>
<td>1/2,0,0 [u,v,w]</td>
<td>0,1/2,0 [(\bar{v}, u-v, w)]</td>
<td>1/2, 1/2, 0 [(\bar{u}+v, \bar{u}, w)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,1/2 [v,u,w]</td>
<td>1/2,0,1/2 [u-v, (\bar{v}, w)]</td>
<td>1/2, 1/2, 1/2 [(\bar{u}, \bar{u}+v, w)]</td>
<td></td>
</tr>
</tbody>
</table>

4
Position

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>f</td>
<td>3..</td>
<td>1/3,2/3,z [0,0,w]</td>
<td>1/3,2/3, z + 1/2 [0,0,w]</td>
<td>2/3,1/3, z [0,0,w]</td>
<td>2/3,1/3, z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
<td>0,0, z+1/2 [0,0,w]</td>
<td>0,0, z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

2
Position

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>d</td>
<td>3.2'</td>
<td>2/3,1/3,1/4 [0,0,w]</td>
<td>1/3,2/3,3/4 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/3,2/3,1/4 [0,0,w]</td>
<td>1/3,2/3,3/4 [0,0,w]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1
Position

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>\bar{3}..</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,1/4 [0,0,w]</td>
<td>0,0,3/4 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1]
p6'mmm'

\(a^* = a\), \(b^* = b\)

Origin at 0,0,z

Along [1,0,0]
p2'mg'

\(a^* = c\), \(b^* = (a + 2b)/2\)

Origin at x,0,0

Along [2,1,0]
p 2'11

\(a^* = c/2\), \(b^* = b/2\)

Origin at x,x/2,0
Origin on center ($\overline{3}m1$)

Asymmetric unit

<table>
<thead>
<tr>
<th>$0 \leq x < 2/3$;</th>
<th>$0 \leq y < 1/3$;</th>
<th>$0 \leq z < 1$;</th>
<th>$x < (1+y)/2$;</th>
<th>$y < x/2$</th>
</tr>
</thead>
</table>

Vertices

<table>
<thead>
<tr>
<th>0,0,0</th>
<th>1/2,0,0</th>
<th>2/3,1/3,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,1</td>
<td>1/2,0,1</td>
<td>2/3,1/3,1</td>
</tr>
</tbody>
</table>

Symmetry Operations

<table>
<thead>
<tr>
<th>(1) 1</th>
<th>(2) $3^+ 0,0,z$</th>
<th>(3) $3^- 0,0,z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1</td>
<td>0,0,0)</td>
<td>$(3_z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4) 2</th>
<th>(5) 2</th>
<th>(6) 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,x,0</td>
<td>x,0,0</td>
<td>0,y,0</td>
</tr>
<tr>
<td>$(2_x</td>
<td>0,0,0)$</td>
<td>$(2_z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(7) $\overline{1}$</th>
<th>(8) $\overline{3}^+ 0,0,z; 0,0,0$</th>
<th>(9) $\overline{3}^- 0,0,z; 0,0,0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1</td>
<td>0,0,0)$</td>
<td>$(3_z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(10) m</th>
<th>(11) m</th>
<th>(12) m</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,x,z</td>
<td>x,2x,z</td>
<td>2x,x,z</td>
</tr>
<tr>
<td>$(m_x</td>
<td>0,0,0)$</td>
<td>$(m_x</td>
</tr>
</tbody>
</table>
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positions</td>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
</tr>
<tr>
<td>12 j 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) -y,x,z [v,u,w]</td>
</tr>
<tr>
<td>6 i .m.</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>6 h .2</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>6 g .2</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>3 f .2/m</td>
<td>1/2,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>3 e .2/m</td>
<td>1/2,0,0 [u,0,0]</td>
</tr>
<tr>
<td>2 d 3m</td>
<td>1/3,2/3,2z [0,0,0]</td>
</tr>
<tr>
<td>2 c 3m</td>
<td>0,0,2z [0,0,0]</td>
</tr>
<tr>
<td>1 b 3m</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 a 3m</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p6'mm'
 \(a^* = a \ b^* = b \)
- Along [1,0,0] p2111'
 \(a^* = c \ b^* = (a + 2b)/2 \)
- Along [2,1,0] p2'mm'
 \(a^* = b/2 \ b^* = c \)

Origin at 0,0,0
Origin on center (3m11')

Asymmetric unit

\begin{align*}
0 \leq x & \leq 2/3; \quad 0 \leq y \leq 1/3; \quad 0 \leq z \leq 1; \quad x \leq (1+y)/2; \quad y \leq x/2 \\
0,0,0 & \quad 1/2,0,0 \quad 2/3,1/3,0 \\
0,0,1 & \quad 1/2,0,1 \quad 2/3,1/3,1
\end{align*}

Symmetry Operations

For 1 + set

\begin{align*}
(1) & \quad 1 \\
(1') & \quad 0,0,0 \\
(2) & \quad 3^* \quad 0,0,z \\
(2_3) & \quad 0,0,0 \\
(3) & \quad 3' \quad 0,0,z \\
(3') & \quad 0,0,0 \\
(4) & \quad 2 \quad x,x,0 \\
(2_x) & \quad 0,0,0 \\
(5) & \quad 2 \quad x,0,0 \\
(2_z) & \quad 0,0,0 \\
(6) & \quad 2 \quad 0,y,0 \\
(2_y) & \quad 0,0,0 \\
(7) & \quad 1 \quad 0,0,0 \\
(1') & \quad 0,0,0 \\
(8) & \quad 3 \quad 0,0,z; 0,0,0 \\
(3_x) & \quad 0,0,0 \\
(9) & \quad 3' \quad 0,0,z; 0,0,0 \\
(3_z') & \quad 0,0,0 \\
(10) & \quad m \quad x,x,z \\
(m_x) & \quad 0,0,0 \\
(11) & \quad m \quad x,2x,z \\
(m_y) & \quad 0,0,0 \\
(12) & \quad m \quad 2x,x,z \\
(m_y) & \quad 0,0,0
\end{align*}
For 1' + set

(1) 1'
 (1 | 0,0,0)'
(2) 3'
 (3 | 0,0,0)'
(3) 3'
 (3 | 1 | 0,0,0)'
(4) 2'
 (2 | x,x,0)
 (2 | y,0,0,0)'
(5) 2'
 (2 | x,0,0)
 (2 | y,0,0,0)'
(6) 2'
 (2 | y,0,0)
(7) 1'
 (1 | 0,0,0)'
(8) 3'
 (3 | 0,0,0)'
(9) 3'
 (3 | 1 | 0,0,0)'
(10) m'
 (m | x,x,z)
 (m | x,0,0,0)'
(11) m'
 (m | x,2x,z)
 (m | x,0,0,0)'
(12) m'
 (m | 2x,x,z)
 (m | x,0,0,0)'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 j 11'</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>y,x-y,z</td>
<td>[0,0,0]</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>x+y,x,z</td>
<td>[0,0,0]</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td>x,y,z</td>
<td>[0,0,0]</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>x-y,y,z</td>
<td>[0,0,0]</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td>x-y,x,z</td>
<td>[0,0,0]</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>y,x+y,z</td>
<td>[0,0,0]</td>
<td>(7)</td>
</tr>
<tr>
<td></td>
<td>y,x+y,z</td>
<td>[0,0,0]</td>
<td>(8)</td>
</tr>
<tr>
<td></td>
<td>y,x+y,z</td>
<td>[0,0,0]</td>
<td>(9)</td>
</tr>
<tr>
<td></td>
<td>x+y,x,z</td>
<td>[0,0,0]</td>
<td>(10)</td>
</tr>
<tr>
<td></td>
<td>x+y,x,z</td>
<td>[0,0,0]</td>
<td>(11)</td>
</tr>
<tr>
<td></td>
<td>x+y,x,z</td>
<td>[0,0,0]</td>
<td>(12)</td>
</tr>
<tr>
<td>6 i .m.1'</td>
<td>x,x,z</td>
<td>[0,0,0]</td>
<td>(13)</td>
</tr>
<tr>
<td></td>
<td>x,x,z</td>
<td>[0,0,0]</td>
<td>(14)</td>
</tr>
<tr>
<td></td>
<td>x,x,z</td>
<td>[0,0,0]</td>
<td>(15)</td>
</tr>
<tr>
<td></td>
<td>x,x,z</td>
<td>[0,0,0]</td>
<td>(16)</td>
</tr>
<tr>
<td>6 h .2.1'</td>
<td>x,0,1/2</td>
<td>[0,0,0]</td>
<td>(17)</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2</td>
<td>[0,0,0]</td>
<td>(18)</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2</td>
<td>[0,0,0]</td>
<td>(19)</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2</td>
<td>[0,0,0]</td>
<td>(20)</td>
</tr>
<tr>
<td>6 g .2.1'</td>
<td>x,0,0</td>
<td>[0,0,0]</td>
<td>(21)</td>
</tr>
<tr>
<td></td>
<td>x,0,0</td>
<td>[0,0,0]</td>
<td>(22)</td>
</tr>
<tr>
<td></td>
<td>x,0,0</td>
<td>[0,0,0]</td>
<td>(23)</td>
</tr>
<tr>
<td></td>
<td>x,0,0</td>
<td>[0,0,0]</td>
<td>(24)</td>
</tr>
<tr>
<td>3 f .2/m.1'</td>
<td>1/2,0,1/2</td>
<td>[0,0,0]</td>
<td>(25)</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2</td>
<td>[0,0,0]</td>
<td>(26)</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2</td>
<td>[0,0,0]</td>
<td>(27)</td>
</tr>
<tr>
<td></td>
<td>1/2,0,1/2</td>
<td>[0,0,0]</td>
<td>(28)</td>
</tr>
<tr>
<td>3 e .2/m.1'</td>
<td>1/2,0,0</td>
<td>[0,0,0]</td>
<td>(29)</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0</td>
<td>[0,0,0]</td>
<td>(30)</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0</td>
<td>[0,0,0]</td>
<td>(31)</td>
</tr>
<tr>
<td></td>
<td>1/2,0,0</td>
<td>[0,0,0]</td>
<td>(32)</td>
</tr>
<tr>
<td>2 d 3m.1'</td>
<td>1/3,2/3,z</td>
<td>[0,0,0]</td>
<td>(33)</td>
</tr>
<tr>
<td></td>
<td>2/3,1/3,z</td>
<td>[0,0,0]</td>
<td>(34)</td>
</tr>
<tr>
<td>2 c 3m.1'</td>
<td>0,0,z</td>
<td>[0,0,0]</td>
<td>(35)</td>
</tr>
<tr>
<td></td>
<td>0,0,z</td>
<td>[0,0,0]</td>
<td>(36)</td>
</tr>
<tr>
<td>1 b 3m.1'</td>
<td>0,0,1/2</td>
<td>[0,0,0]</td>
<td>(37)</td>
</tr>
<tr>
<td>1 a 3m.1'</td>
<td>0,0,0</td>
<td>[0,0,0]</td>
<td>(38)</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Formula</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p6mm1'</td>
<td>$a^* = a$</td>
<td>Origin at 0,0,z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b^* = b$</td>
<td></td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>p211'</td>
<td>$a^* = c$</td>
<td>Origin at x,0,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b^* = (a+2b)/2$</td>
<td></td>
</tr>
<tr>
<td>Along [2,1,0]</td>
<td>p2mm1'</td>
<td>$a^* = c$</td>
<td>Origin at x,x/2,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$b^* = b/2$</td>
<td></td>
</tr>
</tbody>
</table>
Origin on center (3’m1)

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/3; \quad 0 \leq z \leq 1; \quad x \leq (1+y)/2; \quad y \leq x/2\]

Vertices

- 0,0,0
- 1/2,0,0
- 2/3,1/3,0
- 0,0,1
- 1/2,0,1
- 2/3,1/3,1

Symmetry Operations

1. 1
 - \(1\ 0,0,0\)

2. \(3'\ 0,0,z\)
 - \(3_z\ 0,0,0\)

3. \(3'\ 0,0,z\)
 - \(3_z^{-1}\ 0,0,0\)

4. \(2'\ x,x,0\)
 - \((2_x\ 0,0,0)'

5. \(2'\ x,0,0\)
 - \((2_z\ 0,0,0)'

6. \(2'\ 0,y,0\)
 - \((2_y\ 0,0,0)'

7. \(1'\)
 - \((1\ 0,0,0)'

8. \(3'\ 0,0,z; 0,0,0\)
 - \(3_z\ 0,0,0)'

9. \(3'\ 0,0,z; 0,0,0\)
 - \(3_z^{-1}\ 0,0,0)'

10. \(m\ x,x,z\)
 - \(m_{xy}\ 0,0,0\)

11. \(m\ x,2x,z\)
 - \(m_{x} 0,0,0\)

12. \(m\ 2x,x,z\)
 - \(m_{y}\ 0,0,0\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Number</th>
<th>Wyckoff Letter</th>
<th>Coordinates</th>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>j 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>12 j 1 (1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y,x-y,z [v,u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z [u,v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x-y,y,z [u+v,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,x+y,z [u,u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x+y,z [v-u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x-y,x,z [u-v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y,x,z [v,u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) x+y,y,z [u-v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) x-x,y,z [u,u+v,w]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>i .m.</td>
<td>x,x,z [u,u,0]</td>
<td>6 i .m. x,x.z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x,x,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x,2x,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,z [u,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.2'</td>
<td>x,0,1/2 [u,2u,w]</td>
<td>6 h .2' x,0,1/2 [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,1/2 [2u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,1/2 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.2'</td>
<td>x,0,0 [u,2u,w]</td>
<td>6 g .2' x,0,0 [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,0 [2u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [u,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.2'/m.</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>3 f .2'/m. 1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.2'/m.</td>
<td>1/2,0,0 [0,0,0]</td>
<td>3 e .2'/m. 1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3m.</td>
<td>1/3,2/3,z [0,0,0]</td>
<td>2 d 3m. 1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3m.</td>
<td>0,0,z [0,0,0]</td>
<td>2 c 3m. 0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3'm.</td>
<td>0,0,1/2 [0,0,0]</td>
<td>1 b 3'm. 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3'm.</td>
<td>0,0,0 [0,0,0]</td>
<td>1 a 3'm. 0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6mm
Along [1,0,0] p2111'
Along [2,1,0] p2mm

a* = a b* = b
a* = c b* = (a + 2b)/2
Origin at 0,0,z
Origin at x,0,0
Origin at x,x/2,0
Origin on center ($\bar{3}'m'1$)

Asymmetric unit

<table>
<thead>
<tr>
<th>Vertices</th>
<th>0,0,0</th>
<th>0,0,1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2,0,0</td>
<td>1/2,0,1</td>
</tr>
<tr>
<td></td>
<td>2/3,1/3,0</td>
<td>2/3,1/3,1</td>
</tr>
</tbody>
</table>

Symmetry Operations

1. 1

2. $3'$ $0,0,z$
 $(3_z | 0,0,0)$

3. $3'$ $0,0,z$
 $(3_z^{-1} | 0,0,0)$

4. 2 $x,x,0$
 $(2_{xy} | 0,0,0)$

5. 2 $x,0,0$
 $(2_x | 0,0,0)$

6. 2 $0,y,0$
 $(2_y | 0,0,0)$

7. $\bar{1}$
 $(\bar{1} | 0,0,0)$

8. $3''$ $0,0,z; 0,0,0$
 $(3_z | 0,0,0)'$

9. $3''$ $0,0,z; 0,0,0$
 $(3_z^{-1} | 0,0,0)'$

10. m' x,x,z
 $(m_{xy} | 0,0,0)'$

11. m' $x,2x,z$
 $(m_x | 0,0,0)'$

12. m' $2x,x,z$
 $(m_y | 0,0,0)'$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>((\mathbf{u}, \mathbf{v}, \mathbf{w}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 j 1</td>
<td>(1) (x, y, z) [(u, v, w)]</td>
<td>(2) (y, x-y, z) [(v-u, v, w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) (x+y, x, z) [(u+v, u, w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) (y, x) [(v, u, w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) (x-y, y) [(u-v, v, w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) (x, x+y) [(u, u+v, w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) (x, y, z) [(u, v, w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) (y, x+y, z) [(v, u+v, w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) (x-y, x, z) [(u-v, u, w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) (y, x, z) [(v, u, w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) (x+y, y, z) [(u+v, v, w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) (x, x-y, z) [(u-u, v, w)]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along \([0,0,1] \)**: \(p6m1' \)
 - \(\mathbf{a}^* = \mathbf{a} \)
 - \(\mathbf{b}^* = \mathbf{b} \)
 - Origin at \(0,0,z \)

- **Along \([1,0,0] \)**: \(p211 \)
 - \(\mathbf{a}^* = \mathbf{c} \)
 - \(\mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2 \)
 - Origin at \(0,0,0 \)

- **Along \([2,1,0] \)**: \(p2m1' \)
 - \(\mathbf{a}^* = \mathbf{c} \)
 - \(\mathbf{b}^* = \mathbf{b}/2 \)
 - Origin at \(x,0,0 \)
Origin on center (3m1)

Asymmetric unit
0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/3; \quad 0 \leq z \leq 1; \quad x \leq (1+y)/2; \quad y \leq x/2

Vertices
0,0,0 \quad 1/2,0,0 \quad 2/3,1/3,0
0,0,1 \quad 1/2,0,1 \quad 2/3,1/3,1

Symmetry Operations

(1) 1
(1 0,0,0)

(4) 2', x,0
(2\textsubscript{x},0,0,0)'

(7) 1
(1 0,0,0)

(10) m', x,x,z
(m\textsubscript{x},0,0,0)'

(2) 3*, 0,0,z
(3\textsubscript{z},0,0,0)

(5) 2', x,0,0
(2\textsubscript{x},0,0,0)'

(8) 3*, 0,0,z; 0,0,0
(3\textsubscript{z},0,0,0)

(11) m', x,2x,z
(m\textsubscript{x},0,0,0)'

(3) 3*, 0,0,z
(3\textsubscript{z},0,0,0)

(6) 2', y,0
(2\textsubscript{y},0,0,0)'

(9) 3*, 0,0,z; 0,0,0
(3\textsubscript{z},0,0,0)

(12) m', 2x,x,z
(m\textsubscript{y},0,0,0)'}
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 j 1</td>
<td>((1) \ x,y,z \ [u,v,w]) (\rightarrow (2) \ y,x-y,z \ [v,u,w]) (\rightarrow (3) \ x+y,x,z \ [u+v,u,w]) (\rightarrow (4) \ y,x,z \ [v,u,w]) (\rightarrow (5) \ x,y,z \ [u,u,v,w]) (\rightarrow (6) \ x,y,\bar{z} \ [u,v,u,w]) (\rightarrow (7) \ \bar{x},\bar{y},\bar{z} \ [u,v,w]) (\rightarrow (8) \ \bar{x},\bar{y},z \ [u,v,w]) (\rightarrow (9) \ \bar{x},y,x \ [u,v,u,w]) (\rightarrow (10) \ \bar{y},x,z \ [v,u,w]) (\rightarrow (11) \ \bar{y},x+y,z \ [u+v,u,w]) (\rightarrow (12) \ \bar{x},x-y,z \ [u,u-v,w])</td>
</tr>
<tr>
<td>6 i .m'</td>
<td>(\rightarrow (1) \ x,y,z \ [u,u,w]) (\rightarrow (2) \ x,2x,z \ [u,2u,w]) (\rightarrow (3) \ 2x,2x,z \ [2u,2u,w])</td>
</tr>
<tr>
<td>6 h .2'</td>
<td>(\rightarrow (1) \ x,0,1/2 \ [u,2u,w]) (\rightarrow (2) \ 0,x,1/2 \ [2u,u,w])</td>
</tr>
<tr>
<td>6 g .2'</td>
<td>(\rightarrow (1) \ x,0,1/2 \ [u,2u,w]) (\rightarrow (2) \ 0,x,0 \ [2u,u,w])</td>
</tr>
<tr>
<td>3 f .2'/m'</td>
<td>(\rightarrow (1) \ 1/2,0,1/2 \ [u,2u,w]) (\rightarrow (2) \ 1/2,1/2 \ [2u,u,w])</td>
</tr>
<tr>
<td>3 e .2'/m'</td>
<td>(\rightarrow (1) \ 1/2,0,0 \ [u,2u,w]) (\rightarrow (2) \ 1/2,0 \ [2u,u,w])</td>
</tr>
<tr>
<td>2 d 3m'</td>
<td>(\rightarrow (1) \ 1/3,2/3,z \ [0,0,w]) (\rightarrow (2) \ 2/3,1/3,\bar{z} \ [0,0,w])</td>
</tr>
<tr>
<td>2 c 3m'</td>
<td>(\rightarrow (1) \ 0,0,z \ [0,0,w]) (\rightarrow (2) \ 0,0,\bar{z} \ [0,0,w])</td>
</tr>
<tr>
<td>1 b 3m'</td>
<td>(\rightarrow (1) \ 0,1/2 \ [0,0,w]) (\rightarrow (2) \ 0,0,0 \ [0,0,w])</td>
</tr>
<tr>
<td>1 a 3m'</td>
<td>(\rightarrow (1) \ 0,0,0 \ [0,0,w]) (\rightarrow (2) \ 0,0,0 \ [0,0,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6'm'm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>(\rightarrow (1) \ x,y,z \ [u,v,w]) (\rightarrow (2) \ y,x-y,z \ [v,u,w]) (\rightarrow (3) \ x+y,x,z \ [u+v,u,w])</td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>p2'11</td>
</tr>
<tr>
<td>(a^* = c)</td>
<td>(b^* = (a + 2b)/2)</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td>(\rightarrow (1) \ x,y,z \ [u,v,w]) (\rightarrow (2) \ y,x-y,z \ [v,u,w]) (\rightarrow (3) \ x+y,x,z \ [u+v,u,w])</td>
</tr>
<tr>
<td>Along [2,1,0]</td>
<td>p2'mm'</td>
</tr>
<tr>
<td>(a^* = c)</td>
<td>(b^* = b/2)</td>
</tr>
<tr>
<td>Origin at x,x/2,0</td>
<td>(\rightarrow (1) \ x,y,z \ [u,v,w]) (\rightarrow (2) \ y,x-y,z \ [v,u,w]) (\rightarrow (3) \ x+y,x,z \ [u+v,u,w])</td>
</tr>
</tbody>
</table>
Origin on center \((\overline{3}m1)\)

Asymmetric unit
\[
0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/3; \quad 0 \leq z \leq 1; \quad x \leq (1+y)/2; \quad y \leq x/2
\]

Vertices
\[
(0,0,0) \quad (1/2,0,0) \quad (2/3,1/3,0) \\
(0,0,1) \quad (1/2,0,1) \quad (2/3,1/3,1)
\]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 3^* \quad 0,0,z \\
(3) & \quad 3 \quad 0,0,z \\
(4) & \quad 2 \quad x,x,0 \\
(5) & \quad 2 \quad x,0,0 \\
(6) & \quad 2 \quad 0,y,0 \\
(7) & \quad \overline{1} \quad \overline{1} \quad 0,0,0 \\
(8) & \quad \overline{3}^* \quad 0,0,z; \quad 0,0,0 \\
(9) & \quad \overline{3} \quad 0,0,z; \quad 0,0,0 \\
(10) & \quad m \quad x,x,z \\
(11) & \quad m \quad x,2x,z \\
(12) & \quad m \quad 2x,x,z
\end{align*}
\]

\[
(\overline{1}) 0,0,0 \\
(\overline{3}) z \quad 0,0,0 \\
(\overline{3}) z^{-1} \quad 0,0,0 \\
(m_x) 0,0,0 \\
(m_x) 0,0,0 \\
(m_y) 0,0,0
\]
For \((0,0,1)\) + set

(1) \(t' (0,0,1)\)	(2) \(3' (0,0,1)\) & 0,0,z	(3) \(3' (0,0,1)\) & 0,0,z					
\((1	0,0,1)\)	\((3_	0,0,1)\)'	\((3_	0,0,1)\)'	\((3_	0,0,1)\)'

<table>
<thead>
<tr>
<th>(4) (2' x,x,1/2)</th>
<th>(5) (2' x,0,1/2)</th>
<th>(6) (2' 0,y,1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((2,_</td>
<td>0,0,1))'</td>
<td>((2,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(7) (\bar{T} 0,0,1/2)</th>
<th>(8) (\bar{T} 0,0,1/2)</th>
<th>(9) (\bar{T} 0,0,1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\bar{T}</td>
<td>0,0,1))'</td>
<td>((\bar{T}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(10) (c' (0,0,1) x,x,z)</th>
<th>(11) (c' (0,0,1) x,2x,z)</th>
<th>(12) (c' (0,0,1) 2x,x,z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((m,_</td>
<td>0,0,1))'</td>
<td>((m,</td>
</tr>
</tbody>
</table>

Generators selected (1); \(t(1,0,0)\); \(t(0,1,0)\); \(t'(0,0,1)\); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0,0) +) ((0,0,1)) + ((0,0,1)) + ((0,0,1))</td>
<td>(x,y,z [u,v,w]) (\bar{y},-y,z [\bar{v},u-v,w]) (x+y,x,z [u+\bar{v},\bar{u},w]) (x+y,x,z [u+\bar{v},\bar{u},w])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>((1) x,y,z [u,v,w])</th>
<th>(\bar{y},-y,z [\bar{v},u-v,w])</th>
<th>(x+y,x,z [u+\bar{v},\bar{u},w])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(24 j 1)</td>
<td>(24 i .m.)</td>
<td>(12 h .2')</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x,x,z [u,u,0])</th>
<th>(x,2x,z [u,0,0])</th>
<th>(2x,x,z [0,0,0])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{x},\bar{x},z [u,u,0])</td>
<td>(2x,\bar{x},z [0,u,0])</td>
<td>(\bar{x},2\bar{x},z [u,0,0])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x,0,1/2 [u,2u,w])</th>
<th>(0,x,1/2 [2u,u,w])</th>
<th>(\bar{x},1/2 [u,u,w])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x,0,1/2 [\bar{u},\bar{2u},w])</td>
<td>(0,\bar{x},1/2 [2u,u,w])</td>
<td>(x,1/2 [u,u,w])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x,0,0 [u,0,0])</th>
<th>(0,x,0 [0,u,0])</th>
<th>(\bar{x},x,0 [u,0,0])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{x},0,0 [u,0,0])</td>
<td>(0,\bar{x},0 [0,u,0])</td>
<td>(\bar{x},x,0 [u,\bar{u},0])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(0,1/2,1/2 [0,0,0])</th>
<th>(1/2,1,1/2 [0,0,0])</th>
<th>(0,1/2,1/2 [0,0,0])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,1/2,0 [u,0,0])</td>
<td>(0,1/2,0 [u,0,0])</td>
<td>(0,1/2,0 [u,0,0])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2/3,1/3,\bar{z} [0,0,0])</th>
<th>(2/3,1/3,\bar{z} [0,0,0])</th>
<th>(2/3,1/3,\bar{z} [0,0,0])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,z [0,0,0])</td>
<td>(0,0,z [0,0,0])</td>
<td>(0,0,z [0,0,0])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(0,1/2 [0,0,0])</th>
<th>(0,1/2 [0,0,0])</th>
<th>(0,1/2 [0,0,0])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3m)</td>
<td>(3m)</td>
<td>(3m)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(0,0,0 [0,0,0])</th>
<th>(0,0,0 [0,0,0])</th>
<th>(0,0,0 [0,0,0])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0 [0,0,0])</td>
<td>(0,0,0 [0,0,0])</td>
<td>(0,0,0 [0,0,0])</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>p6mm1'</td>
<td>Origin at 0,0,z</td>
</tr>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b)</td>
<td></td>
</tr>
<tr>
<td>[1,0,0]</td>
<td>p2111'</td>
<td>Origin at x,0,0</td>
</tr>
<tr>
<td>(a^* = c)</td>
<td>(b^* = (a + 2b)/2)</td>
<td></td>
</tr>
<tr>
<td>[2,1,0]</td>
<td>p_{2a}, 2mm</td>
<td>Origin at x,x/2,1/2</td>
</tr>
<tr>
<td>(a^* = c)</td>
<td>(b^* = b/2)</td>
<td></td>
</tr>
</tbody>
</table>
Origin on center ($3m'$1)

Asymmetric unit:
\[0 < x < \frac{2}{3}; \quad 0 < y < \frac{1}{3}; \quad 0 < z < 1; \quad x < \frac{(1+y)}{2}; \quad y < \frac{x}{2} \]

Vertices:
- $0,0,0$
- $1/2,0,0$
- $2/3,1/3,0$
- $0,0,1$
- $1/2,0,1$
- $2/3,1/3,1$

Symmetry Operations: For $(0,0,0) +$ set

1. 1
2. $3'$: $0,0,z$
 $3z|0,0,0$
3. 3: $0,0,z$
 $3z|0,0,0$
4. $2'$: $x,x,0$
 $2xy|0,0,0$
5. $2'$: $x,0,0$
 $2y|0,0,0$
6. 1
7. m': x,x,z
 $(m_y|0,0,0)'$
8. $3'$: $0,0,z$
 $3z|0,0,0$
9. 3: $0,0,z$
 $3z|0,0,0$
10. m': $x,2x,z$
 $(m_y|0,0,0)'$
11. m': $2x,x,z$
 $(m_y|0,0,0)'$
12. m': $x,2x,z$
 $(m_y|0,0,0)'$
For $(0,0,1)' +$ set

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) $t'(0,0,1)$</td>
<td>$(0,0,0) + (0,0,1)' +$</td>
</tr>
<tr>
<td>(2) $3'(0,0,1)$</td>
<td>$(0,0,z)$</td>
</tr>
<tr>
<td>(3) $3'(0,0,1)$</td>
<td>$(0,0,z)$</td>
</tr>
<tr>
<td>(7) $T' 0,0,1/2$</td>
<td>$(3)_z 0,0,1/2$</td>
</tr>
<tr>
<td>(11) $c(0,0,1)$</td>
<td>$x,2x,z$</td>
</tr>
<tr>
<td>(12) $c(0,0,1)$</td>
<td>$2x,x,z$</td>
</tr>
</tbody>
</table>

Generators selected: $(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7)$.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff Letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 $j 1$</td>
<td>$(0,0,0) + (0,0,1)' +$</td>
</tr>
<tr>
<td>$(1) x,y,z \ [u,v,w]$</td>
<td>$(2) \bar{y}, x-y,z \ [\bar{v},u-v,w]$</td>
</tr>
<tr>
<td>$(4) y,x,z \ [v,u,w]$</td>
<td>$(5) x-y,\bar{y},z \ [u+v,v,w]$</td>
</tr>
<tr>
<td>$(7) \bar{x},y,z \ [v,u,w]$</td>
<td>$(8) y,x+y,z \ [v,u-v,w]$</td>
</tr>
<tr>
<td>$(10) \bar{y},x,z \ [\bar{v},u,w]$</td>
<td>$(11) x+y,z \ [u+v,v,w]$</td>
</tr>
<tr>
<td>12 $i .m'$</td>
<td>$x,2x,z \ [u,2u,w]$</td>
</tr>
<tr>
<td>$(\bar{x},x,z \ [\bar{u},u,w])$</td>
<td>$2x,x,z \ [2u,2u,w]$</td>
</tr>
<tr>
<td>12 $h .2$</td>
<td>$x,0,1/2 \ [u,0,0]$</td>
</tr>
<tr>
<td>$(\bar{x},0,1/2 \ [\bar{u},0,0])$</td>
<td>$0,x,1/2 \ [0,u,0]$</td>
</tr>
<tr>
<td>12 $g .2'$</td>
<td>$x,0,0 \ [u,2u,w]$</td>
</tr>
<tr>
<td>$(\bar{x},0,0 \ [\bar{u},2u,w])$</td>
<td>$0,x,0 \ [2u,\bar{u},w]$</td>
</tr>
<tr>
<td>6 $f .2/m$</td>
<td>$1/2,0,1/2 \ [u,0,0]$</td>
</tr>
<tr>
<td>6 $e .2'/m'$</td>
<td>$1/2,0,0 \ [u,2u,w]$</td>
</tr>
<tr>
<td>4 $d 3m'$</td>
<td>$1/3,2/3,0 \ [0,0,w]$</td>
</tr>
<tr>
<td>4 $c 3m'$</td>
<td>$0,0,z \ [0,0,w]$</td>
</tr>
<tr>
<td>2 $b 3m'$</td>
<td>$0,0,1/2 \ [0,0,w]$</td>
</tr>
<tr>
<td>2 $a 3m'$</td>
<td>$0,0,0 \ [0,0,w]$</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] \(\text{p}6\text{mm}1' \)
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] \(\text{p}_{2a}^* \text{211} \)
\(\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2 \)
Origin at x,0,1/2

Along [2,1,0] \(\text{p}_{2a}^* \text{2m}^*\text{m}' \)
\(\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = \mathbf{b}/2 \)
Origin at x,x/2,1/2
Origin on center (3) at $\overline{3}c1$

Asymmetric unit:

- $0 \leq x \leq 2/3$
- $0 \leq y \leq 2/3$
- $0 \leq z \leq 1/4$
- $x \leq (1+y)/2$
- $y \leq \min(1-x,(1+x)/2)$

Vertices:

- $(0,0,0)$
- $(1/2,0,0)$
- $(2/3,1/3,0)$
- $(1/3,2/3,0)$
- $(0,1/2,0)$
- $(0,0,1/4)$
- $(1/2,0,1/4)$
- $(2/3,1/3,1/4)$
- $(1/3,2/3,1/4)$
- $(0,1/2,1/4)$

Symmetry Operations:

1. 1
2. 3^+ $0,0,z$
3. 3^- $0,0,z$
4. 2 $x,x,1/4$
5. 2 $x,0,1/4$
6. 2 $0,y,1/4$
7. $\overline{1}$ $(0,0,0)$
8. $\overline{3}^+$ $0,0,z$; $0,0,0$
9. $\overline{3}^-$ $0,0,z$; $0,0,0$
10. c $(0,0,1/2)$ x,x,z
11. c $(0,0,1/2)$ $x,2x,z$
12. c $(0,0,1/2)$ $2x,x,z$

165.1.1322 - 1 - 2855
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>g 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x-y,y,z+1/2 [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,x+y,z+1/2 [u-u+v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x+y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x-y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) x+y,y,z+1/2 [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) x,x-y,z+1/2 [u-u+v,w]</td>
</tr>
<tr>
<td>6</td>
<td>f .2</td>
<td>x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,1/4 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,3/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,3/4 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,3/4 [u,u,0]</td>
</tr>
<tr>
<td>6</td>
<td>e 1</td>
<td>1/2,0,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,0 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,1/2 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,1/2 [u-u+v,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>d 3..</td>
<td>1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/3,2/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>c 3..</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b 3..</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a 32</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6'/*m1'
Along [1,0,0] p311
Along [2,1,0] p21m'g

a* = a b* = b
a* = c/2 b* = (a + 2b)/2
a* = c b* = b/2
Origin at 0,0,z
Origin at x,0,1/4
Origin at x,x/2,0
Origin on center (3 1') at 3c11'

Asymmetric unit

\[
0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/4; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2)
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 & \quad 0,1/2,0 \\
0,0,1/4 & \quad 1/2,0,1/4 & \quad 2/3,1/3,1/4 & \quad 1/3,2/3,1/4 & \quad 0,1/2,1/4
\end{align*}
\]

Symmetry Operations

For 1 + set

\[
\begin{align*}
1 & \quad 3' - & 0,0,z \\
(1) 1 & \quad (3z|0,0,0) & \quad (3z^{-1}|0,0,0) \\
(2) 3' + & \quad 0,0,z \\
(3) 3' - & \quad 0,0,z \\
(4) 2 & \quad x,x,1/4 \\
(2xy|0,0,1/2) & \quad (2x|0,0,1/2) & \quad (2y|0,0,1/2) \\
(5) 2 & \quad x,0,1/4 \\
(2x|0,0,1/2) & \quad (2y|0,0,1/2) \\
(6) 2 & \quad 0,y,1/4 \\
(2z|0,0,1/2) & \quad (2z_{-1}|0,0,1/2) \\
(7) \overline{1} & \quad 3' - & 0,0,z; \quad 0,0,0 \\
(\overline{1}|0,0,0) & \quad (3z|0,0,0) & \quad (3z^{-1}|0,0,0) \\
(8) 3' + & \quad 0,0,z; \quad 0,0,0 \\
(9) \overline{3} & \quad 0,0,z; \quad 0,0,0 \\
(10) c (0,0,1/2) \quad x,x,z \\
(mx|0,0,1/2) & \quad (mx|0,0,1/2) \\
(11) c (0,0,1/2) \quad x,2x,z \\
(mx|0,0,1/2) & \quad (mz|0,0,1/2) \\
(12) c (0,0,1/2) \quad 2x,x,z \\
(mx|0,0,1/2) & \quad (mz|0,0,1/2)
\end{align*}
\]
For $1^\prime +$ set

(1) 1^\prime
(1 $0,0,0^\prime$

(2) 3^\prime 0,0,z
(3 3^\prime 0,0,z

(4) 2^\prime x,x,1/4
(2,0,0,0,1/2)$^\prime$

(5) 2^\prime x,0,1/4
(2,0,0,0,1/2)$^\prime$

(6) 2^\prime 0,y,1/4
(2,0,0,0,1/2)$^\prime$

(7) 1^\prime
(1 $0,0,0^\prime$

(8) 3^\prime 0,0,z; 0,0,0
(3 3^\prime 0,0,z; 0,0,0

(9) 3^\prime 0,0,z; 0,0,0
(3 3^\prime 0,0,z; 0,0,0

(10) c^\prime (0,0,1/2) x,x,z
(m,0,0,1/2)$^\prime$

(11) c^\prime (0,0,1/2) x,2x,z
(m,0,0,1/2)$^\prime$

(12) c^\prime (0,0,1/2) 2x,x,z
(m,0,0,1/2)$^\prime$

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); 1^\prime.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>g 11$^\prime$</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y^\prime,x-y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x^\prime+y,x,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x-y,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x^\prime+y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) x^\prime,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x+y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x^\prime+y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x^\prime,x,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) x+y,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) x^\prime,x,y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>f .2.1$^\prime$</td>
<td>x,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) x,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x^\prime,x,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,x,3/4 [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>e .11$^\prime$</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) 1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) 1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>d .3.1$^\prime$</td>
<td>1/3,2,3,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 2/3,1/3,2,3,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) 2/3,1/3,2,3,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) 1/3,2,3,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>c .3.1$^\prime$</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) 0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) 0,0,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b .3.1$^\prime$</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a 32.1$^\prime$</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 0,0,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6mm1$^\prime$

Along [1,0,0] p2111$^\prime$

Along [2,1,0] p2mg1$^\prime$

$a^\star = a$ $b^\star = b$

$a^\star = c/2$ $b^\star = (a + 2b)/2$

$a^\star = c$ $b^\star = b/2$

Origin at 0,0,z

Origin at x,0,0

Origin at x,x/2,0
Origin on center (3') at 3’c1

Asymmetric unit

\[
0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{2}{3}; \quad 0 \leq z \leq \frac{1}{4}; \quad x \leq \frac{(1+y)}{2}; \quad y \leq \min(1-x,(1+x)/2)
\]

Vertices

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1/4</td>
</tr>
<tr>
<td>1/2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>0</td>
<td>1/4</td>
</tr>
<tr>
<td>2/3</td>
<td>1/3</td>
<td>0</td>
</tr>
<tr>
<td>1/3</td>
<td>2/3</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/2</td>
<td>1/4</td>
</tr>
</tbody>
</table>

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 3’ 0,0,z
(3z | 0,0,0)

(3) 3’ 0,0,z
(3z | 0,0,0)

(4) 2’ x,x,1/4
(2xy | 0,0,1/2)'

(5) 2’ x,0,1/4
(2x | 0,0,1/2)'

(6) 2’ y,1/4
(2y | 0,0,1/2)'

(7) 3’ 0,0,0
(1 | 0,0,0)'

(8) 3’ 0,0,0
(3z | 0,0,0)'

(9) 3’ 0,0,0
(3z | 0,0,0)'

(10) c (0,0,1/2) x,x,z
(mxy | 0,0,1/2)

(11) c (0,0,1/2) x,2x,z
(mx | 0,0,1/2)

(12) c (0,0,1/2) 2x,x,z
(my | 0,0,1/2)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>g 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) (\bar{y},x-y,z) [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) (x+y, \bar{x},z) [u+v,\bar{u},w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,(x),z +1/2 [v,\bar{u},w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x-y,(\bar{y}),z +1/2 [u+v,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) (x,\bar{x},z) +1/2 [u-u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) (\bar{x},y,\bar{z}) [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,(x+y),z [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x-y,(x),(\bar{z}) [u-v,\bar{u},w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) (y, \bar{x},z) +1/2 [v,u,\bar{w}]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) (\bar{y}+y,y,z) +1/2 [u-v,\bar{v},\bar{w}]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) (x-x,y,z) +1/2 [u,\bar{u},v,\bar{w}]</td>
</tr>
</tbody>
</table>

6	f .2'	\(x,0,1/4 \) [u,2u,w]
		\(0,x,1/4 \) [2u,\bar{u},w]
		\(\bar{x},0,3/4 \) [u,2\bar{u},\bar{w}]
		\(0,\bar{x},3/4 \) [2u,u,\bar{w}]

6	e \(\bar{1}^1 \)	\(1/2,0,0 \) [0,0,0]
		\(0,1/2,0 \) [0,0,0]
		\(0,1/2,1/2 \) [0,0,0]
		\(1/2,0,1/2 \) [0,0,0]
		\(1/2,1/2,1/2 \) [0,0,0]

4	d 3.	\(1/3,2/3,0 \) [0,0,0]
		\(2/3,1/3,\bar{z} \) +1/2 [0,0,w]
		\(2/3,1/3,\bar{z} \) [0,0,w]
		\(1/3,2/3,\bar{z} \) +1/2 [0,0,\bar{w}]

4	c 3.	\(0,0,0 \) [0,0,0]
		\(0,0,\bar{z} \) [0,0,w]
		\(0,0,\bar{z} \) +1/2 [0,0,\bar{w}]

| 2 | b \(\bar{3} \) | \(0,0,0 \) [0,0,0] |
| | | \(0,0,1/2 \) [0,0,0] |

| 2 | a \(32 \) | \(0,0,1/4 \) [0,0,w] |
| | | \(0,0,3/4 \) [0,0,\bar{w}] |

Symmetry of Special Projections

- **Along [0,0,1]**: p6mm
- **Along [1,0,0]**: \(p_{6mm} \)
- **Along [2,1,0]**: p2mg

<table>
<thead>
<tr>
<th>(\mathbf{a}^*) = (\mathbf{a})</th>
<th>(\mathbf{b}^*) = (\mathbf{b})</th>
<th>(\mathbf{a}^* = c/2)</th>
<th>(\mathbf{b}^* = (a+2b)/2)</th>
<th>(\mathbf{a}^* = c)</th>
<th>(\mathbf{b}^* = b/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
</tr>
</tbody>
</table>
Origin on center (3') at 3'c'1

Asymmetric unit

\[
\begin{align*}
0 & \leq x \leq 2/3; \\
0 & \leq y \leq 2/3; \\
0 & \leq z \leq 1/4; \\
x & \leq (1+y)/2; \\
y & \leq \min(1-x,(1+x)/2)
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 \quad 2/3,1/3,0 \\
0,0,1/4 & \quad 1/2,0,1/4 \quad 2/3,1/3,1/4
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 3' \quad 0,0,z \\
(3) & \quad 3' \quad 0,0,z \quad (3_z,0,0,0)
\end{align*}
\]

\[
\begin{align*}
(4) & \quad 2 \quad x,x,1/4 \\
(5) & \quad 2 \quad x,0,1/4 \\
(6) & \quad 2 \quad 0,y,1/4
\end{align*}
\]

\[
\begin{align*}
(7) & \quad 1' \quad (3_z,0,0,0) \\
(8) & \quad 3' \quad 0,0,z; 0,0,0 \\
(9) & \quad 3' \quad 0,0,z; 0,0,0
\end{align*}
\]

\[
\begin{align*}
(10) & \quad c' \quad (0,0,1/2) \quad x,x,z \\
(11) & \quad c' \quad (0,0,1/2) \quad x,2x,z \\
(12) & \quad c' \quad (0,0,1/2) \quad 2x,x,z
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 g 1 (1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td>(4) y,x,z+1/2 [v,u,w]</td>
<td>(3) x+y,x,z [u+v,u-w]</td>
</tr>
<tr>
<td>(7) x,y,z [u,v,w]</td>
<td>(6) x,x+y,z+1/2 [u,u+v,w]</td>
</tr>
<tr>
<td>(10) y,x,z+1/2 [v,u,w]</td>
<td>(9) x,y,x,z [u-v,u,w]</td>
</tr>
<tr>
<td>6 f 0.2 x,0,1/4 [u,0,0]</td>
<td>0,x,1/4 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/4 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,3/4 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,3/4 [u,u,0]</td>
</tr>
<tr>
<td>6 e 1/1 1/2,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 d 3.1 1/3,2/3,z [0,0,0]</td>
<td>2/3,1/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/3,2/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 c 3.1 0,0,z [0,0,0]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 b 3.. 0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 32. 0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6m'm'
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p2'11
\[a^* = c/2 \quad b^* = (a + 2b)/2 \]
Origin at x,0,0

Along [2,1,0] p2m'g'
\[a^* = c \quad b^* = b/2 \]
Origin at x,x/2,0
Origin on center (3) at 3c'1

Asymmetric unit
- \(0 \leq x \leq 2/3;\)
- \(0 \leq y \leq 2/3;\)
- \(0 \leq z \leq 1/4;\)
- \(x \leq (1+y)/2;\)
- \(y \leq \text{min}(1-x,(1+x)/2)\)

Vertices
- \((0,0,0)\)
- \((1/2,0,0)\)
- \((2/3,1/3,0)\)
- \((1/3,2/3,0)\)
- \((0,1/2,0)\)
- \((0,0,1/4)\)
- \((1/2,0,1/4)\)
- \((2/3,1/3,1/4)\)
- \((1/3,2/3,1/4)\)
- \((0,1/2,1/4)\)

Symmetry Operations

(1) 1
(2) \(3^+ (0,0,z)\)
(3) \(3^- (0,0,z)\)
(4) \(2' x,x,1/4\)
(5) \(2' x,0,1/4\)
(6) \(2' 0,y,1/4\)
(7) \(\overline{1}(0,0,0)\)
(8) \(\overline{3}^- (0,0,z; 0,0,0)\)
(9) \(\overline{3}^+ (0,0,z; 0,0,0)\)
(10) \(c' (0,0,1/2) x,x,z\)
(11) \(c' (0,0,1/2) x,2x,z\)
(12) \(c' (0,0,1/2) 2x,x,z\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 g</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y,x-y,z [v,u-w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) x-y,y,z+1/2 [u+v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x,x+y,z+1/2 [u,u-w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) y,x+y,z [v,u-w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x-y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) x+y,y,z+1/2 [u+v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) x,x-y,z+1/2 [u,u-w]</td>
</tr>
<tr>
<td>6 f .2'</td>
<td></td>
<td>x,0,1/4 [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,1/4 [2u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,3/4 [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,3/4 [2u,u,w]</td>
</tr>
<tr>
<td>6 e</td>
<td></td>
<td>1/2,0,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,0 [v,u-w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/2 [v,u+w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,0 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,1/2 [u,u+v,w]</td>
</tr>
<tr>
<td>4 d</td>
<td></td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/3,2/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 c</td>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 b</td>
<td></td>
<td>0,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a</td>
<td></td>
<td>0,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,3/4 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6"m'm' Along [1,0,0] p2'11 Along [2,1,0] p2'mg'

a* = a b* = b a* = c/2 b* = (a + 2b)/2 a* = c b* = b/2

Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin on center (3m)

Asymmetric unit
\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{2}{3}; \quad 0 \leq z \leq \frac{1}{6}; \quad x \leq \frac{y}{2}; \quad y \leq \min(1-x, 2x) \]

Vertices
\[(0, 0, 0) \quad 2/3, 1/3, 0 \quad 1/3, 2/3, 0 \]
\[(0, 0, 1/6) \quad 2/3, 1/3, 1/6 \quad 1/3, 2/3, 1/6 \]
Symmetry Operations

For $(0,0,0) +$ set

(1) 1
(2) 3^+ 0,0,z
(3) 3^- 0,0,z
(4) 2^\times x,x,0
(5) 2 x,0,0
(6) 2 0,y,0
(7) \bar{T}
(8) 3^+ 0,0,z; 0,0,0
(9) 3^- 0,0,z; 0,0,0
(10) m x,\bar{x},z
(11) m x,2x,z
(12) m 2x,x,z

For $(2/3,1/3,1/3) +$ set

(1) t (2/3,1/3,1/3)
(2) 3^+ (0,0,1/3) 1/3,1/3,z
(3) 3^- (0,0,1/3) 1/3,0,z
(4) 2^\times x-1/6,1/6
(5) 2 (1/2,0,0) x,1/6,1/6
(6) 2 1/3,y,1/6
(7) \bar{T}
(8) 3^+ 1/3,-1/3,z; 1/3,-1/3,1/3
(9) 3^- 1/3,2/3,z; 1/3,2/3,1/3
(10) g (1/6,-1/6,1/3)
(11) g (1/6,1/3,1/3)
(12) g (2/3,1/3,1/3)

For $(1/3,2/3,2/3) +$ set

(1) t (1/3,2/3,2/3)
(2) 3^+ (0,0,2/3) 0,1/3,z
(3) 3^- (0,0,2/3) 1/3,1/3,z
(4) 2^\times x+1/6,1/6
(5) 2 x,1/3,1/3
(6) 2 (0,1/2,0) 1/6,y,1/3
(7) \bar{T}
(8) 3^+ 2/3,1/3,z; 2/3,1/3,1/3
(9) 3^- -1/3,1/3,z; -1/3,1/3,1/3
(10) g (-1/6,1/6,2/3)
(11) g (1/3,2/3,2/3)
(12) g (1/3,1/6,2/3)

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

(0,0,0) + (2/3,1/3,1/3) + (1/3,2/3,2/3) +

166.1.1327 - 3 - 2867
Symmetry of Special Projections

Along [0,0,1] p6'mm'
\(\mathbf{a}^* = \frac{2\mathbf{a} + \mathbf{b}}{3} \) \(\mathbf{b}^* = \frac{-\mathbf{a} + \mathbf{b}}{3} \)
Origin at 0,0,z

Along [1,0,0] p2111'
\(\mathbf{a}^* = \frac{-\mathbf{a} - 2\mathbf{b} + \mathbf{c}}{3} \) \(\mathbf{b}^* = \frac{\mathbf{a} + 2\mathbf{b}}{2} \)
Origin at x,0,0

Along [2,1,0] p2mm'
\(\mathbf{a}^* = \frac{\mathbf{b}}{2} \) \(\mathbf{b}^* = \frac{\mathbf{c}}{3} \)
Origin at x,x/2,0
R3m1'
166.2.1328

3m1'
R32/m1'

Trigonal
Origin on center (\(\overline{3}m1'\))

Asymmetric unit:
- \(0 \leq x \leq 2/3;\)
- \(0 \leq y \leq 2/3;\)
- \(0 \leq z \leq 1/6;\)
- \(x \leq y/2;\)
- \(y \leq \min(1-x,2x)\)

Vertices:
- \(0,0,0\)
- \(2/3,1/3,0\)
- \(1/3,2/3,0\)
- \(0,0,1/6\)
- \(2/3,1/3,1/6\)
- \(1/3,2/3,1/6\)
Symmetry Operations

For (0,0,0) + set

<table>
<thead>
<tr>
<th>(1) 1</th>
<th>(2) (3^+ \ 0,0,z)</th>
<th>(3) (3^- \ 0,0,z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) [0,0,0]</td>
<td>(3z</td>
<td>0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4) 2</th>
<th>(5) 2 (x,0,0)</th>
<th>(6) 2 (0,y,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2(x)</td>
<td>0,0,0)</td>
<td>(2(z)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(7) (\bar{T})</th>
<th>(8) (3^+ \ 0,0,z; 0,0,0)</th>
<th>(9) (3^- \ 0,0,z; 0,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\bar{T})</td>
<td>0,0,0)</td>
<td>(3z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(10) m (x,\bar{x},z)</th>
<th>(11) m (x,2x,z)</th>
<th>(12) m (2x,x,z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m(x)</td>
<td>0,0,0)</td>
<td>(m(x)</td>
</tr>
</tbody>
</table>

For (2/3,1/3,1/3) + set

<table>
<thead>
<tr>
<th>(1) t</th>
<th>(2) (3^+ \ (0,0,1/3))</th>
<th>(3) (3^- \ (0,0,1/3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/2,1/3,1/3)</td>
<td>(1/2,1/3,1/3)</td>
<td>(1/2,1/3,1/3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4) 2</th>
<th>(5) 2 (x,1/6,1/6)</th>
<th>(6) 2 (1/3,y,1/6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2(x)</td>
<td>2/3,1/3,1/3)</td>
<td>(2(z)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(7) (\bar{T})</th>
<th>(8) (3^+ \ 1/3,-1/3,z; 1/3,-1/3,1/3)</th>
<th>(9) (3^- \ 1/3,2/3,z; 1/3,2/3,1/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\bar{T})</td>
<td>2/3,1/3,1/3)</td>
<td>(3z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(10) g</th>
<th>(11) g (1/6,1/3,1/3)</th>
<th>(12) g (2/3,1/3,1/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m(x)</td>
<td>2/3,1/3,1/3)</td>
<td>(m(x)</td>
</tr>
</tbody>
</table>

For (1/3,2/3,2/3) + set

<table>
<thead>
<tr>
<th>(1) t</th>
<th>(2) (3^+ \ (0,0,2/3))</th>
<th>(3) (3^- \ (0,0,2/3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/2,3/2,2/3)</td>
<td>(1/2,3/2,2/3)</td>
<td>(1/2,3/2,2/3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4) 2</th>
<th>(5) 2 (x,1/6,1/6)</th>
<th>(6) 2 (0,1/2,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2(x)</td>
<td>1/3,2/3,2/3)</td>
<td>(2(z)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(7) (\bar{T})</th>
<th>(8) (3^+ \ 2/3,1/3,z; 2/3,1/3,1/3)</th>
<th>(9) (3^- \ -1/3,1/3,z; -1/3,1/3,1/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\bar{T})</td>
<td>1/3,2/3,2/3)</td>
<td>(3z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(10) g</th>
<th>(11) g (1/6,1/3,1/3)</th>
<th>(12) g (2/3,1/3,1/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m(x)</td>
<td>1/3,2/3,2/3)</td>
<td>(m(x)</td>
</tr>
</tbody>
</table>

For (0,0,0)' + set

<table>
<thead>
<tr>
<th>(1) 1'</th>
<th>(2) (3^+ \ 0,0,z)</th>
<th>(3) (3^- \ 0,0,z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1'</td>
<td>0,0,0')</td>
<td>(3z'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4) 2'</th>
<th>(5) 2' (x,0,0)</th>
<th>(6) 2' (0,y,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2(y)'</td>
<td>0,0,0')</td>
<td>(2(z)'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(7) (\bar{T}')</th>
<th>(8) (3^+ \ 0,0,z; 0,0,0)</th>
<th>(9) (3^- \ 0,0,z; 0,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\bar{T}')</td>
<td>0,0,0')</td>
<td>(3z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(10) m' (x,\bar{x},z)</th>
<th>(11) m' (x,2x,z)</th>
<th>(12) m' (2x,x,z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m(x)'</td>
<td>0,0,0')</td>
<td>(m(x)'</td>
</tr>
</tbody>
</table>

166.2.1328 - 3 - 2871
Generators selected

\(1\); \(t(1,0,0)\); \(t(0,1,0)\); \(t(0,0,1)\); \(t(2/3,1/3,1/3)\); \(2\); \(4\); \(7\); \(1\).
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Special Projection</th>
<th>Equation (*)</th>
<th>Equation (\ast)</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along ([0,0,1])</td>
<td>(p6mm1')</td>
<td>(a^* = (2a + b)/3)</td>
<td>(b^* = (-a + b)/3)</td>
<td>at 0,0,z</td>
</tr>
<tr>
<td>Along ([1,0,0])</td>
<td>(p2111')</td>
<td>(a^* = (-a - 2b + c)/3)</td>
<td>(b^* = (a + 2b)/2)</td>
<td>at x,0,0</td>
</tr>
<tr>
<td>Along ([2,1,0])</td>
<td>(p2mm1')</td>
<td>(a^* = c/3)</td>
<td>(b^* = b/2)</td>
<td>at x/2,0</td>
</tr>
</tbody>
</table>

Continued

18	\(f\)	\(0.21'\)	\(x,0,0 [0,0,0]\)	\(0,x,0 [0,0,0]\)	\(x,x,0 [0,0,0]\)
9	\(e\)	\(0.2/m1'\)	\(1/2,0,0 [0,0,0]\)	\(0,1/2,0 [0,0,0]\)	\(1/2,1/2,0 [0,0,0]\)
9	\(d\)	\(0.2/m1'\)	\(1/2,0,1/2 [0,0,0]\)	\(0,1/2,1/2 [0,0,0]\)	\(1/2,1/2,1/2 [0,0,0]\)
6	\(c\)	\(3m1'\)	\(0,0,z [0,0,0]\)	\(0,0,z [0,0,0]\)	\(0,0,z [0,0,0]\)
3	\(b\)	\(\bar{3}m1'\)	\(0,0,1/2 [0,0,0]\)	\(0,0,1/2 [0,0,0]\)	\(0,0,1/2 [0,0,0]\)
3	\(a\)	\(\bar{3}m1'\)	\(0,0,0 [0,0,0]\)	\(0,0,0 [0,0,0]\)	\(0,0,0 [0,0,0]\)
R3'\text{m} \\
166.3.1329 \\
\bar{3}'\text{m} \\
R3'2'/m \\

Trigonal
Origin on center ($\overline{3}m$)

Asymmetric unit: $0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/6; \quad x \leq y/2; \quad y \leq \min(1-x,2x)$

Vertices
- $0,0,0$
- $2/3,1/3,0$
- $1/3,2/3,0$
- $0,0,1/6$
- $2/3,1/3,1/6$
- $1/3,2/3,1/6$
Symmetry Operations

For (0,0,0) + set

(1) 1
(1) 0,0,0

(2) 3' 0,0,0
(3) 3' 0,0,0

(4) 2' x,x,0
(2,0,0)'

(5) 2' x,0,0
(2,0,0)'

(6) 2' 0,y,0
(2,0,0)'

(7) 3' 0,0,0; 0,0,0
(3,0,0)'

(9) 3' 0,0,0; 0,0,0
(3,0,0)'

(10) m x,x,z
(m,0,0)

(11) m x,2x,z
(m,0,0)

(12) m 2x,x,z
(m,0,0)

For (2/3,1/3,1/3) + set

(1) t
(1) 2/3,1/3,1/3

(2) 3' 0,0,1/3 1/3,1/3,1/3
(3) 3' 0,0,1/3 1/3,1/3,1/3

(4) 2' (1/2,1/2,0) x,x-1/6,1/6
(2,0,0)'

(5) 2' (1/2,0,0) x,1,1/6
(2,0,0)'

(6) 2' 1/3,y,1/6
(2,0,0)'

(7) 3' 1/3,1/3,1/3; 1/3,1/3,1/3
(3,0,0)'

(8) 3' 1/3,1/3,1/3; 1/3,1/3,1/3
(3,0,0)'

(9) 3' 1/3,2/3,1/3; 1/3,2/3,1/3
(3,0,0)'

(10) g
(1) 1/6,1/6,1/6

(11) g
(1) 1/6,1/6,1/6

(12) g
(1) 1/6,1/6,1/6

For (1/3,2/3,2/3) + set

(1) t
(1) 1/3,2/3,2/3

(2) 3' 0,0,2/3 1/3,2/3,2/3
(3) 3' 0,0,2/3 1/3,2/3,2/3

(4) 2' (1/2,1/2,0) x,x-1/6,1/6
(2,0,0)'

(5) 2' x,1,1/3
(2,0,0)'

(6) 2' 0,1/2,0 1/6,y,1/3
(2,0,0)'

(7) 3' -1/3,1/3,1/3; -1/3,1/3,1/3
(3,0,0)'

(8) 3' -1/3,1/3,1/3; -1/3,1/3,1/3
(3,0,0)'

(9) 3' -1/3,2/3,1/3; -1/3,2/3,1/3
(3,0,0)'

(10) g
(1) -1/6,1/6,2/3

(11) g
(1) -1/6,1/6,2/3

(12) g
(1) -1/6,1/6,2/3

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(2/3,1/3,1/3) +</td>
</tr>
</tbody>
</table>
Continued

36 i 1 (1) x,y,z [u,v,w] (2) y,x-y,z [v,u-v,w] (3) x+y,x,z [u+v,u,w]
(4) y,x,z [v,u,w] (5) x-y,y,z [u+v,v,w] (6) x,x+y,z [u,u-v,w]
(7) x,y,z [u,v,w] (8) y,x+y,z [v,u+v,w] (9) x-y,x,z [u-v,u,w]
(10) y,x,z [v,u,w] (11) x+y,y,z [u-v,u,w] (12) x,x-y,z [u,u+v,w]

18 h .m x,x,z [u,u,0] x,2x,z [u,0,0] 2x,x,z [0,u,0]
 x,x,z [u,u,0] 2x,x,z [0,u,0] x,2x,z [u,0,0]
18 g .2' x,0,1/2 [u,2u,w] 0,x,1/2 [2u,u,w] x,x,1/2 [u,u,w]
 x,0,1/2 [u,2u,w] 0,x,1/2 [2u,u,w] x,x,1/2 [u,u,w]
18 f .2' x,0,0 [u,2u,w] 0,x,0 [2u,u,w] x,x,0 [u,u,w]
 x,0,0 [u,2u,w] 0,x,0 [2u,u,w] x,x,0 [u,u,w]

9 e .2/m 1/2,0,0 [0,0,0] 0,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0]
9 d .2/m 1/2,0,1/2 [0,0,0] 0,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]
6 c 3m. 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0]
3 b 3'm 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0]
3 a 3'm 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p6mm Along [1,0,0] p2'11 Along [2,1,0] p2m'm'
 a* = (2a + b)/3 b* = (-a + b)/3 a* = (-a - 2b + c)/3 b* = (a + 2b)/2
Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0

166.3.1329 - 4 - 2877
Origin on center ($\overline{3}m'$)

Asymmetric unit: $0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/6; \quad x \leq y/2; \quad y \leq \min(1-x,2x)$

Vertices:

- $0,0,0$
- $2/3,1/3,0$
- $1/3,2/3,0$
- $0,0,1/6$
- $2/3,1/3,1/6$
- $1/3,2/3,1/6$
Symmetry Operations

For (0,0,0) + set

(1) $1 \quad (1 \parallel 0,0,0)$
(2) $3^+ \quad 0,0,z$
(3) $3^- \quad 0,0,z$

For (2/3,1/3,1/3) + set

(1) $t \ (2/3,1/3,1/3)$
(2) $3^+ \ (0,0,1/3) \ 1/3,1/3,z$
(3) $3^- \ (0,0,1/3) \ 1/3,0,z$

For (1/3,2/3,2/3) + set

(1) $t \ (1/3,2/3,2/3)$
(2) $3^+ \ (0,0,2/3) \ 0,1/3,z$
(3) $3^- \ (0,0,2/3) \ 1/3,1/3,z$

Generators selected
(1); $t(1,0,0)$; $t(0,1,0)$; $t(0,0,1)$; $t(2/3,1/3,1/3)$; (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

(0,0,0) + (2/3,1/3,1/3) + (1/3,2/3,2/3) +
Symmetry of Special Projections

Along [0,0,1] p6m’m’
- \(a^* = (2a + b)/3\)
- \(b^* = (-a + b)/3\)
- Origin at 0,0,z

Along [1,0,0] p211
- \(a^* = (-a - 2b + c)/3\)
- \(b^* = (a + 2b)/2\)
- Origin at x,0,0

Along [2,1,0] p2m’m’
- \(a^* = c/3\)
- \(b^* = b/2\)
- Origin at x,x/2,0

Continued

166.4.1330

R3’m’

36 i 1 (1) x,y,z [u,v,w]
 (4) y,x,z [v,u,w]
 (7) x,y,z [u,v,w]
 (10) y,x,z [v,u,w]

18 h .m’ x,x,z [u,u,w]
 x,2x,z [u,2u,w]
18 g .2 x,0,1/2 [u,0,0]
 0,x,1/2 [0,u,0]
18 f .2 x,0,0 [u,0,0]
 0,x,0 [0,u,0]
9 e .2/m’ 1/2,0,0 [0,0,0]
 0,1/2,0 [0,0,0]
9 d .2/m’ 1/2,0,1/2 [0,0,0]
 0,1/2,1/2 [0,0,0]
6 c 3m’ 0,0,z [0,0,w]
 0,0,z [0,0,w]
3 b 3’m’ 0,0,1/2 [0,0,0]
3 a 3’m’ 0,0,0 [0,0,0]

166.4.1330 - 4 - 2881
Origin on center ($\overline{3}m'$)

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 < z < 1/6; \quad x < y/2; \quad y < \min(1-x, 2x) \]

Vertices

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertices</td>
<td>0,0,0</td>
<td>2/3,1/3,0</td>
<td>1/3,2/3,0</td>
</tr>
<tr>
<td></td>
<td>0,0,1/6</td>
<td>2/3,1/3,1/6</td>
<td>1/3,2/3,1/6</td>
</tr>
</tbody>
</table>
Symmetry Operations

For (0,0,0) + set

1. \((1)\) 1
2. \((2)\) 3\(^*\) 0,0,z
3. \((3)\) 3\(^*\) 0,0,z
4. \((4)\) 2\' x,x,0
5. \((5)\) 2\' x,0,0
6. \((6)\) 2\' 0,y,0
7. \((7)\) \(\bar{1}\)
8. \((8)\) 3\(^*\) 0,0,z; 0,0,0
9. \((9)\) 3\(^*\) 0,0,z; 0,0,0
10. \((10)\) m\' x,x,z
11. \((11)\) m\' x,2x,z
12. \((12)\) m\' 2x,x,z

For \((2/3,1/3,1/3) + set

1. \((1)\) t \((2/3,1/3,1/3)
2. \((2)\) 3\(^*\) (0,0,1/3) 1/3,1/3,z
3. \((3)\) 3\(^*\) (0,0,1/3) 1/3,0,z
4. \((4)\) 2\' (1/2,1/2,0) x,x-1/6,1/6
5. \((5)\) 2\' (1/2,0,0) x,1/6,1/6
6. \((6)\) 2\' 1/3,y,1/6
7. \((7)\) \(\bar{1}\)
8. \((8)\) 3\(^*\) 1/3,-1/3,z; 1/3,-1/3,1/3
9. \((9)\) 3\(^*\) 1/3,2/3,z; 1/3,2/3,1/6
10. \((10)\) g\' (1/6,-1/6,1/3)
11. \((11)\) g\' (1/6,1/3,1/3)
12. \((12)\) g\' (2/3,1/3,1/3)

For \((1/3,2/3,2/3) + set

1. \((1)\) t \((1/3,2/3,2/3)
2. \((2)\) 3\(^*\) (0,0,2/3) 0,1/3,z
3. \((3)\) 3\(^*\) (0,0,2/3) 1/3,1/3,z
4. \((4)\) 2\' (1/2,1/2,0) x,x+1/6,1/3
5. \((5)\) 2\' x,1/3,1/3
6. \((6)\) 2\' (0,1/2,0) 1/6,y,1/3
7. \((7)\) \(\bar{1}\)
8. \((8)\) 3\(^*\) 2/3,1/3,1/3
9. \((9)\) 3\(^*\) -1/3,1/3,z; -1/3,1/3,1/3
10. \((10)\) g\' (-1/6,1/6,2/3)
11. \((11)\) g\' (1/3,2/3,2/3)
12. \((12)\) g\' (1/3,1/6,2/3)

Generators selected: \((1); t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); (2); (4); (7).**

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0,0)) + ((2/3,1/3,1/3)) + ((1/3,2/3,2/3))</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Projection</th>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>p2'11</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>p2mm'</td>
<td>[x,x/2,0]</td>
</tr>
<tr>
<td>3</td>
<td>p6'1m</td>
<td>[0,0,z]</td>
</tr>
</tbody>
</table>

p6'1m

- Origin at 0,0,z
- \(a^* = \frac{2a + b}{3} \)
- \(b^* = \frac{-a + b}{3} \)

p2mm'

- Origin at x,x/2,0
- \(a^* = c/3 \)
- \(b^* = b/2 \)

p2'11

- \(a^* = \frac{-a - 2b + c}{3} \)
- \(b^* = \frac{a + 2b}{2} \)
Origin on center (3m)

Asymmetric unit:
\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/6; \quad x \leq y/2; \quad y \leq \min(1-x, 2x) \]

Vertices:
- \(0,0,0 \)
- \(2/3,1/3,0 \)
- \(1/3,2/3,0 \)
- \(0,0,1/6 \)
- \(2/3,1/3,1/6 \)
- \(1/3,2/3,1/6 \)
Symmetry Operations

For \((0,0,0) + \) set

1. \((1) \ 1 \ (1 \ 0,0,0)\)
2. \((2) \ 3^* \ 0,0,z \ (3) \ 3^* \ 0,0,z \ (3z) \ 0,0,0 \ (3z^*) \ 0,0,0\)
3. \((2) \ x,x,0 \ (2) \ 0,0,0 \ (6) \ 0,0,0 \ (2y) \ 0,0,0\)
4. \((7) \ T \ (1 \ 0,0,0) \ (8) \ 3^* \ 0,0,z; 0,0,0 \ (9) \ 3^* \ 0,0,z; 0,0,0 \ (3z) \ 0,0,0 \ (3z^*) \ 0,0,0\)
5. \((10) \ m \ x,x,z \ (m_{\alpha}) \ 0,0,0 \ (12) \ m \ 2x,x,z \ (m_{\gamma}) \ 0,0,0\)

For \((2/3,1/3,1/3) + \) set

1. \((1) \ t' \ (2/3,1/3,1/3) \ (2) \ 3^* \ (0,0,1/3) \ (3) \ 3^* \ (0,0,1/3) \ (3z) \ 2/3,1/3,1/3 \ (3z^*) \ 2/3,1/3,1/3\)
2. \((4) \ 2' \ (1/2,0,0) \ x,1/6,1/6 \ (5) \ 2' \ (1/2,1/2,0) \ x,x-1/6,1/6 \ (2x) \ 2/3,1/3,1/3 \ (2y) \ 2/3,1/3,1/3 \ (2z) \ 2/3,1/3,1/3\)
3. \((7) \ T \ (1 \ 3/2,1/3,1/3) \ (8) \ 3^* \ 1/3,-1/3,z; 1/3,-1/3,1/6 \ (9) \ 3^* \ 1/3,2/3,z; 1/3,2/3,1/6 \ (3z) \ 2/3,1/3,1/3 \ (3z^*) \ 2/3,1/3,1/3\)
4. \((10) \ g' \ (1/6,-1/6,1/3) \ x+1/2,x,z \ (11) \ g' \ (1/6,1/3,1/3) \ x,2x-1/2,z \ (12) \ g' \ (2/3,1/3,1/3) \ 2x,x,z \ (m_{\alpha}) \ 2/3,1/3,1/3 \ (m_{\beta}) \ 2/3,1/3,1/3 \ (m_{\gamma}) \ 2/3,1/3,1/3\)

For \((1/3,2/3,2/3) + \) set

1. \((1) \ t \ (1/3,2/3,2/3) \ (2) \ 3^* \ (0,0,2/3) \ 0,1/3,z \ (3) \ 3^* \ (0,0,2/3) \ 1/3,1/3,z \ (3z) \ 1/3,2/3,2/3 \ (3z^*) \ 1/3,2/3,2/3\)
2. \((4) \ 2 \ (1/2,1/2,0) \ x,x+1/6,1/3 \ (5) \ 2 \ x,1/3,1/3 \ (6) \ 2 \ (0,1/2,0) \ 1/6,y,1/3 \ (2x) \ 1/3,2/3,2/3 \ (2y) \ 1/3,2/3,2/3 \ (2z) \ 1/3,2/3,2/3\)
3. \((7) \ T \ (1 \ 1/3,2/3,2/3) \ (8) \ 3^* \ 2/3,1/3,z; 2/3,1/3,1/3 \ (9) \ 3^* \ -1/3,1/3,z; -1/3,1/3,1/3 \ (3z) \ 1/3,2/3,2/3 \ (3z^*) \ 1/3,2/3,2/3\)
4. \((10) \ g \ (-1/6,1/6,2/3) \ x+1/2,x,z \ (11) \ g \ (1/3,2/3,2/3) \ x,2x,z \ (12) \ g \ (1/3,1/3,2/3) \ 2x-1/2,x,z \ (m_{\alpha}) \ 1/3,2/3,2/3 \ (m_{\beta}) \ 1/3,2/3,2/3 \ (m_{\gamma}) \ 1/3,2/3,2/3\)

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(2/3,1/3,1/3); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(2/3,1/3,1/3) +</td>
<td>(1/3,2/3,2/3) +</td>
</tr>
<tr>
<td>36</td>
<td>i</td>
<td>1</td>
</tr>
</tbody>
</table>

18 | h | m | x, x, z [u, u, 0] | x, 2x, z [u, 0, 0] | 2x, x, z [0, u, 0] |
| 18 | h | m | x, x, z [u, u, 0] | 2x, x, z [0, u, 0] | x, 2x, z [u, 0, 0] |

18 | g | .2' | x, 0, 1/2 [u, 2u, w] | 0, x, 1/2 [2u, u, w] | x, x, 1/2 [u, u, w] |
| 18 | g | .2' | x, 0, 1/2 [u, 2u, w] | 0, x, 1/2 [2u, u, w] | x, x, 1/2 [u, u, w] |

18 | f | .2 | x, 0, 0 [u, 0, 0] | 0, x, 0 [0, u, 0] | x, x, 0 [u, u, 0] |
| 18 | f | .2 | x, 0, 0 [u, 0, 0] | 0, x, 0 [0, u, 0] | x, x, 0 [u, u, 0] |

9 | e | .2/m | 1/2, 0, 0 [u, 0, 0] | 0, 1/2, 0 [0, u, 0] | 1/2, 1/2, 0 [u, u, 0] |
| 9 | e | .2/m | 1/2, 0, 1/2 [0, 0, 0] | 0, 1/2, 1/2 [0, 0, 0] | 1/2, 1/2, 1/2 [0, 0, 0] |

6 | c | 3m | 0, 0, z [0, 0, 0] | 0, 0, z [0, 0, 0] |

3 | b | 3m | 0, 0, 1/2 [0, 0, 0] |

3 | a | 3m | 0, 0, 0 [0, 0, 0] |

Symmetry of Special Projections

Along [0, 0, 1] p6mm1'
\[\mathbf{a}^* = \frac{2a+b}{3}, \quad \mathbf{b}^* = \frac{-a+b}{3} \]
Origin at 0, 0, z

Along [1, 0, 0] p2111'
\[\mathbf{a}^* = \frac{-a-2b+c}{3}, \quad \mathbf{b}^* = \frac{a+2b}{2} \]
Origin at x, 0, 0

Along [2, 1, 0] p2a, 2mm
\[\mathbf{a}^* = \frac{c}{3}, \quad \mathbf{b}^* = b/2 \]
Origin at x, x/2, 1/6
Origin on center (3m')

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{2}{3}; \quad 0 \leq z \leq \frac{1}{6}; \quad x \leq \frac{y}{2}; \quad y \leq \min(1-x,2x) \]

Vertices

- \(0,0,0 \)
- \(2/3,1/3,0 \)
- \(1/3,2/3,0 \)
- \(0,0,1/6 \)
- \(2/3,1/3,1/6 \)
- \(1/3,2/3,1/6 \)
Symmetry Operations

For \((0,0,0) + \) set

(1) \(1 \)	(2) \(3^+ \) \(0,0,z\)	(3) \(3^- \) \(0,0,z\)			
\((1,0,0)\)	\((3_z,0,0,0)\)	\((3_z^{-1},0,0,0)\)			
(4) \(2' \) \(x,x,0\)	(5) \(2' \) \(x,0,0\)	(6) \(2' \) \(0,y,0\)			
\((2\sqrt{y}	0,0,0)\)'	\((2\sqrt{z}	0,0,0)\)'	\((2\sqrt{y}	0,0,0)\)'
(7) \(\bar{T} \)	(8) \(3^+ \) \(0,0,z;0,0,0\)	(9) \(3^- \) \(0,0,z;0,0,0\)			
\((\bar{T}	0,0,0)\)	\((3_z	0,0,0)\)	\((3_z^{-1}	0,0,0)\)
(10) \(m' \) \(x,x,z\)	(11) \(m' \) \(x,2x,z\)	(12) \(m' \) \(2x,x,z\)			
\((m_{xy}	0,0,0)'\)	\((m_{xy}	0,0,0)'\)	\((m_{xy}	0,0,0)'\)

For \((2/3,1/3,1/3)' + \) set

(1) \(t\) \((2/3,1,3/3)\)	(2) \(3^+ \) \((0,0,1/3)\) \(1/3,1/3,z\)				
\((1,2/3,1/3,1/3)'\)	\((3_z	2/3,1,3/3,1/3)'\)	\((3_z^{-1}	2/3,1,3/3,1/3)'\)	
(4) \(2\) \((2/3,1/3,1/3)\) \(x,-x,1/6,1/6\)	(5) \(2\) \((1/2,0,0)\) \(x,1/6,1/6\)				
\((2\sqrt{y}	2/3,1,3/3,1/3)'\)	\((2\sqrt{z}	2/3,1,3/3,1/3)'\)	\((2\sqrt{y}	2/3,1,3/3,1/3)'\)
(7) \(\bar{T} \) \(1/3,1,6,1/6\)	(8) \(3^+ \) \((1/3,-1/3,z;1/3,-1/3,1/6)\)				
\((\bar{T}	2/3,1,3,1/3)'\)	\((3_z	2/3,1,3,1/3)'\)	\((3_z^{-1}	2/3,1,3,1/3)'\)
(10) \(g\) \((1/6,-1/6,1/3)\) \(x+1/2,x,z\)	(11) \(g\) \((1/6,1/3,1/3)\) \(x,2x-1/2,z\)				
\((m_{xy}	2/3,1,3,1/3)'\)	\((m_{xy}	2/3,1,3,1/3)'\)	\((m_{xy}	2/3,1,3,1/3)'\)

For \((1/3,2/3,2/3) + \) set

(1) \(t\) \((1/3,2,3/3)\)	(2) \(3^+ \) \((0,0,2/3)\) \(0,1/3,z\)				
\((1,1/3,2,3/3)'\)	\((3_z	1/3,2,3,2/3)'\)	\((3_z^{-1}	1/3,2,3,2/3)'\)	
(4) \(2'\) \((1/2,1/2,0)\) \(x,x+1/6,1/3\)	(5) \(2'\) \((1/2,1/2,0)\) \(x,1/3,1/3\)				
\((2\sqrt{y}	1/3,2,3,2/3)'\)	\((2\sqrt{z}	1/3,2,3,2/3)'\)	\((2\sqrt{y}	1/3,2,3,2/3)'\)
(7) \(\bar{T} \) \(1/3,1,6,1/3\)	(8) \(3^+ \) \((2/3,1,3,1/3)\) \(2/3,1,3,1/3\)				
\((\bar{T}	1/3,2,3,2/3)'\)	\((3_z	2/3,1,3,1/3)'\)	\((3_z^{-1}	2/3,1,3,1/3)'\)
(10) \(g'\) \((-1/6,1/6,1/3)\) \(x+1/2,x,z\)	(11) \(g'\) \((1/3,2,3,2/3)\) \(x,2x,z\)				
\((m_{xy}	1/3,2,3,2/3)'\)	\((m_{xy}	1/3,2,3,2/3)'\)	\((m_{xy}	1/3,2,3,2/3)'\)

Generators selected
\(1)\); \(t(1,0,0)\); \(t(0,1,0)\); \(t(0,0,1)\); \(t'(2/3,1,3/1,3)\); \(2)\); \(4)\); \(7)\).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0,0)) + ((2/3,1,3,1/3)') + ((1/3,2,3,2/3))</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along</th>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>p6mm1'</td>
<td>0,0,z</td>
</tr>
<tr>
<td>[1,0,0]</td>
<td>p2a 211</td>
<td>0,0,0</td>
</tr>
<tr>
<td>[2,1,0]</td>
<td>p2a* 2m'm'</td>
<td>x,x/2,1/6</td>
</tr>
</tbody>
</table>

a* = (2a + b)/3
b* = (-a + b)/3

Origin at 0,0,z

a* = (-a - 2b + c)/3
b* = (a + 2b)/2

Origin at x-1/6,-1/3,1/6

a* = b/2
b* = c/3

Origin at x,x/2,1/6

Continued

<table>
<thead>
<tr>
<th>36</th>
<th>i</th>
<th>1</th>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) y,x-y,z [v,u-v,w]</th>
<th>(3) x+y,x,z [u+v,u,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) y,x,z [v,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) x-y,x,z [u+v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6) x,x+y,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8) y,x+y,z [v,u-w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(9) x-y,x,z [u-v,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10) y,x,z [v,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(11) x+y,y,z [u+v,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(12) x,x-y,z [u,u-v,w]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18 h .m' x,x,z [u,u,w]
2x,x,z [2u,u,w]

18 g .2 x,0,1/2 [u,0,0]
0,x,1/2 [0,u,0]

18 f .2' x,0,0 [u,2u,w]
0,x,0 [2u,u,w]

9 e .2'/m' 1/2,0,0 [u,2u,w]
0,1/2,0 [2u,u,w]
1/2,1/2,0 [u,u,w]

9 d .2/m' 1/2,0,1/2 [0,0,0]
0,1/2,1/2 [0,0,0]
1/2,1/2,1/2 [0,0,0]

6 c 3m' 0,0,z [0,0,0]
0,0,z [0,0,w]

3 b 3m' 0,0,1/2 [0,0,w]

3 a 3m' 0,0,0 [0,0,w]

166.7.1333

R* = 3m'
Origin on (3) at 3c

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/12; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2) \]

Vertices

- \(0,0,0\)
- \(0,0,1/12\)
- \(1/2,0,0\)
- \(1/2,0,1/12\)
- \(2/3,1/3,0\)
- \(2/3,1/3,1/12\)
- \(1/3,2/3,0\)
- \(1/3,2/3,1/12\)
- \(0,1/2,0\)
- \(0,1/2,1/12\)
Symmetry Operations

For (0,0,0) + set

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Coordinates</th>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$t(0,0,0)$</td>
<td>(0,0,0)</td>
<td>1; t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); t(2,1/2,0)</td>
</tr>
<tr>
<td>2</td>
<td>$x,x,1/4$</td>
<td>(2x,0,0,1/2)</td>
<td>2; 2x,0,1/4; 2x,0,1/2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>(0,0,0)</td>
<td>3; 0,0,0; 3z,0,0,0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>(2x,0,0,1/2)</td>
<td>4; 2x,0,1/4; 2x,0,1/2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>(0,0,0)</td>
<td>5; 0,0,0; 5z,0,0,0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>(2x,0,0,1/2)</td>
<td>6; 0,y,1/4; 0,y,1/2</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>(0,0,0)</td>
<td>7; 0,0,0; 7z,0,0,0</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>(2x,0,0,1/2)</td>
<td>8; 2x,0,1/4; 2x,0,1/2</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>(0,0,0)</td>
<td>9; 0,0,0; 9z,0,0,0</td>
</tr>
</tbody>
</table>

For (2/3,1/3,1/3) + set

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Coordinates</th>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$t(2/3,1/3,1/3)$</td>
<td>(2x,0,0,1/2)</td>
<td>1; t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); t(2,1/2,0)</td>
</tr>
<tr>
<td>2</td>
<td>$x,x-1,6,5/12$</td>
<td>(2x,0,0,1/2)</td>
<td>2; x,1,6,5/12; 2x,1,6,5/12</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>(0,0,0)</td>
<td>3; 0,0,0; 3z,0,0,0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>(2x,0,0,1/2)</td>
<td>4; 2x,1,6,5/12; 2x,1,6,5/12</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>(0,0,0)</td>
<td>5; 0,0,0; 5z,0,0,0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>(2x,0,0,1/2)</td>
<td>6; 0,y,1,6,5/12; 0,y,1,6,5/12</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>(0,0,0)</td>
<td>7; 0,0,0; 7z,0,0,0</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>(2x,0,0,1/2)</td>
<td>8; 2x,1,6,5/12; 2x,1,6,5/12</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>(0,0,0)</td>
<td>9; 0,0,0; 9z,0,0,0</td>
</tr>
</tbody>
</table>

For (1/3,2,3/2,3) + set

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Coordinates</th>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$t(1/3,2,3/2,3)$</td>
<td>(2x,0,0,1/2)</td>
<td>1; t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); t(2,1/2,0)</td>
</tr>
<tr>
<td>2</td>
<td>$x,x+1,6,1/12$</td>
<td>(2x,0,0,1/2)</td>
<td>2; x,1,6,1/12; 2x,1,6,1/12</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>(0,0,0)</td>
<td>3; 0,0,0; 3z,0,0,0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>(2x,0,0,1/2)</td>
<td>4; 2x,1,6,1/12; 2x,1,6,1/12</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>(0,0,0)</td>
<td>5; 0,0,0; 5z,0,0,0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>(2x,0,0,1/2)</td>
<td>6; 0,y,1,6,1/12; 0,y,1,6,1/12</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>(0,0,0)</td>
<td>7; 0,0,0; 7z,0,0,0</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>(2x,0,0,1/2)</td>
<td>8; 2x,1,6,1/12; 2x,1,6,1/12</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>(0,0,0)</td>
<td>9; 0,0,0; 9z,0,0,0</td>
</tr>
</tbody>
</table>

Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); t(2,1/2,0); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (2/3,1/3,1/3) + (1/3,2,3/2,3) +</td>
</tr>
<tr>
<td>36</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6mm'
\(\mathbf{a}^* = (2\mathbf{a} + \mathbf{b})/3 \)
\(\mathbf{b}^* = (-\mathbf{a} + \mathbf{b})/3 \)
Origin at 0,0,z

Along [1,0,0] \(p_{2\text{mm}}^\prime 211 \)
\(\mathbf{a}^* = (2\mathbf{a} + 4\mathbf{b} + \mathbf{c})/6 \)
\(\mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2 \)
Origin at x,0,1/4

Along [2,1,0] p2m'g
\(\mathbf{a}^* = \mathbf{c}/3 \)
\(\mathbf{b}^* = \mathbf{b}/2 \)
Origin at x,x/2,0
Origin on \((3'1')\) at \(\bar{3}c1'\)

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/12; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2)\]

Vertices

\[
\begin{array}{cccc}
0,0,0 & 1/2,0,0 & 2/3,1/3,0 & 1/3,2/3,0 \\
0,0,1/12 & 1/2,0,1/12 & 2/3,1/3,1/12 & 1/3,2/3,1/12 \\
& & & 0,1/2,0 \\
& & & 0,1/2,1/12
\end{array}
\]
Symmetry Operations

For (0,0,0) + set

(1) 1
(1') 0,0,0)
(2) 3' 0,0,0 (3' 0,0,0 (3' 0,0,0)
(3) 3' 0,0,0 (3' 0,0,0 (3' 0,0,0)
(4) 2 x.x,1/4
(2y) 0,0,1/2)
(5) 2 x,0,1/4 (6) 2 0,y,1/4 (6) 2 0,y,1/4
(2y) 0,0,1/2)
(7) T
(T' 0,0,0)
(8) 3' 0,0,0; 0,0,0 (9) 3' 0,0,0; 0,0,0
(3' 0,0,0) (3' 0,0,0)
(10) c (0,0,1/2) x,x,z (11) c (0,0,1/2) x,2x,z (12) c (0,0,1/2) 2x,x,z
(my) 0,0,1/2)
(my) 0,0,1/2)
(my) 0,0,1/2)

For (2/3,1/3,1/3) + set

(1) t (2/3,1/3,1/3)
(1) 2/3,1/3,1/3)
(2) 3' (0,0,1/3) 1/3,1/3,z (3) 3' (0,0,1/3) 1/3,0,z
(3') 2/3,1/3,1/3)
(3') 2/3,1/3,1/3)
(4) 2(1/2,1/2,0) x,x-1,6,5/12
(2y) 2/3,1/3,5/6)
(5) 2 (1/2,0,0) x,1,6,5/12 (6) 2 1/3,y,5/12
(2y) 2/3,1/3,5/6)
(2y) 2/3,1/3,5/6)
(7) T
(T' 1/3,1/3,1/3)
(8) 3' 1/3,1/3,1/3; 1/3,-1/3,1/3 (9) 3' 1/3,2,3/3; 1/3,2,3/3
(3' 1/3,1/3,1/3) (3' 1/3,2,3/3)
(3' 1/3,1/3,1/3) (3' 1/3,2,3/3)
(10) g (1/6,-1/6,5/6) x+1/2,x,z (11) g (1/6,1/3,5/6) x,2x-1/2,z (12) g (2/3,1/3,5/6) 2x,x,z
(my) 2/3,1/3,5/6)
(my) 2/3,1/3,5/6)
(my) 2/3,1/3,5/6)

For (1/3,2,3/2) + set

(1) t (1/3,2,3/2)
(1') 1/3,2,3/2)
(2) 3' (0,0,2/3) 0,1/3,z (3) 3' (0,0,2/3) 1/3,1/3,z
(3') 1/3,2,3/2)
(3') 1/3,2,3/2)
(4) 2(1/2,1/2,0) x,x-1,6,5/12
(2y) 1/3,2,3/1/6)
(5) 2 (1/2,1/2,0) x,1,6,5/12 (6) 2 0,1/2,0 1/6,y,1/2
(2y) 1/3,2,3/1/6)
(2y) 1/3,2,3/1/6)
(7) T
(T' 1/3,2,3/2,3)
(8) 3' 2/3,1/3,3; 2/3,1/3,3 (9) 3' -1/3,1/3,3; -1/3,1/3,3
(3' 2/3,1/3,3) (3' 1/3,2,3/2,3)
(3' 2/3,1/3,3) (3' 1/3,2,3/2,3)
(10) g (-1/6,1/6,1/6) x+1/2,x,z (11) g (1/6,1/3,5/6) x,2x-1/2,z (12) g (2/3,1/3,5/6) 2x,x,z
(my) 1/3,2,3/1/6)
(my) 1/3,2,3/1/6)
(my) 1/3,2,3/1/6)

For (0,0,0)' + set

(1) 1'
(1' 0,0,0)'
(2) 3' 0,0,0 (3' 0,0,0 (3' 0,0,0)
(3) 3' 0,0,0 (3' 0,0,0 (3' 0,0,0)
(4) 2' x,x,1/4
(2y) 0,0,1/2)
(5) 2' x,0,1/4 (6) 2' 0,y,1/4 (6) 2' 0,y,1/4
(2y) 0,0,1/2)
(2y) 0,0,1/2)
(7) T'
(T' 0,0,0)'
(8) 3' 0,0,0; 0,0,0 (9) 3' 0,0,0; 0,0,0
(3' 0,0,0) (3' 0,0,0)
(3' 0,0,0) (3' 0,0,0)
(10) c' (0,0,1/2) x,x,z (11) c' (0,0,1/2) x,2x,z (12) c' (0,0,1/2) 2x,x,z
(my) 0,0,1/2)
(my) 0,0,1/2)
(my) 0,0,1/2)
For \((2/3,1/3,1/3)' + \text{set} \)

Generators selected

\((1); t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); (2); (4); (7); 1' \).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0,0) +)</td>
<td>((0,0,0)' +)</td>
</tr>
<tr>
<td>36 f 11'</td>
<td>(1) (x,y,z [0,0,0])</td>
</tr>
<tr>
<td>18 e .21'</td>
<td>(7) (x,y,z [0,0,0])</td>
</tr>
<tr>
<td>18 d 11'</td>
<td>(13) (x,y,z+1/2 [0,0,0])</td>
</tr>
<tr>
<td>12 c 3.1'</td>
<td>(19) (y,x,x+1/2 [0,0,0])</td>
</tr>
</tbody>
</table>
Continued

6 b \(\overline{3}.1'\) 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]
6 a 321' 0,0,1/4 [0,0,0] 0,0,3/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p6mm1'
\(a^* = (2a + b)/3\) \(b^* = (-a + b)/3\)
Origin at 0,0,z

Along [1,0,0] p 2111'
\(a^* = (2a + 4b + c)/6\) \(b^* = (a + 2b)/2\)
Origin at x,0,0

Along [2,1,0] p2mg1'
\(a^* = c/3\) \(b^* = b/2\)
Origin at x,x/2,0
Origin on (3') at 3c

Asymmetric unit

0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; 0 ≤ z ≤ 1/12; x ≤ (1+y)/2; y ≤ min(1-x,(1+x)/2)

Vertices

0,0,0 1/2,0,0 2/3,1/3,0 1/3,2/3,0 0,1/2,0
0,0,1/12 1/2,0,1/12 2/3,1/3,1/12 1/3,2/3,1/12 0,1/2,1/12
Symmetry Operations

For (0,0,0) + set

<table>
<thead>
<tr>
<th>(1)</th>
<th>3</th>
<th>0,0,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>3'</td>
<td>0,0,z</td>
</tr>
<tr>
<td>(2)</td>
<td>0,0,0</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>3'</td>
<td>0,0,z</td>
</tr>
<tr>
<td>(3')</td>
<td>0,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4)</th>
<th>2'</th>
<th>x,x,1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>0,0,1/2</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>2'</td>
<td>x,0,1/4</td>
</tr>
<tr>
<td>(6)</td>
<td>0,y,1/4</td>
<td></td>
</tr>
<tr>
<td>(6')</td>
<td>0,0,1/2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(7)</th>
<th>T°</th>
<th>0,0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8)</td>
<td>3'</td>
<td>0,0,0</td>
</tr>
<tr>
<td>(9)</td>
<td>3'</td>
<td>0,0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(10)</th>
<th>c</th>
<th>(0,0,1/2) x,x,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(11)</td>
<td>c</td>
<td>(0,0,1/2) x,2x,z</td>
</tr>
<tr>
<td>(12)</td>
<td>c</td>
<td>(0,0,1/2) 2x,x,z</td>
</tr>
</tbody>
</table>

For (2/3,1/3,1/3) + set

<table>
<thead>
<tr>
<th>(1)</th>
<th>t</th>
<th>(2/3,1,3,1/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>3'</td>
<td>0,0,1/3</td>
</tr>
<tr>
<td>(3)</td>
<td>3'</td>
<td>0,0,1/3</td>
</tr>
<tr>
<td>(3')</td>
<td>0,0,1/3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4)</th>
<th>2'</th>
<th>x,x,1/6,5/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5)</td>
<td>2'</td>
<td>x,1/6,5/12</td>
</tr>
<tr>
<td>(6)</td>
<td>0,y,5/12</td>
<td></td>
</tr>
<tr>
<td>(6')</td>
<td>0,0,1/6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(7)</th>
<th>T°</th>
<th>1/3,1/6,1/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8)</td>
<td>3'</td>
<td>1/3,-1/3,z</td>
</tr>
<tr>
<td>(9)</td>
<td>3'</td>
<td>1/3,-1/3,z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(10)</th>
<th>g</th>
<th>(1/6,1,3,5/6) x+x,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(11)</td>
<td>g</td>
<td>(1/6,1,3,5/6) x,2x-1/2,z</td>
</tr>
<tr>
<td>(12)</td>
<td>g</td>
<td>(1/6,1,3,5/6) 2x,x,z</td>
</tr>
</tbody>
</table>

For (1/3,2,3,2/3) + set

<table>
<thead>
<tr>
<th>(1)</th>
<th>t</th>
<th>(1/3,2,3,2/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>3'</td>
<td>0,0,2/3</td>
</tr>
<tr>
<td>(3)</td>
<td>3'</td>
<td>0,0,2/3</td>
</tr>
<tr>
<td>(3')</td>
<td>0,0,2/3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4)</th>
<th>2'</th>
<th>x,x,1/6,5/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5)</td>
<td>2'</td>
<td>x,1/6,5/12</td>
</tr>
<tr>
<td>(6)</td>
<td>0,y,5/12</td>
<td></td>
</tr>
<tr>
<td>(6')</td>
<td>0,0,1/6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(7)</th>
<th>T°</th>
<th>1/3,2,3,2/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8)</td>
<td>3'</td>
<td>2/3,1/3,z</td>
</tr>
<tr>
<td>(9)</td>
<td>3'</td>
<td>-1/3,1/3,z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(10)</th>
<th>g</th>
<th>(-1/6,1,6,5/6) x+1/2,x,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(11)</td>
<td>g</td>
<td>(1/3,2,3,1/6) x,x,z</td>
</tr>
<tr>
<td>(12)</td>
<td>g</td>
<td>(1/3,2,3,1/6) 2x-1/2,x,z</td>
</tr>
</tbody>
</table>

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinates</td>
</tr>
</tbody>
</table>

(0,0,0) + (2/3,1/3,1/3) + (1/3,2,3,2/3) +
Continued

36 f 1

(1) \(x,y,z \ [u,v,w] \)

(2) \(y,x-y,z \ [v,v+u+w] \)

(3) \(\bar{x+y,x,z} \ [u+v,u,w] \)

(4) \(y,x,z+\frac{1}{2} \ [v,u,w] \)

(5) \(x-y,x,z+\frac{1}{2} \ [u+v+u,w] \)

(6) \(x,x+y,z+\frac{1}{2} \ [u,u-v,w] \)

(7) \(x,y,z \ [u,v,w] \)

(8) \(y,x+y,z \ [v,u+v,w] \)

(9) \(x-y,x,z \ [u-v,u,w] \)

(10) \(\bar{y},x,z+\frac{1}{2} \ [v,u+w] \)

(11) \(x+y,y,z+\frac{1}{2} \ [u-v,u,w] \)

(12) \(x,x-y,z+\frac{1}{2} \ [u,u+v,w] \)

18 e .2'

(1) \(x,0,1/4 \ [u,2u,w] \)

(2) \(x,0,1/4 \ [v,2u,u] \)

(3) \(\bar{x},x,1/4 \ [u,u,w] \)

18 d \(\bar{1}' \)

(1) \(1/2,0,0 \ [0,0,0] \)

(2) \(1/2,0,1/2 \ [0,0,0] \)

(3) \(0,1/2,1/2 \ [0,0,0] \)

12 c 3.

(1) \(0,0,0 \ [0,0,0] \)

(2) \(0,0,1/2 \ [0,0,0] \)

6 b 32'

(1) \(0,0,1/4 \ [0,0,0] \)

(2) \(0,0,1/4 \ [0,0,0] \)

(3) \(0,0,3/4 \ [0,0,0] \)

Symmetry of Special Projections

Along \([0,0,1]\) p6mm
\(a^* = (2a + b)/3\)
\(b^* = (-a + b)/3\)
Origin at 0,0,z

Along \([1,0,0]\) p 2111'
\(a^* = (2a + 4b + c)/6\)
\(b^* = (a + 2b)/2\)
Origin at x,0,0

Along \([2,1,0]\) p2mg
\(a^* = c/3\)
\(b^* = b/2\)
Origin at x,x/2,0
Origin on (3') at 3c'

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/12; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2) \]

Vertices

- \(0,0,0\)
- \(1/2,0,0\)
- \(2/3,1/3,0\)
- \(1/3,2/3,0\)
- \(0,1/2,0\)
- \(0,0,1/12\)
- \(1/2,0,1/12\)
- \(2/3,1/3,1/12\)
- \(1/3,2/3,1/12\)
- \(0,1/2,1/12\)
Symmetry Operations

For (0,0,0) + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>(1) 0,0,0</td>
<td>(3z,0,0,0)</td>
</tr>
<tr>
<td>(3) 3'</td>
<td>0,0,z</td>
</tr>
<tr>
<td>(3) 3'</td>
<td>0,0,0</td>
</tr>
<tr>
<td>(2) x,x,1/4</td>
<td>x,0,1/4</td>
</tr>
<tr>
<td>(2) 0,0,1/2</td>
<td>0,0,1/2</td>
</tr>
<tr>
<td>(4) 2</td>
<td>0,1/4</td>
</tr>
<tr>
<td>(4) x</td>
<td>0,1/4</td>
</tr>
<tr>
<td>(5) 2</td>
<td>0,0,1/2</td>
</tr>
<tr>
<td>(6) 2</td>
<td>0,0,1/2</td>
</tr>
<tr>
<td>(7) T^+</td>
<td>0,0,z; 0,0,0</td>
</tr>
<tr>
<td>(7) 0,0,0</td>
<td>0,0,0</td>
</tr>
<tr>
<td>(7) T^-</td>
<td>0,0,z; 0,0,0</td>
</tr>
<tr>
<td>(7) 0,0,0</td>
<td>0,0,0</td>
</tr>
<tr>
<td>(8) c'</td>
<td>(0,0,1/2) x,2x,z</td>
</tr>
<tr>
<td>(9) c'</td>
<td>(0,0,1/2) 2x,x,z</td>
</tr>
</tbody>
</table>

For (2/3,1/3,1/3) + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t</td>
<td>(2/3,1/3,1/3)</td>
</tr>
<tr>
<td>(1) 2/3,1/3,1/3</td>
<td>2/3,1/3,1/3</td>
</tr>
<tr>
<td>(2) 3'</td>
<td>0,0,1/3</td>
</tr>
<tr>
<td>(2) 3'</td>
<td>1/3,1/3,z</td>
</tr>
<tr>
<td>(3) 3'</td>
<td>0,0,1/3</td>
</tr>
<tr>
<td>(3) 3'</td>
<td>1/3,1/3,z</td>
</tr>
<tr>
<td>(4) 2</td>
<td>x,x-1/6,1/12</td>
</tr>
<tr>
<td>(4) 2</td>
<td>x,1/6,5/12</td>
</tr>
<tr>
<td>(5) 2</td>
<td>1/2,1/3,1/2</td>
</tr>
<tr>
<td>(5) 2</td>
<td>1/2,1/3,1/2</td>
</tr>
<tr>
<td>(6) 2</td>
<td>1/3,y,5/12</td>
</tr>
<tr>
<td>(6) 2</td>
<td>1/3,y,5/12</td>
</tr>
<tr>
<td>(7) T^+</td>
<td>1/3,1/3,1/3</td>
</tr>
<tr>
<td>(7) 1/3,1/3,1/3</td>
<td>1/3,1/3,1/3</td>
</tr>
<tr>
<td>(8) 3'</td>
<td>1/3,-1/3,z</td>
</tr>
<tr>
<td>(8) 3'</td>
<td>1/3,-1/3,z</td>
</tr>
<tr>
<td>(9) 3'</td>
<td>1/3,2/3,1/3</td>
</tr>
<tr>
<td>(9) 3'</td>
<td>1/3,2/3,1/3</td>
</tr>
<tr>
<td>(10) g'</td>
<td>x+1/2,x,z</td>
</tr>
<tr>
<td>(10) g'</td>
<td>x+1/2,x,z</td>
</tr>
<tr>
<td>(11) g'</td>
<td>1/6,1/3,5/6</td>
</tr>
<tr>
<td>(11) g'</td>
<td>1/6,1/3,5/6</td>
</tr>
<tr>
<td>(12) g'</td>
<td>2/3,1/3,5/6</td>
</tr>
<tr>
<td>(12) g'</td>
<td>2/3,1/3,5/6</td>
</tr>
</tbody>
</table>

For (1/3,2,3/3) + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t</td>
<td>(1/3,2,3/3)</td>
</tr>
<tr>
<td>(1) 1/3,2,3/3</td>
<td>1/3,2,3/3</td>
</tr>
<tr>
<td>(2) 3'</td>
<td>0,0,2/3</td>
</tr>
<tr>
<td>(2) 3'</td>
<td>0,1/3,z</td>
</tr>
<tr>
<td>(3) 3'</td>
<td>0,0,2/3</td>
</tr>
<tr>
<td>(3) 3'</td>
<td>0,1/3,z</td>
</tr>
<tr>
<td>(4) 2</td>
<td>x,x+1/6,1/12</td>
</tr>
<tr>
<td>(4) 2</td>
<td>x,1/3,1/12</td>
</tr>
<tr>
<td>(5) 2</td>
<td>1/2,1/3,1/2</td>
</tr>
<tr>
<td>(5) 2</td>
<td>1/2,1/3,1/2</td>
</tr>
<tr>
<td>(6) 2</td>
<td>0,1/2,0</td>
</tr>
<tr>
<td>(6) 2</td>
<td>1/6,y,1/12</td>
</tr>
<tr>
<td>(7) T^+</td>
<td>1/3,1/3,1/3</td>
</tr>
<tr>
<td>(7) 1/3,1/3,1/3</td>
<td>1/3,1/3,1/3</td>
</tr>
<tr>
<td>(8) 3'</td>
<td>2/3,1/3,z</td>
</tr>
<tr>
<td>(8) 3'</td>
<td>2/3,1/3,z</td>
</tr>
<tr>
<td>(9) 3'</td>
<td>-1/3,1/3,z</td>
</tr>
<tr>
<td>(9) 3'</td>
<td>-1/3,1/3,z</td>
</tr>
<tr>
<td>(10) g'</td>
<td>x+1/2,x,z</td>
</tr>
<tr>
<td>(10) g'</td>
<td>x+1/2,x,z</td>
</tr>
<tr>
<td>(11) g'</td>
<td>1/3,2,3/3,1/6</td>
</tr>
<tr>
<td>(11) g'</td>
<td>1/3,2,3/3,1/6</td>
</tr>
<tr>
<td>(12) g'</td>
<td>1/3,2,3/3,1/6</td>
</tr>
<tr>
<td>(12) g'</td>
<td>1/3,2,3/3,1/6</td>
</tr>
</tbody>
</table>

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td></td>
</tr>
<tr>
<td>(2/3,1/3,1/3) +</td>
<td></td>
</tr>
<tr>
<td>(1/3,2,3/3) +</td>
<td></td>
</tr>
</tbody>
</table>
Continued

36	f	1	(1) x,y,z [u,v,w]	(2) y,x-y,z [v,u-v,w]	(3) x+y,x,z [u+v,u,w]
(4) y,x,z+1/2 [v,u-w]	(5) x-y,y,z+1/2 [u-v,v,w]	(6) x,x+y,z+1/2 [u,u+v,w]			
(7) x,y,z [u,v,w]	(8) y,x+y,z [v,u+v,w]	(9) x-y,x,z [u-v,u,w]			
(10) y,x,z+1/2 [v,u,w]	(11) x+y,y,z+1/2 [u+v,v,w]	(12) x,x-y,z+1/2 [u,u-v,w]			

| 18 | e | .2 | x,0,1/4 [u,0,0] | 0,x,1/4 [0,u,0] | x,x,1/4 [u,u,0] |
| (x,0,3/4 [u,0,0] | 0,x,3/4 [0,u,0] | x,x,3/4 [u,u,0] |

| 18 | d | 1/2,0,0 [0,0,0] | 0,1/2,0 [0,0,0] | 1/2,1/2,0 [0,0,0] |
| 0,1/2,1/2 [0,0,0] | 1/2,0,1/2 [0,0,0] | 1/2,1/2,1/2 [0,0,0] |

| 12 | c | 3. | 0,0,z [0,0,w] | 0,0,z+1/2 [0,0,w] | 0,0,z+1/2 [0,0,w] |
| 0,0,1/2 [0,0,0] | 0,0,1/2 [0,0,0] | 0,0,1/2 [0,0,0] |

| 6 | b | 32 | 0,0,1/4 [0,0,0] | 0,0,3/4 [0,0,0] |

Symmetry of Special Projections

Along [0,0,1] p6m'm'
\[\mathbf{a}^* = (2\mathbf{a} + \mathbf{b})/3 \]
Origin at 0,0,z

Along [1,0,0] p211
\[\mathbf{a}^* = (2\mathbf{a} + 4\mathbf{b} + \mathbf{c})/6 \]
\[\mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2 \]
Origin at x,0,0

Along [2,1,0] p2m'g'
\[\mathbf{a}^* = \mathbf{c}/3 \]
\[\mathbf{b}^* = \mathbf{b}/2 \]
Origin at x,x/2,0
Origin on (3) at 3c'

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/12; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2) \]

Vertices

\[\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 & \quad 0,1/2,0 \\
0,0,1/12 & \quad 1/2,0,1/12 & \quad 2/3,1/3,1/12 & \quad 1/3,2/3,1/12 & \quad 0,1/2,1/12
\end{align*} \]
Symmetry Operations

For (0,0,0) + set

1. \([1] \quad (0,0,0)\)
2. \([2] \quad 0,0,z\)
3. \([3] \quad 0,0,z\)
4. \([4] \quad x,x,1/4\)
5. \([5] \quad x,0,1/4\)
6. \([6] \quad 0,y,1/4\)
7. \([7] \quad \bar{T}\)
8. \([8] \quad 0,0,z; 0,0,0\)
9. \([9] \quad 0,0,z; 0,0,0\)
10. \([10] \quad c' (0,0,1/2)\)

For (2/3,1/3,1/3) + set

1. \([1] \quad (2/3,1/3,1/3)\)
2. \([2] \quad (0,0,1/3)\)
3. \([3] \quad (0,0,1/3)\)
4. \([4] \quad (1/2,1/2,0)\)
5. \([5] \quad (1/2,0,0)\)
6. \([6] \quad 1/3,y,5/12\)
7. \([7] \quad \bar{T}\)
8. \([8] \quad 1/3,-1/3,z; 1/3,-1/3,1/3\)
9. \([9] \quad 1/3,2/3,z; 1/3,2/3,1/3\)
10. \([10] \quad g' (-1/6,1/6,1/6)\)

For (1/3,2/3,2/3) + set

1. \([1] \quad (1/3,2/3,2/3)\)
2. \([2] \quad (0,0,2/3)\)
3. \([3] \quad (0,0,2/3)\)
4. \([4] \quad (1/2,1/2,0)\)
5. \([5] \quad x,1/3,1/12\)
6. \([6] \quad 0,1/2,0\)
7. \([7] \quad \bar{T}\)
8. \([8] \quad 2/3,1/3,1/3\)
9. \([9] \quad -1/3,1/3,1/3\)
10. \([10] \quad g' (1/3,2/3,1/6)\)

Generators selected

1; \(t(1,0,0); t(0,1,0); t(0,0,1); t(2/3,1/3,1/3); t(2); \(4); (7)\).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0,0))</td>
<td>((2/3,1/3,1/3))</td>
</tr>
</tbody>
</table>
Continued

36 f 1 (1) x,y,z [u,v,w] (2) y,x-y,z [v,u-v,w] (3) x+y,x,z [u+v,u,w] (4) y,x,z+1/2 [v,u,w] (5) x-y,y,z+1/2 [u+v,v,w] (6) x,x+y,z+1/2 [u,u-v,w] (7) x,y,z [u,v,w] (8) y,x+y,z [v,u-v,w] (9) x-y,x,z [u+v,u,w] (10) y,x,z+1/2 [v,u,w] (11) x+y,y,z+1/2 [u+v,v,w] (12) x,x-y,z+1/2 [u,u-v,w]

18 e .2' x,0,1/4 [u,2u,w] 0,x,1/4 [2u,u,w] x,x,1/4 [u,u,w] x,0,3/4 [u,2u,w] 0,x,3/4 [2u,u,w] x,x,3/4 [u,u,w]

18 d 1 1/2,0,0 [u,v,w] 0,1/2,0 [v,u-v,w] 1/2,1/2,0 [u+v,u,w] 0,1/2,1/2 [v,u,w] 1/2,0,1/2 [u+v,v,w] 1/2,1/2,1/2 [u,u-v,w]

12 c 3. 0,0,z [0,0,w] 0,0,z+1/2 [0,0,w] 0,0,z+1/2 [0,0,w] 0,0,z+1/2 [0,0,w]

6 b 3. 0,0,0 [0,0,w] 0,0,1/2 [0,0,w] 0,0,1/2 [0,0,w]

6 a 32' 0,0,1/4 [0,0,w] 0,0,3/4 [0,0,w]

Symmetry of Special Projections

Along [0,0,1] p6'm'm
\[a^* = (2a + b)/3 \quad b^* = (-a + b)/3 \]
Origin at 0,0,z

Along [1,0,0] p 2'11
\[a^* = (2a + 4b + c)/6 \quad b^* = (a + 2b)/2 \]
Origin at x,0,0

Along [2,1,0] p2'mg'
\[a^* = c/3 \quad b^* = b/2 \]
Origin at x,x/2,0
Origin on 6

Asymmetric unit:
- $0 \leq x \leq 2/3$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1$; $x \leq (1+y)/2$; $y \leq \min(1-x,x)$

Vertices:
- $0,0,0$
- $0,0,1$
- $1/2,0,0$
- $1/2,0,1$
- $2/3,1/3,0$
- $2/3,1/3,1$

Symmetry Operations:

(1) 1

(2) $3^* 0,0,z$

(3) $3^- 0,0,z$

(4) $2 0,0,z$

(5) $6^- 0,0,z$

(6) $6^+ 0,0,z$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>d</th>
<th>1</th>
<th>x,y,z [u,v,w]</th>
<th>y,x-y,z [v,u-v,w]</th>
<th>(3) x+y, x+z [u+v,u,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positions</td>
<td>(4)</td>
<td>x, y, z [u, v, w]</td>
<td>(5) y, x+y, z [v, u+v, w]</td>
<td>(6) x-y, x, z [u-v,u,w]</td>
<td></td>
</tr>
<tr>
<td>Positions</td>
<td>3</td>
<td>c</td>
<td>1/2,0,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>Positions</td>
<td>2</td>
<td>b</td>
<td>1/3,2/3,z [0,0,w]</td>
<td>2/3,1/3,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>Positions</td>
<td>1</td>
<td>a</td>
<td>0,0,z [0,0,w]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6
\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along [1,0,0] p1m'1
\[\mathbf{a}^* = (\mathbf{a} + 2\mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,0,0

Along [2,1,0] p1m'1
\[\mathbf{a}^* = \mathbf{b}/2 \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,x/2,0
Origin on 61'

Asymmetric unit

\[
\begin{align*}
0 & \leq x \leq 2/3; \\
0 & \leq y \leq 1/2; \\
0 & \leq z \leq 1; \\
x & \leq (1+y)/2; \\
y & \leq \min(1-x,x)
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/2,1/2,0 \\
0,0,1 & \quad 1/2,0,1 & \quad 2/3,1/3,1 & \quad 1/2,1/2,1
\end{align*}
\]

Symmetry Operations

For 1 + set

\[
\begin{align*}
(1) & \quad 1 \\
& \quad (1,0,0,0) \\
(2) & \quad 3^* \quad 0,0,z \\
& \quad (3z,0,0,0) \\
(3) & \quad 3' \quad 0,0,z \\
& \quad (3z^{-1},0,0,0)
\end{align*}
\]

For 1' + set

\[
\begin{align*}
(1) & \quad 1' \\
& \quad (1,0,0,0)' \\
(2) & \quad 3^{*'} \quad 0,0,z \\
& \quad (3z,0,0,0)' \\
(3) & \quad 3' \quad 0,0,z \\
& \quad (3z^{-1},0,0,0)'
\end{align*}
\]

\[
\begin{align*}
(4) & \quad 2' \quad 0,0,z \\
& \quad (2z,0,0,0)' \\
(5) & \quad 6' \quad 0,0,z \\
& \quad (6z^{-1},0,0,0)' \\
(6) & \quad 6' \quad 0,0,z \\
& \quad (6z,0,0,0)'
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>d</td>
<td>11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) y,x-y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) x+y,x,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) y,x+y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6) x-y,x,z [0,0,0]</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>2..1'</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>3..1'</td>
<td>1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/3,1/3,z [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>6..1'</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1] p61'**
 - Origin at 0,0,z
- **Along [1,0,0] p1m11'**
 - $a^* = a$, $b^* = b$
 - $a^* = (a + 2b)/2$, $b^* = c$
- **Along [2,1,0] p1m11'**
 - $a^* = b/2$, $b^* = c$
 - Origin at x,x/2,0
Origin on 6'

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,x) \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/2,1/2,0 \\
0,0,1 & \quad 1/2,0,1 & \quad 2/3,1/3,1 & \quad 1/2,1/2,1
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 3^* \quad 0,0,z \quad (3z \quad 0,0,0) \\
(3) & \quad 3^* \quad 0,0,z \quad (3z^{-1} \quad 0,0,0) \\
(4) & \quad 2' \quad 0,0,z \quad (2z \quad 0,0,0)' \\
(5) & \quad 6' \quad 0,0,z \quad (6z^{-1} \quad 0,0,0)' \\
(6) & \quad 6' \quad 0,0,z \quad (6z \quad 0,0,0)' \\
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) y,x+y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x-y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td>3 c 2'..</td>
<td>1/2,0,z [u,v,0]</td>
<td>0,1/2,z [v,u-v,0]</td>
</tr>
<tr>
<td></td>
<td>1/3,2/3,z [0,0,w]</td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td>1 a 6'..</td>
<td>0,0,z [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6'
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] p1m1
\(a^* = (a + 2b)/2 \quad b^* = c \)
Origin at x,0,0

Along [2,1,0] p1m1
\(a^* = b/2 \quad b^* = c \)
Origin at x,x/2,0
Origin on 6

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,x)\]

Vertices

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>X'</th>
<th>Y'</th>
<th>Z'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1/2,0,0</td>
<td>2/3,1/3,0</td>
<td>1/2,1/2,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0,1</td>
<td>1/2,0,1</td>
<td>2/3,1/3,1</td>
<td>1/2,1/2,1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Operations

For \(0,0,0\) + set

(1) 1

(2) 3 \cdot 0,0,z

(3) 3^-1 \cdot 0,0,z

(4) 2 \cdot 0,0,z

(5) 6 \cdot 0,0,z

(6) 6^-1 \cdot 0,0,z

For \(0,0,1\) + set

(1) t' \cdot (0,0,1)

(2) 3^-1 \cdot (0,0,1)' 0,0,z

(3) 3 \cdot (0,0,1)' 0,0,z

(4) 2' \cdot (0,0,1) 0,0,z

(5) 6^-1 \cdot (0,0,1)' 0,0,z

(6) 6 \cdot (0,0,1) 0,0,z
Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>d</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>6</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>(0,0,0) + (0,0,1)' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) y,x+y,z [v,u+v,w]</td>
</tr>
<tr>
<td>(6) x-y,x,z [u-v,u,w]</td>
</tr>
</tbody>
</table>

| 1/2,0,z [0,0,w] |
| 0,1/2,z [0,0,w] |
| 1/2,1/2,z [0,0,w] |
| 1/3,2/3,z [0,0,w] |
| 2/3,1/3,z [0,0,w] |

Symmetry of Special Projections

Along [0,0,1] p61'
\(\mathbf{a}^* = \mathbf{a} \)
\(\mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] p2b 1m1
\(\mathbf{a}^* = (\mathbf{a} + 2\mathbf{b})/2 \)
\(\mathbf{b}^* = \mathbf{c} \)
Origin at x,0,0

Along [2,1,0] p2b 1m1
\(\mathbf{a}^* = \mathbf{b}/2 \)
\(\mathbf{b}^* = \mathbf{c} \)
Origin at x,x/2,0
Origin on 6'

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq 1; \quad x \leq \frac{1+y}{2}; \quad y \leq \min(1-x,x) \]

Vertices

- \(0,0,0 \)
- \(\frac{1}{2},0,0 \)
- \(\frac{2}{3},\frac{1}{3},0 \)
- \(\frac{1}{2},\frac{1}{2},0 \)
- \(0,0,1 \)
- \(\frac{1}{2},0,1 \)
- \(\frac{2}{3},\frac{1}{3},1 \)
- \(\frac{1}{2},\frac{1}{2},1 \)

Symmetry Operations

For \((0,0,0)\) + set

1. \(1 \)
2. \(3^* \) 0,0,z
 - \(3_z(0,0,0) \)
3. \(3^-\) 0,0,z
 - \(3_z^{-1}(0,0,0) \)
4. \(2^* \) 0,0,z
 - \(2_z(0,0,0)' \)
5. \(6^* \) 0,0,z
 - \(6_z(0,0,0)' \)
6. \(6^-\) 0,0,z
 - \(6_z^{-1}(0,0,0)' \)

For \((0,0,1)\)' + set

1. \(t' \) (0,0,1)
 - \((0,0,1)' \)
2. \(3^* \) (0,0,1)
 - \(3_z(0,0,1)' \)
3. \(3^-\) (0,0,1)
 - \(3_z^{-1}(0,0,1)' \)
4. \(2^* \) (0,0,1)
 - \(2_z(0,0,1)' \)
5. \(6^* \) (0,0,1)
 - \(6_z(0,0,1)' \)
6. \(6^-\) (0,0,1)
 - \(6_z^{-1}(0,0,1)' \)
Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (0,0,1)’ +</td>
<td>(2) y,x-y,z [v-u,v,w]</td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
<td></td>
<td>(5) y,x+y,z [v-u-v,w]</td>
<td>(6) x-y,x,z [u-v,u,w]</td>
</tr>
<tr>
<td>6 c 2’..</td>
<td>1/2,0,z [u,v,0]</td>
<td></td>
<td>0,1/2,z [v-u-v,0]</td>
<td>1/2,1/2,z [u+v,u,0]</td>
</tr>
<tr>
<td>4 b 3..</td>
<td>1/3,2/3,z [0,0,w]</td>
<td></td>
<td>2/3,1/3,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 a 6’..</td>
<td>0,0,z [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p61’
\[\mathbf{a}^* = \mathbf{a}, \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along [1,0,0] \(\mathbf{p}_{2b} \), 1m1
\[\mathbf{a}^* = (\mathbf{a} + 2\mathbf{b})/2, \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,0,0

Along [2,1,0] \(\mathbf{p}_{2b} \), 1m1
\[\mathbf{a}^* = b/2, \quad \mathbf{b}^* = c \]
Origin at x,x/2,0
Origin on 6₁

Asymmetric unit
\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq \frac{1}{6}\]

Vertices
\[0,0,0\] \[1,0,0\] \[1,1,0\] \[0,1,0\]
\[0,0,\frac{1}{6}\] \[1,0,\frac{1}{6}\] \[1,1,\frac{1}{6}\] \[0,1,\frac{1}{6}\]

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) \(3^*\) (0,0,1/3) 0,0,z
(3) \(3^*\) (0,0,2/3) 0,0,z

(3) \(3^*\) (0,0,1/3) 0,0,z
(3) \(3^*\) (0,0,2/3) 0,0,z

(4) 2 (0,0,1/2) 0,0,z
(2 | 0,0,1/2)

(5) 6' (0,0,5/6) 0,0,z
(6) 6' (0,0,1/6) 0,0,z

(6) 6' (0,0,5/6) 0,0,z
(6) 6' (0,0,1/6)
Generators selected

(1) t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) (y),x-y,z+1/3 [(v),u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) (x+y),x,z+2/3 [(u+v),u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) (x),y,z+1/2 [(u),v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) y,x+(y),z+5/6 [v,(u+v),w]</td>
</tr>
<tr>
<td></td>
<td>(6) x-y,x,z+1/6 [(u-v),u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) p6 Along \([1,0,0]\) p1\(g'1\) Along \([2,1,0]\) p1\(g'1\)

\(a^* = a \quad b^* = b \quad a^* = (a + 2b)/2 \quad b^* = c \quad a^* = b/2 \quad b^* = c \)

Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin on 6,1'

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq \frac{1}{6} \]

Vertices

<table>
<thead>
<tr>
<th></th>
<th>0,0,0</th>
<th>1,0,0</th>
<th>1,1,0</th>
<th>0,1,0</th>
<th>0,0,1/6</th>
<th>1,0,1/6</th>
<th>1,1,1/6</th>
<th>0,1,1/6</th>
</tr>
</thead>
</table>

Symmetry Operations

For 1 + set

1. \(1\) (1,0,0)
2. \(3^* (0,0,1/3) \quad 0,0,z\)
3. \(3^{-1} (0,0,2/3) \quad 0,0,z\)
4. \(2 (0,0,1/2) \quad 0,0,z\)
5. \(6^{-1} (0,0,5/6) \quad 0,0,z\)
6. \(6 (0,0,1/6) \quad 0,0,z\)

For 1' + set

1. \(1' (0,0,0)\)
2. \(3^* (0,0,1/3) \quad 0,0,z\)
3. \(3^{-1} (0,0,2/3) \quad 0,0,z\)
4. \(2' (0,0,1/2) \quad 0,0,z\)
5. \(6^{-1} (0,0,5/6) \quad 0,0,z\)
6. \(6' (0,0,1/6) \quad 0,0,z\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); 1'.

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z</td>
</tr>
<tr>
<td></td>
<td>(2) y,x-y,z+1/3</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x,z+2/3</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2</td>
</tr>
<tr>
<td></td>
<td>(5) y,x+y,z+5/6</td>
</tr>
<tr>
<td></td>
<td>(6) x-y,x,z+1/6</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p61' Along [1,0,0] p1g11' Along [2,1,0] p1g11'
\(a^* = a \) \(b^* = b \) \(a^* = (a + 2b)/2 \) \(b^* = c \) \(a^* = b/2 \) \(b^* = c \)

Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin on 6,

Asymmetric unit

\begin{align*}
\text{Vertices} & \quad 0,0,0 & 1,0,0 & 1,1,0 & 0,1,0 \\
& \quad 0,0,1/6 & 1,0,1/6 & 1,1,1/6 & 0,1,1/6
\end{align*}

Symmetry Operations

\begin{align*}
(1) \quad & 1 \\
& (1 \mid 0,0,0) \\
(2) \quad & 3^* (0,0,1/3) \ 0,0,z \\
& (3_z^* 0,0,1/3) \\
(3) \quad & 3^* (0,0,2/3) \ 0,0,z \\
& (3_z^* 0,0,2/3) \\
(4) \quad & 2' (0,0,1/2) \ 0,0,z \\
& (2_z' 0,0,1/2)^* \\
(5) \quad & 6^* (0,0,5/6) \ 0,0,z \\
& (6_z^* 0,0,5/6)^* \\
(6) \quad & 6^* (0,0,1/6) \ 0,0,z \\
& (6_z^* 0,0,1/6)^*
\end{align*}
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4). \)

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 a 1</td>
<td>(1) (x,y,z) ([u,v,w]) (2) (\bar{y},x-y,z+1/3) ([\bar{v},u-v,w]) (3) (\bar{x}+y,\bar{x},z+2/3) ([\bar{u}+v,\bar{u},w]) (4) (\bar{x},y,z+1/2) ([u,v,\bar{w}]) (5) (y,x+y,z+3/6) ([v,u-v,w]) (6) (x-y,x,z+1/6) ([u+v,\bar{u},\bar{w}])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) \(p6' \) Along \([1,0,0]\) \(p1g1 \) Along \([2,1,0]\) \(p1g1 \)

\(a^* = a \) \(b^* = b \) \(a^* = (a+2b)/2 \) \(b^* = c \) \(a^* = b/2 \) \(b^* = c \)

Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin on 6_5

Asymmetric unit: $0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/6$

Vertices:
- $0,0,0$
- $1,0,0$
- $1,1,0$
- $0,1,0$
- $0,0,1/6$
- $1,0,1/6$
- $1,1,1/6$
- $0,1,1/6$

Symmetry Operations:

1. 1
2. $3^* (0,0,2/3) \quad 0,0,z$
3. $3^* (0,0,1/3) \quad 0,0,z$
4. $2 (0,0,1/2) \quad 0,0,z$
5. $6^* (0,0,1/6) \quad 0,0,z$
6. $6^* (0,0,5/6) \quad 0,0,z$

$P6_5$

170.1.1347

Hexagonal
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4)\).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 a 1</td>
<td>(1) (x,y,z) ([u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(2) (y,x-y,z+2/3) ([v,u-v,w])</td>
</tr>
<tr>
<td></td>
<td>(3) (x+y,x,z+1/3) ([u+v,u,w])</td>
</tr>
<tr>
<td></td>
<td>(4) (x,y,z+1/2) ([u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(5) (y,x+y,z+1/6) ([v,u+v,w])</td>
</tr>
<tr>
<td></td>
<td>(6) (x-y,x,z+5/6) ([u-v,u,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along ([0,0,1])</th>
<th>p6</th>
<th>Along ([1,0,0])</th>
<th>p1g'1</th>
<th>Along ([2,1,0])</th>
<th>p1g'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b)</td>
<td>(a^* = (a + 2b)/2)</td>
<td>(b^* = c)</td>
<td>(a^* = b/2)</td>
<td>(b^* = c)</td>
</tr>
<tr>
<td>Origin at (0,0,z)</td>
<td>Origin at (x,0,0)</td>
<td>Origin at (x,x/2,0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin on $6_3 1'$

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/6 \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1,0,0 & \quad 1,1,0 & \quad 0,1,0 \\
0,0,1/6 & \quad 1,0,1/6 & \quad 1,1,1/6 & \quad 0,1,1/6
\end{align*}
\]

Symmetry Operations

For \(1 \) + set

\[
\begin{align*}
(1) \quad & 1 \\
(1) & (1,0,0) \\
(2) & 3^+ (0,0,2/3) \quad 0,0,z \\
(3) & 3^- (0,0,1/3) \quad 0,0,z \\
(4) & 2 (0,0,1/2) \quad 0,0,z \\
(4) & (2_z,0,0,1/2) \\
(5) & 6^- (0,0,1/6) \quad 0,0,z \\
(5) & (6_z^{-1},0,0,1/6) \\
(6) & 6^+ (0,0,5/6) \quad 0,0,z \\
(6) & (6_z,0,0,5/6)
\end{align*}
\]

For \(1' \) + set

\[
\begin{align*}
(1) \quad & 1' \\
(1) & (1,0,0)' \\
(2) & 3^+ '(0,0,2/3) \quad 0,0,z \\
(3) & 3^- '(0,0,1/3) \quad 0,0,z \\
(4) & 2'(0,0,1/2) \quad 0,0,z \\
(4) & (2_z',0,0,1/2) \\
(5) & 6^- '(0,0,1/6) \quad 0,0,z \\
(5) & (6_z^{-1}',0,0,1/6) \\
(6) & 6^+ '(0,0,5/6) \quad 0,0,z \\
(6) & (6_z,0,0,5/6)'
\end{align*}
\]

170.2.1348 - 1 - 2933
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 a 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) y,-x-y,z+2/3 [0,0,0]</td>
<td>(3) x+y,x,z+1/3 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2 [0,0,0]</td>
<td>(5) y,x+y,z+1/6 [0,0,0]</td>
<td>(6) x-y,x,z+5/6 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p61'
\(a^* = a \) \(b^* = b \)
Origin at 0,0,z

Along [1,0,0] p1g11'
\(a^* = (a+2b)/2 \) \(b^* = c \)
Origin at x,0,0

Along [2,1,0] p1g11'
\(a^* = b/2 \) \(b^* = c \)
Origin at x,x/2,0
Origin on $6_5'$

Asymmetric unit $0 \leq x \leq 1$; $0 \leq y \leq 1$; $0 \leq z \leq 1/6$

Vertices

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertices</td>
<td>0,0,0</td>
<td>1,0,0</td>
<td>1,1,0</td>
</tr>
<tr>
<td></td>
<td>0,0,1/6</td>
<td>1,0,1/6</td>
<td>1,1,1/6</td>
</tr>
</tbody>
</table>

Symmetry Operations

1. 1
 1 1
 1 1

2. 3^* $(0,0,2/3)$ $0,0,z$
 3^* $(0,0,2/3)$ $0,0,z$

3. 3^* $(0,0,1/3)$ $0,0,z$
 3^* $(0,0,1/3)$ $0,0,z$

4. $2' (0,0,1/2)$ $0,0,z$
 $2' (0,0,1/2)$ $0,0,z$

5. $6' (0,0,1/6)$ $0,0,z$
 $6' (0,0,1/6)$ $0,0,z$

6. $6' (0,0,5/6)$ $0,0,z$
 $6' (0,0,5/6)$ $0,0,z$
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>a</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) y,x-y,z+2/3 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) x+y, x,z+1/3 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) x, y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) y,x+y,z+1/6 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6) x-y,x,z+5/6 [u+v,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6'</th>
<th>Along [1,0,0]</th>
<th>p1g1</th>
<th>Along [2,1,0]</th>
<th>p1g1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = a</td>
<td>b' = b</td>
<td>a' = (a + 2b)/2</td>
<td>b' = c</td>
<td>a' = b/2</td>
<td>b' = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x/2,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 2 on 6

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq \frac{1}{3}; \quad y \leq x \]

Vertices

<table>
<thead>
<tr>
<th></th>
<th>0,0,0</th>
<th>1,0,0</th>
<th>1,1,0</th>
<th>0,0,1/3</th>
<th>1,0,1/3</th>
<th>1,1,1/3</th>
</tr>
</thead>
</table>

Symmetry Operations

- \((1) 1 \)
- \((1 | 0,0,0) \)
- \((2) 3^* (0,0,2/3) \)
- \((3) 3^* (0,0,1/3) \)
- \((3 z^* 0,0,2/3) \)
- \((3 z^* 0,0,1/3) \)

- \((4) 2 0,0,z \)
- \((2_z | 0,0,0) \)
- \((5) 6^* (0,0,2/3) \)
- \((6) 6^* (0,0,1/3) \)
- \((6 z^* 0,0,2/3) \)
- \((6 z^* 0,0,1/3) \)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

6	c	1	(1) x,y,z [u,v,w]	(2) \(\bar{y},x-y,z+2/3\) [v,\(u-v,w\)]	(3) \(x+y,\bar{x},z+1/3\) [\(u+v,\bar{u},w\)]
3	b	2..	1/2,1/2,z [0,0,w]	1/2,0,z+2/3 [0,0,w]	0,1/2,z+1/3 [0,0,w]
3	a	2..	0,0,z [0,0,w]	0,0,z+2/3 [0,0,w]	0,0,z+1/3 [0,0,w]

Symmetry of Special Projections

Along [0,0,1] p6 Along [1,0,0] p1m'1 Along [2,1,0] p1m'1
\(a^* = a\) \(b^* = b\) \(a^* = b/2\) \(b^* = c\)
Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0

Continued
Origin on $21'$ on $6_21'$

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/3; \quad y \leq x\]

Vertices

\[\begin{array}{ccc}
0,0,0 & 1,0,0 & 1,1,0 \\
0,0,1/3 & 1,0,1/3 & 1,1,1/3
\end{array}\]

Symmetry Operations

For $1' +$ set

\[
\begin{align*}
(1) & \quad 1 & & (2) & \quad 3' \ (0,0,2/3) & \quad 0,0,z \\
& (1|0,0,0) & & (3_z|0,0,2/3) & & (3_z|0,0,1/3) \\
(4) & \quad 2 \quad 0,0,z & & (5) & \quad 6' \ (0,0,2/3) & \quad 0,0,z \\
& (2_z|0,0,0) & & (6_z^{-1}|0,0,2/3) & & (6_z|0,0,1/3)
\end{align*}
\]

For $1' -$ set

\[
\begin{align*}
(1) & \quad 1' & & (2) & \quad 3' \ (0,0,2/3) & \quad 0,0,z \\
& (1|0,0,0)' & & (3_z|0,0,2/3)' & & (3_z|0,0,1/3)' \\
(4) & \quad 2' \quad 0,0,z & & (5) & \quad 6' \ (0,0,2/3) & \quad 0,0,z \\
& (2_z|0,0,0)' & & (6_z^{-1}|0,0,2/3)' & & (6_z|0,0,1/3)'
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 c 11'</td>
<td></td>
<td></td>
<td>(1) x,y,z [0,0,0] (2) y,x-y,z+2/3 [0,0,0] (3) x+y, x,z+1/3 [0,0,0]</td>
</tr>
<tr>
<td>3 b 2..1'</td>
<td></td>
<td></td>
<td>(4) x,y,z [0,0,0] (5) y,x+y,z+2/3 [0,0,0] (6) x-y, x,z+1/3 [0,0,0]</td>
</tr>
<tr>
<td>3 a 2..1'</td>
<td></td>
<td></td>
<td>(7) x, y, z [0,0,0] (8) y,x+y, z+2/3 [0,0,0] (9) x-y, x,z+1/3 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p6'
 Origin at 0,0,z
 \(a^* = a \) \(b^* = b \)

- Along [1,0,0] p1m1'
 Origin at x,0,0
 \(a^* = (a + 2b)/2 \) \(b^* = c \)

- Along [2,1,0] p1m1'
 Origin at x,x/2,0
 \(a^* = b/2 \) \(b^* = c \)
Origin on 2' on 6'₁

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/3; \quad y \leq x \]

Vertices

\begin{align*}
0,0,0 & \quad 1,0,0 & \quad 1,1,0 \\
0,0,1/3 & \quad 1,0,1/3 & \quad 1,1,1/3
\end{align*}

Symmetry Operations

\begin{align*}
(1) & \quad 1 \\
(1') & \quad 0,0,0 \\
(2) & \quad 3' (0,0,2/3) \quad 0,0,z \\
(3) & \quad 3' (0,0,1/3) \quad 0,0,z \\
(4) & \quad 2' \ 0,0,z \\
(5) & \quad 6' \ 0,0,2/3 \quad 0,0,z \\
(6) & \quad 6' \ 0,0,1/3 \quad 0,0,z
\end{align*}
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y,x-y,z+2/3 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z+1/3 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) y,x+y,z+2/3 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x-y,x,z+1/3 [u+v,u,w]</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>2'. 1/2,1/2,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z+2/3 [v,u-v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z+1/3 [u+v,u,0]</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>2'. 0,0,z [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+2/3 [v,u-v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/3 [u+v,u,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p6'
 - Origin at 0,0,z
 - \(a^* = a \) \(b^* = b \)

- Along [1,0,0] p1m1
 - Origin at x,0,0
 - \(a^* = (a+2b)/2 \) \(b^* = c \)

- Along [2,1,0] p1m1
 - Origin at x,x/2,0
 - \(a^* = b/2 \) \(b^* = c \)
Origin on 2’ on 6_2

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/3; \quad y \leq x\]

Vertices

\[\begin{array}{ccc}
0,0,0 & 1,0,0 & 1,1,0 \\
0,0,1/3 & 1,0,1/3 & 1,1,1/3 \\
\end{array}\]

Symmetry Operations

For \((0,0,0) + \text{set}\)

\[\begin{array}{ccc}
(1) & 1 & (2) 3' (0,0,2/3) \quad 0,0,z \\
(1|0,0,0) & (3_z|0,0,2/3) & (3) 3' (0,0,1/3) \quad 0,0,z \\
(4) 2' 0,0,z & (5) 6' (0,0,2/3) \quad 0,0,z & (6) 6' (0,0,1/3) \quad 0,0,z \\
(2_z|0,0,0)' & (6_z^{-1}|0,0,2/3)' & (6_z|0,0,1/3) \\
\end{array}\]

For \((0,0,1)' + \text{set}\)

\[\begin{array}{ccc}
(1) t' (0,0,1) & (2) 3' (0,0,5/3) \quad 0,0,z & (3) 3' (0,0,4/3) \quad 0,0,z \\
(1|0,0,1)' & (3_z|0,0,5/3)' & (3_z^{-1}|0,0,4/3) \\
(4) 2 (0,0,1) 0,0,z & (5) 6' (0,0,5/3) \quad 0,0,z & (6) 6' (0,0,4/3) \quad 0,0,z \\
(2_z|0,0,1) & (6_z^{-1}|0,0,5/3) & (6_z|0,0,4/3)' \\
\end{array}\]

171.4.1353 - 1 - 2943
Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (0,0,1) + (0,1,0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) y,x-y,z+2/3 [v,u-v,w]</td>
<td>(2) y,x-y,z+2/3 [v,u-v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x,z+1/3 [u-v,u,w]</td>
<td>(3) x+y,x,z+1/3 [u-v,u,w]</td>
<td></td>
</tr>
<tr>
<td>6 b 2'..</td>
<td>1/2,1/2,z [u,v,0]</td>
<td>1/2,0,z+2/3 [v,u-v,0]</td>
<td>0,1/2,z+1/3 [u-v,u,0]</td>
</tr>
<tr>
<td>6 a 2'..</td>
<td>0,0,z [u,v,0]</td>
<td>0,0,z+2/3 [v,u-v,0]</td>
<td>0,0,z+1/3 [u-v,u,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p61'</th>
<th>Along [1,0,0]</th>
<th>p2b 1m'1</th>
<th>Along [2,1,0]</th>
<th>p2b' 1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = (a + 2b)/2, b* = c</td>
<td>a* = b/2, b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,0</td>
<td>Origin at x,x/2,0</td>
<td>Origin at x,x/2,0</td>
<td>Origin at x,x/2,0</td>
</tr>
</tbody>
</table>
Origin on 2' on 6_2'

Asymmetric unit

\[\begin{align*}
0 \leq x \leq 1; & \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/3; \quad y \leq x \\
\end{align*} \]

Vertices

\[\begin{align*}
0,0,0 & \quad 1,0,0 & \quad 1,1,0 \\
0,0,1/3 & \quad 1,0,1/3 & \quad 1,1,1/3 \\
\end{align*} \]

Symmetry Operations

For (0,0,0) + set

\[\begin{align*}
(1) & \quad 1 \\
(1' | 0,0,0) & \quad (3^* | 0,0,2/3) \quad 0,0,z \\
(3 | 3^* | 0,0,2/3) & \quad (3_{z}^{-1} | 0,0,1/3) \\
(4) & \quad 2 \quad 0,0,z \\
(2_{z} | 0,0,0) & \quad (5^* | 0,0,2/3) \quad 0,0,z \\
(6 | 6^* | 0,0,2/3) & \quad (6_{z} | 0,0,1/3) \\
(5) & \quad 6^* \quad (0,0,2/3) \quad 0,0,z \\
(6_{z} | 0,0,1/3)' & \quad (6_{z} | 0,0,1/3) \\
(6) & \quad 6^* \quad (0,0,1/3) \quad 0,0,z \\
(6_{z} | 0,0,1/3)' & \quad (6_{z} | 0,0,1/3)' \\
\end{align*} \]

For (0,0,1)' + set

\[\begin{align*}
(1) & \quad t' \quad (0,0,1) \\
(1' | 0,0,1)' & \quad (2) \quad 3^* \quad (0,0,5/3) \quad 0,0,z \\
(3 | 3^* | 0,0,5/3)' & \quad (3_{z}^{-1} | 0,0,4/3) \\
(4) & \quad 2' \quad (0,0,1) \quad 0,0,z \\
(2_{z} | 0,0,1)' & \quad (5) \quad 6^* \quad (0,0,5/3) \quad 0,0,z \\
(6 | 6^* | 0,0,5/3)' & \quad (6_{z} | 0,0,4/3) \\
(6) & \quad 6^* \quad (0,0,4/3) \quad 0,0,z \\
(6_{z} | 0,0,4/3) & \quad (6_{z} | 0,0,4/3) \\
\end{align*} \]
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0)+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y,x-y,z+2/3 [v,u-v,w]</td>
<td>(0,0,1)' +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z+1/3 [u-v,u+w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [v,u,v,w]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>b 2..</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,0,z+2/3 [0,0,w]</td>
</tr>
<tr>
<td>6</td>
<td>a 2..</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+2/3 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,z+1/3 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**
 - **p61'**
 - $a^* = a$
 - $b^* = b$
 - Origin at 0,0,z

- **Along [1,0,0]**
 - **p2b, 1m1**
 - $a^* = (a + 2b)/2$
 - $b^* = c$
 - Origin at x,0,0

- **Along [2,1,0]**
 - **p2b, 1m1**
 - $a^* = b/2$
 - $b^* = c$
 - Origin at x,x/2,0
Origin on 2 on 6

Asymmetric unit

<table>
<thead>
<tr>
<th>Vertices</th>
<th>0 ≤ x ≤ 1;</th>
<th>0 ≤ y ≤ 1;</th>
<th>0 ≤ z ≤ 1/3;</th>
<th>y ≤ x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>0,0,0</td>
<td>0,0,0</td>
<td>0,0,0</td>
<td></td>
</tr>
<tr>
<td>0,1/3</td>
<td>0,0,1/3</td>
<td>0,0,1/3</td>
<td>0,1/3</td>
<td></td>
</tr>
<tr>
<td>1,0</td>
<td>1,0,0</td>
<td>1,0,0</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>1,1/3</td>
<td>1,0,1/3</td>
<td>1,0,1/3</td>
<td>1,1/3</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Operations

1. 1
2. 3^* (0,0,1/3) 0,0,z
3. 3^* (0,0,2/3) 0,0,z
4. 2 0,0,z
5. 6^* (0,0,1/3) 0,0,z
6. 6^* (0,0,2/3) 0,0,z

1^* $0,0,0$
3^* (0,0,1/3)
3^* (0,0,2/3)
2^* $0,0,0$
6^* (0,0,1/3)
6^* (0,0,2/3)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z+1/3 [v,u-v,w]</td>
<td>(3) x+y,x,z+2/3 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
<td>(5) y,x+y,z+1/3 [v,u+v,w]</td>
<td>(6) x-y,x,z+2/3 [u-v,u,w]</td>
</tr>
<tr>
<td>3 b 2..</td>
<td>1/2,1/2,z [0,0,w]</td>
<td>1/2,0,z+1/3 [0,0,w]</td>
<td>0,1/2,z+2/3 [0,0,w]</td>
</tr>
<tr>
<td>3 a 2..</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/3 [0,0,w]</td>
<td>0,0,z+2/3 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6</th>
<th>Along [1,0,0]</th>
<th>p1m'1</th>
<th>Along [2,1,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = (a + 2b)/2</td>
<td>b* = c</td>
<td>a* = b/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x/2,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 21' on 6_31'

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/3; \quad y \leq x\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1,0,0 & \quad 1,1,0 \\
0,0,1/3 & \quad 1,0,1/3 & \quad 1,1,1/3 \\
\end{align*}
\]

Symmetry Operations

For \(1 + \) set

1. \(\mathbf{1}\) \(\begin{pmatrix} 1 \end{pmatrix} \quad \begin{pmatrix} 0,0,0 \end{pmatrix}\)

2. \(\mathbf{3}^*\) \((0,0,1/3)\) \((0,0,z)\)

3. \(\mathbf{3}^*\) \((0,0,2/3)\) \((0,0,z)\)

4. \(\mathbf{2}\) \((0,0,z)\)

5. \(\mathbf{6}^*\) \((0,0,1/3)\) \((0,0,z)\)

6. \(\mathbf{6}^*\) \((0,0,2/3)\) \((0,0,z)\)

For \(1' + \) set

1. \(\mathbf{1}'\) \(\begin{pmatrix} 1 \end{pmatrix} \quad \begin{pmatrix} 0,0,0' \end{pmatrix}\)

2. \(\mathbf{3}^*\) \((0,0,1/3)\) \((0,0,z)\)

3. \(\mathbf{3}^*\) \((0,0,2/3)\) \((0,0,z)\)

4. \(\mathbf{2'}\) \((0,0,z)\)

5. \(\mathbf{6}^*\) \((0,0,1/3)\) \((0,0,z)\)

6. \(\mathbf{6}^*\) \((0,0,2/3)\) \((0,0,z)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4): 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 c 11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) y,x-y,z+1/3 [0,0,0]</td>
</tr>
<tr>
<td>3 b 2..1'</td>
<td>1/2,1/2,z [0,0,0]</td>
<td>1/2,0,z+1/3 [0,0,0]</td>
</tr>
<tr>
<td>3 a 2..1'</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z+1/3 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p61'</th>
<th>Along [1,0,0]</th>
<th>p1m11'</th>
<th>Along [2,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a* = (a + 2b)/2</td>
<td>b* = c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin on 2' on 6'_4:

Asymmetric unit: $0 \leq x \leq 1; 0 \leq y \leq 1; 0 \leq z \leq 1/3; y \leq x$

Vertices:
- $0,0,0$
- $0,0,1/3$
- $0,1,0$
- $1,0,0$
- $1,0,1/3$
- $1,1,0$
- $1,1,1/3$

Symmetry Operations:

1. 1
2. $3' (0,0,1/3) 0,0,z$
3. $3' (0,0,2/3) 0,0,z$
4. $2' 0,0,z$
5. $6' (0,0,1/3) 0,0,z$
6. $6' (0,0,2/3) 0,0,z$
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6)</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>2'..</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z+1/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z+2/3</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>2'..</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+2/3</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along \([0,0,1]\) p6'
 \(\mathbf{a}^* = \mathbf{a} \) \(\mathbf{b}^* = \mathbf{b} \)
 Origin at \(0,0,z\)

- Along \([1,0,0]\) p1m1
 \(\mathbf{a}^* = (\mathbf{a} + 2\mathbf{b})/2 \) \(\mathbf{b}^* = \mathbf{c} \)
 Origin at \(x,0,0\)

- Along \([2,1,0]\) p1m1
 \(\mathbf{a}^* = \mathbf{b}/2 \) \(\mathbf{b}^* = \mathbf{c} \)
 Origin at \(x,x/2,0\)
Origin on 2 on 6'₄

Asymmetric unit

\begin{align*}
0 \leq x \leq 1; & \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/3; \quad y \leq x
\end{align*}

Vertices

\begin{align*}
0,0,0 & \quad 1,0,0 & \quad 1,1,0 \\
0,0,1/3 & \quad 1,0,1/3 & \quad 1,1,1/3
\end{align*}

Symmetry Operations

For \((0,0,0) + \) set

\begin{align*}
(1) \ 1 & \quad (2) \ 3' \ (0,0,1/3) \quad 0,0,z \\
(1 \ 0,0,0) & \quad (3_z \ 0,0,1/3) & \quad (3_z \ 0,0,2/3)
\end{align*}

\begin{align*}
(4) \ 2 \ 0,0,z \\
(2_z \ 0,0,0) & \quad (5) \ 6' \ (0,0,1/3) \quad 0,0,z \\
& \quad (6_z^{-1} \ 0,0,1/3)
\end{align*}

For \((0,0,1)' + \) set

\begin{align*}
(1) \ t' \ (0,0,1) & \quad (2) \ 3' \ (0,0,4/3) \quad 0,0,z \\
(1 \ 0,0,1)' & \quad (3_z \ 0,0,4/3) & \quad (3_z \ 0,0,5/3)
\end{align*}

\begin{align*}
(4) \ 2' \ (0,0,1) \ 0,0,z \\
(2_z \ 0,0,1)' & \quad (5) \ 6' \ (0,0,4/3) \quad 0,0,z \\
& \quad (6_z^{-1} \ 0,0,4/3)
\end{align*}
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>c</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y,x-y,z+1/3 [v,u+v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z+2/3 [u+v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) y,x+y,z+1/3 [v,u-v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x-y,x,z+2/3 [u-v,u,w]</td>
<td></td>
</tr>
</tbody>
</table>

6	b	1/2,1/2,z [0,0,w]	1/2,0,z+1/3 [0,0,w]
		0,0,z [0,0,w]	
		0,0,z+1/3 [0,0,w]	
		0,0,z+2/3 [0,0,w]	

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p61'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p_{2b'} 1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (a + 2b)/2</td>
<td></td>
</tr>
<tr>
<td>b* = c</td>
<td></td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [2,1,0]</th>
<th>p_{2b'} 1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b/2</td>
<td></td>
</tr>
<tr>
<td>b* = c</td>
<td></td>
</tr>
<tr>
<td>Origin at x,x/2,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 2' on 6_4'

Asymmetric unit

\[0 < x < 1; \quad 0 < y < 1; \quad 0 < z < \frac{1}{3}; \quad y < x \]

Vertices

\[0,0,0 \quad 1,0,0 \quad 1,1,0 \]
\[0,0,\frac{1}{3} \quad 1,0,\frac{1}{3} \quad 1,1,\frac{1}{3} \]

Symmetry Operations

For \((0,0,0) + \) set

1. \(1\)
2. \(3' (0,0,1/3) \quad 0,0,z \quad (3_z | 0,0,1/3)'
3. \(3' (0,0,2/3) \quad 0,0,z \quad (3_z | 0,0,2/3)'
4. \(2' (0,0,0) \quad 0,0,z \quad (2_z | 0,0,0)'
5. \(6' (0,0,1/3) \quad 0,0,z \quad (6_z | 0,0,1/3)\)
6. \(6' (0,0,2/3) \quad 0,0,z \quad (6_z | 0,0,2/3)'

For \((0,0,1) + \) set

1. \(t' (0,0,1) \quad 0,0,z \quad (2_z | 0,0,1)'
2. \(3' (0,0,4/3) \quad 0,0,z \quad (3_z | 0,0,4/3)
3. \(3' (0,0,5/3) \quad 0,0,z \quad (3_z | 0,0,5/3)'
4. \(2 (0,0,1) \quad 0,0,z \quad (2_z | 0,0,1)
5. \(6' (0,0,4/3) \quad 0,0,z \quad (6_z | 0,0,4/3)'
6. \(6' (0,0,5/3) \quad 0,0,z \quad (6_z | 0,0,5/3)\)
Generators selected \((1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(12 \ c \ 1) ((0,0,0) + (0,0,1)' +) ((0,0,0) + (0,0,1)' +)</td>
<td></td>
</tr>
<tr>
<td>((1) \ x,y,z \ [u,v,w]) ((2) \ y,\overline{x-y},z+1/3 \ [v,\overline{u+v},\overline{w}]) ((3) \ x+y,\overline{x},z+2/3 \ [\overline{u+v},\overline{u},w])</td>
<td></td>
</tr>
<tr>
<td>((4) \ \overline{x},\overline{y},z \ [u,v,w]) ((5) \ y,x+y,z+1/3 \ [v,\overline{u+v},\overline{w}]) ((6) \ x-y,x,z+2/3 \ [\overline{u+v},\overline{u},w])</td>
<td></td>
</tr>
<tr>
<td>(6 \ b \ 2') (1/2,1/2,z \ [u,v,0]) (1/2,0,z+1/3 \ [v,\overline{u+v},0]) (0,1/2,z+2/3 \ [\overline{u+v},\overline{u},0])</td>
<td></td>
</tr>
<tr>
<td>(6 \ a \ 2') (0,0,z \ [u,v,0]) (0,0,z+1/3 \ [v,\overline{u+v},0]) (0,0,z+2/3 \ [\overline{u+v},\overline{u},0])</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) \(p61' \)
\(a^* = a \ b^* = b \)
Origin at \(0,0,z\)

Along \([1,0,0]\) \(p_{2b'} \ 1m1 \)
\(a^* = (a + 2b)/2 \ b^* = c \)
Origin at \(x,0,0\)

Along \([2,1,0]\) \(p_{2b'} \ 1m1 \)
\(a^* = b/2 \ b^* = c \)
Origin at \(x,x/2,0\)
Origin on 3 on 6

Asymmetric unit:

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/2; \quad x < (1 + y)/2; \quad y \leq \min(1 - x, (1 + x)/2) \]

Vertices:

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 & \quad 0,1/2,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2 & \quad 1/3,2/3,1/2 & \quad 0,1/2,1/2
\end{align*}
\]

Symmetry Operations:

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad 1 \quad 0,0,0 \\
(2) & \quad 3^* \quad 0,0,z \\
(3) & \quad 3^* \quad 0,0,z \\
(4) & \quad 2 \quad 0,0,1/2 \\
(2) & \quad 0,0,1/2 \\
(5) & \quad 6 \quad (0,0,1/2) \quad 0,0,z \\
(6) & \quad 6^* \quad (0,0,1/2) \quad 0,0,z \\
(6) & \quad (0,0,1/2)
\end{align*}
\]
Continued

Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4). \)

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 c 1</td>
<td>(1) (x,y,z [u,v,w]) (2) (y,x-y,z [v,u-v,w]) (3) (x+y,x,z [u+v,u,w]) (4) (x,y,z+1/2 [u,v,w])</td>
<td></td>
</tr>
<tr>
<td>2 b 3..</td>
<td>(1/3,2/3,z [0,0,w]) (2/3,1/3,z+1/2 [0,0,w])</td>
<td></td>
</tr>
<tr>
<td>2 a 3..</td>
<td>(0,0,z [0,0,w]) (0,0,z+1/2 [0,0,w])</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along \([0,0,1]\) \(p6 \) \(a^* = a \) \(b^* = b \) Origin at \(0,0,z \)
Along \([1,0,0]\) \(p1g'1 \) \(a^* = (a + 2b)/2 \) \(b^* = c \) Origin at \(x,0,0 \)
Along \([2,1,0]\) \(p1g'1 \) \(a^* = b/2 \) \(b^* = c \) Origin at \(x,x/2,0 \)
Origin on 31' on 6_31'

Asymmetric unit

- $0 \leq x \leq 2/3$; $0 \leq y \leq 2/3$; $0 \leq z \leq 1/2$; $x \leq (1 + y)/2$; $y \leq \min(1 - x,(1 + x)/2)$

Vertices

- $0,0,0$
- $1/2,0,0$
- $2/3,1/3,0$
- $1/3,2/3,0$
- $0,1/2,0$
- $0,0,1/2$
- $1/2,0,1/2$
- $2/3,1/3,1/2$
- $1/3,2/3,1/2$
- $0,1/2,1/2$

Symmetry Operations

For 1 + set

1. 1
 - 1 on $(0,0,0)$
2. $3'$ on $0,0,z$
 - $(3_z | 0,0,0)$
3. $3'$ on $0,0,z$
 - $(3_z^{-1} | 0,0,0)$
4. 2 on $(0,0,1/2)$
 - $(2_z | 0,0,1/2)$
 - $(6_z | 0,0,1/2)$
5. $6'$ on $(0,0,1/2)$
 - $(6_z^{-1} | 0,0,1/2)$
6. $6'$ on $(0,0,1/2)$
 - $(6_z | 0,0,1/2)$

For 1' + set

1. $1'$
 - $1'$ on $(0,0,0)'$
2. $3'$ on $0,0,z$
 - $(3_z | 0,0,0)'$
3. $3'$ on $0,0,z$
 - $(3_z^{-1} | 0,0,0)'$
4. $2'$ on $(0,0,1/2)$
 - $(2_z | 0,0,1/2)'$
 - $(6_z^{-1} | 0,0,1/2)'$
5. $6'$ on $(0,0,1/2)$
 - $(6_z^{-1} | 0,0,1/2)'$
6. $6'$ on $(0,0,1/2)$
 - $(6_z | 0,0,1/2)'$
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 c 11'</td>
<td>1 +</td>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) y - x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x + y,x,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z+1/2 [0,0,0]</td>
<td>(5) y,x+y,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 b 3..1'</td>
<td>1/3,2/3,z [0,0,0]</td>
<td>2/3,1/3,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a 3..1'</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z+1/2 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p61'
\[\mathbf{a}^* = \mathbf{a}, \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along [1,0,0] p1g11'
\[\mathbf{a}^* = (\mathbf{a} + 2\mathbf{b})/2, \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,0,0

Along [2,1,0] p1g11'
\[\mathbf{a}^* = \mathbf{b}/2, \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,x/2,0
Origin on 3 on $6'_3$

Asymmetric unit

- $0 \leq x \leq 2/3$;
- $0 \leq y \leq 2/3$;
- $0 \leq z \leq 1/2$;
- $x \leq (1 + y)/2$;
- $y \leq \min(1 - x,(1 + x)/2)$

Vertices

- $0,0,0$
- $1/2,0,0$
- $2/3,1/3,0$
- $1/3,2/3,0$
- $0,1/2,0$
- $0,0,1/2$
- $1/2,0,1/2$
- $2/3,1/3,1/2$
- $1/3,2/3,1/2$
- $0,1/2,1/2$

Symmetry Operations

1. 1
 - $(1 | 0,0,0)$
2. 3^* $0,0,z$
 - $(3_z | 0,0,0)$
3. 3^* $0,0,z$
 - $(3_{z}^{-1} | 0,0,0)$
4. $2' (0,0,1/2)$ $0,0,z$
 - $(2_z | 0,0,1/2)'$
5. $6' (0,0,1/2)$ $0,0,z$
 - $(6_z^{-1} | 0,0,1/2)'$
6. $6' (0,0,1/2)$ $0,0,z$
 - $(6_z | 0,0,1/2)'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 c 1</td>
<td>(1) x,y,z [u,v,w] (2) y-x,y,z [v,u-v,w] (3) x+y,y,z [u+v,u,w] (4) x,y,z+1/2 [u,v,w] (5) y+x+y,z+1/2 [v,u-v,w] (6) x-y,x,z+1/2 [u+v,u,w]</td>
</tr>
<tr>
<td>2 b 3..</td>
<td>1/3,2/3,z [0,0,w] 2/3,1/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 a 3..</td>
<td>0,0,z [0,0,w] 0,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p6'</th>
<th>Along [1,0,0] p1g1</th>
<th>Along [2,1,0] p1g1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = (a + 2b)/2</td>
<td>a* = b/2 b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,0</td>
</tr>
</tbody>
</table>
Origin on $\bar{6}$

Asymmetric unit

$0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/2; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2)$

Vertices

$0,0,0 \quad 1/2,0,0 \quad 2/3,1/3,0 \quad 1/3,2/3,0 \quad 0,1/2,0$

$0,0,1/2 \quad 1/2,0,1/2 \quad 2/3,1/3,1/2 \quad 1/3,2/3,1/2 \quad 0,1/2,1/2$

Symmetry Operations

1. \(1\)
2. \(3^+ \quad 0,0,z\)
3. \(3^- \quad 0,0,z\)
4. \(m \quad x,y,0\)
5. \(\bar{6}^- \quad 0,0,z; 0,0,0\)
6. \(\bar{6}^+ \quad 0,0,z; 0,0,0\)

\(\bar{6} \quad P\bar{6}\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 l 1 (1) x,y,z [u,v,w]</td>
<td>(2) y-x,y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td>(4) x,y,z [u,v,w]</td>
<td>(5) y-x,y,z [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+y,x,z [u-v,u,w]</td>
</tr>
<tr>
<td>3 k m.. x,y,1/2 [0,0,w]</td>
<td>y-x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x+y,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>3 j m.. x,y,0 [0,0,w]</td>
<td>y-x,y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x+y,x,0 [0,0,w]</td>
</tr>
<tr>
<td>2 i 3.. 2/3,1/3,z [0,0,w]</td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td>2 h 3.. 1/3,2/3,z [0,0,w]</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>2 g 3.. 0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>1 f 6.. 2/3,1/3,1/2 [0,0,w]</td>
<td>2/3,1/3,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1 e 6.. 2/3,1/3,0 [0,0,w]</td>
<td>2/3,1/3,0 [0,0,w]</td>
</tr>
<tr>
<td>1 d 6.. 1/3,2,1/2 [0,0,w]</td>
<td>1/3,2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1 c 6.. 1/3,2,0 [0,0,w]</td>
<td>1/3,2,0 [0,0,w]</td>
</tr>
<tr>
<td>1 b 6.. 0,0,1/2 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1 a 6.. 0,0,0 [0,0,w]</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p31'
a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p1m1
a* = c b* = (a+2b)/2
Origin at x,0,0

Along [2,1,0] p1m1
a* = c b* = b/2
Origin at x,x/2,0
Origin on $\bar{6}1'$

Asymmetric unit

$0 \leq x \leq 2/3;\quad 0 \leq y \leq 2/3;\quad 0 \leq z \leq 1/2;\quad x \leq (1+y)/2;\quad y \leq \min(1-x,(1+x)/2)$

Vertices

$0,0,0\quad 1/2,0,0\quad 2/3,1/3,0\quad 1/3,2/3,0\quad 0,1/2,0$

$0,0,1/2\quad 1/2,0,1/2\quad 2/3,1/3,1/2\quad 1/3,2/3,1/2\quad 0,1/2,1/2$

Symmetry Operations

For $1 +$ set

(1) 1

(1 $0,0,0$

(2) $3' \quad 0,0,z$

(3) $3' \quad 0,0,z$

(4) $m \quad x,y,0$

$m_z | 0,0,0$

(5) $\bar{6}' \quad 0,0,z; 0,0,0$

(6) $\bar{6}' \quad 0,0,z; 0,0,0$

For $1' +$ set

(1) $1'$

(1 $0,0,0'$

(2) $3' \quad 0,0,z$

(3) $3' \quad 0,0,z$

(4) $m' \quad x,y,0$

$m_z | 0,0,0'$

(5) $\bar{6}' \quad 0,0,z; 0,0,0$

(6) $\bar{6}' \quad 0,0,z; 0,0,0$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1'</td>
<td>(1) x,y,z [0,0,0] (2) y,x-y,z [0,0,0] (3) x+y,x,z [0,0,0] (4) x,y,z [0,0,0] (5) y,x-y,z [0,0,0] (6) x+y,x,z [0,0,0]</td>
</tr>
<tr>
<td>6 l 11'</td>
<td>x,y,1/2 [0,0,0] y,x-y,1/2 [0,0,0] x+y,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>3 k m..1'</td>
<td>x,y,0 [0,0,0] y,x-y,0 [0,0,0] x+y,x,0 [0,0,0]</td>
</tr>
<tr>
<td>2 i 3..1'</td>
<td>2/3,1/3,z [0,0,0] 2/3,1/3,z [0,0,0]</td>
</tr>
<tr>
<td>2 h 3..1'</td>
<td>1/3,2/3,z [0,0,0] 1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td>2 g 3..1'</td>
<td>0,0,z [0,0,0] 0,0,z [0,0,0]</td>
</tr>
<tr>
<td>1 f 6..1'</td>
<td>2/3,1/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 e 6..1'</td>
<td>2/3,1/3,0 [0,0,0]</td>
</tr>
<tr>
<td>1 d 6..1'</td>
<td>1/3,2/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 c 6..1'</td>
<td>1/3,2/3,0 [0,0,0]</td>
</tr>
<tr>
<td>1 b 6..1'</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 a 6..1'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p31'</th>
<th>Along [1,0,0] p1m11'</th>
<th>Along [2,1,0] p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^=a \quad b^=b)</td>
<td>(a^=c \quad b^=(a+2b)/2)</td>
<td>(a^=c \quad b^/2)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,0</td>
</tr>
</tbody>
</table>
Hexagonal

Origin on \(\bar{6}' \)

Asymmetric unit

\[
\begin{align*}
0 \leq x & \leq 2/3; & 0 \leq y & \leq 2/3; & 0 \leq z & \leq 1/2; & x & \leq (1+y)/2; & y & \leq \min(1-x,(1+x)/2) \\
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 & \quad 0,1/2,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2 & \quad 1/3,2/3,1/2 & \quad 0,1/2,1/2 \\
\end{align*}
\]

Symmetry Operations

1. \(1 \)
2. \(3^* \quad 0,0,z \)
3. \(3^* \quad 0,0,z \)
4. \(m' \quad x,y,0 \)
5. \(\bar{6}' \quad 0,0,z; 0,0,0 \)
6. \(\bar{6}''. \quad 0,0,z; 0,0,0 \)

\[
\begin{align*}
(1 | 0,0,0) & \quad (3_z | 0,0,0) & \quad (3_z^{-1} | 0,0,0) \\
(m_z | 0,0,0)' & \quad (\bar{6}_z | 0,0,0)' & \quad (6_z | 0,0,0)'
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 l 1</td>
<td>(1) x,y,z [u,v,w] (2) y,x-y,z [v,u-v,w] (3) x+y,x,z [u+v,u,w] (4) x,y,z [u,v,w] (5) y,x-y,z [v,u-v,w] (6) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td>3 k m'..</td>
<td>x,y,1/2 [u,v,0] y,x-y,1/2 [v,u-v,0] x+y,x,1/2 [u+v,u,0]</td>
</tr>
<tr>
<td>3 j m'..</td>
<td>x,y,0 [u,v,0] y,x-y,0 [v,u-v,0] x+y,x,0 [u+v,u,0]</td>
</tr>
<tr>
<td>2 i 3..</td>
<td>2/3,1/3,z [0,0,w] 2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td>2 h 3..</td>
<td>1/3,2/3,z [0,0,w] 1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>2 g 3..</td>
<td>0,0,z [0,0,w] 0,0,z [0,0,w]</td>
</tr>
<tr>
<td>1 f 6'..</td>
<td>2/3,1/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 e 6'..</td>
<td>2/3,1/3,0 [0,0,0]</td>
</tr>
<tr>
<td>1 d 6'..</td>
<td>1/3,2/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 c 6'..</td>
<td>1/3,2/3,0 [0,0,0]</td>
</tr>
<tr>
<td>1 b 6'..</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 a 6'..</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c</td>
<td>b* = (a + 2b)/2</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [2,1,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c</td>
<td>b* = b/2</td>
</tr>
<tr>
<td>Origin at x,x/2,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on $\overline{6}$

Asymmetric unit

- $0 \leq x \leq 2/3$;
- $0 \leq y \leq 2/3$;
- $0 \leq z \leq 1/2$;
- $x \leq (1+y)/2$;
- $y \leq \min(1-x,(1+x)/2)$

Vertices

- $0,0,0$
- $1/2,0,0$
- $2/3,1/3,0$
- $1/3,2/3,0$
- $0,1/2,0$
- $0,0,1/2$
- $1/2,0,1/2$
- $2/3,1/3,1/2$
- $1/3,2/3,1/2$
- $0,1/2,1/2$

Symmetry Operations

For $(0,0,0)$ + set

1. 1
2. $3^+ 0,0,z$
3. $3^- 0,0,z$
4. $m x,y,0$
 - $(m_z|0,0,0)$
5. $\overline{2}^- 0,0,z; 0,0,0$
 - $(6_z^{-1}|0,0,0)$
6. $\overline{6}^+ 0,0,z; 0,0,0$
 - $(6_z|0,0,0)$

For $(0,0,1)$' + set

1. $t' (0,0,1)$
 - $(1|0,0,1)'$
2. $3' - (0,0,1) 0,0,z$
 - $(3_z|0,0,1)'$
3. $3' (0,0,1) 0,0,z$
 - $(3_z^{-1}|0,0,1)'$
4. $m' x,y,1/2$
 - $(m_z|0,0,1)'$
5. $\overline{6}' - 0,0,z; 0,0,1/2$
 - $(6_z^{-1}|0,0,1)'$
6. $\overline{6}' 0,0,z; 0,0,1/2$
 - $(6_z|0,0,1)'$
Generators selected:

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td>6</td>
<td>k</td>
<td>x,y,1/2 [u,v,0]</td>
<td>(2) y,x-y,z [v-u,v,w]</td>
</tr>
<tr>
<td>6</td>
<td>j</td>
<td>x,y,0 [0,0,w]</td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>i</td>
<td>2/3,1/3,z [0,0,w]</td>
<td>(4) x+y,x,z [v-u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>1/3,2/3,z [0,0,w]</td>
<td>(5) x+y,x,z [v-u,v,w]</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>0,0,z [0,0,w]</td>
<td>(6) x+y,x,z [v-u,v,w]</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>2/3,1/3,1/2 [0,0,0]</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>2/3,1/3,0 [0,0,w]</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>1/3,2/3,1/2 [0,0,0]</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>1/3,2/3,0 [0,0,w]</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>0,0,1/2 [0,0,0]</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>0,0,0 [0,0,0]</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p31'
Along [1,0,0] p2a 1m1
Along [2,1,0] p2a 1m1

\[a^* = a \quad b^* = b \]
\[a^* = c \quad b^* = (a + 2b)/2 \]
\[a^* = c \quad b^* = b/2 \]

Origin at 0,0,z
Origin at x,0,0
Origin at x,x/2,0
Origin on center (6/m)

Asymmetric unit

\[
\begin{align*}
0 & \leq x \leq 2/3; \\
0 & \leq y \leq 1/2; \\
0 & \leq z \leq 1/2; \\
x & \leq (1+y)/2; \\
y & \leq \text{min}(1-x,x)
\end{align*}
\]

Vertices

\[
\begin{array}{cccc}
0,0,0 & 1/2,0,0 & 2/3,1/3,0 & 1/2,1/2,0 \\
0,0,1/2 & 1/2,0,1/2 & 2/3,1/3,1/2 & 1/2,1/2,1/2
\end{array}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad (1,0,0,0) \\
(2) & \quad 3^+ \quad 0,0,z \\
(3) & \quad 3^+ \quad 0,0,z \\
(4) & \quad 2 \quad 0,0,z \\
(2_1) & \quad (0,0,0,0) \\
(5) & \quad 6^\cdot \quad 0,0,z \\
(6) & \quad 6^+ \quad 0,0,z \\
(7) & \quad \bar{1} \quad \bar{1},0,0,0 \\
(8) & \quad \bar{3}^+ \quad \bar{0},0,0,0 \\
(9) & \quad \bar{3}^+ \quad \bar{0},0,0,0 \\
(10) & \quad m \quad x,y,0 \\
(m_2) & \quad (0,0,0) \\
(11) & \quad 6^- \quad 0,0,z; \quad 0,0,0 \\
(12) & \quad 6^+ \quad 0,0,z; \quad 0,0,0
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

<table>
<thead>
<tr>
<th>Positions</th>
<th></th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>l</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>k</td>
<td>m..</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>j</td>
<td>m..</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>2..</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>3..</td>
</tr>
<tr>
<td>3</td>
<td>g</td>
<td>2/m..</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>2/m..</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>6..</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>6..</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>6..</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>6/m..</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>6/m..</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p61'</th>
<th>Along [1,0,0]</th>
<th>p2'(m')</th>
<th>Along [2,1,0]</th>
<th>p2'(m')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b)</td>
<td>(a^* = c)</td>
<td>(b^* = (a+2b)/2)</td>
<td>(a^* = c)</td>
<td>(b^* = b/2)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,0</td>
<td>Origin at x,0,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

175.1.1367 - 2 - 2972
Origin on center (6/m1')

Asymmetric unit

\[
\begin{align*}
0 & \leq x \leq 2/3; & 0 & \leq y \leq 1/2; & 0 & \leq z \leq 1/2; & x & \leq (1+y)/2; & y & \leq \min(1-x,x)
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & & 1/2,0,0 & & 2/3,1/3,0 & & 1/2,1/2,0 \\
0,0,1/2 & & 1/2,0,1/2 & & 2/3,1/3,1/2 & & 1/2,1/2,1/2
\end{align*}
\]

Symmetry Operations

For 1 + set

\[
\begin{align*}
(1) & & (1) & & (1) & & (1) \\
1 & & 3^* & & 3 & & 3^* \\
(1|0,0,0) & & (0,0,z) & & (0,0,z) & & (0,0,z) \\
(3) & & (3) & & (3) & & (3)
\end{align*}
\]

\[
\begin{align*}
(2) & & (2) & & (2) & & (2) \\
2 & & 6^- & & 6^+ & & 6^+
\end{align*}
\]

\[
\begin{align*}
(4) & & (4) & & (4) \\
0,0,z & & 0,0,z & & 0,0,z \\
(2_z,0,0,0) & & (6_z,0,0,0) & & (6_z,0,0,0)
\end{align*}
\]

\[
\begin{align*}
(5) & & (5) & & (5) \\
6^- & & 6^- & & 6^- \\
(6_z,0,0,0) & & (6_z,0,0,0) & & (6_z,0,0,0)
\end{align*}
\]

\[
\begin{align*}
(7) & & (7) & & (7) \\
\overline{1} & & \overline{3}^* & & \overline{3}^* \\
(0,0,0) & & (0,0,0) & & (0,0,0)
\end{align*}
\]

\[
\begin{align*}
(8) & & (8) & & (8) \\
\overline{3}^* & & \overline{3}^* & & \overline{3}^*
\end{align*}
\]

\[
\begin{align*}
(9) & & (9) & & (9) \\
0,0,z; 0,0,0 & & 0,0,z; 0,0,0 & & 0,0,z; 0,0,0 \\
(3_z,0,0,0) & & (3_z,0,0,0) & & (3_z,0,0,0)
\end{align*}
\]

\[
\begin{align*}
(10) & & (10) & & (10) \\
m & & 6^- & & 6^- \\
(x,y,0) & & (0,0,z; 0,0,0) & & (0,0,z; 0,0,0) \\
(m_z,0,0,0) & & (6_z,0,0,0) & & (6_z,0,0,0)
\end{align*}
\]

\[
\begin{align*}
(11) & & (11) & & (11) \\
6^- & & 6^- & & 6^- \\
(0,0,z; 0,0,0) & & (0,0,z; 0,0,0) & & (0,0,z; 0,0,0)
\end{align*}
\]

\[
\begin{align*}
(12) & & (12) \\
6^+ & & 6^+ & & 6^+
\end{align*}
\]

(6_z,0,0,0)
Continued

For 1' + set

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1'</td>
<td>3'</td>
<td>3'</td>
</tr>
<tr>
<td>(1) 1'</td>
<td>(2) 3'</td>
<td>(3) 3'</td>
</tr>
<tr>
<td>(1) 0,0,0'</td>
<td>(3) 0,0,0'</td>
<td>(3) 0,0,0'</td>
</tr>
<tr>
<td>(2) 0,0,0'</td>
<td>(6) 0,0,0'</td>
<td>(6) 0,0,0'</td>
</tr>
<tr>
<td>(7) 1'</td>
<td>(8) 3'</td>
<td>(9) 3'</td>
</tr>
<tr>
<td>(1) 0,0,0'</td>
<td>(3) 0,0,0'</td>
<td>(3) 0,0,0'</td>
</tr>
<tr>
<td>(2) 0,0,0'</td>
<td>(6) 0,0,0'</td>
<td>(6) 0,0,0'</td>
</tr>
<tr>
<td>(10) m'</td>
<td>(11) 6'</td>
<td>(12) 6'</td>
</tr>
<tr>
<td>(m) 0,0,0'</td>
<td>(6) 0,0,0'</td>
<td>(6) 0,0,0'</td>
</tr>
</tbody>
</table>

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1' +</td>
<td></td>
</tr>
<tr>
<td>12 l 11'</td>
<td></td>
</tr>
<tr>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(4) x,y,z [0,0,0]</td>
<td>(5) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(7) x,y,z [0,0,0]</td>
<td>(8) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(10) x,y,z [0,0,0]</td>
<td>(11) x,y,z [0,0,0]</td>
</tr>
</tbody>
</table>

6 k m..1' x,y,1/2 [0,0,0] y,x,y,1/2 [0,0,0] x+y,x,1/2 [0,0,0]
6 j m..1'		
(x,y,0 [0,0,0]	(y,x,0 [0,0,0]	(x+y,x,0 [0,0,0]
(x,y,0 [0,0,0]	(y,x,0 [0,0,0]	(x+y,x,0 [0,0,0]

6 i 2..1' 1/2,0,z [0,0,0] 0,1/2,z [0,0,0] 1/2,1/2,z [0,0,0]
4 h 3..1'		
(1/3,2/3,z [0,0,0]	(2/3,1/3,z [0,0,0]	(1/3,2/3,z [0,0,0]

3 g 2/m..1' 1/2,0,1/2 [0,0,0] 0,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]

3 f 2/m..1' 1/2,0,0 [0,0,0] 0,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0]

2 e 6..1' 0,0,z [0,0,0] 0,0,z [0,0,0]

2 d 6..1' 1/3,2/3,1/2 [0,0,0] 2/3,1/3,1/2 [0,0,0]

2 c 6..1' 1/3,2/3,0 [0,0,0] 2/3,1/3,0 [0,0,0]

1 b 6/m..1' 0,0,1/2 [0,0,0]
1 a 6/m..1' 0,0,0 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
</table>
| [0,0,1] | p61' | a* = a b* = b
| | | Origin at 0,0,z |
| [1,0,0] | p2mm1' | a* = c b* = (a + 2b)/2
| | | Origin at x,0,0 |
| [2,1,0] | p2mm1' | a* = c b* = b/2
| | | Origin at x,x/2,0 |
Origin on center (6'/m)

Asymmetric unit

\[
0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2}; \quad x \leq \frac{(1+y)}{2}; \quad y \leq \min(1-x, x)
\]

Vertices

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>0,0,1/2</td>
<td>1/2,0,0</td>
<td>1/2,1/2</td>
<td>1/2,1/2,0</td>
</tr>
<tr>
<td>1/2,0,1/2</td>
<td>2/3,1/3,0</td>
<td>2/3,1/3,1/2</td>
<td>1/2,1/2,1/2</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Operations

\[
\begin{align*}
&\text{(1) } 1 \\
&(1 | 0,0,0) \\
&\text{(2) } 3^+ \quad 0,0,z \\
&(3z | 0,0,0) \\
&\text{(3) } 3^- \quad 0,0,z \\
&(3z^{-1} | 0,0,0) \\
&\text{(4) } 2' \quad 0,0,z \\
&(2z | 0,0,0)' \\
&\text{(5) } 6' \quad 0,0,z \\
&(6z^{-1} | 0,0,0)' \\
&\text{(6) } 6'' \quad 0,0,z \\
&(6z | 0,0,0)' \\
&\text{(7) } \overline{1}' \\
&(1 | 0,0,0)'' \\
&\text{(8) } 3' \quad 0,0,z; 0,0,0 \\
&(3z | 0,0,0)' \\
&\text{(9) } 3'' \quad 0,0,z; 0,0,0 \\
&(3z^{-1} | 0,0,0)' \\
&\text{(10) } m \quad x,y,0 \\
&(mz | 0,0,0) \\
&\text{(11) } 6^- \quad 0,0,z; 0,0,0 \\
&(6z^{-1} | 0,0,0) \\
&\text{(12) } 6^+ \quad 0,0,z; 0,0,0 \\
&(6z | 0,0,0)
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>l</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>k</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>j</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>h</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p61'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c</td>
<td>b* = (a + 2b)/2</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [2,1,0]</th>
<th>p2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c</td>
<td>b* = b/2</td>
</tr>
<tr>
<td>Origin at x,x/2,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on center (6/m’)

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,x) \]

Vertices

- 0,0,0
- 1/2,0,0
- 2/3,1/3,0
- 1/2,1/2,0
- 0,0,1/2
- 1/2,0,1/2
- 2/3,1/3,1/2
- 1/2,1/2,1/2

Symmetry Operations

1. \(1\)
 - \((1|0,0,0)\)
2. \(3^+\)
 - \((0,0,z)\)
 - \((3_z|0,0,0)\)
3. \(3^-\)
 - \((0,0,z)\)
 - \((3_z^{-1}|0,0,0)\)
4. \(2\)
 - \((0,0,z)\)
 - \((2_z|0,0,0)\)
5. \(6^+\)
 - \((0,0,z)\)
 - \((6_z|0,0,0)\)
6. \(6^-\)
 - \((0,0,z)\)
 - \((6_z^{-1}|0,0,0)\)
7. \(\bar{1}\)
 - \((1|0,0,0)^\prime\)
 - \((3_z^{-1}|0,0,0)^\prime\)
 - \((3_z|0,0,0)^\prime\)
8. \(3^+\)
 - \((0,0,z)\)
 - \((3_z|0,0,0)^\prime\)
 - \((3_z^{-1}|0,0,0)^\prime\)
9. \(3^-\)
 - \((0,0,z)\)
 - \((3_z|0,0,0)^\prime\)
 - \((3_z^{-1}|0,0,0)^\prime\)
10. \(m^-\)
 - \((x,y,0)\)
 - \((m_x|0,0,0)^\prime\)
11. \(6^+\)
 - \((0,0,z)\)
 - \((6_z|0,0,0)^\prime\)
12. \(6^-\)
 - \((0,0,z)\)
 - \((6_z^{-1}|0,0,0)^\prime\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>l</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>k</td>
<td>m'..</td>
</tr>
<tr>
<td>6</td>
<td>j</td>
<td>m'..</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>2..</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>3..</td>
</tr>
<tr>
<td>3</td>
<td>g</td>
<td>2/m'..</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>2/m'..</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>6..</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>6'..</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>6'..</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>6/m'..</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>6/m'..</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) y,x-y,z [v,u-v,w]</th>
<th>(3) x+y,x,z [u+v,u,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) x,y,z [u,v,w]</td>
<td>(5) y,x+y,z [v,u+v,w]</td>
<td>(6) x-y,x,z [u-v,u,w]</td>
</tr>
<tr>
<td>(7) x,y,z [u,v,w]</td>
<td>(8) y,x+y,z [v,u+v,w]</td>
<td>(9) x-y,x,z [u-v,u,w]</td>
</tr>
<tr>
<td>(10) x,y,z [u,v,w]</td>
<td>(11) y,x-y,z [v,u-v,w]</td>
<td>(12) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td>(13) x,y,z [u,v,w]</td>
<td>(14) y,x-z [v,u+w]</td>
<td>(15) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(16) x,y,z [u,v,w]</td>
<td>(17) y,x-z [v,u+w]</td>
<td>(18) x,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1]

- p6'
 - a = a
 - b = b
 - Origin at 0,0,z

Along [1,0,0]

- p2m'm'
 - a = c
 - b = (a + 2b)/2
 - a = c
 - b = b/2
 - Origin at x,0,0
 - Origin at x,x/2,0

Along [2,1,0]

- p2m'm'
 - a = c
 - b = b/2
 - Origin at x,x/2,0

175.4.1370 - 2 - 2979
Origin on center \((6'/m')\)

Asymmetric unit

\[
\begin{align*}
0 \leq x & \leq 2/3; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,x)
\end{align*}
\]

Vertices

\[
\begin{array}{cccc}
0,0,0 & 1/2,0,0 & 2/3,1/3,0 & 1/2,1/2,0 \\
0,0,1/2 & 1/2,0,1/2 & 2/3,1/3,1/2 & 1/2,1/2,1/2 \\
\end{array}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 & (2) & \quad 3^{+} 0,0,z \\
\quad (1|0,0,0) & & (3) & \quad 3^{-} 0,0,z \\
\quad 0,0,0 & & (3_{z}|0,0,0) & \quad (3_{z}^{-1}|0,0,0) \\
(4) & \quad 2' 0,0,z & (5) & \quad 6' 0,0,z \\
\quad (2_{z}|0,0,0)' & & (6) & \quad 6^{+} 0,0,z \\
\quad (1|0,0,0) & & (6_{z}|0,0,0)' & \quad (6_{z}^{-1}|0,0,0)' \\
(7) & \quad \overline{1} 0,0,0 & (8) & \quad 3^{+} 0,0,z; 0,0,0 \\
\quad (1|0,0,0) & & (9) & \quad 3^{+} 0,0,z; 0,0,0 \\
\quad 0,0,0 & & (3_{z}|0,0,0) & \quad (3_{z}^{-1}|0,0,0) \\
(10) & \quad m' \ x,y,0 & (11) & \quad 6^{-} 0,0,z; 0,0,0 \\
\quad (m_{z}|0,0,0)' & & (12) & \quad 6^{+} 0,0,z; 0,0,0 \\
\quad x,y,0 & & (6_{z}|0,0,0)' & \quad (6_{z}^{-1}|0,0,0)' \\
\end{align*}
\]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 l 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
<td>(5) y,x+y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
<td>(8) y,x+y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) x,y,z [u,v,w]</td>
<td>(11) y,x-y,z [v,u-v,w]</td>
</tr>
</tbody>
</table>

| 6 k m'.. | x,y,1/2 [u,v,0] | y,x-y,1/2 [v,u-v,0] | x+y,x,1/2 [u+v,u,0] |
| | x,y,1/2 [u,v,0] | y,x+y,1/2 [v,u-v,0] | x-y,x,1/2 [u+v,u,0] |

| 6 j m'.. | x,y,0 [u,v,0] | y,x-y,0 [v,u-v,0] | x+y,x,0 [u+v,u,0] |
| | x,y,0 [u,v,0] | y,x+y,0 [v,u-v,0] | x-y,x,0 [u+v,u,0] |

| 6 i 2'.. | 1/2,0,z [u,v,0] | 0,1/2,z [v,u-v,0] | 1/2,1/2,z [u+v,u,0] |
| | 1/2,0,z [u,v,0] | 0,1/2,z [v,u-v,0] | 1/2,1/2,z [u+v,u,0] |

| 4 h 3.. | 1/3,2/3,z [0,0,w] | 2/3,1/3,z [0,0,w] | 1/3,2/3,z [0,0,w] |
| | 1/3,2/3,z [0,0,w] | 2/3,1/3,z [0,0,w] | 1/3,2/3,z [0,0,w] |

| 3 g 2'.. | 1/2,0,1/2 [u,v,0] | 0,1/2,1/2 [v,u-v,0] | 1/2,1/2,1/2 [u+v,u,0] |
| | 1/2,0,1/2 [u,v,0] | 0,1/2,1/2 [v,u-v,0] | 1/2,1/2,1/2 [u+v,u,0] |

| 3 f 2'.. | 1/2,0,0 [u,v,0] | 0,1/2,0 [v,u-v,0] | 1/2,1/2,0 [u+v,u,0] |
| | 1/2,0,0 [u,v,0] | 0,1/2,0 [v,u-v,0] | 1/2,1/2,0 [u+v,u,0] |

| 2 e 6'.. | 0,0,z [0,0,0] | 0,0,z [0,0,0] | 0,0,z [0,0,0] |
| | 0,0,z [0,0,0] | 0,0,z [0,0,0] | 0,0,z [0,0,0] |

| 2 d 6'.. | 1/3,2/3,z [0,0,0] | 2/3,1/3,z [0,0,0] | 1/3,2/3,z [0,0,0] |
| | 1/3,2/3,z [0,0,0] | 2/3,1/3,z [0,0,0] | 1/3,2/3,z [0,0,0] |

| 2 c 6'.. | 1/3,2/3,0 [0,0,0] | 2/3,1/3,0 [0,0,0] | 1/3,2/3,0 [0,0,0] |
| | 1/3,2/3,0 [0,0,0] | 2/3,1/3,0 [0,0,0] | 1/3,2/3,0 [0,0,0] |

| 1 b 6'm'.. | 0,0,1/2 [0,0,0] | 0,0,1/2 [0,0,0] | 0,0,1/2 [0,0,0] |
| | 0,0,1/2 [0,0,0] | 0,0,1/2 [0,0,0] | 0,0,1/2 [0,0,0] |

| 1 a 6'm'.. | 0,0,0 [0,0,0] | 0,0,0 [0,0,0] | 0,0,0 [0,0,0] |

Symmetry of Special Projections

Along [0,0,1] p6' Along [1,0,0] p2'2mm' Along [2,1,0] p2'2mm'

a* = a b* = b a* = (a + 2b)/2 b* = c a* = b/2 b* = c

Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0

175.5.1371 - 2 - 2981
Origin on center (6/m)

Asymmetric unit

\[
\begin{align*}
0 \leq x & \leq 2/3; \\
0 \leq y & \leq 1/2; \\
0 \leq z & \leq 1/2; \\
x & \leq (1+y)/2; \\
y & \leq \text{min}(1-x, x)
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 \\
0,0,1/2 & \quad 1/2,0,1/2 \\
2/3,1/3,0 & \quad 2/3,1/3,1/2
\end{align*}
\]

Symmetry Operations

For (0,0,0) + set

\[
\begin{align*}
(1) & \quad 1 \\
(1^* & \quad 0,0,z) \\
(2) & \quad 3^+ \quad 0,0,z \\
(3^* & \quad 0,0,z) \\
(3) & \quad 3 \quad 0,0,z \\
(3^* & \quad 0,0,z) \\
(4) & \quad 2 \quad 0,0,z \\
(2^* & \quad 0,0,z) \\
(5) & \quad 6^+ \quad 0,0,z \\
(6^* & \quad 0,0,z) \\
(6) & \quad 6 \quad 0,0,z \\
(6^* & \quad 0,0,z) \\
(7) & \quad m \quad x,y,0 \\
(7^* & \quad x,y,0) \\
(8) & \quad 3^+ \quad 0,0,z; 0,0,0 \\
(3^* & \quad 0,0,z; 0,0,0) \\
(9) & \quad 3^+ \quad 0,0,z; 0,0,0 \\
(3^* & \quad 0,0,z; 0,0,0) \\
(10) & \quad m \quad x,y,0 \\
(10^* & \quad x,y,0) \\
(11) & \quad 6^+ \quad 0,0,z; 0,0,0 \\
(6^* & \quad 0,0,z; 0,0,0) \\
(12) & \quad 6^+ \quad 0,0,z; 0,0,0 \\
(6^* & \quad 0,0,z; 0,0,0)
\end{align*}
\]
Continued 175.6.1372 P____6/m

For (0,0,1)' + set

(1) t' (0,0,1)
(1) (0,0,1)'

(2) 3' t' (0,0,1) 0,0,z
(3) 3' t' (0,0,1) 0,0,z

(4) 2' (0,0,1) 0,0,z
(2) (0,0,1)'

(5) 6' (0,0,1) 0,0,z
(6) 6' (0,0,1) 0,0,z

(7) T' 0,0,1/2
(T | 0,0,1)'

(8) 3' 0,0,z; 0,0,1/2
(3 | 0,0,1)'

(10) m' x,y,1/2
(m | 0,0,1)'

(11) 6' 0,0,z; 0,0,1/2
(6 | 0,0,1)'

Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>(0,0,0) + (0,0,1)’ +</td>
</tr>
<tr>
<td>12</td>
<td>k m’. x,y,1/2 [u,v,0] y,x-y,1/2 [v,u-v,0] x+y,x,1/2 [u+v,u,0]</td>
</tr>
<tr>
<td>12</td>
<td>j m.. x,y,0 [0,0,w] y,x-y,0 [0,0,w] x+y,x,0 [0,0,w]</td>
</tr>
<tr>
<td>12</td>
<td>i 2.. 1/2,0,z [0,0,w] 0,1/2,z [0,0,w] 1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>8</td>
<td>h 3.. 1/3,2/3,z [0,0,0] 1/3,2/3,z [0,0,w] 2/3,1/3,z [0,0,w] 1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>6</td>
<td>g 2’/m’. 1/2,0,1/2 [u,v,0] 0,1/2,1/2 [v,u-v,0] 1/2,1/2,1/2 [u+v,u,0]</td>
</tr>
<tr>
<td>6</td>
<td>f 2/m.. 1/2,0,0 [0,0,w] 0,1/2,0 [0,0,w] 1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>e 6.. 0,0,z [0,0,w] 0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>d 6.. 1/3,2/3,1/2 [0,0,w] 2/3,1/3,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>c 6.. 1/3,2/3,0 [0,0,w] 2/3,1/3,0 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b 6/m’. 0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>
Continued

2 a 6/m.. 0,0,0 [0,0,w]

Symmetry of Special Projections

Along [0,0,1] p61'
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] p_{2a'2m'm'}
\(\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2 \)
Origin at x,0,1/2

Along [2,1,0] p_{2a'2m'm'}
\(\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = \mathbf{b}/2 \)
Origin at x,x/2,1/2
Origin on center (6'/m)

Asymmetric unit

\begin{align*}
0 \leq x & \leq 2/3; \\
0 \leq y & \leq 1/2; \\
0 \leq z & \leq 1/2; \\
x & \leq (1+y)/2; \\
y & \leq \min(1-x,x)
\end{align*}

Vertices

\begin{align*}
0,0,0 & \quad 1/2,0,0 \\
0,0,1/2 & \quad 1/2,0,1/2 \\
0,0,1/2 & \quad 1/2,0,1/2 \\
0,0,1/2 & \quad 1/2,0,1/2
\end{align*}

Symmetry Operations

For \((0,0,0) + \text{set} \)

\begin{align*}
(1) & \quad 1 \\
(10) & \quad m \ x,y,0 \\
(11) & \quad 6^+ \ 0,0,z; \ 0,0,0 \\
(12) & \quad 6^+ \ 0,0,z; \ 0,0,0
\end{align*}

\begin{align*}
(2) & \quad 3^+ \ 0,0,z \\
& \quad (3_z|0,0,0) \\
(5) & \quad 6^- \ 0,0,z \\
& \quad (6_z|0,0,0)' \\
(8) & \quad 3^+ \ 0,0,z; \ 0,0,0 \\
& \quad (3_z|0,0,0)''
\end{align*}

\begin{align*}
(3) & \quad 3^+ \ 0,0,z \\
& \quad (3_z|0,0,0) \\
(6) & \quad 6^+ \ 0,0,z \\
& \quad (6_z|0,0,0)'
\end{align*}

\begin{align*}
(4) & \quad 2' \ 0,0,z \\
& \quad (2_z|0,0,0)'
\end{align*}

\begin{align*}
(7) & \quad 3^+ \ 0,0,z \\
& \quad (3_z|0,0,0)''
\end{align*}

\begin{align*}
(9) & \quad 3^+ \ 0,0,z; \ 0,0,0 \\
& \quad (3_z|0,0,0)''
\end{align*}

\begin{align*}
(11) & \quad 6^- \ 0,0,z; \ 0,0,0 \\
& \quad (6_z|0,0,0)
\end{align*}
Generators selected

(1) $t'(0,0,1)$
(2) $3' (0,0,1)$ $0,0,z$
(3) $3' (0,0,1) 0,0,z$
(4) $2 (0,0,1) 0,0,z$
(5) $6^{-} (0,0,1) 0,0,z$
(6) $6^{-} (0,0,1) 0,0,z$
(7) $\overline{1} 0,0,1/2$
(8) $3^{-} 0,0,z; 0,0,1/2$
(9) $3^{-} 0,0,z; 0,0,1/2$
(10) $m' x,y,1/2$
(11) $6^{-'} 0,0,z; 0,0,1/2$
(12) $6^{-'} 0,0,z; 0,0,1/2$

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,0,1) +</td>
<td>(0,0,0) + (0,0,1) +</td>
</tr>
</tbody>
</table>

Coordinates

For $(0,0,1)' + set$

(1) $t'(0,0,1)$
(2) $3' (0,0,1)$ $0,0,z$
(3) $3' (0,0,1) 0,0,z$
(4) $2 (0,0,1) 0,0,z$
(5) $6^{-} (0,0,1) 0,0,z$
(6) $6^{-} (0,0,1) 0,0,z$
(7) $\overline{1} 0,0,1/2$
(8) $3^{-} 0,0,z; 0,0,1/2$
(9) $3^{-} 0,0,z; 0,0,1/2$
(10) $m' x,y,1/2$
(11) $6^{-'} 0,0,z; 0,0,1/2$
(12) $6^{-'} 0,0,z; 0,0,1/2$

Generators selected

(1); $t(1,0,0); t(0,1,0); t'(0,0,1)$; (2); (4); (7).
Symmetry of Special Projections

Along [0,0,1] \(p61' \)
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] \(p2a^* \) 2mm
\[a^* = c \quad b^* = (a + 2b)/2 \]
Origin at x,0,0

Along [2,1,0] \(p2a^* \) 2mm
\[a^* = c \quad b^* = b/2 \]
Origin at x,x/2,0
Origin at center $\overline{3}$ on 6_3

Asymmetric unit
$0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/4; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2)$

Vertices
$0,0,0 \quad 1/2,0,0 \quad 2/3,1/3,0 \quad 1/3,2/3,0 \quad 0,1/2,0 \quad 0,0,1/4 \quad 1/2,0,1/4 \quad 2/3,1/3,1/4 \quad 1/3,2/3,1/4 \quad 0,1/2,1/4$

Symmetry Operations

(1) 1

(2) $3^+ \quad 0,0,z$

(3) $3^- \quad 0,0,z$

(4) $2 \quad (0,0,1/2) \quad 0,0,z$

(5) $6 \quad (0,0,1/2) \quad 0,0,z$

(6) $6^+ \quad (0,0,1/2) \quad 0,0,z$

(7) $\overline{1} \quad (1,0,0)$

(8) $\overline{3}^+ \quad 0,0,z; \quad 0,0,0$

(9) $\overline{3}^- \quad 0,0,z; \quad 0,0,0$

(10) $m \quad x,y,1/4$

(11) $6^- \quad 0,0,z; \quad 0,0,1/4$

(12) $6^+ \quad 0,0,z; \quad 0,0,1/4$
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions
Multiplicity, Wyckoff letter, Site Symmetry, Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 i 1</td>
<td>1</td>
<td>x,y,z [u,v,w]</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) y,x+y,z+1/2 [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6) x-y,x,z+1/2 [u-v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8) y,x+y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(9) x-y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(11) y,x-y,z+1/2 [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(12) x+y,x,z+1/2 [u-v,u,w]</td>
</tr>
</tbody>
</table>

6 h m.. x,y,1/4 [0,0,w] y,x-y,1/4 [0,0,w] x+y,x,1/4 [0,0,w]
6 g t 1/2,0,0 [u,v,w] 0,1/2,0 [v,u-v,w] 1/2,1/2,0 [u+v,u,w]
1/2,0,1/2 [u,v,w] 0,1/2,1/2 [v,u+v,w] 1/2,1/2,1/2 [u-v,u,w]
4 f 3.. 1/3,2/3,z [0,0,w] 2/3,1/3,z+1/2 [0,0,w] 2/3,1/3,z [0,0,w] 1/3,2/3,z+1/2 [0,0,w]
4 e 3.. 0,0,z [0,0,w] 0,0,z+1/2 [0,0,w] 0,0,z [0,0,w] 0,0,z+1/2 [0,0,w]
2 d 6.. 2/3,1/3,1/4 [0,0,w] 1/3,2/3,3/4 [0,0,w]
2 c 6.. 1/3,2/3,1/4 [0,0,w] 2/3,1/3,3/4 [0,0,w]
2 b 3.. 0,0,0 [0,0,w] 0,0,1/2 [0,0,w]
2 a 6.. 0,0,1/4 [0,0,w] 0,0,3/4 [0,0,w]

Symmetry of Special Projections
Along [0,0,1] p6
a* = a b* = b
Origin at 0,0,z
Along [1,0,0] p2'mg'
a* = c b* = (a + 2b)/2
Origin at x,0,0
Along [2,1,0] p2'mg'
a* = c b* = b/2
Origin at x,x/2,0

Continued
Origin at center $\overline{3}1'$ on $6_31'$

Asymmetric unit

$$0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{2}{3}; \quad 0 \leq z \leq \frac{1}{4}; \quad x \leq \frac{(1+y)}{2}; \quad y \leq \min(1-x,(1+x)/2)$$

Vertices

$$0,0,0 \quad 1/2,0,0 \quad 2/3,1/3,0 \quad 1/3,2/3,0 \quad 0,1/2,0$$
$$0,0,1/4 \quad 1/2,0,1/4 \quad 2/3,1/3,1/4 \quad 1/3,2/3,1/4 \quad 0,1/2,1/4$$

Symmetry Operations

For 1 + set

1. 1
 $$(1 | 0,0,0)$$

2. $3'$ $0,0,z$
 $$(3_{z} | 0,0,0)$$

3. $3'$ $0,0,z$
 $$(3_{z}^{-1} | 0,0,0)$$

4. 2 $0,0,1/2$ $0,0,z$
 $$(2_{z} | 0,0,1/2)$$

5. 6 $0,0,1/2$ $0,0,z$
 $$(6_{z}^{-1} | 0,0,1/2)$$

6. $6'$ $0,0,1/2$ $0,0,z$
 $$(6_{z} | 0,0,1/2)$$

7. 1
 $$(1 | 0,0,0)$$

8. $3'$ $0,0,z; 0,0,0$
 $$(3_{z} | 0,0,0)$$

9. $3'$ $0,0,z; 0,0,0$
 $$(3_{z}^{-1} | 0,0,0)$$

10. m $x,y,1/4$
 $$(m_{z} | 0,0,1/2)$$

11. 6 $0,0,z; 0,0,1/4$
 $$(6_{z}^{-1} | 0,0,1/2)$$

12. $6'$ $0,0,z; 0,0,1/4$
 $$(6_{z} | 0,0,1/2)$$

$\text{P6}_3/m1'$

$6/m1'$

Hexagonal

176.2.1375 - 1 - 2990
Continued

176.2.1375 P6$_3$/m1'

For 1' + set

<table>
<thead>
<tr>
<th>(1) 1'</th>
<th>(2) 3'</th>
<th>(3) 3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (0,0,0)'</td>
<td>0,0,z</td>
<td>0,0,z</td>
</tr>
<tr>
<td>(3z</td>
<td>0,0,0)'</td>
<td>(3z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4) 2' (0,0,1/2) 0,0,z</th>
<th>(5) 6' (0,0,1/2) 0,0,z</th>
<th>(6) 6' (0,0,1/2) 0,0,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2z</td>
<td>0,0,1/2)'</td>
<td>(6z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(7) 11'</th>
<th>(8) 3'</th>
<th>(9) 3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(11</td>
<td>0,0,0)'</td>
<td>0,0,0</td>
</tr>
<tr>
<td>(3z</td>
<td>0,0,0)'</td>
<td>(3z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(10) m' x,y,1/4</th>
<th>(11) 6' 0,0,z; 0,0,1/4</th>
<th>(12) 6' 0,0,z; 0,0,1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mz</td>
<td>0,0,1/2)'</td>
<td>(6z</td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 + 1' +</td>
<td>1 + 1' +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>i</th>
<th>11'</th>
<th>(1) x,y,z [0,0,0]</th>
<th>(2) y,x-y,z [0,0,0]</th>
<th>(3) x+y,x,z [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4)</td>
<td>x,y,z+1/2 [0,0,0]</td>
<td>(5) y,x+y,z+1/2 [0,0,0]</td>
<td>(6) x-y,x,z+1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>x,y,z [0,0,0]</td>
<td>(8) y,x+y,z [0,0,0]</td>
<td>(9) x-y,x,z [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td>x,y,z+1/2 [0,0,0]</td>
<td>(11) y,x-y,z+1/2 [0,0,0]</td>
<td>(12) x+y,x,z+1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>h</th>
<th>m..1'</th>
<th>x,y,1/4 [0,0,0]</th>
<th>y,x-y,1/4 [0,0,0]</th>
<th>x+y,x,1/4 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>x,y,3/4 [0,0,0]</td>
<td>y,x+y,3/4 [0,0,0]</td>
<td>x-y,x,3/4 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>g</th>
<th>11'</th>
<th>1/2,0,0 [0,0,0]</th>
<th>0,1/2,0 [0,0,0]</th>
<th>1/2,1/2,0 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>f</th>
<th>3..1'</th>
<th>1/3,2/3,z [0,0,0]</th>
<th>2/3,1/3,z+1/2 [0,0,0]</th>
<th>2/3,1/3,z [0,0,0]</th>
<th>1/3,2/3,z+1/2 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4)</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z+1/2 [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z+1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>d</th>
<th>6..1'</th>
<th>2/3,1/3,1/4 [0,0,0]</th>
<th>1/3,2/3,3/4 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>c</td>
<td>6..1'</td>
<td>1/3,2/3,1/4 [0,0,0]</td>
<td>2/3,1/3,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>6..1'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>6..1'</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>p61'</th>
<th>p2mg1'</th>
<th>p2mg1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>(a^* = a) (b^* = b)</td>
<td>(a^* = c) (b^* = (a + 2b)/2)</td>
<td>(a^* = c) (b^* = b/2)</td>
</tr>
<tr>
<td>Origin</td>
<td>0,0,z</td>
<td>x,0,0</td>
<td>x,x/2,0</td>
</tr>
</tbody>
</table>

Continued
Origin at center $\bar{3}'$ on $6_3'$

Asymmetric unit: $0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/4; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2)$

Vertices

- $0,0,0$
- $1/2,0,0$
- $2/3,1/3,0$
- $1/3,2/3,0$
- $0,1/2,0$
- $0,0,1/4$
- $1/2,0,1/4$
- $2/3,1/3,1/4$
- $1/3,2/3,1/4$
- $0,1/2,1/4$

Symmetry Operations

1. 1
2. 3^*; $0,0,z$
3. $3'$; $0,0,z$
4. $2'$; $(0,0,1/2)$
5. $6'$; $(0,0,1/2)$
6. $6'$; $(0,0,1/2)$
7. $\bar{1}'$
8. $3''^*$; $0,0,0$
9. $\bar{3}''^*$; $0,0,0$
10. m; $x,y,1/4$
11. 6^*; $0,0,1/4$
12. 6^*; $0,0,1/4$
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>i</td>
<td>1 (1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(5) y,x+y,z+1/2 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(6) x-y,x,z+1/2 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(8) y,x+y,z [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(9) x-y,x,z [u-v,u,w]</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(10) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(11) y,x-y,z+1/2 [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>(12) x+y,x,z+1/2 [u-v,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>h</td>
<td>m.. x,y,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,x-y,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+y,x,1/4 [0,0,w]</td>
</tr>
<tr>
<td>6</td>
<td>g</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>f</td>
<td>3.. 1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/3,2/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>3.. 0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>d</td>
<td>6.. 2/3,1/3,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/3,2/3,3/4 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>6.. 1/3,2/3,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,3/4 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>3.. 0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>6.. 0,0,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,3/4 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6' Along [1,0,0] p2mg Along [2,1,0] p2mg
a* = a b* = b a* = c b* = (a + 2b)/2 a* = c b* = b/2
Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin at center $\bar{3}^+$ on 6_3

Asymmetric unit

$$0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/4; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2)$$

Vertices

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1/2,0,0</td>
<td>2/3,1/3</td>
<td>0,0,1/4</td>
<td>1/2,0,1/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0,1/4</td>
<td>1/2,0,1/4</td>
<td>2/3,1/3,1/4</td>
<td>1/3,2/3,1/4</td>
<td>0,1/2,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0,1/4</td>
<td>1/2,0,1/4</td>
<td>2/3,1/3,1/4</td>
<td>1/3,2/3,1/4</td>
<td>0,1/2,1/4</td>
</tr>
</tbody>
</table>

Symmetry Operations

(1) 1

(1) $0,0,0$

(2) $3^+ 0,0,z$

(3) $3^- 0,0,z$

(4) $\bar{1} 2 (0,0,1/2) 0,0,z$

(5) $6^- (0,0,1/2) 0,0,z$

(6) $6^- (0,0,1/2) 0,0,z$

(7) $\bar{1} 0,0,0$

(8) $3^- 0,0,0$

(9) $3^- 0,0,0$

(10) $m' x,y,1/4$

(11) $6^- (0,0,1/4) (6^- z^- 0,0,1/2)$

(12) $6^- 0,0,z; 0,0,1/4$

$\bar{6}^- z^- 0,0,1/2$
Continued

176.4.1377

P6₃/m'

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

12	i	1	(1) x,y,z [u,v,w]	(2) y,x-y,z [v,u-v,w]	(3) x+y,x-z [u+v,u,w]
(4) x,y,z+1/2 [u,v,w]	(5) y,x+y,z+1/2 [v,u+v,w]	(6) x-y,x+z+1/2 [u-v,u,w]			
(7) x,y,z [u,v,w]	(8) y,x+y,z [v,u+v,w]	(9) x-y,x-z [u-v,u,w]			
(10) x,y,z+1/2 [u,v,w]	(11) y,x-y,z+1/2 [v,u-v,w]	(12) x+y,x,z+1/2 [u+v,u,w]			

6	h	m'..	x,y,1/4 [u,v,0]	y,x-y,1/4 [v,u-v,0]	x+y,x,1/4 [u+v,u,0]
6g	T	1/2,0,0 [0,0,0]	0,1/2,0 [0,0,0]	1/2,1/2,0 [0,0,0]	
1/2,0,1/2 [0,0,0]	0,1/2,1/2 [0,0,0]	1/2,1/2,1/2 [0,0,0]			

4	f	3..	1/3,2/3,z [0,0,w]	2/3,1/3,z+1/2 [0,0,w]	2/3,1/3,z [0,0,w]
4	e	3..	0,0,z [0,0,w]	0,0,z+1/2 [0,0,w]	0,0,z [0,0,w]
0,0,z+1/2 [0,0,w]	0,0,z+1/2 [0,0,w]	0,0,z+1/2 [0,0,w]			

| 2 | d | 6.. | 2/3,1/3,1/4 [0,0,0] | 1/3,2/3,3/4 [0,0,0] |
| 2 | c | 6.. | 1/3,2/3,1/4 [0,0,0] | 2/3,1/3,3/4 [0,0,0] |

| 2 | b | 3.. | 0,0,0 [0,0,0] | 0,0,1/2 [0,0,0] |
| 2 | a | 6.. | 0,0,1/4 [0,0,0] | 0,0,3/4 [0,0,0] |

Symmetry of Special Projections

Along [0,0,1] p6

\[a^* = a \quad b^* = b \]

Origin at 0,0,z

Along [1,0,0] p2m'g'

\[a^* = c \quad b^* = (a + 2b)/2 \]

Origin at x,0,0

Along [2,1,0] p2m'g'

\[a^* = c \quad b^* = b/2 \]

Origin at x,x/2,0
Origin at center $\bar{3}$ on $6_{3}'$

Asymmetric unit

\begin{align*}
0 \leq x \leq 2/3; & \quad 0 \leq y \leq 2/3; & \quad 0 \leq z \leq 1/4; & \quad x \leq (1+y)/2; & \quad y \leq \min(1-x,(1+x)/2) \\
0,0,0 & 1/2,0,0 & 2/3,1/3,0 & 1/3,2/3,0 & 0,1/2,0 \\
0,0,1/4 & 1/2,0,1/4 & 2/3,1/3,1/4 & 1/3,2/3,1/4 & 0,1/2,1/4
\end{align*}

Symmetry Operations

\begin{align*}
(1) & \quad 1 \\
(1) & \quad (0,0,0) \\
(1) & \quad (0,0,0) \\
(2) & \quad 3^{+} 0,0,z \\
(3) & \quad 3^{-} 0,0,z \\
(4) & \quad 2' (0,0,1/2) 0,0,z \\
(5) & \quad 6' (0,0,1/2) 0,0,z \\
(6) & \quad 6' (0,0,1/2) 0,0,z \\
(7) & \quad \overline{1} \\
(8) & \quad \overline{3}^{-} 0,0,z; 0,0,0 \\
(9) & \quad \overline{3}^{+} 0,0,z; 0,0,0 \\
(10) & \quad m' x,y,1/4 \\
(11) & \quad 6^{-} 0,0,z; 0,0,1/4 \\
(12) & \quad 6^{+} 0,0,z; 0,0,1/4
\end{align*}

176.5.1378 - 1 - 2997
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>i</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>h</td>
<td>m'</td>
</tr>
<tr>
<td>6</td>
<td>g</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>6</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6'</th>
<th>Origin at 0,0,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2'm'g</th>
<th>Origin at x,0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c</td>
<td>b* = (a + 2b)/2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [2,1,0]</th>
<th>p2'm'g</th>
<th>Origin at x,x/2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c</td>
<td>b* = b/2</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 622

Asymmetric unit: 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; x ≤ (1+y)/2; y ≤ min(1-x,x)

Vertices:
- 0,0,0
- 1/2,0,0
- 2/3,1/3,0
- 1/2,1/2,0
- 0,0,1/2
- 1/2,0,1/2
- 2/3,1/3,1/2
- 1/2,1/2,1/2

Symmetry Operations:

1. 1
2. 3* 0,0,z
3. 3* 0,0,z
4. 2 0,0,z
5. 6* 0,0,z
6. 6* 0,0,z
7. 2 x,x,0
8. 2 x,0,0
9. 2 0,y,0
10. 2 x,x,0
11. 2 x,2x,0
12. 2 2x,x,0
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 n 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) y,x+y,z [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x-y,x,z [u-v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x-y,y,z [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,x,y,z [u,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(11) x+y,y,z [u+v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(12) x,y,z [u-u-v,w]</td>
</tr>
<tr>
<td>6 m .2 x,1/2 [u,u,0]</td>
<td>x,2x,1/2 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td>2x,x,1/2 [2u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>2x,x,1/2 [2u,u,0]</td>
</tr>
<tr>
<td>6 l .2 x,0 [u,u,0]</td>
<td>x,x,0 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td>2x,x,0 [2u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>2x,x,0 [2u,u,0]</td>
</tr>
<tr>
<td>6 k .2 x,0,1/2 [u,0,0]</td>
<td>0,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>2x,x,1/2 [2u,u,0]</td>
</tr>
<tr>
<td>6 j .2 x,0,0 [u,0,0]</td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>6 i 2. 1/2,0,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td>4 h 3. 1/3,2/3,z [0,0,w]</td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>3 g 222 1/2,0,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>3 f 222 1/2,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 e 6. 0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 d 3.2 1/3,2/3,1/2 [0,0,0]</td>
<td>2/3,1/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c 3.2 1/3,2/3,0 [0,0,0]</td>
<td>2/3,1/3,0 [0,0,0]</td>
</tr>
<tr>
<td>1 b 622 0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 a 622 0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p6m'\text{'} \quad a^* = a \quad b^* = b

Along [1,0,0] p2m'\text{'} \quad a^* = c \quad b^* = \frac{(a + 2b)}{2}

Along [2,1,0] p2m'\text{'} \quad a^* = c \quad b^* = \frac{b}{2}

Origin at 0,0,z

Origin at x,0,0

Origin at x,x/2,0
Origin on 6221

Asymmetric unit

- $0 \leq x \leq 2/3;
- 0 \leq y \leq 1/2;
- 0 \leq z \leq 1/2;
- x \leq (1+y)/2;
- y \leq \min(1-x,x)$

Vertices

- 0,0,0
- 1/2,0,0
- 2/3,1/3,0
- 1/2,1/2,0
- 0,0,1/2
- 1/2,0,1/2
- 2/3,1/3,1/2
- 1/2,1/2,1/2

Symmetry Operations

For 1 + set

1. 1
2. 3^* 0,0,z
3. 3^{-1} 0,0,z
4. 0,0,z
5. 6^* 0,0,z
6. 6^{-1} 0,0,z
7. 0,0,0
8. x,x,0
9. x,0,0
10. x,x,0
11. x,2x,0
12. 2x,x,0
For 1' + set

(1) 1' (1,0,0)
 (1,0,0)
(2) 3' 0,0,0 (3) 3' 0,0,0
 (3,0,0)

(4) 2' 0,0,0 (5) 6' 0,0,0
 (6,0,0)
(2,0,0)
(6,0,0)

(7) 2' x,x,0 (8) 2' x,0,0
 (2,0,0)
(2,0,0)
(2,0,0)

(10) 2' x,x,0 (11) 2' x,2x,0
 (2,0,0)
(2,0,0)
(2,0,0)

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>n, 11'</td>
<td>(1) x,y,z [0,0,0] (2) y,x,y,z [0,0,0] (3) x+y,x,z [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>m, .21'</td>
<td>(4) x,y,z [0,0,0] (5) y,x+y,z [0,0,0] (6) x-y,x,z [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>l, .21'</td>
<td>(7) y,x,z [0,0,0] (8) x-y,x,y,z [0,0,0] (9) x,x+y,z [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>k, .21'</td>
<td>(10) y,x,z [0,0,0] (11) x+y,x,y,z [0,0,0] (12) x,x+y,z [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>j, .21'</td>
<td>(13) x,0,1/2 [0,0,0] (14) 0,x,1/2 [0,0,0] (15) x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>i, .21'</td>
<td>(16) x,0,0 [0,0,0] (17) 0,x,0 [0,0,0] (18) x,x,0 [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>h, .3.1'</td>
<td>(19) 1/2,0,z [0,0,0] (20) 0,1/2,z [0,0,0] (21) 1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>g, 2221'</td>
<td>(22) 1/2,0,1/2 [0,0,0] (23) 0,1/2,1/2 [0,0,0] (24) 1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>3</td>
<td>f, 2221'</td>
<td>(25) 1/2,0,0 [0,0,0] (26) 0,1/2,0 [0,0,0] (27) 1/2,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
<td>1'</td>
<td>x,2x,1/2 [0,0,0] 2x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1'</td>
<td></td>
<td>x,x,1/2 [0,0,0] x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1'</td>
<td></td>
<td>x,x,0 [0,0,0] x,x,0 [0,0,0]</td>
</tr>
<tr>
<td>1'</td>
<td></td>
<td>x,x,1/2 [0,0,0] x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1'</td>
<td></td>
<td>0,x,0 [0,0,0] x,x,0 [0,0,0]</td>
</tr>
<tr>
<td>1'</td>
<td></td>
<td>0,1/2,0 [0,0,0] 1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>1'</td>
<td></td>
<td>1/3,2/3,z [0,0,0] 2/3,1/3,z [0,0,0] 1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>6..1'</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>3.21'</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>3.21'</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>6221'</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>6221'</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** \(p6mm1' \)
 - \(a^* = a \)
 - \(b^* = b \)
 - Origin at 0,0,z

- **Along [1,0,0]** \(p2mm1' \)
 - \(a^* = c \)
 - \(b^* = (a + 2b)/2 \)
 - Origin at x,0,0

- **Along [2,1,0]** \(p2mm1' \)
 - \(a^* = c \)
 - \(b^* = b/2 \)
 - Origin at x,x/2,0
Origin on 6'2'2

Asymmetric unit

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ≤ x ≤ 2/3;</td>
<td>0 ≤ y ≤ 1/2;</td>
<td>0 ≤ z ≤ 1/2;</td>
</tr>
<tr>
<td>x ≤ (1+y)/2;</td>
<td>y ≤ min(1-x,x)</td>
<td></td>
</tr>
</tbody>
</table>

Vertices

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1/2,0,0</td>
<td>2/3,1/3,0</td>
</tr>
<tr>
<td>0,0,1/2</td>
<td>1/2,0,1/2</td>
<td>2/3,1/3,1/2</td>
</tr>
</tbody>
</table>

Symmetry Operations

(1) 1
(2) 3' 0,0,z
(3) 3' -1 0,0,z
(4) 2' 0,0,z
(5) 6' 0,0,z
(6) 6' -1 0,0,z
(7) 2' x,x,0
(8) 2' x,0,0
(9) 2' 0,y,0
(10) 2 x,x,0
(11) 2 x,2x,0
(12) 2 2x,x,0
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 n 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z [v-u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) y,x+y,z [v-u+v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x-y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z [v-u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) x-y,y,z [v-u-w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x+y,z [u+u+w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y,x,z [v-u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) x+y,y,z [u+u-w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) x-x-z [u-u+w]</td>
</tr>
<tr>
<td>6 m .2 x,</td>
<td>x,x,1/2 [u,u,0]</td>
<td>x,2x,1/2 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x,x,1/2 [2u,0,0]</td>
</tr>
<tr>
<td>6 l .2 x,</td>
<td>x,x,0 [u,u,0]</td>
<td>x,2x,0 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x,x,0 [2u,u,0]</td>
</tr>
<tr>
<td>6 k .2' x,</td>
<td>x,0,1/2 [u,2u,w]</td>
<td>0,x,1/2 [2u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td>6 j .2' x,</td>
<td>x,0,0 [u,2u,w]</td>
<td>0,x,0 [2u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td>6 i 2'.</td>
<td>1/2,0,0 [u,v,w]</td>
<td>0,1/2,0 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,1/2,0 [2u,v,u]</td>
</tr>
<tr>
<td>4 h 3.</td>
<td>1/3,2,3,z [0,0,w]</td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>p6'm'm</td>
<td>0,0,z</td>
</tr>
<tr>
<td>a^* = a</td>
<td>b^* = b</td>
<td></td>
</tr>
<tr>
<td>[1,0,0]</td>
<td>p2' mm'</td>
<td>x,0,0</td>
</tr>
<tr>
<td>a^* = (a + 2b)/2</td>
<td>b^* = c</td>
<td></td>
</tr>
<tr>
<td>[2,1,0]</td>
<td>p2mm</td>
<td>x,x/2,0</td>
</tr>
<tr>
<td>a^* = c</td>
<td>b^* = b/2</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 6'22'

Asymmetric unit:
- $0 \leq x \leq 2/3$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1/2$; $x \leq (1+y)/2$; $y \leq \min(1-x,x)$
- Vertices:
 - $(0,0,0)$
 - $(1/2,0,0)$
 - $(2/3,1/3,0)$
 - $(1/2,1/2,0)$
 - $(1/2,1/2,1/2)$

Symmetry Operations:

1. 1
2. 3^* 0,0,z
3. 3^* 0,0,0

4. $2'$ 0,0,z
 \((2_z,0,0))^t \\
5. $6'$ 0,0,z
 \((6_z^{-1},0,0))^t \\
6. $6'$ 0,0,0

7. 2 x,x,0
 \((2_y,0,0))^t \\
8. 2 x,0,0
 \((2_z,0,0))^t \\
9. 2 0,y,0
 \((2_y,0,0))^t \\

10. $2'$ x,x,0
 \((2_z,0,0))^t \\
11. $2'$ x,2x,0
 \((2_z,0,0))^t \\
12. $2'$ 2x,x,0
 \((2_z,0,0))^t \\

177.4.1382 - 1 - 3008
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>n 1</td>
<td>(1) x,y,z [u,v,w] (2) y,x-y,z [v,u-v,w] (3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [u,v,w] (5) y,x+y,z [v,u-v,w] (6) x-y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w] (8) x-y,y,z [v,u-v,w] (9) x,x+y,z [u,u+v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y,x,z [v,u,w] (11) x+y,y,z [v,u-v,w] (12) x-y,x,z [u,u+v,w]</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>Positions</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 m</td>
<td>.2'</td>
<td>x,x,1/2 [u,u,w]</td>
<td>x,2x,1/2 [u,0,w] 2x,x,1/2 [0,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,1/2 [u,u,w]</td>
<td>x,2x,1/2 [u,0,w] 2x,x,1/2 [0,u,w]</td>
</tr>
<tr>
<td>6 l</td>
<td>.2'</td>
<td>x,x,0 [u,u,w]</td>
<td>x,2x,0 [u,0,w] 2x,x,0 [0,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,0 [u,u,w]</td>
<td>x,2x,0 [u,0,w] 2x,x,0 [0,u,w]</td>
</tr>
<tr>
<td>6 k</td>
<td>.2</td>
<td>x,0,1/2 [u,0,0]</td>
<td>0,x,1/2 [0,u,0] x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/2 [u,0,0]</td>
<td>0,x,1/2 [0,u,0] x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td>6 j</td>
<td>.2</td>
<td>x,0,0 [u,0,0]</td>
<td>0,x,0 [0,u,0] x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,0 [u,0,0]</td>
<td>0,x,0 [0,u,0] x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>6 i</td>
<td>2'</td>
<td>1/2,0;z [u,v,0]</td>
<td>0,1/2,z [v,u-v,0] 1/2,1/2,z [u+v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [v,u,0]</td>
<td>1/2,0;z [v,u-v,0] 1/2,1/2,z [u+v,u,0]</td>
</tr>
<tr>
<td>4 h</td>
<td>3</td>
<td>1/3,2/3,z [0,0,w]</td>
<td>2/3,1/3,z [0,0,w] 2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td>3 g</td>
<td>22'</td>
<td>1/2,0,1/2 [u,0,0]</td>
<td>0,1/2,1/2 [0,u,0] 1/2,1/2,1/2 [u,u,0]</td>
</tr>
<tr>
<td>3 f</td>
<td>22'</td>
<td>1/2,0,0 [u,0,0]</td>
<td>0,1/2,0 [0,u,0] 1/2,1/2,0 [u,u,0]</td>
</tr>
<tr>
<td>2 e</td>
<td>6'</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 d</td>
<td>3'</td>
<td>1/3,2/3,1/2 [0,0,w]</td>
<td>2/3,1/3,1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 c</td>
<td>3'</td>
<td>1/3,2/3,0 [0,0,w]</td>
<td>2/3,1/3,0 [0,0,w]</td>
</tr>
<tr>
<td>1 b</td>
<td>6'22'</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1 a</td>
<td>6'22'</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Projection</th>
<th>Case 1 (0,0,1) 06'mm'</th>
<th>Case 2 (1,0,0) p2mm</th>
<th>Case 3 (2,1,0) p2'mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin</td>
<td>0,0,z</td>
<td>x,0,0</td>
<td>x,x/2,0</td>
</tr>
<tr>
<td>Symmetry</td>
<td>a = a b = b**</td>
<td>a = c b = (a + 2b)/2**</td>
<td>a = b/2 b = c**</td>
</tr>
</tbody>
</table>

Continued...
Origin on 62'2'

Asymmetric unit

\[
\begin{align*}
0 & \leq x \leq 2/3; & 0 & \leq y \leq 1/2; & 0 & \leq z \leq 1/2; & x & \leq (1+y)/2; & y & \leq \min(1-x,x)
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/2,1/2,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2 & \quad 1/2,1/2,1/2
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad 0,0,0 \\
(2) & \quad 3^* \quad 0,0,z \\
(3) & \quad 3^{-1} \quad 0,0,z \\
(4) & \quad 2 \quad 0,0,z \\
(5) & \quad 6 \quad 0,0,z \\
(6) & \quad 6^{-1} \quad 0,0,z \\
(7) & \quad 2' \quad x,x,0 \\
(8) & \quad 2' \quad x,0,0 \\
(9) & \quad 2' \quad 0,y,0 \\
(10) & \quad 2' \quad x,x,0 \\
(11) & \quad 2' \quad x,0,0 \\
(12) & \quad 2' \quad 2x,0
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 n 1</td>
<td>x,y,z [u,v,w]</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z [v,u-v,w]</td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
<td>(5) y,x+y,z [v,u+v,w]</td>
<td>(6) x+y,x,z [u-v,u,w]</td>
<td>(7) y,x,z [v,u+w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+y,y,z [v,u+w]</td>
<td>(9) x+y,z [u+v,u,w]</td>
<td>(10) y,x,z [v,u+w]</td>
<td>(11) x+y,y,z [u-v,v,w]</td>
</tr>
<tr>
<td>6 m .2'</td>
<td>x,x,1/2 [u,u,w]</td>
<td>x,2x,1/2 [u,0,w]</td>
<td>2x,x,1/2 [0,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x,1/2 [u,u,w]</td>
<td>x,2x,1/2 [u,0,w]</td>
<td>2x,x,1/2 [0,u,w]</td>
<td></td>
</tr>
<tr>
<td>6 l .2'</td>
<td>x,x,0 [u,u,w]</td>
<td>x,2x,0 [u,0,w]</td>
<td>2x,x,0 [0,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x,0 [u,u,w]</td>
<td>x,2x,0 [u,0,w]</td>
<td>2x,x,0 [0,u,w]</td>
<td></td>
</tr>
<tr>
<td>6 k .2'</td>
<td>x,0,1/2 [u,2u,w]</td>
<td>0,x,1/2 [2u,u,w]</td>
<td>x,x,1/2 [u,u+w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [u,2u,w]</td>
<td>0,x,1/2 [2u,u,w]</td>
<td>x,x,1/2 [u,u+w]</td>
<td></td>
</tr>
<tr>
<td>6 j .2'</td>
<td>x,0,0 [u,2u,w]</td>
<td>0,x,0 [2u,u,w]</td>
<td>x,x,0 [u,u+w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,0,0 [u,2u,w]</td>
<td>0,x,0 [2u,u,w]</td>
<td>x,x,0 [u,u+w]</td>
<td></td>
</tr>
<tr>
<td>6 i 2.</td>
<td>1/2,0,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,0,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 h 3.</td>
<td>1/3,2/3,z [0,0,w]</td>
<td>2/3,1/3,z [0,0,w]</td>
<td>2/3,1/3,z [0,0,w]</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>3 g 2'2'</td>
<td>1/2,0,1/2 [0,0,w]</td>
<td>0,1/2,1/2 [0,0,w]</td>
<td>1/2,1/2,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>3 f 2'2'</td>
<td>1/2,0,0 [0,0,w]</td>
<td>0,1/2,0 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2 e 6.</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 d 3.2'</td>
<td>1/3,2/3,1/2 [0,0,w]</td>
<td>2/3,1/3,1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c 3.2'</td>
<td>1/3,2/3,0 [0,0,w]</td>
<td>2/3,1/3,0 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 b 62'2'</td>
<td>0,0,1/2 [0,0,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 a 62'2'</td>
<td>0,0,0 [0,0,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p6m' m'
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] p2m' m'
\(a^* = c \quad b^* = (a + 2b)/2 \)
Origin at x,0,0

Along [2,1,0] p2'm' 'm'
\(a^* = c \quad b^* = b/2 \)
Origin at x,x/2,0
Origin on 622

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,x) \]

Vertices

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>0,0</td>
<td>1/2</td>
</tr>
<tr>
<td>1/2,0,0</td>
<td>1/2,0,1/2</td>
<td>1/2,1/2,0</td>
</tr>
<tr>
<td>2/3,1/3,0</td>
<td>2/3,1/3,1/2</td>
<td>1/2,1/2,1/2</td>
</tr>
</tbody>
</table>

Symmetry Operations

For \((0,0,0) + \text{set}\)

<table>
<thead>
<tr>
<th>Number</th>
<th>Operation</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(1</td>
<td>0,0,0)</td>
</tr>
<tr>
<td>(2)</td>
<td>3*</td>
<td>0,0,z</td>
</tr>
<tr>
<td>(2)</td>
<td>(3</td>
<td>z</td>
</tr>
<tr>
<td>(3)</td>
<td>3</td>
<td>0,0,z</td>
</tr>
<tr>
<td>(3)</td>
<td>(3</td>
<td>z</td>
</tr>
<tr>
<td>(4)</td>
<td>2</td>
<td>0,0,z</td>
</tr>
<tr>
<td>(4)</td>
<td>(2</td>
<td>z</td>
</tr>
<tr>
<td>(5)</td>
<td>6</td>
<td>0,0,z</td>
</tr>
<tr>
<td>(5)</td>
<td>(6</td>
<td>z</td>
</tr>
<tr>
<td>(6)</td>
<td>6</td>
<td>0,0,z</td>
</tr>
<tr>
<td>(6)</td>
<td>(6</td>
<td>z</td>
</tr>
<tr>
<td>(7)</td>
<td>2</td>
<td>x,x,0</td>
</tr>
<tr>
<td>(7)</td>
<td>(2</td>
<td>xy</td>
</tr>
<tr>
<td>(8)</td>
<td>2</td>
<td>x,0,0</td>
</tr>
<tr>
<td>(8)</td>
<td>(2</td>
<td>x</td>
</tr>
<tr>
<td>(9)</td>
<td>2</td>
<td>0,y,0</td>
</tr>
<tr>
<td>(9)</td>
<td>(2</td>
<td>y</td>
</tr>
<tr>
<td>(10)</td>
<td>2</td>
<td>x,x,0</td>
</tr>
<tr>
<td>(10)</td>
<td>(2</td>
<td>z</td>
</tr>
<tr>
<td>(11)</td>
<td>2</td>
<td>x,2x,0</td>
</tr>
<tr>
<td>(11)</td>
<td>(2</td>
<td>2x</td>
</tr>
<tr>
<td>(12)</td>
<td>2</td>
<td>2x,x,0</td>
</tr>
<tr>
<td>(12)</td>
<td>(2</td>
<td>2x</td>
</tr>
</tbody>
</table>
For $(0,0,1)' + \text{set}$

(1) $t'(0,0,1)$
 $(1'0,0,1)'$
(2) $3'(0,0,1)' 0,0,z$
 $(3_2'|0,0,1)'$
(3) $3'(0,0,1)' 0,0,z$
 $(3_2'|0,0,1)'$

(4) $2'(0,0,1) 0,0,z$
 $(2,0,0,0,0,0,0) 0,0,z$
(5) $6'(0,0,1) 0,0,z$
 $(6_2'|0,0,1)'$
(6) $6'(0,0,1) 0,0,z$
 $(6_2'|0,0,1)'$

(7) $2' x,x,1/2$
 $(2,0,0,0,0,0,0) x,x,1/2$
 $(2,0,0,0,0,0,0) x,x,1/2$
 $(2,0,0,0,0,0,0) x,x,1/2$
(8) $2' x,0,1/2$
 $(2,0,0,0,0,0,0) x,0,1/2$
 $(2,0,0,0,0,0,0) x,0,1/2$
 $(2,0,0,0,0,0,0) x,0,1/2$
(9) $2' 0,y,1/2$
 $(2,0,0,0,0,0,0) 0,y,1/2$
 $(2,0,0,0,0,0,0) 0,y,1/2$
 $(2,0,0,0,0,0,0) 0,y,1/2$

(10) $2' x,x,1/2$
 $(2,0,0,0,0,0,0) x,x,0$ [u,u,0]
 $(2,0,0,0,0,0,0) x,x,0$ [u,u,0]
 $(2,0,0,0,0,0,0) x,x,0$ [u,u,0]

Generators selected
(1); $t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7)$.

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12 m</th>
<th>x,x,1/2 [u,u,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 l</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td>12 k</td>
<td>x,0,1/2 [u,2u,u]</td>
</tr>
<tr>
<td>12 j</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>12 i</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>8 h</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>6 g</td>
<td>2'2' 1/2,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>6 f</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Continued 177.6.1384 P 2_1 622

2/3,1/3,z [0,0,w] 2/3,1/3,z [0,0,w] 1/3,2/3,z [0,0,w] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,0 [0,0,0]
Continued

<table>
<thead>
<tr>
<th>4</th>
<th>e</th>
<th>6..</th>
<th>0,0,z [0,0,w]</th>
<th>0,0,z [0,0,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>d</td>
<td>3.2'</td>
<td>1/3,2/3,1/2 [0,0,w]</td>
<td>2/3,1/3,1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>3.2</td>
<td>1/3,2/3,0 [0,0,0]</td>
<td>2/3,1/3,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>622</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>622</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6mm1'
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] \(p_{2a^*}2m'm' \)
\[a^* = c \quad b^* = (a + 2b)/2 \]
Origin at x,0,0

Along [2,1,0] \(p_{2a^*}2m'm' \)
\[a^* = c \quad b^* = b/2 \]
Origin at x,x/2,0
Origin on 6'22'

Asymmetric unit

\[0 \leq x < \frac{2}{3}; \quad 0 \leq y < \frac{1}{2}; \quad 0 \leq z < \frac{1}{2}; \quad x < \frac{(1+y)}{2}; \quad y \leq \min(1-x, x) \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/2,1/2,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2 & \quad 1/2,1/2,1/2
\end{align*}
\]

Symmetry Operations

For (0,0,0) + set

\[
\begin{align*}
(1) & \quad 1 \\
(1') & \quad (1|0,0,0) \\
(2) & \quad 3^* \quad 0,0,z \\
(2') & \quad (3_z|0,0,0) \\
(3) & \quad 3^* \quad 0,0,z \\
(3') & \quad (3_z|0,0,0) \\
(4) & \quad 2' \quad 0,0,z \\
(4') & \quad (2_z|0,0,0) \\
(5) & \quad 6' \quad 0,0,z \\
(5') & \quad (6_z|0,0,0) \\
(6) & \quad 6^* \quad 0,0,z \\
(6') & \quad (6_z|0,0,0) \\
(7) & \quad 2 \quad x,x,0 \\
(7') & \quad (2_x|0,0,0) \\
(8) & \quad 2 \quad x,0,0 \\
(8') & \quad (2_x|0,0,0) \\
(9) & \quad 2 \quad 0,y,0 \\
(9') & \quad (2_y|0,0,0) \\
(10) & \quad 2' \quad x,x,0 \\
(10') & \quad (2_z|0,0,0) \\
(11) & \quad 2' \quad x,2x,0 \\
(11') & \quad (2_z|0,0,0) \\
(12) & \quad 2' \quad 2x,x,0 \\
(12') & \quad (2_z|0,0,0)
\end{align*}
\]
Continued

For $(0,0,1)' + \text{set}$

1. \(t'(0,0,1) \)
2. \(3' \cdot (0,0,1) \) \(0,0,z \)
3. \(3' \cdot (0,0,1) \) \(0,0,z \)

4. \(2(0,0,1) \) \(0,0,z \)
5. \(6' \cdot (0,0,1) \) \(0,0,z \)
6. \(6' \cdot (0,0,1) \) \(0,0,z \)

7. \(2' \cdot x,x,1/2 \)
8. \(2' \cdot x,0,1/2 \)
9. \(2' \cdot 0,y,1/2 \)

10. \(2 \cdot x,x,1/2 \)
11. \(2 \cdot x,2x,1/2 \)
12. \(2 \cdot 2x,x,1/2 \)

Generators selected \((1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7).\)

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>24 n 1</td>
<td>((0,0,0) + (0,0,1)' +)</td>
</tr>
<tr>
<td>(1) (x,y,z [u,v,w])</td>
<td>(2) (\bar{y},x-y,z [\bar{v},u-v,w])</td>
</tr>
<tr>
<td>(4) (\bar{x},\bar{y},z [u,v,w])</td>
<td>(5) (y,\bar{x}+y,z [\bar{v},u-v,\bar{w}])</td>
</tr>
<tr>
<td>(7) (y,x,\bar{z} [v,u,\bar{w}])</td>
<td>(8) (x-y,\bar{y},\bar{z} [u-v,\bar{v},\bar{w}])</td>
</tr>
<tr>
<td>(10) (\bar{y},\bar{x},\bar{z} [v,u,w])</td>
<td>(11) (\bar{x}+y,\bar{y},\bar{z} [u-v,\bar{v},\bar{w}])</td>
</tr>
<tr>
<td>12 m .2</td>
<td>(x,\bar{x},1/2 [u,\bar{u},0])</td>
</tr>
<tr>
<td>(\bar{x},\bar{x},1/2 [u,\bar{u},0])</td>
<td>(\bar{x},2\bar{x},1/2 [u,2u,0])</td>
</tr>
<tr>
<td>12 l .2'</td>
<td>(x,\bar{x},0 [u,\bar{u},u])</td>
</tr>
<tr>
<td>(\bar{x},\bar{x},0 [u,\bar{u},w])</td>
<td>(\bar{x},2\bar{x},0 [u,0,\bar{w}])</td>
</tr>
<tr>
<td>12 k .2'.</td>
<td>(x,0,1/2 [u,2u,\bar{w}])</td>
</tr>
<tr>
<td>(\bar{x},0,1/2 [u,2u,\bar{w}])</td>
<td>(0,\bar{x},1/2 [2\bar{u},\bar{u},\bar{w}])</td>
</tr>
<tr>
<td>12 j .2.</td>
<td>(x,0,0 [u,0,0])</td>
</tr>
<tr>
<td>(\bar{x},0,0 [u,0,0])</td>
<td>(0,\bar{x},0 [0,u,0])</td>
</tr>
<tr>
<td>12 i .2'.</td>
<td>(1/2,0,0 [u,\bar{u},\bar{w}])</td>
</tr>
<tr>
<td>(0,1/2,\bar{z} [v,u,\bar{w}])</td>
<td>(1/2,0,\bar{z} [u-v,\bar{v},0])</td>
</tr>
<tr>
<td>8 h 3.</td>
<td>(1/3,2/3,\bar{z} [0,0,0])</td>
</tr>
<tr>
<td>6 g 22'</td>
<td>(1/2,0,1/2 [u,2u,0])</td>
</tr>
<tr>
<td>6 f 22'</td>
<td>(1/2,0,0 [u,0,0])</td>
</tr>
</tbody>
</table>

177.7.1385 - 2 - 3018
Symmetry of Special Projections

Along [0,0,1] \(p6mm' \)
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] \(p_{2a} \cdot 2mm \)
\(a^* = c \quad b^* = (a + 2b)/2 \)
Origin at x,0,0

Along [2,1,0] \(p_{2a} \cdot 2mm \)
\(a^* = c \quad b^* = b/2 \)
Origin at x,x/2,1/2

4 e 6'.. 0,0,z [0,0,0] 0,0,z [0,0,0]
4 d 3.2 1/3,2/3,1/2 [0,0,0] 2/3,1/3,1/2 [0,0,0]
4 c 3.2' 1/3,2/3,0 [0,0,w] 2/3,1/3,0 [0,0,w]
2 b 6'22' 0,0,1/2 [0,0,0] 0,0,0 [0,0,0]
2 a 6'22' 0,0,0 [0,0,0]
Origin on 2 [100] at 6, (2,1,1) 1

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/12 \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1,0,0 & \quad 1,1,0 & \quad 0,1,0 \\
0,0,1/12 & \quad 1,0,1/12 & \quad 1,1,1/12 & \quad 0,1,1/12
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(1\ | 0,0,0) & \quad (2) & \quad 3^* (0,0,1/3) \quad 0,0,z \\
& \quad (3_z | 0,0,1/3) \quad (3) & \quad 3^* (0,0,2/3) \quad 0,0,z \\
& \quad (3_z | 0,0,2/3) \\
(4) & \quad 2 (0,0,1/2) \quad 0,0,z \\
(2_z | 0,0,1/2) & \quad (5) & \quad 6^* (0,0,5/6) \quad 0,0,z \\
& \quad (6_z | 0,0,5/6) \quad (6) & \quad 6^* (0,0,1/6) \quad 0,0,z \\
& \quad (6_z | 0,0,1/6) \\
(7) & \quad 2 x,x,1/6 \\
(2_{xy} | 0,0,1/3) & \quad (8) & \quad 2 x,0,0 \\
& \quad (2_z | 0,0,0) \quad (9) & \quad 2 0,y,1/3 \\
& \quad (2_y | 0,0,2/3) \\
(10) & \quad 2 x,x,5/12 \\
(2_z | 0,0,5/6) & \quad (11) & \quad 2 x,2x,1/4 \\
& \quad (2_{xy} | 0,0,1/2) \quad (12) & \quad 2 2x,x,1/12 \\
& \quad (2_z | 0,0,1/6)
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 c 1 (1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z+1/3 [v,u-v,w]</td>
</tr>
<tr>
<td>(4) x,y,z+1/2 [u,v,w]</td>
<td>(3) x+y,x,z+2/3 [u+v,u,w]</td>
</tr>
<tr>
<td>(7) y,x,z+1/3 [v,u,w]</td>
<td>(6) x-y,x,z+1/6 [u-v,u,w]</td>
</tr>
<tr>
<td>(10) y,x,z+5/6 [v,u,w]</td>
<td>(9) x,x+y,z+2/3 [u,u+v,w]</td>
</tr>
<tr>
<td>6 b .2 x,2x,1/4 [u,2u,0]</td>
<td>2x,x,7/12 [2u,u,0]</td>
</tr>
<tr>
<td>x,2x,3/4 [u,2u,0]</td>
<td>x,x,11/12 [u,u,0]</td>
</tr>
<tr>
<td>6 a .2 x,0,0 [u,0,0]</td>
<td>0,x,1/3 [0,u,0]</td>
</tr>
<tr>
<td>x,0,1/2 [u,0,0]</td>
<td>0,x,5/6 [0,u,0]</td>
</tr>
<tr>
<td>x,1/6 [u,u,0]</td>
<td>x,x,1/6 [u,u,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6mm
Along [1,0,0] p2m'g'
Along [2,1,0] p2mg

\[a^* = a \quad b^* = b\]
\[a^* = c \quad b^* = (a + 2b)/2\]
\[a^* = c \quad b^* = b/2\]

Origin at 0,0,z
Origin at x,0,0
Origin at x,x/2,1/12
Origin on 21' [100] at 6, (2,1,1) 11'

Asymmetric unit

\[
\begin{align*}
0 \leq & x \leq 1; \\
0 \leq & y \leq 1; \\
0 \leq & z \leq 1/12
\end{align*}
\]

Vertices

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1,0,0</td>
<td>1,1,0</td>
</tr>
<tr>
<td>0,0,1/12</td>
<td>1,0,1/12</td>
<td>1,1,1/12</td>
</tr>
</tbody>
</table>

Symmetry Operations

For 1 + set

\[
\begin{align*}
(1) \ 1 & \quad (1) \ 1 \\
(1)0,0,0 & \quad (1)0,0,0 \\
(4) \ 2 & \quad (4) \ 2 \\
(0,0,1/2) \quad (0,0,1/2) & \quad (0,0,1/2) \\
(2z) \quad (2z) & \quad (2z) \\
(7) \ 2 & \quad (7) \ 2 \\
\ x,1/6 & \quad \ x,1/6 \\
(2x) & \quad (2x) \\
(2x,0,0,1/3) & \quad (2x,0,0,1/3) \\
(10) \ 2 & \quad (10) \ 2 \\
\ x,5/12 & \quad \ x,5/12 \\
(2x) & \quad (2x) \\
(2x,0,0,5/6) & \quad (2x,0,0,5/6) \\
(11) \ 2 & \quad (11) \ 2 \\
\ x,2x,1/4 & \quad \ x,2x,1/4 \\
(2x) & \quad (2x) \\
(2x,0,0,1/2) & \quad (2x,0,0,1/2) \\
(12) \ 2 & \quad (12) \ 2 \\
\ 2x,1/12 & \quad \ 2x,1/12 \\
(2x) & \quad (2x) \\
(2x,0,0,1/6) & \quad (2x,0,0,1/6)
\end{align*}
\]
For $1'$ + set

(1) $1'$

(2) $3'$ $(0,0,1/3) 0,0,z$

(3) $3'$ $(0,0,2/3) 0,0,z$

(4) $2'$ $(0,0,1/2) 0,0,z$

(5) $6'$ $(0,0,5/6) 0,0,z$

(6) $6'$ $(0,0,1/6) 0,0,z$

(7) $2'$ $\bar{x},x,1/6$

(8) $2'$ $\bar{x},0,0$

(9) $2'$ $0,y,1/3$

(10) $2'$ $x,\bar{x},5/12$

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1'$ + $1'$</td>
<td>$1'$</td>
</tr>
<tr>
<td>$2'$</td>
<td>$\bar{y},y,z+1/3 [0,0,0]$</td>
</tr>
<tr>
<td>$4'$</td>
<td>$y,x+y,z+5/6 [0,0,0]$</td>
</tr>
<tr>
<td>$7'$</td>
<td>$x-y,y,z [0,0,0]$</td>
</tr>
<tr>
<td>X'</td>
<td>$\bar{x}+y,y,\bar{z}+1/2 [0,0,0]$</td>
</tr>
<tr>
<td>$6'$</td>
<td>$x,2x,1/4 [0,0,0]$</td>
</tr>
<tr>
<td>$6'$</td>
<td>$\bar{x},2\bar{x},3/4 [0,0,0]$</td>
</tr>
<tr>
<td>$6'$</td>
<td>$x,0,0 [0,0,0]$</td>
</tr>
<tr>
<td>$6'$</td>
<td>$\bar{x},0,1/2 [0,0,0]$</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Along</th>
<th>Along</th>
<th>Along</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along $[0,0,1]$ p6mm1'</td>
<td>$a^* = a$, $b^* = b$</td>
<td>$a^* = c$, $b^* = (a + 2b)/2$</td>
<td>$a^* = c$, $b^* = b/2$</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x/2,1/12</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 2' [100] at 6', (2',1,1) 1

Asymmetric unit

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ≤ x ≤ 1;</td>
<td>0 ≤ y ≤ 1;</td>
<td>0 ≤ z ≤ 1/12</td>
</tr>
</tbody>
</table>

Vertices

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1,0,0</td>
<td>1,1,0</td>
</tr>
<tr>
<td>0,0,1/12</td>
<td>1,0,1/12</td>
<td>1,1,1/12</td>
</tr>
<tr>
<td></td>
<td>0,1,0</td>
<td>0,1,1/12</td>
</tr>
</tbody>
</table>

Symmetry Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>(x,y,z)</th>
<th>(x,y,z)</th>
<th>(x,y,z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
<td>(1 0 0)</td>
<td>(1 0 0)</td>
<td>(1 0 0)</td>
</tr>
<tr>
<td>(1 0 0)</td>
<td>(1 0 0)</td>
<td>(1 0 0)</td>
<td>(1 0 0)</td>
</tr>
<tr>
<td>(2) 3'</td>
<td>(0,0,1/3)</td>
<td>(0,0,1/3)</td>
<td>(0,0,1/3)</td>
</tr>
<tr>
<td>(0,0,1/3)</td>
<td>(0,0,1/3)</td>
<td>(0,0,1/3)</td>
<td>(0,0,1/3)</td>
</tr>
<tr>
<td>(3) 3'</td>
<td>(0,0,2/3)</td>
<td>(0,0,2/3)</td>
<td>(0,0,2/3)</td>
</tr>
<tr>
<td>(0,0,2/3)</td>
<td>(0,0,2/3)</td>
<td>(0,0,2/3)</td>
<td>(0,0,2/3)</td>
</tr>
<tr>
<td>(4) 2'</td>
<td>(0,0,1/2)</td>
<td>(0,0,1/2)</td>
<td>(0,0,1/2)</td>
</tr>
<tr>
<td>(0,0,1/2)</td>
<td>(0,0,1/2)</td>
<td>(0,0,1/2)</td>
<td>(0,0,1/2)</td>
</tr>
<tr>
<td>(5) 6'</td>
<td>(0,0,5/6)</td>
<td>(0,0,5/6)</td>
<td>(0,0,5/6)</td>
</tr>
<tr>
<td>(0,0,5/6)</td>
<td>(0,0,5/6)</td>
<td>(0,0,5/6)</td>
<td>(0,0,5/6)</td>
</tr>
<tr>
<td>(6) 6'</td>
<td>(0,0,1/6)</td>
<td>(0,0,1/6)</td>
<td>(0,0,1/6)</td>
</tr>
<tr>
<td>(0,0,1/6)</td>
<td>(0,0,1/6)</td>
<td>(0,0,1/6)</td>
<td>(0,0,1/6)</td>
</tr>
<tr>
<td>(7) 2'</td>
<td>(x,0)</td>
<td>(x,0)</td>
<td>(x,0)</td>
</tr>
<tr>
<td>(x,0)</td>
<td>(x,0)</td>
<td>(x,0)</td>
<td>(x,0)</td>
</tr>
<tr>
<td>(2) 2'</td>
<td>x,0</td>
<td>x,0</td>
<td>x,0</td>
</tr>
<tr>
<td>x,0</td>
<td>x,0</td>
<td>x,0</td>
<td>x,0</td>
</tr>
<tr>
<td>(8) 2'</td>
<td>x,0</td>
<td>x,0</td>
<td>x,0</td>
</tr>
<tr>
<td>(x,0)</td>
<td>(x,0)</td>
<td>(x,0)</td>
<td>(x,0)</td>
</tr>
<tr>
<td>(9) 2'</td>
<td>0,1/3</td>
<td>0,1/3</td>
<td>0,1/3</td>
</tr>
<tr>
<td>0,1/3</td>
<td>0,1/3</td>
<td>0,1/3</td>
<td>0,1/3</td>
</tr>
<tr>
<td>(10) 2'</td>
<td>x,5/12</td>
<td>x,5/12</td>
<td>x,5/12</td>
</tr>
<tr>
<td>x,5/12</td>
<td>x,5/12</td>
<td>x,5/12</td>
<td>x,5/12</td>
</tr>
<tr>
<td>(11) 2'</td>
<td>x,2x,1/4</td>
<td>x,2x,1/4</td>
<td>x,2x,1/4</td>
</tr>
<tr>
<td>x,2x,1/4</td>
<td>x,2x,1/4</td>
<td>x,2x,1/4</td>
<td>x,2x,1/4</td>
</tr>
<tr>
<td>(12) 2'</td>
<td>2x,1/12</td>
<td>2x,1/12</td>
<td>2x,1/12</td>
</tr>
<tr>
<td>2x,1/12</td>
<td>2x,1/12</td>
<td>2x,1/12</td>
<td>2x,1/12</td>
</tr>
</tbody>
</table>
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>c</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y,x-y,z+1/3 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z+2/3 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) y,x+y,z+5/6 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x-y,x,z+1/6 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z+1/3 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) x-y,y,z [u+v,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x+y,z+2/3 [u,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y,x,z+5/6 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) x+y,y,z+1/2 [u+v,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) x,y,z+1/6 [u,u-v,w]</td>
</tr>
<tr>
<td>6</td>
<td>b</td>
<td>x,2x,1/4 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x,x,7/12 [2u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,11/12 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,3/4 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x,x,1/12 [2u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,5/12 [u,u,0]</td>
</tr>
<tr>
<td>6</td>
<td>a</td>
<td>x,0,0 [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,1/3 [2u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,2/3 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/2 [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,5/6 [2u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,1/6 [u,u,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6'mm' Along [1,0,0] p2'm'g Along [2,1,0] p2mg
\(a^* = a \) \(b^* = b \) \(a^* = c \) \(b^* = (a + 2b)/2 \) \(a^* = c \) \(b^* = b/2 \)
Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,1/12
Origin on 2 [100] at 6,' (2,1,1) 1

Asymmetric unit

\[
0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/12
\]

Vertices

- 0,0,0
- 0,0,1/12
- 1,0,0
- 1,0,1/12
- 1,1,0
- 1,1,1/12
- 0,1,0
- 0,1,1/12

Symmetry Operations

1. 1
 \((1 | 0,0,0) \)

2. \(3' (0,0,1/3) \) 0,0,z
 \((3_z | 0,0,1/3) \)

3. \(3' (0,0,2/3) \) 0,0,z
 \((3_z^- | 0,0,2/3) \)

4. \(2' (0,0,1/2) \) 0,0,z
 \((2_z | 0,0,1/2) \)

5. \(6' (0,0,5/6) \) 0,0,z
 \((6_z^- | 0,0,5/6) \)

6. \(6' (0,0,1/6) \) 0,0,z
 \((6_z | 0,0,1/6) \)

7. \(2 \times x,x,1/6 \)
 \((2_{xy} | 0,0,1/3) \)

8. \(2 \times x,0,0 \)
 \((2_x | 0,0,0) \)

9. \(2 \times 0,0,1/3 \)
 \((2_z | 0,0,2/3) \)

10. \(2' \times x,x,5/12 \)
 \((2_z | 0,0,5/6) \)

11. \(2' \times 2x,1/4 \)
 \((2_{xy} | 0,0,1/2) \)

12. \(2' \times 2x,1/12 \)
 \((2_{xy} | 0,0,1/6) \)
Continued 178.4.1389 P6,'2' 22'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>c 1</td>
<td>(1) x,y,z [u,v,w] (2) y,x-y,z+1/3 [v,u-v,w] (3) x+y,x,z+2/3 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w] (5) y,x+y,z+5/6 [v,u-v,w] (6) x-y,x,z+1/6 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z+1/3 [v,u,w] (8) x-y,y,z [u-v,v,w] (9) x,x+y,z+2/3 [u,u+v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y,x,z+5/6 [v,u,w] (11) x+y,y,z+1/2 [u-v,v,w] (12) x,x-y,z+1/6 [u,u+v,w]</td>
</tr>
<tr>
<td>6</td>
<td>b 2'</td>
<td>x,2x,1/4 [u,0,w] 2x,x,7/12 [0,u,w] x,x,11/12 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,3/4 [u,0,w] 2x,x,1/12 [0,u,w] x,x,5/12 [u,u,w]</td>
</tr>
<tr>
<td>6</td>
<td>a .2</td>
<td>x,0,0 [u,0,0] 0,x,1/3 [0,u,0] x,x,2/3 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/2 [u,0,0] 0,x,5/6 [0,u,0] x,x,1/6 [u,u,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6'km' Along [1,0,0] p2mg Along [2,1,0] p2mm'
a* = a b* = b a* = c b* = (a + 2b)/2 a* = c b* = b/2
Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,1/12
Origin on \(2' [100] \) at \((2',1,1)\) 1

Asymmetric unit

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ≤ x ≤ 1;</td>
<td>0 ≤ y ≤ 1;</td>
<td>0 ≤ z ≤ 1/12</td>
</tr>
</tbody>
</table>

Vertices

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1,0,0</td>
<td>1,1,0</td>
</tr>
<tr>
<td>0,0,1/12</td>
<td>1,0,1/12</td>
<td>1,1,1/12</td>
</tr>
<tr>
<td>0,0,1/12</td>
<td>1,0,1/12</td>
<td>0,1,1/12</td>
</tr>
</tbody>
</table>

Symmetry Operations

1. \(1\)
 \((1|0,0,0)\)
2. \(3^* (0,0,1/3) 0,0,z\)
 \((3_z,0,0,1/3)\)
3. \(3^* (0,0,2/3) 0,0,z\)
 \((3_z,0,0,2/3)\)
4. \(2 (0,0,1/2) 0,0,z\)
 \((2_z,0,0,1/2)\)
5. \(6^* (0,0,5/6) 0,0,z\)
 \((6_z,0,0,5/6)\)
6. \(6^* (0,0,1/6) 0,0,z\)
 \((6_z,0,0,1/6)\)
7. \(2' x,x,1/6\)
 \((2_{xy},0,0,1/3)'\)
8. \(2' x,0,0\)
 \((2_z,0,0,0)'\)
9. \(2' 0,y,1/3\)
 \((2_y,0,0,2/3)'\)
10. \(2' x,x,5/12\)
 \((2_{xy},0,0,5/6)'\)
11. \(2' x,2x,1/4\)
 \((2_z,0,0,1/2)'\)
12. \(2' 2x,x,1/12\)
 \((2_{1},0,0,1/6)'\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 c 1 (1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z+1/3 [v,u-v,w]</td>
<td>(3) x+y,x,z+2/3 [u+v,u,w]</td>
</tr>
<tr>
<td>(4) x,y,z+1/2 [u,v,w]</td>
<td>(5) y,x+y,z+5/6 [v,u+v,w]</td>
<td>(6) x-y,x,z+1/6 [u-v,u,w]</td>
</tr>
<tr>
<td>(7) y,x,z+1/3 [v,u,w]</td>
<td>(8) x-y,x-z [u+v,v,w]</td>
<td>(9) x+y,z+2/3 [u,u-v,w]</td>
</tr>
<tr>
<td>(10) y,x,z+5/6 [v,u,w]</td>
<td>(11) x+y,y,z+1/2 [u-v,v,w]</td>
<td>(12) x-y,x,z+1/6 [u+u+v,w]</td>
</tr>
</tbody>
</table>

6 b .2' x,2x,1/4 [u,0,w] 2x,x,7/12 [0,u,w] x,x,11/12 [u,u,w]
| 2x,x,1/12 [0,u,w] | x,x,5/12 [u,u,w] |

6 a .2': x,0,0 [u,2u,w] 0,x,1/3 [2u,u,w] x,x,2/3 [u,u,w]
| x,0,1/2 [u,2u,w] | 0,x,5/6 [2u,u,w] | x,x,1/6 [u,u,w] |

Symmetry of Special Projections

Along [0,0,1] p6mm Along [1,0,0] p2'mg' Along [2,1,0] p2'mg'

\[a^* = a \quad b^* = b \]

\[a^* = c \quad b^* = (a + 2b)/2 \]

Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,1/12
Origin on 2 [100] at 65 (2,1,1) 1

Asymmetric unit

0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/12

Vertices

0,0,0 1,0,0 1,1,0 0,1,0
0,0,1/12 1,0,1/12 1,1,1/12 0,1,1/12

Symmetry Operations

(1) 1
(1 0,0,0)

(2) 3z (0,0,2/3) 0,0,z
(3z 0,0,2/3)

(3) 3z (0,0,1/3) 0,0,z
(3z 0,0,1/3)

(4) 2 (0,0,1/2) 0,0,z
(2z 0,0,1/2)

(5) 6z (0,0,1/6) 0,0,z
(6z 0,0,1/6)

(6) 6z (0,0,5/6) 0,0,z
(6z 0,0,5/6)

(7) 2 x,x,1/3
(2x 0,0,2/3)

(8) 2 x,0,0
(2 0,0,0)

(9) 2 0,y,1/6
(2y 0,0,1/3)

(10) 2 x,x,1/12
(2x 0,0,1/6)

(11) 2 x,2x,1/4
(2x 0,0,1/2)

(12) 2 2x,x,5/12
(2 0,0,5/6)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 c 1</td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z+2/3 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y,x,z+1/6 [v,u,v]</td>
</tr>
<tr>
<td>6 b .2</td>
<td></td>
<td>x,2x,3/4 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,1/4 [u,2u,0]</td>
</tr>
<tr>
<td>6 a .2</td>
<td></td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6m'm' Along [1,0,0] p2m'g' Along [2,1,0] p2m'g'
a* = a b* = b a* = c b* = (a + 2b)/2 a* = c b* = b/2
Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,5/12
Origin on 21' [100] at 6_3 (2,1,1) 11'

Asymmetric unit

\[
\begin{align*}
0 & \leq x \leq 1; & 0 & \leq y \leq 1; & 0 & \leq z \leq \frac{1}{12}
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & & 1,0,0 & & 1,1,0 & & 0,1,0 \\
0,0,\frac{1}{12} & & 1,0,\frac{1}{12} & & 1,1,\frac{1}{12} & & 0,1,\frac{1}{12}
\end{align*}
\]

Symmetry Operations

For 1 + set

\[
\begin{align*}
(1) & 1 & (2) & 3' (0,0,2/3) & 0,0,z \\
(1) & 1 & (3) & 3' (0,0,1/3) & 0,0,z \\
(4) & 2 (0,0,1/2) & 0,0,z & (3z) & 0,0,2/3 \\
(2z) & 0,0,1/2 & & (3z) & 0,0,1/3 \\
(7) & 2 & x,x,1/3 & (5) & 6' (0,0,1/6) & 0,0,z \\
(2xy) & 0,0,2/3 & & (6z) & 0,0,1/6 & & (6z) & 0,0,5/6 \\
(10) & 2 & x,x,1/12 & (8) & 2 & x,0,0 \\
(2z) & 0,0,1/6 & & (2z) & 0,0,0 & & (2z) & 0,0,1/3 \\
(11) & 2 & x,2x,1/4 & (9) & 2 & 0,y,1/6 \\
(2z) & 0,0,1/2 & & (2z) & 0,0,0 & & (2z) & 0,0,1/3 \\
(12) & 2 & 2x,x,5/12 & & (2z) & 0,0,5/6 \\
\end{align*}
\]
For 1' + set

(1) 1' (2) 3' (0,0,2/3) 0,0,z (3) 3' (0,0,1/3) 0,0,z
(1;0,0,0)' (3;0,0,2/3)' (3;0,0,1/3)'

(4) 2' (0,0,1/2) 0,0,z (5) 6' (0,0,1/6) 0,0,z
(2;0,0,1/2)' (6;0,0,1/6)'

(7) 2' x,x,1/3 (8) 2' x,0,0
(2;0,0,2/3)' (8;0,0,0)'

(10) 2' x,x,1/12 (11) 2' x,2x,1/4
(2;0,0,1/6)'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); 1'.

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 c 11'</td>
<td>x,y,z [0,0,0]</td>
<td>1' + x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,x,y,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,x,z+2/3 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,y,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,x,z+1/6 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+y,y,z+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>6 b .21'</td>
<td>x,2x,3/4 [0,0,0]</td>
<td>1' + x,2x,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,2x,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x,5/12 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>6 a .21'</td>
<td>x,0,0 [0,0,0]</td>
<td>1' + x,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x,5/6 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6mm1' Along [1,0,0] p2mg1' Along [2,1,0] p2mg1'
\[a^* = a \quad b^* = b\] \[a^* = c \quad b^* = (a + 2b)/2\] \[a^* = c \quad b^* = b/2\]
Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,5/12
Origin on 2' [100] at 6s 1' (2',1,1) 1

Asymmetric unit

\[
\begin{align*}
0 & \leq x \leq 1; & 0 & \leq y \leq 1; & 0 & \leq z \leq \frac{1}{12} \\
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & & 1,0,0 & & 1,1,0 & & 0,1,0 \\
0,0,\frac{1}{12} & & 1,0,\frac{1}{12} & & 1,1,\frac{1}{12} & & 0,1,\frac{1}{12} \\
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 & & (2) & \quad 3' (0,0,2/3) & \quad 0,0,z & & (3) & \quad 3' (0,0,1/3) & \quad 0,0,z \\
& \quad (1,0,0) & & (3,0,0,2/3) & & (3,0,0,1/3) & & (3,0,0,1/3) \\
(4) & \quad 2' (0,0,1/2) & \quad 0,0,z & & (5) & \quad 6' (0,0,1/6) & \quad 0,0,z & & (6) & \quad 6' (0,0,5/6) & \quad 0,0,z \\
& \quad (2,0,0,1/2)' & & (6,0,1/6)' & & (6,0,5/6)' & & (6,0,5/6)' \\
(7) & \quad 2' x,x,1/3 & \quad (2,0,0,1/3)' & & (8) & \quad 2' x,0,0 & \quad (2,0,0,0)' & & (9) & \quad 2' 0,y,1/6 & \quad (2,0,0,1/3)' \\
& \quad (2,0,2/3)' & & (2,0,0,0)' & & (2,0,0,0)' & & (2,0,0,1/3)' \\
(10) & \quad 2 x,x,1/12 & \quad (2,0,0,1/6) & & (11) & \quad 2 x,2x,1/4 & \quad (2,0,0,1/2) & & (12) & \quad 2x,5/12 & \quad (2,0,0,5/6) \\
& \quad (2,0,0,1/6) & & (2,0,0,1/2) & & (2,0,0,5/6) & & (2,0,0,5/6) \\
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) y,x-y,z+2/3 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x,z+1/3 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) y,x+y,z+1/6 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x-y,x,z+5/6 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+2/3 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x-y,y,z [u+v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x+y,z+1/3 [u,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) y,x,z+1/6 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(11) x+y,y,z+1/2 [u+v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(12) x,x-y,z+5/6 [u,u-v,w]</td>
</tr>
</tbody>
</table>

6 b 0.2	x,2x,3/4 [u,2u,0]
	2x,x,5/12 [2u,u,0]
	x,x,1/12 [u,u,0]
	x,2x,1/4 [u,2u,0]
	2x,x,11/12 [2u,u,0]
	x,x,7/12 [u,u,0]

6 a 0.2'	x,0,0 [u,2u,w]
	0,x,2/3 [2u,u,w]
	x,x,1/3 [u,u,w]
	x,0,1/2 [u,2u,w]
	0,x,1/6 [2u,u,w]
	x,x,5/6 [u,u,w]

Symmetry of Special Projections

- **Along [0,0,1]**: p6'nm'
 - $a^* = a$, $b^* = b$
 - Origin at 0,0,z

- **Along [1,0,0]**: p2'm'g
 - $a^* = c$, $b^* = (a + 2b)/2$
 - Origin at x,0,0

- **Along [2,1,0]**: p2mg
 - $a^* = c$, $b^* = b/2$
 - Origin at x,x/2,5/12
Origin on 2 [100] at 65' (2,1,1) 1

Asymmetric unit
0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/12

Vertices
0,0,0 1,0,0 1,1,0 0,1,0
0,0,1/12 1,0,1/12 1,1,1/12 0,1,1/12

Symmetry Operations

1. 1
 (1 | 0,0,0)

2. 3' (0,0,2/3) 0,0,z
 (3z | 0,0,2/3)

3. 3' (0,0,1/3) 0,0,z
 (3z' | 0,0,1/3)

4. 2' (0,0,1/2) 0,0,z
 (2z | 0,0,1/2)

5. 6' (0,0,1/6) 0,0,z
 (6z | 0,0,1/6)

6. 6' (0,0,5/6) 0,0,z
 (6z' | 0,0,5/6)

7. 2 x,x,1/3
 (2xy | 0,0,2/3)

8. 2 x,0,0
 (2z | 0,0,0)

9. 2 0,y,1/6
 (2y | 0,0,1/3)

10. 2 x,x,1/12
 (2z | 0,0,1/6)

11. 2 x,2x,1/4
 (2z | 0,0,1/2)

12. 2 x,x,5/12
 (2z | 0,0,5/6)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 c 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) y,x-y,z+2/3 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x,z+1/3 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) y,x+y,z+1/6 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x-y,x,z+5/6 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x, x-z+2/3 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) y,y-z [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,x+yz+1/3 [u,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) y,x,z+1/6 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(11) y+y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(12) x-x,y,z+5/6 [u,u+v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6'm'm</th>
<th>Along [1,0,0]</th>
<th>p2mg</th>
<th>Along [2,1,0]</th>
<th>p2'm'g</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a, b* = b</td>
<td>a* = c, b* = (a+2b)/2</td>
<td>a* = c, b* = b/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,5/12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin on 2' [100] at 6₆ (2',1,1) 1

Asymmetric unit

<table>
<thead>
<tr>
<th>Vertices</th>
<th>0 ≤ x ≤ 1;</th>
<th>0 ≤ y ≤ 1;</th>
<th>0 ≤ z ≤ 1/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1,0,0</td>
<td>1,1,0</td>
<td>0,1,0</td>
</tr>
<tr>
<td>0,0,1/12</td>
<td>1,0,1/12</td>
<td>1,1,1/12</td>
<td>0,1,1/12</td>
</tr>
</tbody>
</table>

Symmetry Operations

1. (1) 1
 - (1) 0,0,0

2. (2) 3' (0,0,2/3) 0,0,z
 - (3) 3' (0,0,1/3) 0,0,z
 - (3') 0,0,1/3

3. (4) 2 (0,0,1/2) 0,0,z
 - (2) 0,0,1/2

4. (5) 6' (0,0,1/6) 0,0,z
 - (6') 0,0,5/6
 - (6') 0,0,1/6

5. (7) 2' x,x,1/3
 - (2') 0,0,2/3

6. (8) 2' x,0,0
 - (2') 0,0,0

7. (9) 2' y,0,1/6
 - (2') 0,0,1/3

8. (10) 2' x,x,1/12
 - (2') 0,0,1/6

9. (11) 2' x,2x,1/4
 - (2') 0,0,1/2

10. (12) 2' 2x,x,5/12
 - (2') 0,0,5/6

P6₅2'2'

Hexagonal

179.5.1395

179.5.1395 - 1 - 3038
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) y,x-y,z+2/3 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x,z+1/3 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) y,x+y,z+1/6 [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x-y,x,z+5/6 [u-v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+2/3 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x-y,y,z [u+v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x+y,x,z+1/3 [u,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) y,x,z+1/6 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(11) x+y,y,z+1/2 [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(12) x,x-y,z+5/6 [u,u+v,w]</td>
</tr>
</tbody>
</table>

6	b .2'	x,2x,3/4 [u,0,w]
		2x,x,5/12 [0,u,w]
		x,x,1/12 [u,u,w]
6	a .2'	x,0,0 [u,2u,w]
		0,x,2/3 [2u,0,w]
		x,x,1/3 [u,u,w]
		x,0,1/2 [u,2u,w]
		0,x,1/6 [2u,u,w]
		x,x,5/6 [u,u,w]

Symmetry of Special Projections

Along [0,0,1] p6mm
\(a^* = a \) \(b^* = b \)
Origin at 0,0,z

Along [1,0,0] p2'mg'
\(a^* = c \) \(b^* = (a + 2b)/2 \)
Origin at 0,0,0

Along [2,1,0] p2'mg'
\(a^* = c \) \(b^* = b/2 \)
Origin at x,0,0
Origin at 222 at 6_2 (2,1,1) (1,2,1)

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/6 \quad y \leq x \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1,0,0 & \quad 1,1,0 \\
0,0,1/6 & \quad 1,0,1/6 & \quad 1,1,1/6
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
& \quad (1\times0,0,0) \\
(2) & \quad 3' (0,0,2/3) \quad 0,0,z \\
& \quad (3_z\times0,0,2/3) \\
(3) & \quad 3' (0,0,1/3) \quad 0,0,z \\
& \quad (3_z\times0,0,1/3) \\
(4) & \quad 2 \quad 0,0,z \\
& \quad (2_z\times0,0,0) \\
(5) & \quad 6' (0,0,2/3) \quad 0,0,z \\
& \quad (6_z\times0,0,2/3) \\
(6) & \quad 6' (0,0,1/3) \quad 0,0,z \\
& \quad (6_z\times0,0,1/3) \\
(7) & \quad 2 \quad x,x,1/3 \\
& \quad (2_{xy}\times0,0,2/3) \\
(8) & \quad 2 \quad x,0,0 \\
& \quad (2_x\times0,0,0) \\
(9) & \quad 2 \quad 0,y,1/6 \\
& \quad (2_y\times0,0,1/3) \\
(10) & \quad 2 \quad x,\&1/3 \\
& \quad (2_z\times0,0,2/3) \\
(11) & \quad 2 \quad x,2x,0 \\
& \quad (2_{xy}\times0,0,0) \\
(12) & \quad 2 \quad 2x,x,1/6 \\
& \quad (2_{xy}\times0,0,1/3)
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>k</td>
<td>(1) x,y,z [u,v,w] (2) y,x-y,z+2/3 [v,u-v,w] (3) x+y,x,z+1/3 [u+v,u,w] (4) x,y,z [u,v,w] (5) x+y,z+2/3 [v,u+v,w] (6) x-y,x,z+1/3 [u-v,u,w] (7) x,x+y,z [u+v,v,w] (8) x-y,x,z+2/3 [u-v,u,w] (9) x,x+y,z+1/3 [u,u+v,w] (10) x,x,x+2/3 [u,u+2v,w] (11) x,x,y,z [u,v+w,w] (12) x,x,x+2/3 [u,u+2v,w]</td>
</tr>
<tr>
<td>6</td>
<td>j</td>
<td>(2) x,x,1/2 [u,2u,0] (3) x,x,1/2 [2u,u,0] (4) x,x,1/2 [u,v,w]</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>(5) x,x,3/2 [2u,u,0] (6) x,x,3/2 [u,v,w]</td>
</tr>
<tr>
<td>6</td>
<td>h</td>
<td>(7) x,1/2 [u,0,0] (8) x,1/2 [0,0,0] (9) x,1/2 [u,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>g</td>
<td>(10) x,1/2 [u,0,0] (11) x,1/2 [0,0,0] (12) x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>(13) x,1/2 [0,0,0] (14) x,1/2 [0,0,0] (15) x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>3</td>
<td>d</td>
<td>(16) x,1/2 [0,0,0] (17) x,1/2 [0,0,0] (18) x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>(19) x,1/2 [0,0,0] (20) x,1/2 [0,0,0] (21) x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>(22) x,1/2 [0,0,0] (23) x,1/2 [0,0,0] (24) x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>(25) x,1/2 [0,0,0] (26) x,1/2 [0,0,0] (27) x,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = a</td>
<td>b' = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = c</td>
<td>b' = (a + 2b)/2</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [2,1,0]</th>
<th>p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = c</td>
<td>b' = b/2</td>
</tr>
<tr>
<td>Origin at x,x/2,1/6</td>
<td></td>
</tr>
</tbody>
</table>
Origin at 2221' at 6_2 (2,1,1) (1,2,1)1'

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/6 \quad y \leq x \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1,0,0 & \quad 1,1,0 \\
0,0,1/6 & \quad 1,0,1/6 & \quad 1,1,1/6
\end{align*}
\]

Symmetry Operations

For 1 + set

1. \(1 \ (1^*,0,0,0)\)
2. \(3^* (0,0,2/3) 0,0,z\)
3. \(3^* (0,0,1/3) 0,0,z\)
4. \(2 0,0,z (2_z^*,0,0,0)\)
5. \(6 (0,2/3) 0,0,z (6_z^*0,0,2/3)\)
6. \(6^+ (0,1/3) 0,0,z (6_z^*0,0,1/3)\)
7. \(2 \ x,x,1/3 (2_{xy}^*,0,0,2/3)\)
8. \(2 \ x,0,0 (2_x^*0,0,0)\)
9. \(2 \ 0,y,1/6 (2_y^*0,0,1/3)\)
10. \(2 \ x,\&,1/3 (2_{3}^*,0,0,2/3)\)
11. \(2 \ x,2x,0 (2_x^*0,0,0)\)
12. \(2 \ 2x,x,1/6 (2_y^*0,0,1/3)\)

For 1' + set

1. \(1' \ (1^*,0,0,0)'\)
2. \(3' (0,0,2/3) 0,0,z\)
3. \(3' (0,0,1/3) 0,0,z\)
4. \(2' 0,0,z (2_{z}^*,0,0,0)\)
5. \(6' (0,2/3) 0,0,z (6_z^*0,0,2/3)\)
6. \(6' (0,1/3) 0,0,z (6_z^*0,0,1/3)\)
7. \(2' \ x,x,1/3 (2_{xy}^*,0,0,2/3)\)
8. \(2' \ x,0,0 (2_x^*0,0,0)\)
9. \(2' \ 0,y,1/6 (2_y^*0,0,1/3)\)
10. \(2' \ x,\&,1/3 (2_{3}^*,0,0,2/3)\)
11. \(2' \ x,2x,0 (2_x^*0,0,0)\)
12. \(2' \ 2x,x,1/6 (2_y^*0,0,1/3)\)
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>k 11'</td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>1 +</th>
<th>1' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) y,x-y,z+2/3 [0,0,0]</td>
</tr>
<tr>
<td>(3) x+y,x,z+1/3 [0,0,0]</td>
<td>(4) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(5) y,x+y,z+2/3 [0,0,0]</td>
<td>(6) x-y,x,z+1/3 [0,0,0]</td>
</tr>
<tr>
<td>(7) y,x,z+2/3 [0,0,0]</td>
<td>(8) x-y,y,z+2/3 [0,0,0]</td>
</tr>
<tr>
<td>(9) x,x+y,z+1/3 [0,0,0]</td>
<td>(10) y,x,z+2/3 [0,0,0]</td>
</tr>
<tr>
<td>(11) x+y,y,z+2/3 [0,0,0]</td>
<td>(12) x,y-z+1/3 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p6mm1'
 - $a^* = a$
 - $b^* = b$
 - Origin at 0,0,z

- Along [1,0,0] p2mm1'
 - $a^* = c$
 - $b^* = (a + 2b)/2$
 - Origin at x,0,0

- Along [2,1,0] p2mm1'
 - $a^* = c$
 - $b^* = b/2$
 - Origin at x,x/2,1/6
Origin
At 2'2'2' at 6_3^+ (2',1,1) (1,2',1)

Asymmetric unit

<table>
<thead>
<tr>
<th></th>
<th>0 ≤ x ≤ 1;</th>
<th>0 ≤ y ≤ 1;</th>
<th>0 ≤ z ≤ 1/6</th>
<th>y ≤ x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertices</td>
<td>0,0,0</td>
<td>1,0,0</td>
<td>1,1,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0,1/6</td>
<td>1,0,1/6</td>
<td>1,1,1/6</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Operations

1. 1
 - $1^{h0,0,0}$
2. 3^* (0,0,2/3) 0,0,z
 - $3_z^{*0,0,2/3}$
3. 3^* (0,0,1/3) 0,0,z
 - $3_z^{*0,0,1/3}$
4. $2'$ 0,0,z
 - $(2_z^{*0,0,0})'$
5. $6'$ (0,0,2/3) 0,0,z
 - $(6_z^{*0,0,2/3})'$
6. $6'$ (0,0,1/3) 0,0,z
 - $(6_z^{*0,0,1/3})'$
7. $2'$ x,x,1/3
 - $(2_{xy}^{*0,0,2/3})'$
8. $2'$ x,0,0
 - $(2_x^{*0,0,0})'$
9. $2'$ 0,y,1/6
 - $(2_y^{*0,0,1/3})'$
10. $2'$ x,y,1/3
 - $(2_z^{*0,0,2/3})$
11. $2'$ 0,x,2/3
 - $(2_{xy}^{*0,0,0})$
12. $2'$ 2x,x,1/6
 - $(2_z^{*0,0,1/3})$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 k 1</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x',y',z',2/3 [v',u',w']</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x',y',z' [u,v,w]</td>
<td>(5) y',x'+y',z'+2/3 [v',u-v,w']</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) x',y',z'+2/3 [v',u',w']</td>
<td>(8) y',x'+y',z'+u',v',w'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y',x'+z'+2/3 [v',u',w']</td>
<td>(11) x'+y',y',z'+ [u'+v',u',w']</td>
</tr>
</tbody>
</table>

6 j .2 x,2x,1/2 [u,2u,0] 2x,2x,1/6 [2u,u,0] x,x,5/6 [u,u,0]

6 i .2 x,2x,0 [u,2u,0] 2x,2x,2/3 [2u,u,0] x,x,1/3 [u,u,0]

6 h .2' x,0,1/2 [u,2u,w] 0,x,1/6 [2u,u,w] x,x,5/6 [u,u,w]

6 g .2' x,0,0 [u,2u,w] 0,x,2/3 [2u,u,w] x,x,1/3 [u,u,w]

6 f .2' 1/2,0,z [u,v,0] 0,1/2,z+2/3 [v',u-v,0] 1/2,1/2,z+1/3 [u'+v',u',0]

6 e .2' 0,0,z [u,v,0] 0,0,z+2/3 [v',u-v,0] 0,0,z+1/3 [u'+v',u',0]

3 d 2'2' 1/2,0,1/2 [u,2u,0] 0,1/2,1/6 [2u,u,0] 1/2,1/2,5/6 [u,u,0]

3 c 2'2' 1/2,0,0 [u,2u,0] 0,1/2,2/3 [2u,u,0] 1/2,1/2,1/3 [u,u,0]

3 b 2'2' 0,0,1/2 [u,2u,0] 0,0,1/6 [2u,u,0] 0,0,5/6 [u,u,0]

3 a 2'2' 0,0,0 [u,2u,0] 0,0,2/3 [2u,u,0] 0,0,1/3 [u,u,0]

Symmetry of Special Projections

Along [0,0,1] p6m'm' Along [1,0,0] p2mm' Along [2,1,0] p2mm

\(a^* = a \quad b^* = b \)

Origin at 0,0,z

\(a^* = (a + 2b)/2 \quad b^* = c \)

Origin at x,0,0

\(a^* = c \quad b^* = b/2 \)

Origin at x,x/2,1/6

180.3.1398 - 2 - 3045
Origin at 22'2' at 6'2' (2,1,1) (1,2',1)

Asymmetric unit

\[
\begin{align*}
0 & \leq x \leq 1; & 0 & \leq y \leq 1; & 0 & \leq z \leq 1/6 & y & \leq x
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & & 1,0,0 & & 1,1,0 \\
0,0,1/6 & & 1,0,1/6 & & 1,1,1/6
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(1^*0,0,0) & \quad \text{Symmetry Operations} \\
\text{(2)} & \quad 3^* (0,0,2/3) & & 0,0,z \\
& \quad (3_2^*0,0,2/3) & & (3_2^*0,0,1/3) \\
(4) & \quad 2^* 0,0,z \\
& \quad (2_2^*0,0,0)^* & & (2_2^*0,0,0)^* \\
(5) & \quad 6^* (0,0,2/3) & & 0,0,z \\
& \quad (6_2^*0,0,2/3)^* & & (6_2^*0,0,1/3)^* \\
(7) & \quad 2^* x,x,1/3 \\
& \quad (2_2^*0,0,2/3) & & (2_2^*0,0,0) \\
(8) & \quad 2^* x,x,0 \\
& \quad (2_2^*0,0,0)^* & & (2_2^*0,0,0)^* \\
(9) & \quad 2^* x,2x,0 \\
& \quad (2_2^*0,0,0)^* & & (2_2^*0,0,0)^* \\
(10) & \quad 2^* x,x,1/3 \\
& \quad (2_2^*0,0,2/3) & & (2_2^*0,0,1/3) & & (2_2^*0,0,1/3) \\
\end{align*}
\]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>k 1</td>
<td>(1) x,y,z [u,v,w] (2) y,x-y,z+2/3 [v,u-v,w] (3) x+y,x,z+1/3 [u+v,u,w] (4) x,y,z [u,v,w] (5) y,x+2/3 [v,u-v,w] (6) x,y,z+2/3 [v,u-v,w] (7) y,x,z [u,v,w] (8) x,y,z [u,v,w] (9) x+y,x,z+1/3 [u,u+v,w] (10) x+y,x,z+2/3 [u,u+v,w] (11) x+y,y,z [u,v,w] (12) x+y,x,z+1/3 [u,u+v,w]</td>
</tr>
<tr>
<td>6</td>
<td>j .2'</td>
<td>x,2x,1/2 [u,0,w] 2x,x,1/6 [0,u,w] x,x,5/6 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>i .2'</td>
<td>x,2x,0 [u,0,w] 2x,x,2/3 [0,u,w] x,x,1/3 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>h .2</td>
<td>x,0,1/2 [u,0,0] 0,x,1/6 [0,u,0] x,x,5/6 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>g .2</td>
<td>x,0,0 [u,0,0] 0,x,2/3 [0,u,0] x,x,1/3 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>f 2'..</td>
<td>0,1/2,z [u,v,0] 0,1/2,z+2/3 [v,u-v,0] 0,1/2,z+1/3 [v,u-v,0] 1/2,1/2,z+1/3 [u+v,u,0] 1/2,1/2,z+1/3 [u,v+u,0]</td>
</tr>
<tr>
<td></td>
<td>e 2'..</td>
<td>0,0,2 [u,v,0] 0,0,2+3 [v,u-v,0] 0,0,2+1/3 [u+v,u,0]</td>
</tr>
<tr>
<td></td>
<td>d 22'</td>
<td>1/2,0,1/2 [u,0,0] 0,1/2,1/6 [0,u,0] 1/2,1/2,5/6 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>c 22'</td>
<td>1/2,0,0 [u,0,0] 0,1/2,2/3 [0,u,0] 1/2,1/2,1/3 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>b 22'</td>
<td>0,0,1/2 [u,0,0] 0,0,1/6 [0,u,0] 0,0,5/6 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>a 22'</td>
<td>0,0,0 [u,0,0] 0,0,2/3 [0,u,0] 0,0,1/3 [u,u,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6'mm'
Along [1,0,0] p2mm
Along [2,1,0] p2'mm'

\(a^* = a \quad b^* = b \)
\(a^* = c \quad b^* = (a + 2b)/2 \)
\(a^* = b/2 \quad b^* = c \)
Origin
at $2'2'2'$ at $6_2 (2',1,1) (1,2',1)$

Asymmetric unit

- $0 \leq x \leq 1$
- $0 \leq y \leq 1$
- $0 \leq z \leq 1/6$
- $y \leq x$

Vertices

- $0,0,0$
- $1,0,0$
- $1,1,0$
- $0,0,1/6$
- $1,0,1/6$
- $1,1,1/6$

Symmetry Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
<td>1</td>
</tr>
<tr>
<td>(1)*0,0,0</td>
<td></td>
</tr>
<tr>
<td>(2) 3' (0,0,2/3)</td>
<td>$0,0,z$</td>
</tr>
<tr>
<td>(3) 3' (0,0,1/3)</td>
<td>$0,0,z$</td>
</tr>
<tr>
<td>(4) 2</td>
<td>$0,0,z$</td>
</tr>
<tr>
<td>(2)*0,0,0</td>
<td></td>
</tr>
<tr>
<td>(5) 6 (0,0,2/3)</td>
<td>$0,0,z$</td>
</tr>
<tr>
<td>(6) 6' (0,0,1/3)</td>
<td>$0,0,z$</td>
</tr>
<tr>
<td>(7) 2' x,x,1/3</td>
<td>$0,0,z$</td>
</tr>
<tr>
<td>(2,x)*0,0,2/3</td>
<td></td>
</tr>
<tr>
<td>(8) 2' x,0,0</td>
<td>$0,0,z$</td>
</tr>
<tr>
<td>(2)*x0,0,0</td>
<td></td>
</tr>
<tr>
<td>(9) 2' 0,y,1/6</td>
<td>$0,0,z$</td>
</tr>
<tr>
<td>(2,y)*0,0,1/3</td>
<td></td>
</tr>
<tr>
<td>(10) 2' x,x,1/3</td>
<td>$0,0,z$</td>
</tr>
<tr>
<td>(2)*x0,0,2/3</td>
<td></td>
</tr>
<tr>
<td>(11) 2' x,2x,0</td>
<td>$0,0,z$</td>
</tr>
<tr>
<td>(2)*x0,0,0</td>
<td></td>
</tr>
<tr>
<td>(12) 2' 2x,x,1/6</td>
<td>$0,0,z$</td>
</tr>
<tr>
<td>(2)*x0,0,1/3</td>
<td></td>
</tr>
</tbody>
</table>
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>k</td>
<td>(1) x,y,z [u,v,w] (2) y,x-z+2/3 [v,u-w] (3) x+y,z+1/3 [u+w,v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [u+v] (5) y,x+z+2/3 [v,u+w] (6) x-y,z+1/3 [u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z+2/3 [v,u+w] (8) x-y,x,z+1/3 [u+v,w] (9) x,y,z+1/3 [u+w,v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x+y,y,z, z+1/3 [u-v, w] (11) x+y,y,z [u+v, w] (12) x,y,z+1/3 [u+w, v]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Special Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p6mm</td>
</tr>
<tr>
<td>a* = a</td>
<td>Along [1,0,0]</td>
</tr>
<tr>
<td>b* = b</td>
<td>Along [2,1,0]</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>a* = c</td>
</tr>
<tr>
<td></td>
<td>Origin at x,0,0</td>
</tr>
<tr>
<td></td>
<td>Origin at x,x/2,1/6</td>
</tr>
</tbody>
</table>
Symmetry Operations

For \((0,0,0)\) + set

1. \(1\) \(\begin{pmatrix} 1^{*}\,0,0,0 \end{pmatrix}\)
2. \(3'\) \(\begin{pmatrix} 0,0,2/3 \end{pmatrix} 0,0,z\)
3. \(3'\) \(\begin{pmatrix} 0,0,1/3 \end{pmatrix} 0,0,z\)
4. \(2'\) \(\begin{pmatrix} 0,0,0 \end{pmatrix}\)
5. \(6'\) \(\begin{pmatrix} 0,0,2/3 \end{pmatrix} 0,0,z\)
6. \(6'\) \(\begin{pmatrix} 0,0,1/3 \end{pmatrix} 0,0,z\)
7. \(2\) \(\begin{pmatrix} x,x,1/6 \end{pmatrix}\)
8. \(2\) \(\begin{pmatrix} x,x,0 \end{pmatrix}\)
9. \(2'\) \(\begin{pmatrix} 0,y,1/2 \end{pmatrix} 0,y,1/2\)
10. \(2'\) \(\begin{pmatrix} 0,0,0 \end{pmatrix}\)
11. \(2'\) \(\begin{pmatrix} 0,0,0 \end{pmatrix}\)
12. \(2\) \(\begin{pmatrix} 2x,x,1/6 \end{pmatrix}\)

For \((0,0,1)\)' + set

1. \(1'\) \(\begin{pmatrix} 0,0,1 \end{pmatrix}\)
2. \(3'\) \(\begin{pmatrix} 0,0,5/3 \end{pmatrix} 0,0,z\)
3. \(3'\) \(\begin{pmatrix} 0,0,4/3 \end{pmatrix} 0,0,z\)
4. \(2\) \(\begin{pmatrix} 0,0,1 \end{pmatrix}\)
5. \(6\) \(\begin{pmatrix} 0,0,5/3 \end{pmatrix} 0,0,z\)
6. \(6\) \(\begin{pmatrix} 0,0,4/3 \end{pmatrix} 0,0,z\)
7. \(2'\) \(\begin{pmatrix} x,x,5/6 \end{pmatrix}\)
8. \(2'\) \(\begin{pmatrix} x,x,0 \end{pmatrix}\)
9. \(2\) \(\begin{pmatrix} 0,y,2/3 \end{pmatrix}\)
10. \(2\) \(\begin{pmatrix} 0,0,5/3 \end{pmatrix}\)
11. \(2\) \(\begin{pmatrix} 0,0,5/3 \end{pmatrix}\)
12. \(2'\) \(\begin{pmatrix} 0,y,2/3 \end{pmatrix}\)
Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>k 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (0,0,1)' + (0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y,x-y,z+2/3 [v,u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z+1/3 [u-v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x, y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) y,x+y,z+2/3 [v,u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x-y,x,z+1/3 [u-v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z+2/3 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) x-y,y,z [u-v,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x,x+y,z+1/3 [u-u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y,x,z+2/3 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) x+y,y,z [u-v,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) x,x-y,z+1/3 [u-u,v,w]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6mm1'

a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p222' 2m'm'

a* = c b* = (a + 2b)/2
Origin at x,0,0

Along [2,1,0] p222' 2m'm'

a* = c b* = b/2
Origin at x,x/2,1/6

180.6.1401 - 2 - 3051
Origin at 222' at 6_2' (2,1,1) (1,2,1)

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/6\]

Vertices

- \(0,0,0\)
- \(1,0,0\)
- \(1,1,0\)
- \(0,0,1/6\)
- \(1,0,1/6\)
- \(1,1,1/6\)

Symmetry Operations

For \((0,0,0) + \) set

1. \(1 (1^{*}0,0,0)\)
2. \(3' (0,0,2/3) 0,0,z\)
3. \(3' (0,0,1/3) 0,0,z\)
4. \(2 z^*0,0,0\)
5. \(6 (0,0,2/3) 0,0,z\)
6. \(6 (0,0,1/3) 0,0,z\)
7. \(2 x,x,1/3 (2,0,0,2/3)\)
8. \(2 (0,0,0) x,0,0\)
9. \(2' (0,0,1/3) 0,0,1/2\)
10. \(2 x,0,1/2 (2,0,0,2/3)\)
11. \(2 x,x,1/3 (2,0,0,2/3)\)
12. \(2' (0,0,1/3) 0,0,1/2\)

For \((0,0,1) + \) set

1. \(1' (0,0,1) (1^{*}0,0,0)\)
2. \(3' (0,0,5/3) 0,0,z\)
3. \(3' (0,0,4/3) 0,0,z\)
4. \(2' (0,0,1) (2,0,0,1)\)
5. \(6' (0,0,5/3) 0,0,z\)
6. \(6' (0,0,4/3) 0,0,z\)
7. \(2 x,x,5/6 (2,0,0,5/3)\)
8. \(2 (0,0,1) x,0,1/2\)
9. \(2' (0,0,1) 0,0,2/3\)
10. \(2' (0,0,1) 2x,x,1/2\)
11. \(2' (0,0,1) 2x,x,1/2\)
12. \(2 (2,0,0,4/3) 0,0,1/2\)

180.7.1402
Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,0,1)' +</td>
<td></td>
</tr>
<tr>
<td>24 k 1</td>
<td>(1) x,y,z [u,v,w] (2) y,-x-y,z+2/3 [v,u-v,w] (3) x+y,x,z+1/3 [u-v,u,w] (4) x,-y,z [u,v,w] (5) x,-y,z+2/3 [v,u-v,w] (6) x,-y,x,z+1/3 [u-v,u,w] (7) x,y,z [u,v,w] (8) x,y,z+2/3 [v,u-v,w] (9) x,-y,x,z+1/3 [u-v,u,w] (10) x,y,z [u,v,w] (11) x+y,x,z [u+v,v,w] (12) x,y,z [u,v,w] (13) x+y,x,z+1/3 [u+v,u,w]</td>
</tr>
<tr>
<td>12 j ..2'</td>
<td>x,2x,1/2 [u,0,w] 2x,x,1/6 [0,u,w] x,x,5/6 [u,u,w]</td>
</tr>
<tr>
<td>12 i ..2</td>
<td>x,2x,0 [u,2u,0] 2x,x,2/3 [2u,u,0] x,x,1/3 [u,u,0]</td>
</tr>
<tr>
<td>12 h ..2'</td>
<td>x,0,1/2 [u,2u,w] 0,x,1/6 [2u,u,0] x,x,5/6 [u,u,w]</td>
</tr>
<tr>
<td>12 g ..2</td>
<td>x,0,0 [u,0,0] 0,x,2/3 [0,u,0] x,x,1/3 [u,u,0]</td>
</tr>
<tr>
<td>12 f ..2</td>
<td>1/2,0,z [0,0,w] 0,1/2,z+2/3 [0,0,w] 1/2,1/2,z+1/3 [0,0,w]</td>
</tr>
<tr>
<td>12 e ..2</td>
<td>0,0,z [0,0,w] 0,0,z+2/3 [0,0,w] 0,0,z+1/3 [0,0,w]</td>
</tr>
<tr>
<td>6 d 2'2</td>
<td>1/2,0,1/2 [0,0,w] 0,1/2,1/6 [0,0,w] 1/2,1/2,5/6 [0,0,w]</td>
</tr>
<tr>
<td>6 c 222</td>
<td>1/2,0,0 [0,0,0] 0,1/2,2/3 [0,0,0] 1/2,1/2,1/3 [0,0,0]</td>
</tr>
<tr>
<td>6 b 2'2'</td>
<td>0,0,1/2 [0,0,w] 0,0,1/6 [0,0,w] 0,0,5/6 [0,0,w]</td>
</tr>
<tr>
<td>6 a 222</td>
<td>0,0,0 [0,0,0] 0,0,2/3 [0,0,0] 0,0,1/3 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6mm1'
Along [1,0,0] p2a2' 2mm
Along [2,1,0] p2a2' 2mm

\[a^* = a \hspace{1cm} b^* = b \]

Origin at 0,0,z
Origin at x,0,0
Origin at x,x/2,2/3
Origin at 222 at $6_g (2,1,1) (1,2,1)$

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq \frac{1}{6}\]

Vertices:

- 0,0,0
- 1,0,0
- 1,1,0
- 0,0,\frac{1}{6}
- 1,0,\frac{1}{6}
- 1,1,\frac{1}{6}

Symmetry Operations

1. \((1) 1\)
2. \((1) 0,0,0\)
3. \((1) 3 (0,0,1/3) 0,0,z\)
4. \((3_z 0,0,1/3)\)
5. \((3) 3^* (0,0,2/3) 0,0,z\)
6. \((3_z^{-1} 0,0,2/3)\)
7. \((4) 2 0,0,z\)
8. \((2_z 0,0,0)\)
9. \((2_z) 0,0,0\)
10. \((2_z) 0,0,0\)
11. \((2_z 0,0,2/3)\)
12. \((2_z 0,0,2/3)\)

\(181.1.1403\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/3 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(10) y,x,z+1/3 [v,u,w]</td>
</tr>
<tr>
<td>6 j .2</td>
<td>x,2x,1/2 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td>x,2x,1/2 [u,2u,0]</td>
</tr>
<tr>
<td>6 i .2</td>
<td>x,2x,0 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td>x,2x,0 [u,2u,0]</td>
</tr>
<tr>
<td>6 h .2</td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>6 g .2</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>6 f 2..</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/3 [0,0,w]</td>
</tr>
<tr>
<td>6 e 2..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/3 [0,0,w]</td>
</tr>
<tr>
<td>3 d 222</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>3 c 222</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>3 b 222</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>3 a 222</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6m' m'
\(a^* = a \) \(b^* = b \)
Origin at 0,0,z

Along [1,0,0] p2m' m'
\(a^* = c \) \(b^* = (a + 2b)/2 \)
Origin at x,0,0

Along [2,1,0] p2m' m'
\(a^* = c \) \(b^* = b/2 \)
Origin at x,x/2,1/3
Origin at 2221' at 64 (2,1,1) (1,2,1)1'

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq \frac{1}{6}; \quad y \leq x \]

Vertices

<table>
<thead>
<tr>
<th></th>
<th>0,0,0</th>
<th>1,0,0</th>
<th>1,1,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,1/6</td>
<td>1,0,1/6</td>
<td>1,1,1/6</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Operations

For 1 + set

(1) 1
(1 | 0,0,0)

(4) 2
(2 | 0,0,z)

(5) 6'
(6 | 0,0,1/3)

(7) 2
(2y | 0,0,1/3)

(10) 2
(2 | x,x,1/6)

(8) 2
(2 | x,0,0)

(9) 2
(2 | 0,y,1/3)

(12) 2
(2 | 0,0,2/3)

(11) 2
(2 | x,2x,0)

(2 | 0,0,0)
For $1'$ + set

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 k</td>
<td>11'</td>
<td>(1) x,y,z [0,0,0]</td>
<td>$1'$ + $1'$ +</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) y,x-y,z+1/3 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x, y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) y,x+y,z+1/3 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z+1/3 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y, x,z+1/3 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>6 j</td>
<td>..21'</td>
<td>x,2x,1/2 [0,0,0]</td>
<td>2x, x,5/6 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,1/2 [0,0,0]</td>
<td>2x,x,5/6 [0,0,0]</td>
</tr>
<tr>
<td>6 i</td>
<td>..21'</td>
<td>x,2x,0 [0,0,0]</td>
<td>2x,x,1/3 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,0 [0,0,0]</td>
<td>2x,x,1/3 [0,0,0]</td>
</tr>
<tr>
<td>6 h</td>
<td>.21'</td>
<td>x,0,1/2 [0,0,0]</td>
<td>0,x,5/6 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/2 [0,0,0]</td>
<td>0,x,5/6 [0,0,0]</td>
</tr>
<tr>
<td>6 g</td>
<td>.21'</td>
<td>x,0,0 [0,0,0]</td>
<td>0,x,1/3 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,0 [0,0,0]</td>
<td>0,x,1/3 [0,0,0]</td>
</tr>
<tr>
<td>6 f</td>
<td>2..1'</td>
<td>1/2,0,z [0,0,0]</td>
<td>0,1/2,z+1/3 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z,+1/3 [0,0,0]</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>6 e</td>
<td>2..1'</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z+1/3 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/3 [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>3 d</td>
<td>2221'</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>0,1/2,5/6 [0,0,0]</td>
</tr>
</tbody>
</table>
Continued

3	c	2221'	1/2,0,0 [0,0,0]	0,1/2,1/3 [0,0,0]	1/2,1/2,2/3 [0,0,0]
3	b	2221'	0,0,1/2 [0,0,0]	0,0,5/6 [0,0,0]	0,0,1/6 [0,0,0]
3	a	2221'	0,0,0 [0,0,0]	0,0,1/3 [0,0,0]	0,0,2/3 [0,0,0]

Symmetry of Special Projections

| Along [0,0,1] | p6mm1' | a* = a b* = b | a* = a b* = (a + 2b)/2 |
| Origin at 0,0,z | | Origin at x,0,0 | |

| Along [1,0,0] | p2mm1' | a* = c b* = (a + 2b)/2 |
| Origin at x,x/2,1/3 | | |

| Along [2,1,0] | p2mm1' | a* = c b* = b/2 |
| Origin at x,x/2,1/3 | | |
Origin at 2'2'2' at 6'2' (2',1,1) (1,2,1)

Asymmetric unit

<table>
<thead>
<tr>
<th></th>
<th>0 ≤ x ≤ 1;</th>
<th>0 ≤ y ≤ 1;</th>
<th>0 ≤ z ≤ 1/6</th>
<th>y ≤ x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertices</td>
<td>0,0,0</td>
<td>1,0,0</td>
<td>1,1,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0,1/6</td>
<td>1,0,1/6</td>
<td>1,1,1/6</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Operations

1. 1
 - \(1|0,0,0\)
2. 3' (0,0,1/3) 0,0,z
 - \(3_z|0,0,1/3\)
3. 3' (0,0,2/3) 0,0,z
 - \(3_z^{-1}|0,0,2/3\)
4. 2' 0,0,z
 - \(2|0,0,0\)
 - \(2|0,0,0\)'
5. 6' (0,0,1/3) 0,0,z
 - \(6_z|0,0,1/3\')
6. 6' (0,0,2/3) 0,0,z
 - \(6_z|0,0,2/3\')
7. 2' x,x,1/6
 - \(2_x|0,0,1/3\)
 - \(2_x|0,0,1/3\)'
8. 2' x,0,0
 - \(2_x|0,0,0\)
 - \(2_x|0,0,0\)'
9. 2' 0,y,1/3
 - \(2_y|0,0,2/3\)
 - \(2_y|0,0,2/3\')
10. 2 x,x,1/6
 - \(2|0,0,1/3\)
11. 2 x,2x,0
 - \(2|0,0,0\)
12. 2 2x,x,1/3
 - \(2|0,0,2/3\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>k</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) (\vec{y},-x-y,\vec{z}+1/3 [\vec{v},u-v,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) (x+y,\vec{x},\vec{z}+2/3 [\vec{u}+v,\vec{u},w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) (\vec{x},\vec{y},\vec{z} [u,v,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) (y,x+y,\vec{z}+1/3 [\vec{v},u-v,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6) (x-y,x,\vec{z}+2/3 [\vec{u}+v,\vec{u},w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) (y,x,\vec{z}+1/3 [v,u,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8) (x-y,\vec{y},\vec{z} [u+v,v,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(9) (x,\vec{x}+y,\vec{z}+2/3 [u-u-v,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10) (\vec{y},\vec{x},\vec{z}+1/3 [v,u,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(11) (\vec{x}+y,\vec{y},\vec{z} [u+v,v,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(12) (\vec{x}-y,\vec{x},\vec{z}+2/3 [u-u-v,w])</td>
</tr>
<tr>
<td>6</td>
<td>j</td>
<td>.2</td>
<td>x,2x,1/2 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2\vec{x},\vec{x},5/6 [2\vec{u},\vec{u},0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x,\vec{x},1/6 [u,\vec{u},0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\vec{x},2\vec{x},1/2 [u,2u,0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2\vec{x},\vec{x},5/6 [2\vec{u},\vec{u},0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x,\vec{x},1/6 [u,\vec{u},0])</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>.2</td>
<td>x,2x,0 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2\vec{x},\vec{x},1/3 [2\vec{u},\vec{u},0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x,\vec{x},2/3 [u,\vec{u},0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\vec{x},2\vec{x},0 [u,2u,0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2\vec{x},\vec{x},1/3 [2\vec{u},\vec{u},0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x,\vec{x},2/3 [u,\vec{u},0])</td>
</tr>
<tr>
<td>6</td>
<td>h</td>
<td>.2'</td>
<td>x,0,1/2 [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,\vec{x},5/6 [2\vec{u},u,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\vec{x},\vec{x},1/6 [u,u,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\vec{x},0,1/2 [u,2u,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,\vec{x},5/6 [2\vec{u},\vec{u},w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\vec{x},\vec{x},1/6 [u,u,\vec{w}])</td>
</tr>
<tr>
<td>6</td>
<td>g</td>
<td>.2'</td>
<td>x,0,0 [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,\vec{x},1/3 [2\vec{u},\vec{u},w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\vec{x},\vec{x},2/3 [u,\vec{u},\vec{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\vec{x},0,0 [u,2u,\vec{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,\vec{x},1/3 [2\vec{u},\vec{u},\vec{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\vec{x},\vec{x},2/3 [u,\vec{u},\vec{w}])</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>.2'</td>
<td>(1/2,0,\vec{z} [\vec{u},v,\vec{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,1/2,\vec{z}+1/3 [\vec{v},u-v,\vec{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1/2,1/2,\vec{z}+2/3 [u+v,\vec{u},\vec{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,1/2,\vec{z}+1/3 [v,u,\vec{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1/2,0,\vec{z}+1/3 [\vec{u}+v,v,\vec{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1/2,1/2,\vec{z}+2/3 [u,u-v,\vec{w}])</td>
</tr>
<tr>
<td>6</td>
<td>e</td>
<td>.2'</td>
<td>(0,0,\vec{z} [\vec{u},v,\vec{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,\vec{z}+1/3 [\vec{v},u-v,\vec{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,\vec{z}+2/3 [u+v,\vec{u},\vec{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,\vec{z}+1/3 [\vec{v},u,\vec{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,\vec{z} [\vec{u}+v,v,\vec{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,\vec{z}+2/3 [u,u-v,\vec{w}])</td>
</tr>
<tr>
<td>3</td>
<td>d</td>
<td>2'2'</td>
<td>(1/2,0,1/2 [u,2u,0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,1/2,5/6 [2\vec{u},\vec{u},0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1/2,1/2,1/6 [\vec{u},\vec{u},0])</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>2'2'</td>
<td>(1/2,0,0 [u,2u,0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,1/2,1/3 [2\vec{u},\vec{u},0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1/2,1/2,2/3 [\vec{u},\vec{u},0])</td>
</tr>
<tr>
<td>3</td>
<td>b</td>
<td>2'2'</td>
<td>(0,0,1/2 [u,2u,0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,5/6 [2\vec{u},\vec{u},0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,1/6 [u,\vec{u},0])</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>2'2'</td>
<td>(0,0,0 [u,2u,0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,1/3 [2\vec{u},\vec{u},0])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,0,2/3 [\vec{u},\vec{u},0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6m'</th>
<th>a = a</th>
<th>b = b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,0,0]</td>
<td>p2mm</td>
<td>a = c</td>
<td>b = (a + 2b)/2</td>
</tr>
<tr>
<td>Along [2,1,0]</td>
<td>p2mm</td>
<td>a = c</td>
<td>b = b/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at x,0,0
Origin at x,x/2,1/3

181.3.1405 - 2 - 3060
Origin at 22'2' at 6' (2,1,1) (1,2',1)

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/6 \quad y \leq x \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1,0,0 & \quad 1,1,0 \\
0,0,1/6 & \quad 1,0,1/6 & \quad 1,1,1/6
\end{align*}
\]

Symmetry Operations

1. \(1\)
 \[
 (1 | 0,0,0)
 \]

2. \(3'\)
 \[
 (0,0,1/3) \quad 0,0,z \\
 (3_z | 0,0,1/3)
 \]

3. \(3'\)
 \[
 (0,0,2/3) \quad 0,0,z \\
 (3_z^{-1} | 0,0,2/3)
 \]

4. \(2'\)
 \[
 0,0,Z \\
 (2_z | 0,0,0)
 \]

5. \(6'\)
 \[
 (0,0,1/3) \quad 0,0,z \\
 (6_z^{-1} | 0,0,1/3)
 \]

6. \(6'\)
 \[
 (0,0,2/3) \quad 0,0,z \\
 (6_z | 0,0,2/3)
 \]

7. \(2\)
 \[
 x,x,1/6 \\
 (2_x | 0,0,1/3)
 \]

8. \(2\)
 \[
 x,0,0 \\
 (2_x | 0,0,0)
 \]

9. \(2\)
 \[
 0,y,1/3 \\
 (2_y | 0,0,2/3)
 \]

10. \(2'\)
 \[
 x,x,1/6 \\
 (2_z | 0,0,1/3)
 \]

11. \(2'\)
 \[
 x,2x,0 \\
 (2_z | 0,0,0)
 \]

12. \(2'\)
 \[
 2x,x,1/3 \\
 (2_z | 0,0,2/3)
 \]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>k</td>
<td>1</td>
</tr>
<tr>
<td>(1) x,y,z</td>
<td>u,v,w</td>
<td>(2) y,x-y,z+1/3 [v,u-v,w]</td>
</tr>
<tr>
<td>(4) x,y,z</td>
<td>u,v,w</td>
<td>(3) x+y,x,z+2/3 [u+v,u,w]</td>
</tr>
<tr>
<td>(7) y,x,z</td>
<td>v,u,w</td>
<td></td>
</tr>
<tr>
<td>(10) y,x,z</td>
<td>v,u,w</td>
<td></td>
</tr>
</tbody>
</table>

6	j	.2
1/2,0,z	[u,v,0]	1/2,1/2,1/3 [u+v,u,v]
6	i	.2
1/2,0,z	[u,v,0]	1/2,1/2,1/3 [u+v,u,v]

| 6 | h | .2 |
| 1/2,0,z | [u,v,0] | 1/2,1/2,1/3 [u+v,u,v] |

| 6 | g | .2 |
| 1/2,0,z | [u,v,0] | 1/2,1/2,1/3 [u+v,u,v] |

Symmetry of Special Projections

Along [0,0,1] p6mm'
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p2mm
\[a^* = c \quad b^* = (a + 2b)/2 \]
Origin at x,0,0

Along [2,1,0] p2mm'
\[a^* = b/2 \quad b^* = c \]
Origin at x,x/2,1/3
Origin at 2'2'2' at 6_4 (2',1,1) (1,2',1)

Asymmetric unit

<table>
<thead>
<tr>
<th>Vertices</th>
<th>0,0,0</th>
<th>1,0,0</th>
<th>1,1,0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,0,1/6</td>
<td>1,0,1/6</td>
<td>1,1,1/6</td>
</tr>
</tbody>
</table>

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 3' (0,0,1/3) 0,0,z
(3 z | 0,0,1/3)

(4) 2 0,0,z
(2 | 0,0,0)

(5) 6' (0,0,1/3) 0,0,z
(6 z | 0,0,1/3)

(7) 2' x,x,1/6
(2y | 0,0,1/3)

(8) 2' x,0,0
(2y | 0,0,0)

(9) 2' 0,y,1/3
(2z | 0,0,2/3)

(10) 2' x,x,1/6
(2z | 0,0,1/3)

(11) 2' x,2x,0
(2y | 0,0,0)

(12) 2' 2x,x,1/3
(2z | 0,0,2/3)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>k 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z+1/3 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) x, y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) y,x,z+1/3 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10) y, x-z+1/3 [v,u,w]</td>
</tr>
<tr>
<td>6</td>
<td>j ..2'</td>
<td>x,2x,1/2 [u,0,w]</td>
<td>2x,2x,1/2 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x,5/6 [0,u,w]</td>
<td>2x,5/6 [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>i ..2'</td>
<td>x,2x,0 [u,0,w]</td>
<td>2x,2x,0 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x,1/3 [0,u,w]</td>
<td>2x,1/3 [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>h .2'.</td>
<td>x,0,1/2 [u,2u,w]</td>
<td>0,5/6 [2u,0,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2 [u,2u,w]</td>
<td>0,1/2 [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td>g .2'.</td>
<td>x,0,0 [u,2u,w]</td>
<td>0,1/3 [2u,0,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0 [u,2u,w]</td>
<td>0,0 [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td>f 2..</td>
<td>1/2,0,z [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,z+1/3 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>e 2..</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/3 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/3 [0,0,w]</td>
<td>0,0,z+1/3 [0,0,w]</td>
</tr>
<tr>
<td>3</td>
<td>d 22'2'</td>
<td>1/2,0,1/2 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>c 22'2'</td>
<td>1/2,0,0 [0,0,w]</td>
<td>1/2,1/2,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>b 22'2'</td>
<td>0,0,1/2 [0,0,w]</td>
<td>0,0,5/6 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>a 22'2'</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,1/3 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6mm</th>
<th>Along [1,0,0]</th>
<th>p2'2mm'</th>
<th>Along [2,1,0]</th>
<th>p2'2mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a' = a</td>
<td>b' = b</td>
<td>a' = c</td>
<td>b' = (a + 2b)/2</td>
<td>a' = c</td>
<td>b' = b/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x/2,1/3</td>
<td></td>
</tr>
</tbody>
</table>
Origin at 222 at 6\textsubscript{a} (2,1,1) (1,2,1)

Asymmetric unit

\begin{align*}
0 &\leq x \leq 1; \\
0 &\leq y \leq 1; \\
0 &\leq z \leq 1/6 \\
y &\leq x
\end{align*}

Vertices

\begin{align*}
0,0,0 &\quad 1,0,0 &\quad 1,1,0 \\
0,0,1/6 &\quad 1,0,1/6 &\quad 1,1,1/6
\end{align*}

Symmetry Operations

For (0,0,0) + set

\begin{align*}
(1) &\quad 1 &\quad (2) &\quad 3' (0,0,1/3) &\quad 0,0,z \\
\quad (1|0,0,0) &\quad (3) &\quad 3' (0,0,2/3) &\quad 0,0,z \\
\quad (3|0,0,2/3) &\quad (3|0,0,1/3)' &\quad (3|0,0,2/3) &\quad (3|0,0,1/3)'
\end{align*}

\begin{align*}
(4) &\quad 2 0,0,z &\quad (5) &\quad 6' (0,0,1/3) &\quad 0,0,z \\
\quad (2|0,0,0) &\quad (6) &\quad 6' (0,0,2/3) &\quad 0,0,z \\
\quad (6|0,0,2/3) &\quad (6|0,0,1/3)' &\quad (6|0,0,2/3) &\quad (6|0,0,1/3)'
\end{align*}

\begin{align*}
(7) &\quad 2' x,x,1/6 &\quad (8) &\quad 2 x,0,0 \\
\quad (2|0,0,1/3)' &\quad (2|0,0,0) &\quad (9) &\quad 2 0,y,1/3 \\
\quad (2|0,0,2/3) &\quad (2|0,0,0) &\quad (2|0,0,2/3) &\quad (2|0,0,1/3)
\end{align*}

\begin{align*}
(10) &\quad 2' x,x,1/6 &\quad (11) &\quad 2 x,2x,0 \\
\quad (2|0,0,1/3)' &\quad (2|0,0,0) &\quad (12) &\quad 2 2x,x,1/3 \\
\quad (2|0,0,1/3)' &\quad (2|0,0,0) &\quad (2|0,0,2/3) &\quad (2|0,0,1/3)'
\end{align*}
Continued

For \((0,0,1)\)' + set

<table>
<thead>
<tr>
<th>(1) (t' (0,0,1))</th>
<th>(2) (3' (0,0,4/3))</th>
<th>(3) (3' (0,0,5/3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 {0,0,1}')</td>
<td>(0,0,z) ((0,0,4/3))</td>
<td>(0,0,z) ((0,0,5/3))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4) (2' (0,0,1))</th>
<th>(5) (6' (0,0,4/3))</th>
<th>(6) (6' (0,0,5/3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 {0,0,1}')</td>
<td>(0,0,z) ((0,0,4/3))</td>
<td>(0,0,z) ((0,0,5/3))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(7) (2 x,2/3)</th>
<th>(8) (x,0,1/2)</th>
<th>(9) (0,y,5/6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2{0,0,4/3})</td>
<td>(2{0,0,1}')</td>
<td>(2{0,0,5/3}')</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(10) (2 x,2/3)</th>
<th>(11) (2' x,2,1/2)</th>
<th>(12) (2' 2x,5/6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2{0,0,4/3})</td>
<td>(2{0,0,1}')</td>
<td>(2{0,0,5/3}')</td>
</tr>
</tbody>
</table>

Generators selected

(1); \(t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + ((0,0,1)' +)</td>
<td>(0,0,0) + ((0,0,1)' +)</td>
</tr>
<tr>
<td>(24 k 1)</td>
<td>(x,y,z [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(y,x-y,z+1/3 [v,u-v,w])</td>
</tr>
<tr>
<td></td>
<td>(x+y,x,z+2/3 [u+v,u,w])</td>
</tr>
<tr>
<td></td>
<td>(x,y,z [u,v+w])</td>
</tr>
<tr>
<td></td>
<td>(y,x+vy,z+1/3 [v,u+v,w])</td>
</tr>
<tr>
<td></td>
<td>(x+y,x,z+2/3 [u+v,u+w])</td>
</tr>
<tr>
<td></td>
<td>(x+y,x,z+1/3 [u+v,w])</td>
</tr>
<tr>
<td></td>
<td>(x,x,1/2 [u,0,0])</td>
</tr>
<tr>
<td></td>
<td>(0,x,5/6 [2u,u,w])</td>
</tr>
<tr>
<td></td>
<td>(x,x,1/6 [u,u,w])</td>
</tr>
<tr>
<td></td>
<td>(x,x,1/3 [2u,u,0])</td>
</tr>
<tr>
<td></td>
<td>(x,x,2/3 [u,u,0])</td>
</tr>
<tr>
<td></td>
<td>(x,x,1/3 [2u,u,0])</td>
</tr>
<tr>
<td></td>
<td>(x,x,2/3 [u,u,0])</td>
</tr>
<tr>
<td></td>
<td>(x,x,1/3 [0,u,0])</td>
</tr>
<tr>
<td></td>
<td>(x,x,2/3 [u,u,0])</td>
</tr>
<tr>
<td></td>
<td>(x,x,5/6 [2u,u,0])</td>
</tr>
<tr>
<td></td>
<td>(x,x,1/6 [u,u,w])</td>
</tr>
<tr>
<td></td>
<td>(x,x,1/3 [2u,u,0])</td>
</tr>
<tr>
<td></td>
<td>(x,x,2/3 [u,u,0])</td>
</tr>
</tbody>
</table>

Positions

Generators selected

(1); \(t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7).
Continued

Symmetry of Special Projections

Along [0,0,1] p6mm1'
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] \(p_{2a'} \cdot 2m'm' \)
\(a^* = c \quad b^* = (a + 2b)/2 \)
Origin at x,0,0

Along [2,1,0] \(p_{2a} \cdot 2m'm' \)
\(a^* = c \quad b^* = b/2 \)
Origin at x,x/2,1/3

6 \hspace{1em} c \hspace{1em} 222 \hspace{1em} 1/2,0,0 [0,0,0] \hspace{1em} 0,1/2,1/3 [0,0,0] \hspace{1em} 1/2,1/2,2/3 [0,0,0]

6 \hspace{1em} b \hspace{1em} 22'2' \hspace{1em} 0,0,1/2 [u,2u,0] \hspace{1em} 0,0,5/6 [2u, u,0] \hspace{1em} 0,0,1/6 [u,u,0]

6 \hspace{1em} a \hspace{1em} 222 \hspace{1em} 0,0,0 [0,0,0] \hspace{1em} 0,0,1/3 [0,0,0] \hspace{1em} 0,0,2/3 [0,0,0]
Origin at $2'22'$ at $6_3' (2',1,1) (1,2,1)$

Asymmetric unit: $0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/6 \quad y \leq x$

Vertices: $0,0,0; \quad 1,0,0; \quad 1,1,0$
$0,0,1/6; \quad 1,0,1/6; \quad 1,1,1/6$

Symmetry Operations

For $(0,0,0)$ + set

(1) 1

(2) $3^* (0,0,1/3) \quad 0,0,z$
$3_2^* (0,0,1/3)'$

(3) $3^*(0,0,2/3) \quad 0,0,z$
$3_2^* (0,0,2/3)$

(4) $2' \quad 0,0,z$
$2_2 (0,0,0)'$

(5) $6 (0,0,1/3) \quad 0,0,z$
$6_2^* (0,0,1/3)$

(6) $6^* (0,0,2/3) \quad 0,0,z$
$6_2^* (0,0,2/3)'$

(7) $2 \quad x,x,1/6$
$2_{yx} (0,0,1/3)$

(8) $2' \quad x,0,0$
$2_2 (0,0,0)'$

(9) $2' \quad 0,y,1/3$
$2_2 (0,0,2/3)'$

(10) $2' \quad x,x,1/6$
$2_{yx} (0,0,1/3)'$

(11) $2 \quad x,2x,0$
$2_2 (0,0,0)$

(12) $2 \quad 2x,x,1/3$
$2_2 (0,0,2/3)$
Continued

For \((0,0,1)'+\) set

\[
\begin{align*}
(1) & \quad t' \quad (0,0,1) \\
(2) & \quad 3' \quad (0,0,4/3) \\
(3) & \quad 3' \quad (0,0,5/3) \\
(4) & \quad 2 \quad (0,0,1) \\
(5) & \quad 6' \quad (0,0,4/3) \\
(6) & \quad 6' \quad (0,0,5/3) \\
(7) & \quad 2' \quad x,x,2/3 \\
(8) & \quad 2' \quad x,0,1/2 \\
(9) & \quad 2' \quad 0,y,5/6 \\
(10) & \quad 2 \quad x,x,2/3 \\
(11) & \quad 2' \quad x,2x,1/2 \\
(12) & \quad 2' \quad 2x,x,5/6
\end{align*}
\]

\[\]

Generators selected \((1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(24)</td>
<td>((0,0,0) + (0,0,1)'+)</td>
</tr>
<tr>
<td>(k)</td>
<td>((1) x,y,z [u,v,w])</td>
</tr>
<tr>
<td>(j)</td>
<td>((2) \bar{y},x-y,z+1/3 [v,u-v,w])</td>
</tr>
<tr>
<td>(l)</td>
<td>((3) x+y,x,z+2/3 [u+v,\bar{u},w])</td>
</tr>
<tr>
<td>(i)</td>
<td>((4) \bar{x},y,z [u,v,w])</td>
</tr>
<tr>
<td>(m)</td>
<td>((5) y,x+y,z+1/3 [v,u-v,w])</td>
</tr>
<tr>
<td>(n)</td>
<td>((6) x-y,x,z+2/3 [u+v,\bar{u},w])</td>
</tr>
<tr>
<td>(h)</td>
<td>((7) y,x,z+1/3 [v,\bar{u},w])</td>
</tr>
<tr>
<td>(k)</td>
<td>((8) \bar{x},y,\bar{z} [u+v,v,w])</td>
</tr>
<tr>
<td>(l)</td>
<td>((9) \bar{x},x+y,\bar{z}+2/3 [u-u,v,w])</td>
</tr>
<tr>
<td>(g)</td>
<td>((10) \bar{y},x+z+1/3 [v,\bar{u},w])</td>
</tr>
<tr>
<td>(h)</td>
<td>((11) \bar{x}+y,y,\bar{z}+2/3 [u+v,v,w])</td>
</tr>
<tr>
<td>(f)</td>
<td>((12) x,x-y,\bar{z}+2/3 [u,u-v,\bar{w}])</td>
</tr>
<tr>
<td>(e)</td>
<td>((13) x,0,1/2 [u,0,0])</td>
</tr>
<tr>
<td>(d)</td>
<td>((14) \bar{x},0,1/2 [u,0,0])</td>
</tr>
<tr>
<td>(c)</td>
<td>((15) 0,x,5/6 [0,u,0])</td>
</tr>
<tr>
<td>(b)</td>
<td>((16) \bar{x},0,5/6 [0,u,0])</td>
</tr>
<tr>
<td>(a)</td>
<td>((17) 0,0,1/2 [u,0,0])</td>
</tr>
<tr>
<td></td>
<td>((18) 0,0,5/6 [0,u,0])</td>
</tr>
<tr>
<td></td>
<td>((19) 0,0,1/2 [u,0,0])</td>
</tr>
<tr>
<td></td>
<td>((20) 0,0,5/6 [0,u,0])</td>
</tr>
<tr>
<td></td>
<td>((21) 0,0,1/2 [u,0,0])</td>
</tr>
<tr>
<td></td>
<td>((22) 0,0,5/6 [0,u,0])</td>
</tr>
</tbody>
</table>
Continued

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>c</th>
<th>2'2'</th>
<th>1/2,0,0 [u,2u,0]</th>
<th>0,1/2,1/3 [2u, u, 0]</th>
<th>1/2,1/2,2/3 [u, u, 0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>b</td>
<td>2'2'</td>
<td>0,0,1/2 [u,0,0]</td>
<td>0,0,1/6 [0,0,0]</td>
<td>0,0,1/6 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>a</td>
<td>2'2'</td>
<td>0,0,0 [u,2u,0]</td>
<td>0,0,1/3 [2u, u, 0]</td>
<td>0,0,2/3 [u, u, 0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(p6_{mm} \)

- \(\mathbf{a}^* = \mathbf{a} \)
- \(\mathbf{b}^* = \mathbf{b} \)

Origin at 0,0,z

Along [1,0,0] \(p_{2a}^{2mm} \)

- \(\mathbf{a}^* = \mathbf{c} \)
- \(\mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2 \)

Origin at x,0,1/2

Along [2,1,0] \(p_{2a}^{2mm} \)

- \(\mathbf{a}^* = \mathbf{c} \)
- \(\mathbf{b}^* = \mathbf{b}/2 \)

Origin at x,x/2,1/3
Origin at 321 at 6₃21

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/4; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2)\]

Vertices

\[
\begin{array}{cccccc}
0,0,0 & 1/2,0,0 & 2/3,1/3,0 & 1/3,2/3,0 & 0,1/2,0 \\
0,0,1/4 & 1/2,0,1/4 & 2/3,1/3,1/4 & 1/3,2/3,1/4 & 0,1/2,1/4 \\
\end{array}
\]

Symmetry Operations

\[
\begin{align*}
(1) \ & \ 1 \\
(1) \ & \ 1 \quad 0,0,0 \\
(1) \ & \ 0,0,0 \\
(4) \ & \ 2 \quad (0,0,1/2) \quad 0,0,z \\
(2,0,0,1/2) \ & \ (2,0,0,1/2) \\
(5) \ & \ 6 \quad (0,0,1/2) \quad 0,0,z \\
(6,1,0,1/2) \ & \ (6,1,0,1/2) \\
(7) \ & \ 2 \quad x,x,0 \\
\quad (2_x,0,0,0) \ & \ (2_x,0,0,0) \\
(8) \ & \ 2 \quad x,0,0 \\
\quad (2,0,0,0) \ & \ (2,0,0,0) \\
(9) \ & \ 2 \quad 0,y,0 \\
\quad (2_y,0,0,0) \ & \ (2_y,0,0,0) \\
(10) \ & \ 2 \quad x,1/4 \\
\quad (2,0,0,1/2) \ & \ (2,0,0,1/2) \\
(11) \ & \ 2 \quad x,2,1/4 \\
\quad (2,0,0,1/2) \ & \ (2,0,0,1/2) \\
(12) \ & \ 2 \quad 2x,1/4 \\
\quad (2,0,0,1/2) \ & \ (2,0,0,1/2)
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(4) x,y,z+1/2 [u,v,w]</td>
<td>(5) y,x+y,z+1/2 [v,u+v,w]</td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) x-y,y,z [u-v,v,w]</td>
</tr>
<tr>
<td>(10) y,x,z+1/2 [v,u,w]</td>
<td>(11) x+y,y,z+1/2 [u+v,v,w]</td>
</tr>
<tr>
<td>6 h .2</td>
<td>x,2x,1/4 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td>x,2x,3/4 [u,2u,0]</td>
</tr>
<tr>
<td>6 g .2</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [u,0,0]</td>
</tr>
<tr>
<td>4 f 3..</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>4 e 3..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 d 3.2</td>
<td>1/3,2/3,3/4 [0,0,0]</td>
</tr>
<tr>
<td>2 c 3.2</td>
<td>1/3,2/3,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 b 3.2</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 a 3.2</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6m'm' Along [1,0,0] p2m'g' Along [2,1,0] p2m'g'

\begin{align*}
a^* &= a \\ b^* &= b \\
a^* &= c \\ b^* &= (a + 2b)/2 \\
a^* &= c \\ b^* &= b/2
\end{align*}

Origin at 0,0,0 Origin at x,0,0 Origin at x,x/2,1/4
Origin at 3211' at 6_3211'

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/4; \quad x < (1+y)/2; \quad y < \min(1-x,(1+x)/2)\]

Vertices

\[
\begin{align*}
 & 0,0,0 & 1/2,0,0 & 2/3,1/3,0 & 1/3,3/4,0 & 0,1/2,0 \\
 & 0,0,1/4 & 1/2,0,1/4 & 2/3,1/3,1/4 & 1/3,3/4,1/4 & 0,1/2,1/4
\end{align*}
\]

Symmetry Operations

For 1 + set

\[
\begin{align*}
 & (1) \ 1 \\
 & \quad (1|0,0,0) \\
 & (4) \ 2 \ (0,0,1/2) \ 0,0,z \\
 & \quad (2_z|0,0,1/2) \\
 & (7) \ 2 \ x,x,0 \\
 & \quad (2_x,0,0,0) \\
 & (10) \ 2 \ x,x,1/4 \\
 & \quad (2,0,0,1/2)
\end{align*}
\]

\[
\begin{align*}
 & (2) \ 3^+ \ 0,0,z \\
 & \quad (3_z|0,0,0) \\
 & (5) \ 6^* \ (0,0,1/2) \ 0,0,z \\
 & \quad (6_z^{-1}|0,0,1/2) \\
 & (8) \ 2 \ x,0,0 \\
 & \quad (2_x,0,0,0) \\
 & (11) \ 2 \ x,2x,1/4 \\
 & \quad (2_x,0,0,1/2)
\end{align*}
\]

\[
\begin{align*}
 & (3) \ 3^- \ 0,0,z \\
 & \quad (3_z^{-1}|0,0,0) \\
 & (6) \ 6^* \ (0,0,1/2) \ 0,0,z \\
 & \quad (6_z|0,0,1/2) \\
 & (9) \ 2 \ 0,y,0 \\
 & \quad (2_y,0,0,0) \\
 & (12) \ 2 \ 2x,x,1/4 \\
 & \quad (2_x,0,0,1/2)
\end{align*}
\]
Continued

For $1'$ set

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) $1'$</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(2) $3'$</td>
<td>$y,-x,-y,z$ [0,0,0]</td>
</tr>
<tr>
<td>(3) $3'$</td>
<td>$x+y+xy, z$ [0,0,0]</td>
</tr>
<tr>
<td>(4) $3'$</td>
<td>$x+y+xy,z+1/2$ [0,0,0]</td>
</tr>
<tr>
<td>(5) $3'$</td>
<td>$x+y+xy, z+1/2$ [0,0,0]</td>
</tr>
<tr>
<td>(6) $3'$</td>
<td>$x+y+xy, z+1/2$ [0,0,0]</td>
</tr>
<tr>
<td>(7) $2'$</td>
<td>$x,2x,1/4$ [0,0,0]</td>
</tr>
<tr>
<td>(8) $2'$</td>
<td>$2x_\perp, x_\perp, 1/4$ [0,0,0]</td>
</tr>
<tr>
<td>(9) $2'$</td>
<td>$x+y, x+y, z$ [0,0,0]</td>
</tr>
<tr>
<td>(10) $2'$</td>
<td>$y, x, z+1/2$ [0,0,0]</td>
</tr>
<tr>
<td>(11) $2'$</td>
<td>$x, x, z+1/2$ [0,0,0]</td>
</tr>
<tr>
<td>(12) $2'$</td>
<td>$x, x, z+1/2$ [0,0,0]</td>
</tr>
</tbody>
</table>

Generators selected

$(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); 1'$.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 i $11'$</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>6 h .21'</td>
<td>$x,2x,1/4$ [0,0,0]</td>
</tr>
<tr>
<td>6 g .21'</td>
<td>$x,0,0$ [0,0,0]</td>
</tr>
<tr>
<td>4 f $3.1'$</td>
<td>$1/3,2/3,z$ [0,0,0]</td>
</tr>
<tr>
<td>4 e $3.1'$</td>
<td>$0,0,z$ [0,0,0]</td>
</tr>
<tr>
<td>2 d $3.21'$</td>
<td>$1/3,2/3,3/4$ [0,0,0]</td>
</tr>
<tr>
<td>2 c $3.21'$</td>
<td>$1/3,2/3,1/4$ [0,0,0]</td>
</tr>
<tr>
<td>2 b $3.21'$</td>
<td>$0,0,1/4$ [0,0,0]</td>
</tr>
<tr>
<td>2 a $32.1'$</td>
<td>$0,0,0$ [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p6mm1’
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p2mg1’
\[a^* = c \quad b^* = (a + 2b)/2 \]
Origin at x,0,0

Along [2,1,0] p2mg1’
\[a^* = c \quad b^* = b/2 \]
Origin at x,x/2,1/4
Origin at 32'1 at 6'2'1

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/4; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2) \]

Vertices

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1/2,0,0</td>
<td>2/3,1/3,0</td>
<td>1/3,2/3,0</td>
<td>0,1/2,0</td>
</tr>
<tr>
<td>0,0,1/4</td>
<td>1/2,0,1/4</td>
<td>2/3,1/3,1/4</td>
<td>1/3,2/3,1/4</td>
<td>0,1/2,1/4</td>
</tr>
</tbody>
</table>

Symmetry Operations

1. \(1 \)
2. \(1^* \)
3. \(3^* \)
4. \(2' \) \((0,0,1/2)\)
5. \(6' \) \((0,0,1/2)\)
6. \(6' \) \((0,0,1/2)\)
7. \(2' \) \(x,x,0\)
8. \(2' \) \(x,0,0\)
9. \(2' \) \(0,y,0\)
10. \(2 \) \(x,x,1/4\)
11. \(2 \) \(x,2x,1/4\)
12. \(2 \) \(2x,x,1/4\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
<td>(5) y,x+y,z+1/2 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) x-y,y,z [u-v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(10) x,y,z+1/2 [v,u,w]</td>
<td>(11) x+y,y,z+1/2 [u+v,v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6' mm'</th>
<th>Along [1,0,0]</th>
<th>p2'm'g</th>
<th>Along [2,1,0]</th>
<th>p2mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = c \ b* = (a + 2b)/2</td>
<td>a* = c</td>
<td>b* = b/2</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,0</td>
<td>Origin at 0,0,0</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,1/4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin at 321 at 6'_21

Asymmetric unit

\[0 \leq x \leq 2/3;\ \ 0 \leq y \leq 2/3;\ \ 0 \leq z \leq 1/4;\ \ x \leq (1+y)/2;\ \ y \leq \min(1-x,(1+x)/2)\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,1/4 & \quad 0,1/2,0 \\
0,0,1/4 & \quad 1/2,0,1/4 & \quad 2/3,1/3,1/4 & \quad 1/3,2/3,1/4 & \quad 0,1/2,1/4
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) 1 & \quad (2) 3^* 0,0,z & \quad (3) 3^{-1} 0,0,z \\
(1|0,0,0) & \quad (3_z|0,0,0) & \quad (3_z^{-1}|0,0,0) \\
(4) 2' (0,0,1/2) & \quad 0,0,z & \quad (5) 6' - (0,0,1/2) & \quad 0,0,z & \quad (6) 6' - (0,0,1/2) & \quad 0,0,z \\
(2_z|0,0,1/2)' & \quad (6_z^{-1}|0,0,1/2)' & \quad (6_z|0,0,1/2)' \\
(7) 2 x,x,0 & \quad (8) 2 x,0,0 & \quad (9) 2 0,y,0 \\
(2_x|0,0,0) & \quad (2|0,0,0) & \quad (2_y|0,0,0) \\
(10) 2' x,x,1/4 & \quad (11) 2' x,2x,1/4 & \quad (12) 2' 2x,x,1/4 \\
(2_z|0,0,1/2)' & \quad (2_z|0,0,1/2)' & \quad (2|0,0,1/2)' \\
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>12 i 1</td>
<td>(2) (\bar{y},x-y,z) [(v),u-v,w]</td>
</tr>
<tr>
<td>12 i 1</td>
<td>(3) (x+y,\bar{x},z) [(u)+v,(\bar{u}),w]</td>
</tr>
<tr>
<td>12 i 1</td>
<td>(4) (\bar{x},y,z+1/2) [u,v,w]</td>
</tr>
<tr>
<td>12 i 1</td>
<td>(5) (y,x+y,z+1/2) [v,u-v,w]</td>
</tr>
<tr>
<td>12 i 1</td>
<td>(6) (x-y,x,z+1/2) [u+v,(\bar{u}),w]</td>
</tr>
<tr>
<td>12 i 1</td>
<td>(7) (\bar{y},x,z) [v,u,w]</td>
</tr>
<tr>
<td>12 i 1</td>
<td>(8) (x-y,\bar{y},z) [u-v,(\bar{v}),w]</td>
</tr>
<tr>
<td>12 i 1</td>
<td>(9) (\bar{x},x+y,z) [(\bar{u}),u+v,w]</td>
</tr>
<tr>
<td>12 i 1</td>
<td>(10) (\bar{y},x,z+1/2) [v,u,w]</td>
</tr>
<tr>
<td>12 i 1</td>
<td>(11) (x-y,y,z+1/2) [u-v,(\bar{v}),w]</td>
</tr>
<tr>
<td>12 i 1</td>
<td>(12) (\bar{x},x-y,z+1/2) [u,(\bar{u})+v,w]</td>
</tr>
</tbody>
</table>

6 h \(.2' \)
\(x,2x,1/4 \) [u,0,w]
\(2x,\bar{x},1/4 \) [0,u,w]
\(x,\bar{x},1/4 \) [\(\bar{u}\),\(\bar{u}\),w]

6 g \(.2 \)
\(x,0,0 \) [u,0,0]
\(0,x,0 \) [0,u,0]
\(x,0,0 \) [\(\bar{u}\),0,0]

4 f \(.3 . \)
\(1/3,2/3,z \) [0,0,w]
\(2/3,1/3,z+1/2 \) [0,0,w]
\(2/3,1/3,\bar{z} \) [0,0,w]
\(1/3,2/3,\bar{z}+1/2 \) [0,0,w]

4 e \(.3 . \)
\(0,0,z \) [0,0,w]
\(0,z+1/2 \) [0,0,w]
\(0,0,z \) [0,0,w]
\(0,0,\bar{z}+1/2 \) [0,0,w]

2 d \(3.2' \)
\(1/3,2/3,3/4 \) [0,0,w]
\(2/3,1/3,1/4 \) [0,0,w]

2 c \(3.2' \)
\(1/3,2/3,1/4 \) [0,0,w]
\(2/3,1/3,3/4 \) [0,0,w]

2 b \(3.2' \)
\(0,0,1/4 \) [0,0,w]
\(0,0,3/4 \) [0,0,w]

2 a \(32. \)
\(0,0,0 \) [0,0,0]
\(0,0,1/2 \) [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6'mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = c)</td>
<td>(b^* = (a + 2b)/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [2,1,0]</th>
<th>p2'm'g</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = c)</td>
<td>(b^* = b/2)</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin at 0,0,0
Origin at x/2,1/4
Origin at 32'1 at 62'2'

Asymmetric unit:

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{2}{3}; \quad 0 \leq z \leq \frac{1}{4}; \quad x \leq (1+y)/2; \quad y \leq \min(1-x, (1+x)/2)\]

Vertices:

\[
\begin{align*}
0,0,0 & \quad \frac{1}{2},0,0 & \quad \frac{2}{3},\frac{1}{3},0 & \quad \frac{1}{3},\frac{2}{3},0 & \quad 0,\frac{1}{2},0 \\
0,0,\frac{1}{4} & \quad \frac{1}{2},0,\frac{1}{4} & \quad \frac{2}{3},\frac{1}{3},\frac{1}{4} & \quad \frac{1}{3},\frac{2}{3},\frac{1}{4} & \quad 0,\frac{1}{2},\frac{1}{4}
\end{align*}
\]

Symmetry Operations:

1. \(1\)
2. \(3^* \ 0,0,z \quad (3z) \ 0,0,z\)
3. \(3^* \ 0,0,z \quad (3z^{-1}) \ 0,0,z\)
4. \(2 \ (0,0,1/2) \ 0,0,z \quad (2z) \ 0,0,1/2\)
5. \(6^* \ (0,0,1/2) \ 0,0,z \quad (6_{z^{-1}}) \ 0,0,1/2\)
6. \(6^* \ (0,0,1/2) \ 0,0,z \quad (6_{0,0,1/2})\)
7. \(2' \ x,x,0 \quad (2_{xy}) \ 0,0,0\)'
8. \(2' \ x,0,0 \quad (2_{z}) \ 0,0,0\)'
9. \(2' \ 0,y,0 \quad (2_{y}) \ 0,0,0\)'
10. \(2' \ x,x,1/4 \quad (2_{z}) \ 0,0,1/2\)'
11. \(2' \ x,2x,1/4 \quad (2_{z}) \ 0,0,1/2\)'
12. \(2' \ 2x,x,1/4 \quad (2_{z}) \ 0,0,1/2\)'

182.5.1414 - 1 - 3080
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z [v,u-w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [v,w]</td>
<td>(5) y,x+y,z+1/2 [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,w]</td>
<td>(8) x-y,x,z [u+v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) y,x,z+1/2 [v,w]</td>
<td>(11) x+y,x,z+1/2 [u-v,v,w]</td>
</tr>
<tr>
<td>6 h .2'</td>
<td>x,2x,1/4 [u,0,w]</td>
<td>2x,x,1/4 [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,2x,3/4 [u,0,w]</td>
<td>2x,x,3/4 [0,u,w]</td>
</tr>
<tr>
<td>6 g .2'</td>
<td>x,0,0 [u,2u,w]</td>
<td>0,x,0 [2u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [u,2u,w]</td>
<td>0,x,1/2 [2u,u,w]</td>
</tr>
<tr>
<td>4 f 3..</td>
<td>1/3,2/3,z [0,0,w]</td>
<td>2/3,1/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4 e 3..</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2 d 3.2'</td>
<td>1/3,2/3,3/4 [0,0,w]</td>
<td>2/3,1/3,1/4 [0,0,w]</td>
</tr>
<tr>
<td>2 c 3.2'</td>
<td>1/3,2/3,1/4 [0,0,w]</td>
<td>2/3,1/3,3/4 [0,0,w]</td>
</tr>
<tr>
<td>2 b 3.2'</td>
<td>0,0,1/4 [0,0,w]</td>
<td>0,0,3/4 [0,0,w]</td>
</tr>
<tr>
<td>2 a 32'.</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] p6mm
 - a = a b = b
 - Origin at 0,0,0
- Along [1,0,0] p2'mg'
 - a' = c b' = (a + 2b)/2
 - Origin at 0,0,0
- Along [2,1,0] p2'mg'
 - a' = c b' = b/2
 - Origin at x/2,1/4

182.5.1414 - 2 - 3081
Origin on 6mm

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{3}; \quad 0 \leq z \leq 1; \quad x \leq (1+y)/2; \quad y \leq x/2 \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 \\
0,0,1 & \quad 1/2,0,1 & \quad 2/3,1/3,1
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad 0,0,0 \\
(2) & \quad 3^* \quad 0,0,z \\
(3) & \quad 3^* \quad 0,0,z \\
(3) & \quad 0,0,0 \\
(4) & \quad 2 \quad 0,0,z \\
(5) & \quad 2 \quad 0,0,0 \\
(5) & \quad 0,0,z \\
(6) & \quad 0,0,0 \\
(6) & \quad 0,0,0 \\
(7) & \quad m \quad x,x,z \\
(7) & \quad m \quad x,x,0 \\
(7) & \quad m \quad x,0,z \\
(8) & \quad m \quad x,x,z \\
(8) & \quad m \quad x,x,0 \\
(8) & \quad m \quad x,0,z \\
(9) & \quad m \quad 2x,x,z \\
(9) & \quad m \quad 2x,x,0 \\
(9) & \quad m \quad 2x,0,z \\
(10) & \quad m \quad x,x,z \\
(10) & \quad m \quad x,x,0 \\
(10) & \quad m \quad x,0,z \\
(11) & \quad m \quad x,0,z \\
(11) & \quad m \quad x,0,0 \\
(11) & \quad m \quad x,0,0 \\
(12) & \quad m \quad 0,y,z \\
(12) & \quad m \quad 0,y,0 \\
(12) & \quad m \quad 0,y,0
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coords</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>12 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(4) x,y,z [u,v,w]</td>
<td>(5) y,x+y,z [v,u+v,w]</td>
</tr>
<tr>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) x+y,y,z [u-v,v,w]</td>
</tr>
<tr>
<td>(10) y,x,z [v,u,w]</td>
<td>(11) x-y,y,z [v,u+v,v,w]</td>
</tr>
<tr>
<td>6 e .m.</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>x,x,z [u,u,0]</td>
<td>x,2x,z [u,0,0]</td>
</tr>
<tr>
<td>6 d ..m</td>
<td>x,0,z [u,2u,0]</td>
</tr>
<tr>
<td>x,0,z [u,2u,0]</td>
<td>0,x,z [2u,u,0]</td>
</tr>
<tr>
<td>3 c 2mm</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 b 3m</td>
<td>1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td>1 a 6mm</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6mm
\(a^* = a \quad b^* = b \)
Origin at 0,0,z

Along [1,0,0] p1m11'
\(a^* = (a + 2b)/2 \quad b^* = c \)
Origin at x,0,0

Along [2,1,0] p1m11'
\(a^* = b/2 \quad b^* = c \)
Origin at x,x/2,0
Origin on 6mm1'

Asymmetric unit

\[0 \leq x < \frac{2}{3}; \quad 0 \leq y < \frac{1}{3}; \quad 0 \leq z < 1; \quad x < \frac{(1+y)}{2}; \quad y < \frac{x}{2} \]

Vertices

\[
\begin{align*}
0,0,0 & \quad \frac{1}{2},0,0 & \quad \frac{2}{3},\frac{1}{3},0 \\
0,0,1 & \quad \frac{1}{2},0,1 & \quad \frac{2}{3},\frac{1}{3},1
\end{align*}
\]

Symmetry Operations

For 1 + set

\[
\begin{align*}
(1) & \ 1 \quad (1) \ & 1 \quad (1) \ & 1 \\
& \ (1|0,0,0) & \ (1|0,0,0) & \ (1|0,0,0) \\
(2) & \ 3^+ \ 0,0,z \quad (2) & \ 3^+ \ 0,0,z \quad (2) & \ 3^+ \ 0,0,z \\
& \ (3z_1|0,0,0) & \ (3z_1|0,0,0) & \ (3z_1|0,0,0) \\
(4) & \ 2 \ 0,0,z \quad (4) & \ 2 \ 0,0,z \quad (4) & \ 2 \ 0,0,z \\
& \ (2z_1|0,0,0) & \ (2z_1|0,0,0) & \ (2z_1|0,0,0) \\
(5) & \ 6^- \ 0,0,z \quad (5) & \ 6^- \ 0,0,z \quad (5) & \ 6^- \ 0,0,z \\
& \ (6z_1^{-1}|0,0,0) & \ (6z_1^{-1}|0,0,0) & \ (6z_1^{-1}|0,0,0) \\
(6) & \ 6^- \ 0,0,z \quad (6) & \ 6^- \ 0,0,z \quad (6) & \ 6^- \ 0,0,z \\
& \ (6z_1|0,0,0) & \ (6z_1|0,0,0) & \ (6z_1|0,0,0) \\
(7) & \ m \ x,x,z \quad (7) & \ m \ x,x,z \quad (7) & \ m \ x,x,z \\
& \ (m_{xy}|0,0,0) & \ (m_{xy}|0,0,0) & \ (m_{xy}|0,0,0) \\
(8) & \ m \ x,2x,z \quad (8) & \ m \ x,2x,z \quad (8) & \ m \ x,2x,z \\
& \ (m_{x}|0,0,0) & \ (m_{x}|0,0,0) & \ (m_{x}|0,0,0) \\
(9) & \ m \ 2x,x,z \quad (9) & \ m \ 2x,x,z \quad (9) & \ m \ 2x,x,z \\
& \ (m_{y}|0,0,0) & \ (m_{y}|0,0,0) & \ (m_{y}|0,0,0) \\
(10) & \ m \ x,x,z \quad (10) & \ m \ x,x,z \quad (10) & \ m \ x,x,z \\
& \ (m_{3}|0,0,0) & \ (m_{3}|0,0,0) & \ (m_{3}|0,0,0) \\
(11) & \ m \ x,0,z \quad (11) & \ m \ x,0,z \quad (11) & \ m \ x,0,z \\
& \ (m_{2}|0,0,0) & \ (m_{2}|0,0,0) & \ (m_{2}|0,0,0) \\
(12) & \ m \ 0,y,z \quad (12) & \ m \ 0,y,z \quad (12) & \ m \ 0,y,z \\
& \ (m_{1}|0,0,0) & \ (m_{1}|0,0,0) & \ (m_{1}|0,0,0)
\end{align*}
\]
For 1' + set

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Position</th>
<th>Multiplicity</th>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1'</td>
<td>x,y,z</td>
<td>12</td>
<td>f</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(2) 3'</td>
<td>y-x,y,z</td>
<td>(2)</td>
<td>g</td>
<td>y-x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(3) 3'</td>
<td>x+y,z,x</td>
<td>(3)</td>
<td>h</td>
<td>x+y,z,x [0,0,0]</td>
</tr>
<tr>
<td>(4) 2'</td>
<td>x,y,z</td>
<td>(4)</td>
<td>i</td>
<td>x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(5) 6'</td>
<td>y,x+y,z</td>
<td>(5)</td>
<td>j</td>
<td>y,x+y,z [0,0,0]</td>
</tr>
<tr>
<td>(6) 6'</td>
<td>x+y,y,z</td>
<td>(6)</td>
<td>k</td>
<td>x+y,y,z [0,0,0]</td>
</tr>
<tr>
<td>(7) m'</td>
<td>x,x,z</td>
<td>(7)</td>
<td>l</td>
<td>x,x,z [0,0,0]</td>
</tr>
<tr>
<td>(m)</td>
<td>x,x,z</td>
<td>(8)</td>
<td>m</td>
<td>x,x,z [0,0,0]</td>
</tr>
<tr>
<td>(9)</td>
<td>x,x-z</td>
<td>(9)</td>
<td>n</td>
<td>x,x-z [0,0,0]</td>
</tr>
<tr>
<td>(10)</td>
<td>m',0,z</td>
<td>(10)</td>
<td>o</td>
<td>m',0,z [0,0,0]</td>
</tr>
<tr>
<td>(11)</td>
<td>m',0,z</td>
<td>(11)</td>
<td>p</td>
<td>m',0,z [0,0,0]</td>
</tr>
<tr>
<td>(12)</td>
<td>m',0,z</td>
<td>(12)</td>
<td>q</td>
<td>m',0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); 1'.
Origin on 6'M'm

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{3}; \quad 0 \leq z \leq 1; \quad x \leq \frac{1+y}{2}; \quad y \leq \frac{x}{2}\]

Vertices

- \(0,0,0\)
- \(1/2,0,0\)
- \(2/3,1/3,0\)
- \(0,0,1\)
- \(1/2,0,1\)
- \(2/3,1/3,1\)

Symmetry Operations

1. \(1\)
2. \(3^* 0,0,z\)
 - \((3_z|0,0,0)\)
3. \(3' 0,0,z\)
 - \((3_z^{-1}|0,0,0)\)
4. \(2' 0,0,z\)
 - \((2_z|0,0,0)'\)
5. \(6^* 0,0,z\)
 - \((6_{-1}|0,0,0)'\)
6. \(6' 0,0,z\)
 - \((6_z|0,0,0)'\)
7. \(m' x,x,z\)
 - \((m_x|0,0,0)'\)
8. \(m' x,2x,z\)
 - \((m_x|0,0,0)'\)
9. \(m' 2x,x,z\)
 - \((m_y|0,0,0)'\)
10. \(m x,x,z\)
 - \((m|0,0,0)\)
11. \(m x,0,z\)
 - \((m_2|0,0,0)\)
12. \(m 0,y,z\)
 - \((m_1|0,0,0)\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 f</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y,x,z [v,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1] p6m'm'</td>
</tr>
<tr>
<td>a* = a b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [2,1,0] p1m11'</td>
</tr>
<tr>
<td>a* = b/2 b* = c</td>
</tr>
<tr>
<td>Origin at x,x/2,0</td>
</tr>
</tbody>
</table>
Origin on $6'mm'$

Asymmetric unit

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \leq x \leq 2/3$</td>
<td>$0 \leq y \leq 1/3$</td>
<td>$0 \leq z \leq 1$</td>
</tr>
<tr>
<td>$x \leq (1+y)/2$</td>
<td>$y \leq x/2$</td>
<td></td>
</tr>
</tbody>
</table>

Vertices

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1/2,0,0</td>
<td>2/3,1/3,0</td>
</tr>
<tr>
<td>0,0,1</td>
<td>1/2,0,1</td>
<td>2/3,1/3,1</td>
</tr>
</tbody>
</table>

Symmetry Operations

1. 1

2. 3^* $0,0,z$
 $(3z_x|0,0,0)$
3. 3^* $0,0,z$
 $(3z_x^{-1}|0,0,0)$
4. $2' 0,0,z$
 $(2z_x|0,0,0)'$
5. $6' 0,0,z$
 $(6z_x^{-1}|0,0,0)'$
6. $6' 0,0,z$
 $(6z_x|0,0,0)'$
7. m x,x,z
 $(m_{xy}|0,0,0)$
8. m $x,2x,z$
 $(m_{xz}|0,0,0)$
9. m $2x,x,z$
 $(m_{y}|0,0,0)$
10. m' x,x,z
 $(m_{xy}'|0,0,0)$
11. m' $x,0,z$
 $(m_{z}|0,0,0)'$
12. m' $0,y,z$
 $(m_{y}|0,0,0)'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
</table>
| 12 f 1 | (1) x,y,z [u,v,w]
(2) y,x-y,z [v,u-v,w]
(3) x+y,x,z [u+v,u,w]
(4) x,y,z [u,v,w]
(5) y,x+y,z [v,u-v,w]
(6) x-y,x,z [u+v,u,w]
(7) y,x,z [v,u,w]
(8) x+y,y,z [u-v,v,w]
(9) x,x-y,z [u,u+v,w]
(10) y,x,z [v,u,w]
(11) x-y,y,z [v,u-v,w]
(12) x,x+y,z [u,u+v,w] |
| 6 e .m. | x,x,z [u,u,0]
(2) x,2x,z [u,0,0]
2x,x,z [0,u,0] |
| 6 d ..m' | x,0,z [u,0,w]
0,x,z [0,u,w]
2x,x,z [0,u,0] |
| 3 c 2'mm' | 1/2,0,z [u,0,0]
0,1/2,z [0,u,0]
1/2,1/2,z [u,u,0] |
| 2 b 3m. | 1/3,2/3,z [0,0,0]
2/3,1/3,z [0,0,0] |
| 1 a 6'mm' | 0,0,z [0,0,0] |

Symmetry of Special Projections

- **Along [0,0,1] p6'mm'**
 - Origin at 0,0,z
 - $a^* = a$
 - $b^* = b$

- **Along [1,0,0] p1m1**
 - Origin at x,0,0
 - $a^* = (a + 2b)/2$
 - $b^* = c$

- **Along [2,1,0] p1m1**
 - Origin at x,x/2,0
 - $a^* = b/2$
 - $b^* = c$
Origin on $6m'm'$

Asymmetric unit

$0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/3; \quad 0 \leq z \leq 1; \quad x \leq (1+y)/2; \quad y \leq x/2$

Vertices

<table>
<thead>
<tr>
<th></th>
<th>0,0,0</th>
<th>1/2,0,0</th>
<th>2/3,1/3,0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,0,1</td>
<td>1/2,0,1</td>
<td>2/3,1/3,1</td>
</tr>
</tbody>
</table>

Symmetry Operations

1. 1

 $(1|0,0,0)$

2. 3^+ 0,0,z

 $(3_z|0,0,0)$

3. 3^- 0,0,z

 $(3_z^{-1}|0,0,0)$

4. $2^* 0,0,0$

 $(2_z|0,0,0)$

5. $6^* 0,0,0$

 $(6_z|0,0,0)$

6. $6^* 0,0,0$

 $(6_z|0,0,0)$

7. $m'/x,x,z$

 $(m_{xy}|0,0,0)'$

8. $m'/x,2x,z$

 $(m_x|0,0,0)'$

9. $m'/2x,x,z$

 $(m_y|0,0,0)'$

10. $m'/x,x,z$

 $(m_{3y}|0,0,0)'$

11. $m'/x,0,z$

 $(m_3|0,0,0)'$

12. $m'/0,y,z$

 $(m_1|0,0,0)'$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 f 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>6 e m'</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>6 d m'</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td>3 c 2m'</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td>2 b 3m'</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>1 a 6m’</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6m'm'</th>
<th>Along [1,0,0]</th>
<th>p1m'1</th>
<th>Along [2,1,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = (a + 2b)/2</td>
<td>b* = c</td>
<td>a* = b/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x/2,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 6mm

Asymmetric unit
0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/3; 0 ≤ z ≤ 1; x ≤ (1+y)/2; y ≤ x/2

Vertices
0,0,0 1/2,0,0 2/3,1/3,0 0,0,1 1/2,0,1 2/3,1/3,1

Symmetry Operations
For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) 3⁺ 0,0,z
(3z|0,0,0)

(3) 3⁻ 0,0,z
(3⁻|0,0,0)

(4) 2,0,0,z
(2z|0,0,0)

(5) 6⁻ 0,0,z
(6⁻|0,0,0)

(6) 6⁺ 0,0,z
(6⁺|0,0,0)

(7) m x,x,z
(mₓ|0,0,0)

(8) m x,2x,z
(mₓ|0,0,0)

(9) m 2x,x,z
(mᵧ|0,0,0)

(10) m x,x,z
(mₓ|0,0,0)

(11) m x,0,z
(mₓ|0,0,0)

(12) m 0,y,z
(mᵧ|0,0,0)
For \((0,0,1)' + \) set

\(1\) \(t'(0,0,1)\) \(1\) \(0,0,1)' \(2\) \(3'(0,0,1)\) \(0,0,z\) \(3\) \(3'(0,0,1)\) \(0,0,z\)

\(2\) \(2'(0,0,1)\) \(0,0,z\) \(5\) \(6'(0,0,1)\) \(0,0,z\) \(6\) \(6'(0,0,1)\) \(0,0,z\)

\(7\) \(c'(0,0,1)\) \(x,x,z\) \(m_x|0,0,1)' \(8\) \(c'(0,0,1)\) \(x,2x,z\) \(m_x|0,0,1)' \(9\) \(c'(0,0,1)\) \(2x,x,z\) \(m_y|0,0,1)'

\(10\) \(c'(0,0,1)\) \(x,x,z\) \(m_y|0,0,1)' \(11\) \(c'(0,0,1)\) \(x,0,z\) \(m_z|0,0,1)' \(12\) \(c'(0,0,1)\) \(0,y,z\) \(m_z|0,0,1)'

Generators selected \(1; t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7).\)

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

| Multiplicity | Coordinates | \(\begin{array}{ccc}
\text{Wyckoff letter} & \text{Site Symmetry} \\
\end{array}\) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>24 (f) (1)</td>
<td>(1) (x,y,z) [(u,v,w)]</td>
<td>(2) (y, x-y,z) [(v,u-w)]</td>
</tr>
<tr>
<td>(4) (x, y, z) [(u, v, w)]</td>
<td>(5) (y, x+y, z) ([v, u+v, w])</td>
<td>(6) (x-y, x, z) ([u-v, u, w])</td>
</tr>
<tr>
<td>(7) (y, x, z) ([v, u, w])</td>
<td>(8) (x+y, y, z) ([u-v, v, w])</td>
<td>(9) (x, x-y, z) ([u, u+v, w])</td>
</tr>
<tr>
<td>(10) (y, x, z) ([v, u, w])</td>
<td>(11) (x-y, y, z) ([u+v, v, w])</td>
<td>(12) (x, x+y, z) ([u, u-v, w])</td>
</tr>
<tr>
<td>12 (e) (m)</td>
<td>(x, x, z) ([u, u, 0])</td>
<td>(x, 2x, z) ([u, 0, 0])</td>
</tr>
<tr>
<td>(x, x, z) ([u, u, 0])</td>
<td>(x, 2x, z) ([u, 0, 0])</td>
<td>(2x, x, z) ([0, u, 0])</td>
</tr>
<tr>
<td>12 (d) (m)</td>
<td>(x, 0, z) ([u, 2u, 0])</td>
<td>(0, x, z) ([2u, u, 0])</td>
</tr>
<tr>
<td>(x, 0, z) ([u, 2u, 0])</td>
<td>(0, x, z) ([2u, u, 0])</td>
<td>(x, x, z) ([u, u, 0])</td>
</tr>
<tr>
<td>(6) (c)</td>
<td>(2mm)</td>
<td>(1/2, 0, z) ([0, 0, 0])</td>
</tr>
<tr>
<td>4 (b)</td>
<td>(3m)</td>
<td>(1/3, 2/3, z) ([0, 0, 0])</td>
</tr>
<tr>
<td>2 (a)</td>
<td>(6mm)</td>
<td>(0, 0, z) ([0, 0, 0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

\(\begin{array}{ccc}
\text{Along} [0,0,1] & \text{p6mm} & \text{Along} [1,0,0] & \text{p1m11}' \\\n\text{Along} [2,1,0] & \text{p1m11}' \\\n\end{array}\)

\(\begin{array}{ccc}
\text{a}^* = \text{a} & \text{b}^* = \text{b} & \text{a}^* = (\text{a} + 2\text{b})/2 & \text{b}^* = \text{c} \\\n\text{Origin at 0,0,z} & \text{Origin at x,0,0} & \text{Origin at x,2,0} \\\n\end{array}\)
Origin on 6'm'm

Asymmetric unit
0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/3; 0 ≤ z ≤ 1; x ≤ (1+y)/2; y ≤ x/2

Vertices
0,0,0 1/2,0,0 2/3,1/3,0 0,0,1 1/2,0,1 2/3,1/3,1

Symmetry Operations

For (0,0,0) + set

1
(1 0,0,0)

(2) 3* 0,0,z
(3) 3^-1 0,0,z

(4) 2' 0,0,z
(2,0,0)'

(5) 6' 0,0,z
(6) 6' - 0,0,z

(7) m' x,x,z
(m_y 0,0,0)'

(8) m' x,2x,z
(m_y 0,0,0)'

(9) m' 2x,x,z
(m_y 0,0,0)'

(10) m x,x,z
(m_3 0,0,0)

(11) m x,0,z
(m_2 0,0,0)

(12) m 0,y,z
(m_1 0,0,0)
Continued

(1) t' (0,0,1)
(2) 3' (0,0,1) 0,0,z
(3) 3' (0,0,1) 0,0,z
(4) 2 (0,0,1) 0,0,z
(5) 6 (0,0,1) 0,0,z
(6) 6' (0,0,1) 0,0,z
(7) c (0,0,1) x,x,z
(8) c (0,0,1) x,2x,z
(9) c (0,0,1) 2x,x,z
(10) c' (0,0,1) x,x,z
(11) c' (0,0,1) x,0,z
(12) c' (0,0,1) 0,y,z

Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

 Coordinates
(0,0,0) + (0,0,1)' +

24 f 1 (1) x,y,z [u,v,w] (2) y,x-y,z [v,u-v,w] (3) x+y,x,z [u+v,u,w]
(4) x,y,z [u,v,w] (5) x+y,z [v,u-v,w] (6) x-y,x,z [u+v,u,w]
(7) y,x,z [v,u,w] (8) x+y,y,z [u+v,v,w] (9) x-x,y,z [u,u-v,w]
(10) y,x,z [v,u,w] (11) x-y,y,z [u+v,v,w] (12) x-y+x,y,z [u,u-v,w]

12 e.m'. x,x,z [u,u,w] x,2x,z [u,2u,w]
(13) x,x,z [u,u,w] (14) x,2x,z [u,2u,w] 2x,x,z [2u,u,w]

12 d.m x,0,z [u,2u,0] 0,x,z [2u,u,0]
(15) x,0,z [u,2u,0] (16) 0,x,z [2u,u,0] x,x,z [u,u,0]

6 c 2'm'm 1/2,0,z [u,2u,0] 0,1/2,z [2u,u,0]
(17) 1/2,0,z [u,2u,0] (18) 0,1/2,z [2u,u,0] 1/2,1/2,z [u,u,0]

4 b 3'm' 1/3,2/3,z [0,0,w] 2/3,1/3,z [0,0,w]
(19) 1/3,2/3,z [0,0,w] (20) 2/3,1/3,z [0,0,w]

2 a 6'm'm 0,0,z [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p6mm1' Along [1,0,0] p2mm1 Along [2,1,0] p1m11'
a* = a b* = b a* = (a + 2b)/2 b* = c a* = b/2 b* = c
Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0

183.7.1421 - 2 - 3095
Origin on 6\(\text{mm}'\)

Asymmetric unit

\[
0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/3; \quad 0 \leq z \leq 1; \quad x \leq (1+y)/2; \quad y \leq x/2
\]

Vertices

\[
(0,0,0) \quad 1/2,0,0 \quad 2/3,1/3,0
0,0,1 \quad 1/2,0,1 \quad 2/3,1/3,1
\]

Symmetry Operations

For \((0,0,0) + \text{set}\)

(1) \(1\)

(2) \(3^+ 0,0,z\)

(3) \(3^- 0,0,z\)

(4) \(2' 0,0,z\)

(5) \(6^- 0,0,z\)

(6) \(6^+ 0,0,z\)

(7) \(m x,x,z\)

(8) \(m x,2x,z\)

(9) \(m 2x,x,z\)

(10) \(m' x,x,z\)

(11) \(m' x,0,z\)

(12) \(m' 0,y,z\)
Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinate</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 f 1</td>
<td>(0,0,0) + (0,0,1)' +</td>
<td>x,y,z [u,v,w]</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) y,x+y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6) x-y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8) x+y,y,z [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(9) x,x-y,z [u,u+v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(11) x-y,y,z [v-u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(12) x,x+y,z [u+u+v,w]</td>
</tr>
<tr>
<td>12 e .m.</td>
<td>x,x,z [u,u,0]</td>
<td></td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
<td></td>
<td>x,2x,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
<td></td>
<td>2x,x,z [0,u,0]</td>
</tr>
<tr>
<td>12 d .m'</td>
<td>x,0,z [u,0,w]</td>
<td></td>
<td>x,0,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [u,0,w]</td>
<td></td>
<td>x,0,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [u,0,w]</td>
<td></td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>6 c 2'mm'</td>
<td>1/2,0,z [u,0,0]</td>
<td></td>
<td>0,1/2,z [0,u,0]</td>
</tr>
<tr>
<td>4 b 3m.</td>
<td>1/3,2/3,z [0,0,0]</td>
<td></td>
<td>2/3,1/3,z [0,0,0]</td>
</tr>
<tr>
<td>2 a 6'mm'</td>
<td>0,0,z [0,0,0]</td>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>[0,0,1]</th>
<th>[1,0,0]</th>
<th>[2,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>a* = (a + 2b)/2</td>
<td>a* = b/2</td>
<td></td>
</tr>
<tr>
<td>b* = b</td>
<td>b* = c</td>
<td>b* = c</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,0</td>
<td></td>
</tr>
</tbody>
</table>

183.8.1422 - 2 - 3097
P₂c 6mm' 6mm1' Hexagonal
183.9.1423 P₂c 6mm'

Origin on 6mm'

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{3}; \quad 0 \leq z \leq 1; \quad x \leq (1+y)/2; \quad y \leq x/2 \]

Vertices

\[\begin{array}{ccc}
0,0,0 & 1/2,0,0 & 2/3,1/3,0 \\
0,0,1 & 1/2,0,1 & 2/3,1/3,1 \\
\end{array} \]

Symmetry Operations

For \((0,0,0) + \) set

\[\begin{array}{ccc}
(1) 1 & (2) 3' 0,0,z & (3) 3' 0,0,z \\
(1) 0,0,0 & (3) 3' 0,0,0 & (3) 3' 0,0,0 \\
(4) 2 0,0,z (2z) 0,0,0 & (5) 6' 0,0,z (6z) 0,0,0 & (6) 6' 0,0,z (6z) 0,0,0 \\
(m' x,x,z) (m_y 0,0,0)' & (8) m' x,2x,z (m_x 0,0,0)' & (9) m' 2x,x,z (m_y 0,0,0)' \\
(m' x,x,z) (m_3 0,0,0)' & (11) m' x,0,z (m_2 0,0,0)' & (12) m' 0,y,z (m_1 0,0,0)' \\
\end{array} \]

183.9.1423 - 1 - 3098
Continued

(1) t' (0,0,1) (1) 0,0,1' (1) t' (0,0,1)
(2) 3 + (0,0,1) 0,0,z (2) 3 + (0,0,1) 0,0,z
(3) 3 + (0,0,1) 0,0,z (3) 3 + (0,0,1) 0,0,z
(4) 2 + (0,0,1) 0,0,z (4) 2 + (0,0,1) 0,0,z
(2) 0,0,1' (2) 0,0,1' (2) 0,0,1'
(5) 6 + (0,0,1) 0,0,z (5) 6 + (0,0,1) 0,0,z
(6) 6 + (0,0,1) 0,0,z (6) 6 + (0,0,1) 0,0,z
(7) c (0,0,1) x,x,z (7) c (0,0,1) x,x,z
(m,z) (0,0,1) (m,z) (0,0,1)
(8) c (0,0,1) x,2x,z (8) c (0,0,1) x,2x,z
(m,x) (0,0,1) (m,x) (0,0,1)
(9) c (0,0,1) 2x,x,z (9) c (0,0,1) 2x,x,z
(m,y) (0,0,1) (m,y) (0,0,1)
(10) c (0,0,1) x,x,z (10) c (0,0,1) x,x,z
(m,y) (0,0,1) (m,y) (0,0,1)
(11) c (0,0,1) x,0,z (11) c (0,0,1) x,0,z
(m,z) (0,0,1) (m,z) (0,0,1)
(12) c (0,0,1) 0,y,z (12) c (0,0,1) 0,y,z
(m,x) (0,0,1) (m,x) (0,0,1)

Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 f 1</td>
<td>(0,0,0) + (0,0,1)' +</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) y,x-y,z [v,u-v,w]</td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,z [u+v,u,w]</td>
<td>(3) x+y,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) y,x+y,z [v,u+v,w]</td>
<td>(5) y,x+y,z [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x-y,x,z [u-v,u,w]</td>
<td>(6) x-y,x,z [u-v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+y,y,z [u+v,v,w]</td>
<td>(8) x+y,y,z [u+v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y-z [u,u-v,w]</td>
<td>(9) x,y-z [u,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) y,x,z [v,u,w]</td>
<td>(10) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(11) x-y,z [u-v,u,w]</td>
<td>(11) x-y,z [u-v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(12) x,x+y,z [u,u+v,w]</td>
<td>(12) x,x+y,z [u,u+v,w]</td>
</tr>
<tr>
<td>12 e .m'</td>
<td>x,x,z [u,u,w]</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,2x,z [u,2u,w]</td>
<td>x,2x,z [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td>2x,x,z [2u,2u,w]</td>
<td>2x,x,z [2u,2u,w]</td>
</tr>
<tr>
<td>12 d .m'</td>
<td>x,0,z [u,0,w]</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,x,z [0,u,w]</td>
<td>0,x,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w]</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>6 c 2m'm'</td>
<td>1/2,0,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4 b 3m'</td>
<td>1/3,2/3,z [0,0,w]</td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td>2 a 6m'm'</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6mm1' Along [1,0,0] p21m'1 Along [2,1,0] p21m'1
a* = a b* = b a* = (a + 2b)/2 b* = c a* = b/2 b* = c
Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin on 6cc

Asymmetric unit
- $0 \leq x \leq 2/3$;
- $0 \leq y \leq 1/2$;
- $0 \leq z \leq 1/2$;
- $x \leq (1+y)/2$;
- $y \leq \min(1-x,x)$

Vertices
- $0,0,0$
- $1/2,0,0$
- $2/3,1/3,0$
- $1/2,1/2,0$
- $0,0,1/2$
- $1/2,0,1/2$
- $2/3,1/3,1/2$
- $1/2,1/2,1/2$

Symmetry Operations

1. 1
2. $3^* \, 0,0,z$
3. $3^* \, 0,0,z$
4. $2 \, 0,0,z$
5. $6^* \, 0,0,z$
6. $6^* \, 0,0,z$
7. $c \, (0,0,1/2) \ x,x,z$
8. $c \, (0,0,1/2) \ x,x,z$
9. $c \, (0,0,1/2) \ 2x,x,z$
10. $c \, (0,0,1/2) \ x,x,z$
11. $c \, (0,0,1/2) \ x,0,z$
12. $c \, (0,0,1/2) \ 0,y,z$

\[\text{P6cc} \quad 6cc \quad \text{Hexagonal} \]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>12</th>
<th>d</th>
<th>1</th>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) y,x-y,z [v,u-v,w]</th>
<th>(3) x+y,x,z [u+v,u+w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
<td>(5) y,x+y,z [v,u+v,w]</td>
<td>(6) x-y,x,z [u-v,u+w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
<td>(8) x+y,y,z+1/2 [u-v,v,w]</td>
<td>(9) x,x-z+1/2 [u,u+v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10) y,x,z+1/2 [v,u,w]</td>
<td>(11) x-y,y,z+1/2 [u+v,v,w]</td>
<td>(12) x,x,y,z+1/2 [u,u-v,w]</td>
</tr>
<tr>
<td>6</td>
<td>c</td>
<td>2..</td>
<td>1/2,0,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
<td>1/2,0,z+1/2 [0,0,w]</td>
<td>1/2,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>3..</td>
<td>1/3,2/3,z [0,0,w]</td>
<td>2/3,1/3,z [0,0,w]</td>
<td>1/3,2/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/3,1/3,z+1/2 [0,0,w]</td>
<td>1/3,2/3,z+1/2 [0,0,w]</td>
<td>2/3,1/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>6..</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6mm Along [1,0,0] p2b.1m'1 Along [2,1,0] p2b.1m'1

a* = a b* = b a* = (a + 2b)/2 b* = c/2
Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin on 6cc1'

Asymmetric unit

\[\begin{align*}
0 \leq x \leq 2/3; & \quad 0 \leq y \leq 1/2; & \quad 0 \leq z \leq 1/2; & \quad x \leq (1+y)/2; & \quad y \leq \min(1-x,x)
\end{align*} \]

Vertices

<table>
<thead>
<tr>
<th></th>
<th>0,0,0</th>
<th>1/2,0,0</th>
<th>2/3,1/3,0</th>
<th>1/2,1/2,0</th>
<th>1/2,1/2,1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,1/2</td>
<td>1/2,0,1/2</td>
<td>2/3,1,3,1/2</td>
<td>1/2,1/2,1/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Operations

For 1 + set

(1) 1
(1) 0,0,0
(2) 3* 0,0,z
(2) 3z 0,0,0
(3) 3* 0,0,z
(3) 3z 0,0,0
(4) 2 0,0,z
(4) 0,0,0
(5) 6* 0,0,z
(5) 6z 0,0,0
(6) 6* 0,0,z
(6) 6z 0,0,0
(7) c (0,0,1/2) x,x,z
(7) m_y 0,0,1/2
(8) c (0,0,1/2) x,2x,z
(8) m_x 0,0,1/2
(9) c (0,0,1/2) 2x,x,z
(9) m_y 0,0,1/2
(10) c (0,0,1/2) x,x,z
(10) m_y 0,0,1/2
(11) c (0,0,1/2) x,0,z
(11) m_z 0,0,1/2
(12) c (0,0,1/2) 0,y,z
(12) m_z 0,0,1/2

184.2.1425 - 1 - 3102
For 1' + set

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>d 11'</td>
<td>1 + 1' +</td>
</tr>
<tr>
<td>6</td>
<td>c 2..1'</td>
<td>1/2,0,z [0,0,0] 0,1/2,z [0,0,0] 1/2,1/2,z [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>b 3..1'</td>
<td>1/3,2/3,z [0,0,0] 2/3,1/3,z [0,0,0] 1/3,2/3,z+1/2 [0,0,0] 2/3,1/3,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a 6..1'</td>
<td>0,0,z [0,0,0] 0,0,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6mm1'
Along [1,0,0] p1m11'
Along [2,1,0] p1m11'
\[a^* = a \quad b^* = b \]
\[a^* = (a + 2b)/2 \quad b^* = c/2 \]
\[a^* = b/2 \quad b^* = c/2 \]
Origin at 0,0,z
Origin at x,0,0
Origin at x,x/2,0
Origin on 6*c’c

Asymmetric unit
- $0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,x)$

Vertices
- 0,0,0
- 1/2,0,0
- 2/3,1/3,0
- 1/2,1/2,0
- 0,0,1/2
- 1/2,0,1/2
- 2/3,1/3,1/2
- 1/2,1/2,1/2

Symmetry Operations

1. 1
2. $3^* 0,0,z$
3. $3^- 0,0,z$
4. $2' 0,0,z$
5. $6^- 0,0,z$
6. $6^+ 0,0,z$
7. $c' (0,0,1/2) x,x,z$
8. $c' (0,0,1/2) x,2x,z$
9. $c' (0,0,1/2) 2x,x,z$
10. $c (0,0,1/2) x,x,z$
11. $c (0,0,1/2) x,0,z$
12. $c (0,0,1/2) 0,y,z$
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 d 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
<td>(5) y,x+y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
<td>(8) x+y,y,z+1/2 [u+ν,v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) y,x,z+1/2 [v,u,w]</td>
<td>(11) x-y,y,z+1/2 [u+ν,ν,ν,w]</td>
</tr>
</tbody>
</table>

| 6 c 2′. | 1/2,0,z [u,v,0] | 0,1/2,z [ν,u-v,0] |
| | 0,1/2,z+1/2 [ν,u,0] | 1/2,0,z+1/2 [u+ν,v,0] |

| 4 b 3.. | 1/3,2/3,z [0,0,w] | 2/3,1/3,z [0,0,w] |
| | 1/3,2/3,z+1/2 [0,0,w] | 2/3,1/3,z+1/2 [0,0,ν,w] |

| 2 a 6′.. | 0,0,z [0,0,0] | 0,0,z+1/2 [0,0,0] |

Symmetry of Special Projections

Along [0,0,1] p6′m'm
\(a^* = a\) \(b^* = b\)
Origin at 0,0,z

Along [1,0,0] p1m1
\(a^* = (a + 2b)/2\) \(b^* = c/2\)
Origin at x,0,0

Along [2,1,0] \(p_{2\nu}m1\)
\(a^* = b/2\) \(b^* = c/2\)
Origin at x,x/2,0
Origin on 6'cc'

Asymmetric unit

\[
\begin{align*}
0 \leq x & \leq 2/3; \\
0 \leq y & \leq 1/2; \\
0 \leq z & \leq 1/2; \\
x & \leq (1+y)/2; \\
y & \leq \min(1-x, x)
\end{align*}
\]

Vertices

\[
\begin{align*}
n \quad & 0,0,0 \\
& 1/2,0,0 \\
& 2/3,1/3,0 \\
& 2/3,1/3,1/2 \\
& 1/2,1/2,0 \\
& 1/2,1/2,1/2 \\
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) \quad & 1 \\
(2') \quad & 0,0,z \\
(3') \quad & 0,0,Z \\
(4') \quad & 0,0,z \\
(6') \quad & 0,0,z \\
(6) \quad & 0,0,z \\
(7) \quad & c(0,0,1/2) \quad x,x,z \\
(8) \quad & c(0,0,1/2) \quad x,2x,z \\
(9) \quad & c(0,0,1/2) \quad 2x,x,z \\
(10) \quad & c'(0,0,1/2) \quad x,x,z \\
(11) \quad & c'(0,0,1/2) \quad x,0,z \\
(12) \quad & c'(0,0,1/2) \quad 0,y,z
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>d</td>
<td>(1) x,y,z [u,v,w] (2) y,x-y,z [v,u-v,w] (3) x+y,x,z [u+v,u,w] (4) x,y,z [u+v,u,w] (5) y,x+y,z [v,u-v,w] (6) x-y,x,z [u+v,u,w] (7) y,x,z+1/2 [v,u,w] (8) x+y,y,z+1/2 [u-v,v,w] (9) x,x,y,z+1/2 [u,u+v,w] (10) y,x,z+1/2 [v,u,w] (11) x-y,y,z+1/2 [u-v,v,w] (12) x,x+y,z+1/2 [u,u+v,w]</td>
</tr>
<tr>
<td>6</td>
<td>c</td>
<td>1/2,0,z [u,v,0] 0,1/2,z [v,u-v,0] 1/2,1/2,z [u+v,u,0] 0,1/2,z+1/2 [v,u,v,0] 1/2,0,z+1/2 [u-v,v,0] 1/2,1/2,z+1/2 [u,u+v,0]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>1/3,2/3,z [0,0,w] 2/3,1/3,z [0,0,w] 1/3,2/3,z+1/2 [0,0,w] 1/3,1/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>0,0,z [0,0,0] 0,0,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6'mm'</th>
<th>Along [1,0,0]</th>
<th>p2b*1m1</th>
<th>Along [2,1,0]</th>
<th>p1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b)</td>
<td>(a^* = (a + 2b)/2)</td>
<td>(b^* = c/2)</td>
<td>(a^* = b/2)</td>
<td>(b^* = c/2)</td>
</tr>
</tbody>
</table>

Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin on 6c'c'

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,x) \]

Vertices

\[0,0,0 \]
\[1/2,0,0 \]
\[2/3,1/3,0 \]
\[1/2,1/2,0 \]
\[0,0,1/2 \]
\[1/2,0,1/2 \]
\[2/3,1/3,1/2 \]
\[1/2,1/2,1/2 \]

Symmetry Operations

(1) 1
(1*0,0,0)

(2) 3* 0,0,z
(3z,0,0,0)

(3) 3' 0,0,z
(3z,-1,0,0,0)

(4) 2 0,0,z
(2z,0,0,0)

(5) 6* 0,0,z
(6z,-1,0,0,0)

(6) 6' 0,0,z
(6z,0,0,0)

(7) c'(0,0,1/2) x,x,z
(m_y,0,0,1/2')

(8) c'(0,0,1/2) x,2x,z
(m_x,0,0,1/2')

(9) c'(0,0,1/2) 2x,x,z
(m_y,0,0,1/2')

(10) c'(0,0,1/2) x,x,z
(m_y,0,0,1/2')

(11) c'(0,0,1/2) x,0,z
(m_x,0,0,1/2')

(12) c'(0,0,1/2) 0,y,z
(m_t,0,0,1/2')
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>d 1</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) y,x+y,z [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x-y,x,z [u-v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+y,y,z+1/2 [u+v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x-y,y,z+1/2 [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(11) x-y,x,z+1/2 [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(12) x,x-y,z+1/2 [u+v,u,w]</td>
</tr>
<tr>
<td>6</td>
<td>c 2..</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,z [0,0,w]</td>
</tr>
<tr>
<td>4</td>
<td>b 3..</td>
</tr>
<tr>
<td></td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/3,2/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>2/3,1/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a 6..</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (a + 2b)/2</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [2,1,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = b/2</td>
<td>b* = c/2</td>
</tr>
<tr>
<td>Origin at x,x/2,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 31m at 63 cm

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2}; \quad x \leq \frac{1+y}{2}; \quad y \leq \min(1-x,x) \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/2,1/2,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2 & \quad 1/2,1/2,1/2
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 & \quad (2) & \quad 3^* & \quad 0,0,z & \quad (3) & \quad 3^* & \quad 0,0,z \\
(10) & \quad m & \quad x,z & \quad (m_3 & \quad 0,0,0) & \quad (3^* & \quad 0,0,z & \quad (m_3^- & \quad 0,0,0) \\
(4) & \quad 2 & \quad (0,0,1/2) & \quad 0,0,z & \quad (2_z & \quad 0,0,1/2) & \quad (5) & \quad 6^* & \quad (0,0,1/2) & \quad 0,0,z & \quad (6) & \quad 6^* & \quad (0,0,1/2) & \quad 0,0,z & \quad (6_z & \quad 0,0,1/2) \\
(7) & \quad c & \quad (0,0,1/2) & \quad x,0,z & \quad (m_{xy} & \quad 0,0,1/2) & \quad (8) & \quad c & \quad (0,0,1/2) & \quad x,2x,z & \quad (m_x & \quad 0,0,1/2) & \quad (9) & \quad c & \quad (0,0,1/2) & \quad 2x,x,z & \quad (m_y & \quad 0,0,1/2) \\
(11) & \quad m & \quad 0,0,z & \quad (m_2 & \quad 0,0,0) & \quad (12) & \quad m & \quad 0,y,z & \quad (m_1 & \quad 0,0,0)
\end{align*}
\]

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
</table>
| 12 d 1 | (1) x,y,z [u,v,w]
 | (2) y,x-y,z [v-u,v,w]
 | (3) x+y,x,z [u+v,u,w] |
| | (4) x,y,z+1/2 [u,v,w]
 | (5) y,x+y,z+1/2 [v,u+v,w]
 | (6) x-y,x,z+1/2 [u-v,u,w] |
| 6 c m | (7) y,x,z+1/2 [v,u,w]
 | (8) x+y,y,z+1/2 [u-v,v,w]
 | (9) x,x-y,z+1/2 [v-u,v,w] |
| | (10) y,x,z [v,u,w]
 | (11) x-y,y,z [v+u,v,w]
 | (12) x,x+y,z [u,u-v,w] |
| 4 b 3.. | x,0,z [u,2u,0]
 | 0,x,z [2u,u,0]
 | x,x,z [u,u,0] |
| 2 a 3.. | x,0,z+1/2 [u,2u,0]
 | 0,x,z+1/2 [2u,u,0]
 | x,x,z+1/2 [u,u,0] |

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6mm</th>
<th>Along [1,0,0]</th>
<th>pab, 1m1</th>
<th>Along [2,1,0]</th>
<th>p1g11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td></td>
<td>b* = b</td>
<td></td>
<td>a* = b/2</td>
<td>b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x/2,0</td>
<td></td>
</tr>
</tbody>
</table>

185.1.1429 - 2 - 3111
Origin on 31m1' at 63 cm1'

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2}; \quad x \leq \frac{1+y}{2}; \quad y \leq \min(1-x,x)\]

Vertices

0,0,0 \quad 1/2,0,0 \quad 2/3,1/3,0 \quad 1/2,1/2,0

0,0,1/2 \quad 1/2,0,1/2 \quad 2/3,1/3,1/2 \quad 1/2,1/2,1/2

Symmetry Operations

For 1 + set

\begin{align*}
(1) \ &1 \\
(1|0,0,0) \\
(2) \ &3^* \ 0,0,z \\
(3z|0,0,0) \\
(3) \ &3^* \ 0,0,z \\
(3z^{-1}|0,0,0) \\
(4) \ &2 \ (0,0,1/2) \ 0,0,z \\
(2_1|0,0,1/2) \\
(5) \ &6 \ (0,0,1/2) \ 0,0,z \\
(6_2|0,0,1/2) \\
(6) \ &6^* \ (0,0,1/2) \ 0,0,z \\
(6_2|0,0,1/2) \\
(7) \ &c \ (0,0,1/2) \ x,x,z \\
(m_{xy}|0,0,1/2) \\
(8) \ &c \ (0,0,1/2) \ x,2x,z \\
(m_{x}|0,0,1/2) \\
(9) \ &c \ (0,0,1/2) \ 2x,x,z \\
(m_{y}|0,0,1/2) \\
(10) \ &m \ x,x,z \\
(m_3|0,0,0) \\
(11) \ &m \ x,0,z \\
(m_2|0,0,0) \\
(12) \ &m \ 0,y,z \\
(m_1|0,0,0) \\
\end{align*}
Continued

For 1' + set

(1) 1'
 (1) [0,0,0]
(2) 3' + 0,0,z
 (3) [0,0,0]
(3) 3' + 0,0,z
 (4) [0,0,0]

(4) 2'(0,0,1/2) 0,0,z
 (2,1/2 0,0,1/2)
(5) 6' (0,0,1/2) 0,0,z
 (6,1 0,0,1/2)
(6) 6' + (0,0,1/2) 0,0,z
 (6,1 0,0,1/2)

(7) c' (0,0,1/2) x,x,z
 (m,x |0,0,1/2)
(8) c' (0,0,1/2) x,2x,z
 (m,x |0,0,1/2)
(9) c' (0,0,1/2) 2x,x,z
 (m,y |0,0,1/2)

(10) m' x,x,z
 (m,y |0,0,0)
(11) m' x,0,z
 (m,y |0,0,0)
(12) m' 0,y,z
 (m,x |0,0,0)

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); 1'.

Positions

Multiplicity, Coordinates
Wyckoff letter, Multiplicity,
Site Symmetry. Coordinates

12 d 11' (1) x,y,z [0,0,0] (2) y,x-y,z [0,0,0] (3) x+y,x,z [0,0,0]
(4) x,y,z+1/2 [0,0,0]
(5) x,y,z+1/2 [0,0,0] (6) x,y,x,z+1/2 [0,0,0]
(7) x,y,z+1/2 [0,0,0] (8) x+y,y,z+1/2 [0,0,0] (9) x,y,x,z+1/2 [0,0,0]
(10) y,x,z [0,0,0] (11) x,y,x,z [0,0,0] (12) x,y,x,z [0,0,0]

6 c ..m1' x,0,z [0,0,0] 0,x,z [0,0,0] x,x,z [0,0,0]
 x,0,z+1/2 [0,0,0] 0,x,z+1/2 [0,0,0] x,x,z+1/2 [0,0,0]

4 b 3..1' 1/3,2/3,z [0,0,0] 2/3,1,3,z+1/2 [0,0,0] 1/3,2/3,z+1/2 [0,0,0] 2/3,1,3,z [0,0,0]

2 a 3.m1' 0,0,z [0,0,0] 0,0,z+1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p6mm1' Along [1,0,0] p1m11' Along [2,1,0] p1g11'
\(a^* = a \quad b^* = b \)
\(a^* = (a + 2b)/2 \quad b^* = c/2 \) \(a^* = b/2 \quad b^* = c \)
Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0

185.2.1430 - 2 - 3113
Origin on 31m at $6'_3$ c'm

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2}; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,x) \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/2,1/2,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2 & \quad 1/2,1/2,1/2
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(1') & \quad 0,0,0 \\
(2) & \quad 3' \quad 0,0,z \\
(3) & \quad 3' \quad 0,0,z \\
(4) & \quad 2' \quad (0,0,1/2) \quad 0,0,z \\
(5) & \quad 6' \quad (0,0,1/2) \quad 0,0,z \\
(6) & \quad 6' \quad (0,0,1/2) \quad 0,0,z \\
(7) & \quad c' \quad (0,0,1/2) \quad x,z \\
(8) & \quad c' \quad (0,0,1/2) \quad x,2x,z \\
(9) & \quad c' \quad (0,0,1/2) \quad 2x,x,z \\
(10) & \quad m \quad x,x,z \\
(11) & \quad m \quad x,0,z \\
(12) & \quad m \quad 0,y,z
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 d 1</td>
<td>(1) (x,y,z [u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(4) (\bar{x},y,z+1/2 [v,u,w])</td>
</tr>
<tr>
<td></td>
<td>(7) (\bar{y},x,z+1/2 [v,u,w])</td>
</tr>
<tr>
<td></td>
<td>(10) (y,x,z [v,u,w])</td>
</tr>
<tr>
<td>6 c ..m</td>
<td>(x,0,z [u,2u,0])</td>
</tr>
<tr>
<td></td>
<td>(\bar{x},0,z+1/2 [u,2u,0])</td>
</tr>
<tr>
<td>4 b 3..</td>
<td>1/3,2/3,(z [0,0,w])</td>
</tr>
<tr>
<td>2 a 3..</td>
<td>0,0,(z [0,0,0])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6'm'm
Along [1,0,0] p1m1
Along [2,1,0] p1g11'

\(a^* = a\)
\(b^* = b\)
\(a^* = (a + 2b)/2\)
\(b^* = c/2\)
\(a^* = b/2\)
\(b^* = c\)

Origin at 0,0,z
Origin at x,0,0
Origin at x,x/2,0
Origin on 31m' at 6' cm'

Asymmetric unit

<table>
<thead>
<tr>
<th>Vertices</th>
<th>0 ≤ x ≤ 2/3;</th>
<th>0 ≤ y ≤ 1/2;</th>
<th>0 ≤ z ≤ 1/2;</th>
<th>x ≤ (1+y)/2;</th>
<th>y ≤ min(1-x,x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1/2,0,0</td>
<td>2/3,1/3,0</td>
<td>1/2,1/2,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,1/2</td>
<td>1/2,0,1/2</td>
<td>2/3,1/3,1/2</td>
<td>1/2,1/2,1/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Operations

(1) 1
(1) 0,0,0

(2) 3* 0,0,z
(3) 3* 0,0,z
(3) 0,0,0

(4) 2' (0,0,1/2) 0,0,z
(2', 0,0,1/2)

(5) 6' (0,0,1/2) 0,0,z
(6) 6' (0,0,1/2) 0,0,z
(6) 0,0,1/2')

(6) 6' (0,0,1/2) 0,0,z
(6) 0,0,1/2')

(7) c (0,0,1/2) x,x,z
(mₙₓ) 0,0,1/2)

(8) c (0,0,1/2) x,x,z
(mₙₓ) 0,0,1/2)

(9) c (0,0,1/2) 2x,x,z
(mₙₙ) 0,0,1/2)

(10) m' x,x,z
(mₙₙ) 0,0,0

(11) m' x,0,z
(mₙₙ) 0,0,0

(12) m' 0,y,z
(mₙₙ) 0,0,0

185.4.1432 - 1 - 3116
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>d 1</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td>(4) x,y,z+1/2 [u,v,w]</td>
<td>(5) y,x+y,z+1/2 [v,u-v,w]</td>
</tr>
<tr>
<td>(7) x+y,x,z+1/2 [v,u,w]</td>
<td>(8) x+y,y,z+1/2 [u-v,v,w]</td>
</tr>
<tr>
<td>(10) y,x,z [v,u,w]</td>
<td>(11) x-y,y,z [u-v,v,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>c</th>
<th>..m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,0,z [u,0,w]</td>
<td>0,x,z [0,u,w]</td>
<td>x,x,z [u,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>b</th>
<th>3..</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3,2/3,z [0,0,w]</td>
<td>2/3,1/3,z+1/2 [0,0,w]</td>
<td>1/3,2/3,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>a</th>
<th>3.m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td>x,x,z+1/2 [u,u,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Alice [0,0,1] p6'mm'</th>
<th>Along [1,0,0] p2b* 1m'1</th>
<th>Along [2,1,0] p1g1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = (a + 2b)/2</td>
<td>a* = b/2 b* = c</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,0</td>
</tr>
</tbody>
</table>
Origin on 31m' at 63 c'm'

Asymmetric unit

\[
0 < x < \frac{2}{3}; \quad 0 < y < \frac{1}{2}; \quad 0 < z < \frac{1}{2}; \quad x < \frac{1+y}{2}; \quad y < \min(1-x, x)
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/2,1/2,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2 & \quad 1/2,1/2,1/2
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 3^* \quad 0,0,z & \quad (3) & \quad 3^* \quad 0,0,z \\
(4) & \quad 2 \quad (0,0,1/2) \quad 0,0,z & \quad (5) & \quad 6' \quad (0,0,1/2) \quad 0,0,z & \quad (6) & \quad 6' \quad (0,0,1/2) \quad 0,0,z \\
(7) & \quad c' \quad (0,0,1/2) \quad x,x,z & \quad (8) & \quad c' \quad (0,0,1/2) \quad x,2x,z & \quad (9) & \quad c' \quad (0,0,1/2) \quad 2x,x,z \\
(10) & \quad m' \quad x,x,z & \quad (11) & \quad m' \quad x,0,z & \quad (12) & \quad m' \quad 0,y,z
\end{align*}
\]

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 3^* \quad 0,0,0 & \quad (3) & \quad 3^* \quad 0,0,0 \\
(4) & \quad 2 \quad (0,0,1/2) \quad 0,0,0 & \quad (5) & \quad 6' \quad (0,0,1/2) \quad 0,0,0 & \quad (6) & \quad 6' \quad (0,0,1/2) \quad 0,0,0 \\
(7) & \quad c' \quad (0,0,1/2) \quad m_{xy},0,1/2 & \quad (8) & \quad c' \quad (0,0,1/2) \quad m_{x},0,1/2 & \quad (9) & \quad c' \quad (0,0,1/2) \quad m_{y},0,1/2 \\
(10) & \quad m' \quad m_{3},0,0,0 & \quad (11) & \quad m' \quad m_{2},0,0,0 & \quad (12) & \quad m' \quad m_{1},0,0,0
\end{align*}
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>d 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z [u+v,u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) y,x+y,z+1/2 [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x-y,x,z+1/2 [u-v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) x+y,y,z+1/2 [u+v,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x,x-y,z+1/2 [u,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) x-y,y,z [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) x,y,z [u+v,u+v,w]</td>
</tr>
<tr>
<td>6</td>
<td>c ..m'</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,z+1/2 [u,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,z+1/2 [0,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,z+1/2 [u,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>b 3..</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/3,2/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td>2</td>
<td>a 3.m'</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6m'm' Along [1,0,0] p1m'1 Along [2,1,0] p1g'1
a* = a b* = b a* = (a + 2b)/2 b* = c/2 a* = b/2 b* = c
Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin on 3m1 at 6,mc

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/3; \quad 0 \leq z \leq 1; \quad x \leq (1+y)/2; \quad y \leq x/2 \]

Vertices

- 0,0,0
- 1/2,0,0
- 2/3,1/3,0
- 0,0,1
- 1/2,0,1
- 2/3,1/3,1

Symmetry Operations

1. \(1\)
 - \((1\,0,0,0)\)

2. \(3^*\)
 - \(0,0,z\)
 - \((3_z\,0,0,0)\)

3. \(3\)
 - \(0,0,z\)
 - \((3_z^{-1}\,0,0,0)\)

4. \(2\)
 - \((0,0,1/2)\)
 - \((2_z\,0,0,1/2)\)

5. \(6\)
 - \((0,0,1/2)\)
 - \((6_z\,0,0,1/2)\)

6. \(6\)
 - \((0,0,1/2)\)
 - \((6_z\,0,0,1/2)\)

7. \(m\)
 - \(x, x, z\)
 - \((m_{xy}\,0,0,0)\)

8. \(m\)
 - \(x, 2x, z\)
 - \((m_x\,0,0,0)\)

9. \(m\)
 - \(2x, x, z\)
 - \((m_{y}\,0,0,0)\)

10. \(c\)
 - \((0,0,1/2)\)
 - \((m_{3}\,0,0,1/2)\)

11. \(c\)
 - \((0,0,1/2)\)
 - \((m_{2}\,0,0,1/2)\)

12. \(c\)
 - \((0,0,1/2)\)
 - \((m_{1}\,0,0,1/2)\)
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>d 1</td>
<td>(1) (x,y,z) [u,v,w] (\vec{u}+v,\vec{u},w)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) (\vec{y},x-y,z) [(v,u-v,w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) (x+y,\vec{x},z) [(u+v,\vec{u},w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) (\vec{x},\vec{y},z+1/2) [(u,\vec{v},w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) (y,x+y,z+1/2) [(v,\vec{u}+v,w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) (x-y,x,z+1/2) [(u-v,u,w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) (\vec{y},\vec{x},z) [(v,u,w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) (x+y,y,z) [(u-v,\vec{v},w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) (x,x-y,z) [(\vec{u},\vec{u}+v,w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) (y,x,z+1/2) [(\vec{v},\vec{u},w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) (x-y,\vec{y},z+1/2) [(\vec{u}+v,\vec{v},w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) (\vec{x},\vec{x}+y,z+1/2) [(u,u-v,\vec{w})]</td>
</tr>
<tr>
<td>6</td>
<td>c .m.</td>
<td>(x,\vec{x},z) [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(x,2x,z) [(u,0,0)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\vec{x},\vec{x},z+1/2) [(\vec{u},\vec{u},0)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\vec{x},\vec{x},z+1/2) [u,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b 3m.</td>
<td>(1/3,2/3,z) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2/3,1/3,z+1/2) [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a 3m.</td>
<td>(0,0,z) [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,0,z+1/2) [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along \([0,0,1]\)** \(p6mm\)
 - \(a^* = a\) \(b^* = b\)
 - Origin at \(0,0,z\)

- **Along \([1,0,0]\)** \(p1g11'\)
 - \(a^* = (a + 2b)/2\) \(b^* = c\)
 - Origin at \(x,0,0\)

- **Along \([2,1,0]\)** \(p1m11'\)
 - \(a^* = b/2\) \(b^* = c/2\)
 - Origin at \(x,x/2,0\)
Origin on 3m11' at 63 mc1'

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{3}; \quad 0 \leq z \leq 1; \quad x \leq \frac{(1+y)}{2}; \quad y \leq \frac{x}{2} \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 \\
0,0,1 & \quad 1/2,0,1 & \quad 2/3,1/3,1
\end{align*}
\]

Symmetry Operations

For 1 + set

\[
\begin{align*}
(1) & \quad 1 & \quad (2) & \quad 3^* 0,0,z & \quad (3) & \quad 3^* 0,0,z \\
(2) & \quad 1 & \quad (3) & \quad 3^* 0,0,z & \quad (3) & \quad 3^* 0,0,z \\
(3) & \quad 0,0,0 & \quad (3) & \quad 0,0,0 & \quad (3) & \quad 0,0,0 \\
(4) & \quad 2 (0,0,1/2) 0,0,z & \quad (5) & \quad 6^* (0,0,1/2) 0,0,z & \quad (6) & \quad 6^* (0,0,1/2) 0,0,z \\
(2) & \quad 0,0,1/2 & \quad (6) & \quad 0,0,1/2 & \quad (6) & \quad 0,0,1/2 \\
(7) & \quad m \times x, x, z & \quad (8) & \quad m \times x, x, z & \quad (9) & \quad m \times 2x, x, z \\
& \quad (m_{xy}|0,0,0) & \quad (m_{xy}|0,0,0) & \quad (m_{xy}|0,0,0) & \quad (m_{xy}|0,0,0) \\
(10) & \quad c (0,0,1/2) x, x, z & \quad (11) & \quad c (0,0,1/2) x, 0, z & \quad (12) & \quad c (0,0,1/2) 0, y, z \\
& \quad (m_3|0,0,1/2) & \quad (m_3|0,0,1/2) & \quad (m_3|0,0,1/2) & \quad (m_3|0,0,1/2)
\end{align*}
\]
For $1'$ + set

\begin{align*}
(1) \, t' & \quad \text{(1) } 0,0,0' \\
(2) \, 3' & \quad 0,0,0 \\
(3) \, 3' & \quad 0,0,0 \\
(4) \, 2' \quad (0,0,1/2) & \quad 0,0,0 \\
(5) \, 6' \quad (0,0,1/2) & \quad 0,0,0 \\
(6) \, 6' \quad (0,0,1/2) & \quad 0,0,0 \\
(7) \, m' \quad x,x,z & \quad (m_x | 0,0,0') \\
(8) \, m' \quad x,2x,z & \quad (m_x | 0,0,0') \\
(9) \, m' \quad 2x,x,z & \quad (m_y | 0,0,0') \\
(10) \, c' \quad (0,0,1/2) \quad x,x,z & \quad (m_x | 0,0,1/2') \\
(11) \, c' \quad (0,0,1/2) \quad x,0,z & \quad (m_y | 0,0,1/2') \\
(12) \, c' \quad (0,0,1/2) \quad 0,y,z & \quad (m_z | 0,0,1/2') \\
\end{align*}

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>d</td>
<td>11'</td>
</tr>
<tr>
<td>(1)</td>
<td>x,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(2)</td>
<td>y,x-y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(3)</td>
<td>x+y,x,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(4)</td>
<td>x,y,z+1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(5)</td>
<td>y,x+y,z+1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(6)</td>
<td>x-y,x,z+1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(7)</td>
<td>y,x,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(8)</td>
<td>x+y,y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(9)</td>
<td>x-x-y,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(10)</td>
<td>y,x,z+1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(11)</td>
<td>x-y,y,z+1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(12)</td>
<td>x,x+y,z+1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>c</td>
<td>.m.1'</td>
</tr>
<tr>
<td>(11)</td>
<td>x,x,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,2x,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x+2x,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>3m.1'</td>
</tr>
<tr>
<td>(12)</td>
<td>x,x,z+1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,2x,z+1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td></td>
<td>2x,x,z+1/2</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>3m.1'</td>
</tr>
<tr>
<td>(3)</td>
<td>0,0,z</td>
<td>[0,0,0]</td>
</tr>
<tr>
<td>(4)</td>
<td>0,0,z+1/2</td>
<td>[0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^* = a$</td>
<td>$b^* = b$</td>
</tr>
</tbody>
</table>

Origin at 0,0,z
Origin on 3m'1 at 6₃' m'c

Asymmetric unit

\[
\begin{align*}
0 & \leq x \leq 2/3; & 0 & \leq y \leq 1/3; & 0 & \leq z \leq 1; & x & \leq (1+y)/2; & y & \leq x/2
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 \\
0,0,1 & \quad 1/2,0,1 & \quad 2/3,1/3,1
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 & \quad (1^{'}0,0,0) \\
(2) & \quad 3^{*} & \quad 0,0,z & \quad (3_{z}^{*}0,0,0) \\
(3) & \quad 3^{*} & \quad 0,0,z & \quad (3_{z}^{-1}0,0,0) \\
(4) & \quad 2^{'} & \quad (0,0,1/2) & 0,0,z & \quad (2_{z}^{'}0,0,1/2)^{'} \\
(5) & \quad 6^{'} & \quad (0,0,1/2) & 0,0,z & \quad (6_{z}^{'}0,0,1/2)^{'} \\
(6) & \quad 6^{'} & \quad (0,0,1/2) & 0,0,z & \quad (6_{z}^{'}0,0,1/2)^{'} \\
(7) & \quad m^{'} & \quad x,x,z & \quad (m_{x}^{'}0,0,0)^{'} \\
(8) & \quad m^{'} & \quad x,2x,z & \quad (m_{x}^{'}0,0,0)^{'} \\
(9) & \quad m^{'} & \quad 2x,x,z & \quad (m_{y}^{'}0,0,0)^{'} \\
(10) & \quad c & \quad (0,0,1/2) & x,x,z & \quad (m_{x}0,0,1/2) \\
(11) & \quad c & \quad (0,0,1/2) & x,0,z & \quad (m_{y}0,0,1/2) \\
(12) & \quad c & \quad (0,0,1/2) & 0,y,z & \quad (m_{z}0,0,1/2)
\end{align*}
\]
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 d 1</td>
<td>(1) (x,y,z) ([u,v,w])</td>
<td>(2) (\tilde{y},x-y,z) ([\tilde{v},u-v,w])</td>
</tr>
<tr>
<td></td>
<td>(4) (\tilde{x},\tilde{y},z+1/2) ([u,v,w])</td>
<td>(5) (y,x+y,z+1/2) ([v,u-v,\tilde{w}])</td>
</tr>
<tr>
<td></td>
<td>(7) (\tilde{y},\tilde{x},z) ([\tilde{v},u,w])</td>
<td>(8) (\tilde{x}+y,y,z) ([\tilde{u}+v,v,w])</td>
</tr>
<tr>
<td></td>
<td>(10) (y,x,z+1/2) ([v,u,w])</td>
<td>(11) (x-y,y,z+1/2) ([u+v,\tilde{v},\tilde{w}])</td>
</tr>
</tbody>
</table>

| 6 c .m' | \(x,\tilde{x},z \) \([u,\tilde{u},w]\) | \(x,2x,z \) \([u,2u,w]\) | \(2x,\tilde{x},z \) \([2\tilde{u},\tilde{u},w]\) |

| 2 b 3m' | \(1/3,2/3,z \) \([0,0,w]\) | \(2/3,1/3,z+1/2 \) \([0,0,\tilde{w}]\) |

| 2 a 3m' | \(0,0,z \) \([0,0,w]\) | \(0,0,z+1/2 \) \([0,0,\tilde{w}]\) |

Symmetry of Special Projections

- Along \([0,0,1]\) \(p\bar{6}m\bar{m} \)
 - \(a^* = a \) \(b^* = b \)
 - Origin at \(0,0,z \)

- Along \([1,0,0]\) \(p1g1 \)
 - \(a^* = (a + 2b)/2 \) \(b^* = c \)
 - Origin at \(x,0,0 \)

- Along \([2,1,0]\) \(p_{2g}1m1 \)
 - \(a^* = b/2 \) \(b^* = c/2 \)
 - Origin at \(x,x/2,0 \)
Origin on 3m1 at 63' mc'

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{3}; \quad 0 \leq z \leq 1; \quad x \leq (1+y)/2; \quad y \leq x/2\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 \\
0,0,1 & \quad 1/2,0,1 & \quad 2/3,1/3,1
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1)\ 1 & \quad (2)\ 3^* & \quad (3)\ 3^* \\
(1|0,0,0) & \quad (3;z|0,0,0) & \quad (3;z^{-1}|0,0,0)
\end{align*}
\]

\[
\begin{align*}
(4)\ 2' & \quad (5)\ 6' & \quad (6)\ 6'
\quad (0,0,1/2) \quad 0,0,z & \quad (0,0,1/2) \quad 0,0,z & \quad (0,0,1/2) \quad 0,0,z
\quad (2_z|0,0,1/2)' & \quad (6_z^{-1}|0,0,1/2)' & \quad (6_z|0,0,1/2)'
\end{align*}
\]

\[
\begin{align*}
(7)\ m & \quad (8)\ m & \quad (9)\ m \\
\quad x,x,z & \quad x,2x,z & \quad 2x,x,z
\quad (m_x|0,0,0) & \quad (m_x|0,0,0) & \quad (m_y|0,0,0)
\end{align*}
\]

\[
\begin{align*}
(10)\ c' & \quad (11)\ c' & \quad (12)\ c'
\quad (0,0,1/2) \quad x,x,z & \quad (0,0,1/2) \quad x,0,z & \quad (0,0,1/2) \quad 0,y,z
\quad (m_3|0,0,1/2)' & \quad (m_3|0,0,1/2)' & \quad (m_1|0,0,1/2)'
\end{align*}
\]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>d</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) x-y,z+1/2 [u,v,w]</td>
<td>(5) y,x+1/2 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x-y,x+1/2 [u+v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
<td>(8) x+y,y,z [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,x-y,z [u,u+v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10) y,x,z+1/2 [v,u,w]</td>
<td>(11) x-y,y,z+1/2 [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(12) x,x+y,z+1/2 [u,u+v,w]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>c</td>
<td>.m.</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,0]</td>
<td>2x,x,z [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z+1/2 [u,u,0]</td>
<td>2x,x,z+1/2 [0,u,0]</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>3m.</td>
</tr>
<tr>
<td></td>
<td>1/3,2/3,z [0,0,0]</td>
<td>2/3,1/3,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>3m.</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6'mm'
Along [1,0,0] p1g11'
Along [2,1,0] p1m1

a* = a b* = b
Origin at 0,0,z

a* = (a + 2b)/2 b* = c
Origin at x,0,0

a* = b/2 b* = c/2
Origin at x,x/2,0
Origin on 3m'1 at 6m'm'

Asymmetric unit

\[
\begin{align*}
0 & \leq x \leq 2/3; & 0 & \leq y \leq 1/3; & 0 & \leq z \leq 1; & x & \leq (1+y)/2; & y & \leq x/2
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & & 1/2,0,0 & & 2/3,1/3,0 & 2/3,1/3,1 \\
0,0,1 & & 1/2,0,1
\end{align*}
\]

Symmetry Operations

1. \(1 \quad \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad (0,0,0)\)
2. \(3^+ \quad 0,0,z \quad (3_z \quad 0,0,0)\)
3. \(3^- \quad 0,0,z \quad (3^{-1} \quad 0,0,0)\)
4. \(2 \quad (0,0,1/2) \quad 0,0,0 \quad (2_z \quad 0,0,1/2)\)
5. \(6 \quad (0,0,1/2) \quad 0,0,0 \quad (6_z^{-1} \quad 0,0,1/2)\)
6. \(6^+ \quad (0,0,1/2) \quad 0,0,0 \quad (6_z \quad 0,0,1/2)\)
7. \(m' \quad x,x,z \quad (m_{xy} \quad 0,0,0)'\)
8. \(m' \quad x,2x,z \quad (m_{x} \quad 0,0,0)'\)
9. \(m' \quad 2x,x,z \quad (m_{y} \quad 0,0,0)'\)
10. \(c' \quad (0,0,1/2) \quad x,x,z \quad (m_{0} \quad 0,0,1/2)'\)
11. \(c' \quad (0,0,1/2) \quad x,0,z \quad (m_{y} \quad 0,0,1/2)'\)
12. \(c' \quad (0,0,1/2) \quad 0,y,z \quad (m_{x} \quad 0,0,1/2)'\)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>d</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) (\bar{y},x-y,z [\bar{v},u-v,w])</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) (x+y,x,z [u+v,\bar{u},w])</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) (\bar{x},y,z+1/2 [\bar{u},\bar{v},w])</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5) y,x+y,z+1/2 [v,\bar{u}+v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6) x-y,x,z+1/2 [u-v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7) (\bar{y},x,z [\bar{v},u,w])</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8) (\bar{x}+y,y,z [u+v,v,w])</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9) x,x-y,z [u,u-v,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10) y,x,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(11) x-y,(\bar{y},z+1/2 [u-v,\bar{v},w])</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(12) (x,x+\bar{y},z+1/2 [\bar{u},u+v,w])</td>
<td></td>
</tr>
</tbody>
</table>

6	c	.m'
	x,\(\bar{x},z [u,\bar{u},w] \)	
	x,\(x,z+1/2 [u,u,w] \)	
	\(\bar{x},2x,z [u,2u,w] \)	
	\(\bar{x},z+1/2 [u,2u,w] \)	
	\(2x,x,z+1/2 [2u,u,w] \)	

2	b	3m'
	1/3,2/3,z [0,0,w]	
	2/3,1/3,z+1/2 [0,0,w]	

2	a	3m'
	0,0,z [0,0,w]	
	0,0,z+1/2 [0,0,w]	

Symmetry of Special Projections

- **Along [0,0,1]** p6m'm'
 \(\mathbf{a}^* = \mathbf{a} \) \(\mathbf{b}^* = \mathbf{b} \)
 Origin at 0,0,z

- **Along [1,0,0]** p1g'1
 \(\mathbf{a}^* = \mathbf{a} + 2\mathbf{b} \) \(\mathbf{b}^* = \mathbf{c} \)
 Origin at x,0,0

- **Along [2,1,0]** p1m'1
 \(\mathbf{a}^* = \mathbf{b} \) \(\mathbf{b}^* = \mathbf{c}/2 \)
 Origin at x,x/2,0
Origin on $\bar{6}m2$

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{2}{3}; \quad 0 \leq z \leq \frac{1}{2}; \quad x \leq 2y; \quad y \leq \min(1-x, 2x)\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 \\
0,0,1/2 & \quad 2/3,1/3,1/2 & \quad 1/3,2/3,1/2
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad \begin{pmatrix} 0,0,0 \end{pmatrix} \\
(4) & \quad m_{x,y,0} \\
(4) & \quad \begin{pmatrix} 0,0,0 \end{pmatrix} \\
(7) & \quad m_{x,x,0} \\
(7) & \quad \begin{pmatrix} 0,0,0 \end{pmatrix} \\
(10) & \quad \begin{pmatrix} 0,0,0 \end{pmatrix} \\
(10) & \quad \begin{pmatrix} 0,0,0 \end{pmatrix} \\
(11) & \quad 2 \begin{pmatrix} x,2x,0 \end{pmatrix} \\
(11) & \quad \begin{pmatrix} 0,0,0 \end{pmatrix} \\
(12) & \quad 2 \begin{pmatrix} 2x,x,0 \end{pmatrix} \\
(12) & \quad \begin{pmatrix} 0,0,0 \end{pmatrix}
\end{align*}
\]
Generators selected

\((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7). \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 o 1</td>
<td>((1) x,y,z [u,v,w])</td>
<td>((2) \bar{y},-x-y,z [v,-u-v,w])</td>
</tr>
<tr>
<td>(4) x,y,z</td>
<td>([u,v,w])</td>
<td>(5) (y,-x-y,z [v,-u+v,w])</td>
</tr>
<tr>
<td>(7) (\bar{y},x,z)</td>
<td>([v,u,w])</td>
<td>(8) (x+y,y,z [u-v,\bar{v},\bar{w}])</td>
</tr>
<tr>
<td>(10) (\bar{y}, \bar{x}, \bar{z})</td>
<td>([v,\bar{u},\bar{w}])</td>
<td>((11) \bar{x}+y,\bar{y},z [u+v,\bar{u},\bar{w}])</td>
</tr>
</tbody>
</table>

6 n ..m. \(x,\bar{z},z [u,u,0]\) | \(x,2x,z [u,0,0]\) | \(2x,\bar{x},z [0,0,0]\) |

6 m m.. \(x,y,1/2 [0,0,w]\) | \(y,-x-y,1/2 [0,0,w]\) | \(x+y,\bar{x},1/2 [0,0,w]\) |

6 l m.. \(\bar{y},y,0 [0,0,w]\) | \(y,-x-y,0 [0,0,w]\) | \(\bar{x}+y,\bar{x},0 [0,0,w]\) |

3 k mm2 \(x,\bar{x},1/2 [0,0,0]\) | \(x,2x,1/2 [0,0,0]\) | \(2x,\bar{x},1/2 [0,0,0]\) |

3 j mm2 \(x,\bar{x},0 [0,0,0]\) | \(x,2x,0 [0,0,0]\) | \(2x,\bar{x},0 [0,0,0]\) |

2 i 3m. \(2/3,1/3,\bar{z} [0,0,0]\) | \(2/3,1/3,\bar{z} [0,0,0]\) | \(2/3,1/3,\bar{z} [0,0,0]\) |

2 h 3m. \(1/3,2/3,\bar{z} [0,0,0]\) | \(1/3,2/3,\bar{z} [0,0,0]\) | \(1/3,2/3,\bar{z} [0,0,0]\) |

2 g 3m. \(0,0,z [0,0,0]\) | \(0,0,z [0,0,0]\) | \(0,0,z [0,0,0]\) |

1 f 6m2 \(2/3,1/3,1/2 [0,0,0]\) | \(2/3,1/3,1/2 [0,0,0]\) | \(2/3,1/3,1/2 [0,0,0]\) |

1 e 6m2 \(2/3,1/3,0 [0,0,0]\) | \(2/3,1/3,0 [0,0,0]\) | \(2/3,1/3,0 [0,0,0]\) |

1 d 6m2 \(1/3,2/3,1/2 [0,0,0]\) | \(1/3,2/3,1/2 [0,0,0]\) | \(1/3,2/3,1/2 [0,0,0]\) |

1 c 6m2 \(1/3,2/3,0 [0,0,0]\) | \(1/3,2/3,0 [0,0,0]\) | \(1/3,2/3,0 [0,0,0]\) |

1 b 6m2 \(0,0,1/2 [0,0,0]\) | \(0,0,1/2 [0,0,0]\) | \(0,0,1/2 [0,0,0]\) |

1 a 6m2 \(0,0,0 [0,0,0]\) | \(0,0,0 [0,0,0]\) | \(0,0,0 [0,0,0]\) |

Symmetry of Special Projections

- Along \([0,0,1]\) 3m11' \(a^* = a \quad b^* = b\) Origin at 0,0,z
- Along \([1,0,0]\) p1m11' \(a^* = c \quad b^* = (a+2b)/2\) Origin at x,0,0
- Along \([2,1,0]\) p2mm \(a^* = c \quad b^* = b/2\) Origin at x,x/2,0
Origin on \(\overline{6}m21' \)

Asymmetric unit

\[
0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/2; \quad x \leq 2y; \quad y \leq \min(1-x,2x)
\]

Vertices

\[
\begin{array}{ccc}
0,0,0 & 2/3,1/3,0 & 1/3,2/3,0 \\
0,0,1/2 & 2/3,1/3,1/2 & 1/3,2/3,1/2
\end{array}
\]

Symmetry Operations

For 1 + set

\[
\begin{array}{lll}
(1) & 1 & (2) 3' \quad 0,0,z \\
(1|0,0,0) & (3_z|0,0,0) & (3|0,0,z) \\
(6_z|0,0,0) & (3|0,0,z) & (3_z|0,0,0)
\end{array}
\]

\[
\begin{array}{lll}
(4) & m \quad x,y,0 \\
(m_z|0,0,0) & (5) \overline{6}' \quad 0,0,z; \quad 0,0,0 \\
(6_z|0,0,0) & (6|0,0,z; \quad 0,0,0) & (6_z|0,0,0)
\end{array}
\]

\[
\begin{array}{lll}
(7) & m \quad x,x,z \\
(m_{xy}|0,0,0) & (8) m \quad x,2x,z \\
(m_x|0,0,0) & (9) m \quad 2x,x,z \\
(m_y|0,0,0) & (m_y|0,0,0)
\end{array}
\]

\[
\begin{array}{lll}
(10) & 2 \quad x,x,0 \\
(2|0,0,0) & (11) 2 \quad x,2x,0 \\
(2|0,0,0) & (12) 2 \quad 2x,x,0 \\
(2|0,0,0) & (2|0,0,0)
\end{array}
\]
For 1' + set

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>o</td>
<td>11'</td>
</tr>
<tr>
<td>6</td>
<td>n</td>
<td>.m.1'</td>
</tr>
<tr>
<td>6</td>
<td>m</td>
<td>m..1'</td>
</tr>
<tr>
<td>3</td>
<td>k</td>
<td>mm21'</td>
</tr>
<tr>
<td>3</td>
<td>j</td>
<td>mm21'</td>
</tr>
<tr>
<td>2</td>
<td>i</td>
<td>3m.1'</td>
</tr>
<tr>
<td>2</td>
<td>h</td>
<td>3m.1'</td>
</tr>
<tr>
<td>2</td>
<td>g</td>
<td>3m.1'</td>
</tr>
<tr>
<td>1</td>
<td>f</td>
<td>6m21'</td>
</tr>
<tr>
<td>1</td>
<td>e</td>
<td>6m21'</td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
</tr>
<tr>
<td>1' +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 o 11'</td>
<td>x,y,z [0,0,0]</td>
<td>(1)</td>
</tr>
<tr>
<td>(2)</td>
<td>y,x-z [0,0,0]</td>
<td>(2)</td>
</tr>
<tr>
<td>(3)</td>
<td>y,x-z [0,0,0]</td>
<td>(3)</td>
</tr>
<tr>
<td>(4)</td>
<td>y,x-z [0,0,0]</td>
<td>(4)</td>
</tr>
<tr>
<td>(5)</td>
<td>y,x-z [0,0,0]</td>
<td>(5)</td>
</tr>
<tr>
<td>(6)</td>
<td>y,x-z [0,0,0]</td>
<td>(6)</td>
</tr>
<tr>
<td>(7)</td>
<td>y,x-z [0,0,0]</td>
<td>(7)</td>
</tr>
<tr>
<td>(8)</td>
<td>y,x-z [0,0,0]</td>
<td>(8)</td>
</tr>
<tr>
<td>(9)</td>
<td>y,x-z [0,0,0]</td>
<td>(9)</td>
</tr>
<tr>
<td>(10)</td>
<td>y,x-z [0,0,0]</td>
<td>(10)</td>
</tr>
<tr>
<td>(11)</td>
<td>y,x-z [0,0,0]</td>
<td>(11)</td>
</tr>
<tr>
<td>(12)</td>
<td>y,x-z [0,0,0]</td>
<td>(12)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 +</td>
</tr>
<tr>
<td>1' +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 n .m.1'</td>
<td>x,z [0,0,0]</td>
<td>(1)</td>
</tr>
<tr>
<td>(2)</td>
<td>x,z [0,0,0]</td>
<td>(2)</td>
</tr>
<tr>
<td>(3)</td>
<td>x,z [0,0,0]</td>
<td>(3)</td>
</tr>
<tr>
<td>(4)</td>
<td>x,z [0,0,0]</td>
<td>(4)</td>
</tr>
<tr>
<td>(5)</td>
<td>x,z [0,0,0]</td>
<td>(5)</td>
</tr>
<tr>
<td>(6)</td>
<td>x,z [0,0,0]</td>
<td>(6)</td>
</tr>
<tr>
<td>(7)</td>
<td>x,z [0,0,0]</td>
<td>(7)</td>
</tr>
<tr>
<td>(8)</td>
<td>x,z [0,0,0]</td>
<td>(8)</td>
</tr>
<tr>
<td>(9)</td>
<td>x,z [0,0,0]</td>
<td>(9)</td>
</tr>
<tr>
<td>(10)</td>
<td>x,z [0,0,0]</td>
<td>(10)</td>
</tr>
<tr>
<td>(11)</td>
<td>x,z [0,0,0]</td>
<td>(11)</td>
</tr>
<tr>
<td>(12)</td>
<td>x,z [0,0,0]</td>
<td>(12)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 +</td>
</tr>
<tr>
<td>1' +</td>
</tr>
</tbody>
</table>
187.1.1439 - 5 - 3134

Continued 187.2.1440

&

Symmetry of Special Projections

Along [0,0,1] p3m1'

a* = a b* = b
Origin at 0,0,2

Along [1,0,0] p1m1'

a* = c b* = (a + 2b)/2
Origin at x,0,0

Along [2,1,0] p2mm1'

a* = c b* = b/2
Origin at x,x/2,0

1 d 6m21' 1/3,2/3,1/2 [0,0,0]
1 c 6m21' 1/3,2/3,0 [0,0,0]
1 b 6m21' 0,0,1/2 [0,0,0]
1 a 6m21' 0,0,0 [0,0,0]
Origin on \(\bar{6}m'2 \)

Asymmetric unit

\[
0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/2; \quad x < 2y; \quad y \leq \min(1-x,2x)
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2,0,0 \\
0,0,1/2 & \quad 2/3,1/3,1/2 & \quad 1/3,2/3,1/2
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 3^* \quad 0,0,z \\
(3) & \quad 3^* \quad 0,0,z \\
(4) & \quad m' \quad x,y,0 \\
(5) & \quad \bar{6}^* \quad 0,0,z; 0,0,0 \\
(6) & \quad \bar{6}^* \quad 0,0,z; 0,0,0 \\
(7) & \quad m' \quad x,x,z \\
(8) & \quad m' \quad x,2x,z \\
(9) & \quad m' \quad 2x,x,z \\
(10) & \quad 2 \quad x,x,0 \\
(11) & \quad 2 \quad x,2x,0 \\
(12) & \quad 2 \quad 2x,x,0
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 o 1</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) (\bar{y},x,-y,z) [(\bar{v},u-v,w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,(\bar{z}) [u,v,w]</td>
<td>(5) (\bar{y},x,-y,\bar{z}) [(\bar{v},u-v,w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) (\bar{y},\bar{x},z) [(\bar{v},u,w)]</td>
<td>(8) (x+y,y,z) [(\bar{u}+v,v,w)]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) (\bar{y},\bar{x},\bar{z}) [(\bar{v},\bar{u},w)]</td>
<td>(11) (x+y,\bar{y},\bar{z}) [(\bar{u}+v,v,w)]</td>
</tr>
</tbody>
</table>

\[6 \text{ n} \quad .m'. \]
\[x,\bar{x},z [u,\bar{u},\bar{w}] \quad x,2x,z [u,2u,w] \quad 2x,\bar{x},z [2u,\bar{u},w] \]

\[6 \text{ m} \quad .m'.. \]
\[x,y,1/2 [u,v,0] \quad \bar{y},x-1/2 [\bar{v},u-v,0] \quad x+y,\bar{x},1/2 [\bar{u}+v,\bar{u},0] \]

\[6 \text{ l} \quad .m'.. \]
\[x,y,0 [u,v,0] \quad \bar{y},x,0 [\bar{v},u,0] \quad \bar{y},x,0 [\bar{v},u,0] \quad x+y,\bar{x},0 [\bar{u}+v,\bar{u},0] \]

\[3 \text{ k} \quad m'm'2 \]
\[x,\bar{x},1/2 [u,\bar{u},\bar{0}] \quad x,2x,1/2 [u,2u,0] \quad 2x,\bar{x},1/2 [2u,\bar{u},0] \]

\[3 \text{ j} \quad m'm'2 \]
\[x,\bar{x},0 [u,\bar{u},0] \quad x,2x,0 [u,2u,0] \quad 2x,\bar{x},0 [2u,\bar{u},0] \]

\[2 \text{ i} \quad 3m'. \]
\[2/3,1/3,z [0,0,w] \quad 2/3,1/3,\bar{z} [0,0,\bar{w}] \]

\[2 \text{ h} \quad 3m'. \]
\[1/3,2/3,z [0,0,w] \quad 1/3,2/3,\bar{z} [0,0,\bar{w}] \]

\[2 \text{ g} \quad 3m'. \]
\[0,0,z [0,0,w] \quad 0,0,\bar{z} [0,0,\bar{w}] \]

\[1 \text{ f} \quad \bar{6}'m'2 \]
\[2/3,1/3,1/2 [0,0,0] \quad 2/3,1/3,1/2 [0,0,0] \]

\[1 \text{ e} \quad \bar{6}'m'2 \]
\[2/3,1/3,0 [0,0,0] \quad 2/3,1/3,0 [0,0,0] \]

\[1 \text{ d} \quad \bar{6}'m'2 \]
\[1/3,2/3,1/2 [0,0,0] \quad 1/3,2/3,1/2 [0,0,0] \]

\[1 \text{ c} \quad \bar{6}'m'2 \]
\[1/3,2/3,0 [0,0,0] \quad 1/3,2/3,0 [0,0,0] \]

\[1 \text{ b} \quad \bar{6}'m'2 \]
\[0,0,1/2 [0,0,0] \quad 0,0,1/2 [0,0,0] \]

\[1 \text{ a} \quad \bar{6}'m'2 \]
\[0,0,0 [0,0,0] \quad 0,0,0 [0,0,0] \]

Symmetry of Special Projections

Along [0,0,1] p3m1
\(a^* = a\) \quad \(b^* = b\)
Origin at 0,0,z

Along [1,0,0] p1m1
\(a^* = c\) \quad \(b^* = (a + 2b)/2\)
Origin at x,0,0

Along [2,1,0] p2m1
\(a^* = c\) \quad \(b^* = b/2\)
Origin at x,x/2,0
Origin on $\bar{6}'m2$

Asymmetric unit

\begin{align*}
0 \leq x \leq 2/3; & \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/2; \quad x < 2y; \quad y \leq \min(1-x,2x) \\
\end{align*}

Vertices

\begin{align*}
0,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 \\
0,0,1/2 & \quad 2/3,1/3,1/2 & \quad 1/3,2/3,1/2 \\
\end{align*}

Symmetry Operations

\begin{align*}
(1) & \quad 1 \\
(1) & \quad 0,0,0 \\
(2) & \quad 3^* \quad 0,0,z \\
(3) & \quad 3^* \quad 0,0,z \\
(4) & \quad m' \quad x,y,0 \\
(m_x) & \quad 0,0,0 \\
(5) & \quad \bar{6}' \quad 0,0,z; 0,0,0 \\
(6) & \quad \bar{6}' \quad 0,0,z; 0,0,0 \\
(7) & \quad m \quad x,x,z \\
(m_x) & \quad 0,0,0 \\
(8) & \quad m \quad x,2x,z \\
(m_x) & \quad 0,0,0 \\
(9) & \quad m \quad 2x,x,z \\
(m_y) & \quad 0,0,0 \\
(10) & \quad 2' \quad x,x,0 \\
(2) & \quad 0,0,0 \\
(11) & \quad 2' \quad x,2x,0 \\
(2) & \quad 0,0,0 \\
(12) & \quad 2' \quad 2x,x,0 \\
(2) & \quad 0,0,0 \\
\end{align*}
Continued

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+y,y,z [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y,z [u+v,u,w]</td>
</tr>
<tr>
<td>12 n m'</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,2x,z [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>2x,x,z [0,u,0]</td>
</tr>
<tr>
<td>6 m m'</td>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>y,x-y,1/2 [v,u-v,0]</td>
</tr>
<tr>
<td></td>
<td>x+y,x,1/2 [u+v,u,0]</td>
</tr>
<tr>
<td></td>
<td>(2) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,y,z [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+y,y,z [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y,z [u+v,u,w]</td>
</tr>
<tr>
<td>6 l m'</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,0 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+y,x,0 [u+v,u,0]</td>
</tr>
<tr>
<td>3 k m'm'</td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,2x,1/2 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>2x,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td>3 j m'm'</td>
<td>x,x,0 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,2x,0 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>2x,x,0 [0,u,0]</td>
</tr>
<tr>
<td>2 i 3m</td>
<td>2/3,1/3,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>2/3,1/3,z [0,0,0]</td>
</tr>
<tr>
<td>2 h 3m</td>
<td>1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td>2 g 3m</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>1 f 6'm'</td>
<td>2/3,1/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>2/3,1/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 e 6'm'</td>
<td>2/3,1/3,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>2/3,1/3,0 [0,0,0]</td>
</tr>
<tr>
<td>1 d 6'm'</td>
<td>1/3,2/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/3,2/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 c 6'm'</td>
<td>1/3,2/3,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/3,2/3,0 [0,0,0]</td>
</tr>
<tr>
<td>1 b 6'm'</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 a 6'm'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p3m1

\[a^* = a \quad b^* = b \]

Origin at 0,0,z

Along [1,0,0] p1m11'

\[a^* = c \quad b^* = (a + 2b)/2 \]

Origin at x,0,0

Along [2,1,0] p2'2mm'

\[a^* = b/2 \quad b^* = c \]

Origin at x,x/2,0
Origin on $\bar{6}m'2'$

Asymmetric unit

- $0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/2; \quad x \leq 2y; \quad y \leq \min(1-x,2x)$

Vertices

- $0,0,0$
- $2/3,1/3,0$
- $1/3,2/3,0$
- $0,0,1/2$
- $2/3,1/3,1/2$
- $1/3,2/3,1/2$

Symmetry Operations

1. 1
 - $(1|0,0,0)$
2. 3^*
 - $0,0,z$
 - $(3_z|0,0,0)$
3. 3^*
 - $0,0,z$
 - $(3_z^{-1}|0,0,0)$
4. m
 - $x,y,0$
 - $(m_z|0,0,0)$
5. $\bar{6}^*$
 - $0,0,z; 0,0,0$
 - $(6_z^{-1}|0,0,0)$
6. $\bar{6}^*$
 - $0,0,z; 0,0,0$
 - $(6_z|0,0,0)$
7. m'
 - x,x,z
 - $(m_{xy}|0,0,0)'$
8. m'
 - $x,2x,z$
 - $(m_x|0,0,0)'$
9. m'
 - $2x,x,z$
 - $(m_y|0,0,0)'$
10. $2'$
 - $x,x,0$
 - $(2_z|0,0,0)'$
11. $2'$
 - $x,2x,0$
 - $(2_z|0,0,0)'$
12. $2'$
 - $2x,x,0$
 - $(2_z|0,0,0)'$
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 o 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+y,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
<td>(5) x+y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z [v,u,w]</td>
<td>(8) x+y,z [v,u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) x,y,z [v,u,w]</td>
<td>(11) x+y,z [u,v,w]</td>
</tr>
<tr>
<td>6 n m'</td>
<td>x,x,z [u,u,w]</td>
<td>x,2x,z [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w]</td>
<td>x,2x,z [u,2u,w]</td>
</tr>
<tr>
<td>6 m m..</td>
<td>x,y,1/2 [0,0,w]</td>
<td>y,x-y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>y,x,1/2 [0,0,w]</td>
<td>x+y,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>6 l m..</td>
<td>x,y,0 [0,0,w]</td>
<td>y,x-y,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>y,x,0 [0,0,w]</td>
<td>x+y,y,0 [0,0,w]</td>
</tr>
<tr>
<td>3 k mm'2'</td>
<td>x,x,1/2 [0,0,w]</td>
<td>x,2x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>3 j mm'2'</td>
<td>x,x,0 [0,0,w]</td>
<td>x,2x,0 [0,0,w]</td>
</tr>
<tr>
<td>2 i 3m'</td>
<td>2/3,1/3,z [0,0,w]</td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td>2 h 3m'</td>
<td>1/3,2/3,z [0,0,w]</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>2 g 3m'</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>1 f 6m'2'</td>
<td>2/3,1/3,z [0,0,w]</td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td>1 e 6m'2'</td>
<td>2/3,1/3,z [0,0,w]</td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td>1 d 6m'2'</td>
<td>1/3,2/3,z [0,0,w]</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>1 c 6m'2'</td>
<td>0,0,1/2 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td>1 b 6m'2'</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,0 [0,0,w]</td>
</tr>
<tr>
<td>1 a 6m'2'</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: p3m11'
 - \(a^* = a\) \(b^* = b\)
 - Origin at 0,0,z

- **Along [1,0,0]**: p1m1
 - \(a^* = c\) \(b^* = (a+2b)/2\)
 - Origin at x,0,0

- **Along [2,1,0]**: p2'2mm'
 - \(a^* = c\) \(b^* = b/2\)
 - Origin at x,x/2,0
Origin on $\overline{6}m2$

Asymmetric unit

- $0 \leq x \leq 2/3$; $0 \leq y \leq 2/3$; $0 \leq z \leq 1/2$; $x < 2y$; $y < \min(1-x,2x)$

Vertices

- $0,0,0$
- $2/3,1/3,0$
- $1/3,2/3,0$
- $0,0,1/2$
- $2/3,1/3,1/2$
- $1/3,2/3,1/2$

Symmetry Operations

For $(0,0,0) +$ set

1. 1
2. 3^e; $0,0,z$
3. $3m$; $0,0,z$
4. $m_x,y,0$
5. $\overline{6}m$; $0,0,z; 0,0,0$
6. $\overline{6}m$; $0,0,z; 0,0,0$
7. m_{xy}; $0,0,0$
8. m_x; $x,2x,0$
9. m_y; $x,2x,0$
10. m_{xy}; $0,0,0$

Diagram

- P2$_c$6m2
- $\overline{6}m2'$
- Hexagonal

187.6.1444 - 3 - 3141
For \((0,0,1)' + \) set

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1) t'(0,0,1))</td>
<td>((0,0,0) + (0,0,1)' +)</td>
<td>((2) 3'(0,0,1))</td>
<td>((0,0,1)')</td>
</tr>
<tr>
<td>((1</td>
<td>0,0,1))'</td>
<td></td>
<td>((3) 3'(0,0,1))</td>
</tr>
<tr>
<td>((4) m' x,y,1/2)</td>
<td></td>
<td>((5) \delta' 0,0,0; 0,0,1/2)</td>
<td>((0,0,1)')</td>
</tr>
<tr>
<td>((m_m</td>
<td>0,0,1)')</td>
<td></td>
<td>((6) \delta' 0,0,0; 0,0,1/2)</td>
</tr>
<tr>
<td>((7) c' (0,0,1))</td>
<td></td>
<td>((8) c' (0,0,1))</td>
<td>((0,0,1)')</td>
</tr>
<tr>
<td>((m_x</td>
<td>0,0,1)')</td>
<td></td>
<td>((9) c' (0,0,1))</td>
</tr>
<tr>
<td>((10) 2' x,x,1/2)</td>
<td></td>
<td>((11) 2' x,2x,1/2)</td>
<td>((0,0,1)')</td>
</tr>
<tr>
<td>((2_1</td>
<td>0,0,1)')</td>
<td></td>
<td>((12) 2' 2x,x,1/2)</td>
</tr>
</tbody>
</table>

Generators selected

\((1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7).\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>o</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>n</td>
<td>m'.</td>
</tr>
<tr>
<td>12</td>
<td>l</td>
<td>m..</td>
</tr>
<tr>
<td>6</td>
<td>k</td>
<td>m'2'</td>
</tr>
<tr>
<td>6</td>
<td>j</td>
<td>m2</td>
</tr>
<tr>
<td>4</td>
<td>i</td>
<td>3m.</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>3m.</td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>3m.</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>(\delta'2)</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>(\delta2)</td>
</tr>
</tbody>
</table>

Continued 187.6.1444

P\(_{2_1}\bar{6}m2\)

187.6.1444 - 4 - 3142
2 d 6'm2' 1/3,2/3,1/2 [0,0,0]
2 c 6m2 1/3,2/3,0 [0,0,0]
2 b 6'm2' 0,0,1/2 [0,0,0]
2 a 6m2 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p3m11'
\(\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] p1m11'
\(\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2 \)
Origin at x,0,0

Along [2,1,0] p2mm
\(\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = \mathbf{b}/2 \)
Origin at x,x/2,0
Origin on $\bar{6}m2$

Asymmetric unit

$0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/2; \quad x \leq 2y; \quad y \leq \min(1-x,2x)$

Vertices

$0,0,0 \quad 2/3,1/3,0 \quad 1/3,2/3,0$

$0,0,1/2 \quad 2/3,1/3,1/2 \quad 1/3,2/3,1/2$

Symmetry Operations

For $(0,0,0) + \text{set}$

(1) 1

(2) $3^+ \quad 0,0,z$

(3) $3^- \quad 0,0,z$

(4) $m' \quad x,y,0$

(5) $\bar{6}^+ \quad 0,0,z; 0,0,0$

(6) $\bar{6}^- \quad 0,0,z; 0,0,0$

(7) $m' \quad x,x,z$

(8) $m' \quad x,2x,z$

(9) $m' \quad 2x,x,z$

(10) $2 \quad x,x,0$

(11) $2 \quad x,2x,0$

(12) $2 \quad 2x,x,0$
For $(0,0,1)' + \text{set}

<table>
<thead>
<tr>
<th>(1) t' (0,0,1)</th>
<th>(2) 3'(0,0,1)</th>
<th>(3) 3'(0,0,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t (0,0,1)</td>
<td>0,0,z</td>
<td>0,0,z</td>
</tr>
<tr>
<td>(3) t (0,0,1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4) m x,y,1/2</th>
<th>(5) 6' 0,0,z</th>
<th>(6) 6' 0,0,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_x,0,0,1)</td>
<td>0,0,1/2</td>
<td>0,0,1/2</td>
</tr>
<tr>
<td>(6) z(0,0,1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(7) c (0,0,1)</th>
<th>(8) c (0,0,1)</th>
<th>(9) c (0,0,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_y,0,0,1)</td>
<td>x,2x,z</td>
<td>2x,x,z</td>
</tr>
<tr>
<td>(m_y,0,0,1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(10) 2' x,x,1/2</th>
<th>(11) 2' x,2x,1/2</th>
<th>(12) 2' x,x,1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x,2x,1/2</td>
<td></td>
<td>2x,2x,1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x,2x,1/2</td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,0,1)' +</td>
<td></td>
</tr>
<tr>
<td>24 o 1 x,y,z [u,v,w]</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td>4 h 3m'. 1/3,2/3,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 i 3m'. 2/3,1/3,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 g 3m'. 0,0,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>6 j m'm'2 2x,0 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>6 k mm'2' x,x,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>12 l m'.. x,y,0 [u,v,0]</td>
<td></td>
</tr>
<tr>
<td>12 m m.. x,y,1/2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>12 n .m'. x,x,z [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>12 l m'.. y,x,0 [v,u,0]</td>
<td></td>
</tr>
<tr>
<td>6 f .6m'2' 2x,0 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>2 e .6m'2 2x,0 [u,u,0]</td>
<td></td>
</tr>
</tbody>
</table>

187.7.1445 - 2 - 3145
Continued 187.7.1445

2 d \(\overline{6}m'2'\) 1/3,2/3,1/2 [0,0,w]
2 c \(\overline{6}'m'2\) 1/3,2/3,0 [0,0,0]
2 b \(\overline{6}m'2'\) 0,0,1/2 [0,0,w]
2 a \(\overline{6}'m'2\) 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p3m11'
\(a^* = a\) \(b^* = b\)
Origin at 0,0,z

Along [1,0,0] \(p_{2a}1m'1\)
\(a^* = c\) \(b^* = (a + 2b)/2\)
Origin at x,0,1/2

Along [2,1,0] \(p_{2a}2m'm'\)
\(a^* = c\) \(b^* = b/2\)
Origin at x,x/2,0
Origin on 3c2

Asymmetric unit

\[0 < x < 2/3; \quad 0 < y < 2/3; \quad 0 < z < 1/4; \quad x < (1+y)/2; \quad y \leq \min(1-x,(1+x)/2) \]

Vertices

\[
\begin{array}{cccccc}
0,0,0 & 1/2,0,0 & 2/3,1/3,0 & 1/3,2/3,0 & 0,1/2,0 \\
0,0,1/4 & 1/2,0,1/4 & 2/3,1/3,1/4 & 1/3,2/3,1/4 & 0,1/2,1/4 \\
\end{array}
\]

Symmetry Operations

1. \(1\)
 - \((1 | 0,0,0)\)

2. \(3^+\)
 - \((0,0,z)\)
 - \((3_z | 0,0,0)\)

3. \(3^-\)
 - \((0,0,z)\)
 - \((3_z^{-1} | 0,0,0)\)

4. \(m\) \(x,y,1/4\)
 - \((m_z | 0,0,1/2)\)

5. \(\bar{6}^-\)
 - \((0,0,z; 0,0,1/4)\)
 - \((6_z^{-1} | 0,0,1/2)\)

6. \(\bar{6}^+\)
 - \((0,0,z; 0,0,1/4)\)
 - \((6_z | 0,0,1/2)\)

7. \(c\) \((0,0,1/2)\)
 - \((m_y | 0,0,1/2)\)

8. \(c\) \((0,0,1/2)\)
 - \((x,2x,z)\)
 - \((m_z | 0,0,1/2)\)

9. \(c\) \((0,0,1/2)\)
 - \((0,0,1)\)
 - \((x,2x,z)\)
 - \((m_y | 0,0,1/2)\)

10. \(2\) \(x,x,0\)
 - \((2 | 0,0,0)\)

11. \(2\) \(x,2x,0\)
 - \((2 | 0,0,0)\)

12. \(2\) \(2x,x,0\)
 - \((2 | 0,0,0)\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>l</td>
</tr>
<tr>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) y, x-y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y, x-z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) y,x,y,z+1/2 [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+y,x,z+1/2 [u,v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u+w]</td>
</tr>
<tr>
<td></td>
<td>(8) x+y,y,z+1/2 [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,x-y,z+1/2 [u,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(11) x+y,y,z [u+v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(12) x-x-z [u,u-v,w]</td>
</tr>
</tbody>
</table>

6 k | m. |
x,y,1/4	[0,0,w]
	y,x-y,1/4 [0,0,w]
	x+y,x,1/4 [0,0,w]
	x,x-y,3/4 [0,0,w]

6 j | ..2 |
x,x,0	[u,u,0]
	x,2x,0 [u,2u,0]
	2x,x,0 [2u,u,0]
	x,2x,1/2 [u,2u,0]
	2x,x,1/2 [2u,u,0]

4 i | 3.. |
2/3,1/3,z	[0,0,w]
2/3,1/3,z+1/2	[0,0,w]
2/3,1/3,z+1/2	[0,0,w]
2/3,1/3,z	[0,0,w]

4 h | 3.. |
1/3,2/3,z	[0,0,w]
1/3,2/3,z+1/2	[0,0,w]
1/3,2/3,z+1/2	[0,0,w]
1/3,2/3,z	[0,0,w]

4 g | 3.. |
0,0,z	[0,0,w]
0,0,z+1/2	[0,0,w]
0,0,z+1/2	[0,0,w]
0,0,z	[0,0,w]

2 f | 6.. |
| 2/3,1/3,1/4| [0,0,w] |
| 2/3,1/3,3/4| [0,0,w] |

2 e | 3.2 |
| 2/3,1/3,0 | [0,0,0] |
| 2/3,1/3,1/2 | [0,0,0] |

2 d | 6.. |
| 1/3,2/3,1/4| [0,0,w] |
| 1/3,2/3,3/4| [0,0,w] |

2 c | 3.2 |
| 1/3,2/3,0 | [0,0,0] |
| 1/3,2/3,1/2 | [0,0,0] |

2 b | 6.. |
| 0,0,1/4 | [0,0,w] |
| 0,0,3/4 | [0,0,w] |

2 a | 3.2 |
| 0,0,0 | [0,0,0] |
| 0,0,1/2 | [0,0,0] |

Symmetry of Special Projections

Along [0,0,1] p3m11'
a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p3m11
a* = c/2 b* = (a + 2b)/2
Origin at 0,0,1/4

Along [2,1,0] p2mg
a* = c b* = b/2
Origin at x,0,1/4

Origin at x,x/2,0
Origin on \(3c21'\)

Asymmetric unit

\[
0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/4; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,(1+x)/2)
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 & \quad 0,1/2,0 \\
0,0,1/4 & \quad 1/2,0,1/4 & \quad 2/3,1/3,1/4 & \quad 1/3,2/3,1/4 & \quad 0,1/2,1/4
\end{align*}
\]

Symmetry Operations

For \(1 \neq \) set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 3^* \quad 0,0,z \\
(3) & \quad 3 \quad 0,0,z \\
(4) & \quad m \quad x,y,1/4 \\
(5) & \quad 6^* \quad 0,0,z; 0,0,1/4 \\
(6) & \quad 6 \quad 0,0,z; 0,0,1/4 \\
(7) & \quad c \quad (0,0,1/2) \quad x,x,z \\
(8) & \quad c \quad (0,0,1/2) \quad x,2x,z \\
(9) & \quad c \quad (0,0,1/2) \quad 2x,x,z \\
(10) & \quad 2 \quad x,x,0 \\
(11) & \quad 2 \quad x,2x,0 \\
(12) & \quad 2 \quad 2x,x,0
\end{align*}
\]
Continued

For 1’ + set

<table>
<thead>
<tr>
<th>(1) 1’</th>
<th>(2) 3’</th>
<th>(3) 3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1</td>
<td>0,0,0)’</td>
<td>(0,0,0)’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(4) m’</th>
<th>x,y,1/4</th>
<th>(5) 6’</th>
<th>0,0,z, 0,0,1/4</th>
<th>(6) 6’</th>
<th>0,0,z, 0,0,1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m,)</td>
<td>0,0,1/2</td>
<td>(6,)</td>
<td>0,0,1/2</td>
<td>(6,)</td>
<td>0,0,1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(7) c’</th>
<th>(0,0,1/2)</th>
<th>x,x,z</th>
<th>(8) c’</th>
<th>(0,0,1/2)</th>
<th>x,2x,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m,)</td>
<td>0,0,1/2</td>
<td>(m,)</td>
<td>0,0,1/2</td>
<td>(m,)</td>
<td>0,0,1/2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(10) 2’</th>
<th>x,0</th>
<th>(11) 2’</th>
<th>x,2x,0</th>
<th>(12) 2’</th>
<th>2x,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2,)</td>
<td>0,0,0</td>
<td>(2,)</td>
<td>0,0,0</td>
<td>(2,)</td>
<td>0,0,0</td>
</tr>
</tbody>
</table>

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); 1’.

Positions

Multiplicity
Wyckoff letter
Site Symmetry

<table>
<thead>
<tr>
<th>Point</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,y,z</td>
<td>12</td>
<td>1* + 1’ +</td>
</tr>
<tr>
<td>(2) y,x-y,z</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(3) x+y,x,z</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(4) x,y,z+1/2</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(5) y,x,y,z+1/2</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(6) x+y,x,z+1/2</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(7) y,x,z+1/2</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(8) x+y,y,z+1/2</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(9) x,y,x,z+1/2</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(10) y,x,z</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(11) x+y,y,z</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>(12) x,y,x,z</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>x,y,1/4</td>
<td>6</td>
<td>m..1’</td>
</tr>
<tr>
<td>(6)</td>
<td>0,0,0</td>
<td>y,x-y,1/4</td>
</tr>
<tr>
<td>(6)</td>
<td>0,0,0</td>
<td>x+y,x,1/4</td>
</tr>
<tr>
<td>(6)</td>
<td>0,0,0</td>
<td>x,y,3/4</td>
</tr>
<tr>
<td>(6)</td>
<td>0,0,0</td>
<td>x+y,y,3/4</td>
</tr>
<tr>
<td>(6)</td>
<td>0,0,0</td>
<td>x,y,3/4</td>
</tr>
<tr>
<td>x,x,0</td>
<td>6</td>
<td>..21’</td>
</tr>
<tr>
<td>(6)</td>
<td>0,0,0</td>
<td>x,2x,0</td>
</tr>
<tr>
<td>(6)</td>
<td>0,0,0</td>
<td>2x,0</td>
</tr>
<tr>
<td>(6)</td>
<td>0,0,0</td>
<td>x,x,1/2</td>
</tr>
<tr>
<td>(6)</td>
<td>0,0,0</td>
<td>2x,1/2</td>
</tr>
<tr>
<td>(6)</td>
<td>0,0,0</td>
<td>2x,x,1/2</td>
</tr>
<tr>
<td>2/3,1/3,z</td>
<td>4</td>
<td>3..1’</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0,0,0</td>
<td>2/3,1/3,z+1/2</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0,0,0</td>
<td>2/3,1/3,z+1/2</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0,0,0</td>
<td>2/3,1/3,z</td>
</tr>
<tr>
<td>2/3,1/3,0</td>
<td>4</td>
<td>3..1’</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0,0,0</td>
<td>1/3,2/3,z+1/2</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0,0,0</td>
<td>1/3,2/3,z+1/2</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0,0,0</td>
<td>1/3,2/3,z</td>
</tr>
<tr>
<td>0,0</td>
<td>4</td>
<td>3..1’</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0,0,0</td>
<td>0,0,z+1/2</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0,0,0</td>
<td>0,0,z+1/2</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0,0,0</td>
<td>0,0,z</td>
</tr>
<tr>
<td>2/3,1/3,1/4</td>
<td>2</td>
<td>..1’</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0,0,0</td>
<td>2/3,1/3,1/4</td>
</tr>
<tr>
<td>0,0,1/4</td>
<td>2</td>
<td>..1’</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0,0,0</td>
<td>0,0,1/4</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0,0,0</td>
<td>0,0,3/4</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0,0,0</td>
<td>0,0,1/2</td>
</tr>
<tr>
<td>0,0,0</td>
<td>2</td>
<td>..1’</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0,0,0</td>
<td>0,0,0</td>
</tr>
<tr>
<td>(2,2)</td>
<td>0,0,0</td>
<td>0,0,1/2</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] \(p3m11' \)
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] \(p1m11' \)
\(\mathbf{a}^* = \mathbf{c}/2 \quad \mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2 \)
Origin at x,0,0

Along [2,1,0] \(p2mg1' \)
\(\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = \mathbf{b}/2 \)
Origin at x,x/2,0
Origin on 3c'2

Asymmetric unit

\[0 < x < \frac{2}{3}; \quad 0 < y < \frac{2}{3}; \quad 0 < z < \frac{1}{4}; \quad x < \frac{(1+y)}{2}; \quad y < \min(1-x,\frac{1+x}{2}) \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 & \quad 0,1/2,0 \\
0,0,1/4 & \quad 1/2,0,1/4 & \quad 2/3,1/3,1/4 & \quad 1/3,2/3,1/4 & \quad 0,1/2,01/4
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) \quad 1 & \quad (2) \quad 3^* \quad 0,0,z \\
(1,0,0,0) & \quad (3,0,0,0) & \quad (3,0,0,0) \\
(4) \quad m' \quad x,y,1/4 & \quad (5) \quad \bar{6}' \quad 0,0,z; 0,0,1/4 \\
(m_2,0,0,1/2)' & \quad (6,0,0,1/2)' & \quad (6,0,0,1/2)' \\
(7) \quad c' \quad (0,0,1/2) & \quad (8) \quad c' \quad (0,0,1/2) \\
(m_y,0,0,1/2)' & \quad (m_x,0,0,1/2)' & \quad (m_y,0,0,1/2)' \\
(10) \quad 2 \quad x,x,0 & \quad (11) \quad 2 \quad x,2x,0 \\
(2,0,0,0) & \quad (2,0,0,0) & \quad (2,0,0,0)
\end{align*}
\]

188.3.1448 - 1 - 3152
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
<th>Coordinates</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1</td>
<td>i</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z [u-v,w]</td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
<td>(5) y,x-y,z+1/2 [u-v,w]</td>
<td>(6) x+y,x,z+1/2 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(7) y,x,z+1/2 [v,u,0]</td>
<td>(8) x+y,y,z+1/2 [u+v,v,w]</td>
<td>(9) x,x-y,z+1/2 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(10) y,x,z [v,u,0]</td>
<td>(11) x+y,y,z [u+v,v,w]</td>
<td>(12) x,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>k</td>
<td>m'</td>
<td>x,y,1/4 [u,v,0]</td>
<td>y,x-y,1/4 [u-v,0]</td>
<td>x+y,x,1/4 [u+v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y,x,3/4 [v,u,0]</td>
<td>x+y,y,3/4 [u+v,v,w]</td>
<td>x,x-y,3/4 [v,u-v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>j</td>
<td>..2</td>
<td>x,x,0 [u,u,0]</td>
<td>x,2x,0 [u,2u,0]</td>
<td>2x,x,0 [2u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x,x,1/2 [u,u,0]</td>
<td>x,2x,1/2 [u,2u,0]</td>
<td>2x,x,1/2 [2u,u,0]</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>i</td>
<td>3..</td>
<td>2/3,1/3,z [0,0,w]</td>
<td>2/3,1/3,z+1/2 [0,0,w]</td>
<td>2/3,1/3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/3,2,3,z [0,0,w]</td>
<td>1/3,2,3,z+1/2 [0,0,w]</td>
<td>1/3,2,3,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>f</td>
<td>6'..</td>
<td>2/3,1/3,1/4 [0,0,0]</td>
<td>2/3,1/3,3/4 [0,0,0]</td>
<td>2/3,1/3,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,3,1/3,0 [0,0,0]</td>
<td>2,3,1/3,1/2 [0,0,0]</td>
<td>2,3,1/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/3,2,3,1/4 [0,0,0]</td>
<td>1/3,2,3,3/4 [0,0,0]</td>
<td>1/3,2,3,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/3,2,3,0 [0,0,0]</td>
<td>1/3,2,3,1/2 [0,0,0]</td>
<td>1/3,2,3,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p3m1
a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p1m1
a* = c/2 b* = (a + 2b)/2
Origin at x,0,0

Along [2,1,0] p2m1g'
a* = c b* = b/2
Origin at x,x/2,0
Origin on 3c2'

Asymmetric unit
\[0 < x < \frac{2}{3}; \quad 0 < y < \frac{2}{3}; \quad 0 < z < \frac{1}{4}; \quad x < \frac{(1+y)}{2}; \quad y < \min(1-x,(1+x)/2)\]

Vertices
0,0,0 \quad \frac{1}{2},0,0 \quad \frac{2}{3},\frac{1}{3},0 \quad \frac{1}{3},\frac{2}{3},0 \quad 0,\frac{1}{2},0 \quad 0,0,\frac{1}{4} \quad \frac{1}{2},0,\frac{1}{4} \quad \frac{2}{3},\frac{1}{3},\frac{1}{4} \quad \frac{1}{3},\frac{2}{3},\frac{1}{4} \quad 0,\frac{1}{2},0\frac{1}{4}

Symmetry Operations

(1) 1
(1) 0,0,0

(2) \(3^*\) 0,0,\(z\)
(3) \(3^{-1}\) 0,0,\(z\)

(3) \(3^{-1}\) 0,0,\(z\)

(4) \(m'\) \(x,y,\frac{1}{4}\)
\((m_{y}z)|0,0,\frac{1}{2}\)'
\((m_{x}z)|0,0,\frac{1}{2}\)'

(5) \(\overline{6}'\) 0,0,\(z\); 0,0,1/4
\((6_{z}^{-1})|0,0,\frac{1}{2}\)'
\((6_{z})|0,0,\frac{1}{2}\)'

(6) \(\overline{6}'\) 0,0,\(z\); 0,0,1/4
\((6_{z})|0,0,\frac{1}{2}\)'

(7) \(c\) \((0,0,1/2)\) \(x,y,z\)
\((m_{x}z)|0,0,\frac{1}{2}\)'

(8) \(c\) \((0,0,1/2)\) \(x,2x,z\)
\((m_{x}|0,0,\frac{1}{2})\)

(9) \((c(0,0,1/2))\) 2x,x,z
\((m_{y}|0,0,\frac{1}{2})\)

(10) \(2'\) \(x,x,0\)
\((2_{1}|0,0,0)\)'

(11) \(2'\) \(x,2x,0\)
\((2_{1}|0,0,0)\)'

(12) \(2'\) \(2x,x,0\)
\((2_{1}|0,0,0)\)'

188.4.1449 - 1 - 3154
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Generators</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>12</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2) y,x-y,z [v,u-v,w]</td>
<td></td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td>(3) x+y,x,z [u+v,u,w]</td>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td>(4) x,y,z+1/2 [u,v,w]</td>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(5) y,x-y,z+1/2 [v,u-v,w]</td>
<td></td>
<td>(5) y,x-y,z+1/2 [v,u-v,w]</td>
</tr>
<tr>
<td>(6) x+y,x,z+1/2 [u+v,u,w]</td>
<td></td>
<td>(6) x+y,x,z+1/2 [u+v,u,w]</td>
</tr>
<tr>
<td>(7) y,x,z+1/2 [v,u,w]</td>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(8) x+y,y,z+1/2 [u-v,v,w]</td>
<td></td>
<td>(8) x+y,y,z+1/2 [u-v,v,w]</td>
</tr>
<tr>
<td>(9) x,x-y,z+1/2 [u,u+v,w]</td>
<td></td>
<td>(9) x,x-y,z+1/2 [u,u+v,w]</td>
</tr>
<tr>
<td>(10) y,x,z [v,u,w]</td>
<td></td>
<td>(10) y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(11) x+y,y,z [u,v,v,w]</td>
<td></td>
<td>(11) x+y,y,z [u,v,v,w]</td>
</tr>
<tr>
<td>(12) x,x-y,z [u,u+v,w]</td>
<td></td>
<td>(12) x,x-y,z [u,u+v,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p3m1
a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p3m1
a* = a/2 b* = (a + 2b)/2
Origin at 0,0,0

Along [2,1,0] p2'm'g
a* = c b* = b/2
Origin at 0,0,0
Origin on 3c'2'

Asymmetric unit

<table>
<thead>
<tr>
<th></th>
<th>0 ≤ x ≤ 2/3;</th>
<th>0 ≤ y ≤ 2/3;</th>
<th>0 ≤ z ≤ 1/4;</th>
<th>x ≤ (1+y)/2;</th>
<th>y ≤ min(1-x,(1+x)/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertices</td>
<td>0,0,0</td>
<td>1/2,0,0</td>
<td>2/3,1/3,0</td>
<td>1/3,2/3,0</td>
<td>0,1/2,0</td>
</tr>
<tr>
<td></td>
<td>0,0,1/4</td>
<td>1/2,0,1/4</td>
<td>2/3,1/3,1/4</td>
<td>1/3,2/3,1/4</td>
<td>0,1/2,01/4</td>
</tr>
</tbody>
</table>

Symmetry Operations

1. 1
2. 3* 0,0,z
 (3z|0,0,0)
3. 3' 0,0,z
 (3z|0,0,0)
4. m x,y,1/4
 (mz|0,0,1/2)
5. 6* 0,0,z; 0,0,1/4
 (6z|0,0,1/2)
6. 6' 0,0,z; 0,0,1/4
 (6z|0,0,1/2)
7. c' (0,0,1/2) x,x,z
 (mxy|0,0,1/2')
8. c' (0,0,1/2) x,2x,z
 (mx|0,0,1/2')
9. c' (0,0,1/2) 2x,x,z
 (my|0,0,1/2')
10. 2' x,x,0
 (2|0,0,0')
11. 2' x,2x,0
 (2|0,0,0')
12. 2' 2x,x,0
 (2|0,0,0')
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1</td>
<td>x,y,z [u,v,w]</td>
<td>1</td>
<td>l</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(2) y,x-y,z [v,u-v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(5) y,x-y,z+1/2 [v,u+v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(6) x+y,x,z+1/2 [u-v,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(8) x+y,y,z+1/2 [u+v,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(9) x,x-y,z+1/2 [u,u-v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(10) y,x,z [v,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(11) x+y,y,z [u-v,v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(12) x,x-y,z [u+u+v,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>k</td>
<td>x,y,1/4 [0,0,w]</td>
<td>1</td>
<td>l</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>y,x-y,1/4 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>x+y,x,1/4 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>j</td>
<td>x,x,0 [u,u,w]</td>
<td>1</td>
<td>l</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>x,2x,0 [u,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2x,x,0 [0,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2x,x,1/2 [u,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2x,x,1/2 [0,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>i</td>
<td>2/3,1/3,z [0,0,w]</td>
<td>1</td>
<td>l</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2/3,1/3,z+1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2/3,1/3,z+1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2/3,1/3,z+1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>1/3,2/3,z [0,0,w]</td>
<td>1</td>
<td>l</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1/3,2/3,z+1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1/3,2/3,z+1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1/3,2/3,z+1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>g</td>
<td>0,0,z [0,0,w]</td>
<td>2</td>
<td>l</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0,0,z+1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>2/3,1/3,1/4 [0,0,w]</td>
<td>2</td>
<td>l</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2/3,1/3,1/4 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2/3,1/3,1/4 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>2/3,1/3,0 [0,0,w]</td>
<td>3</td>
<td>l</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2/3,1/3,1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2/3,1/3,1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>1/3,2/3,1/4 [0,0,w]</td>
<td>3</td>
<td>l</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1/3,2/3,1/4 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1/3,2/3,1/4 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>1/3,2/3,0 [0,0,w]</td>
<td>3</td>
<td>l</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1/3,2/3,1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1/3,2/3,1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>0,0,1/4 [0,0,w]</td>
<td>2</td>
<td>l</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0,0,3/4 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0,0,3/4 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>0,0,0 [0,0,w]</td>
<td>2</td>
<td>l</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0,0,1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0,0,1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p3m11' Along [1,0,0] p1m1 Along [2,1,0] p2'mg'

a* = a b* = b a* = c/2 b* = (a + 2b)/2

Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin on 62m

Asymmetric unit

- \(0 \leq x \leq 2/3;\) \(0 \leq y \leq 1/2;\) \(0 \leq z \leq 1/2;\) \(x \leq (1+y)/2;\) \(y \leq \min(1-x,x)\)

Vertices

- \(0,0,0\)
- \(1/2,0,0\)
- \(2/3,1/3,0\)
- \(1/2,1/2,0\)
- \(0,0,1/2\)
- \(1/2,0,1/2\)
- \(2/3,1/3,1/2\)
- \(1/2,1/2,1/2\)

Symmetry Operations

1. 1
2. \(3^+ 0,0,z\)
3. \(3^- 0,0,z\)
 - \((3_z | 0,0,0)\)
 - \((3_z^{-1} | 0,0,0)\)
4. \(m x,y,0\)
 - \((m_2 | 0,0,0)\)
5. \(6^- 0,0,z; 0,0,0\)
 - \((6_z^{-1} | 0,0,0)\)
6. \(6^+ 0,0,z; 0,0,0\)
 - \((6_z | 0,0,0)\)
7. \(2 x,x,0\)
 - \((2_{xy} | 0,0,0)\)
8. \(2 x,0,0\)
 - \((2_x | 0,0,0)\)
9. \(2 0,y,0\)
 - \((2_y | 0,0,0)\)
10. \(m x,x,z\)
 - \((m_3 | 0,0,0)\)
11. \(m x,0,z\)
 - \((m_2 | 0,0,0)\)
12. \(m 0,y,z\)
 - \((m_1 | 0,0,0)\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>l</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>l</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) (\bar{y}, \bar{x}, \bar{y}, \bar{z}, \bar{v}, u-v, w)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y, \bar{x}, \bar{z}, \bar{u}+v, \bar{u}, w</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y, \bar{z}, [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) (\bar{y}, \bar{x}, \bar{z}, [v, \bar{u}+v, \bar{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) (x+y, x, \bar{z}, [u-v, u, w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y, \bar{x}, \bar{z}, [v, u, \bar{w}]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) x-y, \bar{y}, \bar{z}, [v-u, \bar{v}, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) (x, x+y, \bar{z}, [u, u+v, w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) x, \bar{x}, \bar{z}, [v-u, \bar{w}]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) y-x, \bar{z}, [u+v, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) x, x+y, \bar{z}, [u, u-v, w]</td>
</tr>
</tbody>
</table>

6	k	m..
6	j	m..
6	i	..m
		1/3, 2/3, z [0, 0, w]
		1/3, 2/3, \(\bar{z}, [0, 0, w]\)
		2/3, 1/3, z [0, 0, w]
		2/3, 1/3, \(\bar{z}, [0, 0, w]\)

4	h	3..
3	g	m2m
3	f	m2m
2	e	3.m
2	d	6..
2	c	6..
1	b	62m
1	a	62m

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p31m1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = c)</td>
<td>(b^* = (a + 2b)/2)</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [2,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = c)</td>
<td>(b^* = b/2)</td>
</tr>
<tr>
<td>Origin at x,x/2,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on \(\bar{6}2m1' \)

Asymmetric unit

\[
0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,x)
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/2,1/2,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2 & \quad 1/2,1/2,1/2
\end{align*}
\]

Symmetry Operations

For \(1' \) + set

\[
\begin{align*}
(1) & \quad 1 & \quad (2) & \quad 3' & \quad 0,0,z \\
(3) & \quad 3' & \quad 0,0,z \\
(4) & \quad m_{x,y,0} & \quad (5) & \quad 6' & \quad 0,0,z & \quad 0,0,0 \\
& \quad (m_{x,y,0}) & \quad (6) & \quad 6' & \quad 0,0,z & \quad 0,0,0 \\
(7) & \quad 2_{x,x,0} & \quad (8) & \quad 2 & \quad x,0,0 \\
& \quad (2_{x,x,0}) & \quad (9) & \quad 2 & \quad 0,y,0 \\
(10) & \quad m_{x,x,z} & \quad (11) & \quad m & \quad x,0,z \\
& \quad (m_{x,x,z}) & \quad (12) & \quad m & \quad 0,y,z
\end{align*}
\]
For 1' + set

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(1 0,0,0)'</td>
<td>(2) y-x-y,z [0,0,0]</td>
</tr>
<tr>
<td>(2) 3'</td>
<td>(2) y,x-y,z [0,0,0]</td>
</tr>
<tr>
<td>0,0,z</td>
<td>(2) y,x-y,z [0,0,0]</td>
</tr>
<tr>
<td>(3) 3'</td>
<td>(3) x+y,x,z [0,0,0]</td>
</tr>
<tr>
<td>0,0,z</td>
<td>(3) x+y,x,z [0,0,0]</td>
</tr>
<tr>
<td>(4) m'</td>
<td>(4) x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>x,y,0</td>
<td>(5) y,0,z [0,0,0]</td>
</tr>
<tr>
<td>(5) m,0,0)</td>
<td>(6) x+y,x,z [0,0,0]</td>
</tr>
<tr>
<td>(6) m,0,0'</td>
<td>(6) x+y,x,z [0,0,0]</td>
</tr>
<tr>
<td>(7) 2'</td>
<td>(7) x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>x,x-y</td>
<td>(8) y-x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(8) m,0,0')</td>
<td>(9) x,x+y,z [0,0,0]</td>
</tr>
<tr>
<td>(9) m,0,0'</td>
<td>(9) x,x+y,z [0,0,0]</td>
</tr>
<tr>
<td>(10) m'</td>
<td>(10) x,x,z [0,0,0]</td>
</tr>
<tr>
<td>x,x,z</td>
<td>(11) x+y,x,z [0,0,0]</td>
</tr>
<tr>
<td>(11) m,0,0)</td>
<td>(12) x,x+y,z [0,0,0]</td>
</tr>
<tr>
<td>(12) m,0,0'</td>
<td>(12) x,x+y,z [0,0,0]</td>
</tr>
</tbody>
</table>

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 l 11'</td>
<td>1 + 1' +</td>
</tr>
<tr>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) y,x-y,z [0,0,0]</td>
</tr>
<tr>
<td>(3) x+y,x,z [0,0,0]</td>
<td>(4) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(5) y,x-y,z [0,0,0]</td>
<td>(6) x+y,x,z [0,0,0]</td>
</tr>
<tr>
<td>(7) x,y,z [0,0,0]</td>
<td>(8) x-y,y,z [0,0,0]</td>
</tr>
<tr>
<td>(9) x,x+y,z [0,0,0]</td>
<td>(10) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(11) x-y,x,z [0,0,0]</td>
<td>(12) x,x+y,z [0,0,0]</td>
</tr>
<tr>
<td>6 k m..1'</td>
<td>x,y,1/2 [0,0,0]</td>
</tr>
<tr>
<td>y,x,1/2 [0,0,0]</td>
<td>y,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>x-y,x,1/2 [0,0,0]</td>
<td>x-y,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>6 j m..1'</td>
<td>x,y,0 [0,0,0]</td>
</tr>
<tr>
<td>y,x,0 [0,0,0]</td>
<td>y,x,0 [0,0,0]</td>
</tr>
<tr>
<td>x-y,y,0 [0,0,0]</td>
<td>x-y,y,0 [0,0,0]</td>
</tr>
<tr>
<td>x,x+y,0 [0,0,0]</td>
<td>x,x+y,0 [0,0,0]</td>
</tr>
<tr>
<td>6 i ..m1'</td>
<td>x,0,z [0,0,0]</td>
</tr>
<tr>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>0,x,z [0,0,0]</td>
<td>0,x,z [0,0,0]</td>
</tr>
<tr>
<td>x,x,z [0,0,0]</td>
<td>x,x,z [0,0,0]</td>
</tr>
<tr>
<td>4 h 3..1'</td>
<td>1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td>1/3,2/3,2 [0,0,0]</td>
<td>1/3,2/3,2 [0,0,0]</td>
</tr>
<tr>
<td>2/3,1/3,2 [0,0,0]</td>
<td>2/3,1/3,2 [0,0,0]</td>
</tr>
<tr>
<td>2/3,1/3,2 [0,0,0]</td>
<td>2/3,1/3,2 [0,0,0]</td>
</tr>
<tr>
<td>3 g m2m1'</td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>0,x,0 [0,0,0]</td>
<td>0,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>0,x,0 [0,0,0]</td>
<td>0,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>3 f m2m1'</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td>2 e 3.m1'</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>0,0,0 [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>0,0,0 [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 d 6..1'</td>
<td>1/3,2/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2/3,1/3,1/2 [0,0,0]</td>
<td>2/3,1/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c 6..1'</td>
<td>1/3,2/3,0 [0,0,0]</td>
</tr>
<tr>
<td>2/3,1/3,0 [0,0,0]</td>
<td>2/3,1/3,0 [0,0,0]</td>
</tr>
<tr>
<td>1 b 62m1'</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>
Continued

1 a 62m1' 0,0,0 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p31m1'</td>
<td>a* = a b* = b</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>p2mm1'</td>
<td>a* = c b* = (a + 2b)/2</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Along [2,1,0]</td>
<td>p1m11'</td>
<td>a* = c b* = b/2</td>
</tr>
<tr>
<td>Origin at x,x/2,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin on $\bar{6}'2'm$

Asymmetric unit

<table>
<thead>
<tr>
<th>Vertices</th>
<th>$0,0,0$</th>
<th>$1/2,0,0$</th>
<th>$2/3,1/3,0$</th>
<th>$1/2,1/2,0$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$0,0,1/2$</td>
<td>$1/2,0,1/2$</td>
<td>$2/3,1/3,1/2$</td>
<td>$1/2,1/2,1/2$</td>
</tr>
</tbody>
</table>

Symmetry Operations

1. 1
 - $(1|0,0,0)$

2. 3^* $0,0,z$
 - $(3_z|0,0,0)$

3. 3^* $0,0,z$
 - $(3_z^{-1}|0,0,0)$

4. $m' x,y,0$
 - $(m_2|0,0,0')$

5. $\bar{6}'' - m' x,y,0$ z; $0,0,0$
 - $(6_z^{-1}|0,0,0')$

6. $\bar{6}'' - m' x,y,0$ z; $0,0,0$
 - $(6_z|0,0,0')$

7. $2' x,x,0$
 - $(2_{xy}|0,0,0')$

8. $2' x,x,0$
 - $(2_x|0,0,0')$

9. $2' y,0,0$
 - $(2_y|0,0,0')$

10. $m' x,x,z$
 - $(m_3|0,0,0)$

11. $m' x,x,z$
 - $(m_2|0,0,0)$

12. $m' y,z$
 - $(m_1|0,0,0)$
Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>l</td>
<td>1 (1) x,y,z [u,v,w] (2) y,-x-y,z [v,-u-v,w] (3) x+y,x,z [u+v,u,w] (4) x,y,-z [u,v,w] (5) y,-x-y,z [v,u+v,w] (6) x+y,x,-z [u,u-v,w] (7) y,x,z [v,-u,w] (8) x,y,z [v,w] (9) x,y,z [v+u,v,w] (10) y,x,z [v,u+w] (11) x-y,y,z [v-u,v+w] (12) x-y,x,z [v+u-v,w]</td>
</tr>
<tr>
<td>6</td>
<td>k</td>
<td>m'.. x,y,1/2 [u,v,0] y,x,1/2 [v,u,0]</td>
</tr>
<tr>
<td>6</td>
<td>j</td>
<td>m'.. x,y,0 [u,v,0] y,x,0 [v,u,0]</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>..m x,0,z [u,2u,0] x,0,z [v,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>3.. 1/3,2/3,0 [0,0,w]</td>
</tr>
<tr>
<td>3</td>
<td>g</td>
<td>m'2m x,0,1/2 [u,2u,0]</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>m'2m x,0,0 [u,2u,0]</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>3.m 0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>6'.. 1/3,2/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>6'.. 1/3,2/3,0 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>6'2m 0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>6'2m 0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: p31m
 - \(\mathbf{a}^* = \mathbf{a} \), \(\mathbf{b}^* = \mathbf{b} \) Origin at 0,0,z

- **Along [1,0,0]**: p2mm
 - \(\mathbf{a}^* = (\mathbf{a} + 2\mathbf{b})/2 \), \(\mathbf{b}^* = \mathbf{c} \) Origin at x,0,0

- **Along [2,1,0]**: p1m11'
 - \(\mathbf{a}^* = \mathbf{c} \), \(\mathbf{b}^* = \mathbf{b}/2 \) Origin at x,x/2,0
Origin on $\bar{6}2m'$

Asymmetric unit
- $0 \leq x \leq 2/3$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1/2$; $x \leq (1+y)/2$; $y \leq \min(1-x,x)$
- Vertices: $0,0,0$, $1/2,0,0$, $2/3,1/3,0$, $1/2,1/2,0$, $0,0,1/2$, $1/2,0,1/2$, $2/3,1/3,1/2$, $1/2,1/2,1/2$

Symmetry Operations

(1) 1
(2) 3^* 0,0,z
(3) 3^* 0,0,z
(4) m' 0,0,0
(5) 6' 0,0,0
(6) 6' 0,0,0
(7) 2 0,0,0
(8) 2 0,0,0
(9) 2 0,0,0
(10) m' 0,0,0
(11) m' 0,0,0
(12) m' 0,0,0
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>l</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>k</td>
<td>m'..</td>
</tr>
<tr>
<td>6</td>
<td>j</td>
<td>m'..</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>..m'</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>3..</td>
</tr>
<tr>
<td>3</td>
<td>g</td>
<td>m'2m'</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>m'2m'</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>3.m'</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>6'..</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>6'..</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>6'2m'</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>6'2m'</td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>12</th>
<th>l</th>
<th>1</th>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) y,x-y,z [v-u,v,w]</th>
<th>(3) x+y,x,z [u+v,u,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>k</td>
<td>m'..</td>
<td>x,y,1/2 [u,v,0]</td>
<td>y,x,1/2 [v-u,v,0]</td>
<td>x+y,x,1/2 [u+v,u,0]</td>
</tr>
<tr>
<td>6</td>
<td>j</td>
<td>m'..</td>
<td>x,y,0 [u,v,0]</td>
<td>y,x-y,0 [v-u,v,0]</td>
<td>x+y,x,0 [u+v,u,0]</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>..m'</td>
<td>x,0,z [u,0,w]</td>
<td>0,x,z [0,u,w]</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>3..</td>
<td>1/3,2,3/z [0,0,w]</td>
<td>1/3,2,3/z [0,0,w]</td>
<td>2/3,1,3/z [0,0,w]</td>
</tr>
<tr>
<td>3</td>
<td>g</td>
<td>m'2m'</td>
<td>x,0,1/2 [u,0,0]</td>
<td>0,x,1/2 [0,u,0]</td>
<td>x,x,1/2 [u,u,0]</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>m'2m'</td>
<td>x,0,0 [u,0,0]</td>
<td>0,x,0 [0,u,0]</td>
<td>x,x,o [u,u,o]</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>3.m'</td>
<td>0,0,2 [0,0,w]</td>
<td>0,0,2 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>6'..</td>
<td>1/3,2,3/1 [0,0,0]</td>
<td>2/3,1,3/1 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>6'..</td>
<td>1/3,2,3/0 [0,0,0]</td>
<td>2/3,1,3/0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>6'2m'</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>6'2m'</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p31m'</th>
<th>Along [1,0,0]</th>
<th>p2m'2m'</th>
<th>Along [2,1,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = c</td>
<td>b* = (a + 2b)/2</td>
<td>a* = c</td>
<td>b* = b/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x/2,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin on $\overline{6}2'm'$

Asymmetric unit

\[
\begin{align*}
0 \leq x & \leq 2/3; & 0 \leq y & \leq 1/2; & 0 \leq z & \leq 1/2; & x & \leq (1+y)/2; & y & \leq \min(1-x,x) \\
\text{Vertices} & & & & & & & \\
0,0,0 & & 1/2,0,0 & & 2/3,1/3,0 & & 1/2,1/2,0 \\
0,0,1/2 & & 1/2,0,1/2 & & 2/3,1/3,1/2 & & 1/2,1/2,1/2
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(1') & \quad 0,0,0 \\
(2) & \quad 3^* \quad 0,0,z \\
(2') & \quad 3 \quad 0,0,0 \\
(3) & \quad 3^* \quad 0,0,z \\
(3') & \quad 3 \quad 0,0,0 \\
(4) & \quad m \quad x,y,0 \\
& \quad (m_2|0,0,0) \\
(5) & \quad 6' \quad 0,0,z; 0,0,0 \\
& \quad (6_2|0,0,0) \\
(6) & \quad 6^* \quad 0,0,z; 0,0,0 \\
& \quad (6_z|0,0,0) \\
(7) & \quad 2' \quad x,x,0 \\
& \quad (2_y|0,0,0)' \\
(8) & \quad 2' \quad x,0,0 \\
& \quad (2_x|0,0,0)' \\
(9) & \quad 2' \quad 0,y,0 \\
& \quad (2_y|0,0,0)' \\
(10) & \quad m' \quad x,x,z \\
& \quad (m_3|0,0,0)' \\
(11) & \quad m' \quad x,0,z \\
& \quad (m_2|0,0,0)' \\
(12) & \quad m' \quad 0,y,z \\
& \quad (m_1|0,0,0)'
\end{align*}
\]
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) (\bar{y},x-y,z [\bar{v},u-v,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3) (x+y,x,z [u+v,\bar{u},w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5) (\bar{y},x-y,z [v,u+v,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6) (x+y,x,z [u-v,u,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8) (x-y,\bar{y},z [\bar{u}+v,v,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(9) (\bar{x},x+y,z [u,u-v,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(11) (x-y,\bar{y},z [u-v,\bar{v},w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(12) (\bar{x},x+y,z [u,\bar{u}+v,w])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>k</td>
<td>m..</td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\bar{y},x-y,1/2 [0,0,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x+y,\bar{x},1/2 [0,0,w])</td>
</tr>
<tr>
<td>6</td>
<td>j</td>
<td>m..</td>
<td>y,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\bar{y},x-y,0 [0,0,w])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x+y,\bar{x},0 [0,0,w])</td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>..m'</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0,\bar{x},z [0,u,\bar{w}])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\bar{x},\bar{x},z [u,u,w])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>h</td>
<td>3..</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td>3</td>
<td>g</td>
<td>m2'm'</td>
<td>x,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\bar{x},\bar{x},1/2 [0,0,w])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>f</td>
<td>m2'm'</td>
<td>x,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x,x,0 [0,0,w])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>e</td>
<td>3.m'</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0, (\bar{z} [0,0,w])</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>(\bar{6})..</td>
<td>1/3,2/3,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/3,1/3,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>c</td>
<td>(\bar{6})..</td>
<td>1/3,2/3,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2/3,1/3,0 [0,0,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>(\bar{6}2'm')</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\bar{x},0,1/2 [0,0,w])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>(\bar{6}2'm')</td>
<td>0,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(\bar{x},0,0 [0,0,w])</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>p31m1'</td>
</tr>
<tr>
<td>[1,0,0]</td>
<td>p2'2mm'</td>
</tr>
<tr>
<td>[2,1,0]</td>
<td>p1m1</td>
</tr>
<tr>
<td>a^+ = a</td>
<td>a^+ = c</td>
</tr>
<tr>
<td>b^+ = b</td>
<td>b^+ = (a + 2b)/2</td>
</tr>
<tr>
<td>Origin at 0,0,0</td>
<td>Origin at x,0,0</td>
</tr>
</tbody>
</table>
Origin on $\bar{6}2m$

Asymmetric unit

$0 \leq x \leq 2/3$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1/2$; $x \leq (1+y)/2$; $y \leq \min(1-x, x)$

Vertices

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1/2,0,0</td>
<td>2/3,1/3,0</td>
<td>1/2,1/2,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0,1/2</td>
<td>1/2,0,1/2</td>
<td>2/3,1/3,1/2</td>
<td>1/2,1/2,1/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Operations

For $(0,0,0) + \text{set}$

1. 1
2. 3^*, $0,0,z$
3. 3, $0,0,z$
4. m, $x,y,0$
5. $\bar{6}^*$, $0,0,z$; $0,0,0$
6. $\bar{6}^*$, $0,0,z$; $0,0,0$
7. 2, $x,x,0$
8. 2, $x,0,0$
9. 2, $0,y,0$
10. m, x,x,z
11. m, $x,0,z$
12. m, $0,y,z$

189.6.1456 - 1 - 3169
Continued

For (0,0,1)'+ set

(1) t'(0,0,1)
 (1) 0,0,1)
(2) 3'(0,0,1) 0,0,z
 (3) 3'(0,0,1) 0,0,z
 (3,1) 0,0,1)
(4) m' x,y,1/2
 (m,0,1)'
(5) 6' 0,0,z; 0,0,1/2
 (6) 6' 0,0,z; 0,0,1/2
 (6,1) 0,0,1)'
(7) 2' x,x,1/2
 (2,x,0,1)'
(8) 2' x,0,1/2
 (2,x,0,1)'
(9) 2' 0,y,1/2
 (2,y,0,1)'
(10) c'(0,0,1) x,x,z
 (m,0,1)'
(11) c' (0,0,1) x,0,z
 (m,0,1)'
(12) c' (0,0,1) 0,y,z
 (m,0,1)'

Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>l</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>k</td>
<td>m'.</td>
</tr>
<tr>
<td>12</td>
<td>j</td>
<td>m.</td>
</tr>
<tr>
<td>12</td>
<td>i</td>
<td>..m</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>3.</td>
</tr>
<tr>
<td>6</td>
<td>g</td>
<td>m'2m</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>m2m</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>3.m</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>6'..</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>6'..</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>6'2m</td>
</tr>
</tbody>
</table>

Coordinates

(0,0,0) + (0,0,1)'+

24 l 1
(1) x,y,z [u,v,w]
(2) y, y-x-y,z [u+v,u,w]
(3) x+y, x,z [u+v,u,w]
(4) x,y,z [u,v,w]
(5) y, x-y,z [u+v,u,w]
(6) x+y, x,z [u+v,u,w]
(7) y,x,z [u,v,w]
(8) x-y, y-z [u-v,v,w]
(9) x, x+y, z [u+v,u+w]
(10) y,x,z [u,v,w]
(11) x-y,y,z [u+v,v,w]
(12) x, x+y,z [u+v,u+w]

12 k m'.
(1) x,y,1/2 [u,v,0]
(2) y, x-y,1/2 [v-u,v,0]
(3) x+y, x,1/2 [v-u,v,0]
(4) x,y,z [u,v,w]
(5) y, x-y,z [u+v,u,w]
(6) x+y, x,z [u+v,u,w]
(7) y,x,z [v,u,w]
(8) x-y, y-z [u-v,v,w]
(9) x, x+y, z [u+v,u+w]
(10) y,x,z [v,u,w]
(11) x-y,y,z [u+v,v,w]
(12) x, x+y,z [u+v,u+w]

12 j m.
(1) x,y,0 [0,0,w]
(2) y, x-y,0 [0,0,w]
(3) x+y, x,0 [0,0,w]
(4) y,x,0 [0,0,w]
(5) x-y, y,0 [0,0,w]
(6) x, x+y, 0 [0,0,w]
(7) y,x,0 [0,0,w]
(8) x-y, y,0 [0,0,w]
(9) x, x+y, 0 [0,0,w]
(10) x,y,0 [0,0,w]
(11) y,x,0 [0,0,w]
(12) x, x+y, 0 [0,0,w]

12 i ..m
(1) x,0,z [u,2u,0]
(2) 0,x,z [2u,0,0]
(3) x,0,z [u,0,0]
(4) x,0,0 [0,0,0]
(5) 0,x,0 [0,0,0]
(6) 0,0,z [0,0,0]
(7) 0,0,0 [0,0,0]
(8) 2/3,1/3,0 [0,0,0]
(9) 2/3,1/3,0 [0,0,0]
(10) 2/3,1/3,0 [0,0,0]
(11) 2/3,1/3,0 [0,0,0]
(12) 2/3,1/3,0 [0,0,0]

8 h 3..
(1) 1/3,2/3,z [0,0,0]
(2) 1/3,2/3,z [0,0,0]
(3) 1/3,2/3,z [0,0,0]
(4) 1/3,2/3,z [0,0,0]
(5) 1/3,2/3,z [0,0,0]
(6) 1/3,2/3,z [0,0,0]
(7) 1/3,2/3,z [0,0,0]
(8) 1/3,2/3,z [0,0,0]
(9) 1/3,2/3,z [0,0,0]
(10) 1/3,2/3,z [0,0,0]
(11) 1/3,2/3,z [0,0,0]
(12) 1/3,2/3,z [0,0,0]

6 g m'2m
(1) x,0,1/2 [u,2u,0]
(2) 0,x,1/2 [2u,0,0]
(3) x,0,1/2 [u,2u,0]
(4) 0,x,0 [0,0,0]
(5) 0,x,0 [0,0,0]
(6) 0,x,0 [0,0,0]
(7) 0,x,0 [0,0,0]
(8) 0,x,0 [0,0,0]
(9) 0,x,0 [0,0,0]
(10) 0,x,0 [0,0,0]
(11) 0,x,0 [0,0,0]
(12) 0,x,0 [0,0,0]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Equation 1</th>
<th>Equation 2</th>
<th>Equation 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p31m1'</td>
<td>$a^* = a$</td>
<td>$b^* = b$</td>
<td>Origin at 0,0,z</td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>p2a* 2mm</td>
<td>$a^* = c$</td>
<td>$b^* = (a + 2b)/2$</td>
<td>Origin at x,0,0</td>
</tr>
<tr>
<td>Along [2,0,0]</td>
<td>p1m11'</td>
<td>$a^* = c$</td>
<td>$b^* = b/2$</td>
<td>Origin at x,x/2,0</td>
</tr>
</tbody>
</table>
Origin on \(\bar{6}2m' \)

Asymmetric unit

\[
0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,x)
\]

Vertices

<table>
<thead>
<tr>
<th></th>
<th>0,0,0</th>
<th>1/2,0,0</th>
<th>2/3,1/3,0</th>
<th>1/2,1/2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,0,1/2</td>
<td>1/2,0,1/2</td>
<td>2/3,1/3,1/2</td>
<td>1/2,1/2,1/2</td>
</tr>
</tbody>
</table>

Symmetry Operations

For \((0,0,0) + \) set

- \((1) 1\)
 \((1|0,0,0)\)
- \((2) 3^* \quad 0,0,z\)
 \((3z|0,0,0)\)
- \((3) 3^* \quad 0,0,z\)
 \((3z^{-1}|0,0,0)\)
- \((4) m' \quad x,y,0\)
 \((m_2|0,0,0)')\)
- \((5) \bar{6}^* \quad 0,0,z; 0,0,0\)
 \((\bar{6}_z|0,0,0)')\)
- \((6) \bar{6}^* \quad 0,0,z; 0,0,0\)
 \((\bar{6}_z|0,0,0)')\)
- \((7) 2 \quad x,x,0\)
 \((2_x|0,0,0)\)
- \((8) 2 \quad x,0,0\)
 \((2_y|0,0,0)\)
- \((9) 2 \quad 0,y,0\)
 \((2_y|0,0,0)\)
- \((10) m' \quad x,x,z\)
 \((m_3|0,0,0)')\)
- \((11) m' \quad x,0,z\)
 \((m_2|0,0,0)')\)
- \((12) m' \quad 0,y,z\)
 \((m_1|0,0,0)')\)
Continued

For $(0,0,1)'+ \text{ set}$

<table>
<thead>
<tr>
<th>Generator selected</th>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) $t'(0,0,1)$</td>
<td>(1) $t'(0,0,1)'$</td>
<td>$(0,0,0) + (0,0,1)' +$</td>
</tr>
<tr>
<td>(1) $t(0,0,1)$</td>
<td>(2) $3^* (0,0,1)$</td>
<td>$(0,0,0) + (0,0,1)' +$</td>
</tr>
<tr>
<td>(1) $t'(0,0,1)'$</td>
<td>(3) $3^* (0,0,1)'$</td>
<td>$(0,0,0) + (0,0,1)' +$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generator selected</th>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) $m x,y,1/2$</td>
<td>(4) $m x,y,1/2$</td>
<td>$(0,0,0) + (0,0,1)' +$</td>
</tr>
<tr>
<td>(m) $x,y,1/2$</td>
<td>(5) $m x,y,1/2$</td>
<td>$(0,0,0) + (0,0,1)' +$</td>
</tr>
<tr>
<td>(7) $2' x,x,1/2$</td>
<td>(8) $2' x,x,1/2$</td>
<td>$(0,0,0) + (0,0,1)' +$</td>
</tr>
<tr>
<td>(2y) $x,x,1/2'$</td>
<td>(9) $2' x,x,1/2'$</td>
<td>$(0,0,0) + (0,0,1)' +$</td>
</tr>
</tbody>
</table>

Generators selected

(1); $t(1,0,0)$; $t(0,1,0)$; $t'(0,0,1)$; (2); (4); (7).
Continued

2 a \bar{6}'2m' 0,0,0 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>p31m1'</td>
<td>Origin at 0,0,z</td>
</tr>
<tr>
<td>a^* = a</td>
<td>b^* = b</td>
<td></td>
</tr>
<tr>
<td>[1,0,0]</td>
<td>p_{2a^*}2m'm'</td>
<td>Origin at x,0,0</td>
</tr>
<tr>
<td>a^* = c</td>
<td>b^* = (a + 2b)/2</td>
<td></td>
</tr>
<tr>
<td>[2,1,0]</td>
<td>p_{2a^*}1m1</td>
<td>Origin at x,x/2,1/2</td>
</tr>
<tr>
<td>a^* = c</td>
<td>b^* = b/2</td>
<td></td>
</tr>
</tbody>
</table>

\[a^* = \frac{a + 2b}{2} \]
Origin on 32c

Asymmetric unit

\[
\begin{align*}
0 \leq x & \leq 2/3; & 0 \leq y & \leq 2/3; & 0 \leq z & \leq 1/4; & x & \leq (1+y)/2; & y & \leq \min(1-x,(1+x)/2)
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 & \quad 0,1/2,0
\end{align*}
\]

\[
\begin{align*}
0,0,1/4 & \quad 1/2,0,1/4 & \quad 2/3,1/3,1/4 & \quad 1/3,2/3,1/4 & \quad 0,1/2,1/4
\end{align*}
\]

Symmetry Operations

(1) 1
(1 0,0,0)

(2) 3^* 0,0,z
(3z 0,0,0)

(3) 3^- 0,0,z
(3z^- 0,0,0)

(4) m x,y,1/4
(m_2 0,0,1/2)

(5) 6^- 0,0,z; 0,0,1/4
(6^- 0,0,1/2)

(6) 6^- 0,0,z; 0,0,1/4
(6^- 0,0,1/2)

(7) 2 x,x,0
(2xy 0,0,0)

(8) 2 x,0,0
(2z 0,0,0)

(9) 2 0,y,0
(2y 0,0,0)

(10) c (0,0,1/2) x,x,z
(m_3 0,0,1/2)

(11) c (0,0,1/2) x,0,z
(m_2 0,0,1/2)

(12) c (0,0,1/2) 0,y,z
(m_1 0,0,1/2)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Symmetry of Special Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>1/3,2/3,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(2) y,x-z [v,u,w]</td>
<td>1/3,2/3,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
<td>0,0,1/4 0,0,0</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z [u,v,w]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(10) x,y,z [u,v,w]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(11) x,y,z [u,v,w]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(12) x,y,z [u,v,w]</td>
<td>0,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>
Origin on 32c1'

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{2}{3}; \quad 0 \leq z \leq \frac{1}{4}; \quad x \leq \frac{1+y}{2}; \quad y \leq \min(1-x,(1+x)/2)\]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 2/3,1/3,0 \quad 1/3,2/3,0 \quad 0,1/2,0\]
\[0,0,1/4 \quad 1/2,0,1/4 \quad 2/3,1/3,1/4 \quad 1/3,2/3,1/4 \quad 0,1/2,1/4\]

Symmetry Operations

For 1 + set

(1) 1

(2) \(3^*\) 0,0,z
(3) \(3\) 0,0,z

(4) m x,y,1/4

(5) \(\bar{6}^*\) 0,0,z; 0,0,1/4
(6) \(\bar{6}\) 0,0,z; 0,0,1/4

(7) 2 x,x,0
(8) 2 x,0,0
(9) 2 0,y,0

(10) c (0,0,1/2) x,x,z
(11) c (0,0,1/2) x,0,z
(12) c (0,0,1/2) 0,y,z
For 1' + set

<table>
<thead>
<tr>
<th>Position</th>
<th>Generators selected</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1'</td>
<td>(1) t(1,0,0); t(0,1,0); t(0,0,1); (2) (4); (7); 1'.</td>
<td>1 + 1' +</td>
</tr>
<tr>
<td>(2) 3'</td>
<td>(2) y.x-y,z [0,0,0]</td>
<td>(3) x+y,\bar{x},z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(3) y.x-y,z+1/2 [0,0,0]</td>
<td>(4) x+y,\bar{x},z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(4) m'</td>
<td>(5) y.x-y,z+1/2 [0,0,0]</td>
<td>(6) x+y,\bar{x},z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(5) 6'</td>
<td>(5) y.x-y,z [0,0,0]</td>
<td>(7) x+y,\bar{x},z [0,0,0]</td>
</tr>
<tr>
<td>(7) 2'</td>
<td>(6) x+y,\bar{x},z [0,0,0]</td>
<td>(8) x-y,\bar{y},z [0,0,0]</td>
</tr>
<tr>
<td>(8) 2'</td>
<td>(7) x-y,\bar{y},z+1/2 [0,0,0]</td>
<td>(9) x+y,\bar{x},z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(9) 2'</td>
<td>(10) y.x,z+1/2 [0,0,0]</td>
<td>(11) x-y,\bar{y},z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(10) c'</td>
<td>(11) x-y,\bar{y},z [0,0,0]</td>
<td>(12) x+y,\bar{x},z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(11) c'</td>
<td>(12) x+y,\bar{x},z+1/2 [0,0,0]</td>
<td>6 h m..1'</td>
</tr>
<tr>
<td>(12) c'</td>
<td>x,2x,0 [0,0,0]</td>
<td>y,\bar{y},3/4 [0,0,0]</td>
</tr>
<tr>
<td>(13) c'</td>
<td>x,x,1/2 [0,0,0]</td>
<td>x+y,\bar{x},1/2 [0,0,0]</td>
</tr>
<tr>
<td>(14) c'</td>
<td>x,x,1/2 [0,0,0]</td>
<td>x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>(15) c'</td>
<td>1/3,2/3,z [0,0,0]</td>
<td>1/3,2/3,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(16) c'</td>
<td>2/3,1/3,z [0,0,0]</td>
<td>2/3,1/3,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(17) c'</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>(18) c'</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>
Continued

Symmetry of Special Projections

Along [0,0,1] p31m1'
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] p2mg1'
\(\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2 \)
Origin at x,0,0

Along [2,1,0] p1m11'
\(\mathbf{a}^* = \mathbf{c}/2 \quad \mathbf{b}^* = \mathbf{b}/2 \)
Origin at x,x/2,0
Origin on 32'c

Asymmetric unit

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0, 1/4</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>0</td>
<td>1/4</td>
</tr>
</tbody>
</table>

Vertices

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0, 0</td>
<td>1/2, 0, 0</td>
<td>2/3, 1/3, 0</td>
</tr>
<tr>
<td>0, 0, 1/4</td>
<td>1/2, 0, 1/4</td>
<td>2/3, 1/3, 1/4</td>
</tr>
<tr>
<td>0, 1/2, 0</td>
<td>1/3, 2/3, 0</td>
<td>0, 1/2, 0</td>
</tr>
<tr>
<td>0, 1/2, 1/4</td>
<td>1/3, 2/3, 1/4</td>
<td>0, 1/2, 1/4</td>
</tr>
</tbody>
</table>

Symmetry Operations

(1) 1
(1 1 0, 0, 0)

(2) 3+ 0, 0, z
(2 3 0, 0, 0)

(3) 3- 0, 0, z
(3 3- 0, 0, 0)

(4) m' x, y, 1/4
(m 4 0, 0, 1/2)

(5) 6- x, 0, z; 0, 0, 1/4
(5 6 0, 0, 1/2)

(6) 6+ 0, 0, z; 0, 0, 1/4
(6 6 0, 0, 1/2)

(7) 2' x, x, 0
(7 2' 0, 0, 0)

(8) 2' x, 0, 0
(8 2' 0, 0, 0)

(9) 2' y, 0, 0
(9 2' 0, 0, 0)

(10) c (0, 0, 1/2) x, x, z
(c 10 0, 0, 1/2)

(11) c (0, 0, 1/2) x, 0, z
(c 11 0, 0, 1/2)

(12) c (0, 0, 1/2) y, y, z
(c 12 0, 0, 1/2)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>i 1</td>
<td>12</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>h m'..</td>
<td>6</td>
<td>x,y,1/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,x,3/4 [v,u,0]</td>
</tr>
<tr>
<td>g .2'</td>
<td>6</td>
<td>x,x,0 [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,1/2 [u,2u,w]</td>
</tr>
<tr>
<td>f 3..</td>
<td>4</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>e 3..</td>
<td>4</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>d 6'..</td>
<td>2</td>
<td>2/3,1/3,1/4 [0,0,0]</td>
</tr>
<tr>
<td>c 6'..</td>
<td>2</td>
<td>1/3,2/3,1/4 [0,0,0]</td>
</tr>
<tr>
<td>b 6'..</td>
<td>2</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>a 32'</td>
<td>2</td>
<td>0,0,0 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p31m

a* = a b* = b

Origin at 0,0,z

Along [1,0,0] p2'm'g

a* = c b* = (a + 2b)/2

Origin at x,0,0

Along [2,1,0] p2a,1m1

a* = c/2 b* = b/2

Origin at x,x/2,0
Origin on 32c'

Asymmetric unit

\[
\begin{align*}
0 \leq x & \leq 2/3; & 0 \leq y & \leq 2/3; & 0 \leq z & \leq 1/4; & x & \leq (1+y)/2; & y & \leq \min(1-x,(1+x)/2) \\
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & & 1/2,0,0 & & 2/3,1/3,0 & & 1/3,2/3,0 & & 0,1/2,0 \\
0,0,1/4 & & 1/2,0,1/4 & & 2/3,1/3,1/4 & & 1/3,2/3,1/4 & & 0,1/2,1/4 \\
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \ 1 \ & (2) & \ 3^+ & 0,0,z & & (3) & \ 3^- & 0,0,z \\
(1 | 0,0,0) & & (3_z | 0,0,0) & & (3_z | 0,0,0) \\
(4) & \ m' & x,y,1/4 & & (5) & \ 6^- & 0,0,z; 0,0,1/4 & & (6) & \ 6^+ & 0,0,z; 0,0,1/4 \\
(m_2 | 0,0,1/2)' & & (6_z | 0,0,1/2)' & & (6_z | 0,0,1/2)' \\
(7) & \ 2 & x,x,0 & & (8) & \ 2 & x,0,0 & & (9) & \ 2 & 0,y,0 \\
(2_y | 0,0,0) & & (2_z | 0,0,0) & & (2_y | 0,0,0) \\
(10) & \ c' & (0,0,1/2) \ x,x,z & & (11) & \ c' & (0,0,1/2) \ x,0,z & & (12) & \ c' & (0,0,1/2) \ 0,y,z \\
(m_3 | 0,0,1/2)' & & (m_2 | 0,0,1/2)' & & (m_1 | 0,0,1/2)'
\end{align*}
\]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>i</td>
<td>1 (1) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y, x-y, z [v, u-v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x + y, x, z [u+v, u, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) y, x-y, z+1/2 [v, u-v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x + y, x, z+1/2 [u+v, u, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y, x, z [v, u, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) x-y, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x, x+y, z [u, u+v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y, x+y, z+1/2 [v, u, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) x-y, y, z+1/2 [u-v, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) x+y, x+1/2 [u+v, u, w]</td>
</tr>
<tr>
<td>6</td>
<td>h m'..</td>
<td>x, y, 1/4 [u, v, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y, x, 1/4 [v, u-v, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+y, x, 1/4 [u+v, u, 0]</td>
</tr>
<tr>
<td>6</td>
<td>g .2.</td>
<td>x, x, 0 [u, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x, 2x, 0 [0, u, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x, x, 0 [u, u, 0]</td>
</tr>
<tr>
<td>4</td>
<td>f 3..</td>
<td>1/3, 2/3, z [0, 0, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/3, 2/3, z+1/2 [0, 0, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3, 1/3, z [0, 0, w]</td>
</tr>
<tr>
<td>4</td>
<td>e 3..</td>
<td>0, 0, z [0, 0, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0, 0, z+1/2 [0, 0, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0, 0, z [0, 0, w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0, 0, z+1/2 [0, 0, w]</td>
</tr>
<tr>
<td>2</td>
<td>d 6'..</td>
<td>2/3, 1/3, 1/4 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/3, 2/3, 3/4 [0, 0, 0]</td>
</tr>
<tr>
<td>2</td>
<td>c 6'..</td>
<td>1/3, 2/3, 1/4 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3, 1/3, 3/4 [0, 0, 0]</td>
</tr>
<tr>
<td>2</td>
<td>b 6'..</td>
<td>0, 0, 1/4 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0, 0, 3/4 [0, 0, 0]</td>
</tr>
<tr>
<td>2</td>
<td>a 32.</td>
<td>0, 0, 0 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0, 0, 1/2 [0, 0, 0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p31m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
</tr>
</tbody>
</table>

Origin at 0,0,z

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2m'g'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c</td>
<td>b* = (a + 2b)/2</td>
</tr>
</tbody>
</table>

Origin at x,0,0

<table>
<thead>
<tr>
<th>Along [2,1,0]</th>
<th>p1m'1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = c/2</td>
<td>b* = b/2</td>
</tr>
</tbody>
</table>

Origin at x,x/2,0
Origin on 32'c'

Asymmetric unit

- \(0 \leq x \leq 2/3; \ 0 \leq y \leq 2/3; \ 0 \leq z \leq 1/4; \ x \leq (1+y)/2; \ y \leq \min(1-x,(1+x)/2)\)

Vertices

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1/2,0,0</td>
<td>2/3,1/3,0</td>
</tr>
<tr>
<td>0,0,1/4</td>
<td>1/2,0,1/4</td>
<td>2/3,1/3,1/4</td>
</tr>
</tbody>
</table>

Symmetry Operations

1. \(1\)
2. \(3^* \ 0,0,z (3_z \ 0,0,0)\)
3. \(3^- \ 0,0,z (3_z^- 0,0,0)\)
4. \(m \ x,y,1/4 (m_z 0,0,1/2)\)
5. \(6^- \ 0,0,z; 0,0,1/4 (6_z^- 0,0,1/2)\)
6. \(6^+ \ 0,0,z; 0,0,1/4 (6_z 0,0,1/2)\)
7. \(2' \ x,x,0 (2_y 0,0,0)'\)
8. \(2' \ x,0,0 (2_z 0,0,0)'\)
9. \(2' \ 0,y,0 (2_y 0,0,0)'\)
10. \(c' (0,0,1/2) \ x,x,z (m_y 0,0,1/2)'\)
11. \(c' (0,0,1/2) \ x,0,z (m_z 0,0,1/2)'\)
12. \(c' (0,0,1/2) \ 0,y,z (m_z 0,0,1/2)'\)
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) (\bar{y},x-y,z [\bar{v},u-v,w])</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
<td>(5) (\bar{y},x-y,z+1/2 [v,u+v,w])</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,(\bar{z}) [v,u,w]</td>
<td>(8) x-y,(\bar{y},z) [u+v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) y,x,z+1/2 [v,u,w]</td>
<td>(11) x-y,(\bar{y},z+1/2 [u-v,\bar{v},w])</td>
</tr>
</tbody>
</table>

| 6 h m.. | x,y,1/4 [0,0,w] | \(\bar{y},x-y,1/4 [0,0,w] \) | \(x+y,x,1/4 [0,0,w] \) |
| | y,x,3/4 [0,0,w] | x-y,\(\bar{y},3/4 [0,0,w] \) | \(\bar{x},x+y,3/4 [0,0,w] \) |

| 6 g .2' | x,\(\bar{x},0 [u,2u,w] \) | x,2x,0 [2\(\bar{u},\bar{u},w \)] | 2x,\(\bar{x},0 [u,u,w] \) |
| | x,\(\bar{x},1/2 [\bar{u},2\bar{u},w] \) | x,2x,1/2 [2\(\bar{u},u,w \)] | 2x,\(\bar{x},1/2 [\bar{u},u,w] \) |

| 4 f 3.. | \(1/3,2/3,z [0,0,w] \) | \(1/3,2/3,z+1/2 [0,0,w] \) | \(2/3,1/3,z [0,0,w] \) | \(2/3,1/3,z+1/2 [0,0,w] \) |
| 4 e 3.. | 0,0,z [0,0,w] | 0,0,z+1/2 [0,0,w] | 0,0,z [0,0,w] | 0,0,z+1/2 [0,0,w] |

2 d 6..	\(2/3,1/3,1/4 [0,0,w] \)	\(1/3,2/3,3/4 [0,0,w] \)	\(1/3,2/3,3/4 [0,0,w] \)
2 c 6..	\(1/3,2/3,1/4 [0,0,w] \)	\(2/3,1/3,3/4 [0,0,w] \)	\(2/3,1/3,3/4 [0,0,w] \)
2 b 6..	0,0,1/4 [0,0,w]	0,0,3/4 [0,0,w]	0,0,3/4 [0,0,w]
2 a 32'	0,0,0 [0,0,w]	0,0,1/2 [0,0,w]	0,0,1/2 [0,0,w]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p31m1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>p2'mg'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = c)</td>
<td>(b^* = (a + 2b)/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [2,1,0]</th>
<th>p1m1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = c/2)</td>
<td>(b^* = b/2)</td>
</tr>
</tbody>
</table>

Origin at 0,0,0
Origin at center (6/mmm)

Asymmetric unit
\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{3}; \quad 0 \leq z \leq \frac{1}{2}; \quad x \leq \frac{1+y}{2}; \quad y \leq \frac{x}{2} \]

Vertices
- \(0,0,0\)
- \(\frac{1}{2},0,0\)
- \(\frac{2}{3},\frac{1}{3},0\)
- \(0,0,\frac{1}{2}\)
- \(\frac{1}{2},0,\frac{1}{2}\)
- \(\frac{2}{3},\frac{1}{3},\frac{1}{2}\)

Symmetry Operations

1. \(1\)
2. \(3^+ (0,0,0)\)
3. \(3^- (0,0,0)\)
4. \(2 \cdot (0,0,z)\)
5. \(2 \cdot (0,0,0)\)
6. \(2 \cdot (0,0,z)\)
7. \(2 \cdot (x,x,0)\)
8. \(2 \cdot (x,0,0)\)
9. \(2 \cdot (0,y,0)\)
10. \(2 \cdot (x,x,0)\)
11. \(2 \cdot (x,2x,0)\)
12. \(2 \cdot (2x,x,0)\)
Continued

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(13) T</td>
<td>0,0,0</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(14) \overline{3}+ 0,0,0; \overline{0},0,0</td>
</tr>
<tr>
<td></td>
<td>(2) \overline{y},x-y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(3) \overline{x}+y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(15) \overline{3} 0,0,z; 0,0,0</td>
</tr>
<tr>
<td></td>
<td>(3) \overline{x}+y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>(16) m</td>
<td>x,y,0</td>
</tr>
<tr>
<td></td>
<td>(17) \overline{6} - 0,0,z; 0,0,0</td>
</tr>
<tr>
<td></td>
<td>(2) \overline{y},x-y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(3) \overline{x}+y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(18) \overline{6} 0,0,z; 0,0,0</td>
</tr>
<tr>
<td></td>
<td>(6) \overline{x}+y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>(19) m</td>
<td>x,x,z</td>
</tr>
<tr>
<td></td>
<td>(20) m x,2x,z</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) \overline{y},x-y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(3) \overline{x}+y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(4) \overline{x}+y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(5) y,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(6) \overline{x}+y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(8) \overline{x}+y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(9) \overline{x}+y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>(22) m</td>
<td>x,x,z</td>
</tr>
<tr>
<td></td>
<td>(23) m x,0,z</td>
</tr>
<tr>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) \overline{y},x-y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(3) \overline{x}+y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(4) \overline{x}+y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(5) y,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(6) \overline{x}+y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(8) \overline{x}+y,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>(9) \overline{x}+y,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>r</td>
</tr>
<tr>
<td>1</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>12</td>
<td>q</td>
</tr>
<tr>
<td>m..</td>
<td>x,y,1/2 [0,0,w]</td>
</tr>
<tr>
<td>12</td>
<td>p</td>
</tr>
<tr>
<td>m..</td>
<td>x,y,0 [0,0,w]</td>
</tr>
</tbody>
</table>

191.1.1463 - 2 - 3187
<table>
<thead>
<tr>
<th>P6/mmm</th>
<th>191.1.1463</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 o .m.</td>
<td>x,2x,z [u,0,0]</td>
</tr>
<tr>
<td>12 n .m</td>
<td>x,0,z [u,2u,0]</td>
</tr>
<tr>
<td>6 m mm2</td>
<td>x,2x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>6 l mm2</td>
<td>x,2x,0 [0,0,0]</td>
</tr>
<tr>
<td>6 k m2m</td>
<td>x,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>6 j m2m</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>6 i 2mm</td>
<td>1/2,0,z [0,0,0]</td>
</tr>
<tr>
<td>4 h 3m.</td>
<td>1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td>3 g mmm</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>3 f mmm</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 e 6mm</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 d 6m2</td>
<td>1/3,2/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c 6m2</td>
<td>1/3,2/3,0 [0,0,0]</td>
</tr>
<tr>
<td>1 b 6/mmm</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1 a 6/mmm</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p6mm1’
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] p2mm1’
\[a^* = c \quad b^* = \frac{(a + 2b)}{2} \]
Origin at x,0,0

Along [2,1,0] p2mm1’
\[a^* = c \quad b^* = \frac{b}{2} \]
Origin at x,x/2,0
Origin at center \((6/mmm1')\)

Asymmetric unit

\[
0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/3; \quad 0 \leq z \leq 1/2; \quad x \leq (1+y)/2; \quad y \leq x/2
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2
\end{align*}
\]

Symmetry Operations

For \(1 + \text{set}\)

\[
\begin{align*}
(1) & \quad 1 & \quad (2) 3^* & \quad 0,0,z \\
(1 \mid 0,0,0) & \quad (3) 3 & \quad 0,0,z \\
& \quad (3_z \mid 0,0,0) & \quad (3_z^{-1} \mid 0,0,0)
\end{align*}
\]

\[
\begin{align*}
(4) & \quad 2 & \quad 0,0,z \\
\quad (2_z \mid 0,0,0) & \quad (5) 6 & \quad 0,0,z \\
& \quad (6_z^{-1} \mid 0,0,0) & \quad (6_z \mid 0,0,0)
\end{align*}
\]

\[
\begin{align*}
(7) & \quad 2 & \quad x,x,0 \\
\quad (2_{xy} \mid 0,0,0) & \quad (8) 2 & \quad x,0,0 \\
& \quad (2_z \mid 0,0,0) & \quad (2_{y} \mid 0,0,0)
\end{align*}
\]

\[
\begin{align*}
(10) & \quad 2 & \quad x,x,0 \\
\quad (2_z \mid 0,0,0) & \quad (11) 2 & \quad x,2x,0 \\
& \quad (2_{z} \mid 0,0,0) & \quad (2_{z} \mid 0,0,0)
\end{align*}
\]

\[
\begin{align*}
(12) & \quad 2 & \quad 2x,0,0 \\
\quad (2_{z} \mid 0,0,0) & \quad (12) 2 & \quad 2x,0,0 \\
& \quad (2_{z} \mid 0,0,0) & \quad (2_{z} \mid 0,0,0)
\end{align*}
\]
Continued

(13) $\bar{1}$ 0,0,0 \\
 ($\bar{1} | 0,0,0$) \\
(14) $\bar{3}'$ 0,0,z; 0,0,0 \\
 ($3_z | 0,0,0$) \\
(15) $\bar{3}'$ 0,0,z; 0,0,0 \\
 ($3_z^{-1} | 0,0,0$)

(16) m x,y,0 \\
 ($m_x | 0,0,0$) \\
(17) $\bar{6}'$ 0,0,z; 0,0,0 \\
 ($6_z^{-1} | 0,0,0$) \\
(18) $\bar{6}'$ 0,0,z; 0,0,0 \\
 ($6_z | 0,0,0$)

(19) m x,\bar{x},z \\
 ($m_x | 0,0,0$) \\
(20) m x,2x,z \\
 ($m_x | 0,0,0$) \\
(21) m 2x,x,z \\
 ($m_y | 0,0,0$)

(22) m x,x,z \\
 ($m_x | 0,0,0$) \\
(23) m x,0,z \\
 ($m_x | 0,0,0$) \\
(24) m 0,y,z \\
 ($m_x | 0,0,0$)

For 1' + set

(1) 1' \\
 ($1 | 0,0,0$) \\
(2) $3'$ 0,0,z \\
 ($3_z | 0,0,0$)' \\
(3) $3'$ 0,0,z \\
 ($3_z^{-1} | 0,0,0$)'

(4) 2' 0,0,z \\
 ($2_z | 0,0,0$)'

(7) 2' x,x,0 \\
 ($2_y | 0,0,0$)'

(10) 2' x,x,0 \\
 ($2_x | 0,0,0$)'

(13) $\bar{1}'$ \\
 ($\bar{1} | 0,0,0$)' \\
(14) $\bar{3}'$ 0,0,z; 0,0,0 \\
 ($3_z | 0,0,0$)' \\
(15) $\bar{3}'$ 0,0,z; 0,0,0 \\
 ($3_z^{-1} | 0,0,0$)'

(16) m' x,y,0 \\
 ($m_x | 0,0,0$)' \\
(17) $\bar{6}'$ 0,0,z; 0,0,0 \\
 ($6_z^{-1} | 0,0,0$)' \\
(18) $\bar{6}'$ 0,0,z; 0,0,0 \\
 ($6_z | 0,0,0$)'

(19) m' x,\bar{x},z \\
 ($m_x | 0,0,0$)'

(22) m' x,x,z \\
 ($m_x | 0,0,0$)'

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

<table>
<thead>
<tr>
<th>1 +</th>
<th>1' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 r 11'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) \bar{x},\bar{y},z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(10) \bar{y},\bar{x},z [0,0,0]</td>
</tr>
</tbody>
</table>
Continued 191.2.1464 P6/mmm1'

(13) $x, y, z [0,0,0]$
(14) $y, x+y, z [0,0,0]$
(15) $x-y, x, z [0,0,0]$

(16) $x, y, z [0,0,0]$
(17) $y, x-y, z [0,0,0]$
(18) $x+y, x, z [0,0,0]$

(19) $y, x, z [0,0,0]$
(20) $x+y, y, z [0,0,0]$
(21) $x, x-y, z [0,0,0]$

(22) $y, x, z [0,0,0]$
(23) $x-y, y, z [0,0,0]$
(24) $x, x+y, z [0,0,0]$

12 $q \ m..1'$

$x, y, 1/2 [0,0,0]$
$y, x-y, 1/2 [0,0,0]$
$x+y, x, 1/2 [0,0,0]$

$x, y, 1/2 [0,0,0]$
$y, x+y, 1/2 [0,0,0]$
$x-y, x, 1/2 [0,0,0]$

$y, x, 1/2 [0,0,0]$
$y+x, y, 1/2 [0,0,0]$
$x+y, x, 1/2 [0,0,0]$

12 $p \ m..1'$

$x, y, 0 [0,0,0]$
$y, x-y, 0 [0,0,0]$
$x+y, x, 0 [0,0,0]$

$x, y, 0 [0,0,0]$
$y, x+y, 0 [0,0,0]$
$x-y, x, 0 [0,0,0]$

$y, x, 0 [0,0,0]$
$x+y, y, 0 [0,0,0]$
$x, x-y, 0 [0,0,0]$

12 $o \ m..1'$

$x, 2x, z [0,0,0]$
$2x, x, z [0,0,0]$
$x, x, z [0,0,0]$

$x, 2x, z [0,0,0]$
$2x, x, z [0,0,0]$
$x, x, z [0,0,0]$

$2x, x, z [0,0,0]$
$x, 2x, z [0,0,0]$
$x, x, z [0,0,0]$

12 $n \ m..1'$

$x, 0, z [0,0,0]$
$0, x, z [0,0,0]$
$x, x, z [0,0,0]$

$x, 0, z [0,0,0]$
$0, x, z [0,0,0]$
$x, x, z [0,0,0]$

$0, x, z [0,0,0]$
$x, 0, z [0,0,0]$
$x, x, z [0,0,0]$

6 $m \ mm21'$

$x, 2x, 1/2 [0,0,0]$
$2x, x, 1/2 [0,0,0]$
$x, x, 1/2 [0,0,0]$

$x, 2x, 1/2 [0,0,0]$
$2x, x, 1/2 [0,0,0]$
$x, x, 1/2 [0,0,0]$

6 $l \ mm21'$

$x, 2x, 0 [0,0,0]$
$2x, x, 0 [0,0,0]$
$x, x, 0 [0,0,0]$

$x, 2x, 0 [0,0,0]$
$2x, x, 0 [0,0,0]$
$x, x, 0 [0,0,0]$

6 $k \ m2m1'$

$x, 0, 1/2 [0,0,0]$
$0, x, 1/2 [0,0,0]$
$x, x, 1/2 [0,0,0]$

$x, 0, 1/2 [0,0,0]$
$0, x, 1/2 [0,0,0]$
$x, x, 1/2 [0,0,0]$

6 $j \ m2m1'$

$x, 0, 0 [0,0,0]$
$0, x, 0 [0,0,0]$
$x, x, 0 [0,0,0]$

$x, 0, 0 [0,0,0]$
$0, x, 0 [0,0,0]$
$x, x, 0 [0,0,0]$

191.2.1464 - 3 - 3192
6 i 2mm1' 1/2,0,z [0,0,0] 0,1/2,z [0,0,0] 1/2,1/2,z [0,0,0]
 0,1/2,z [0,0,0] 1/2,0,z [0,0,0] 1/2,1/2,z [0,0,0]
4 h 3m.1' 1/3,2/3,z [0,0,0] 2/3,1/3,z [0,0,0] 2/3,1/3,z [0,0,0] 1/3,2/3,z [0,0,0]
3 g mmm1' 1/2,0,1/2 [0,0,0] 0,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]
3 f mmm1' 1/2,0,0 [0,0,0] 0,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0]
2 e 6mm1' 0,0,z [0,0,0] 0,0,z [0,0,0]
2 d 6m21' 1/3,2/3,1/2 [0,0,0] 2/3,1/3,1/2 [0,0,0]
2 c 6m21' 1/3,2/3,0 [0,0,0] 2/3,1/3,0 [0,0,0]
1 b 6/mmm1' 0,0,1/2 [0,0,0]
1 a 6/mmm1' 0,0,0 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6mm1'</th>
<th>Along [1,0,0]</th>
<th>p2mm1'</th>
<th>Along [2,1,0]</th>
<th>p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = c</td>
<td>b* = (a + 2b)/2</td>
<td>a* = c</td>
<td>b* = b/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x/2,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (6/m\'mm)

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{3}; \quad 0 \leq z \leq \frac{1}{2}; \quad x \leq \frac{(1+y)}{2}; \quad y \leq \frac{x}{2} \]

Vertices

\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2
\end{align*}

Symmetry Operations

\begin{align*}
(1) & \quad 1 \\
(2) & \quad 3^* \quad 0,0,z \\
(3) & \quad 3^- \quad 0,0,z \\
(4) & \quad 2 \quad 0,0,z \\
(5) & \quad 6^* \quad 0,0,z \\
(6) & \quad 6^- \quad 0,0,z \\
(7) & \quad 2' \quad x,x,0 \\
(8) & \quad 2' \quad x,0,0 \\
(9) & \quad 2' \quad 0,y,0 \\
(10) & \quad 2' \quad x,x,0 \\
(11) & \quad 2' \quad x,2x,0 \\
(12) & \quad 2' \quad 2x,0,0 \\
\end{align*}
Continued

191.3.1465

P6/m'mm

(13) \(\bar{1} \) | 0,0,0
(14) \(\bar{3} \) | 0,0,0
(15) \(\bar{3} \) | 0,0,0
(16) \(\bar{m} \) | x,y,0
(17) \(\bar{6} \) | 0,0,0
(18) \(\bar{6} \) | 0,0,0
(19) \(\bar{m} \) | x,z
(20) \(\bar{m} \) | x,2x,z
(21) \(\bar{m} \) | 2x,x,z
(22) \(\bar{m} \) | x,z
(23) \(\bar{m} \) | x,0,z
(24) \(\bar{m} \) | 0,y,z

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 r 1</td>
<td>(1) x,y,z [u,v,w] (2) (\bar{y} \cdot x\cdot y\cdot \bar{z} [\bar{v} \cdot u\cdot v\cdot w]) (3) (x\cdot y\cdot \bar{z} [\bar{u} + v\cdot \bar{u}\cdot w])</td>
</tr>
<tr>
<td></td>
<td>(4) (x\cdot \bar{y}\cdot z [\bar{u} \cdot \bar{v} \cdot w]) (5) y,x+y,z [v,u+v,w] (6) x-y,x,z [u-v,u,w]</td>
</tr>
</tbody>
</table>
| | (7) y,x,z [v,u,w] (8) x-y,\(\bar{y}\cdot \bar{z} [\bar{u} \cdot v\cdot w] \) (9) x,\(\bar{x} + y\cdot z \cdot [u\cdot u\cdot v\cdot w] \)
| | (10) y,\(x\cdot \bar{z} [v\cdot u\cdot w] \) (11) \(x + y\cdot \bar{z} [\bar{u} \cdot v\cdot w] \) (12) x-x,y,z [\(u\cdot u\cdot v\cdot w \) |
| | (13) \(\bar{x}\cdot \bar{y}\cdot \bar{z} [\bar{u} \cdot \bar{v}\cdot w] \) (14) y,\(\bar{x} + y\cdot \bar{z} [\bar{v} \cdot u\cdot v\cdot w] \) (15) x-y,x,z [\(u\cdot u\cdot v\cdot w \) |
| | (16) x,y,z [v,u,w] (17) \(\bar{x}\cdot \bar{x}\cdot z [\bar{v} \cdot u\cdot v\cdot w] \) (18) \(x + y\cdot x\cdot z \cdot [u\cdot v\cdot w] \)
| | (19) \(\bar{y}\cdot \bar{x}\cdot z [v\cdot u\cdot w] \) (20) \(x + y\cdot y\cdot z \cdot [u\cdot v\cdot \bar{w}] \) (21) x-x,y,z [\(u\cdot u\cdot v\cdot w \) |
| | (22) \(y\cdot x\cdot z [v\cdot u\cdot w] \) (23) x-y,y,z [\(u\cdot u\cdot v\cdot w \) (24) \(\bar{x}\cdot x\cdot y\cdot z [u\cdot u\cdot v\cdot w] \)

12 q \(m'\cdot \)

<p>	12 p (m'\cdot)
x,y,1/2 [u,v,0]	(\bar{y}\cdot x\cdot y\cdot 1/2 [\bar{v}\cdot u\cdot v\cdot 0])
x,y,1/2 [u,\bar{v},0]	y\cdot x\cdot y\cdot 1/2 [v\cdot \bar{u}\cdot v\cdot 0]
y,x,1/2 [\bar{v},u,0]	x-y\cdot y\cdot 1/2 [\bar{u}\cdot v\cdot v\cdot 0]
y,y,1/2 [v,u,0]	(\bar{x}\cdot \bar{y}\cdot 1/2 [v\cdot v\cdot \bar{w}])
x,y,0 [u,v,0]	(y\cdot x\cdot y\cdot 0 [\bar{v}\cdot u\cdot v\cdot 0])
x,y,0 [u,\bar{v},0]	y\cdot x\cdot y\cdot 0 [v\cdot \bar{u}\cdot v\cdot 0]
y,x,0 [\bar{v},u,0]	x\cdot x\cdot y\cdot 0 [u\cdot \bar{u}\cdot v\cdot 0]
y,y,0 [v,u,0]	(x\cdot x\cdot 0 [u\cdot u\cdot v\cdot 0])
y,y,0 [v,\bar{u},0]	(x\cdot x\cdot 0 [u\cdot \bar{u}\cdot v\cdot 0])
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>o</td>
<td>.m.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>n</td>
<td>.m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>m</td>
<td>m'm2'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>l</td>
<td>m'm2'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>k</td>
<td>m'2'm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>j</td>
<td>m'2'm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>i</td>
<td>2mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>h</td>
<td>3m.</td>
</tr>
<tr>
<td>3</td>
<td>g</td>
<td>m'mm</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>m'mm</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>6mm</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>6'm2'</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>6'm2'</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>6/m'mm</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>6/m'mm</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p6mm
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 0,0,z

Along [1,0,0] p2mm1'
\(\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2 \)
Origin at x,0,0

Along [2,1,0] p2mm1'
\(\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = \mathbf{b}/2 \)
Origin at x,x/2,0
Origin at center \((6'/mm'm)\)

Asymmetric unit

- \(0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/3; \quad 0 \leq z \leq 1/2; \quad x \leq (1+y)/2; \quad y \leq x/2\)

Vertices

- \((0,0,0)\)
- \((1/2,0,0)\)
- \((2/3,1/3,0)\)
- \((0,0,1/2)\)
- \((1/2,0,1/2)\)
- \((2/3,1/3,1/2)\)

Symmetry Operations

1. \(1\)
2. \(3' \quad 0,0,z\)
3. \(3' \quad 0,0,z\)
4. \(2' \quad 0,0,z\)
5. \(6' \quad 0,0,z\)
6. \(6' \quad 0,0,z\)
7. \(2 \quad x,x,0\)
8. \(2 \quad x,0,0\)
9. \(2 \quad 0,y,0\)
10. \(2' \quad x,x,0\)
11. \(2' \quad x,2x,0\)
12. \(2' \quad 2x,x,0\)

(1) \(1\)
(1) \(0,0,0\)

(2) \(3' \quad 0,0,z\)
(3) \(3' \quad 0,0,z\)

(4) \(2' \quad 0,0,z\)
(5) \(6' \quad 0,0,z\)
(6) \(6' \quad 0,0,z\)

(7) \(2 \quad x,x,0\)
(8) \(2 \quad x,0,0\)
(9) \(2 \quad 0,y,0\)

(10) \(2' \quad x,x,0\)
(11) \(2' \quad x,2x,0\)
(12) \(2' \quad 2x,x,0\)
Continued

(13) \(\overline{1}^* \), 0,0,0
(14) \(\overline{3}^* \), 0,0,0
(15) \(\overline{3}^* \), 0,0

(16) m \(x,y,0 \)
(17) \(\overline{6} \), 0,0,0
(18) \(\overline{6} \), 0,0,0

(19) m' \(x,x,z \)
(20) m' \(x,2x,z \)
(21) m' \(2x,x,z \)

(22) m \(x,x,z \)
(23) m \(x,0,z \)
(24) m \(0,y,z \)

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

24 r 1
(1) \(x,y,z \) [u,v,w]
(2) \(\overline{y},x-y,z \) [\(\overline{v},u-v,w \)]
(3) \(\overline{x}+y,x,z \) [\(\overline{u}+v,u,w \)]

(4) \(\overline{x},\overline{y},z \) [u,v,w]
(5) \(y,\overline{x}+y,z \) [\(\overline{v},u-v,w \)]
(6) \(x-y,x,z \) [\(u-v,u,w \)]

(7) y,x,z [v,u,w]
(8) x-y,\(\overline{y},z \) [\(u-v,\overline{v},w \)]
(9) x,\(\overline{x}+y,z \) [\(\overline{u},u+v,w \)]

(10) \(\overline{y},x-z \) [v,u,w]
(11) \(\overline{x}+y,\overline{z} \) [u-v,\(\overline{v},w \)]
(12) \(\overline{x},x,\overline{z} \) [\(\overline{u},u+v,w \)]

(13) \(\overline{x},\overline{y},z \) [u,v,w]
(14) \(y,\overline{x}+y,z \) [\(v,\overline{u}+v,w \)]
(15) \(x+y,\overline{x},z \) [\(u-v,\overline{u},w \)]

(16) x,y,z [u,v,w]
(17) \(\overline{y},\overline{x}+y,z \) [\(v,\overline{u}+v,w \)]
(18) \(\overline{x}+y,\overline{x},z \) [\(u-v,\overline{u},w \)]

(19) \(y,\overline{x},z \) [\(\overline{v},\overline{u},w \)]
(20) \(\overline{x}+y,y,z \) [\(\overline{u}+v,v,w \)]
(21) \(x-x,y,z \) [\(u-u-v,w \)]

(22) y,x,z [v,u,w]
(23) \(\overline{y},\overline{x},z \) [\(\overline{u}+v,v,w \)]
(24) \(\overline{x},\overline{x},y,z \) [\(u-u-v,w \)]

12 q m.. x,y,1/2 [0,0,w]
\(\overline{y},x-y,1/2 \) [0,0,w]
\(\overline{x},x-1/2 \) [0,0,w]

12 p m.. x,y,0 [0,0,w]
\(\overline{y},x-y,0 \) [0,0,w]
\(\overline{x},x,0 \) [0,0,w]
12	o	m'	x,2x,z [u,2u,w]	2x,x,z [2u, u,w]	x,x,z [u,u,w]
			x,2x,z [u,2u,w]	2x,x,z [2u, u,w]	x,x,z [u,u,w]
			2x,x,z [u,2u,w]	x,2x,z [u,2u,w]	x,x,z [u,u,w]
			2x,x,z [2u,u,w]	x,2x,z [u,2u,w]	x,x,z [u,u,w]
12	n	m	x,0,z [u,2u,0]	0,x,z [2u, u,0]	x,x,z [u,u,0]
			x,0,z [u,2u,0]	0,x,z [2u, u,0]	x,x,z [u,u,0]
			0,x,z [2u,u,0]	x,0,z [u,2u,0]	x,x,z [u,u,0]
			0,x,z [2u,u,0]	x,0,z [u,2u,0]	x,x,z [u,u,0]
6	m	mm'2'	x,2x,1/2 [0,0,w]	2x,x,1/2 [0,0,w]	x,x,1/2 [0,0,w]
			x,2x,1/2 [0,0,w]	2x,x,1/2 [0,0,w]	x,x,1/2 [0,0,w]
6	l	mm'2'	x,2x,0 [0,0,w]	2x,x,0 [0,0,w]	x,x,0 [0,0,w]
			x,2x,0 [0,0,w]	2x,x,0 [0,0,w]	x,x,0 [0,0,w]
6	k	m2m	x,0,1/2 [0,0,0]	0,x,1/2 [0,0,0]	x,x,1/2 [0,0,0]
			x,0,1/2 [0,0,0]	0,x,1/2 [0,0,0]	x,x,1/2 [0,0,0]
6	j	m2m	x,0,0 [0,0,0]	0,x,0 [0,0,0]	x,x,0 [0,0,0]
			x,0,0 [0,0,0]	0,x,0 [0,0,0]	x,x,0 [0,0,0]
6	i	2'm'm	1/2,0,z [u,2u,0]	0,1/2,z [2u, u,0]	1/2,1/2,z [u,u,0]
			0,1/2,z [u,2u,0]	1/2,0,z [2u, u,0]	1/2,1/2,z [u,u,0]
4	h	3m'	1/3,2/3,z [0,0,w]	2/3,1/3,z [0,0,w]	1/3,2/3,z [0,0,w]
3	g	mm'm	1/2,0,1/2 [0,0,0]	0,1/2,1/2 [0,0,0]	1/2,1/2,1/2 [0,0,0]
3	f	mm'm	1/2,0,0 [0,0,0]	0,1/2,0 [0,0,0]	1/2,1/2,0 [0,0,0]
2	e	6'm'm	0,0,z [0,0,0]	0,0,z [0,0,0]	
2	d	6'm'2'	1/3,2/3,1/2 [0,0,w]	2/3,1/3,1/2 [0,0,w]	
2	c	6'm'2'	1/3,2/3,0 [0,0,w]	2/3,1/3,0 [0,0,w]	
1	b	6'1/m'm	0,0,1/2 [0,0,0]		
1	a	6'1/m'm	0,0,0 [0,0,0]		
Symmetry of Special Projections

Along \([0,0,1]\) \(p6mm1'\)
- \(a^* = a\)
- \(b^* = b\)
- Origin at \(0,0,z\)

Along \([1,0,0]\) \(p2mm\)
- \(a^* = c\)
- \(b^* = (\mathbf{a} + 2\mathbf{b})/2\)
- Origin at \(x,0,0\)

Along \([2,1,0]\) \(p2mm1'\)
- \(a^* = c\)
- \(b^* = b/2\)
- Origin at \(x,x/2,0\)
Origin at center (6'/mmm')

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{3}; \quad 0 \leq z \leq \frac{1}{2}; \quad x \leq (1+y)/2; \quad y \leq x/2 \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 3^* \quad 0,0,z \\
(3) & \quad 3^* \quad 0,0,z \\
(4) & \quad 2' \quad 0,0,z \\
(2_{\pi}) & \quad 0,0,0)' \\
(5) & \quad 6' \quad 0,0,z \\
(6) & \quad 6' \quad 0,0,z \\
(7) & \quad 2' \quad x,x,0 \\
(2_{\pi}) & \quad 0,0,0)' \\
(8) & \quad 2' \quad x,0,0 \\
(2_{\pi}) & \quad 0,0,0)' \\
(9) & \quad 9' \quad 0,y,0 \\
(2_{\pi}) & \quad 0,0,0)' \\
(10) & \quad 2 \quad x,x,0 \\
(2_{\pi}) & \quad 0,0,0) \\
(11) & \quad 2 \quad x,2x,0 \\
(2_{\pi}) & \quad 0,0,0) \\
(12) & \quad 2 \quad 2x,x,0 \\
(2_{\pi}) & \quad 0,0,0)
\end{align*}
\]
Continued

(13) $\overline{1}$' 0,0,0
($\overline{1} | 0,0,0 \rangle$)

(14) $\overline{3}^{+}$' 0,0,z; 0,0,0
($3_{z}^{+} | 0,0,0 \rangle$)

(15) $\overline{3}^{-}$' 0,0,z; 0,0,0
($3_{z}^{-} | 0,0,0 \rangle$)

(16) m x,y,0
($m_{x} | 0,0,0 \rangle$)

(17) $\overline{6}^{-}$ 0,0,z; 0,0,0
($\overline{6}_{z}^{-} | 0,0,0 \rangle$)

(18) $\overline{6}^{-}$ 0,0,z; 0,0,0
($\overline{6}_{z}^{-} | 0,0,0 \rangle$)

(19) m x,\overline{x},z
($m_{x} | 0,0,0 \rangle$)

(20) m x,2x,z
($m_{x} | 0,0,0 \rangle$)

(21) m 2x,x,z
($m_{y} | 0,0,0 \rangle$)

(22) m' x,x,z
($m_{x} | 0,0,0 \rangle$)

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

24 r 1
(1) x,y,z [u,v,w]
(2) y,x-y,z [v,u-v,w]
(3) x+y,x,z [u+v,u,w]
(4) x,y,z [u,v,w]
(5) y,x+y,z [v,u-v,w]
(6) x-y,x,z [u-v,u,w]
(7) y,x,z [v,u,w]
(8) x-y,y,z [v,u-v,w]
(9) x,x+y,z [u,u-v,w]
(10) y,x,z [v,u,w]
(11) x+y,x,z [u+v,u,w]
(12) x,x+y,z [u,u-v,w]
(13) x,y,z [u,v,w]
(14) y,x+y,z [v,u-v,w]
(15) x-y,x,z [u-v,u,w]
(16) x,y,z [u,v,w]
(17) y,x+y,z [v,u-v,w]
(18) x-y,x,z [u-v,u,w]
(19) y,x,z [v,u,w]
(20) x+y,x,z [u+v,u,w]
(21) x,x+y,z [u,u+v,w]
(22) y,x,z [v,u,w]
(23) x-y,y,z [u-v,v,w]
(24) x+y,x,z [u,u+v,w]

12 q m.. x,y,1/2 [0,0,w]
\overline{y},x-y,1/2 [0,0,w]
\overline{x},y,1/2 [0,0,w]
y,x+y,1/2 [0,0,w]
x,y,1/2 [0,0,w]
y,x,1/2 [0,0,w]
x,y,1/2 [0,0,w]
\overline{y},x,1/2 [0,0,w]
x+y,y,1/2 [0,0,w]
\overline{x},x+y,1/2 [0,0,w]
x,y,1/2 [0,0,w]

12 p m.. x,y,0 [0,0,w]
\overline{y},x-y,0 [0,0,w]
\overline{x},y,0 [0,0,w]
y,x+y,0 [0,0,w]
y,x,0 [0,0,w]
x-y,\overline{y},0 [0,0,w]
y,\overline{y},0 [0,0,w]
y,x,0 [0,0,w]
<table>
<thead>
<tr>
<th>No.</th>
<th>Symbol</th>
<th>Description</th>
<th>191.5.1467</th>
<th>P6'/mmm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 o</td>
<td>m.</td>
<td>x,2x,z [u,0,0]</td>
<td>2x,x,z [0,u,0]</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,z [u,0,0]</td>
<td>2x,x,z [0,u,0]</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x,x,z [0,u,0]</td>
<td>2x,x,z [u,0,0]</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x,x,z [0,u,0]</td>
<td>x,2x,z [u,0,0]</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>12 n</td>
<td>.m</td>
<td>x,0,z [u,0,w]</td>
<td>0,x,z [0,u,w]</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,z [u,0,w]</td>
<td>0,x,z [0,u,w]</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,z [u,0,w]</td>
<td>0,x,z [u,0,w]</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,z [u,0,w]</td>
<td>x,0,z [u,0,w]</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>6 m</td>
<td>mm2</td>
<td>x,2x,1/2 [0,0,0]</td>
<td>2x,x,1/2 [0,0,0]</td>
<td>x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,1/2 [0,0,0]</td>
<td>2x,x,1/2 [0,0,0]</td>
<td>x,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td>6 l</td>
<td>mm2</td>
<td>x,2x,0 [0,0,0]</td>
<td>2x,x,0 [0,0,0]</td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,0 [0,0,0]</td>
<td>2x,x,0 [0,0,0]</td>
<td>x,x,0 [0,0,0]</td>
</tr>
<tr>
<td>6 k</td>
<td>m2'm'</td>
<td>x,0,1/2 [0,0,w]</td>
<td>0,x,1/2 [0,0,w]</td>
<td>x,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/2 [0,0,w]</td>
<td>0,x,1/2 [0,0,w]</td>
<td>x,x,1/2 [0,0,w]</td>
</tr>
<tr>
<td>6 j</td>
<td>m2'm'</td>
<td>x,0,0 [0,0,w]</td>
<td>0,x,0 [0,0,w]</td>
<td>x,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,0 [0,0,w]</td>
<td>0,x,0 [0,0,w]</td>
<td>x,x,0 [0,0,w]</td>
</tr>
<tr>
<td>6 i</td>
<td>2'mm'</td>
<td>1/2,0,z [u,0,0]</td>
<td>0,1/2,z [u,0,0]</td>
<td>1/2,1/2,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [u,0,0]</td>
<td>1/2,0,z [u,0,0]</td>
<td>1/2,1/2,z [u,u,0]</td>
</tr>
<tr>
<td>4 h</td>
<td>3m.</td>
<td>1/3,2/3,z [0,0,0]</td>
<td>2/3,1/3,z [0,0,0]</td>
<td>2/3,1/3,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/3,2/3,z [0,0,0]</td>
<td>2/3,1/3,z [0,0,0]</td>
<td>1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td>3 g</td>
<td>mmm'</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>3 f</td>
<td>mmm'</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2 e</td>
<td>6'mm'</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>2 d</td>
<td>6m2</td>
<td>1/3,2,3,1/2 [0,0,0]</td>
<td>2/3,1,3,1/2 [0,0,0]</td>
<td>2/3,1,3,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 c</td>
<td>6m2</td>
<td>1/3,2,3,0 [0,0,0]</td>
<td>2/3,1,3,0 [0,0,0]</td>
<td>2/3,1,3,0 [0,0,0]</td>
</tr>
<tr>
<td>1 b</td>
<td>6'mmm'</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 a</td>
<td>6'mmm'</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Projection</th>
<th>Symmetry</th>
<th>Relations</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1] p6mm'</td>
<td>$\mathbf{a}^* = \mathbf{a}$ $\mathbf{b}^* = \mathbf{b}$</td>
<td></td>
<td>Origin at 0,0,z</td>
</tr>
<tr>
<td>Along [1,0,0] p2mm'</td>
<td>$\mathbf{a}^* = \mathbf{c}$ $\mathbf{b}^* = (\mathbf{a} + \mathbf{2b})/2$</td>
<td></td>
<td>Origin at x,0,0</td>
</tr>
<tr>
<td>Along [2,1,0] p2mm</td>
<td>$\mathbf{a}^* = \mathbf{c}$ $\mathbf{b}^* = \mathbf{b}/2$</td>
<td></td>
<td>Origin at x,x/2,0</td>
</tr>
</tbody>
</table>
Origin at center (6/m'm'm)

Asymmetric unit

- \(0 \leq x \leq 2/3;\) \(0 \leq y \leq 1/3;\) \(0 \leq z \leq 1/2;\) \(x \leq (1+y)/2;\) \(y \leq x/2\)

Vertices
- \((0,0,0)\)
- \((1/2,0,0)\)
- \((2/3,1/3,0)\)
- \((0,0,1/2)\)
- \((1/2,0,1/2)\)
- \((2/3,1/3,1/2)\)

Symmetry Operations

- (1) \(1\)
- (2) \(3^* \ 0,0,z\)
- (3) \(3' \ 0,0,z\)
- (4) \(2' \ 0,0,z\)
- (5) \(6' \ 0,0,z\)
- (6) \(6'' \ 0,0,z\)
- (7) \(2' \ x,x,0\)
- (8) \(2' \ x,0,0\)
- (9) \(2' \ 0,y,0\)
- (10) \(2 \ x,x,0\)
- (11) \(2 \ x,2x,0\)
- (12) \(2 \ 2x,0\)
Continued 191.6.1468 P6'/m'm'm

<table>
<thead>
<tr>
<th>(13)</th>
<th>0,0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14)</td>
<td>0,0,z; 0,0,0</td>
</tr>
<tr>
<td>(15)</td>
<td>0,0,z; 0,0,0</td>
</tr>
<tr>
<td>(16)</td>
<td>m' x,y,0</td>
</tr>
<tr>
<td>(17)</td>
<td>0,0,z; 0,0,0</td>
</tr>
<tr>
<td>(18)</td>
<td>0,0,z; 0,0,0</td>
</tr>
<tr>
<td>(19)</td>
<td>m' x,x,z</td>
</tr>
<tr>
<td>(20)</td>
<td>m' x,2x,z</td>
</tr>
<tr>
<td>(21)</td>
<td>m' 2x,x,z</td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

<table>
<thead>
<tr>
<th>Positions</th>
</tr>
</thead>
</table>

| Multiplicity, Wyckoff letter, Site Symmetry. |

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
</table>

Positions

<table>
<thead>
<tr>
<th>24 r 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) y,x+y,z [v,u-v,w]</td>
</tr>
<tr>
<td>(6) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td>(7) y,x,z [v,u-w]</td>
</tr>
<tr>
<td>(8) x-y,y,z [u+v,v,w]</td>
</tr>
<tr>
<td>(9) x,x+y,z [u,u-v,w]</td>
</tr>
<tr>
<td>(10) y,x,z [v,u-w]</td>
</tr>
<tr>
<td>(11) x+y,y,z [u+v,v,w]</td>
</tr>
<tr>
<td>(12) x,x+y,z [u,u-v,w]</td>
</tr>
<tr>
<td>(13) x,y,z [v,u-w]</td>
</tr>
<tr>
<td>(14) y,x+y,z [v,u-v,w]</td>
</tr>
<tr>
<td>(15) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td>(16) x,y,z [v,u-w]</td>
</tr>
<tr>
<td>(17) y,x+y,z [v,u-v,w]</td>
</tr>
<tr>
<td>(18) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td>(19) y,x,z [v,u-w]</td>
</tr>
<tr>
<td>(20) x+y,y,z [u+v,v,w]</td>
</tr>
<tr>
<td>(21) x,x+y,z [u,u-v,w]</td>
</tr>
<tr>
<td>(22) y,x,z [v,u-w]</td>
</tr>
<tr>
<td>(23) x-y,y,z [u+v,v,w]</td>
</tr>
<tr>
<td>(24) x,x+y,z [u,u-v,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12 q m'.</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>y,x-y,1/2 [v,u-v,0]</td>
</tr>
<tr>
<td>x+y,x,1/2 [u+v,u,0]</td>
</tr>
<tr>
<td>x,y,1/2 [u,v,0]</td>
</tr>
<tr>
<td>y,x+y,1/2 [v,u-v,0]</td>
</tr>
<tr>
<td>x+y,x,1/2 [u+v,u,0]</td>
</tr>
<tr>
<td>y,x,1/2 [v,u,0]</td>
</tr>
<tr>
<td>x+y,y,1/2 [u+v,v,0]</td>
</tr>
<tr>
<td>x,x+y,1/2 [u,u-v,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12 p m'.</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>y,x-y,0 [v,u-v,0]</td>
</tr>
<tr>
<td>x+y,x,0 [u+v,u,0]</td>
</tr>
<tr>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td>y,x+y,0 [v,u-v,0]</td>
</tr>
<tr>
<td>x+y,x,0 [u+v,u,0]</td>
</tr>
<tr>
<td>y,x,0 [v,u,0]</td>
</tr>
<tr>
<td>x+y,y,0 [u+v,v,0]</td>
</tr>
<tr>
<td>x,x+y,0 [u,u-v,0]</td>
</tr>
<tr>
<td>y,x,0 [v,u,0]</td>
</tr>
<tr>
<td>x+y,y,0 [u+v,v,0]</td>
</tr>
<tr>
<td>x,x+y,0 [u,u-v,0]</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along \([0,0,1]\) \(p6'm'm\)
\[
\begin{align*}
\mathbf{a}^* &= \mathbf{a} & \mathbf{b}^* &= \mathbf{b} \\
\text{Origin at } 0,0,z
\end{align*}
\]

Along \([1,0,0]\) \(p2'mm'\)
\[
\begin{align*}
\mathbf{a}^* &= (\mathbf{a} + 2\mathbf{b})/2 & \mathbf{b}^* &= \mathbf{c} \\
\text{Origin at } x,0,0
\end{align*}
\]

Along \([2,1,0]\) \(p2mm1'\)
\[
\begin{align*}
\mathbf{a}^* &= \mathbf{c} & \mathbf{b}^* &= \mathbf{b}/2 \\
\text{Origin at } x,x/2,0
\end{align*}
\]
Origin at center (6/m/mm')

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/3; \quad 0 \leq z \leq 1/2; \quad x \leq (1+y)/2; \quad y \leq x/2\]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 2/3,1/3,0 \quad 0,0,1/2 \quad 1/2,0,1/2 \quad 2/3,1/3,1/2\]

Symmetry Operations

1. \(1\)
 \(1|0,0,0\)

2. \(3^+\)
 \(0,0,z\)
 \(3_z|0,0,0\)

3. \(3^-\)
 \(0,0,z\)
 \(3_z^{-1}|0,0,0\)

4. \(2'\)
 \(0,0,z\)
 \(2_z|0,0,0\)

5. \(6'\)
 \(0,0,z\)
 \(6_z|0,0,0\)

6. \(6''\)
 \(0,0,z\)
 \(6_z^{-1}|0,0,0\)

7. \(2\)
 \(x,x,0\)
 \(2_{xy}|0,0,0\)

8. \(2\)
 \(x,0,0\)
 \(2_{x}|0,0,0\)

9. \(2\)
 \(0,y,0\)
 \(2_{y}|0,0,0\)

10. \(2'\)
 \(x,x,0\)
 \(2_{z}|0,0,0\)

11. \(2'\)
 \(x,2x,0\)
 \(2_{z}|0,0,0\)

12. \(2'\)
 \(2x,x,0\)
 \(2_{z}|0,0,0\)
Generators selected

(13) \[\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \]
(14) \[\begin{pmatrix} 0 & 0 & z \\ 0 & 0 & 0 \\ 3 & z & 1 \end{pmatrix} \]
(15) \[\begin{pmatrix} 0 & 0 & z \\ 0 & 0 & 0 \\ 3 & z & 1 \end{pmatrix} \]

(16) \[\begin{pmatrix} m' & x & y \\ 0 & 0 & 0 \end{pmatrix} \]
(17) \[\begin{pmatrix} 6 & - & 0 \\ 0 & 0 & 0 \end{pmatrix} \]
(18) \[\begin{pmatrix} 6 & - & 0 \\ 0 & 0 & 0 \end{pmatrix} \]

(19) \[\begin{pmatrix} m & x & x \\ 0 & 0 & 0 \end{pmatrix} \]
(20) \[\begin{pmatrix} m & x & 2x \\ 0 & 0 & 0 \end{pmatrix} \]
(21) \[\begin{pmatrix} m & 2x & x \\ 0 & 0 & 0 \end{pmatrix} \]

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).
12	o	.m.	x,2x,z [u,0,0]	2x, x,z [0,u,0]	x,x,z [u,u,0]
12	n	.m'	x,0,z [u,0,w]	0,x,z [0,u,w]	x,x,z [u,u,w]
6	m	m'm2'	x,2x,1/2 [u,0,0]	2x, x,1/2 [0,u,0]	x,x,1/2 [u,u,0]
6	l	m'm2'	x,2x,0 [u,0,0]	2x, x,0 [0,u,0]	x,x,0 [u,u,0]
6	k	m'2m'	x,0,1/2 [u,0,0]	0,x,1/2 [0,u,0]	x,x,1/2 [u,u,0]
6	j	m'2m'	x,0,0 [u,0,0]	0,x,0 [0,u,0]	x,x,0 [u,u,0]
6	i	2'mm'	1/2,0,z [u,0,0]	0,1/2,z [0,u,0]	1/2,1/2,z [u,u,0]
4	h	3m.	1/3,2/3,z [0,0,0]	2/3,1/3,z [0,0,0]	2/3,1/3,z [0,0,0]
3	g	m'mm'	1/2,0,1/2 [u,0,0]	0,1/2,1/2 [0,u,0]	1/2,1/2,1/2 [u,u,0]
3	f	m'mm'	1/2,0,0 [u,0,0]	0,1/2,0 [0,u,0]	1/2,1/2,0 [u,u,0]
2	e	6'mm'	0,0,z [0,0,0]	0,0,z [0,0,0]	0,0,z [0,0,0]
2	d	6'm2'	1/3,2,3,1/2 [0,0,0]	2/3,1/3,1/2 [0,0,0]	2/3,1/3,1/2 [0,0,0]
2	c	6'm2'	1/3,2,3,0 [0,0,0]	2/3,1/3,0 [0,0,0]	2/3,1/3,0 [0,0,0]
1	b	6'mmm'	0,0,1/2 [0,0,0]	0,0,1/2 [0,0,0]	0,0,1/2 [0,0,0]
1	a	6'mmm'	0,0,0 [0,0,0]	0,0,0 [0,0,0]	0,0,0 [0,0,0]
Symmetry of Special Projections

Along [0,0,1] \(p6'mm' \)
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,0,0] \(p2mm1' \)
\[a^* = c \quad b^* = (a + 2b)/2 \]
Origin at x,0,0

Along [2,1,0] \(p2'mm' \)
\[a^* = b/2 \quad b^* = c \]
Origin at x,x/2,0
Origin at center (6/mm'\(m' \))

Asymmetric unit

\[
\begin{align*}
0 \leq x \leq \frac{2}{3} ; & \quad 0 \leq y \leq \frac{1}{3} ; \quad 0 \leq z \leq \frac{1}{2} ; \quad x \leq \frac{(1+y)}{2} ; \quad y \leq \frac{x}{2} \\
\text{Vertices} & \quad 0,0,0 \quad 1/2,0,0 \quad 2/3,1/3,0 \\
& \quad 0,0,1/2 \quad 1/2,0,1/2 \quad 2/3,1/3,1/2
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
& \quad (1|0,0,0) \\
(2) & \quad 3^* \quad 0,0,z \\
& \quad (3_z|0,0,0) \\
(3) & \quad 3' \quad 0,0,z \\
& \quad (3_z^-|0,0,0) \\
(4) & \quad 2 \quad 0,0,z \\
& \quad (2_z|0,0,0) \\
(5) & \quad 6' \quad 0,0,z \\
& \quad (6_z|0,0,0) \\
(6) & \quad 6' \quad 0,0,z \\
& \quad (6_z^-|0,0,0) \\
(7) & \quad 2' \quad x,x,0 \\
& \quad (2_{xy}|0,0,0)' \\
(8) & \quad 2' \quad x,0,0 \\
& \quad (2_{x}|0,0,0)' \\
(9) & \quad 2' \quad 0,y,0 \\
& \quad (2_{y}|0,0,0)' \\
(10) & \quad 2' \quad x,x,0 \\
& \quad (2_{z}|0,0,0)' \\
(11) & \quad 2' \quad x,2x,0 \\
& \quad (2_{2x}|0,0,0)' \\
(12) & \quad 2' \quad 2x,x,0 \\
& \quad (2_{2x}|0,0,0)'
\end{align*}
\]
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>24 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) (\bar{x} \cdot \bar{y} \cdot \bar{z} \cdot [\bar{u} \cdot \bar{v} \cdot \bar{w}])</td>
</tr>
<tr>
<td></td>
<td>(7) (y \cdot x \cdot z \cdot [v \cdot u \cdot w])</td>
</tr>
<tr>
<td></td>
<td>(10) (y \cdot x \cdot z \cdot [v, u \cdot w])</td>
</tr>
<tr>
<td></td>
<td>(13) (x \cdot x + y \cdot z \cdot [v, u \cdot w])</td>
</tr>
<tr>
<td></td>
<td>(16) (x \cdot y \cdot z \cdot [v, u \cdot w])</td>
</tr>
<tr>
<td></td>
<td>(19) (y \cdot x \cdot z \cdot [v, u \cdot w])</td>
</tr>
<tr>
<td></td>
<td>(22) (y \cdot x \cdot z \cdot [v, u \cdot w])</td>
</tr>
</tbody>
</table>

12 q m.. x,y,1/2 [0,0,w] \(\bar{y} \cdot x-y \cdot 1/2 [0,0,w] \) \(x+y \cdot x,1/2 [0,0,w] \)
| | x,y,1/2 [0,0,w] \(y \cdot x+y \cdot 1/2 [0,0,w] \) \(x-y \cdot x,1/2 [0,0,w] \)
| | y,x,1/2 [0,0,w] \(x-y \cdot y,1/2 [0,0,w] \) \(x+y \cdot x,1/2 [0,0,w] \)
| | \(\bar{y} \cdot x \cdot 1/2 [0,0,w] \) \(\bar{x} \cdot x \cdot 1/2 [0,0,w] \) \(\bar{x} \cdot y \cdot 1/2 [0,0,w] \)

12 p m.. x,y,0 [0,0,w] \(\bar{y} \cdot x \cdot y \cdot 0 [0,0,w] \) \(x+y \cdot x,0 [0,0,w] \)
| | \(\bar{x} \cdot y \cdot 0 [0,0,w] \) \(\bar{y} \cdot x \cdot y \cdot 0 [0,0,w] \) \(x-y \cdot x,0 [0,0,w] \)
| | y,x,0 [0,0,w] \(x-y \cdot y \cdot 0 [0,0,w] \) \(\bar{x} \cdot x \cdot y \cdot 0 [0,0,w] \)
| | \(\bar{y} \cdot x \cdot y \cdot 0 [0,0,w] \) \(\bar{x} \cdot x \cdot y \cdot 0 [0,0,w] \) \(x-y \cdot y,0 [0,0,w] \)
12 o	.m'	$x,2x,z [u,2u,w]$	$2x,x,z [2u,u,w]$	$x,x,z [u,u,w]$
		$x,2x,z [u,2u,w]$	$2x,x,z [2u,u,w]$	$x,x,z [u,u,w]$
		$2x,x,z [2u,u,w]$	$x,2x,z [u,2u,w]$	$x,x,z [u,u,w]$
		$2x,x,z [2u,u,w]$	$x,2x,z [u,2u,w]$	$x,x,z [u,u,w]$
12 n	.m'	$x,0,z [u,0,w]$	$0,x,z [0,u,w]$	$x,x,z [u,u,w]$
		$x,0,z [u,0,w]$	$0,x,z [0,u,w]$	$x,x,z [u,u,w]$
		$0,x,z [0,u,w]$	$x,0,z [0,u,w]$	$x,x,z [u,u,w]$
		$0,x,z [0,u,w]$	$x,0,z [0,u,w]$	$x,x,z [u,u,w]$
6 m	mm'2'	$x,2x,1/2 [0,0,w]$	$2x,x,1/2 [0,0,w]$	$x,x,1/2 [0,0,w]$
		$x,2x,1/2 [0,0,w]$	$2x,x,1/2 [0,0,w]$	$x,x,1/2 [0,0,w]$
6 l	mm'2'	$x,2x,0 [0,0,w]$	$2x,0,x [0,0,w]$	$x,x,0 [0,0,w]$
		$x,2x,0 [0,0,w]$	$2x,0,x [0,0,w]$	$x,x,0 [0,0,w]$
6 k	m2'm'	$x,0,1/2 [0,0,w]$	$0,x,1/2 [0,0,w]$	$x,x,1/2 [0,0,w]$
		$x,0,1/2 [0,0,w]$	$0,x,1/2 [0,0,w]$	$x,x,1/2 [0,0,w]$
6 j	m2'm'	$x,0,0 [0,0,w]$	$0,x,0 [0,0,w]$	$x,x,0 [0,0,w]$
		$x,0,0 [0,0,w]$	$0,x,0 [0,0,w]$	$x,x,0 [0,0,w]$
6 i	2m'm'	$1/2,0,z [0,0,w]$	$0,1/2,z [0,0,w]$	$1/2,1/2,z [0,0,w]$
		$0,1/2,z [0,0,w]$	$1/2,0,z [0,0,w]$	$1/2,1/2,z [0,0,w]$
4 h	3m'	$1/3,2/3,z [0,0,w]$	$2/3,1/3,z [0,0,w]$	$1/3,2/3,z [0,0,w]$
3 g	mm'm'	$1/2,0,1/2 [0,0,w]$	$0,1/2,1/2 [0,0,w]$	$1/2,1/2,1/2 [0,0,w]$
3 f	mm'm'	$1/2,0,0 [0,0,w]$	$0,1/2,0 [0,0,w]$	$1/2,1/2,0 [0,0,w]$
2 e	6m'm'	$0,0,z [0,0,w]$	$0,0,z [0,0,w]$	$0,0,z [0,0,w]$
2 d	6m'2'	$3/2,3,1/2 [0,0,w]$	$2/3,1/3,1/2 [0,0,w]$	$3/2,3,1/2 [0,0,w]$
2 c	6m'2'	$3/2,3,0 [0,0,w]$	$2/3,1/3,0 [0,0,w]$	$3/2,3,0 [0,0,w]$
1 b	6/mm'm'	$0,0,1/2 [0,0,w]$	$0,0,1/2 [0,0,w]$	$0,0,1/2 [0,0,w]$
1 a	6/mm'm'	$0,0,0 [0,0,w]$	$0,0,0 [0,0,w]$	$0,0,0 [0,0,w]$
Symmetry of Special Projections

Along [0,0,1] p6mm1'
\[\mathbf{a}^* = \mathbf{a}, \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along [1,0,0] p2'mm'
\[\mathbf{a}^* = \mathbf{c}, \quad \mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2 \]
Origin at x,0,0

Along [2,1,0] p2'mm'
\[\mathbf{a}^* = \mathbf{c}, \quad \mathbf{b}^* = \mathbf{b}/2 \]
Origin at x,x/2,0
Origin at center (6/m'm'm')

Asymmetric unit

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ≤ x ≤ 2/3</td>
<td>0 ≤ y ≤ 1/3</td>
<td>0 ≤ z ≤ 1/2</td>
</tr>
<tr>
<td>x ≤ (1+y)/2</td>
<td>y ≤ x/2</td>
<td></td>
</tr>
</tbody>
</table>

Vertices

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1/2,0,0</td>
<td>2/3,1/3,0</td>
</tr>
<tr>
<td>0,0,1/2</td>
<td>1/2,0,1/2</td>
<td>2/3,1/3,1/2</td>
</tr>
</tbody>
</table>

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 3^* 0,0,z
(3 | z | 0,0,0)

(3) 3^-1 0,0,z
(3 | z^-1 | 0,0,0)

(4) 2 0,0,z
(2 | z | 0,0,0)

(5) 6^-1 0,0,z
(6 | z^-1 | 0,0,0)

(6) 6^* 0,0,z
(6 | 0,0,0)

(7) 2 x,x,0
(2 | x | 0,0,0)

(8) 2 x,0,0
(2 | z | 0,0,0)

(9) 2 0,y,0
(2 | y | 0,0,0)

(10) 2 x,x,0
(2 | x | 0,0,0)

(11) 2 x,2x,0
(2 | 2z | 0,0,0)

(12) 2 2x,x,0
(2 | 2z | 0,0,0)
Continued

(13) $\overline{1}$' 0,0,0
(14) $\overline{3}$' 0,0,0; 0,0,0
(15) $\overline{3}$' 0,0,0; 0,0,0

(16) m' x,y,0
(m$_{x}$|0,0,0)'
(17) $6'$ 0,0,0; 0,0,0
(6$_{z}$|0,0,0)'
(18) $6'$ 0,0,0; 0,0,0
(6$_{z}$|0,0,0)'

(19) m' x,x,z
(m$_{y}$|0,0,0)'
(20) m' x,2x,z
(m$_{y}$|0,0,0)'
(21) m' 2x,x,z
(m$_{y}$|0,0,0)'

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24</th>
<th>r</th>
<th>1</th>
<th>x,y,z [u,v,w]</th>
<th>(1) x,y,z [u,v,w]</th>
<th>(2) y,x-y,z [v-u-v,w]</th>
<th>(3) $x+y,x,z [u+v,u,w]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4)</td>
<td>x,y,z [u,v,w]</td>
<td>(5) y,x+y,z [v-u+v,w]</td>
<td>(6) x-y,x,z [u-v,u,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7)</td>
<td>y,x,z [v,u,w]</td>
<td>(8) x-y,z [u-v,v,w]</td>
<td>(9) x,x-y,z [u,u+v,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td>y,x,z [v,u,w]</td>
<td>(11) x+y,z [u+v,v,w]</td>
<td>(12) x,x-y,z [u-u+v,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(13)</td>
<td>x,y,z [v,u,w]</td>
<td>(14) y,x-y,z [v-u+v,w]</td>
<td>(15) x-y,x-z [u-v,u,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(16)</td>
<td>x,y,z [v,u,w]</td>
<td>(17) x+y,z [v-u+v,w]</td>
<td>(18) x+y,x,z [u+v,u,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(19)</td>
<td>y,x,z [v,u,w]</td>
<td>(20) x+y,y,z [u+v,v,w]</td>
<td>(21) x,x-y,z [u-u+v,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(22)</td>
<td>y,x,z [v,u,w]</td>
<td>(23) x-y,x,z [u-u+v,w]</td>
<td>(24) x,x+y,z [u-u+v,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>q</th>
<th>m':</th>
<th>x,y,1/2 [u,v,0]</th>
<th>x,y,1/2 [u,v,0]</th>
<th>x+y,x,1/2 [u+v,u,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,y,1/2 [u,v,0]</td>
<td>y,x-y,1/2 [v-u-v,0]</td>
<td>x-y,x,1/2 [u-v,u,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y,x,1/2 [v,u,0]</td>
<td>y,x+y,1/2 [v-u+v,0]</td>
<td>x+y,x,1/2 [u+v,u,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y,x,1/2 [v,u,0]</td>
<td>x-y,z,1/2 [u-u+v,0]</td>
<td>x,x-y,1/2 [u-u+v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>p</th>
<th>m':</th>
<th>x,y,0 [u,v,0]</th>
<th>x,y,0 [u,v,0]</th>
<th>x+y,x,0 [u+v,u,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,y,0 [u,v,0]</td>
<td>y,x-y,0 [v,u-v,0]</td>
<td>x+y,x,0 [u+v,u,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x,y,0 [u,v,0]</td>
<td>y,x+y,0 [v,u+v,0]</td>
<td>x-x,y,0 [u-u+v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x,y,0 [v,u,0]</td>
<td>x-y,z,0 [u-u+v,0]</td>
<td>x-x,y,0 [u-u+v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y,x,0 [v,u,0]</td>
<td>x-y,y,0 [u-u+v,0]</td>
<td>x-x,y,0 [u-u+v,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 o</td>
<td>.m'</td>
<td>x,2x,z [u,2u,w]</td>
<td>2x,x,z [2u,2u,w]</td>
<td>x,x,z [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>12 n</td>
<td>.m'</td>
<td>x,0,z [u,0,w]</td>
<td>0,x,z [0,u,w]</td>
<td>x,x,z [u,u,w]</td>
<td></td>
</tr>
<tr>
<td>6 m</td>
<td>m'2m'</td>
<td>x,2x,1/2 [u,2u,0]</td>
<td>2x,x,1/2 [2u,2u,0]</td>
<td>x,x,1/2 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>6 l</td>
<td>m'2m'</td>
<td>x,2x,0 [u,2u,0]</td>
<td>2x,x,0 [2u,2u,0]</td>
<td>x,x,0 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>6 k</td>
<td>m'2m'</td>
<td>x,0,1/2 [u,0,0]</td>
<td>0,x,1/2 [0,u,0]</td>
<td>x,x,1/2 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>6 j</td>
<td>m'2m'</td>
<td>x,0,0 [u,0,0]</td>
<td>0,x,0 [0,u,0]</td>
<td>x,x,0 [u,u,0]</td>
<td></td>
</tr>
<tr>
<td>6 i</td>
<td>m'2m'</td>
<td>1/2,0,z [0,0,w]</td>
<td>0,1/2,z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>4 h</td>
<td>3m'</td>
<td>1/3,2/3,z [0,0,w]</td>
<td>2/3,1/3,z [0,0,w]</td>
<td>1/3,2/3,z [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>3 g</td>
<td>m'm'm'</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 f</td>
<td>m'm'm'</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 e</td>
<td>6m'm'</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 d</td>
<td>6m'2</td>
<td>1/3,2/3,1/2 [0,0,0]</td>
<td>2/3,1/3,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 c</td>
<td>6m'2</td>
<td>1/3,2/3,0 [0,0,0]</td>
<td>2/3,1/3,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 b</td>
<td>6m'm'm'</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 a</td>
<td>6m'm'm'</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along $[0,0,1]$ p6m'm'
\[\mathbf{a}^* = \mathbf{a}, \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along $[1,0,0]$ p2m'm'
\[\mathbf{a}^* = \mathbf{c}, \quad \mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2 \]
Origin at x,0,0

Along $[2,1,0]$ p2m'm'
\[\mathbf{a}^* = \mathbf{c}, \quad \mathbf{b}^* = \mathbf{b}/2 \]
Origin at x,x/2,0
Origin at center (6/mmm)

Asymmetric unit

\[
0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{3}; \quad 0 \leq z \leq \frac{1}{2}; \quad x \leq \frac{1+y}{2}; \quad y \leq \frac{x}{2}
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2
\end{align*}
\]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 3^* 0,0,z \\
(3) & \quad 3^- 0,0,z \\
(4) & \quad 2 0,0,z \\
(5) & \quad 6^- 0,0,z \\
(6) & \quad 6^- 0,0,z \\
(7) & \quad 2 x,x,0 \\
(8) & \quad 2 x,0,0 \\
(9) & \quad 2 0,y,0 \\
(10) & \quad 2 x,x,0 \\
(11) & \quad 2 x,2x,0 \\
(12) & \quad 2 2x,x,0
\end{align*}
\]
Continued

(13) $\bar{1}$ 0,0,0
(14) $\bar{3}^+$ 0,0,z; 0,0,0
(15) $\bar{3}^-$ 0,0,z; 0,0,0

(16) m x,y,0
$\langle m \rangle$ 0,0,0
(17) $\bar{6}^-$ 0,0,z; 0,0,0
$\langle \bar{6} \rangle$ 0,0,0
(18) $\bar{6}^+$ 0,0,z; 0,0,0
$\langle \bar{6} \rangle$ 0,0,0

(19) m x,x,z
$\langle m \rangle$ 0,0,0
(20) m x,2x,z
$\langle m \rangle$ 0,0,0
(21) $2x$,x,z
$\langle m \rangle$ 0,0,0

(22) m x,x,z
$\langle m \rangle$ 0,0,0
(23) m x,0,z
$\langle m \rangle$ 0,0,0
(24) m 0,y,z
$\langle m \rangle$ 0,0,0

For (0,0,1)'+ set

(1) $t'(0,0,1)$
(2) $3^+ (0,0,1) 0,0,z$
(3) $3^- (0,0,1) 0,0,z$
(4) $2' (0,0,1) 0,0,z$
(5) $6^- (0,0,1) 0,0,z$
(6) $6^+ (0,0,1) 0,0,z$
(7) $2' (x,x,1/2)$
(8) $2' (x,0,1/2)$
(9) $2' (0,y,1/2)$
(10) $2' (x,x,1/2)$
(11) $2' (x,2x,1/2)$
(12) $2' (x,2x,1/2)$
(13) $\bar{1}^+ (0,0,1/2)$
(14) $\bar{3}^+ (0,0,1) 0,0,1/2$
(15) $\bar{3}^- (0,0,1) 0,0,1/2$
(16) $m' (x,y,1/2)$
(17) $\bar{6}^+ (x,y,1/2)$
(18) $\bar{6}^- (x,y,1/2)$
(19) $c' (0,0,1) x,x,z$
(20) $c' (0,0,1) x,2x,z$
(21) $c' (0,0,1) 2x,x,z$
(22) $c' (0,0,1) x,x,z$
(23) $c' (0,0,1) x,0,z$
(24) $c' (0,0,1) 0,y,z$

Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7); (13).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>[u,v,w]</td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
</tbody>
</table>

191.10.1472 - 2 - 3223
Continued

\[(13) \bar{x}, \bar{y}, \bar{z} \] \[v, u, w \]

\[(14) y, x+y, \bar{z} \] \[v, u-v, w \]

\[(15) x-y, x, \bar{z} \] \[u+v, u, w \]

\[(16) x, y, z \] \[u, v, w \]

\[(17) \bar{y}, x-y, z \] \[v, u+v, w \]

\[(18) \bar{x}+y, x, \bar{z} \] \[u-v, u, w \]

\[(19) \bar{y}, x, z \] \[v, u, w \]

\[(20) \bar{x}+y, y, z \] \[u-v, v, w \]

\[(21) \bar{x}, x-y, z \] \[u, u+v, w \]

\[(22) x, y, z \] \[v, u, w \]

\[(23) x, y, z \] \[u+v, v, w \]

\[(24) x, x+y, z \] \[u, u+v, w \]

\[24 q m'.. \]

\[x, y, 1/2 \] \[u, v, 0 \]

\[\bar{x}, y, 1/2 \] \[v, u, 0 \]

\[y, x, 1/2 \] \[v, u, 0 \]

\[\bar{y}, \bar{x}, 1/2 \] \[v, u, 0 \]

\[x, y, 0 \] \[0, 0, w \]

\[\bar{x}, y, 0 \] \[0, 0, w \]

\[y, x, 0 \] \[0, 0, w \]

\[\bar{y}, x, 0 \] \[0, 0, w \]

\[24 p m.. \]

\[x, 2x, z \] \[u, 0, 0 \]

\[\bar{x}, 2x, z \] \[u, 0, 0 \]

\[2x, x, \bar{z} \] \[0, u, 0 \]

\[2x, x, z \] \[u, 0, 0 \]

\[0, x, 0 \] \[0, 2u, 0 \]

\[\bar{0}, x, 0 \] \[0, 2u, 0 \]

\[0, x, \bar{z} \] \[2u, 0, 0 \]

\[\bar{0}, x, \bar{z} \] \[2u, 0, 0 \]

\[0, 0, \bar{z} \] \[2u, 0, 0 \]

\[\bar{0}, 0, \bar{z} \] \[2u, 0, 0 \]

\[12 m m'm' \]

\[x, 2x, 1/2 \] \[u, 0, 0 \]

\[\bar{x}, 2x, 1/2 \] \[u, 0, 0 \]

\[2x, x, 0 \] \[0, 0, 0 \]

\[\bar{2}x, x, 0 \] \[0, 0, 0 \]

\[0, x, 0 \] \[0, 0, 0 \]

\[\bar{0}, x, 0 \] \[0, 0, 0 \]

\[12 l m'm' \]

\[x, 0, 1/2 \] \[2u, 0, 0 \]

\[\bar{x}, 0, 1/2 \] \[2u, 0, 0 \]

\[0, x, 0 \] \[0, 0, 0 \]

\[\bar{0}, x, 0 \] \[0, 0, 0 \]

\[12 k m'm' \]

\[x, 0, 0 \] \[0, 0, 0 \]

\[\bar{x}, 0, 0 \] \[0, 0, 0 \]

\[0, x, 0 \] \[0, 0, 0 \]

\[\bar{0}, x, 0 \] \[0, 0, 0 \]

\[12 j m'm' \]

\[x, 0, 0 \] \[0, 0, 0 \]

\[\bar{x}, 0, 0 \] \[0, 0, 0 \]

\[0, x, 0 \] \[0, 0, 0 \]

\[\bar{0}, x, 0 \] \[0, 0, 0 \]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>12</th>
<th>i</th>
<th>2mm</th>
<th>1/2,0,z [0,0,0]</th>
<th>0,1/2,z [0,0,0]</th>
<th>1/2,1/2,z [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2, z [0,0,0]</td>
<td>1/2,0, z [0,0,0]</td>
<td>1/2,1/2, z [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>3m.</td>
<td>1/3,2/3,z [0,0,0]</td>
<td>2/3,1/3,z [0,0,0]</td>
<td>1/3,2/3, z [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>g</td>
<td>m'mm</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>mmm</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>6mm</td>
<td>0,0,z [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>6'm2'</td>
<td>1/3,2/3,1/2 [0,0,0]</td>
<td>2/3,1/3,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>6m2</td>
<td>1/3,2/3,0 [0,0,0]</td>
<td>2/3,1/3,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>6/m'mm</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>6/mmm</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\mathbf{a}^* &= \mathbf{a} \\
\mathbf{b}^* &= \mathbf{b} \\
\mathbf{c}^* &= \mathbf{c} \quad \mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2 \\
\mathbf{a}^* &= \mathbf{c} \quad \mathbf{b}^* = \mathbf{b}/2
\end{align*}
\]

Origin at 0,0,z \quad \text{Origin at } x,0,0 \quad \text{Origin at } x,x/2,0
Origin at center (6'/mm'm)

Asymmetric unit

\[
\begin{align*}
0 & \leq x \leq 2/3; \quad 0 \leq y \leq 1/3; \quad 0 \leq z \leq 1/2; \quad x \leq (1+y)/2; \quad y \leq x/2
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 \\
0,0,1/2 & \quad 1/2,0,1/2 & \quad 2/3,1/3,1/2
\end{align*}
\]

Symmetry Operations

For \((0,0,0) + \text{set} \)

\[
\begin{align*}
(1) \quad & 1 \\
(1') & 0,0,0 \\
(10) & 2' \quad x,x,0 & (2) & 3' \quad 0,0,z & (3) & 3' \quad 0,0,z \\
& (1|0,0,0) & (3|_z,0,0,0) & (3|_z,0,0,0) & (3|_z,0,0,0) \\
(4) & 2' \quad 0,0,z & (5) & 6' \quad 0,0,z & (6) & 6' \quad 0,0,z \\
& (2|_z,0,0,0) & (6|_z,0,0,0) & (6|_z,0,0,0) & (6|_z,0,0,0) \\
(7) & 2 \quad x,x,0 & (8) & 2 \quad x,0,0 & (9) & 2 \quad 0,y,0 \\
& (2|_{xy},0,0,0) & (2|_x,0,0,0) & (2|_y,0,0,0) & (2|_y,0,0,0) \\
(10) & 2' \quad x,x,0 & (11) & 2' \quad 2x,0,0 & (12) & 2' \quad 0,x,x,0 \\
& (2|_z,0,0,0) & (2|_2,0,0,0') & (2|_z,0,0,0) & (2|_z,0,0,0)'
\end{align*}
\]
Continued

13	t' 0,0,0
14	3^{+} 0,0,z; 0,0,0
15	3^{-} 0,0,z; 0,0,0

16	m x,y,0
17	6^{-} 0,0,z; 0,0,0
18	6^{+} 0,0,z; 0,0,0

19	m' x,z
20	m' x,2x,z
21	m' 2x,z

22	m x,z
23	m x,0,z
24	m 0,y,z

For (0,0,1)'+ set

1	t' (0,0,1)
2	3^{+} (0,0,1) 0,0,z
3	3^{-} (0,0,1) 0,0,z

4	2 (0,0,1) 0,0,z
5	6^{-} (0,0,1) 0,0,z
6	6^{+} (0,0,1) 0,0,z

7	2' x,x,1/2
8	2' x,0,1/2
9	2' 0,y,1/2

10	2 x,x,1/2
11	2 x,2x,1/2
12	2 2x,1/2

13	t 0,0,1/2
14	3^{+} 0,0,z; 0,0,1/2
15	3^{-} 0,0,z; 0,0,1/2

16	m' x,y,1/2
17	6^{-} 0,0,z; 0,0,1/2
18	6^{+} 0,0,z; 0,0,1/2

19	c (0,0,1) x,z
20	c (0,0,1) x,2x,z
21	c (0,0,1) 2x,z

22	c' (0,0,1) x,z
23	c' (0,0,1) x,0,z
24	c' (0,0,1) 0,y,z

Generators selected

(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7); (13).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,0,1)'+ + (0,0,1)'+</td>
<td>(0,0,0) + (0,0,1)'+ + (0,0,1)'+</td>
</tr>
<tr>
<td>48 r 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) \bar{x},x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) \bar{x}+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) \bar{x},y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) \bar{x}+y,z [u-v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x-y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x-y,z [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,x+y,z [u,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(11) \bar{x}+y,y,z [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(12) x,x+y,z [u,u+v,w]</td>
</tr>
<tr>
<td>Row</td>
<td>Formula</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>13</td>
<td>(x, y, z)</td>
</tr>
<tr>
<td>14</td>
<td>(y, x + y, z)</td>
</tr>
<tr>
<td>15</td>
<td>(x, y, z)</td>
</tr>
<tr>
<td>16</td>
<td>(x, y, z)</td>
</tr>
<tr>
<td>17</td>
<td>(y, x - y, z)</td>
</tr>
<tr>
<td>18</td>
<td>(x + y, x, z)</td>
</tr>
<tr>
<td>19</td>
<td>(y, x, z)</td>
</tr>
<tr>
<td>20</td>
<td>(x, y, z)</td>
</tr>
<tr>
<td>21</td>
<td>(x - y, x, z)</td>
</tr>
<tr>
<td>22</td>
<td>(y, x, z)</td>
</tr>
<tr>
<td>23</td>
<td>(x - y, y, z)</td>
</tr>
<tr>
<td>24</td>
<td>(x - y, x, 1/2)</td>
</tr>
<tr>
<td>25</td>
<td>(y, x, 1/2)</td>
</tr>
<tr>
<td>26</td>
<td>(x, y, 1/2)</td>
</tr>
<tr>
<td>27</td>
<td>(y, x, 1/2)</td>
</tr>
<tr>
<td>28</td>
<td>(x, y, 1/2)</td>
</tr>
<tr>
<td>29</td>
<td>(x + y, x, 1/2)</td>
</tr>
<tr>
<td>30</td>
<td>(x, y, 1/2)</td>
</tr>
<tr>
<td>31</td>
<td>(x + y, x, 1/2)</td>
</tr>
<tr>
<td>32</td>
<td>(x, y, 1/2)</td>
</tr>
<tr>
<td>33</td>
<td>(x + y, x, 1/2)</td>
</tr>
<tr>
<td>34</td>
<td>(x, y, 1/2)</td>
</tr>
<tr>
<td>35</td>
<td>(x + y, x, 1/2)</td>
</tr>
<tr>
<td>36</td>
<td>(x, y, 1/2)</td>
</tr>
<tr>
<td>37</td>
<td>(x + y, x, 1/2)</td>
</tr>
<tr>
<td>38</td>
<td>(x, y, 1/2)</td>
</tr>
<tr>
<td>39</td>
<td>(x + y, x, 1/2)</td>
</tr>
<tr>
<td>40</td>
<td>(x, y, 1/2)</td>
</tr>
<tr>
<td>41</td>
<td>(x + y, x, 1/2)</td>
</tr>
<tr>
<td>42</td>
<td>(x, y, 1/2)</td>
</tr>
<tr>
<td>43</td>
<td>(x + y, x, 1/2)</td>
</tr>
<tr>
<td>44</td>
<td>(x, y, 1/2)</td>
</tr>
<tr>
<td>45</td>
<td>(x + y, x, 1/2)</td>
</tr>
<tr>
<td>46</td>
<td>(x, y, 1/2)</td>
</tr>
<tr>
<td>47</td>
<td>(x + y, x, 1/2)</td>
</tr>
<tr>
<td>48</td>
<td>(x, y, 1/2)</td>
</tr>
<tr>
<td>49</td>
<td>(x + y, x, 1/2)</td>
</tr>
<tr>
<td>50</td>
<td>(x, y, 1/2)</td>
</tr>
<tr>
<td>51</td>
<td>(x + y, x, 1/2)</td>
</tr>
<tr>
<td>52</td>
<td>(x, y, 1/2)</td>
</tr>
<tr>
<td>53</td>
<td>(x + y, x, 1/2)</td>
</tr>
</tbody>
</table>

191.11.1473 - 3 - 3228
<table>
<thead>
<tr>
<th>#</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12</td>
<td>2</td>
<td>m'm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,z [u,2u,0]</td>
<td>1/2,0,z [2u,u,0]</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>3m'</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>m'm'm</td>
<td>1/2,0,1/2 [u,2u,0]</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>mm'm</td>
<td>1/2,0,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6'm'm</td>
<td>0,0,z [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6'm'2</td>
<td>1/3,2/3,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6'm'2'</td>
<td>1/3,2/3,0 [0,0,\overline{w}]</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>6'/m'm'm</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>6'/mm'm</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p6mm1'</th>
<th>Along [1,0,0] p2mm</th>
<th>Along [2,1,0] p2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{a}^* = \mathbf{a}) (\mathbf{b}^* = \mathbf{b})</td>
<td>(\mathbf{a}^* = \mathbf{c}) (\mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2)</td>
<td>(\mathbf{a}^* = \mathbf{c}) (\mathbf{b}^* = \mathbf{b}/2)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,0</td>
</tr>
</tbody>
</table>
Origin at center (6'/mmm')

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/3; \quad 0 \leq z \leq 1/2; \quad x < (1+y)/2; \quad y < x/2 \]

Vertices

\[
\begin{array}{ccc}
0,0,0 & 1/2,0,0 & 2/3,1/3,0 \\
0,0,1/2 & 1/2,0,1/2 & 2/3,1/3,1/2
\end{array}
\]

Symmetry Operations

For (0,0,0) + set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 3^* \ 0,0,z \\
(3) & \quad 3' \ 0,0,z \\
(4) & \quad 2' \ 0,0,z \\
(5) & \quad 6' \ 0,0,z \\
(6) & \quad 6'' \ 0,0,z \\
(7) & \quad 2' \ x,x,0 \\
(8) & \quad 2' \ x,0,0 \\
(9) & \quad 2' \ 0,y,0 \\
(10) & \quad 2 \ x,x,0 \\
(11) & \quad 2 \ x,2x,0 \\
(12) & \quad 2 \ 2x,x,0
\end{align*}
\]
Continued

<table>
<thead>
<tr>
<th>Generators selected</th>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(0,0,0) + (0,0,1)' +</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 r 1 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) y,x-y,z [v,-u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z [u+v,u+w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) y,x+y,z [v,-u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x-y,x,z [u+v,u+w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z [v,-u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) x-y,y,z [u+v,v+w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x,x+y,z [u,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11) x+y,y,z [u+v,v+w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) x,x-y,z [u,u-v,w]</td>
</tr>
</tbody>
</table>

191.12.1474 - 2 - 3231
(13) $x, y, z \ [u, v, w]$

(14) $y, x + y, z \ [v, u + v, w]$

(15) $x - y, x, z \ [u, v, u + w]$

(16) $x, y, z \ [u, v, w]$

(17) $y, x - y, z \ [v, u + v, w]$

(18) $x + y, x, z \ [u - v, u, w]$

(19) $y, x, z \ [v, u, w]$

(20) $x + y, y, z \ [u - v, v, w]$

(21) $x, x - y, z \ [u, u + v, w]$

$24 \ q \ \text{m}'..$

$x, y, 1/2 \ [u, v, 0]$

$y, x, 1/2 \ [v, u, 0]$

$x, y, 1/2 \ [u, v, 0]$

$y, x, 1/2 \ [v, u, 0]$

$y, x, 1/2 \ [v, u, 0]$

$x + y, 1/2 \ [u, v, 0]$

$24 \ p \ \text{m}..$

$x, y, 0 \ [0, 0, w]$

$y, x, 0 \ [0, 0, w]$

$x, y, 0 \ [0, 0, w]$

$y, x, 0 \ [0, 0, w]$

$y, x, 0 \ [0, 0, w]$

$y + x, 0 \ [0, 0, w]$

$24 \ o \ \text{m}..$

$x, 2x, z \ [u, 0, 0]$

$2x, x, z \ [0, u, 0]$

$x, 2x, z \ [u, 0, 0]$

$2x, x, z \ [0, u, 0]$

$x, 2x, z \ [u, 0, 0]$

$2x, x, z \ [0, u, 0]$

$0, x, z \ [0, 0, w]$

$12 \ m \ \text{mm}2$

$x, 2x, 1/2 \ [u, 0, 0]$

$12 \ l \ \text{mm}2$

$x, 2x, 0 \ [0, 0, 0]$

$12 \ k \ \text{m}'2\text{m}'$

$x, 0, 1/2 \ [u, 0, 0]$

$12 \ j \ \text{m}2\text{m}'$

$x, 0, 0 \ [0, 0, w]$

$x, 0, 0 \ [0, 0, w]$
<table>
<thead>
<tr>
<th>12</th>
<th>i</th>
<th>2'mm'</th>
<th>1/2,0,z [u,0,0]</th>
<th>0,1/2,z [0,u,0]</th>
<th>1/2,1/2,z [u,u,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,1/2,z [0,u,0]</td>
<td>1/2,0,z [u,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>3m.</td>
<td>1/3,2/3,z [0,0,0]</td>
<td>2/3,1/3,z [0,0,0]</td>
<td>1/3,2/3,z [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>g</td>
<td>m'mm'</td>
<td>1/2,0,1/2 [u,0,0]</td>
<td>0,1/2,1/2 [0,u,0]</td>
<td>1/2,1/2,1/2 [u,u,0]</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>mmm'</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>6'mm'</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>6'/m'mm'</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>6'/mmm'</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6mm1'
\[a^* = a \quad b^* = b\]
Origin at 0,0,z

Along [1,0,0] p2mm1'
\[a^* = c \quad b^* = (a + 2b)/2\]
Origin at x,0,0

Along [2,1,0] p2x, 2mm
\[a^* = c \quad b^* = b/2\]
Origin at x,x/2,0
Origin at center (6/mm'm')

Asymmetric unit
- \(0 \leq x \leq 2/3;\) \(0 \leq y \leq 1/3;\) \(0 \leq z \leq 1/2;\) \(x \leq (1+y)/2;\) \(y \leq x/2\)
- Vertices: \((0,0,0), (1/2,0,0), (2/3,1/3,0), (0,0,1/2), (1/2,0,1/2), (2/3,1/3,1/2)\)

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. \((1)\) 1
 - \((1|0,0,0)\)

2. \((2)\) 3* 0,0,z
 - \((3_z|0,0,0)\)
 - \((3_z^-1|0,0,0)\)

3. \((3)\) 3* 0,0,z
 - \((3_z|0,0,0)\)
 - \((3_z^-1|0,0,0)\)

4. \((4)\) 2 0,0,z
 - \((2_z|0,0,0)\)
 - \((6^-1|0,0,0)\)
 - \((6|0,0,0)\)

5. \((5)\) 6* 0,0,z
 - \((6_z|0,0,0)\)

6. \((6)\) 6* 0,0,z
 - \((6|0,0,0)\)

7. \((7)\) 2' x,x,0
 - \((2_{xy}|0,0,0)'\)
 - \((2_{xy}|0,0,0)'\)

8. \((8)\) 2' x,0,0
 - \((2_{z}|0,0,0)'\)

9. \((9)\) 2' 0,y,0
 - \((2_{y}|0,0,0)'\)

10. \((10)\) 2' x,x,0
 - \((2_z|0,0,0)'\)

11. \((11)\) 2' 2x,0
 - \((2_{z}|0,0,0)'\)

12. \((12)\) 2' 2x,0
 - \((2_{z}|0,0,0)'\)
Generators selected
(1); t(1,0,0); t(0,1,0); t'(0,0,1); (2); (4); (7); (13).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>r</td>
<td>1</td>
</tr>
</tbody>
</table>

Coordinates

(0,0,0) + (0,0,1)' +

<table>
<thead>
<tr>
<th>1</th>
<th>x,y,z [u,v,w]</th>
<th>2</th>
<th>\bar{y},x-y,z [v,-u-v,w]</th>
<th>3</th>
<th>\bar{x}+y,\bar{x},z [u+v,u,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>\bar{x},y,z [u,-v,w]</td>
<td>5</td>
<td>y,\bar{x}+z [v,u+v,w]</td>
<td>6</td>
<td>x-y,x,z [u-v,u,w]</td>
</tr>
<tr>
<td>7</td>
<td>y,x,z [v,u,w]</td>
<td>8</td>
<td>x-y,\bar{y},z [u+v,v,w]</td>
<td>9</td>
<td>\bar{x},x+y,z [u,u-v,w]</td>
</tr>
<tr>
<td>10</td>
<td>\bar{y},x,z [v,u,w]</td>
<td>11</td>
<td>\bar{x}+y,y,z [u-v,v,w]</td>
<td>12</td>
<td>x,x-y,z [u,u-v+w]</td>
</tr>
<tr>
<td>Continued</td>
<td>191.13.1475</td>
<td>P<sub>2</sub> 6/mm'm'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(13) (x, y, z [u, v, w])</td>
<td>(14) (y, x + y, z [v, u-v, w])</td>
<td>(15) (x-y, x, z [u+v, u, w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(16) (x, y, z [u, v, w])</td>
<td>(17) (y, x-y, z [v, u+v, w])</td>
<td>(18) (x+y, x, z [u-v, u, w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(19) (y, x, z [v, u, w])</td>
<td>(20) (x+y, y, z [u+v, v, w])</td>
<td>(21) (x, x-y, z [u-u+v, v, w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(22) (y, x, z [v, u, w])</td>
<td>(23) (x-y, y, z [u-v, v, w])</td>
<td>(24) (x, x+y, z [u-u=v, v, w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(24 \ q \ m')</td>
<td>(x, y, 1/2 [u, v, 0])</td>
<td>(y, x-y, 1/2 [v, u-v, 0])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\bar{x}, y, 1/2 [u, v, 0])</td>
<td>(y, x+y, 1/2 [v, u+v, 0])</td>
<td>(x-y, x, 1/2 [u-v, u, 0])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y, x, 1/2 [v, u, 0])</td>
<td>(x-y, y, 1/2 [u-v, v, 0])</td>
<td>(x, x+y, 1/2 [u, u+v, 0])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\bar{y}, x, 1/2 [v, u, 0])</td>
<td>(x+y, y, 1/2 [u+v, v, 0])</td>
<td>(x, x-y, 1/2 [u, u-v, 0])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(24 \ p \ m)</td>
<td>(x, y, 0 [0, 0, w])</td>
<td>(y, x-y, 0 [0, 0, w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\bar{x}, y, 0 [0, 0, w])</td>
<td>(y, x+y, 0 [0, 0, w])</td>
<td>(x-y, x, 0 [0, 0, w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y, x, 0 [0, 0, w])</td>
<td>(x-y, y, 0 [0, 0, w])</td>
<td>(x, x+y, 0 [0, 0, w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\bar{y}, x, 0 [0, 0, w])</td>
<td>(x+y, y, 0 [0, 0, w])</td>
<td>(x-x, y, 0 [0, 0, w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(24 \ o \ m)</td>
<td>(x, 2x, z [u, 2u, w])</td>
<td>(2x, x, z [2u, u, w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\bar{x}, 2x, z [u, 2u, w])</td>
<td>(2x, x, z [2u, u, w])</td>
<td>(\bar{x}, x, z [u, u+w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2x, x, z [2u, u, w])</td>
<td>(\bar{x}, 2x, z [u, 2u, w])</td>
<td>(\bar{x}, x, z [u, u+w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2x, x, z [2u, u, w])</td>
<td>(2x, 2x, z [2u, 2u, w])</td>
<td>(\bar{x}, x, z [u, u+w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(24 \ n \ m)</td>
<td>(x, 0, z [u, 0, w])</td>
<td>(0, x, z [0, u, w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\bar{x}, 0, z [u, 0, w])</td>
<td>(0, x, z [0, u, w])</td>
<td>(\bar{x}, x, z [u, u+w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0, x, z [0, u, w])</td>
<td>(x, 0, z [u, 0, w])</td>
<td>(\bar{x}, x, z [u, u+w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0, x, z [0, u, w])</td>
<td>(0, 0, z [u, 0, w])</td>
<td>(x, x, z [u, u+w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12 \ m \ m^2)</td>
<td>(x, 2x, 1/2 [u, 2u, 0])</td>
<td>(2x, x, 1/2 [2u, u, 0])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\bar{x}, 2x, 1/2 [u, 2u, 0])</td>
<td>(2x, x, 1/2 [2u, u, 0])</td>
<td>(\bar{x}, x, 1/2 [2u, u, 0])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12 \ l \ m^2)</td>
<td>(x, 2x, 0 [0, 0, w])</td>
<td>(2x, x, 0 [0, 0, w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\bar{x}, 2x, 0 [0, 0, w])</td>
<td>(2x, x, 0 [0, 0, w])</td>
<td>(\bar{x}, x, 0 [0, 0, w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12 \ k \ m^2)</td>
<td>(x, 0, 1/2 [u, 0, 0])</td>
<td>(0, x, 1/2 [0, u, 0])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\bar{x}, 0, 1/2 [u, 0, 0])</td>
<td>(0, x, 1/2 [0, u, 0])</td>
<td>(\bar{x}, x, 1/2 [u, u, 0])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12 \ j \ m^2)</td>
<td>(x, 0, 0 [0, 0, w])</td>
<td>(0, x, 0 [0, 0, w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\bar{x}, 0, 0 [0, 0, w])</td>
<td>(0, x, 0 [0, 0, w])</td>
<td>(\bar{x}, x, 0 [0, 0, w])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>i</td>
<td>2m’mm’</td>
<td>1/2,0,z [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2, z [0,0,w]</td>
<td>1/2,1/2,z [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2, z [0,0,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>3m’.</td>
<td>1/3,2/3,z [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,z [0,0,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>g</td>
<td>m’mm’</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>mm’mm’</td>
<td>1/2,0,0 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>6m’mm’</td>
<td>0,0,z [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>6’m’2</td>
<td>1/3,2/3,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,1/2 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>6’m’2’</td>
<td>1/3,2/3,0 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,0 [0,0,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>6/m’mm’</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>6/mm’mm’</td>
<td>0,0,0 [0,0,w]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] 6mm1’

* a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p6m’mm’

* a* = c b* = (a + 2b)/2
Origin at x,0,1/2

Along [2,1,0] P2a’ 2m’mm’

* a* = c b* = b/2
Origin at x,x/2,1/2

Symmetry of Special Projections

Along [0,0,1] 6mm1’

* a* = a b* = b
Origin at 0,0,z

Along [1,0,0] p6m’mm’

* a* = c b* = (a + 2b)/2
Origin at x,0,1/2

Along [2,1,0] P2a’ 2m’mm’

* a* = c b* = b/2
Origin at x,x/2,1/2
Origin at center (6/m) at 6/mcc

Asymmetric unit

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ≤ x ≤ 2/3;</td>
<td>0 ≤ y ≤ 1/2;</td>
<td>0 ≤ z ≤ 1/4;</td>
</tr>
<tr>
<td>x ≤ (1+y)/2;</td>
<td>y ≤ min (1-x,x)</td>
<td></td>
</tr>
</tbody>
</table>

Vertices

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1/2,0,0</td>
<td>2/3,1/3,0</td>
</tr>
<tr>
<td>0,0,1/4</td>
<td>1/2,0,1/4</td>
<td>2/3,1/3,1/4</td>
</tr>
<tr>
<td>1/2,1/2,0</td>
<td>1/2,1/2,1/4</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Operations

1. 1
2. 0,0,z
3. 0,0,z
4. 0,0,z
5. 0,0,z
6. 0,0,z
7. 0,0,z
8. 0,0,z
9. 0,0,z
10. 0,0,z
11. 0,0,z
12. 0,0,z

192.1.1476 - 1 - 3238
Continued

192.1.1476

P6/mcc

(13) 1 0,0,0
 (1) 0,0,0
(14) \overline{3'} 0,0,z; 0,0,0
 (3') 0,0,0
(15) \overline{3'} 0,0,z; 0,0,0
 (3'\overline{1}) 0,0,0

(16) m x,y,0
 (m) 0,0,1/2
(17) \overline{6'} 0,0,z; 0,0,0
 (\overline{6'}) 0,0,1/2
(18) \overline{6'} 0,0,z; 0,0,0
 (\overline{6}\overline{1}) 0,0,1/2

(19) c (0,0,1/2) x,x,z
 (m) 0,0,1/2
(20) c (0,0,1/2) x,2x,z
 (m) 0,0,1/2
(21) c (0,0,1/2) 0,y,z
 (m) 0,0,1/2

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

24 m 1
(1) x,y,z [u,v,w]
 (2) y,x-y,z [v,-u,-w]
 (3) x+y,x,z [u+v,u,w]
(4) x,y,z [u,v,w]
 (5) y,x+y,z [v,u+v,w]
 (6) x,y,z [u-v,u,w]
(7) y,x,z+1/2 [v,u,w]
 (8) x-y,y,z+1/2 [u-v,-w]
 (9) x,x+y,z+1/2 [u,u+v,w]
(10) y,x,z+1/2 [v,u,w]
 (11) x+y,y,z+1/2 [u+v,v,w]
 (12) x,x+y,z+1/2 [u-u,v,w]
(13) x,y,z [u,v,w]
 (14) y,x+y,z [v,-u,-w]
 (15) x+y,x,z [u+v,u,w]
(16) x,y,z [u,v,w]
 (17) y,x+y,z [v,u+v,w]
 (18) x+y,x,z [u-u,v,w]
(19) y,x,z+1/2 [v,u,w]
 (20) x+y,y,z+1/2 [u-v,-w]
 (21) x,x+y,z+1/2 [u,u+v,w]
(22) y,x,z+1/2 [v,-u,-w]
 (23) x-y,y,z+1/2 [u,-v,v]
 (24) x,x+y,z+1/2 [u-u,v,w]

12 l m...
 x,y,0 [0,0,w]
 y,x,0 [0,0,w]
 x+y,x,0 [0,0,w]
 y,x,1/2 [0,0,w]
 y,x,1/2 [0,0,w]
 x-y,y,1/2 [0,0,w]
 x,y,1/2 [0,0,w]
 x,y,1/2 [0,0,w]
 x+y,y,1/2 [0,0,w]
 x,x-y,1/2 [0,0,w]

12 k ..2
 x,2x,1/4 [u,2u,0]
 2x,x,1/4 [2u,0]
 x,x,1/4 [u,0]
 x,2x,1/4 [u,2u,0]
 2x,x,1/4 [2u,0]
 x,x,1/4 [u,0]
 x,2x,3/4 [u,2u,0]
 2x,x,3/4 [2u,0]
 x,x,3/4 [u,0]
 x,2x,3/4 [u,2u,0]
 2x,x,3/4 [2u,0]
 x,x,3/4 [u,0]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Number</th>
<th>Operation</th>
<th>Special Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 j 2</td>
<td>$x,0,1/4 [u,0,0]$</td>
<td>$0,x,1/4 [0,u,0]$</td>
</tr>
<tr>
<td></td>
<td>$\bar{x},0,1/4 [\bar{u},0,0]$</td>
<td>$0,\bar{x},1/4 [0,\bar{u},0]$</td>
</tr>
<tr>
<td></td>
<td>$\bar{x},0,3/4 [u,0,0]$</td>
<td>$0,\bar{x},3/4 [0,u,0]$</td>
</tr>
<tr>
<td></td>
<td>$x,0,3/4 [u,0,0]$</td>
<td>$0,x,3/4 [0,u,0]$</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Number</th>
<th>Operation</th>
<th>Special Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 i 2</td>
<td>$1/2,0,z [0,0,w]$</td>
<td>$0,1/2,z [0,0,w]$</td>
</tr>
<tr>
<td></td>
<td>$0,1/2,z+1/2 [0,0,w]$</td>
<td>$1/2,0,z+1/2 [0,0,w]$</td>
</tr>
<tr>
<td></td>
<td>$1/2,0,z [0,0,w]$</td>
<td>$0,1/2,z [0,0,w]$</td>
</tr>
<tr>
<td></td>
<td>$0,1/2,z+1/2 [0,0,w]$</td>
<td>$1/2,0,z+1/2 [0,0,w]$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Operation</th>
<th>Special Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 h 3</td>
<td>$1/3,2/3,z [0,0,w]$</td>
<td>$2/3,1/3,z [0,0,w]$</td>
</tr>
<tr>
<td></td>
<td>$2/3,1/3,z [0,0,w]$</td>
<td>$1/3,2/3,z [0,0,w]$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Operation</th>
<th>Special Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 g 2m</td>
<td>$1/2,0,0 [0,0,w]$</td>
<td>$0,1/2,0 [0,0,w]$</td>
</tr>
<tr>
<td></td>
<td>$0,1/2,1/2 [0,0,w]$</td>
<td>$1/2,0,1/2 [0,0,w]$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Operation</th>
<th>Special Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 f 222</td>
<td>$1/2,0,1/4 [0,0,0]$</td>
<td>$0,1/2,1/4 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$1/2,0,3/4 [0,0,0]$</td>
<td>$0,1/2,3/4 [0,0,0]$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Operation</th>
<th>Special Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 e 6</td>
<td>$0,0,z [0,0,w]$</td>
<td>$0,0,z+1/2 [0,0,w]$</td>
</tr>
<tr>
<td></td>
<td>$0,0,z+1/2 [0,0,w]$</td>
<td>$0,0,z [0,0,w]$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Operation</th>
<th>Special Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 d 6</td>
<td>$1/3,2/3,0 [0,0,w]$</td>
<td>$2/3,1/3,0 [0,0,w]$</td>
</tr>
<tr>
<td></td>
<td>$2/3,1/3,3/2 [0,0,w]$</td>
<td>$2/3,1/3,1/2 [0,0,w]$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Operation</th>
<th>Special Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 c 3</td>
<td>$1/3,2/3,1/4 [0,0,0]$</td>
<td>$2/3,1/3,1/4 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td>$2/3,1/3,3/4 [0,0,0]$</td>
<td>$1/3,2/3,3/4 [0,0,0]$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Operation</th>
<th>Special Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 b 6m</td>
<td>$0,0,0 [0,0,w]$</td>
<td>$0,0,1/2 [0,0,w]$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number</th>
<th>Operation</th>
<th>Special Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 a 6</td>
<td>$0,0,1/4 [0,0,0]$</td>
<td>$0,0,3/4 [0,0,0]$</td>
</tr>
</tbody>
</table>

- **Symmetry of Special Projections**
- **Origin at 0,0,z**
- **Origin at x,0,1/2**
- **Origin at x,x/2,1/2**
Origin at center (6/m1') at 6/mcc1'

Asymmetric unit

\[
\begin{align*}
\text{Vertices} & : & 0,0,0 & & 1/2,0,0 & & 2/3,1/3,0 & & 1/2,1/2,0 \\
& : & 0,0,1/4 & & 1/2,0,1/4 & & 2/3,1/3,1/4 & & 1/2,1/2,1/4 \\
\end{align*}
\]

Symmetry Operations

(1) 1
(1 | 0,0,0)

(4) 2 0,0,z
(2z | 0,0,0)

(7) 2 x,x,1/4
(2xy | 0,0,1/2)

(10) 2 x,x,1/4
(2z | 0,0,1/2)

(2) 3* 0,0,z
(3z | 0,0,0)

(5) 6* 0,0,z
(6z | 0,0,0)

(8) 2 x,0,1/4
(2z | 0,0,1/2)

(11) 2 x,2x,1/4
(2z | 0,0,1/2)

(3) 3' 0,0,z
(3z' | 0,0,0)

(6) 6' 0,0,z
(6z' | 0,0,0)

(9) 2 0,y,1/4
(2y | 0,0,1/2)

(12) 2 2x,x,1/4
(2z | 0,0,1/2)
Continued

<table>
<thead>
<tr>
<th>Number</th>
<th>Transformation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(13)</td>
<td>(1,0,0)</td>
<td>(1')</td>
</tr>
<tr>
<td></td>
<td>(m')</td>
<td>(14) (3')</td>
</tr>
<tr>
<td>(16)</td>
<td>(c')</td>
<td>(15) (3')</td>
</tr>
<tr>
<td>(19)</td>
<td>(c)</td>
<td>(17) (6')</td>
</tr>
<tr>
<td>(22)</td>
<td>(c)</td>
<td>(18) (6')</td>
</tr>
</tbody>
</table>

For \(1'\) + set

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13); \(1'\).

Positions
Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff Letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 m</td>
<td>11'</td>
<td></td>
</tr>
</tbody>
</table>

Coordinates

<table>
<thead>
<tr>
<th>Number</th>
<th>Transformation</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) y_x-y_z [0,0,0]</td>
<td>(3) x+y_x_z [0,0,0]</td>
</tr>
<tr>
<td>(4) x_y_z [0,0,0]</td>
<td>(5) y_x+y_z [0,0,0]</td>
<td>(6) x-y_x_z [0,0,0]</td>
</tr>
<tr>
<td>(7) y_x_z+1/2 [0,0,0]</td>
<td>(8) x-y_z+1/2 [0,0,0]</td>
<td>(9) x_x+y_z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(10) y_x_z+1/2 [0,0,0]</td>
<td>(11) x+y_y_z+1/2 [0,0,0]</td>
<td>(12) x_x-y_z+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>
(13) $x, y, z [0,0,0]$

(14) $y, x+y, z [0,0,0]$

(15) $x-y, x, z [0,0,0]$

(16) $x, y, z [0,0,0]$

(17) $y, x-y, z [0,0,0]$

(18) $x+y, x, z [0,0,0]$

(19) $y, x, z+1/2 [0,0,0]$

(20) $x+y, y, z+1/2 [0,0,0]$

(21) $x, x-y, z+1/2 [0,0,0]$

(22) $y, x, z+1/2 [0,0,0]$

(23) $x-y, x, z+1/2 [0,0,0]$

(24) $x, x+y, z+1/2 [0,0,0]$

12 l m..1' $x, y, 0 [0,0,0]$

$y, x-y, 0 [0,0,0]$

$x, x+y, 0 [0,0,0]$

$y, x+y, 1/2 [0,0,0]$

$y, x+y, 1/2 [0,0,0]$

12 k ..21' $x, 2x, 1/4 [0,0,0]$

$2x, x, 1/4 [0,0,0]$

$x, 2x, 1/4 [0,0,0]$

$2x, x, 1/4 [0,0,0]$

12 j ..2.1' $x, 0, 1/4 [0,0,0]$

$0, x, 1/4 [0,0,0]$

$x, 0, 1/4 [0,0,0]$

$0, x, 1/4 [0,0,0]$

$0, x, 1/4 [0,0,0]$

$0, x, 1/4 [0,0,0]$

12 i 2..1' $1/2, 0, z [0,0,0]$

$0, 1/2, z [0,0,0]$

$1/2, 1/2, z [0,0,0]$

$0, 1/2, z [0,0,0]$

$1/2, 1/2, z [0,0,0]$

$0, 1/2, z+1/2 [0,0,0]$

$1/2, 1/2, z+1/2 [0,0,0]$

8 h 3..1' $1/3, 2/3, z [0,0,0]$

$2/3, 1/3, z [0,0,0]$

$2/3, 1/3, z+1/2 [0,0,0]$

$1/3, 2/3, z+1/2 [0,0,0]$

$2/3, 1/3, z+1/2 [0,0,0]$

$1/3, 2/3, z+1/2 [0,0,0]$

$2/3, 1/3, z+1/2 [0,0,0]$

6 g 2/m..1' $1/2, 0, 0 [0,0,0]$

$0, 1/2, 0 [0,0,0]$

$1/2, 1/2, 0 [0,0,0]$

$0, 1/2, 1/2 [0,0,0]$

$0, 1/2, 1/2 [0,0,0]$

$1/2, 1/2, 1/2 [0,0,0]$

$0, 1/2, 1/2 [0,0,0]$

6 f 2221' $1/2, 0, 1/4 [0,0,0]$

$0, 1/2, 1/4 [0,0,0]$

$1/2, 1/2, 1/4 [0,0,0]$

$0, 1/2, 3/4 [0,0,0]$

$1/2, 1/2, 3/4 [0,0,0]$

4 e 6..1' $0, 0, z [0,0,0]$

$0, 0, z+1/2 [0,0,0]$

$0, 0, z [0,0,0]$

$0, 0, z+1/2 [0,0,0]$

$0, 0, z+1/2 [0,0,0]$

4 d 6..1' $1/3, 2/3, 0 [0,0,0]$

$2/3, 1/3, 0 [0,0,0]$

$2/3, 1/3, 1/2 [0,0,0]$

$1/3, 2/3, 1/2 [0,0,0]$

$2/3, 1/3, 1/2 [0,0,0]$

$1/3, 2/3, 1/2 [0,0,0]$

4 c 3.21' $1/3, 2/3, 1/4 [0,0,0]$

$2/3, 1/3, 1/4 [0,0,0]$

$2/3, 1/3, 3/4 [0,0,0]$

$2/3, 1/3, 3/4 [0,0,0]$

$1/3, 2/3, 3/4 [0,0,0]$

$1/3, 2/3, 3/4 [0,0,0]$

192.2.1477 - 3 - 3243
Continued 192.2.1477 P6/mcc1′

| 2 b | 6/m..1′ | 0,0,0 [0,0,0] | 0,0,1/2 [0,0,0] |
| 2 a | 6221′ | 0,0,1/4 [0,0,0] | 0,0,3/4 [0,0,0] |

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p6mm1′</th>
<th>Along [1,0,0] p2mm1′</th>
<th>Along [2,1,0] p2mm1′</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{a}^* = \mathbf{a}) (\mathbf{b}^* = \mathbf{b})</td>
<td>(\mathbf{a}^* = \mathbf{c}/2) (\mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2)</td>
<td>(\mathbf{a}^* = \mathbf{c}/2) (\mathbf{b}^* = \mathbf{b}/2)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,0</td>
</tr>
</tbody>
</table>
Origin at center (6/m') at 6/m'cc

Asymmetric unit: 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; x ≤ (1+y)/2; y ≤ min (1-x,x)

Vertices:
- 0,0,0
- 1/2,0,0
- 2/3,1/3,0
- 1/2,1/2,0
- 0,0,1/4
- 1/2,0,1/4
- 2/3,1/3,1/4
- 1/2,1/2,1/4

Symmetry Operations:

1. 1
 (1) 3+ 0,0,0
 (2) 3+ 0,0,0
 (3) 3+ 0,0,0
 (4) 2 0,0,0
 (5) 6+ 0,0,0
 (6) 6+ 0,0,0
 (7) 2' x,x,1/4
 (8) 2' x,0,1/4
 (9) 2' 0,y,1/4
 (10) 2' x,x,1/4
 (11) 2' x,2x,1/4
 (12) 2' 2x,x,1/4

192.3.1478 - 1 - 3245
Continued

(13)	0,0,0
(14)	0,0,z
(15)	0,0,0

Generators selected

(1); 1(0,0); 1(0,1,0); 1(0,0,1); 2(4); 7(7); 13(13).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 m 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y,-x,-z [v,-u,-w]</td>
</tr>
<tr>
<td>(4) x+y,z [u-v,w]</td>
<td>(5) y,-x,-z [v,u+v,w]</td>
<td>(6) x-y,z [u-v,u,w]</td>
</tr>
<tr>
<td>(7) y,x,z+1/2 [v,u,w]</td>
<td>(8) x-y,-z+1/2 [v,u+w]</td>
<td>(9) x-y,z+1/2 [u,u+v,w]</td>
</tr>
<tr>
<td>(10) y,x,z+1/2 [v,u,w]</td>
<td>(11) x+y,-z+1/2 [u,u+v,w]</td>
<td>(12) x-y,-z+1/2 [u,u+v,w]</td>
</tr>
<tr>
<td>(13) x+y,z [u,v,w]</td>
<td>(14) y,-x,-z [v,u+v,w]</td>
<td>(15) x+y,z [u+v,u,w]</td>
</tr>
<tr>
<td>(16) x,y,z [u,v,w]</td>
<td>(17) x+y,z [u-v,u,w]</td>
<td>(18) x+y,z [u+v,u,w]</td>
</tr>
<tr>
<td>(19) y,x,z+1/2 [v,u,w]</td>
<td>(20) x+y,y,z+1/2 [u,v+w]</td>
<td>(21) x-y,y,z+1/2 [u,u+v,w]</td>
</tr>
<tr>
<td>(22) y,x,z+1/2 [v,u,w]</td>
<td>(23) x+y,y,z+1/2 [u,v+w]</td>
<td>(24) x+y,z+1/2 [u,u+v,w]</td>
</tr>
</tbody>
</table>

12 l m'.. x,y,0 [u,v,0] y,-x,0 [v,-u,0] x+y,0 [u+v,0] y,x,0 [v,u,0] x+y,0 [u+v,0] x-y,0 [u-v,0] y,x,1/2 [v,0] x+y,1/2 [u+v,0] y-x,1/2 [v,u] x+y,1/2 [u+v,0] x-y,1/2 [u-v,0]

12 k ..2' x,2x,1/4 [u,0,w] 2x,-x,1/4 [0,u,w] x,x,1/4 [u,u] x,1/4 [u,u] 2x,1/4 [0,u] x,x,1/4 [u,u] x,1/4 [u,u] x,1/4 [u,u] x,1/4 [u,u] x,1/4 [u,u] x,1/4 [u,u] x,1/4 [u,u]
Continued

12 j 0.2'. x,0,1/4 [u,2u,w] 0,x,1/4 [2u, u,w] x, x,1/4 [u, u,w]
 x,0,1/4 [u,2u,w] 0,x,1/4 [2u,u,w] x,x,1/4 [u,u,w]
 x,0,3/4 [u,2u,w] 0,x,3/4 [2u,u,\bar{w}] x,x,3/4 [u,u,\bar{w}]
 x,0,3/4 [u,2u,\bar{w}] 0,x,3/4 [2u, u,\bar{w}] x, x,3/4 [u, u,\bar{w}]

12 i 2.. 1/2,0,z [0,0,w] 0,1/2,z [0,0,w] 1/2,1/2,z [0,0,w]
 0,1/2,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w] 1/2,1/2,z+1/2 [0,0,w]
 1/2,0,z 0,1/2,z 1/2,1/2,z [0,0,w] 1/2,1/2,z [0,0,w]
 0,1/2,z+1/2 [0,0,w] 1/2,0,z+1/2 [0,0,w] 1/2,1/2,z+1/2 [0,0,w]

8 h 3.. 1/3,2/3,z [0,0,w] 2/3,1/3,z [0,0,w] 2/3,1/3,z+1/2 [0,0,w]
 2/3,1/3,z [0,0,\bar{w}] 1/3,2/3,z [0,0,\bar{w}] 1/3,2/3,z+1/2 [0,0,\bar{w}]
 1/3,2/3,z [0,0,w] 2/3,1/3,z+1/2 [0,0,w] 2/3,1/3,z+1/2 [0,0,\bar{w}]

6 g 2/m'. 1/2,0,0 [0,0,0] 0,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0]
 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]
 1/2,0,0 [0,0,0] 0,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0]

6 f 22'2' 1/2,0,1/4 [0,0,w] 0,1/2,1/4 [0,0,w] 1/2,1/2,1/4 [0,0,w]
 1/2,0,3/4 [0,0,w] 0,1/2,3/4 [0,0,w] 1/2,1/2,3/4 [0,0,w]

4 e 6.. 0,0,z [0,0,0] 0,0,z+1/2 [0,0,w] 0,0,z [0,0,\bar{w}] 0,0,z+1/2 [0,0,\bar{w}]

4 d 6'.. 1/3,2/3,0 [0,0,0] 2/3,1/3,0 [0,0,0] 2/3,1/3,1/2 [0,0,0]
 1/3,2/3,0 [0,0,0] 2/3,1/3,1/2 [0,0,0] 1/3,2/3,1/2 [0,0,0]

4 c 3.2' 1/3,2/3,1/4 [0,0,0] 2/3,1/3,1/4 [0,0,0] 2/3,1/3,3/4 [0,0,\bar{w}]
 1/3,2/3,1/4 [0,0,w] 2/3,1/3,3/4 [0,0,w] 1/3,2/3,3/4 [0,0,\bar{w}]

2 b 6/m'.. 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]

2 a 62'2' 0,0,1/4 [0,0,w] 0,0,3/4 [0,0,\bar{w}]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6mm</th>
<th>Along [1,0,0]</th>
<th>p2m' 2m'm'</th>
<th>Along [2,1,0]</th>
<th>p2a' 2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = c/2 b* = (a + 2b)/2</td>
<td>a* = c/2 b* = b/2</td>
<td>a* = c/2 b* = b/2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin at center (6'/m) at 6'/mc'c

Asymmetric unit

- **Vertices**
 - $0,0,0$
 - $1/2,0,0$
 - $2/3,1/3,0$
 - $1/2,1/2,0$
 - $0,0,1/4$
 - $1/2,0,1/4$
 - $2/3,1/3,1/4$
 - $1/2,1/2,1/4$

Symmetry Operations

- (1) 1
 - $(1|0,0,0)$
- (2) $3^+ 0,0,z$
 - $(3_z|0,0,0)$
- (3) $3^- 0,0,z$
 - $(3_z^{-1}|0,0,0)$
- (4) $2' 0,0,z$
 - $(2_z|0,0,0)'$
- (5) $6' 0,0,z$
 - $(6_z^{-1}|0,0,0)'$
- (6) $6^- 0,0,z$
 - $(6_z|0,0,0)'$
- (7) $2 x,x,1/4$
 - $(2_x|0,0,1/2)$
- (8) $2 x,0,1/4$
 - $(2_z|0,0,1/2)$
- (9) $2 y,y,1/4$
 - $(2_y|0,0,1/2)$
- (10) $2' x,0,1/4$
 - $(2_z|0,0,1/2)'$
- (11) $2' x,2x,1/4$
 - $(2_z|0,0,1/2)'$
- (12) $2' 2x,x,1/4$
 - $(2_z|0,0,1/2)'$
Continued

(13) \(\overline{1} \cdot 0,0,0 \)
\((\overline{1}|0,0,0') \)

(14) \(\overline{3} \cdot 0,0,z; 0,0,0 \)
\((3|0,0,0') \)

(15) \(\overline{3} \cdot 0,0,z; 0,0,0 \)
\((3|0,0,0') \)

(16) \(m \ x,y,0 \)
\((m|0,0,1/2) \)

(17) \(6 \cdot 0,0,z; 0,0,0 \)
\((6|0,0,1/2) \)

(18) \(6 \cdot 0,0,z; 0,0,0 \)
\((6|0,0,1/2) \)

(19) \(c' (0,0,1/2) \ x,x,z \)
\((m_x|0,0,1/2) \)

(20) \(c' (0,0,1/2) \ x,2x,z \)
\((m_x|0,0,1/2) \)

(21) \(c' (0,0,1/2) \ 2x,x,z \)
\((m_y|0,0,1/2) \)

(22) \(c (0,0,1/2) \ x,x,z \)
\((m_z|0,0,1/2) \)

(23) \(c (0,0,1/2) \ x,0,z \)
\((m_z|0,0,1/2) \)

(24) \(c (0,0,1/2) \ 0,y,z \)
\((m_z|0,0,1/2) \)

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 m 1</td>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) y \cdot x-y,z [v,u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) (\bar{x},y,z[u,v,w])</td>
<td>(5) y,(\bar{x}+y,z[u,v,w])</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 ([v,u,w])</td>
<td>(8) x-y,(\bar{y},z+1/2[u-v,v,w])</td>
</tr>
<tr>
<td></td>
<td>(10) (\bar{y},x,z+1/2[v,u,w])</td>
<td>(11) (\bar{x}+y,\bar{z}+1/2[u-v,v,w])</td>
</tr>
<tr>
<td></td>
<td>(13) (\bar{x},\bar{y},z[u,v,w])</td>
<td>(14) (\bar{y}+x,\bar{z}[v,\bar{u}+v,w])</td>
</tr>
<tr>
<td></td>
<td>(16) (\bar{x},\bar{y},\bar{z}[u,v,w])</td>
<td>(17) (y,\bar{x}+y,\bar{z}[v,\bar{u}+v,w])</td>
</tr>
<tr>
<td></td>
<td>(19) (y,\bar{x},z+1/2[v,\bar{u},w])</td>
<td>(20) (\bar{y}+x+y,\bar{z}+1/2[u+v,v,w])</td>
</tr>
<tr>
<td></td>
<td>(22) (y,x,z+1/2[v,\bar{u},w])</td>
<td>(23) (\bar{y}+x+y,\bar{z}+1/2[u+v,v,w])</td>
</tr>
</tbody>
</table>

12 l m..
x,y,0 \([0,0,w] \)	\(\bar{y},x-y,0[0,0,w] \)	\(x+y,x,0[0,0,w] \)
\(\bar{x},y,0[0,0,w] \)	y,\(x+y,0[0,0,w] \)	x-y,x,0 \([0,0,w] \)
y,x,1/2 \([0,0,w] \)	x-y,\(\bar{y},1/2[0,0,w] \)	\(x,\bar{x}+y,1/2[0,0,w] \)
\(\bar{y},x,1/2[0,0,w] \)	\(\bar{x}+y,y,1/2[0,0,w] \)	x-x-y,1/2 \([0,0,w] \)

12 k \(.2' \)
x,2x,1/4 \([u,0,w] \)	\(2\bar{x},x,1/4[0,u,w] \)	\(\bar{x},1/4[u,u,w] \)
\(\bar{x},2\bar{x},1/4[0,u,\bar{w}] \)	\(2\overline{x},x,1/4[0,u,\bar{w}] \)	\(\bar{x},1/4[u,\bar{u},w] \)
\(\bar{x},2\bar{x},3/4[u,0,w] \)	\(2\overline{x},x,3/4[0,\bar{u},w] \)	\(\bar{x},3/4[u,u,\bar{w}] \)
x,2x,3/4 \([0,u,\bar{w}] \)	\(2\bar{x},x,3/4[0,u,w] \)	\(x,3/4[u,u,\bar{w}] \)
Symmetry of Special Projections

Along [0,0,1] p6mm1'
\(\text{a}^* = \text{a} \quad \text{b}^* = \text{b} \)
Origin at 0,0,0

Along [1,0,0] p2mm
\(\text{a}^* = \text{c}/2 \quad \text{b}^* = (\text{a} + 2\text{b})/2 \)
Origin at x,0,0

Along [2,1,0] p2a,2mm
\(\text{a}^* = \text{c}/2 \quad \text{b}^* = \text{b}/2 \)
Origin at x,x/2,0

\begin{align*}
12 & j \text{ .2.} & x,0,1/4 [u,0,0] & 0,x,1/4 [0,u,0] & x,x,1/4 [u,0,0] \\
& & x,0,1/4 [u,0,0] & 0,x,1/4 [0,u,0] & x,x,1/4 [u,0,0] \\
& & x,0,3/4 [u,0,0] & 0,x,3/4 [0,u,0] & x,x,3/4 [u,u,0] \\
& & x,0,3/4 [u,0,0] & 0,x,3/4 [0,u,0] & x,x,3/4 [u,u,0] \\
12 & i \text{ 2'.} & 1/2,0,z [u,v,0] & 0,1/2,z [v,u-v,0] & 1/2,1/2,z [u+v,u,0] \\
& & 0,1/2,z+1/2 [v,u,0] & 1/2,0,z+1/2 [u-v,v,0] & 1/2,1/2,z+1/2 [u,u+v,0] \\
& & 0,1/2,z [u,v,0] & 1/2,0,z [v,u+v,0] & 1/2,1/2,z [u-u+v,0] \\
& & 0,1/2,z+1/2 [v,u,0] & 1/2,0,z+1/2 [u+v,v,0] & 1/2,1/2,z+1/2 [u,u-v,0] \\
8 & h \text{ 3..} & 1/3,2/3,z [0,0,w] & 2/3,1/3,z [0,0,w] & 2/3,1/3,z+1/2 [0,0,w] \\
& & 2/3,1/3,z [0,0,w] & 1/3,2/3,z [0,0,w] & 1/3,2/3,z+1/2 [0,0,w] \\
6 & g \text{ 2'm..} & 1/2,0,0 [0,0,0] & 0,1/2,0 [0,0,0] & 1/2,1/2,0 [0,0,0] \\
& & 0,1/2,1/2 [0,0,0] & 1/2,0,1/2 [0,0,0] & 1/2,1/2,1/2 [0,0,0] \\
6 & f \text{ 2'22'} & 1/2,0,1/4 [u,0,0] & 0,1/2,1/4 [u,0,0] & 1/2,1/2,1/4 [u,0,0] \\
& & 1/2,0,3/4 [u,0,0] & 0,1/2,3/4 [u,0,0] & 1/2,1/2,3/4 [u,0,0] \\
4 & e \text{ 6..} & 0,0,0 [0,0,0] & 0,0,0 [0,0,0] & 0,0,0 [0,0,0] \\
& & 0,0,0 [0,0,0] & 0,0,0 [0,0,0] & 0,0,z+1/2 [0,0,0] \\
4 & d \text{ 6..} & 1/3,2/3,0 [0,0,w] & 2/3,1/3,0 [0,0,w] & 1/3,2/3,1/2 [0,0,w] \\
& & 2/3,1/3,0 [0,0,w] & 1/3,2/3,1/2 [0,0,w] & 1/3,2/3,1/2 [0,0,w] \\
4 & c \text{ 3.2'} & 1/3,2/3,1/4 [0,0,w] & 2/3,1/3,1/4 [0,0,w] & 1/3,2/3,3/4 [0,0,w] \\
& & 2/3,1/3,1/4 [0,0,w] & 1/3,2/3,3/4 [0,0,w] & 1/3,2/3,3/4 [0,0,w] \\
2 & b \text{ 6'm..} & 0,0,0 [0,0,0] & 0,0,0 [0,0,0] & 0,0,1/2 [0,0,0] \\
2 & a \text{ 6'22'} & 0,0,1/4 [0,0,0] & 0,0,1/4 [0,0,0] & 0,0,3/4 [0,0,0]
Origin at center (6'/m) at 6'/mcc'

Asymmetric unit

0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; x ≤ (1+y)/2; y ≤ min (1-x,x)

Vertices

0,0,0 1/2,0,0 2/3,1/3,0 1/2,1/2,0
0,0,1/4 1/2,0,1/4 2/3,1/3,1/4 1/2,1/2,1/4

Symmetry Operations

(1) 1
(1 0,0,0)

(4) 2' 0,0,z
(2z 0,0,0)'

(7) 2' x,x,1/4
(2x 0,0,1/2)'

(10) 2 x,x,1/4
(2 0,0,1/2)

(2) 3* 0,0,z
(3z 0,0,0)

(5) 6' 0,0,z
(6z 0,0,0)'

(8) 2' x,0,1/4
(2z 0,0,1/2)'

(11) 2 x,2x,1/4
(2z 0,0,1/2)

(3) 3' 0,0,z
(3z 0,0,0)

(6) 6' 0,0,z
(6z 0,0,0)'

(9) 2' 0,y,1/4
(2y 0,0,1/2)'

(12) 2 2x,x,1/4
(2 0,0,1/2)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

24 m 1 (1) x,y,z [u,v,w]
(4) \bar{x}, \bar{y},z [u,v,w]
(7) y,x,z+1/2 [v,u,w]
(10) $\bar{y}, \bar{x},z+1/2$ [v,u,w]
(13) x, \bar{y},z [u,\bar{v},w]
(16) x,y,z [u,\bar{v},w]
(19) $\bar{y}, \bar{x},z+1/2$ [v,u,w]
(22) y,x,z+1/2 [v,u,w]

12 l m.. x,y,0 [0,0,w]
$\bar{x}, y,0$ [0,0,w]
$x, y,1/2$ [0,0,w]
$\bar{y}, \bar{x},1/2$ [0,0,w]

12 k ..2 x,2x,1/4 [u,2u,0]
$\bar{x},2\bar{x},1/4$ [u,2u,0]
$x,2x,3/4$ [u,2u,0]
$\bar{x},2\bar{x},3/4$ [u,2u,0]
$x,2x,3/4$ [u,2u,0]

Continued

(13) $\bar{1}$ 0,0,0
(14) $\bar{3}$+ 0,0,z; 0,0,0
(15) $\bar{3}$+ 0,0,z; 0,0,0

(16) m x,y,0
(17) $\bar{6}$ 0,0,z; 0,0,0
(18) $\bar{6}$ 0,0,z; 0,0,0

(19) c (0,0,1/2) x,\bar{x},z
(20) c (0,0,1/2) x,2x,z
(21) c (0,0,1/2) 2x,x,z

(22) c'(0,0,1/2) x,x,z
(23) c'(0,0,1/2) x,0,z
(24) c'(0,0,1/2) 0,y,z

12 l m.. x,y,0 [0,0,w]
$\bar{x}, y,0$ [0,0,w]
$x, y,1/2$ [0,0,w]
$\bar{y}, \bar{x},1/2$ [0,0,w]

12 k ..2 x,2x,1/4 [u,2u,0]
$\bar{x},2\bar{x},1/4$ [u,2u,0]
$x,2x,3/4$ [u,2u,0]
$\bar{x},2\bar{x},3/4$ [u,2u,0]
$x,2x,3/4$ [u,2u,0]

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).
Continued

192.5.1480

P6'/mcc'

12 j 2'. x,0,1/4 [u,2u,w] 0,x,1/4 [2u, u,w] x,x,1/4 [u, u,w]
 x,0,1/4 [u,2u,w] 0,x,1/4 [2u, u,w] x,x,1/4 [u, u,w]
 x,0,3/4 [u,2u,w] 0,x,3/4 [2u, u,w] x,x,3/4 [u, u,w]
 x,0,3/4 [u,2u,w] 0,x,3/4 [2u, u,w] x,x,3/4 [u, u,w]

12 i 2'.. 1/2,0,z [u,v,0] 0,1/2,z [v,u-v,0] 1/2,1/2,z [u+v,u,0]
 0,1/2,z+1/2 [v, u,0] 1/2,0,z+1/2 [u+v,v,0] 1/2,1/2,z+1/2 [u,u-v,0]
 1/2,0,z [u,v,0] 0,1/2,z [v,u-v,0] 1/2,1/2,z [u-u+v,0]
 0,1/2,z+1/2 [v,u,0] 1/2,0,z+1/2 [u-v,v,0] 1/2,1/2,z+1/2 [u+u+v,0]

8 h 3.. 1/3,2/3,z [0,0,w] 2/3,1/3,z [0,0,0] 2/3,1/3,z [0,0,0] 1/3,2/3,z+1/2 [0,0,0]
 2/3,1/3,z [0,0,w] 1/3,2/3,z [0,0,w] 1/3,2/3,z+1/2 [0,0,0] 2/3,1/3,z+1/2 [0,0,w]

6 g 2/m.. 1/2,0,0 [0,0,0] 0,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0]
 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]

6 f 2'2'1 1/2,0,1/4 [u,2u,0] 0,1/2,1/4 [2u, u,0] 1/2,1/2,1/4 [u, u,0]
 1/2,0,3/4 [u,2u,0] 0,1/2,3/4 [2u, u,0] 1/2,1/2,3/4 [u, u,0]

4 e 6.. 0,0,z [0,0,0] 0,0,z+1/2 [0,0,0] 0,0,z+1/2 [0,0,0] 0,0,z+1/2 [0,0,0]

4 d 6.. 1/3,2/3,0 [0,0,w] 2/3,1/3,0 [0,0,0] 2/3,1/3,1/2 [0,0,w] 1/3,2/3,1/2 [0,0,w]

4 c 3.2 1/3,2/3,1/4 [0,0,0] 2/3,1/3,1/4 [0,0,0] 2/3,1/3,3/4 [0,0,0] 1/3,2/3,3/4 [0,0,0]

2 b 6/m.. 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]

2 a 6'2'2 0,0,1/4 [0,0,0] 0,0,3/4 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6mm1'</th>
<th>Along [1,0,0]</th>
<th>p_{cc} 2mm</th>
<th>Along [2,1,0]</th>
<th>p2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^* = a</td>
<td>b^* = b</td>
<td>a^* = c/2</td>
<td>b^* = (a + 2b)/2</td>
<td>a^* = c/2</td>
<td>b^* = b/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,0</td>
<td>Origin at x,x/2,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (6'/m') at 6'/m'c'c

Asymmetric unit

- 0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; x ≤ (1+y)/2; y ≤ min (1-x, x)

Vertices

- 0,0,0
- 1/2,0,0
- 2/3,1/3,0
- 1/2,1/2,0
- 0,0,1/4
- 1/2,0,1/4
- 2/3,1/3,1/4
- 1/2,1/2,1/4

Symmetry Operations

1. 1
 - (1, 0, 0, 0)
2. 3* 0,0,z
 - (3z, 0,0,0)
3. 3* 0,0,z
 - (3z, 0,0,0)
4. 2' 0,0,z
 - (2z, 0,0,0)'
 - 6' - 0,0,z
 - (6z, 0,0,0)'
5. 6' - 0,0,z
 - (6z, 0,0,0)'
6. 6' - 0,0,z
 - (6z, 0,0,0)'
7. 2' x,x,1/4
 - (2x, 0,0,1/2)'
8. 2' x,0,1/4
 - (2x, 0,0,1/2)'
9. 2' 0,y,1/4
 - (2z, 0,0,1/2)'
10. 2 x,x,1/4
 - (2x, 0,0,1/2)
11. 2 x,2x,1/4
 - (2x, 0,0,1/2)
12. 2 2x,x,1/4
 - (2x, 0,0,1/2)
Continued

192.6.1481 P6'/m'c'c

(13) 0,0,0 (14) 0,0,z; 0,0,0 (15) 0,0,z; 0,0,0
(16) m' x,y,0 (17) 0,0,z; 0,0,0 (18) 0,0,z; 0,0,0
(m'|0,0,1/2') (19) c' (0,0,1/2) (20) c' (0,0,1/2)
(m'|0,0,1/2') (21) c' (0,0,1/2) (22) c' (0,0,1/2)
(m'|0,0,1/2') (23) c' (0,0,1/2)

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 m 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) y,x+y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x-y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x-y,x,z+1/2 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,x+y,z+1/2 [u,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(11) x+y,x,z+1/2 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(12) x,x+y,z+1/2 [u,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(14) y,x+y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) x-y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(16) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(17) y,x+y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(18) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(19) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(20) x+y,x,z+1/2 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(21) x,x+y,z+1/2 [u,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(22) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(23) x-y,x,z+1/2 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(24) x,x+y,z+1/2 [u,u-v,w]</td>
</tr>
</tbody>
</table>

12 l m'.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 l m'.</td>
<td>x,y,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,0 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,1/2 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,1/2 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [u+v,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,1/2 [u+v,v,0]</td>
</tr>
</tbody>
</table>

12 k .2

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 k .2</td>
<td>x,2x,1/4 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td>x,2x,1/4 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td>x,2x,3/4 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td>x,2x,3/4 [u,2u,0]</td>
</tr>
</tbody>
</table>

192.6.1481 - 2 - 3255
Symmetry of Special Projections

Along \([0,0,1]\) \(p6\overline{m}'m\) \(p6\overline{m}'m\) \(p2\overline{m}'mm'\) \(p2\overline{m}'mm'\) \(p_{2\overline{a}}2mm\) \\
a* = \(a\) \(b* = b\) \(a* = (a + 2b)/2\) \(b* = c/2\) \(a* = c/2\) \(b* = b/2\) \\
Origin at 0,0,z \(\text{Origin at } x,0,0\) \(\text{Origin at } x,x/2,1/4\)
Origin at center (6'/m') at 6'/m'cc'

Asymmetric unit

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ≤ x ≤ 2/3;</td>
<td>0 ≤ y ≤ 1/2;</td>
<td>0 ≤ z ≤ 1/4;</td>
</tr>
</tbody>
</table>

Vertices

<table>
<thead>
<tr>
<th>0,0,0</th>
<th>1/2,0,0</th>
<th>2/3,1/3,0</th>
<th>1/2,1/2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,1/4</td>
<td>1/2,0,1/4</td>
<td>2/3,1/3,1/4</td>
<td>1/2,1/2,1/4</td>
</tr>
</tbody>
</table>

Symmetry Operations

1. 1

2. 3' 0,0,z

3. 3' 0,0,z

4. 2' 0,0,z

5. 6' 0,0,0

6. 6' 0,0,0

7. 2 x,x,1/4

8. 2' 0,0,1/4

9. 2 0,y,1/4

10. 2' x,x,1/4

11. 2' x,2x,1/4

12. 2' 2x,x,1/4
Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Generators selected (1): t(1,0,0); t(0,1,0); t(0,0,1); (2): (4); (7): (13).

Coordinates

Continued

\[
\begin{align*}
(13) & \quad \bar{1} \quad 0,0,0 \\
(14) & \quad \bar{3}^+ \quad 0,0,z; \quad 0,0,0 \\
(15) & \quad \bar{3}^- \quad 0,0,0; \quad 0,0,0 \\
(16) & \quad m' \quad x,y,0 \\
(17) & \quad \bar{6}^- \quad 0,0,z; \quad 0,0,0 \\
(18) & \quad \bar{6}^+ \quad 0,0,0; \quad 0,0,0 \\
(19) & \quad c \quad (0,0,1/2) \\
(20) & \quad c \quad (0,0,1/2) \\
(21) & \quad c \quad (0,0,1/2) \\
(22) & \quad c' \quad (0,0,1/2) \\
(23) & \quad c' \quad (0,0,1/2) \\
(24) & \quad c' \quad (0,0,1/2) \\
\end{align*}
\]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>12</th>
<th>i</th>
<th>$2''$</th>
<th>$x,0,1/4$</th>
<th>$0,x,1/4$</th>
<th>$x,x,1/4$</th>
<th>$x,x,3/4$</th>
<th>$0,x,3/4$</th>
<th>$x,x,3/4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>j</td>
<td>$2''$</td>
<td>$1/2,z$</td>
<td>$0,1/2,z$</td>
<td>$1/2,1/2,z$</td>
<td>$1/2,1/2,z$</td>
<td>$0,1/2,z$</td>
<td>$1/2,1/2,z$</td>
</tr>
<tr>
<td>8</td>
<td>h</td>
<td>$3'$</td>
<td>$1/3,2/3,z$</td>
<td>$2/3,1/3,z$</td>
<td>$1/3,2/3,z+1/2$</td>
<td>$1/3,2/3,z+1/2$</td>
<td>$2/3,1/3,z+1/2$</td>
<td>$1/3,2/3,z+1/2$</td>
</tr>
<tr>
<td>6</td>
<td>g</td>
<td>$2''$</td>
<td>$2/3,0,0$</td>
<td>$1/2,2,1/2$</td>
<td>$1/2,1/2,2$</td>
<td>$1/2,1/2,2$</td>
<td>$2/3,0,0$</td>
<td>$1/2,2,1/2$</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>$2''$</td>
<td>$0,1/2,1/4$</td>
<td>$1/2,1/2,1/4$</td>
<td>$1/2,1/2,1/4$</td>
<td>$0,1/2,1/4$</td>
<td>$1/2,1/2,1/4$</td>
<td>$0,1/2,1/4$</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>$6'$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>$6'$</td>
<td>$1/3,2/3,0$</td>
<td>$2/3,1/3,0$</td>
<td>$2/3,1/3,1/2$</td>
<td>$2/3,1/3,1/2$</td>
<td>$1/3,2/3,1/2$</td>
<td>$2/3,1/3,1/2$</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>$3'$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>$6'$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>$6'$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections (continued)

- **Along $[0,0,1]$** $p6'm'm'$
- **Along $[1,0,0]$** $p_{2/m}2'm'm$
- **Along $[2,1,0]$** $p2'm'm$

<table>
<thead>
<tr>
<th>a^*</th>
<th>a^*</th>
<th>b^*</th>
<th>b^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^* = a$</td>
<td>$a^* = b$</td>
<td>$a^* = c/2$</td>
<td>$a^* = b$</td>
</tr>
<tr>
<td>$b^* = b$</td>
<td>$b^* = (a + 2b)/2$</td>
<td>$b^* = c/2$</td>
<td>$b^* = c/2$</td>
</tr>
<tr>
<td>Origin at $0,0,z$</td>
<td>Origin at $x,0,1/4$</td>
<td>Origin at $x,0,1/4$</td>
<td>Origin at $x,x/2,0$</td>
</tr>
</tbody>
</table>
Origin at center (6/m) at 6/mc'c'

Asymmetric unit

0 ≤ x ≤ 2/3; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; x ≤ (1+y)/2; y ≤ min (1-x,x)

Vertices

0,0,0 1/2,0,0 2/3,1/3,0 1/2,1/2,0
0,0,1/4 1/2,0,1/4 2/3,1/3,1/4 1/2,1/2,1/4

Symmetry Operations

(1) 1
(1) 1

(2) 3z 0,0,z
(3) 3z 0,0,z

(3 z) 0,0,0

(4) 2 0,0,z
(2z 0,0,0)

(5) 6z 0,0,z
(6z 0,0,0)

(6) 6z 0,0,1/2')

(7) 2z x,x,1/4
(2z 0,0,1/2')

(8) 2z x,0,1/4
(2z 0,0,1/2')

(9) 2z 0,y,1/4
(2z 0,0,1/2')

(10) 2z x,x,1/4
(2z 0,0,1/2')

(11) 2z x,2x,1/4
(2z 0,0,1/2')

(12) 2z 2x,x,1/4
(2z 0,0,1/2')
Continued

(13) $\bar{1}$ 0,0,0
(14) $\bar{3}^*$ 0,0,z; 0,0,0
(15) $\bar{3}^*$ 0,0,z; 0,0,0

(16) m x,y,0
(m, | 0,0,1/2)

(17) $\bar{6}^*$ 0,0,z; 0,0,0
(18) $\bar{6}^*$ 0,0,z; 0,0,0

(19) c' (0,0,1/2)
(m, | 0,0,1/2)'

(20) c' (0,0,1/2)
(m, | 0,0,1/2)'

(21) c' (0,0,1/2)
(m, | 0,0,1/2)'

(22) c' (0,0,1/2)
(m, | 0,0,1/2)'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 m 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(5) y, x+y,z [v, u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x-y,x,z [u-v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v, u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x-y, y,z+1/2 [u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x-x, y,z+1/2 [u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) y, x, z+1/2 [v, u,w]</td>
</tr>
<tr>
<td></td>
<td>(11) x+y, y, z+1/2 [u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(12) x-x, y, z+1/2 [u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(14) y, x+y, z [v, u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) x+y, x, z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(16) x, y, z [u, v, w]</td>
</tr>
<tr>
<td></td>
<td>(17) y, x+y, z [v, u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(18) x+y, x, z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(19) y, x, z+1/2 [v, u,w]</td>
</tr>
<tr>
<td></td>
<td>(20) x+y, y, z+1/2 [u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(21) x-x, y, z+1/2 [u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(22) y, x, z+1/2 [v, u,w]</td>
</tr>
<tr>
<td></td>
<td>(23) x-y, y, z+1/2 [u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(24) x-x, y, z+1/2 [u+v,w]</td>
</tr>
</tbody>
</table>

12 l m..	x,y,0 [0,0,w]
	y,x,0 [0,0,w]
	y,x,1/2 [0,0,w]
	y,x,1/2 [0,0,w]

12 k ..2'	x,2x,1/4 [u,0,w]
	x,2x,1/4 [u,0,w]
	x,2x,3/4 [u,0,w]

192.8.1483 - 2 - 3261
12	j	2'	x,0,1/4 [u,2u,w]	0,x,1/4 [2u, u,w]	x,x,1/4 [u, u,w]
			x,0,1/4 [u,2u,w]	0,x,1/4 [2u,u,w]	x,x,1/4 [u,u,w]
			x,0,3/4 [u,2u,w]	0,x,3/4 [2u, u,w]	x,x,3/4 [u, u,w]
			x,0,3/4 [u,2u,w]	0,x,3/4 [2u,u,w]	x,x,3/4 [u,u,w]
12	i	2..	1/2,0, z [0,0,w]	0,1/2, z [0,0,w]	1/2,1/2, z [0,0,w]
			0,1/2, z+1/2 [0,0,w]	1/2,0, z+1/2 [0,0,w]	1/2,1/2, z+1/2 [0,0,w]
			1/2,0, z [0,0,w]	0,1/2, z [0,0,w]	1/2,1/2, z [0,0,w]
			0,1/2, z+1/2 [0,0,w]	1/2,0, z+1/2 [0,0,w]	1/2,1/2, z+1/2 [0,0,w]
8	h	3..	1/3,2/3, z [0,0,w]	2/3,1/3, z [0,0,w]	2/3,1/3, z+1/2 [0,0,w]
			2/3,1/3, z [0,0,w]	1/3,2/3, z [0,0,w]	1/3,2/3, z+1/2 [0,0,w]
			2/3,1/3, z [0,0,w]	1/3,2/3, z+1/2 [0,0,w]	2/3,1/3, z+1/2 [0,0,w]
6	g	2/m..	1/2,0,0 [0,0,w]	0,1/2,0 [0,0,w]	1/2,1/2,0 [0,0,w]
			0,1/2,1/2 [0,0,w]	1/2,0,1/2 [0,0,w]	1/2,1/2,1/2 [0,0,w]
6	f	22'2'	1/2,0,1/4 [0,0,w]	0,1/2,1/4 [0,0,w]	1/2,1/2,1/4 [0,0,w]
			1/2,0,3/4 [0,0,w]	0,1/2,3/4 [0,0,w]	1/2,1/2,3/4 [0,0,w]
4	e	6..	0,0, z [0,0,w]	0,0, z+1/2 [0,0,w]	0,0, z [0,0,w]
			0,0, z [0,0,w]	0,0, z+1/2 [0,0,w]	0,0, z+1/2 [0,0,w]
4	d	6..	1/3,2/3,0 [0,0,w]	2/3,1/3,0 [0,0,w]	2/3,1/3,1/2 [0,0,w]
			2/3,1/3,0 [0,0,w]	2/3,1/3,1/2 [0,0,w]	1/3,2/3,1/2 [0,0,w]
4	c	3.2'	1/3,2/3,1/4 [0,0,w]	2/3,1/3,1/4 [0,0,w]	2/3,1/3,3/4 [0,0,w]
			2/3,1/3,1/4 [0,0,w]	2/3,1/3,3/4 [0,0,w]	1/3,2/3,3/4 [0,0,w]
2	b	6/m..	0,0,0 [0,0,w]	0,0,1/2 [0,0,w]	0,0,1/2 [0,0,w]
2	a	62'2'	0,0,1/4 [0,0,w]	0,0,3/4 [0,0,w]	0,0,3/4 [0,0,w]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6mm1'</th>
<th>Along [1,0,0]</th>
<th>p2'mm'</th>
<th>Along [2,1,0]</th>
<th>p2'mm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = c/2</td>
<td>b* = (a + 2b)/2</td>
<td>a* = c/2</td>
<td>b* = b/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0
Origin at center (6/m') at 6/m'c'c'

Asymmetric unit

- $0 \leq x \leq 2/3$
- $0 \leq y \leq 1/2$
- $0 \leq z \leq 1/4$
- $x \leq (1+y)/2$
- $y \leq \min (1-x, x)$

Vertices

- $0,0,0$
- $1/2,0,0$
- $2/3,1/3,0$
- $1/2,1/2,0$
- $0,0,1/4$
- $1/2,0,1/4$
- $2/3,1/3,1/4$
- $1/2,1/2,1/4$

Symmetry Operations

1. 1
2. 3^* $0,0,z$
3. 3^* $0,0,z$
4. 2 $0,0,z$
5. 6^* $0,0,z$
6. 6^* $0,0,z$
7. $2x,x,1/4$
8. 2^* $x,0,1/4$
9. 2^* $0,y,1/4$
10. 2^* $x,x,1/4$
11. 2^* $x,2x,1/4$
12. 2^* $2x,x,1/4$

192.9.1484 - 1 - 3263
<table>
<thead>
<tr>
<th>Generators selected</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).</td>
<td>(1) x, y; z</td>
</tr>
<tr>
<td>Positions</td>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
</tr>
<tr>
<td>24</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>(4) x, y, z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y, x, z [v,u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) y, x, z [u,v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x, y, z [u,v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(16) x, y, z [u,v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(19) y, x, z [v,u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(22) y, x, z [u,v,v,w]</td>
</tr>
<tr>
<td>12</td>
<td>m'</td>
</tr>
<tr>
<td></td>
<td>(4) x, y, 0 [u+v,u,0]</td>
</tr>
<tr>
<td></td>
<td>(7) y, x, $1/2$ [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>(10) y, x, $1/2$ [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>(13) x, y, $1/2$ [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>(16) x, y, $1/2$ [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>(19) x, y, $1/2$ [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>(22) x, y, $1/2$ [u,v,0]</td>
</tr>
<tr>
<td>12 j .2</td>
<td>x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,3/4 [u,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,3/4 [u,0,0]</td>
</tr>
<tr>
<td>12 i 2..</td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,z+1/2 [0,0,w]</td>
</tr>
<tr>
<td>8 h 3..</td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>1/3,2/3,z [0,0,w]</td>
</tr>
<tr>
<td>6 g 2/m'</td>
<td>1/2,0,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,1/2,1/2 [0,0,w]</td>
</tr>
<tr>
<td>6 f 222</td>
<td>1/2,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 e 6..</td>
<td>0,0,z [0,0,w]</td>
</tr>
<tr>
<td>4 d 6'</td>
<td>1/3,2,3,0 [0,0,0]</td>
</tr>
<tr>
<td>4 c 3.2</td>
<td>1/3,2,3,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2 b 6/m'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td>2 a 622</td>
<td>0,0,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: \(p6m'm' \)
 - \(a^* = a \ b^* = b \)
 - Origin at 0,0,z

- **Along [1,0,0]**: \(p2m'm' \)
 - \(a^* = c/2 \ b^* = (a + 2b)/2 \)
 - Origin at x,0,0

- **Along [2,1,0]**: \(p2m'm' \)
 - \(a^* = c/2 \ b^* = b/2 \)
 - Origin at x,x/2,0

192.9.1484 - 3 - 3265
Origin at center (31m) at \(\overline{3}c2/m\)

Asymmetric unit

\[
\begin{align*}
0 \leq x &\leq \frac{2}{3}; & 0 \leq y &\leq \frac{1}{2}; & 0 \leq z &\leq \frac{1}{4}; & x &\leq \frac{1+y}{2}; & y &\leq \min (1-x,x)
\end{align*}
\]

Vertices

\[
\begin{align*}
0,0,0 & & 1/2,0,0 & & 2/3,1/3,0 & & 1/2,1/2,0 \\
0,0,1/4 & & 1/2,0,1/4 & & 2/3,1/3,1/4 & & 1/2,1/2,1/4
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & & 1 & & (2) & & 3^+ & & 0,0,z & & (3) & & 3^- & & 0,0,z \\
(1) & & 0,0,0 & & (3z) & & 0,0,0 & & (3z^-1) & & 0,0,0
\end{align*}
\]

\[
\begin{align*}
(4) & & 2 & & (0,0,1/2) & & 0,0,z & & (5) & & 6^- & & (0,0,1/2) & & 0,0,z \\
(2z) & & 0,0,1/2 & & (6z^-1) & & 0,0,1/2 & & (6z^-1) & & 0,0,1/2
\end{align*}
\]

\[
\begin{align*}
(7) & & 2 & & x,x,1/4 & & (8) & & 2 & & x,0,1/4 & & (9) & & 2 & & 0,y,1/4 \\
(2\overline{y}) & & 0,0,1/2 & & (2z) & & 0,0,1/2 & & (2\overline{y}) & & 0,0,1/2 & & (2\overline{y}) & & 0,0,1/2
\end{align*}
\]

\[
\begin{align*}
(10) & & 2 & & \overline{x},\overline{x},0 & & (11) & & 2 & & \overline{x},2\overline{x},0 & & (12) & & 2 & & 2x,x,0 \\
(2\overline{z}) & & 0,0,0 & & (2\overline{z}) & & 0,0,0 & & (2\overline{z}) & & 0,0,0 & & (2\overline{z}) & & 0,0,0
\end{align*}
\]
Continued

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(13) 100,0</td>
<td>(14) 3+ 0,0,0; 0,0,0</td>
<td>(15) 3- 0,0,0; 0,0,0</td>
</tr>
<tr>
<td>(16) m x,y,1/4</td>
<td>(17) 6- 0,0,0; 0,0,1/4</td>
<td>(18) 6+ 0,0,0; 0,0,1/4</td>
</tr>
<tr>
<td>(19) c (0,0,1/2) x,x,z</td>
<td>(20) c (0,0,1/2) x,2x,z</td>
<td>(21) c (0,0,1/2) 2x,x,z</td>
</tr>
<tr>
<td>(22) m x,x,z</td>
<td>(23) m x,0,z</td>
<td>(24) m 0,y,z</td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).
Continued

12 i ..2 x,2x,0 [u,2u,0] 2x,x,0 [2u, u,0] x,x,0 [u, u,0]
 x,2x,1/2 [u,2u,0] 2x,x,1/2 [2u,u,0] x,x,1/2 [u,u,0]
 x,2x,0 [u,2u,0] 2x,x,0 [2u,u,0] x,x,0 [u,u,0]
 x,2x,1/2 [u,2u,0] 2x,x,1/2 [2u,u,0] x,x,1/2 [u,u,0]

8 h 3.. 1/3,2/3,z [0,0,w] 2/3,1/3,z+1/2 [0,0,w] 2/3,1/3,z [0,0,w] 1/3,2/3,z [0,0,w]
 2/3,1/3,z [0,0,w] 1/3,2/3,z+1/2 [0,0,w] 1/3,2/3,z+1/2 [0,0,w] 2/3,1/3,z [0,0,w]

6 g m2m x,0,1/4 [0,0,0] 0,x,1/4 [0,0,0] x,x,1/4 [0,0,0]

6 f ..2/m 1/2,0,0 [u,2u,0] 0,1/2,0 [2u,u,0] 1/2,1/2,0 [u,u,0]
 1/2,0,1/2 [u,2u,0] 0,1/2,1/2 [2u,u,0] 1/2,1/2,1/2 [u,u,0]

4 e 3.m 0,0,z [0,0,0] 0,0,z+1/2 [0,0,0] 0,0,z+1/2 [0,0,0] 0,0,z [0,0,0]

4 d 3.2 1/3,2,3/0 [0,0,0] 2/3,1/3,1/2 [0,0,0] 2/3,1/3,0 [0,0,0] 1/3,2/3,1/2 [0,0,0]

4 c ..e 1/3,2,3,1/4 [0,0,w] 2/3,1/3,3/4 [0,0,w] 2/3,1/3,3/4 [0,0,w] 1/3,2/3,3/4 [0,0,w]

2 b 3.m 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]

2 a 62m 0,0,1/4 [0,0,0] 0,0,3/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p6mm1' a* = a b* = b
Along [1,0,0] p2a-2mm a* = c/2 b* = (a + 2b)/2
Along [2,1,0] p2mg1' a* = c b* = b/2
Origin at 0,0,z Origin at x,0,1/4 Origin at x,x/2,0
Origin at center (31m1') at 3c2/m1'

Asymmetric unit

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ≤ x ≤ 2/3;</td>
<td>0 ≤ y ≤ 1/2;</td>
<td>0 ≤ z ≤ 1/4;</td>
</tr>
<tr>
<td>x < (1+y)/2;</td>
<td>y < min (1-x,x)</td>
<td></td>
</tr>
</tbody>
</table>

Vertices

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1/2,0,0</td>
<td>2/3,1/3,0</td>
</tr>
<tr>
<td>0,0,1/4</td>
<td>1/2,0,1/4</td>
<td>2/3,1/3,1/4</td>
</tr>
<tr>
<td>1/2,1/2,0</td>
<td>1/2,1/2,1/4</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Operations

For 1 + set

(1) 1
(1 | 0,0,0)

(2) 3+ 0,0,z
(3z | 0,0,0)

(3) 3- 0,0,z
(3z-1 | 0,0,0)

(4) 2 (0,0,1/2) 0,0,z
(2z | 0,0,1/2)

(5) 6- (0,0,1/2) 0,0,z
(6z-1 | 0,0,1/2)

(6) 6+ (0,0,1/2) 0,0,z
(6z | 0,0,1/2)

(7) 2 x,x,1/4
(2xy | 0,0,1/2)

(8) 2 x,0,1/4
(2z | 0,0,1/2)

(9) 2 0,y,1/4
(2y | 0,0,1/2)

(10) 2 x,x,0
(2z | 0,0,0)

(11) 2 x,2x,0
(2z | 0,0,0)

(12) 2 2x,x,0
(2z | 0,0,0)
(13) $\overline{1}$ 0,0,0
 $\langle \overline{1} \mid 0,0,0 \rangle$

(14) $\overline{3}'$ 0,0,z; 0,0,0
 $\langle \overline{3}' \mid 0,0,0 \rangle$

(15) $\overline{3}'$ 0,0,z; 0,0,0
 $\langle \overline{3}'_z \mid 0,0,0 \rangle$

(16) m x,y,1/4
 $\langle m \mid 0,0,1/2 \rangle$

(17) $\bar{6}'$ 0,0,z; 0,0,1/4
 $\langle \bar{6}'_z \mid 0,0,1/2 \rangle$

(18) $\bar{6}'$ 0,0,z; 0,0,1/4
 $\langle \bar{6}'_z \mid 0,0,1/2 \rangle$

(19) c (0,0,1/2) x,x,z
 $\langle m_y \mid 0,0,1/2 \rangle$

(20) c (0,0,1/2) x,2x,z
 $\langle m_y \mid 0,0,1/2 \rangle$

(21) c (0,0,1/2) 2x,x,z
 $\langle m_y \mid 0,0,1/2 \rangle$

(22) m x,x,z
 $\langle m \mid 0,0,0 \rangle$

(23) m x,0,z
 $\langle m \mid 0,0,0 \rangle$

(24) m 0,y,z
 $\langle m \mid 0,0,0 \rangle$

For $1'$ + set

(1) $1'$
 $\langle 1 \mid 0,0,0 \rangle$

(1') $1'$
 $\langle 1' \mid 0,0,0 \rangle$

(2) $3''$ 0,0,z
 $\langle 3''_z \mid 0,0,0 \rangle$

(3) $3'$ 0,0,z
 $\langle 3' \mid 0,0,0 \rangle$

(4) $2'$ (0,0,1/2) 0,0,z
 $\langle 2' \mid 0,0,1/2 \rangle$

(5) $6'$ (0,0,1/2) 0,0,z
 $\langle 6' \mid 0,0,1/2 \rangle$

(6) $6'$ (0,0,1/2) 0,0,z
 $\langle 6' \mid 0,0,1/2 \rangle$

(7) $2'$ x,x,1/4
 $\langle 2' \mid 0,0,1/2 \rangle$

(8) $2'$ x,0,1/4
 $\langle 2' \mid 0,0,1/2 \rangle$

(9) $2'$ 0,y,1/4
 $\langle 2' \mid 0,0,1/2 \rangle$

(10) $2'$ x,x,0
 $\langle 2' \mid 0,0,0 \rangle$

(11) $2'$ x,2x,0
 $\langle 2' \mid 0,0,0 \rangle$

(12) $2'$ 2x,x,0
 $\langle 2' \mid 0,0,0 \rangle$

(13) $\bar{1}'$ 0,0,0
 $\langle \overline{1}' \mid 0,0,0 \rangle$

(14) $\overline{3}'$ 0,0,z; 0,0,0
 $\langle \overline{3}'_z \mid 0,0,0 \rangle$

(15) $\overline{3}'$ 0,0,z; 0,0,0
 $\langle \overline{3}'_z \mid 0,0,0 \rangle$

(16) m' x,y,1/4
 $\langle m' \mid 0,0,1/2 \rangle$

(17) $\bar{6}'$ (0,0,1/2) 0,0,1/4
 $\langle \bar{6}' \mid 0,0,1/2 \rangle$

(18) $\bar{6}'$ (0,0,1/2) 0,0,1/4
 $\langle \bar{6}' \mid 0,0,1/2 \rangle$

(19) c' (0,0,1/2) x,x,z
 $\langle m_y \mid 0,0,1/2 \rangle$

(20) c' (0,0,1/2) x,2x,z
 $\langle m_y \mid 0,0,1/2 \rangle$

(21) c' (0,0,1/2) 2x,x,z
 $\langle m_y \mid 0,0,1/2 \rangle$

(22) m' x,x,z
 $\langle m' \mid 0,0,0 \rangle$

(23) m' x,0,z
 $\langle m' \mid 0,0,0 \rangle$

(24) m' 0,y,z
 $\langle m' \mid 0,0,0 \rangle$

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13); 1'.

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

Coordinates

\[
\begin{array}{ccc}
1 & + & 1' + \\
\hline
24 & l & 11' \\
(1) x,y,z [0,0,0] & (2) \bar{y},x-y,z [0,0,0] & (3) \bar{x}+y,x,z [0,0,0] \\
(4) \bar{x},y,z+1/2 [0,0,0] & (5) y,\bar{x}+y,z+1/2 [0,0,0] & (6) x-y,x,z+1/2 [0,0,0] \\
(7) y,x,z+1/2 [0,0,0] & (8) x-y,\bar{y},z+1/2 [0,0,0] & (9) \bar{x},x+y,z+1/2 [0,0,0] \\
(10) y,x,z [0,0,0] & (11) \bar{x}+y,y,z [0,0,0] & (12) x-x,y,\bar{z} [0,0,0] \\
\end{array}
\]
Symmetry of Special Projections

Along [0,0,1] p6mm1'
\[
a^* = a \quad b^* = b
\]
Origin at 0,0,z

Along [1,0,0] p2mm1'
\[
a^* = c/2 \quad b^* = (a + 2b)/2
\]
Origin at x,0,0

Along [2,1,0] p2mg1'
\[
a^* = c \quad b^* = b/2
\]
Origin at x,x/2,0
Origin at center (3‘1m) at 3‘c2/m

Asymmetric unit

<table>
<thead>
<tr>
<th>0 ≤ x ≤ 2/3;</th>
<th>0 ≤ y ≤ 1/2;</th>
<th>0 ≤ z ≤ 1/4;</th>
<th>x ≤ (1+y)/2;</th>
<th>y ≤ min (1-x,x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 0, 0</td>
<td>1/2, 0, 0</td>
<td>2/3, 1/3, 0</td>
<td>1/2, 1/2, 0</td>
<td></td>
</tr>
<tr>
<td>0, 0, 1/4</td>
<td>1/2, 0, 1/4</td>
<td>2/3, 1/3, 1/4</td>
<td>1/2, 1/2, 1/4</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Operations

1. 1
 (1 | 0, 0, 0)

2. 3‘ 0, 0, z
 (3z | 0, 0, 0)

3. 3‘ 0, 0, z
 (3z | 0, 0, 0)

4. 2 (0, 0, 1/2) 0, 0, z
 (2z | 0, 0, 1/2)

5. 6‘ (0, 0, 1/2) 0, 0, z
 (6z | 0, 0, 1/2)

6. 6‘ (0, 0, 1/2) 0, 0, z
 (6z | 0, 0, 1/2)

7. 2‘ x, x, 1/4
 (2xy | 0, 0, 1/2)‘

8. 2‘ x, 0, 1/4
 (2z | 0, 0, 1/2)‘

9. 2‘ 0, y, 1/4
 (2y | 0, 0, 1/2)‘

10. 2‘ x, x, 0
 (2x | 0, 0, 0)‘

11. 2‘ x, 2x, 0
 (2y | 0, 0, 0)‘

12. 2‘ 2x, x, 0
 (2z | 0, 0, 0)‘
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 l 1</td>
<td>(1) x,y,z [u,v,w] (2) y,x-y,z [v,u-w] (3) x+y,x,z [u-v,u-w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w] (5) y,x+y,z+1/2 [v,u+w] (6) x-y,x+z+1/2 [u-v,u-w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w] (8) x-y,y,z+1/2 [u+v,v,w] (9) x,x+y,z+1/2 [u,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) x,y,z [v,u,w] (11) x+y,y,z [u-v,v,w] (12) x,x-y,z+1/2 [u+u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z [u,v,w] (14) y,x+y,z [v,u+v,w] (15) x,y,x,z [u-u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(16) x,y,z+1/2 [u,v,w] (17) y,x-y,z+1/2 [v,u-v,w] (18) x+y,x,z+1/2 [u+v,u+w]</td>
</tr>
<tr>
<td></td>
<td>(19) y,x,z+1/2 [v,u,w] (20) x+y,y,z+1/2 [u+v,v,w] (21) x,x-y,z+1/2 [u+u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(22) y,x,z [v,u,w] (23) x,y,z [u+v,v,w] (24) x,x+z [u-u+v,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 k ..m</td>
<td>x,0,z [u,2u,0] 0,x,z [2u,0,0] x,x,z [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,0,z+1/2 [u,2u,0] 0,x,z+1/2 [2u,0,0] x,x,z+1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,z+1/2 [2u,0,0] x,0,z+1/2 [u,2u,0] x,x,z+1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,z [2u,0,0] 0,x,z [u,2u,0] x,x,z [u,u,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 j m'..</td>
<td>x,y,1/4 [u,v,0] y,x-y,1/4 [v,u-v,0] x+y,x,1/4 [u+v,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,3/4 [u,v,0] y,x+y,3/4 [v,u+v,0] x,y,x,3/4 [u-v,u,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,1/4 [v,u,0] x+y,x,1/4 [u+v,v,0] x+x+y,1/4 [u,u-v,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,3/4 [v,u,0] x+y,y,3/4 [u+v,v,0] x+y,x,3/4 [u-v,v,0]</td>
</tr>
<tr>
<td>12</td>
<td>i</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>h</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>e</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6mm</th>
<th>Along [1,0,0]</th>
<th>p\text{*}2mm</th>
<th>Along [2,1,0]</th>
<th>p2mg1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a b* = b</td>
<td>a* = c/2 b* = (a + 2b)/2</td>
<td>a* = c b* = b/2</td>
<td>a* = c b* = b/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (3'1m) at 3'c2'/m

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{4}; \quad x < \frac{(1+y)}{2}; \quad y < \min(1-x,x)\]

Vertices

- \(0,0,0\)
- \(0,0,\frac{1}{4}\)
- \(1/2,0,0\)
- \(1/2,0,\frac{1}{4}\)
- \(2/3,1/3,0\)
- \(2/3,1/3,1/4\)
- \(1/2,1/2,0\)
- \(1/2,1/2,1/4\)

Symmetry Operations

1. \(1\)
2. \(3^+ \cdot 0,0,z\)
3. \(3^- \cdot 0,0,z\)
4. \(2' (0,0,1/2) \cdot 0,0,z\)
5. \(6^- \cdot (0,0,1/2) \cdot 0,0,z\)
6. \(6^+ \cdot (0,0,1/2) \cdot 0,0,z\)
7. \(2 \cdot x,x,1/4\)
8. \(2 \cdot x,0,1/4\)
9. \(2 \cdot 0,y,1/4\)
10. \(2' \cdot x,x,0\)
11. \(2' \cdot x,2x,0\)
12. \(2' \cdot 2x,x,0\)

193.4.1488 - 1 - 3276
Continued

193.4.1488

P6₃/mcm

<table>
<thead>
<tr>
<th>Generators selected</th>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).</td>
<td>24 l 1 (1) x,y,z [u,v,w]</td>
<td>(2) y,x-y,z [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) x+y,x,z+1/2 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) x,x+y,z+1/2 [u,u+v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12) x,y+z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(18) x+y,x,z+1/2 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(19) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(21) x,x+y,z+1/2 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(22) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(24) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 k ..m x,0,z [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,z+1/2 [u,2u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,z+1/2 [2u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,z [2u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,z+1/2 [u,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 j m.. x,y,1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,x+1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,y+1/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,x+3/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+y,x+3/4 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>193.4.1488 - 2 - 3277</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Operation</th>
<th>Symmetry</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p6mm1'</td>
<td>Origin at 0,0,z</td>
</tr>
</tbody>
</table>
| Along [1,0,0] | p2mm | $a^* = a$
$\mathbf{b}^* = \mathbf{b}$
Origin at x,0,0 |
| Along [2,1,0] | p2mg1' | $a^* = \mathbf{c}/2$
$\mathbf{b}^* = (\mathbf{a}+2\mathbf{b})/2$
Origin at x,x/2,0 |
Origin at center (3'1m') at 3'c2/m'

Asymmetric unit:

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{4}; \quad x \leq \frac{1+y}{2}; \quad y \leq \min (1-x, x) \]

Vertices:

- \(0,0,0 \)
- \(1/2,0,0 \)
- \(2/3,1/3,0 \)
- \(1/2,1/2,0 \)
- \(0,0,1/4 \)
- \(1/2,0,1/4 \)
- \(2/3,1/3,1/4 \)
- \(1/2,1/2,1/4 \)

Symmetry Operations:

1. \(1 \)
2. \(3^* \quad 0,0,0 \) \(z \) \(3^* \quad 0,0,0 \)
3. \(3^* \quad 0,0,0 \) \(z \) \(3^* \quad 0,0,0 \)
4. \(2' \quad 0,0,1/2 \) \(0,0,z \) \(2' \quad 0,0,1/2 \)
5. \(6' \quad (0,0,1/2) \) \(0,0,z \) \(6' \quad (0,0,1/2) \)
6. \(6' \quad (0,0,1/2) \) \(0,0,z \) \(6' \quad (0,0,1/2) \)
7. \(2' \quad x,x,1/4 \) \(2' \quad x,x,1/4 \) \(2' \quad x,x,1/4 \)
8. \(2' \quad x,0,1/4 \) \(2' \quad x,0,1/4 \) \(2' \quad x,0,1/4 \)
9. \(2' \quad 0,y,1/4 \) \(2' \quad 0,y,1/4 \) \(2' \quad 0,y,1/4 \)
10. \(2 \quad x,x,0 \) \(2 \quad x,x,0 \) \(2 \quad x,x,0 \)
11. \(2 \quad x,2x,0 \) \(2 \quad x,2x,0 \) \(2 \quad x,2x,0 \)
12. \(2 \quad 2x,x,0 \) \(2 \quad 2x,x,0 \) \(2 \quad 2x,x,0 \)
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 l 1</td>
<td>x,y,z [u,v,w]</td>
<td>(u+v,u,w)</td>
</tr>
</tbody>
</table>

| Coordinates
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,3</td>
</tr>
</tbody>
</table>

12 k m'	x,0,z [u,0,w]	(u,v,w)
12 k m'	x,0,z [u,0,w]	(u,v,w)
12 k m'	x,0,z [u,0,w]	(u,v,w)
12 k m'	x,0,z [u,0,w]	(u,v,w)
12 k m'	x,0,z [u,0,w]	(u,v,w)

12 j m	x,y,1/4 [0,0,w]	(0,0,u)
12 j m	x,y,1/4 [0,0,w]	(0,0,u)
12 j m	x,y,1/4 [0,0,w]	(0,0,u)
12 j m	x,y,1/4 [0,0,w]	(0,0,u)
12 j m	x,y,1/4 [0,0,w]	(0,0,u)
Continued

<table>
<thead>
<tr>
<th>#</th>
<th>h</th>
<th>g</th>
<th>f</th>
<th>e</th>
<th>d</th>
<th>c</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6mm1'</th>
<th>Along [1,0,0]</th>
<th>p2m2m'm'</th>
<th>Along [2,1,0]</th>
<th>p2mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b)</td>
<td>(a^* = a) (b^* = b)</td>
<td>(a^* = c) (b^* = b/2)</td>
<td>(a^* = c) (b^* = b/2)</td>
<td>(a^* = c) (b^* = b/2)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,0</td>
<td>Origin at x,x/2,0</td>
<td>Origin at x,x/2,0</td>
</tr>
</tbody>
</table>
Origin at center (31m) at 3c'2/m

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{4}; \quad x < \frac{(1+y)}{2}; \quad y \leq \min (1-x, x)\]

Vertices

- \(0,0,0\)
- \(1/2,0,0\)
- \(2/3,1/3,0\)
- \(1/2,1/2,0\)
- \(0,0,1/4\)
- \(1/2,0,1/4\)
- \(2/3,1/3,1/4\)
- \(1/2,1/2,1/4\)

Symmetry Operations

1. \(1\)
2. \(3^+ (0,0,0)\)
3. \(3^- (0,0,0)\)
4. \(2' (0,0,1/2) 0,0,z\)
5. \(6' (0,0,1/2) 0,0,z\)
6. \(6'' (0,0,1/2) 0,0,z\)
7. \(2' x,x,1/4\)
8. \(2' x,0,1/4\)
9. \(2' 0,y,1/4\)
10. \(2 x,x,0\)
11. \(2 x,2x,0\)
12. \(2 2x,x,0\)

193.6.1490 - 1 - 3282
Continued

(13) $\overline{1}$ 0,0,0
 (1/1 0,0,0)

(14) $\overline{3}^\prime$ 0,0,z; 0,0,0
 (3) 0,0,0

(15) $\overline{3}^\prime$ 0,0,z; 0,0,0
 (3)1_2 0,0,0

(16) m$' \times,y,1/4$
 (m$('_y) 0,0,1/2')$

(17) $\overline{6}^\prime$ 0,0,z; 0,0,1/4
 (6)1_2 0,0,1/2')

(18) $\overline{6}^\prime$ 0,0,z; 0,0,1/4
 (6)3_2 0,0,1/2')

(19) c$'$ (0,0,1/2) x,x,z
 (m$('_x) 0,0,1/2')$

(20) c$'$ (0,0,1/2) x,2x,z
 (m$('_x) 0,0,1/2')$

(21) c$'$ (0,0,1/2) 2x,x,z
 (m$('_y) 0,0,1/2')$

(22) m x,x,z
 (m$('_x) 0,0,0)$

(23) m x,0,z
 (m$('_z) 0,0,0)$

(24) m 0,y,z
 (m$('_z) 0,0,0)$

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>1,1</td>
<td>(1) x,y,z [u,v,w] (2) \overline{y},x-y,z [\overline{v},u-v,w] (3) \overline{x}+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) \overline{x},y,z+1/2 [u,v,w] (5) \overline{y},x+y,z+1/2 [\overline{v},u-v,w] (6) x-y,x,z+1/2 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w] (8) x-y,\overline{y},z+1/2 [\overline{u}+v,v,w] (9) \overline{x},x+y,z+1/2 [u,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y,x,z [v,u,w] (11) \overline{x}+y,y,z [\overline{u}+v,v,w] (12) x-x,z [$u-u,v,w$]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) \overline{x},y,z [u,v,w] (14) y,\overline{x}+y,z [\overline{v},u-v,w] (15) x-y,x,z [$u+v,u,w$]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16) x,y,z+1/2 [u,v,w] (17) \overline{y},x-y,z+1/2 [\overline{v},u-v,w] (18) \overline{x}+y,x,z+1/2 [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(19) y,\overline{x},z+1/2 [\overline{v},u,w] (20) \overline{x}+y,y,z+1/2 [\overline{u}+v,v,w] (21) x-x,z+1/2 [u,u-v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(22) x,x,z [v,u,w] (23) x-y,\overline{y},z [\overline{u}+v,v,w] (24) \overline{x},x+y,z [$u-u,v,w$]</td>
</tr>
</tbody>
</table>

12	k ..m	x,0,z [u,2u,0] 0,x,z [2u,0,0] \overline{x},x,z [u,u,0]
		x,0,z+1/2 [u,2u,0] 0,x,z+1/2 [2u,0,0] x,x,z+1/2 [u,u,0]
		0,x,z+1/2 [2u,0,0] x,0,z+1/2 [u,2u,0] \overline{x},x,z+1/2 [u,u,0]
		0,x,z [2u,0,0] \overline{x},0,z [u,2u,0] x,x,z [u,u,0]

<p>| 12 | j m$'$. | x,y,1/4 [u,v,0] \overline{y},x-y,1/4 [\overline{v},u-v,0] \overline{x}+y,x,1/4 [\overline{u}+v,u,0] |
| | | \overline{x},\overline{y},3/4 [u,v,0] y,x+y,3/4 [\overline{v},u-v,0] x-y,x,3/4 [\overline{u}+v,u,0] |
| | | y,x,1/4 [\overline{v},u,0] x-y,\overline{y},1/4 [\overline{u}+v,v,0] \overline{x}+y,x,1/4 [u,u-v,0] |
| | | y,\overline{x},3/4 [\overline{v},u,0] \overline{x}+y,y,3/4 [\overline{u}+v,v,0] x,x-y,3/4 [u,u-v,0] |</p>
<table>
<thead>
<tr>
<th>i</th>
<th>2/m'</th>
<th>x,2x,0 [u,2u,0]</th>
<th>2x,x,0 [2u, u,0]</th>
<th>x,x,0 [u, u,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x,2x,1/2 [u,2u,0]</td>
<td>2x,x,1/2 [2u, u,0]</td>
<td>x,x,1/2 [u, u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,0 [u,2u,0]</td>
<td>2x,x,0 [2u, u,0]</td>
<td>x,x,0 [u, u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,1/2 [u,2u,0]</td>
<td>2x,x,1/2 [2u, u,0]</td>
<td>x,x,1/2 [u, u,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>h</th>
<th>3..</th>
<th>1/3,2/3,z [0,0,w]</th>
<th>2/3,1/3,z+1/2 [0,0,w]</th>
<th>2/3,1/3,z [0,0,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,z+1/2 [0,0,w]</td>
<td>1/3,2/3,z+1/2 [0,0,w]</td>
<td>2/3,1/3,z [0,0,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>g</th>
<th>m'2'm</th>
<th>x,0,1/4 [u,2u,0]</th>
<th>0,x,1/4 [2u, u,0]</th>
<th>x,x,1/4 [u, u,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x,0,3/4 [u,2u,0]</td>
<td>0,x,3/4 [2u, u,0]</td>
<td>x,x,3/4 [u, u,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f</th>
<th>.2/m</th>
<th>1/2,0,0 [u,2u,0]</th>
<th>0,1/2,0 [2u, u,0]</th>
<th>1/2,1/2,0 [u, u,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1/2,0,1/2 [u,2u,0]</td>
<td>0,1/2,1/2 [2u, u,0]</td>
<td>1/2,1/2,1/2 [u, u,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>e</th>
<th>3.m</th>
<th>0,0,z [0,0,0]</th>
<th>0,0,z+1/2 [0,0,0]</th>
<th>0,0,z [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0,0,z+1/2 [0,0,0]</td>
<td>0,0,z+1/2 [0,0,0]</td>
<td>0,0,z [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d</th>
<th>3.2</th>
<th>1/3,2/3,0 [0,0,0]</th>
<th>2/3,1/3,1/2 [0,0,0]</th>
<th>2/3,1/3,0 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,1/2 [0,0,0]</td>
<td>2/3,1/3,0 [0,0,0]</td>
<td>1/3,2/3,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c</th>
<th>6'..</th>
<th>1/3,2/3,1/4 [0,0,0]</th>
<th>2/3,1/3,3/4 [0,0,0]</th>
<th>2/3,1/3,1/4 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,3/4 [0,0,0]</td>
<td>2/3,1/3,1/4 [0,0,0]</td>
<td>1/3,2/3,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

| b | 3.m | 0,0,0 [0,0,0] | 0,0,1/2 [0,0,0] | 0,0,1/2 [0,0,0] |

| a | 6'2'm | 0,0,1/4 [0,0,0] | 0,0,3/4 [0,0,0] | 0,0,3/4 [0,0,0] |

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along</th>
<th>p6'm'm</th>
<th>Along</th>
<th>p2'm'm'</th>
<th>Along</th>
<th>p2mg1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = (a + 2b)/2</td>
<td>b* = c/2</td>
<td>a* = c</td>
<td>b* = b/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,0, Origin at 0,0,0, Origin at x,0,0, Origin at x,x/2,0,
Origin at center (31m') at 3c2/m'

Asymmetric unit

$$0 \leq x \leq 2/3; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad x \leq (1+y)/2; \quad y \leq \min(1-x,x)$$

Vertices

\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 2/3,1/3,0 & \quad 1/2,1/2,0 \\
0,0,1/4 & \quad 1/2,0,1/4 & \quad 2/3,1/3,1/4 & \quad 1/2,1/2,1/4
\end{align*}

Symmetry Operations

\begin{align*}
(1) & \quad 1 \\
(2) & \quad 3^* \quad 0,0,z \\
(3) & \quad 3 \quad 0,0,z \\
(4) & \quad 2' \quad (0,0,1/2) \quad 0,0,z \\
(5) & \quad 6' \quad (0,0,1/2) \quad 0,0,z \\
(6) & \quad 6' \quad (0,0,1/2) \quad 0,0,z \\
(7) & \quad 2 \quad x,x,1/4 \\
(8) & \quad 2 \quad x,0,1/4 \\
(9) & \quad 2 \quad 0,y,1/4 \\
(10) & \quad 2' \quad x,x,0 \\
(11) & \quad 2' \quad x,0,1/2 \\
(12) & \quad 2' \quad 2x,x,0
\end{align*}
Continued 193.7.1491 P6$_3'/m'$cm'

(13) 1 0,0,0
(14) $3'$ 0,0,0; 0,0,0
(15) $3'$ 0,0,0; 0,0,0

(16) m' x,y,1/4
(m$_0$| 0,0,1/2)'
(17) $6'$ 0,0,1/4
(6'$_z$| 0,0,1/2)'
(18) $6'$ 0,0,1/4
(6'$_z$| 0,0,1/2)'

(19) c (0,0,1/2)
(m$_y$| 0,0,1/2)
(20) c (0,0,1/2)
(m$_y$| 0,0,1/2)
(21) c (0,0,1/2)
(22) m' x,x,z
(m$_3$| 0,0,0)'
(23) m' x,0,z
(m$_2$| 0,0,0)'
(24) m' 0,y,z
(m$_1$| 0,0,0)'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 l 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) y,x,y,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x,z [u+v,u+w]</td>
</tr>
<tr>
<td></td>
<td>(4) x',y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) y,x+y,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+y,x,z+1/2 [u+v,u+w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x-y,y,z+1/2 [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,x+y,z+1/2 [u+u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(11) x+y,y,z [u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(12) x,x+y,z [u+u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(14) y,x+y,z [v,u+w]</td>
</tr>
<tr>
<td></td>
<td>(15) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(16) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(17) y,x-y,z+1/2 [v,u-v,w]</td>
</tr>
<tr>
<td></td>
<td>(18) x+y,x,z+1/2 [u+v,u+w]</td>
</tr>
<tr>
<td></td>
<td>(19) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(20) x+y,y,z+1/2 [u-v,v+w]</td>
</tr>
<tr>
<td></td>
<td>(21) x,x-y,z+1/2 [u+u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(22) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(23) x-y,y,z [u-v,v+w]</td>
</tr>
<tr>
<td></td>
<td>(24) x,x+y,z [u+u+v,w]</td>
</tr>
<tr>
<td>12 k m'..</td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>0,x,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,z+1/2 [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>0,x,z+1/2 [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,z+1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td>0,x,z [0,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,z [u,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>12 j m'.</td>
<td>x,y,1/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>y,x-y,1/4 [v,u-v,0]</td>
</tr>
<tr>
<td></td>
<td>x+y,x,1/4 [u+v,u,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,3/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>y,x+y,3/4 [v,u-v,0]</td>
</tr>
<tr>
<td></td>
<td>x+y,x,3/4 [u+v,u,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,1/4 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td>x-y,y,1/4 [u-v,v,0]</td>
</tr>
<tr>
<td></td>
<td>x+x+y,1/4 [u+u+v,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,3/4 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td>x+y,y,3/4 [u-v,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,x-y,3/4 [u+u+v,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along \([0,0,1]\) \(p6'\overline{m}m'\) \(a^* = a\) \(b^* = b\)
Origin at 0,0,z

Along \([1,0,0]\) \(p_{2a}2m'm'\) \(a^* = c/2\) \(b^* = (a + 2b)/2\)
Origin at x,0,1/4

Along \([2,1,0]\) \(p2'm'g\) \(a^* = c\) \(b^* = b/2\)
Origin at x,x/2,0
Origin at center (3 1m') at 3c'2'/m'

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{4}; \quad x \leq (1+y)/2; \quad y \leq \min (1-x, x) \]

Vertices

\[
\begin{align*}
0,0,0 & : 1/2,0,0 & : 2/3,1/3,0 & : 1/2,1/2,0 \\
0,0,1/4 & : 1/2,0,1/4 & : 2/3,1/3,1/4 & : 1/2,1/2,1/4
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & : 1 \\
(1) & : (1|0,0,0) \\
(4) & : 2 \ (0,0,1/2) \ 0,0,z \\
(2z) & : 0,0,1/2 \\
(7) & : 2' \ x,x,1/4 \\
(2x) & : 0,0,1/2' \\
(10) & : 2' \ x,x,0 \\
(2z) & : 0,0,0') \\
(2) & : 3^* \ 0,0,z \\
(3) & : (3_z) \ 0,0,0 \\
(5) & : 6^* \ (0,0,1/2) \ 0,0,z \\
(6) & : (6_z) \ 0,0,1/2 \\
(8) & : 2' \ x,0,1/4 \\
(2x) & : 0,0,1/2' \\
(11) & : 2' \ x,2x,0 \\
(2z) & : 0,0,0') \\
(12) & : 2' \ 2x,x,0 \\
(2z) & : 0,0,0')
\end{align*}
\]
Continued

<table>
<thead>
<tr>
<th>Position</th>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 l 1</td>
<td>1,0,0</td>
<td>0,0,0</td>
</tr>
<tr>
<td>(13) 0,0,0</td>
<td>0,0,0</td>
<td>(14) 0,0,0,0</td>
</tr>
<tr>
<td>(16) m x,y/1</td>
<td>0,0,0,0,0,0</td>
<td>(17) 0,0,0,0,0,0</td>
</tr>
<tr>
<td>(19) c' (0,0,1/2) x,x,z</td>
<td>0,0,0,0,0,0</td>
<td>(20) c' (0,0,1/2) x,x,z</td>
</tr>
<tr>
<td>(22) m' x,x,z</td>
<td>0,0,0,0,0,0</td>
<td>(23) m' x,x,z</td>
</tr>
</tbody>
</table>

Generators selected (1); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 k m' x,0,z [u,0,w]</td>
<td>0,x,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,z [0,0,0]</td>
</tr>
<tr>
<td>12 j m.. x,y,1/4 [0,0,0]</td>
<td>x+y,x,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+y,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+y,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x+y,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Generators selected (1); t(0,1,0); t(0,0,1); (2); (4); (7); (13).
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Number</th>
<th>Type</th>
<th>Expansion</th>
<th>Axes</th>
<th>Result</th>
<th>Axes</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 i</td>
<td>.2'</td>
<td>x,2x,0 [u,0,w]</td>
<td>2x,x,0 [0,u,w]</td>
<td>x,x,0 [u,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,1/2 [u,0,w]</td>
<td>2x,x,1/2 [0,u,u,w]</td>
<td>x,x,1/2 [u,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,0 [u,0,w]</td>
<td>2x,x,0 [0,u,w]</td>
<td>x,x,0 [u,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,1/2 [u,0,w]</td>
<td>2x,x,1/2 [0,u,u,w]</td>
<td>x,x,1/2 [u,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 h</td>
<td>3..</td>
<td>1/3,2/3,3z [0,0,w]</td>
<td>2/3,1/3,3z+1/2 [0,0,w]</td>
<td>1/3,2/3,3z [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2/3,1/3,3z [0,0,w]</td>
<td>1/3,2/3,3z+1/2 [0,0,w]</td>
<td>2/3,1/3,3z [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 g</td>
<td>m2'm'</td>
<td>x,0,1/4 [0,0,w]</td>
<td>0,x,1/4 [0,0,w]</td>
<td>x,x,1/4 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,3/4 [0,0,w]</td>
<td>0,x,3/4 [0,0,w]</td>
<td>x,x,3/4 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 f</td>
<td>.2'm'</td>
<td>1/2,0,0 [u,0,w]</td>
<td>0,1/2,0 [u,u,w]</td>
<td>1/2,1/2,0 [u,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,1/2 [u,0,w]</td>
<td>0,1/2,1/2 [u,u,w]</td>
<td>1/2,1/2,1/2 [u,u,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 e</td>
<td>3.m'</td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 d</td>
<td>3.2'</td>
<td>1/3,2/3,0 [0,0,w]</td>
<td>2/3,1/3,1/2 [0,0,w]</td>
<td>1/3,2/3,1/2 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 c</td>
<td>6..</td>
<td>1/3,2/3,1/4 [0,0,w]</td>
<td>2/3,1/3,3/4 [0,0,w]</td>
<td>1/3,2/3,3/4 [0,0,w]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 b</td>
<td>3.m'</td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 a</td>
<td>62'm'</td>
<td>0,0,1/4 [0,0,w]</td>
<td>0,0,3/4 [0,0,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: p6mm
 - Origin at 0,0,z
 - Projection: p6mm
 - a* = a b* = b

- **Along [1,0,0]**: p2mm
 - Origin at x,0,0
 - Projection: p2mm
 - a* = c/2 b* = (a + 2b)/2

- **Along [2,1,0]**: p2mg
 - Origin at x,x/2,0
 - Projection: p2mg
 - a* = c b* = b/2
Origin at center (31m') at 3c'2/m'

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{4}; \quad x \leq \frac{(1+y)}{2}; \quad y \leq \min(1-x,x) \]

Vertices

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>0,0</td>
<td>1/2,0,0</td>
<td></td>
</tr>
<tr>
<td>0,0,1/4</td>
<td>1/2,0,1/4</td>
<td></td>
</tr>
<tr>
<td>2/3,1/3,0</td>
<td>2/3,1/3,1/4</td>
<td></td>
</tr>
<tr>
<td>1/2,1/2,0</td>
<td>1/2,1/2,1/4</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 3' 0,0,z
(3' | 0,0,0)

(3) 3' 0,0,z
(3' | 0,0,0)

(4) 2 (0,0,1/2) 0,0,z
(2 | 0,0,1/2)

(5) 6' (0,0,1/2) 0,0,z
(6' | 0,0,1/2)

(6) 6' (0,0,1/2) 0,0,z
(6' | 0,0,1/2)

(7) 2 x,x,1/4
(2 | 0,0,1/2)

(8) 2 x,0,1/4
(2 | 0,0,1/2)

(9) 2 0,y,1/4
(2 | 0,0,1/2)

(10) 2 x,x,0
(2 | 0,0,0)

(11) 2 x,2x,0
(2 | 0,0,0)

(12) 2 2x,x,0
(2 | 0,0,0)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 l 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(11) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(12) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(16) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(17) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(18) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(19) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(20) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(21) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(22) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(23) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(24) x,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

12 k m'	x,0,z [u,0,w]
	x,0,z [u,0,w]
	0,x,z [0,u,w]

12 j m'	x,y,1/4 [u,v,0]				
	x,y,1/4 [u,v,0]				
12	i	.2	x,2x,0 [u,2u,0]	2x, x,0 [2u, u,0]	x, x,0 [u, u,0]
8	h 3	1/3,2/3,z [0,0,w]	2/3,1/3,z+1/2 [0,0,w]	1/3,2/3,z [0,0,w]	
6	g m'2m'	x,0,1/4 [u,0,0]	0,x,1/4 [0,u,0]	x, x,1/4 [u, u,0]	
6	f .2/m'	1/2,0,0 [0,0,0]	0,1/2,0 [0,0,0]	1/2,1/2,0 [0,0,0]	
4	e 3.m'	0,0,z [0,0,w]	0,0,z+1/2 [0,0,w]	0,0,z [0,0,w]	
4	d 3.2	1/3,2/3,0 [0,0,0]	2/3,1/3,1/2 [0,0,0]	1/3,2/3,1/2 [0,0,0]	
4	c 6'..	1/3,2/3,1/4 [0,0,0]	2/3,1/3,3/4 [0,0,0]	1/3,2/3,3/4 [0,0,0]	
2	b 3'.m'	0,0,0 [0,0,0]	0,0,1/2 [0,0,0]		
2	a 6'2m'	0,0,1/4 [0,0,0]	0,0,3/4 [0,0,0]		

Symmetry of Special Projections

Along [0,0,1] p6m'm'
Along [1,0,0] p2m'm'
Along [2,1,0] p2m'g'

a* = a b* = b
Origin at 0,0,z

a* = c/2 b* = (a + 2b)/2
Origin at x,0,0

a* = c b* = b/2
Origin at x,x/2,0
Origin at center (3m1) at 32/mc

Asymmetric unit

0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; 0 ≤ z ≤ 1/4; x ≤ 2y; y ≤ min(1-x,2x)

Vertices

0,0,0 2/3,1/3,0 1/3,2/3,0
0,0,1/4 2/3,1/3,1/4 1/3,2/3,1/4

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 3+ 0,0,z
(3) 3- 0,0,z
(3_0,0,0)

(3) 3- 0,0,z
(3_0,0,0)

(4) 2 (0,0,1/2) 0,0,z
(2, 0,0,1/2)

(5) 6' (0,0,1/2) 0,0,z
(6_0,0,1/2)

(6) 6' (0,0,1/2) 0,0,z
(6_0,0,1/2)

(7) 2 x,x,0
(2, x,0,0)

(8) 2 x,0,0
(2, x,0,0)

(9) 2 0,y,0
(2, y,0,0)

(10) 2 x,x,1/4
(2, x,0,1/2)

(11) 2 x,2x,1/4
(2, x,0,1/2)

(12) 2 2x,x,1/4
(2, x,0,1/2)
Generators selected

(1): t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
</table>

Coordinates

<table>
<thead>
<tr>
<th>24</th>
<th>l</th>
<th>1</th>
<th>x,y,z [u,v,w]</th>
<th>y,x-y,z [v,u-v,w]</th>
<th>x+y,x,z [u+v,u,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>k</td>
<td>.m.</td>
<td>x,2x,z [u,0,0]</td>
<td>2x,x,z [0,u,0]</td>
<td>x,x,z [u,u,0]</td>
</tr>
<tr>
<td>12</td>
<td>j</td>
<td>m..</td>
<td>x,y,1/4 [0,0,w]</td>
<td>y,x-y,1/4 [0,0,w]</td>
<td>x+y,x,1/4 [0,0,w]</td>
</tr>
</tbody>
</table>

The table above lists the coordinates and multiplicity of positions in the unit cell, along with the site symmetry for each position.
Continued 194.1.1494 P6$_3$/mmc

12 i 2. x,0,0 [u,0,0] 0.x,0 [0,u,0] \(\vec{x},0,0 [u,\vec{u},0] \)
 \(\vec{x},0,1/2 [\vec{u},0,0] \) 0.x,1/2 [0,\vec{u},0] \(\vec{x},x,1/2 [u,\vec{u},0] \)
 \(\vec{x},0,0 [u,0,0] \) 0.x,0 [0,u,0] \(\vec{x},x,0 [\vec{u},\vec{u},0] \)
 \(x,0,1/2 [u,0,0] \) 0.x,1/2 [0,\vec{u},0] \(\vec{x},\vec{x},1/2 [u,u,0] \)

6 h mm2 x,2x,1/4 [0,0,0] 2x,x,1/4 [0,0,0] \(\vec{x},\vec{x},1/4 [0,0,0] \)
 \(\vec{x},2x,3/4 [0,0,0] \) 2x,x,3/4 [0,0,0] \(\vec{x},\vec{x},3/4 [0,0,0] \)

6 g .2/m. 1/2,0,0 [u,0,0] 0,1/2,0 [0,u,0] \(1/2,1/2,0 [\vec{u},\vec{u},0] \)
 \(1/2,0,1/2 [\vec{u},0,0] \) 0,1/2,1/2 [0,\vec{u},0] \(1/2,1/2,1/2 [u,u,0] \)

4 f 3m. 1/3,2/3,z [0,0,0] 2/3,1/3,z+1/2 [0,0,0] \(2/3,1/3,z [0,0,0] \)
 \(2/3,1/3,z+1/2 [0,0,0] \) \(1/3,2/3,z+1/2 [0,0,0] \)

4 e 3m. 0,0,z [0,0,0] 0,0,z+1/2 [0,0,0] \(0,0,z [0,0,0] \)
 \(0,0,z+1/2 [0,0,0] \)

2 d \(\bar{6}m2 \) 1/3,2/3,3/4 [0,0,0] 2/3,1/3,1/4 [0,0,0]

2 c \(\bar{6}m2 \) 1/3,2/3,1/4 [0,0,0] 2/3,1/3,3/4 [0,0,0]

2 b \(\bar{6}m2 \) 0,0,1/4 [0,0,0] 0,0,3/4 [0,0,0]

2 a \(3m. \) 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6mm1'</th>
<th>Along [1,0,0]</th>
<th>p2mg1'</th>
<th>Along [2,1,0]</th>
<th>p$_{2a}$2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{a}^* = \mathbf{a})</td>
<td>(\mathbf{b}^* = \mathbf{b})</td>
<td>(\mathbf{a}^* = \mathbf{c})</td>
<td>(\mathbf{b}^* = (\mathbf{a} + 2\mathbf{b})/2)</td>
<td>(\mathbf{a}^* = \mathbf{c}/2)</td>
<td>(\mathbf{b}^* = \mathbf{b}/2)</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,0,0</td>
<td>Origin at x,x/2,1/4</td>
<td>Origin at x,x/2,1/4</td>
<td>Origin at x,x/2,1/4</td>
<td>Origin at x,x/2,1/4</td>
</tr>
</tbody>
</table>

194.1.1494 - 3 - 3296
Origin at center (3m11') at 32/mc1'

Asymmetric unit

0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; 0 ≤ z ≤ 1/4; x < 2y; y ≤ min(1-x,2x)

Vertices

0,0,0 2/3,1/3,0 1/3,2/3,0
0,0,1/4 2/3,1/3,1/4 1/3,2/3,1/4

Symmetry Operations

For 1 + set

1
(1 | 0,0,0)

(1) 1

(2) 3⁰ 0,0,z
(3z | 0,0,0)

(3) 3⁻ 0,0,z
(3z⁻¹ | 0,0,0)

(4) 2 (0,0,1/2) 0,0,z
(2z | 0,0,1/2)

(5) 6⁻ (0,0,1/2) 0,0,z
(6z⁻¹ | 0,0,1/2)

(6) 6⁺ (0,0,1/2) 0,0,z
(6z | 0,0,1/2)

(7) 2 x,x,0
(2xy | 0,0,0)

(8) 2 x,0,0
(2z | 0,0,0)

(9) 2 0,y,0
(2y | 0,0,0)

(10) 2 x,x,1/4
(2z | 0,0,1/2)

(11) 2 x,2x,1/4
(2z | 0,0,1/2)

(12) 2 2x,x,1/4
(2z | 0,0,1/2)
Continued

Generators selected

For 1' + set

Generators selected

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

1 + 1' +
(13) $x, y, z + [0,0,0]$
(14) $y, x + y, z + [0,0,0]$
(15) $x-y, x, z + [0,0,0]$
(16) $x, y, z + 1/2 + [0,0,0]$
(17) $y, x, y, z + 1/2 + [0,0,0]$
(18) $x+y, x, z + 1/2 + [0,0,0]$
(19) $y, x, z + [0,0,0]$
(20) $x+y, y, z + [0,0,0]$
(21) $x, y, z + 1/2 + [0,0,0]$
(22) $x, y, z + 1/2 + [0,0,0]$
(23) $x-y, y, z + [0,0,0]$
(24) $x, x+y, z + 1/2 + [0,0,0]$

12 k .m.1'
$x, 2x, z + [0,0,0]$
$x, 2x, z + 1/2 + [0,0,0]$
$2x, x, z + [0,0,0]$
$2x, x, z + 1/2 + [0,0,0]$

12 j m..1'
$x, 1/4 + [0,0,0]$
$y, x-y, 1/4 + [0,0,0]$
$y, x, 3/4 + [0,0,0]$
$y, x, y, 3/4 + [0,0,0]$

12 i .21'
$x, 0, 0 + [0,0,0]$
$x, 0, 1/2 + [0,0,0]$
$x, 0, 0 + [0,0,0]$
$x, 0, 1/2 + [0,0,0]$

6 h mm21'
$x, 2x, 1/4 + [0,0,0]$
$x, 2x, 3/4 + [0,0,0]$

6 g .2/m.1'
$1/2, 0, 0 + [0,0,0]$
$1/2, 0, 1/2 + [0,0,0]$

4 f 3m.1'
$1/3, 2/3, z + [0,0,0]$
$2/3, 1/3, z + [0,0,0]$

4 e 3m.1'
$0, 0, z + [0,0,0]$
$0, 0, z + 1/2 + [0,0,0]$

2 d 6m21'
$1/3, 2/3, 3/4 + [0,0,0]$

2 c 6m21'
$1/3, 2/3, 1/4 + [0,0,0]$

2 b 6m21'
$0, 0, 1/4 + [0,0,0]$

2 a 3m.1'
$0, 0, 0 + [0,0,0]$
$0, 0, 1/2 + [0,0,0]$
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry Group</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p6mm1'</td>
<td>$a^* = a$ \quad b^* = b$</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at $0,0,z$</td>
</tr>
<tr>
<td>Along [1,0,0]</td>
<td>p2mg1'</td>
<td>$a^* = c$ \quad b^* = (a + 2b)/2</td>
</tr>
<tr>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at $x,0,0$</td>
</tr>
<tr>
<td>Along [2,1,0]</td>
<td>p2mm1'</td>
<td>$a^* = c/2$ \quad b^* = b/2</td>
</tr>
<tr>
<td>Origin at x,x/2,0</td>
<td></td>
<td>Origin at $x,x/2,0$</td>
</tr>
</tbody>
</table>
Origin at center (3'm1) at 3'2'/mc

Asymmetric unit

0 ≤ x ≤ 2/3; 0 ≤ y ≤ 2/3; 0 ≤ z ≤ 1/4; x ≤ 2y; y ≤ min(1-x, 2x)

Vertices

0,0,0 2/3,1/3,0 1/3,2/3,0
0,0,1/4 2/3,1/3,1/4 1/3,2/3,1/4

Symmetry Operations

(1) 1
(1 | 0,0,0)

(2) 3' 0,0,z
(3'z | 0,0,0)

(3) 3' -1 0,0,z
(3'z -1 | 0,0,0)

(4) 2 (0,0,1/2) 0,0,z
(2z | 0,0,1/2)

(5) 6' (0,0,1/2) 0,0,z
(6'z -1 | 0,0,1/2)

(6) 6' -1 (0,0,1/2) 0,0,z
(6z | 0,0,1/2)

(7) 2' x,x,0
(2xy | 0,0,0)'

(8) 2' x,0,0
(2z | 0,0,0)'

(9) 2' x, y,0
(2y | 0,0,0)'

(10) 2' x,x,1/4
(2xy | 0,0,1/2)'

(11) 2' x,x,1/4
(2z | 0,0,1/2)'

(12) 2' 2x,x,1/4
(2z | 0,0,1/2)'

194.3.1496 - 1 - 3301
Continued

<table>
<thead>
<tr>
<th>13</th>
<th>m’ 0,0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1,0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14</th>
<th>3’</th>
<th>0,0,0; 0,0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>3</td>
<td>0,0,0; 0,0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>3’</th>
<th>0,0,0; 0,0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>3</td>
<td>0,0,0; 0,0,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>m' x,y,1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17</th>
<th>6’</th>
<th>0,0,0; 0,0,1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>6</td>
<td>0,0,0; 0,0,1/4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18</th>
<th>6’</th>
<th>0,0,0; 0,0,1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>6</td>
<td>0,0,0; 0,0,1/4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19</th>
<th>m x,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
<th>m x,2x,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>21</th>
<th>m 2x,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>22</th>
<th>c (0,0,1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>23</th>
<th>c (0,0,1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24</th>
<th>c (0,0,1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)</td>
<td>c</td>
</tr>
</tbody>
</table>

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 l 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) y,x,y,z [v,u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) y,x+y,z+1/2 [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x+y,x,z+1/2 [u,v+w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z [u+v,v,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x+y,z [u,u+w]</td>
</tr>
<tr>
<td></td>
<td>(10) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(11) x+y,x,z+1/2 [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(12) x+y,x,z+1/2 [u,v+w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(14) x+y,z [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) y,x,z [u,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(16) x,y,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(17) x+y,x,z+1/2 [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(18) x+y,x,z+1/2 [u+v,u+w]</td>
</tr>
<tr>
<td></td>
<td>(19) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(20) x+y,z [v,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(21) x+y,z [u,u+v,w]</td>
</tr>
<tr>
<td></td>
<td>(22) x,y,z+1/2 [v,u+w]</td>
</tr>
<tr>
<td></td>
<td>(23) x+y,z+1/2 [u+v,v+w]</td>
</tr>
</tbody>
</table>

12 k m'	x,2x,z [u,0,0]
	2x,x,z [0,u,0]
	x,x,z [u,u,0]
	x,2x,z+1/2 [u,0,0]
	2x,x,z+1/2 [0,u,0]
	2x,x,z [u,0,0]
	x,2x,z [u,0,0]
	x,x,z [u,u,0]
	2x,x,z+1/2 [0,u,0]
	x,2x,z+1/2 [u,0,0]
	x,x,z+1/2 [u,u,0]

12 j m'	x,y,1/4 [u,v,0]
	y,x,y,1/4 [v,u-v,0]
	x+y,x,1/4 [u+v,u,0]
	x,y,3/4 [u,v,0]
	y,x,3/4 [v,u,0]
	y,x,3/4 [u,v,0]
	y,x,3/4 [v,u,0]
	y,x,3/4 [u,v,0]
	x+y,x,1/4 [u+v,u,0]
	x,x-y,1/4 [u,u+v,0]
Continued 194.3.1496 P6₃/m'm'c

12 i .2'. x,0,0 [u,2u,w] 0,x,0 [2u,−u,w] x,x,0 [u,u,w]
 −x,0,1/2 [u,2u,w] 0,x,1/2 [2u,u,w] x,x,1/2 [u,u,w]
 −xx,0,0 [u,2u,−w] 0,xx,0 [2u,u,−w] xx,x,0 [u,−u,w]
 −x,0,1/2 [u,2u,−w] 0,x,1/2 [2u,−u,−w] xx,x,1/2 [u,−u,−w]
6 h m'm2' x,2x,1/4 [u,0,0] 2x,−x,1/4 [0,u,0] x,−x,1/4 [u,u,0]
 −x,2x,3/4 [u,0,0] 2x,−x,3/4 [0,−u,0] x,−x,3/4 [u,−u,0]
6 g .2'm. 1/2,0,0 [0,0,0] 0,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0]
 1/2,0,1/2 [0,0,0] 0,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]
4 f 3m. 1/3,2/3,z [0,0,0] 2/3,1/3,z+1/2 [0,0,0] 2/3,1/3,z [0,0,0] 1/3,2/3,z+1/2 [0,0,0]
4 e 3m. 0,0,0 [0,0,0] 0,0,z [0,0,0] 0,0,z [0,0,0] 0,0,z+1/2 [0,0,0]
2 d 6'm2' 1/3,2/3,3/4 [0,0,0] 2/3,1/3,1/4 [0,0,0] 2/3,1/3,1/4 [0,0,0]
2 c 6'm2' 1/3,2/3,1/4 [0,0,0] 2/3,1/3,3/4 [0,0,0] 2/3,1/3,3/4 [0,0,0]
2 b 6'm2' 0,0,1/4 [0,0,0] 0,0,3/4 [0,0,0] 0,0,3/4 [0,0,0]
2 a 3'm. 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p6mm Along [1,0,0] p2mg1' Along [2,1,0] p2a,2mm
\(a^* = a \quad b^* = b\) \(a^* = c \quad b^* = (a + 2b)/2\) \(a^* = c/2 \quad b^* = b/2\)
Origin at 0,0,z Origin at x,0,0 Origin at x,x/2,0

194.3.1496 - 3 - 3303
Origin at center (31m'1) at 312/m'c

Asymmetric unit

\[0 \leq x \leq \frac{2}{3}; \quad 0 \leq y \leq \frac{2}{3}; \quad 0 \leq z \leq \frac{1}{4}; \quad x < 2y; \quad y \leq \min(1-x, 2x) \]

Vertices

- \(0, 0, 0\)
- \(2/3, 1/3, 0\)
- \(1/3, 2/3, 0\)
- \(0, 0, 1/4\)
- \(2/3, 1/3, 1/4\)
- \(1/3, 2/3, 1/4\)

Symmetry Operations

1. \(1\)
2. \(3^* \cdot 0,0,z\)
3. \(3^* \cdot 0,0,0\)
4. \(2' \cdot (0,0,1/2) \cdot 0,0,z\)
5. \(6' \cdot (0,0,1/2) \cdot 0,0,z\)
6. \(6' \cdot (0,0,1/2) \cdot 0,0,z\)
7. \(2 \cdot x,x,0\)
8. \(2 \cdot x,0,0\)
9. \(2 \cdot 0,y,0\)
10. \(2' \cdot x,x,1/4\)
11. \(2' \cdot x,2x,1/4\)
12. \(2' \cdot 2x,x,1/4\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

Continued

\[(13) \overset{t}{0,0,0} \quad (14) \overset{3}{0,0,z; 0,0,0} \quad (15) \overset{3}{0,0,z; 0,0,0} \]
\[(16) \overset{m}{x,y,1/4} \quad (17) \overset{6}{0,0,z; 0,0,1/4} \quad (18) \overset{6}{0,0,z; 0,0,1/4} \]
\[(19) \overset{m'}{x,x,z} \quad (20) \overset{m'}{x,2x,z} \quad (21) \overset{m'}{2x,x,z} \]
\[(22) \overset{c}{0,0,1/2} x,x,z \quad (23) \overset{c}{0,0,1/2} x,0,z \quad (24) \overset{c}{0,0,1/2} 0,y,z \]

24 l 1 \((1) x,y,z \ [u,v,w] \quad (2) \bar{y},x-y,z \ [\bar{v},u-v,w] \quad (3) x+y,x,z \ [\bar{u}+v,\bar{u},w] \)
\((4) \bar{x},y,z+1/2 \ [u,v,w] \quad (5) y,x+y,z+1/2 \ [v,u-v,w] \quad (6) x-y,x,z+1/2 \ [u-v,u,w] \)
\((7) y,x,z \ [v,u,w] \quad (8) x-y,x-z \ [u-v,v,w] \quad (9) x+y,x,z \ [\bar{u}+v,\bar{u},w] \)
\((10) \bar{y},x,z+1/2 \ [v,u,w] \quad (11) \bar{x}+y,z+1/2 \ [u-v,\bar{v},w] \quad (12) x-x-y,z+1/2 \ [\bar{u},\bar{u}+v,\bar{w}] \)
\((13) \bar{x},y,z \ [u,v,\bar{w}] \quad (14) \bar{y},x+y,z \ [v,u+v,\bar{w}] \quad (15) y-x-y,z \ [\bar{u},u+v,\bar{w}] \)
\((16) x,y,z+1/2 \ [\bar{v},\bar{u},w] \quad (17) \bar{y}-x,y,z+1/2 \ [v,u+v,\bar{w}] \quad (18) \bar{x}+y,x,z+1/2 \ [u-v,u,w] \)
\((19) y,x,z \ [v,\bar{u},w] \quad (20) \bar{x}+y,y,z \ [u+v,v,w] \quad (21) x-x-y,z \ [u-u-v,\bar{w}] \)
\((22) x,x,z+1/2 \ [\bar{v},\bar{u},w] \quad (23) x-y,x,z+1/2 \ [u-v,v,\bar{w}] \quad (24) x-x,y,z+1/2 \ [u-u-v,\bar{w}] \)

12 k \(.m'. \quad x,2x,z \ [u,2u,w] \quad 2x,x,z \ [2u,u,w] \quad x,x,z \ [u,\bar{u},w] \)
\(\bar{x},2x,z+1/2 \ [u,2u,w] \quad 2x,x,z+1/2 \ [2u,\bar{u},w] \quad \bar{x},x,z+1/2 \ [u,\bar{u},w] \)
\(2x,x,z \ [2u,u,w] \quad \bar{x},2x,z \ [u,2u,w] \quad \bar{x},x,z \ [u,\bar{u},w] \)
\(2x,x,z+1/2 \ [2u,u,w] \quad x,2x,z+1/2 \ [2u,\bar{u},w] \quad x,x,z+1/2 \ [u,\bar{u},w] \)

12 j \(m'. \quad x,y,1/4 \ [0,0,w] \quad \bar{y},x-y,1/4 \ [0,0,w] \quad x+y,x,1/4 \ [0,0,w] \)
\(\bar{x},y,3/4 \ [0,0,w] \quad y,x+y,3/4 \ [0,0,w] \quad x-y,x,3/4 \ [0,0,w] \)
\(y,x,3/4 \ [0,0,w] \quad x-y,y,3/4 \ [0,0,w] \quad \bar{x}+y,x,3/4 \ [0,0,\bar{w}] \)
\(y,x,1/4 \ [0,0,w] \quad x+y,y,1/4 \ [0,0,w] \quad x-x-y,1/4 \ [0,0,w] \)
12 i .2. x,0,0 [u,0,0] 0,x,0 [0,u,0] x,x,0 [u,0,0]
 \hspace{1cm} x,0,1/2 [u,0,0] 0,x,1/2 [0,u,0] x,x,1/2 [u,u,0]
 \hspace{1cm} x,0,0 [u,0,0] 0,x,0 [0,0,0] x,x,0 [u,u,0]
 \hspace{1cm} x,0,1/2 [u,0,0] 0,x,1/2 [0,u,0] x,x,1/2 [u,u,0]

6 h mm'2' x,2x,1/4 [0,0,w] 2x,x,1/4 [0,0,w] x,x,1/4 [0,0,w]
 \hspace{1cm} x,2x,3/4 [0,0,w] 2x,x,3/4 [0,0,w] x,x,3/4 [0,0,w]

6 g .2/m'. 1/2,0,0 [0,0,0] 0,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0]
 \hspace{1cm} 1/2,0,1/2 [0,0,0] 0,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]

4 f 3m'. 1/3,2/3,z [0,0,w] 2/3,1/3,z+1/2 [0,0,w] 2/3,1/3,z [0,0,w]
 \hspace{1cm} 1/3,2/3,z+1/2 [0,0,w] 2/3,1/3,z+1/2 [0,0,w] 1/3,2/3,z+1/2 [0,0,w]

4 e 3m'. 0,0,z [0,0,w] 0,0,z+1/2 [0,0,w] 0,0,z [0,0,w]
 \hspace{1cm} 0,0,z+1/2 [0,0,w] 0,0,z+1/2 [0,0,w] 0,0,z+1/2 [0,0,w]

2 d \bar{6}m'2' 1/3,2/3,3/4 [0,0,w] 2/3,1/3,3/4 [0,0,w]
 \hspace{1cm} 2/3,1/3,3/4 [0,0,w] 2/3,1/3,3/4 [0,0,w]

2 c \bar{6}m'2' 1/3,2/3,1/4 [0,0,w] 2/3,1/3,1/4 [0,0,w]
 \hspace{1cm} 2/3,1/3,1/4 [0,0,w] 2/3,1/3,1/4 [0,0,w]

2 b \bar{6}m'2' 0,0,1/4 [0,0,w] 0,0,3/4 [0,0,w]
 \hspace{1cm} 0,0,3/4 [0,0,w] 0,0,3/4 [0,0,w]

2 a 3'm'. 0,0,0 [0,0,0] 0,0,1/2 [0,0,0]
 \hspace{1cm} 0,0,1/2 [0,0,0] 0,0,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p6mm1'
 a* = a b* = b
 Origin at 0,0,z

Along [1,0,0] p2mg
 a* = c b* = (a + 2b)/2
 Origin at x,0,0

Along [2,1,0] p_{2a},2m'm'
 a* = c/2 b* = b/2
 Origin at x,x/2,0
Origin at center \((3'm1)\) at \(3'2'mc'\)

Asymmetric unit
\[0 \leq x \leq 2/3\];
\[0 \leq y \leq 2/3\];
\[0 \leq z \leq 1/4\];
\[x < 2y\];
\[y \leq \min(1-x,2x)\]

Vertices
\[0,0,0\]
\[2/3,1/3,0\]
\[1/3,2/3,0\]
\[0,0,1/4\]
\[2/3,1/3,1/4\]
\[1/3,2/3,1/4\]

Symmetry Operations

1. \(1\)
 \((1|0,0,0)\)

2. \(3^+\)
 \((0,0,z)\)
 \((3_z|0,0,0)\)

3. \(3^-\)
 \((0,0,z)\)
 \((3_z^{-1}|0,0,0)\)

4. \(2'\)
 \((0,0,1/2)\)
 \((0,0,z)\)
 \((2_z|0,0,1/2)\)

5. \(6'\)
 \((0,0,1/2)\)
 \((0,0,z)\)
 \((6_x^{-1}|0,0,1/2)\)

6. \(6''\)
 \((0,0,1/2)\)
 \((0,0,z)\)
 \((6_z|0,0,1/2)\)

7. \(2'\)
 \((x,x,0)\)
 \((2_{xy}|0,0,0)\)

8. \(2'\)
 \((x,0,0)\)
 \((2_z|0,0,0)\)

9. \(2'\)
 \((y,0,0)\)
 \((2_y|0,0,0)\)

10. \(2\)
 \((x,1/4)\)
 \((2_z|0,0,1/2)\)

11. \(2\)
 \((x,1/4)\)
 \((2_{xy}|0,0,0)\)

12. \(2\)
 \((2x,1/4)\)
 \((2_z|0,0,1/2)\)
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>l 1</td>
</tr>
<tr>
<td>(1)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2)</td>
<td>y,x-y,z [u-v,v,w]</td>
</tr>
<tr>
<td>(3)</td>
<td>x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td>(4)</td>
<td>x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(5)</td>
<td>y,x+y,z+1/2 [v,u-w]</td>
</tr>
<tr>
<td>(6)</td>
<td>x+y,x,z+1/2 [u-v,v,w]</td>
</tr>
<tr>
<td>(7)</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(8)</td>
<td>x-y,x,y [u-v,w]</td>
</tr>
<tr>
<td>(9)</td>
<td>x,x+y,z [u-u,v,w]</td>
</tr>
<tr>
<td>(10)</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(11)</td>
<td>x+y,y,z+1/2 [u+v,v,w]</td>
</tr>
<tr>
<td>(12)</td>
<td>x,x+y,z+1/2 [u-u,v,w]</td>
</tr>
<tr>
<td>(13)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(14)</td>
<td>y,x+y,z [v,u+v,w]</td>
</tr>
<tr>
<td>(15)</td>
<td>x+y,x,z [u-u,v,w]</td>
</tr>
<tr>
<td>(16)</td>
<td>x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(17)</td>
<td>y,x-y,z+1/2 [v,u+w]</td>
</tr>
<tr>
<td>(18)</td>
<td>x+y,x,z+1/2 [v+v+w]</td>
</tr>
<tr>
<td>(19)</td>
<td>y,x,z [v,u,w]</td>
</tr>
<tr>
<td>(20)</td>
<td>x+y,y,z [u-v,w]</td>
</tr>
<tr>
<td>(21)</td>
<td>x,x-y,z [u,u+v,w]</td>
</tr>
<tr>
<td>(22)</td>
<td>y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(23)</td>
<td>x-y,x,y+1/2 [u-v,w]</td>
</tr>
<tr>
<td>(24)</td>
<td>x,x+y,z+1/2 [u-u+v,w]</td>
</tr>
</tbody>
</table>

12

k .m.
x,x+2, z [u,0,0]
\(x, x+z+1/2 [u, 0, 0]\)
2x,x [0,0,0]
\(x, z+1/2 [u, 0, 0]\)
\(x, z+1/2 [u, 0, 0]\)

12

j m..
x,y,1/4 [0,0,w]
\(y, x, y, 1/4 [0, 0, w]\)
\(y, x, y, 1/4 [0, 0, w]\)
\(x+y, x, y, 1/4 [0, 0, w]\)
\(x+y, x, 1/4 [0, 0, w]\)
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>12</th>
<th>i</th>
<th>.2'</th>
<th>x,0,0 [u,2u,w]</th>
<th>0,x,0 [2u,u,w]</th>
<th>x,x,0 [u,u,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,0,1/2 [u,2u,w]</td>
<td>0,x,1/2 [2u,u,w]</td>
<td>x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,0,0 [2u,2u,w]</td>
<td>0,x,0 [2u,u,w]</td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,0,1/2 [u,2u,w]</td>
<td>0,x,1/2 [2u,u,w]</td>
<td>x,x,1/2 [u,u,w]</td>
</tr>
</tbody>
</table>

| 6 | h | mm2 | x,2x,1/4 [0,0,0] | 2x,x,1/4 [0,0,0] | x,x,1/4 [0,0,0] |
| | | | x,2x,3/4 [0,0,0] | 2x,x,3/4 [0,0,0] | x,x,3/4 [0,0,0] |

| 6 | g | .2'/m. | 1/2,0,0 [0,0,0] | 0,1/2,0 [0,0,0] | 1/2,1/2,0 [0,0,0] |
| | | | 1/2,0,1/2 [0,0,0] | 0,1/2,1/2 [0,0,0] | 1/2,1/2,1/2 [0,0,0] |

| 4 | f | 3m. | 1/3,2/3,z [0,0,0] | 2/3,1/3,z+1/2 [0,0,0] | 2/3,1/3,z [0,0,0] |
| | | | 2/3,1/3,z+1/2 [0,0,0] | 2/3,1/3,z+1/2 [0,0,0] | 2/3,1/3,z+1/2 [0,0,0] |

| 4 | e | 3m. | 0,0,z [0,0,0] | 0,0,z+1/2 [0,0,0] | 0,0,z [0,0,0] |
| | | | 0,0,z+1/2 [0,0,0] | 0,0,z+1/2 [0,0,0] | 0,0,z+1/2 [0,0,0] |

| 2 | d | 6m2 | 1/3,2/3,3/4 [0,0,0] | 2/3,1/3,1/4 [0,0,0] | 2/3,1/3,1/4 [0,0,0] |
| | | | 2/3,1/3,3/4 [0,0,0] | 2/3,1/3,3/4 [0,0,0] | 2/3,1/3,3/4 [0,0,0] |

| 2 | c | 6m2 | 0,0,1/4 [0,0,0] | 0,0,3/4 [0,0,0] | 0,0,3/4 [0,0,0] |
| | | | 0,0,1/2 [0,0,0] | 0,0,1/2 [0,0,0] | 0,0,1/2 [0,0,0] |

| 2 | b | 3m. | 0,0,0 [0,0,0] | 0,0,1/2 [0,0,0] | 0,0,1/2 [0,0,0] |
| | | | 0,0,1/2 [0,0,0] | 0,0,1/2 [0,0,0] | 0,0,1/2 [0,0,0] |

| 2 | a | 3'm. | 0,0,0 [0,0,0] | 0,0,1/2 [0,0,0] | 0,0,1/2 [0,0,0] |
| | | | 0,0,1/2 [0,0,0] | 0,0,1/2 [0,0,0] | 0,0,1/2 [0,0,0] |

Symmetry Relations

- **a** = a, **b** = b
- **a** = c, **b** = (a + 2b)/2
- **a** = c/2, **b** = b/2
Origin at center \((3\,m\,1)\) at \(\overline{3}2/m'c\)

Asymmetric unit

\[
0 < x < \frac{2}{3}; \quad 0 < y < \frac{2}{3}; \quad 0 < z < \frac{1}{4}; \quad x < 2y; \quad y \leq \min(1-x,2x)
\]

Vertices

\[
\begin{align*}
0, 0, 0 & \quad 2/3, 1/3, 0 \quad 1/3, 2/3, 0 \\
0, 0, 1/4 & \quad 2/3, 1/3, 1/4 \quad 1/3, 2/3, 1/4
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad 0, 0, 0 \\
(4) & \quad 2' \ (0, 0, 1/2) \ 0, 0, z \\
(2z & \quad 0, 0, 1/2)' \\
(7) & \quad 2' \ x, x, 0 \\
(2y & \quad 0, 0, 0)' \\
(10) & \quad 2 \ x, x, 1/4 \\
(2 & \quad 0, 0, 1/2)
\end{align*}
\]

\[
\begin{align*}
(2) & \quad 3^+ \ 0, 0, z \\
(3z & \quad 0, 0, 0) \\
(5) & \quad 6' \ (0, 0, 1/2) \ 0, 0, z \\
(6z & \quad 0, 0, 1/2)' \\
(8) & \quad 2' \ x, 0, 0 \\
(2z & \quad 0, 0, 0)' \\
(11) & \quad 2 \ x, 2x, 1/4 \\
(2z & \quad 0, 0, 1/2)
\end{align*}
\]

\[
\begin{align*}
(3) & \quad 3^- \ 0, 0, z \\
(3z & \quad 0, 0, 0) \\
(6) & \quad 6^+ \ (0, 0, 1/2) \ 0, 0, z \\
(6z & \quad 0, 0, 1/2)' \\
(9) & \quad 2' \ 0, y, 0 \\
(2y & \quad 0, 0, 0)' \\
(12) & \quad 2 \ 2x, x, 1/4 \\
(2z & \quad 0, 0, 1/2)
\end{align*}
\]
Continued

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>l 1</td>
<td>(1) x,y,z [u,v,w] (2) y,x-y,z [v-u,v,w] (3) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) y,x,z [v,u,w] (8) x-y,x,z [u+v,v,w] (9) x+y,x,z [u,u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(13) x,y,z [u,v,w] (14) y,x+y,z [v-u,v,w] (15) x+y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(16) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(19) y,x,z [v,u,w] (20) x+y,x,z [u+v,v,w] (21) x+y,x,z [u,u-v,v,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(22) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>12</td>
<td>k m'</td>
<td>x,2x,z [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,2x,z+1/2 [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x,x,z [2u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x,x,z+1/2 [2u,2u,w]</td>
</tr>
<tr>
<td>12</td>
<td>j m'</td>
<td>x,y,1/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,y,3/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,x,3/4 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,x,1/4 [v,u,0]</td>
</tr>
</tbody>
</table>
12 i .2'. x,0,0 [u,2u,w] 0,x,0 [2u, u,w] x,x,0 [u,u,w]

x,0,1/2 [u,2u,w] 0,x,1/2 [2u, u,w] x,x,1/2 [u,u,w]

x,0,0 [u,2u,w] 0,x,0 [2u, u,w] x,x,0 [u,u,w]

x,0,1/2 [u,2u,w] 0,x,1/2 [2u, u,w] x,x,1/2 [u,u,w]

6 h m'm'2 x,2x,1/4 [u,2u,0] 2x,x,1/4 [2u, u,0] x,x,1/4 [u,u,0]

x,2x,3/4 [u,2u,0] 2x,x,3/4 [2u, u,0] x,x,3/4 [u,u,0]

6 g .2'/m'. 1/2,0,0 [u,2u,w] 0,1/2,0 [2u, u,w] 1/2,1/2,0 [u,u,w]

1/2,0,1/2 [u,2u,w] 0,1/2,1/2 [2u, u,w] 1/2,1/2,1/2 [u,u,w]

4 f 3m'. 1/3,2/3,z [0,0,w] 2/3,1/3,z+1/2 [0,0,w] 2/3,1/3,2z [0,0,w] 1/3,2/3,z+1/2 [0,0,w]

4 e 3m'. 0,0,z [0,0,w] 0,0,z+1/2 [0,0,w] 0,0,z [0,0,w] 0,0,z+1/2 [0,0,w]

2 d 6'm'2 1/3,2/3,3/4 [0,0,0] 2/3,1/3,1/4 [0,0,0]

2 c 6'm'2 1/3,2/3,1/4 [0,0,0] 2/3,1/3,3/4 [0,0,0]

2 b 6'm'2 0,0,1/4 [0,0,0] 0,0,3/4 [0,0,0]

2 a 3m'. 0,0,0 [0,0,w] 0,0,1/2 [0,0,w]

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p6m'm'</th>
<th>Along [1,0,0]</th>
<th>p2'm'g</th>
<th>Along [2,1,0]</th>
<th>p2a.2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = c</td>
<td>a* = (a + 2b)/2</td>
<td>a* = c/2</td>
<td>b* = b/2</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,0,0</td>
<td></td>
<td>Origin at x,x/2,1/4</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (3m1) at 32/mc'

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/4; \quad x < 2y; \quad y \leq \min(1-x,2x) \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2/3,0 \\
0,0,1/4 & \quad 2/3,1/3,1/4 & \quad 1/3,2/3,1/4
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 & \quad (1*0,0,0) \\
(2) & \quad 3' \quad 0,0,z & \quad (3_z*0,0,0) \\
(3) & \quad 3' \quad 0,0,z & \quad (3_z^-*0,0,0) \\
(4) & \quad 2' \quad (0,0,1/2) \quad 0,0,z & \quad (2_z*0,0,1/2) \\
(5) & \quad 6' \quad (0,0,1/2) \quad 0,0,z & \quad (6_z^-*0,0,1/2) \\
(6) & \quad 6' \quad (0,0,1/2) \quad 0,0,z & \quad (6_z*0,0,1/2) \\
(7) & \quad 2 \quad x,x,0 & \quad (2_x*0,0,0) \\
(8) & \quad 2 \quad x,0,0 & \quad (2_y*0,0,0) \\
(9) & \quad 2 \quad 0,y,0 & \quad (2_y*0,0,0) \\
(10) & \quad 2' \quad x,x,1/4 & \quad (2_z*0,0,1/2) \\
(11) & \quad 2' \quad x,2x,1/4 & \quad (2_z*0,0,1/2) \\
(12) & \quad 2' \quad 2x,x,1/4 & \quad (2_z*0,0,1/2) \\
\end{align*}
\]
(13) $\vec{1}$ 0,0,0
(14) $\vec{3}'$ 0,0,0; 0,0,0
(15) $\vec{3}'$ 0,0,0; 0,0,0

(16) $m' x,y,1/4$
$m' x,y,1/4$

(17) $6' - 0,0,1/4$
$6' - 0,0,1/4$

(19) $m x,x,z$
$m x,x,z$

(22) $c' (0,0,1/2) x,x,z$
$c' (0,0,1/2) x,x,z$

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>l</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>k</td>
<td>.m.</td>
</tr>
<tr>
<td>12</td>
<td>j</td>
<td>m'.</td>
</tr>
</tbody>
</table>

Coordinates

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>y,x-y,z [v,u-v,w]</td>
<td>x+y,x,z [u+v,u,w]</td>
<td>(3)</td>
</tr>
<tr>
<td>(5)</td>
<td>y,x+y,z+1/2 [v,u-v,w]</td>
<td>(6)</td>
<td>x-y,x,z+1/2 [u,u-v,w]</td>
</tr>
<tr>
<td>(8)</td>
<td>x-y,y,z [u-v,v,w]</td>
<td>(9)</td>
<td>x,x+y,z [u,u+v,w]</td>
</tr>
<tr>
<td>(11)</td>
<td>x+y,y,z+1/2 [v,u-v,w]</td>
<td>(12)</td>
<td>x-x-y,z+1/2 [u,u-v,w]</td>
</tr>
<tr>
<td>(14)</td>
<td>y,x+y,z [v,u-v,w]</td>
<td>(15)</td>
<td>x-y,x,z [u+v,u,w]</td>
</tr>
<tr>
<td>(17)</td>
<td>y,x-y,z+1/2 [v,u-v,w]</td>
<td>(18)</td>
<td>x-y,x-z+1/2 [u+v,u,w]</td>
</tr>
<tr>
<td>(20)</td>
<td>x+y,y,z [u-v,v,w]</td>
<td>(21)</td>
<td>x-x-y,z [u,u+v,w]</td>
</tr>
<tr>
<td>(23)</td>
<td>x-y,y,z+1/2 [v,u-v,w]</td>
<td>(24)</td>
<td>x-y,x,z+1/2 [u,u+v,w]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p6'mm'

\(a^* = a \) \hspace{1cm} \(b^* = b \)
Origin at 0,0,z

Along [1,0,0] p2mg1'

\(a^* = c \) \hspace{1cm} \(b^*(a + 2b)/2 \)
Origin at x,0,0

Along [2,1,0] p2'mm'

\(a^* = b/2 \) \hspace{1cm} \(b^* = c/2 \)
Origin at x,x/2,0
Origin at center (3m'1) at 32'/m'c'

Asymmetric unit

\[0 \leq x \leq 2/3; \quad 0 \leq y \leq 2/3; \quad 0 \leq z \leq 1/4; \quad x < 2y; \quad y \leq \min(1-x,2x) \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 2/3,1/3,0 & \quad 1/3,2,3,0 \\
0,0,1/4 & \quad 2/3,1/3,1/4 & \quad 1/3,2,3,1/4
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 3^* \quad 0,0,z \\
(3) & \quad 3^* \quad 0,0,z \\
(4) & \quad 2 (0,0,1/2) \quad 0,0,z \\
(5) & \quad 6^- (0,0,1/2) \quad 0,0,z \\
(6) & \quad 6^- (0,0,1/2) \quad 0,0,z \\
(7) & \quad 2' \quad x,x,0 \\
(8) & \quad 2' \quad x,0,0 \\
(9) & \quad 2' \quad y,0,0 \\
(10) & \quad 2' \quad x,x,1/4 \\
(11) & \quad 2' \quad x,2x,1/4 \\
(12) & \quad 2' \quad 2x,x,1/4 \quad (2,0,0,0)' \quad (2,0,0,0)' \quad (2,0,0,0)'
\end{align*}
\]
Continued

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>$\overline{1}$</td>
<td>0,0,0</td>
<td>$\overline{1}$</td>
<td>0,0,0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>$\overline{3}$</td>
<td>0,0,z; 0,0,0</td>
<td>$\overline{3}$</td>
<td>0,0,z; 0,0,0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>$\overline{3}$</td>
<td>0,0,z; 0,0,0</td>
<td>$\overline{3}$</td>
<td>0,0,0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>m'</td>
<td>x,y,1/4</td>
<td>m'</td>
<td>0,0,1/2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>$\overline{6}$</td>
<td>0,0,z; 0,0,1/4</td>
<td>$\overline{6}$</td>
<td>0,0,1/2</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>m'</td>
<td>x,y,1/4</td>
<td>m'</td>
<td>0,0,0'</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>(m')</td>
<td>x,x,z</td>
<td>(m')</td>
<td>0,0,0'</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>c'</td>
<td>(0,0,1/2)</td>
<td>x,x,z</td>
<td>(22)</td>
<td>(0,0,1/2)</td>
</tr>
<tr>
<td>21</td>
<td>m'</td>
<td>x,x,z</td>
<td>(m'</td>
<td>0,0,1/2)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>x'</td>
<td>(0,0,1/2)</td>
<td>x,y,1/4</td>
<td>(23)</td>
<td>(0,0,1/2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 l 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(4) x,y,z+1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(7) y,x,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(10) y,x,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(13) x,y,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(16) x,y,z+1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(19) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(22) y,x,z+1/2 [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>12 k m'</td>
<td>x,2x,z [u,2u,w]</td>
</tr>
<tr>
<td>x,2x,z+1/2 [u,2u,w]</td>
<td></td>
</tr>
<tr>
<td>2x,x,z [2u,u,w]</td>
<td></td>
</tr>
<tr>
<td>2x,x,z+1/2 [2u,u,w]</td>
<td></td>
</tr>
<tr>
<td>12 j m'</td>
<td>x,y,1/4 [0,0,w]</td>
</tr>
<tr>
<td>x,y,3/4 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>y,x,3/4 [0,0,w]</td>
<td></td>
</tr>
<tr>
<td>y,x,1/4 [0,0,w]</td>
<td></td>
</tr>
</tbody>
</table>

194.8.1501 - 2 - 3317
Continued

<table>
<thead>
<tr>
<th>12</th>
<th>i</th>
<th>.2'</th>
<th>x,0,0 [u,2u,w]</th>
<th>0,x,0 [2u,u,w]</th>
<th>x,x,0 [u,u,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,0,1/2 [u,2u,w]</td>
<td>0,x,1/2 [2u,u,w]</td>
<td>x,x,1/2 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,0,0 [u,2u,w]</td>
<td>0,x,0 [2u,u,w]</td>
<td>x,x,0 [u,u,w]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,0,1/2 [u,2u,w]</td>
<td>0,x,1/2 [2u,u,w]</td>
<td>x,x,1/2 [u,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>h</th>
<th>mm'2'</th>
<th>x,2x,1/4 [0,0,w]</th>
<th>2x,x,1/4 [0,0,w]</th>
<th>x,x,1/4 [0,0,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,2x,3/4 [0,0,w]</td>
<td>2x,x,3/4 [0,0,w]</td>
<td>x,x,3/4 [0,0,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>g</th>
<th>.2'/m'</th>
<th>1/2,0,0 [u,2u,w]</th>
<th>0,1/2,0 [2u,u,w]</th>
<th>1/2,1/2,0 [u,u,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,0,1/2 [u,2u,w]</td>
<td>0,1/2,1/2 [2u,u,w]</td>
<td>1/2,1/2,1/2 [u,u,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>f</th>
<th>3m'</th>
<th>1/3,2/3,z [0,0,w]</th>
<th>2/3,1/3,z+1/2 [0,0,w]</th>
<th>2/3,1/3,z [0,0,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,z [0,0,w]</td>
<td>0,0,z+1/2 [0,0,w]</td>
<td>0,0,z [0,0,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>d</th>
<th>6m'2'</th>
<th>1/3,2/3,3/4 [0,0,w]</th>
<th>2/3,1/3,1/4 [0,0,w]</th>
<th>2/3,1/3,1/4 [0,0,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/3,2/3,1/4 [0,0,w]</td>
<td>2/3,1/3,3/4 [0,0,w]</td>
<td>2/3,1/3,3/4 [0,0,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>b</th>
<th>6m'2'</th>
<th>0,0,1/4 [0,0,w]</th>
<th>0,0,3/4 [0,0,w]</th>
<th>0,0,3/4 [0,0,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,0 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
<td>0,0,1/2 [0,0,w]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p6mm1'
a' = **a**
b' = **b**
Origin at 0,0,z

Along [1,0,0] p2'mg'
a' = **c**
b' = (**a** + 2**b**) / 2
Origin at x,0,0

Along [2,1,0] p2'mm'
a' = c/2
b' = **b**/2
Origin at x,x/2,0
Origin at center \((3 \text{m}^1)\) at \(3\overline{2}/m\text{c'}\)

Asymmetric unit:
- \(0 \leq x \leq 2/3;\) \(0 \leq y \leq 2/3;\) \(0 \leq z \leq 1/4;\) \(x < 2y;\) \(y \leq \min(1-x,2x)\)

Vertices:
- \(0,0,0\)
- \(2/3,1/3,0\)
- \(1/3,2/3,0\)
- \(0,0,1/4\)
- \(2/3,1/3,1/4\)
- \(1/3,2/3,1/4\)

Symmetry Operations:

1. \(1\)
2* \(0,0,z\)

2. \(3\) \(0,0,0\)

3. \(3\) \(0,0,z\)

4. \(2\)

5. \(6\)

6. \(6\)

7. \(2\)

8. \(2\)

9. \(2\)

10. \(2\)

11. \(2\)

12. \(2\)
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (4); (7); (13).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 l 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(10) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(16) x,y,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(19) y,x,z [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(22) y,x,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>12 k .m'</td>
<td>x,2x,z [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td>x,2x,z+1/2 [u,2u,w]</td>
</tr>
<tr>
<td></td>
<td>2x,x,z [2u,u,w]</td>
</tr>
<tr>
<td></td>
<td>x,2x,z+1/2 [2u,u,w]</td>
</tr>
<tr>
<td>12 j .m'</td>
<td>x,y,1/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>x,y,3/4 [u,v,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,3/4 [v,u,0]</td>
</tr>
<tr>
<td></td>
<td>y,x,1/4 [v,u,0]</td>
</tr>
</tbody>
</table>
12 i .2. x,0,0 [u,0,0] 0,x,0 [0,u,0] \tilde{x},x,0 [\tilde{u},u,0] \\
\tilde{x},0,1/2 [\tilde{u},0,0] 0,\tilde{x},1/2 [0,\tilde{u},0] x,\tilde{x},1/2 [u,u,0] \\
\tilde{x},0,0 [\tilde{u},u,0] 0,\tilde{x},0 [0,\tilde{u},0] x,\tilde{x},0 [u,u,0] \\
x,0,1/2 [u,0,0] 0,x,1/2 [0,u,0] \tilde{x},\tilde{x},1/2 [\tilde{u},\tilde{u},0] \\
6 h m'm'2 x,2x,1/4 [u,2u,0] 2x,\tilde{x},1/4 [2u,\tilde{u},0] x,\tilde{x},1/4 [u,u,0] \\
\tilde{x},2x,3/4 [\tilde{u},2\tilde{u},0] 2x,\tilde{x},3/4 [2u,\tilde{u},0] \tilde{x},\tilde{x},3/4 [\tilde{u},\tilde{u},0] \\
6 g .2/m'. 1/2,0,0 [0,0,0] 0,1/2,0 [0,0,0] 1/2,1/2,0 [0,0,0] \\
1/2,2,1/2 [0,0,0] 0,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] \\
4 f 3m'. 1/3,2/3,z [0,0,w] 2/3,1/3,z+1/2 [0,0,w] 2/3,1/3,z [0,0,\tilde{w}] \\
1/3,2/3,z+1/2 [0,0,\tilde{w}] 1/3,2/3,z+1/2 [0,0,\tilde{w}] \\
4 e 3m'. 0,0,z [0,0,w] 0,0,z+1/2 [0,0,w] 0,0,\tilde{z} [0,0,\tilde{w}] \\
0,0,\tilde{z}+1/2 [0,0,\tilde{w}] \\
2 d \bar{6}m'2 1/3,2/3,3/4 [0,0,0] 2/3,1/3,1/4 [0,0,0] \\
2 c \bar{6}m'2 1/3,2/3,1/4 [0,0,0] 2/3,1/3,3/4 [0,0,0] \\
2 b \bar{6}m'2 0,0,1/4 [0,0,0] 0,0,3/4 [0,0,0] \\
2 a \bar{3}m'. 0,0,0 [0,0,0] 0,0,1/2 [0,0,0] \\

Symmetry of Special Projections

Along [0,0,1] p6m'm'
Along [1,0,0] p2m'g'
Along [2,1,0] p2m'm'

a* = a \quad b* = b
\quad a* = c \quad b* = (a + 2b)/2
\quad a* = c/2 \quad b* = b/2

Origin at 0,0,z
Origin at x,0,0
Origin at x,x/2,0
Origin at 23

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2; \quad y \leq 1-x; \quad z \leq \min (x,y) \]

Vertices

\[\begin{align*}
0,0,0 & \quad 1,0,0 \\
0,1,0 & \quad 1/2,1/2,1/2
\end{align*} \]

Symmetry Operations

\[\begin{align*}
(1) & \quad 1 \\
(10) & \quad 3^+ x,x,x \\
& \quad (3_{xyz})^{-1} |0,0,0|
\end{align*} \]

\[\begin{align*}
(2) & \quad 2 \quad 0,0,z \\
& \quad (2_z) |0,0,0|
\end{align*} \]

\[\begin{align*}
(3) & \quad 2 \quad 0,y,0 \\
& \quad (2_y) |0,0,0|
\end{align*} \]

\[\begin{align*}
(4) & \quad 2 \quad x,0,0 \\
& \quad (2_x) |0,0,0|
\end{align*} \]

\[\begin{align*}
(5) & \quad 3^+ x,x,x \\
& \quad (3_{xyz}) |0,0,0|
\end{align*} \]

\[\begin{align*}
(6) & \quad 3^+ \bar{x},\bar{x},\bar{x} \\
& \quad (3_{xyz})^{-1} |0,0,0|
\end{align*} \]

\[\begin{align*}
(7) & \quad 3^+ \bar{x},\bar{x},\bar{x} \\
& \quad (3_{xyz})^{-1} |0,0,0|
\end{align*} \]

\[\begin{align*}
(8) & \quad 3^+ \bar{x},\bar{x},x \\
& \quad (3_{xyz})^{-1} |0,0,0|
\end{align*} \]

Continued

\[\begin{align*}
(11) & \quad 3^- \bar{x},\bar{x},x \\
& \quad (3_{xyz}) |0,0,0|
\end{align*} \]

\[\begin{align*}
(12) & \quad 3^- \bar{x},\bar{x},\bar{x} \\
& \quad (3_{xyz}) |0,0,0|
\end{align*} \]
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 j 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) z,x,y [w,u,v]</td>
<td>(6) (z,\bar{x},\bar{y} [w,\bar{u},\bar{v}])</td>
</tr>
<tr>
<td>(9) y,z,x [v,w,u]</td>
<td>(10) (\bar{y},\bar{z},x [v,w,\bar{u}])</td>
</tr>
</tbody>
</table>

6 i 2.. x,1/2,1/2 [u,0,0] \(\bar{x},1/2,1/2 [\bar{u},0,0]\) 1/2,x,1/2 [0,u,0] 1/2,0,x [0,0,u] 1/2,x,0 [0,u,0] 0,1/2,x [0,0,u] 0,1/2,\(\bar{x}\) [0,0,\(\bar{u}\)]

6 h 2.. x,1/2,0 [u,0,0] \(\bar{x},1/2,0 [\bar{u},0,0]\) 0,x,1/2 [0,u,0] 0,\(\bar{x}\),1/2 [0,0,\(\bar{u}\)] 1/2,0,x [0,0,u] 0,1/2,x [0,0,u] 0,1/2,\(\bar{x}\) [0,0,\(\bar{u}\)]

6 g 2.. x,0,1/2 [u,0,0] \(\bar{x},0,1/2 [\bar{u},0,0]\) 1/2,x,0 [0,u,0] 0,1/2,x [0,0,u] 0,1/2,\(\bar{x}\) [0,0,\(\bar{u}\)] 0,0,x [0,u,0] 0,0,\(\bar{x}\) [0,0,\(\bar{u}\)]

6 f 2.. x,0,0 [u,0,0] \(\bar{x},0,0 [\bar{u},0,0]\) 0,x,0 [0,u,0] 0,0,x [0,u,0] 0,0,\(\bar{x}\) [0,0,\(\bar{u}\)] 0,0,\(\bar{x}\) [0,0,\(\bar{u}\)]

4 e .3. x,x,x [u,u,u] \(\bar{x},\bar{x},\bar{x} [\bar{u},\bar{u},\bar{u}]\) \(\bar{x},x,\bar{x} [\bar{u},u,u]\) \(\bar{x},x,\bar{x} [\bar{u},\bar{u},u]\) \(\bar{x},x,\bar{x} [\bar{u},\bar{u},\bar{u}]\)

3 d 222.. 1/2,0,0 [0,0,0] 0,1/2,0 [0,0,0] 0,0,1/2 [0,0,0]

3 c 222.. 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0]

1 b 23. 1/2,1/2,1/2 [0,0,0]

1 a 23. 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p2m1'm'
\(a^* = a\) \(b^* = b\)
Origin at 0,0,z

Along [1,1,1] p3
\(a^* = (2a - b - c)/3\) \(b^* = (-a + 2b - c)/3\)
Origin at x,x,x

Along [1,1,0] p1m1'
\(a^* = (-a + b)/2\) \(b^* = c\)
Origin at x,x,0
Origin at 231'

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1; \quad 0 \leq z \leq 1/2; \quad y \leq 1-x; \quad z \leq \min (x,y)\]

Vertices

\[0,0,0 \quad 1,0,0 \quad 0,1,0 \quad 1/2,1/2,1/2\]

Symmetry Operations

For 1 + set

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad (1,0,0) \\
(5) & \quad 3^+ x,x,x \\
& \quad (3_{xyz}|0,0,0) \\
(9) & \quad 3^- x,x,x \\
& \quad (3_{xyz}^{-1}|0,0,0) \\
(2) & \quad 2,0,0 \\
(2) & \quad (2,0,0,0) \\
(6) & \quad 3^+ x,x,x \\
& \quad (3_{xyz}^{-1}|0,0,0) \\
(10) & \quad 3^+ x,x,x \\
& \quad (3_{xyz}|0,0,0) \\
(3) & \quad 0,y,0 \\
(3) & \quad (2,0,0,0) \\
(7) & \quad 3^+ x,x,x \\
& \quad (3_{xyz}^{-1}|0,0,0) \\
(11) & \quad 3^- x,x,x \\
& \quad (3_{xyz}|0,0,0) \\
(4) & \quad 2,x,0 \\
(4) & \quad (2,0,0,0) \\
(8) & \quad 3^- x,x,x \\
& \quad (3_{xyz}^{-1}|0,0,0) \\
(12) & \quad 3^+ x,x,x \\
& \quad (3_{xyz}|0,0,0)
\end{align*}
\]
For 1' + set

(1) 1' (1 [0,0,0])
(2) 2' 0,0,z
 (2 [0,0,0])
(3) 2' 0,y,0
 (2 [0,0,0])
(4) 2' x,0,0
 (2 [0,0,0])

(5) 3' x,x,x
 (3 [0,0,0])
(6) 3' x,x,x
 (3 [0,0,0])
(7) 3' x,x,x
 (3 [0,0,0])
(8) 3' x,x,x
 (3 [0,0,0])

(9) 3' x,x,x
 (3 [0,0,0])
(10) 3' x,x,x
 (3 [0,0,0])
(11) 3' x,x,x
 (3 [0,0,0])
(12) 3' x,x,x
 (3 [0,0,0])

Generators selected
(1): t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5): 1'.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>1 + 1' +</td>
</tr>
<tr>
<td>12 j 11'</td>
<td>1 + 1' +</td>
</tr>
<tr>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(5) x,y,z [0,0,0]</td>
<td>(6) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(9) y,z,x [0,0,0]</td>
<td>(10) y,z,x [0,0,0]</td>
</tr>
</tbody>
</table>

6 i 2..1'	x,1/2,1/2 [0,0,0]		
1/2 x,1/2 [0,0,0]	1/2 x,1/2 [0,0,0]		
1/2 1/2 x,1/2 [0,0,0]	1/2 1/2 x,1/2 [0,0,0]		
(1) x,1/2,1/2 [0,0,0]	(2) x,1/2,1/2 [0,0,0]	(3) x,1/2,1/2 [0,0,0]	(4) x,1/2,1/2 [0,0,0]

6 h 2..1'	x,1/2,0 [0,0,0]		
0,1/2 x,1/2 [0,0,0]	0,1/2 x,1/2 [0,0,0]		
1/2 0,1/2 [0,0,0]	1/2 0,1/2 [0,0,0]		
(1) x,1/2,0 [0,0,0]	(2) x,1/2,0 [0,0,0]	(3) x,1/2,0 [0,0,0]	(4) x,1/2,0 [0,0,0]

6 g 2..1'	x,0,1/2 [0,0,0]		
1/2 x,0,1/2 [0,0,0]	1/2 x,0,1/2 [0,0,0]		
0,1/2 x,0,1/2 [0,0,0]	0,1/2 x,0,1/2 [0,0,0]		
(1) x,0,1/2 [0,0,0]	(2) x,0,1/2 [0,0,0]	(3) x,0,1/2 [0,0,0]	(4) x,0,1/2 [0,0,0]

6 f 2..1'	x,0,0 [0,0,0]		
0,0 x,0 [0,0,0]	0,0 x,0 [0,0,0]		
0,0,0 x,0 [0,0,0]	0,0,0 x,0 [0,0,0]		
(1) x,0,0 [0,0,0]	(2) x,0,0 [0,0,0]	(3) x,0,0 [0,0,0]	(4) x,0,0 [0,0,0]

4 e .3.1'	x,x,x [0,0,0]		
x,x,x [0,0,0]	x,x,x [0,0,0]	x,x,x [0,0,0]	x,x,x [0,0,0]
(1) x,x,x [0,0,0]	(2) x,x,x [0,0,0]	(3) x,x,x [0,0,0]	(4) x,x,x [0,0,0]

3 d 222..1'	1/2,0,0 [0,0,0]		
0,1/2,0 [0,0,0]	0,1/2,0 [0,0,0]		
0,0,1/2 [0,0,0]	0,0,1/2 [0,0,0]		
(1) 1/2,0,0 [0,0,0]	(2) 1/2,0,0 [0,0,0]	(3) 1/2,0,0 [0,0,0]	(4) 1/2,0,0 [0,0,0]

3 c 222..1'	0,1/2,1/2 [0,0,0]		
1/2,0,1/2 [0,0,0]	1/2,0,1/2 [0,0,0]		
1/2,1/2,0 [0,0,0]	1/2,1/2,0 [0,0,0]		
(1) 0,1/2,1/2 [0,0,0]	(2) 0,1/2,1/2 [0,0,0]	(3) 0,1/2,1/2 [0,0,0]	(4) 0,1/2,1/2 [0,0,0]

1 b 23.1	1/2,1/2,1/2 [0,0,0]		
1/2,1/2,1/2 [0,0,0]	1/2,1/2,1/2 [0,0,0]		
1/2,1/2,1/2 [0,0,0]	1/2,1/2,1/2 [0,0,0]		
(1) 1/2,1/2,1/2 [0,0,0]	(2) 1/2,1/2,1/2 [0,0,0]	(3) 1/2,1/2,1/2 [0,0,0]	(4) 1/2,1/2,1/2 [0,0,0]

1 a 23.1	0,0,0 [0,0,0]		
0,0,0 [0,0,0]	0,0,0 [0,0,0]		
0,0,0 [0,0,0]	0,0,0 [0,0,0]		
(1) 0,0,0 [0,0,0]	(2) 0,0,0 [0,0,0]	(3) 0,0,0 [0,0,0]	(4) 0,0,0 [0,0,0]
Symmetry of Special Projections

Along [0,0,1] p2mm1'
\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]
Origin at 0,0,z

Along [1,1,1] p31'
\[\mathbf{a}^* = \frac{2\mathbf{a} - \mathbf{b} - \mathbf{c}}{3} \quad \mathbf{b}^* = \frac{-\mathbf{a} + 2\mathbf{b} - \mathbf{c}}{3} \]
Origin at x,x,x

Along [1,1,0] p1m11'
\[\mathbf{a}^* = \frac{-(\mathbf{a} + \mathbf{b})}{2} \quad \mathbf{b}^* = \mathbf{c} \]
Origin at x,x,0
Origin at 23

Asymmetric unit

0 ≤ x ≤ 1; 0 ≤ y ≤ 1; 0 ≤ z ≤ 1/2; y ≤ 1-x; z ≤ min (x,y)

Vertices
0,0,0 1,0,0 0,1,0 1/2,1/2,1/2

Symmetry Operations

For (0,0,0) + set

(1) 1 (1|0,0,0)
(2) 2 0,0,z (2z|0,0,0)
(3) 2 0,y,0 (2y|0,0,0)
(4) 2 x,0,0 (2x|0,0,0)

(5) 3’ x,x,x (3xyz|0,0,0)
(6) 3’ x,x,x (3xyz^-1|0,0,0)
(7) 3’ x,x,x (3xyz|0,0,0)
(8) 3’ x,x,x (3xyz^-1|0,0,0)

(9) 3’ x,x,x (3xyz^-1|0,0,0)
(10) 3’ x,x,x (3xyz|0,0,0)
(11) 3’ x,x,x (3xyz^-1|0,0,0)
(12) 3’ x,x,x (3xyz|0,0,0)
For \((1,0,0)' + \) set

\[
\begin{align*}
(1) \ t' (1,0,0) & \quad (2) \ 2' 1/2,0,z \\
(1'1,0,0)' & \quad (3) \ 2' 1/2,y,0 \\
(2'1,0,0)' & \quad (4) \ 2' (1,0,0) x,0,0 \\
(2'1,0,0)' & \quad (2'1,0,0)' \\
(5) \ 3' (1/3,1/3,1/3) & \quad (6) \ 3' (1/3,-1/3,1/3) \\
x+2/3,x+1/3,x & \quad (7) \ 3' (1/3,-1/3,-1/3) \\
(3_{xyz}|1,0,0)' & \quad (3_{xyz}-1|1,0,0)' \\
(5) \ 3' (1/3,1/3,1/3) & \quad (9) \ 3' (1/3,1/3,1/3) \\
x+1/3,x+1/3,x & \quad (12) \ 3' (1/3,1/3,1/3) \\
(3_{xyz}-1|1,0,0)' & \quad (3_{xyz}|1,0,0)' \\
(3_{xyz}-1|1,0,0)' & \quad (3_{xyz}|1,0,0)' \\
(3_{xyz}-1|1,0,0)' & \quad (3_{xyz}-1|1,0,0)' \\
(Generators selected) & \quad (1); t'(1,0,0); t'(0,1,0); t'(0,0,1); (2); (3); (5).
\end{align*}
\]

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>(0,0,0) + (1,0,0)' +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(x,1/2,1/2 [u,0,0])</td>
</tr>
<tr>
<td>(2) (\bar{x},\bar{y},\bar{z} [u,v,w])</td>
<td>(\bar{x},1/2,1/2 [u,0,0])</td>
</tr>
<tr>
<td>(3) (x,y,z [u,v,w])</td>
<td>(x,1/2,1/2 [u,0,0])</td>
</tr>
<tr>
<td>(4) (x,y,z [u,v,w])</td>
<td>(x,1/2,1/2 [u,0,0])</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
12 & \quad i \quad 2'. \quad x,1/2,1/2 [u,0,0] \\
& \quad 1/2 , x,1/2 [0,u,0] \\
& \quad 1/2,1/2,x [0,0,u] \\
& \quad 1/2,1/2 , x [0,0,u] \\
12 & \quad h \quad 2'. \quad x,1/2,0 [0,v,w] \\
& \quad 0,x,1/2 [0,0,v] \\
& \quad 0,1/2,x [v,w,0] \\
& \quad 1/2,0 , x [v,w,0] \\
12 & \quad g \quad 2'. \quad x,0,1/2 [0,v,w] \\
& \quad 1/2 , x,0 [w,0,v] \\
& \quad 0,1/2,x [v,w,0] \\
& \quad 0,1/2 , x [v,w,0] \\
12 & \quad f \quad 2'. \quad x,0,0 [u,0,0] \\
& \quad 0,x,0 [u,0,0] \\
& \quad 0,0,x [u,0,0] \\
& \quad 0,0 , x [u,0,0] \\
8 & \quad e \quad 3. \quad x,x,x [u,u,u] \\
& \quad x,x,x [u,u,u] \\
& \quad x,x,x [u,u,u] \\
& \quad x,x,x [u,u,u] \\
6 & \quad d \quad 22'. \quad 1/2,0,0 [u,0,0] \\
& \quad 0,1/2,0 [u,0,0] \\
& \quad 0,0,1/2 [0,u,0] \\
& \quad 0,0,1/2 [0,u,0] \\
6 & \quad c \quad 22'. \quad 0,1/2,1/2 [u,0,0] \\
& \quad 1/2,0,1/2 [0,u,0] \\
& \quad 1/2,1/2,0 [0,u,0] \\
& \quad 1/2,1/2,0 [0,u,0] \\
2 & \quad b \quad 23. \quad 1/2,1/2,1/2 [0,0,0] \\
2 & \quad a \quad 23. \quad 0,0,0 [0,0,0] \\
\end{align*}
\]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Group</th>
<th>Formulae</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p2mm1'</td>
<td>(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b})</td>
<td>0,0,z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\mathbf{a}^* = \frac{(2\mathbf{a} - \mathbf{b} - \mathbf{c})}{3}) \quad \mathbf{b}^* = \frac{(-\mathbf{a} + 2\mathbf{b} - \mathbf{c})}{3}</td>
<td>x,x,x</td>
</tr>
<tr>
<td>Along [1,1,1]</td>
<td>p31'</td>
<td>(\mathbf{a}^* = \frac{(-\mathbf{a} + \mathbf{b})}{2}) \quad \mathbf{b}^* = \mathbf{c}</td>
<td>x-1/4,x+1/4,0</td>
</tr>
<tr>
<td>Along [1,1,0]</td>
<td>p(_c).1m1</td>
<td>(\mathbf{a}^* = \frac{(-\mathbf{a} + \mathbf{b})}{2}) \quad \mathbf{b}^* = \mathbf{c}</td>
<td>x-1/4,x+1/4,0</td>
</tr>
</tbody>
</table>
Origin at 23

Asymmetric unit: $0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad -1/4 \leq z \leq 1/4; \quad y \leq x; \quad \max(x-1/2,-y) \leq z \leq \min(1/2 - x,y)$

Vertices: $0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 1/4,1/4,1/4 \quad 1/4,1/4,-1/4$

Symmetry Operations

For $(0,0,0) +$ set

1. 1
2. $2 \times 0,0,z$
 2. $2 \times 0,0,0$
3. $2 \times 0,y,0$
 2. $2 \times 0,0,0$
4. $2 \times x,0,0$
 2. $2 \times 0,0,0$
5. $3^+ x,x,x$
 $3_{xyz}^{-1} 0,0,0$
6. $3^+ x,x,x$
 $3_{xyz}^{-1} 0,0,0$
7. $3^+ x,x,x$
 $3_{xyz}^{-1} 0,0,0$
8. $3^+ x,x,x$
 $3_{xyz}^{-1} 0,0,0$
9. $3^- x,x,x$
 $3_{xyz}^{-1} 0,0,0$
10. $3^- x,x,x$
 $3_{xyz}^{-1} 0,0,0$
11. $3^- x,x,x$
 $3_{xyz}^{-1} 0,0,0$
12. $3^- x,x,x$
 $3_{xyz}^{-1} 0,0,0$
Continued

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2) (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4
 (1 0,1/2,1/2) (2z 0,1/2,1/2) (2z 0,1/2,1/2) (2z 0,1/2,1/2)

(5) 3* (1/3,1/3,1/3) x+1/3,x-1/6,x (3xyz 0,1/2,1/2)
 (6) 3* x,x+1/2,x (7) 3* -1/3,1/3,1/3 x+1/3,x-1/6,x (8) 3* x,x+1/2,x
 (3xyz -1 0,1/2,1/2) (3xyz -1 0,1/2,1/2) (3xyz -1 0,1/2,1/2)

(9) 3* (1/3,1/3,1/3) x+1/6,x+1/6,x (3xyz -1 0,1/2,1/2)
 (10) 3* -1/3,1/3,1/3 x+1/6,x+1/6,x (11) 3* x,x+1/2,x+1/2,x (12) 3* x-1/2,x+1/2,x
 (3xyz -1 0,1/2,1/2) (3xyz -1 0,1/2,1/2) (3xyz -1 0,1/2,1/2)

For (1/2,0,1/2) + set

(1) t (1/2,0,1/2) (2) 2 (0,0,1/2) 1/4,0,z (3) 2 1/4,y,1/4 (4) 2 (1/2,0,0) x,0,1/2
 (1 1/2,0,1/2) (2z 1/2,0,1/2) (2z 1/2,0,1/2) (2z 1/2,0,1/2)

(5) 3* (1/3,1/3,1/3) x+1/6,x-1/6,x (3xyz 1/2,0,1/2)
 (6) 3* x,x+1/2,x (7) 3* x+1/2,x-1/2,x (8) 3* x,x+1/2,x+1/2,x
 (3xyz -1 1/2,0,1/2) (3xyz -1 1/2,0,1/2) (3xyz -1 1/2,0,1/2)

(9) 3* (1/3,1/3,1/3) x+1/6,x+1/3,x (3xyz -1 1/2,0,1/2)
 (10) 3* x,x+1/2,x (11) 3* x,x+1/2,x (12) 3* x,x+1/2,x
 (3xyz -1 1/2,0,1/2) (3xyz -1 1/2,0,1/2) (3xyz -1 1/2,0,1/2)

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0) (2) 2 1/4,1/4,z (3) 2 (0,1/2,0) 1/4,y,0 (4) 2 (1/2,0,0) x,1/4,0
 (1 1/2,1/2,0) (2z 1/2,1/2,0) (2z 1/2,1/2,0) (2z 1/2,1/2,0)

(5) 3* (1/3,1/3,1/3) x+1/6,x+1/3,x (3xyz 1/2,1/2,0)
 (6) 3* x,x+1/2,x (7) 3* x+1/2,x,x (8) 3* x,x+1/2,x+1/2,x
 (3xyz -1 1/2,1/2,0) (3xyz -1 1/2,1/2,0) (3xyz -1 1/2,1/2,0)

(9) 3* (1/3,1/3,1/3) x+1/3,x+1/6,x (3xyz -1 1/2,1/2,0)
 (10) 3* x,x+1/2,x (11) 3* x,x+1/2,x (12) 3* x,x+1/2,x
 (3xyz -1 1/2,1/2,0) (3xyz -1 1/2,1/2,0) (3xyz -1 1/2,1/2,0)

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5).

Positions

Multiplicity, 48
Wyckoff letter, h
Site Symmetry. 1

(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0)

x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w]
(5) z,x,y [w,u,v] (6) z,x,y [w,u,v] (7) z,x,y [w,u,v] (8) z,x,y [w,u,v]
(9) y,z,x [v,w,u] (10) y,z,x [v,w,u] (11) y,z,x [v,w,u] (12) y,z,x [v,w,u]
24 g 2.. x,1/4,1/4 [u,0,0] \[\bar{x},3/4,1/4 \ [\bar{u},0,0]\] \[1/4,1/4,\bar{x} \ [0,u,0]\] \\
24 f 2.. x,0,0 [u,0,0] \[\bar{x},0,0 \ [\bar{u},0,0]\] \[0,x,0 \ [0,u,0]\] \\
16 e .3. x,x,x [u,u,u] \[x,x,x \ [\bar{u},\bar{u},\bar{u}]\] \[x,x,x \ [\bar{u},u,u]\] \[x,x,x \ [u,u,u]\] \\
4 d 23. x,0,0 [u,0,0] \[0,0,0 \ [0,u,0]\] \\
4 c 23. x,0,0 [u,0,0] \[0,0,0 \ [0,u,0]\] \\
4 b 23. x,0,0 [u,0,0] \[0,0,0 \ [0,u,0]\] \\
Symmetry of Special Projections
Along [0,0,1] p2m'
Origin at 0,0,z
\[a^* = a/2 \quad b^* = b/2\]
Along [1,1,1] p3
Origin at x,x,x
\[a^* = (2a - b - c)/6 \quad b^* = (-a + 2b - c)/6\]
Along [1,1,0] c1m'
Origin at x,x,0
\[a^* = (-a + b)/2 \quad b^* = c\]
Origin at 231’

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad -1/4 \leq z \leq 1/4; \quad y \leq x; \quad \text{max}(x-1/2,-y) \leq z \leq \min (1/2 - x,y) \]

Vertices

<table>
<thead>
<tr>
<th></th>
<th>0,0,0</th>
<th>1/2,0,0</th>
<th>1/2,1/2,0</th>
<th>1/4,1/4,1/4</th>
<th>1/4,1/4,-1/4</th>
</tr>
</thead>
</table>

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. \(1\)

2. \(2 \quad 0,0,z\)

3. \(2 \quad 0,y,0\)

4. \(2 \quad x,0,0\)

5. \(3^+ \quad x,x,x\)

6. \(3^+ \quad x,x,x\)

7. \(3^+ \quad x,x,x\)

8. \(3^+ \quad x,x,x\)

9. \(3^- \quad x,x,x\)

10. \(3^- \quad x,x,x\)

11. \(3^- \quad x,x,x\)

12. \(3^- \quad x,x,x\)
Continued

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2)
(2) 2 (0,0,1/2) 0,1/4,z
(3) 2 (0,1/2,0) 0,y,1/4
(4) 2 x,1/4,1/4

For (1/2,0,1/2) + set

(1) t (1/2,0,1/2)
(2) 2 (0,0,1/2) 1/4,0,z
(3) 2 1/4,y,1/4
(4) 2 (1/2,0,0) x,0,1/2

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(2) 2 1/4,1/4,z
(3) 2 (0,1/2,0) 1/4,y,0
(4) 2 (1/2,0,0) x,1/4,0

For (1,2,0,1/2) + set

(1) t (1/2,0,1/2)
(2) 2 (0,0,1/2) 1/4,0,z
(3) 2 1/4,y,1/4
(4) 2 (1/2,0,0) x,0,1/2

For (1,2,1/2,0) + set

(1) t (1/2,1/2,0)
(2) 2 1/4,1/4,z
(3) 2 (0,1/2,0) 1/4,y,0
(4) 2 (1/2,0,0) x,1/4,0

For (1,2,1/2,0) + set

(1) 1'
(2) 2' 0,0,z
(3) 2' 0,y,0
(4) 2' x,0,0

For (0,0,0)' + set

(1) 0,0,0)'
(2) 2' 0,0,z
(3) 2' 0,y,0
(4) 2' x,0,0

(3) xyz 0,0,0)'
(4) 3* x,x,x
(5) 3* x,x,x
(6) 3* x,x,x
(7) 3* x,x,x
(8) 3* x,x,x
(9) 3* x,x,x
(10) 3* x,x,x
(11) 3* x,x,x
(12) 3* x,x,x

196.2.1507 - 2 - 3334
Continued

For (0,1/2,1/2) + set

(1) t' (0,1/2,1/2)
 (1) [0,1/2,1/2]
(2) 2' (0,0,1/2) 0,1/4,z
(2) z,0,1/2,1/2)
(3) 2' (0,1/2,0) 0,y,1/4
(3) z,0,1/2,1/2)
(4) 2' x,1/4,1/4
(4) z,0,1/2,1/2)
(5) 3' (1/3,1/3,1/3)
 x+1/3,x+1/3,x
(3) [0,1/2,1/2)]
(6) 3' - (1/3,1/3,1/3)
 x+1/3,x+1/3,x
(3) [0,1/2,1/2)]
(7) 3' x+1/2,x+1/2,x
(3) [0,1/2,1/2)]
(8) 3' x+1/2,x+1/2,x
(3) [0,1/2,1/2)]
(9) 3' (1/3,1/3,1/3)
 x+1/6,x+1/6,x
(3) [0,1/2,1/2)]
(10) 3' (1/3,1/3,1/3)
 x+1/6,x+1/6,x
(3) [0,1/2,1/2)]
(11) 3' x+1/6,x+1/6,x
(3) [0,1/2,1/2)]
(12) 3' x+1/6,x+1/6,x
(3) [0,1/2,1/2)]

For (1/2,0,1/2) + set

(1) t' (1/2,0,1/2)
 (1) [1/2,0,1/2)
(2) 2' (0,0,1/2) 1/4,0,z
(2) z,1/2,0,1/2)
(3) 2' 1/4,y,1/4
(3) z,1/2,0,1/2)
(4) 2' (1/2,0,0) x,0,1/2
(4) z,1/2,0,1/2)
(5) 3' (1/3,1/3,1/3)
 x+1/6,x+1/6,x
(3) [1/2,0,1/2)]
(6) 3' (1/3,-1/3,1/3)
 x+1/6,x+1/6,x
(3) [1/2,0,1/2)]
(7) 3' x+1/2,x+1/2,x
(3) [1/2,0,1/2)]
(8) 3' x+1/2,x+1/2,x
(3) [1/2,0,1/2)]
(9) 3' (1/3,1/3,1/3)
 x+1/6,x+1/3,x
(3) [1/2,0,1/2)]
(10) 3' x+1/6,x+1/3,x
(3) [1/2,0,1/2)]
(11) 3' x+1/6,x+1/3,x
(3) [1/2,0,1/2)]
(12) 3' x+1/6,x+1/3,x
(3) [1/2,0,1/2)]

For (1/2,1/2,0) + set

(1) t' (1/2,1/2,0)
 (1) [1/2,1/2,0')
(2) 2' 1/4,1/4,z
(2) z,1/2,1/2,0'
(3) 2' (0,1/2,0) 1/4,y,0
(3) z,1/2,1/2,0'
(4) 2' (1/2,0,0) x,1/4,0
(4) z,1/2,1/2,0'
(5) 3' (1/3,1/3,1/3)
 x+1/6,x+1/3,x
(3) [1/2,1/2,0')
(6) 3' (1/3,-1/3,1/3)
 x+1/6,x+1/3,x
(3) [1/2,1/2,0')
(7) 3' x+1/2,x+1/2,x
(3) [1/2,1/2,0')
(8) 3' x+1/2,x+1/2,x
(3) [1/2,1/2,0')
(9) 3' (1/3,1/3,1/3)
 x+1/3,x+1/6,x
(3) [1/2,1/2,0')
(10) 3' x+1/3,x+1/6,x
(3) [1/2,1/2,0')
(11) 3' x+1/3,x+1/6,x
(3) [1/2,1/2,0')
(12) 3' x+1/3,x+1/6,x
(3) [1/2,1/2,0')

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); (2); (3); (5); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.
(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +
(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +
48 h 11'

(1) x,y,z [0,0,0]
(2) x,y,z [0,0,0]
(3) x,y,z [0,0,0]
(4) x,y,z [0,0,0]
(5) z,x,y [0,0,0]
(6) z,x,y [0,0,0]
(7) z,x,y [0,0,0]
(8) z,x,y [0,0,0]
(9) y,z,x [0,0,0]
(10) y,z,x [0,0,0]
(11) y,z,x [0,0,0]
(12) y,z,x [0,0,0]
24	g	2..1'	x,1/4,1/4 [0,0,0]	x,3/4,1/4 [0,0,0]	1/4,x,1/4 [0,0,0]
24	f	2..1'	x,0,0 [0,0,0]	x,0,0 [0,0,0]	0,x,0 [0,0,0]
16	e	.3.1'	x,x,x [0,0,0]	x,x,x [0,0,0]	x,x,x [0,0,0]
4	d	23.1'	3/4,3/4,3/4 [0,0,0]	x,x,x [0,0,0]	x,x,x [0,0,0]
4	c	23.1'	1/4,1/4,1/4 [0,0,0]	x,x,x [0,0,0]	x,x,x [0,0,0]
4	b	23.1'	1/2,1/2,1/2 [0,0,0]	x,x,x [0,0,0]	x,x,x [0,0,0]
4	a	23.1'	0,0,0 [0,0,0]	x,x,x [0,0,0]	x,x,x [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p2mm1'
- a* = a/2 b* = b/2
- Origin at 0,0,z

Along [1,1,1] p31'
- a* = (2a - b - c)/6 b* = (-a + 2b - c)/6
- Origin at x,x,x

Along [1,1,0] c1m11'
- a* = (-a + b)/2 b* = c
- Origin at x,x,0
Origin at 23

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq \min(x,1-x); \quad z \leq y \]

Vertices

\(0,0,0\) \quad 1,0,0 \quad 1/2,1/2,0 \quad 1/2,1/2,1/2

Symmetry Operations

For \((0,0,0) + \text{set}\)

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \quad 0,0,z \\
(3) & \quad 2 \quad 0,y,0 \\
(4) & \quad 2 \quad x,0,0 \\
(5) & \quad 3^+ \quad x,x,x \\
(6) & \quad 3^+ \quad x,x,x \\
(7) & \quad 3^+ \quad x,x,x \\
(8) & \quad 3^+ \quad x,x,x \\
(9) & \quad 3^- \quad x,x,x \\
(10) & \quad 3^- \quad x,x,x \\
(11) & \quad 3^- \quad x,x,x \\
(12) & \quad 3^- \quad x,x,x \\
\end{align*}
\]

\[
\begin{align*}
(1) & \quad (1|0,0,0) \\
(2) & \quad (2z|0,0,0) \\
(3) & \quad (2y|0,0,0) \\
(4) & \quad (2x|0,0,0) \\
(5) & \quad (3_{xyz}^+|0,0,0) \\
(6) & \quad (3_{xyz}^+|0,0,0) \\
(7) & \quad (3_{xyz}^+|0,0,0) \\
(8) & \quad (3_{xyz}^+|0,0,0) \\
(9) & \quad (3_{xyz}^-|0,0,0) \\
(10) & \quad (3_{xyz}^-|0,0,0) \\
(11) & \quad (3_{xyz}^-|0,0,0) \\
(12) & \quad (3_{xyz}^-|0,0,0)
\end{align*}
\]
(1) t (1/2,1/2,1/2) + set

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2) + set

(2) 2 (0,0,1/2) 1/4,1/4,z

(3) 2 (0,1/2,0) 1/4,y,1/4

(4) 2 (1/2,0,0) x,1/4,1/4

(1/2,1/2,1/2) + set

(2a) 1/2,1/2,1/2

(2b) 1/2,1/2,1/2

(3) 2 (0,0,1/2) 1/4,1/4,z

(4) 2 (0,1/2,0) 1/4,y,1/4

(5) 3' (1/2,1/2,1/2) x,x,x

(6) 3' (1/6,-1/6,1/6) x+1/3,x+1/3,x

(7) 3' (-1/6,1/6,1/6) x+2/3,x-1/3,x

(8) 3' (1/6,1/6,-1/6) x+1/3,x+2/3,x

(3xyz 1/2,1/2,1/2)

(3) 2 (0,1/2,0) 1/4,y,1/4

(4) 2 (1/2,0,0) x,1/4,1/4

(2a) 1/2,1/2,1/2

(2b) 1/2,1/2,1/2

(3) 2 (0,1/2,0) 1/4,y,1/4

(4) 2 (1/2,0,0) x,1/4,1/4

Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

24 f 1

(1) x,y,z [u,v,w]

(2) x,y,z [u,v,w]

(3) x,y,z [u,v,w]

(4) x,y,z [u,v,w]

(5) z,x,y [w,u,v]

(6) z,x,y [w,u,v]

(7) z,x,y [w,u,v]

(8) z,x,y [w,u,v]

(9) y,z,x [v,w,u]

(10) y,z,x [v,w,u]

(11) y,z,x [v,w,u]

(12) y,z,x [v,w,u]

12 e 2.. x,1/2,0 [u,0,0] x,1/2,0 [u,0,0]

0,x,1/2 [0,u,0]

0,x,1/2 [0,u,0]

1/2,0,x [0,0,u]

1/2,0,x [0,0,u]

12 d 2.. x,0,0 [u,0,0] x,0,0 [u,0,0]

0,x,0 [0,u,0]

0,x,0 [0,u,0]

0,x,0 [0,u,0]

0,x,0 [0,u,0]

0,x,0 [0,u,0]

8 c .3. x,x,x [u,u,u] x,x,x [u,u,u]

x,x,x [u,u,u]

x,x,x [u,u,u]

x,x,x [u,u,u]

6 b 222.. 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]

1/2,1/2,0 [0,0,0]

1/2,1/2,0 [0,0,0]

2 a 23. 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] c2m'm'

a* = a

b* = b

Origin at 0,0,z

Along [1,1,1] p3

a* = (2a - b - c)/3

b* = (-a + 2b - c)/3

Origin at x,x,x

Along [1,1,0] p1m'1

a* = -(a + b)/2

b* = c/2

Origin at x,x,0

197.1.1508 - 2 - 3338
Origin at 231°
Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq \min(x, 1-x); \quad z \leq y \]

Vertices

- 0,0,0
- 1,0,0
- 1/2,1/2,0
- 1/2,1/2,1/2

Symmetry Operations

For \((0,0,0) + \text{set}\n
\begin{align*}
(1) & \quad 1 \\
(1) & \quad 0,0,0 \\
(1) & \quad 0,0,0 \\
(2) & \quad 2,0,0 \\
(2) & \quad 0,0,0 \\
(3) & \quad 2,0,0 \\
(3) & \quad 0,0,0 \\
(4) & \quad 2,0,0 \\
(4) & \quad 0,0,0 \\
(5) & \quad 3^+ x,x,x \\
(5) & \quad (3_{xyz} | 0,0,0) \\
(6) & \quad 3^+ x,x,x \\
(6) & \quad (3_{xyz} | 0,0,0) \\
(7) & \quad 3^+ x,x,x \\
(7) & \quad (3_{xyz} | 0,0,0) \\
(8) & \quad 3^- x,x,x \\
(8) & \quad (3_{xyz}^{-1} | 0,0,0) \\
(9) & \quad 3^- x,x,x \\
(9) & \quad (3_{xyz}^{-1} | 0,0,0) \\
(10) & \quad 3^- x,x,x \\
(10) & \quad (3_{xyz}^{-1} | 0,0,0) \\
(11) & \quad 3^- x,x,x \\
(11) & \quad (3_{xyz}^{-1} | 0,0,0) \\
(12) & \quad 3^- x,x,x \\
(12) & \quad (3_{xyz}^{-1} | 0,0,0) \\
\end{align*}
Continued

For (1/2,1/2,1/2) + set

<table>
<thead>
<tr>
<th>(1) t (1/2,1/2,1/2)</th>
<th>(2) t (0,0,1/2)</th>
<th>(3) t (0,1/2,0)</th>
<th>(4) t (1/2,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 1/2,1/2,1/2)</td>
<td>1/4,1/4,z</td>
<td>1/4,y,1/4</td>
<td>x,1/4,1/4</td>
</tr>
<tr>
<td>2 (1/2,1/2,1/2)</td>
<td></td>
<td>(2 1/2,1/2,1/2)</td>
<td></td>
</tr>
<tr>
<td>2 (1,1/2,1/2)</td>
<td>(2 1/2,1/2,1/2)</td>
<td></td>
<td>(2 1/2,1/2,1/2)</td>
</tr>
</tbody>
</table>

(5) 3' (1/2,1/2,1/2) x,x,x

| (3xyz|1/2,1/2,1/2) |
| (3xyz|1/2,1/2,1/2) |

(9) 3' (1/2,1/2,1/2) x,x,x

For (0,0,0)' + set

<table>
<thead>
<tr>
<th>(1) 1'</th>
<th>(2) 2'</th>
<th>(3) 2'</th>
<th>(4) 2'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>0,0,0</td>
<td>0,0,0</td>
<td>0,0,0</td>
</tr>
<tr>
<td>(1 0,0,0)'</td>
<td>(2 0,0,0)'</td>
<td>(2 0,0,0)'</td>
<td>(2 0,0,0)'</td>
</tr>
</tbody>
</table>

(5) 3' x,x,x (3xyz|0,0,0)' (3xyz|0,0,0)' (3xyz|0,0,0)' (3xyz|0,0,0)'

(9) 3' x,x,x (3xyz|0,0,0)'

For (1/2,1/2,1/2)' + set

<table>
<thead>
<tr>
<th>(1) t' (1/2,1/2,1/2)</th>
<th>(2) t' (0,0,1/2)</th>
<th>(3) t' (0,1/2,0)</th>
<th>(4) t' (1/2,0,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 1/2,1/2,1/2)'</td>
<td>1/4,1/4,z</td>
<td>1/4,y,1/4</td>
<td>x,1/4,1/4</td>
</tr>
<tr>
<td>2 (1/2,1/2,1/2)'</td>
<td></td>
<td>(2 1/2,1/2,1/2)'</td>
<td></td>
</tr>
<tr>
<td>2 (1,1/2,1/2)'</td>
<td>(2 1/2,1/2,1/2)'</td>
<td></td>
<td>(2 1/2,1/2,1/2)'</td>
</tr>
</tbody>
</table>

(5) 3' x,x,x (3xyz|1/2,1/2,1/2)' (3xyz|1/2,1/2,1/2)' (3xyz|1/2,1/2,1/2)' (3xyz|1/2,1/2,1/2)'

(9) 3' x,x,x (3xyz|1/2,1/2,1/2)'

Generators selected

(1): t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 f 11'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (1/2,1/2,1/2) + (0,0,0)' + (1/2,1/2,1/2)' +</td>
</tr>
</tbody>
</table>

(1) x,y,z [0,0,0] (2) x,y,z [0,0,0] (3) x,y,z [0,0,0] (4) x,y,z [0,0,0]

(5) z,x,y [0,0,0] (6) z,x,y [0,0,0] (7) z,x,y [0,0,0] (8) z,x,y [0,0,0]

(9) y,z,x [0,0,0] (10) y,z,x [0,0,0] (11) y,z,x [0,0,0] (12) y,z,x [0,0,0]

197.2.1509 - 2 - 3340
12 e 2..1' x,1/2,0 [0,0,0] x,1/2,0 [0,0,0] 0,x,1/2 [0,0,0] 0,x,1/2 [0,0,0]
0,x,1/2 [0,0,0] 1/2,0,x [0,0,0] 1/2,0,x [0,0,0]
12 d 2..1' x,0,0 [0,0,0] x,0,0 [0,0,0] 0,x,0 [0,0,0] 0,x,0 [0,0,0]
0,x,0 [0,0,0] 0,0,x [0,0,0] 0,0,x [0,0,0]
8 c .3.1' x,x,x [0,0,0] x,x,x [0,0,0] x,x,x [0,0,0] x,x,x [0,0,0]
6 b 222..1' 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0]
2 a 23.1' 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] c2mm1'
\[a^* = a \text{ } b^* = b \]
Origin at 0,0,z

Along [1,1,1] p31'
\[a^* = (2a - b - c)/3 \text{ } b^* = (-a + 2b - c)/3 \]
Origin at x,x,x

Along [1,1,0] p1m11'
\[a^* = (-a + b)/2 \text{ } b^* = c/2 \]
Origin at x,x,0
Origin at 23

Asymmetric unit

\[
0 \leq x \leq 1; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq \min(x, 1-x); \quad z \leq y
\]

Vertices

\[
0,0,0 \quad 1,0,0 \quad 1/2,1/2,0 \quad 1/2,1/2,1/2
\]

Symmetry Operations

For \((0,0,0) + \text{set}\)

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad (0,0,0) \\
(2) & \quad 2 \quad 0,0,z \\
(2) & \quad (2,0,0,0) \\
(3) & \quad 2 \quad 0,y,0 \\
(3) & \quad (2,0,0,0) \\
(4) & \quad 2 \quad x,0,0 \\
(4) & \quad (2,0,0,0) \\
(5) & \quad 3^+ \quad x,x,x \\
(5) & \quad (3_{xyz}^+|0,0,0) \\
(6) & \quad 3^+ \quad x,x,x \\
(6) & \quad (3_{xyz}^+|0,0,0) \\
(7) & \quad 3^+ \quad x,x,\bar{x} \\
(7) & \quad (3_{xyz}^+|0,0,0) \\
(8) & \quad 3^+ \quad \bar{x},x,x \\
(8) & \quad (3_{xyz}^+|0,0,0) \\
(9) & \quad 3^- \quad x,x,x \\
(9) & \quad (3_{xyz}^-|0,0,0) \\
(10) & \quad 3^- \quad x,x,x \\
(10) & \quad (3_{xyz}^-|0,0,0) \\
(11) & \quad 3^- \quad \bar{x},x,\bar{x} \\
(11) & \quad (3_{xyz}^-|0,0,0) \\
(12) & \quad 3^- \quad \bar{x},x,x \\
(12) & \quad (3_{xyz}^-|0,0,0)
\end{align*}
\]
Continued

For \((1/2,1/2,1/2)'\) + set

(1) \(t' (1/2,1/2,1/2)\)
(2) \(2' (0,0,1/2)\)
(3) \(2' (0,1/2,0)\)
(4) \(2' (1/2,0,0)\)
(1/2,1/2,1/2)'

(5) \(3' '(1/2,1/2,1/2)\)
(6) \(3' '(1/6,-1/6,1/6)\)
(7) \(3' '(-1/6,1/6,1/6)\)
(8) \(3' '(1/6,1/6,-1/6)\)

(9) \(3' '(1/2,1/2,1/2)\)
(10) \(3' '(-1/6,1/6,1/6)\)
(11) \(3' '(1/6,1/6,-1/6)\)
(12) \(3' '(1/6,-1/6,1/6)\)

Generators selected (1); \(t(1,0,0)\); \(t(0,1,0)\); \(t(0,0,1)\); \(t'(1/2,1/2,1/2)\); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

24 f 1

\((0,0,0) + (1/2,1/2,1/2)' +\)

\(1) x,y,z [u,v,w]\)
\(2) \bar{x} ,\bar{y} ,z [\bar{u} ,\bar{v} ,\bar{w}]\)
\(3) \bar{x} ,y,z [\bar{u} ,v,w]\)
\(4) x,y,\bar{z} [u,v,\bar{w}]\)

\(5) z,x,y [w,u,v]\)
\(6) \bar{z} ,\bar{x} ,y [\bar{w} ,\bar{u} ,\bar{v}]\)
\(7) \bar{z} ,x,y [\bar{w} ,u,v]\)
\(8) \bar{z} ,x,\bar{y} [\bar{w} ,u,\bar{v}]\)

\(9) y,z,x [v,w,u]\)
\(10) \bar{y} ,z,x [\bar{v} ,\bar{w} ,\bar{u}]\)
\(11) \bar{y} ,\bar{z} ,x [\bar{v} ,\bar{w} ,\bar{u}]\)
\(12) y,z,\bar{x} [v,w,\bar{u}]\)

Symmetry of Special Projections

Along \([0,0,1]\) \(c_p,2m'm'\)
Along \([1,1,1]\) \(p31'\)
Along \([1,1,0]\) \(p_{2\bar{1}} ,1m'1\)

\(a^* = a\)
\(b^* = b\)
\(a^* = (2a-b-c)/3\)
\(b^* = (-a+2b-c)/3\)
\(a^* = (-a+b)/2\)
\(b^* = c/2\)

Origin at \(0,0,z\)
Origin at \(x,x,x\)
Origin at \(x,x,0\)
Origin on 3 [1,1,1] at midpoint of three non-intersecting pairs of parallel 2₁₁ axes

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; -1/2 ≤ z ≤ 1/2; max(x-1/2,-y) ≤ z ≤ min (x,y)

Vertices
0,0,0 1/2,0,0 1/2,1/2,0 0,1/2,0 1/2,1/2,1/2 0,1/2,-1/2

Symmetry Operations

(1) 1
(1) 0,0,0

(5) 3⁺ x,x,x
(3_xyz | 0,0,0)

(9) 3⁻ x,x,x
(3_xyz⁻¹ | 0,0,0)

(2) 2 (0,0,1/2) 1/4,0,z
(2_x | 1/2,0,1/2)

(6) 3⁺ x+1/2,x,x⁻
(3_xyz⁻¹ | 1/2,1/2,0)

(10) 3⁻ (-1/3,1/3,1/3)
x+1/6,x+1/6,x
(3_xyz | 0,1/2,1/2)

(3) 2 (0,1/2,0) 0,y,1/4
(2_y | 0,1/2,1/2)

(7) 3⁺ x+1/2,x⁻,-1/2,x⁻
(3_xyz⁻¹ | 1/2,0,1/2)

(11) 3⁻ (1/3,1/3,-1/3)
x+1/3,x+1/6,x
(3_xyz⁻¹ | 1/2,1/2,0)

(4) 2 (1/2,0,0) x,1/4,0
(1/2,1/2,0)

(8) 3⁺ x,x+1/2,x
(3_xyz⁻¹ | 0,1/2,1/2)

(12) 3⁻ (1/3,-1/3,1/3)
x-1/6,x+1/3,x
(3_xyz | 1/2,0,1/2)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 b 1</td>
<td></td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(5) z,x,y [w,u,v]</td>
<td>(6) z+1/2,x+1/2,y [w,u,v]</td>
</tr>
<tr>
<td>(9) y,z,x [v,w,u]</td>
<td>(10) y+1/2,z,z+1/2 [v,w,u]</td>
</tr>
<tr>
<td>4 a .3. x,x,x [u,u,u]</td>
<td>x+1/2,x,x+1/2 [u,u,u]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p2g'g' Along [1,1,1] p3 Along [1,1,0] p1g'1
a* = a b* = b a* = (2a - b - c)/3 b* = (-a + 2b - c)/3 a* = (-a + b)/2 b* = c
Origin at 1/4,0,z Origin at x,x,x Origin at x+1/4,x,0
Origin on \(31' [1,1,1]\) at midpoint of three non-intersecting pairs of parallel \(2_1\) axes

Asymmetric unit: \(0 \leq x \leq 1/2;\) \(0 \leq y \leq 1/2;\) \(-1/2 \leq z \leq 1/2;\) \(\max(x-1/2,-y) \leq z \leq \min(x,y)\)

Vertices:
- \(0,0,0\)
- \(1/2,0,0\)
- \(1/2,1/2,0\)
- \(1/2,1/2,1/2\)
- \(0,1/2,-1/2\)

Symmetry Operations

For \(1 + \) set

1. \(1\) (1) \(1\) (0,0,0)
 (1) \(1\) (0,0,0)

2. \(2\) \((0,0,1/2)\) \(1/4,0,z\)
 \((2)\) \(1/2,0,1/2\)

3. \(2\) \((0,1/2,0)\) \(0,y,1/4\)
 \((2)\) \(0,1/2,1/2\)

4. \(2\) \((1/2,0,0)\) \(x,1/4,0\)
 \((2)\) \(1/2,1/2,0\)

5. \(3^+\) \(x,x,x\)
 \((3_{xyz}^{-1}|0,0,0)\)

6. \(3^+\) \(
 \frac{x+1/2,x}{(3_{xyz}^{-1}|2,1/2,0)}\)

7. \(3^+\) \(
 \frac{x+1/2,x-1/2}{(3_{xyz}^{-1}|2,0,1/2)}\)

8. \(3^+\) \(
 \frac{x,x+1/2,x}{(3_{xyz}^{-1}|0,1/2,1/2)}\)

9. \(3^-\) \(x,x,x\)
 \((3_{xyz}^{-1}|0,0,0)\)

10. \(3^-\) \(
 \frac{(-1/3,1/3,1/3)}{x+1/6,x+1/6,x}
 \(3_{xyz}^{-1}|0,1/2,1/2)\)

11. \(3^-\) \(
 \frac{1/3,1/3,-1/3}{x+1/3,x+1/6,x}
 \(3_{xyz}^{-1}|1/2,1/2,0)\)

12. \(3^-\) \(
 \frac{1/3,-1/3,1/3}{x-1/6,x+1/3,x}
 \(3_{xyz}^{-1}|1/2,0,1/2)\)
For 1' + set

(1) 1' (1 | 0, 0, 0)

(2) 2' (0, 0, 1/2) 1/4, 0, z

(3) 2' (0, 1/2, 0) 0, y, 1/4

(4) 2' (1/2, 0, 0) x, 1/4, 0

(5) 3' x, x, x

(6) 3' x + 1/2, x, x

(7) 3' x + 1/2, x - 1/2, x

(8) 3' x, x + 1/2, x

(9) 3' x, x, x

(10) 3' x, y + 1/2, z + 1/2, x + 1/6, x + 1/6, x

(11) 3' x, y + 1/2, z + 1/2, x + 1/3, x + 1/3

(12) 3' x, y + 1/2, z + 1/2, x + 1/3, x + 1/3

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

12 b 11'

(1) x, y, z [0, 0, 0]

(2) x + 1/2, y, z + 1/2 [0, 0, 0]

(3) x, y + 1/2, z + 1/2 [0, 0, 0]

(4) x + 1/2, y + 1/2, z [0, 0, 0]

(5) z, x, y [0, 0, 0]

(6) z + 1/2, x + 1/2, y [0, 0, 0]

(7) z + 1/2, x, y + 1/2 [0, 0, 0]

(8) z, x + 1/2, y + 1/2 [0, 0, 0]

(9) y, z, x [0, 0, 0]

(10) y, z + 1/2, x + 1/2 [0, 0, 0]

(11) y + 1/2, z + 1/2, x [0, 0, 0]

(12) y + 1/2, z, x + 1/2 [0, 0, 0]

4 a .3.1' x, x, x [0, 0, 0] x + 1/2, x, x + 1/2 [0, 0, 0] x + 1/2, x + 1/2, x [0, 0, 0]

Symmetry of Special Projections

Along [0, 0, 1] p2gg1' Along [1, 1, 1] p31' Along [1, 1, 0] p1g11'

a* = a b* = b a* = (2a - b - c)/3 b* = (-a + 2b - c)/3 a* = (-a + b)/2 b* = c

Origin at 1/4, 0, z Origin at x, x, x Origin at x + 1/4, x, 0
Origin on 3 [1,1,1] at midpoint of three non-intersecting pairs of parallel 2 axes and of three non-intersecting pairs of parallel 2\textsubscript{1} axes

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad z \leq \min(x,y)\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 1/2,1/2,0 & \quad 0,1/2,0 & \quad 1/2,1/2,1/2
\end{align*}
\]

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{align*}
(1) & \quad 1 \quad (2) & \quad 2 (0,0,1/2) & \quad 1/4,0,z & \quad (3) & \quad 2 (0,1/2,0) & \quad 0,y,1/4 & \quad (4) & \quad 2 (1/2,0,0) & \quad x,1/4,0 \\
& \quad (1|0,0,0) & \quad (2_2|1/2,0,1/2) & \quad (2_3|0,1/2,1/2) & \quad (2_4|1/2,1/2,0)
\end{align*}
\]

\[
\begin{align*}
(5) & \quad 3^+ x,x,x & \quad (6) & \quad 3^+ \bar{x}+1/2,x,\bar{x} & \quad (7) & \quad 3^+ x+1/2,\bar{x}-1/2,\bar{x} & \quad (8) & \quad 3^+ \bar{x},x+1/2,x & \quad (3_{xyz}^{-1}|0,1/2,1/2)
\end{align*}
\]

\[
\begin{align*}
& \quad (3_{xyz}|0,0,0) & \quad (3_{xyz}^{-1}|1/2,1/2,0) & \quad (3_{xyz}^{-1}|1/2,0,1/2) & \quad (3_{xyz}^{-1}|0,1/2,1/2)
\end{align*}
\]

\[
\begin{align*}
(9) & \quad 3^- x,x,x & \quad (10) & \quad 3^- (-1/3,1/3,1/3) & \quad x+1/6, x+1/6, x & \quad (11) & \quad 3^- (1/3,1/3,-1/3) & \quad x+1/3, x+1/6, x & \quad (12) & \quad 3^- (1/3,-1/3,1/3) & \quad x-1/6, x+1/3, x & \quad (3_{xyz}^{-1}|1/2,1/2,0) & \quad (3_{xyz}^{-1}|2,0,1/2)
\end{align*}
\]

\[
\begin{align*}
& \quad (3_{xyz}^{-1}|0,0,0) & \quad (3_{xyz}^{-1}|0,1/2,1/2) & \quad (3_{xyz}^{-1}|2,0,1/2)
\end{align*}
\]
For \((1/2,1/2,1/2)\) + set

\[(1) t(1/2,1/2,1/2)\]
\[(2) 2 \ 0,1/4,z\]
\[(3) 2 \ 1/4,y,0\]
\[(4) 2 \ x,0,1/4\]
\[(1) 1/2,1/2,1/2\]
\[(2) 0,1/2,0\]
\[(2) 1/2,0,0\]
\[(2) 0,0,1/2\]

\[(5) 3^* (1/2,1/2,1/2) \ x,x,x\]
\[(6) 3^* (1/6,-1/6,1/6) \ x-1/6,x+1/3,x\]
\[(7) 3^* (-1/6,1/6,1/6) \ x+1/6,x+1/3,x\]
\[(8) 3^* (1/6,1/6,-1/6) \ x+1/3,x+1/6,x\]

\[(3_{xyz}) 1/2,1/2,1/2\]
\[(3_{xyz}) 0,0,1/2\]
\[(3_{xyz}) 1/2,0,0\]
\[(3_{xyz}) 0,1/2,0\]

\[(5) z,x,y \ [w,u,v]\]
\[(6) z+1/2,x+1/2,y \ [w,u,v]\]
\[(7) x+1/2,z+1/2,y \ [w,u,v]\]
\[(8) z+1/2,x+1/2,w \ [u,v,w]\]

\[(9) y,z,x \ [v,w,u]\]
\[(10) y,z+1/2,x+1/2 \ [v,w,u]\]
\[(11) x+1/2,y+1/2,z+1/2 \ [v,w,u]\]
\[(12) y+1/2,z+1/2,x+1/2 \ [v,w,u]\]

Generators selected \(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

24 c 1

\[(1) \ x,y,z \ [u,v,w] \quad (2) \ x+1/2,y,z+1/2 \ [\bar{u},\bar{v},\bar{w}] \quad (3) \ x,y+1/2,z+1/2 \ [\bar{u},\bar{v},\bar{w}] \quad (4) \ x+1/2,y+1/2,z \ [u,v,w]\]

\[(5) \ z,x,y \ [w,u,v] \quad (6) \ z+1/2,x+1/2,y \ [w,u,v] \quad (7) \ z+1/2,x,y+1/2 \ [w,u,v] \quad (8) \ z,x+1/2,y+1/2 \ [w,u,v]\]

\[(9) \ y,z,x \ [v,w,u] \quad (10) \ y,z+1/2,x+1/2 \ [v,w,u] \quad (11) \ y+1/2,z+1/2,x \ [v,w,u] \quad (12) \ y+1/2,z,x+1/2 \ [v,w,u]\]

Symmetry of Special Projections

Along \([0,0,1]\) \(c2m'm'\)

\(a^* = a \quad b^* = b\)

Origin at \(1/4,0,z\)

Along \([1,1,1]\) \(p3\)

\(a^* = (2a - b - c)/3 \quad b^* = (-a + 2b - c)/3\)

Origin at \(x,x,x\)

Along \([1,1,0]\) \(p1m'1\)

\(a^* = (-a + b)/2 \quad b^* = c/2\)

Origin at \(x,x+1/4,0\)
Origin on 31' [1,1,1] at midpoint of three non-intersecting pairs of parallel 2; axes and of three non-intersecting pairs of parallel 2; axes.

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; z ≤ min (x,y)

Vertices 0,0,0 1/2,0,0 1/2,1/2,0 0,1/2,0 1/2,1/2,1/2

Symmetry Operations
For (0,0,0) + set

1
(1 | 0,0,0)

2 (0,0,1/2) 1/4,0,z
(2 | 1/2,0,1/2)

2 (0,1/2,0) 0,y,1/4
(2 | 0,1/2,1/2)

2 (1/2,0,0) x,1/4,0
(2 | 1/2,1/2,0)

(3xyz | 0,0,0)

(3xyz | 1/2,1/2,0)

(7) 3+ x+1/2,x-1/2,x
(3xyz⁻¹ | 1/2,0,1/2)

(8) 3+ x,x+1/2,x
(3xyz⁻¹ | 0,1/2,1/2)

(3xyz | 0,1/2,1/2)

(3xyz | 1/2,1/2,0)

(3xyz | 0,1/2,1/2)

3- x,x,x
(3xyz | 0,0,0)

3+ 3,-x+1/3,-1/3
(3xyz⁻¹ | 1/3,1/3,-1/3)

3+ 3,-x+1/3,-1/3
(3xyz⁻¹ | 1/3,1/3,-1/3)

3+ 3,-x+1/3,-1/3
(3xyz⁻¹ | 1/3,1/3,-1/3)
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>(0,0,0) +</th>
<th>(1/2,1/2,1/2) +</th>
<th>(0,0,0)</th>
<th>(1/2,1/2,1/2)' +</th>
</tr>
</thead>
</table>

24 c 11'

(1) x,y,z [0,0,0] (2) x+1/2,y,z+1/2 [0,0,0] (3) x,y+1/2,z+1/2 [0,0,0] (4) x+1/2,y+1/2,z [0,0,0]
(5) z,x,y [0,0,0] (6) z+1/2,x,y+1/2 [0,0,0] (7) z+1/2,x,y+1/2 [0,0,0] (8) z,x+1/2,y+1/2 [0,0,0]
(9) y,z,x [0,0,0] (10) y,z+1/2,x+1/2 [0,0,0] (11) y+1/2,z+1/2,x [0,0,0] (12) y+1/2,z,x+1/2 [0,0,0]
Symmetry of Special Projections

Along [0,0,1] c2mm1'
\[a^* = a \quad b^* = b \]
Origin at 1/4,0,z

Along [1,1,1] p31'
\[a^* = (2a - b - c)/3 \quad b^* = (-a + 2b - c)/3 \]
Origin at x,x,x

Along [1,1,0] p1m11'
\[a^* = (-a + b)/2 \quad b^* = c/2 \]
Origin at x,x+1/4,0

12 b 2..1' x,0,1/4 [0,0,0] \(x + 1/2,0,3/4 [0,0,0] \) 1/4,x,0 [0,0,0]
\(3/4,x + 1/2,0 [0,0,0] \) 0,1/4,x [0,0,0] \(0,3/4,x + 1/2 [0,0,0] \)

8 a .3.1' x,x,x [0,0,0] \(x + 1/2,x + 1/2 [0,0,0] \) \(x,x + 1/2,x + 1/2 \) \(x + 1/2,x x + 1/2,x [0,0,0] \)

Along [0,0,1] c2mm1'
Along [1,1,1] p31'
Along [1,1,0] p1m11'

\(a^* = a \quad b^* = b \)
\(a^* = (2a - b - c)/3 \quad b^* = (-a + 2b - c)/3 \)
\(a^* = (-a + b)/2 \quad b^* = c/2 \)
Origin on 3 [1,1,1] at midpoint of three non-intersecting pairs of parallel 2 axes and of three non-intersecting pairs of parallel 21 axes

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad z \leq \min(x,y) \]

Vertices

\[(0,0,0) \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 0,1/2,0 \quad 1/2,1/2,1/2 \]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad 0,0,0 \\
(2) & \quad 2 (0,0,1/2) \quad 1/4,0,z \\
(2) & \quad (2_z) \quad 1/2,0,1/2 \\
(3) & \quad 2 (0,1/2,0) \quad 0,y,1/4 \\
(3) & \quad (2_y) \quad 0,1/2,1/2 \\
(4) & \quad 2 (1/2,0,0) \quad x,1/4,0 \\
(4) & \quad (2_x) \quad 1/2,1/2,0 \\
(5) & \quad 3^+ \quad x,x,x \\
(5) & \quad (3_{xyz}) \quad 0,0,0 \\
(6) & \quad 3^+ \quad x+1/2, 0, z \\
(6) & \quad (3_{xyz})^{-1} \quad 1/2,1/2,0 \\
(7) & \quad 3^+ \quad x+1/2, x-1/2, x \\
(7) & \quad (3_{xyz})^{-1} \quad 1/2,0,1/2 \\
(8) & \quad 3^+ \quad x, x+1/2, x \\
(8) & \quad (3_{xyz})^{-1} \quad 0,1/2,1/2 \\
(9) & \quad 3^- \quad x,x,x \\
(9) & \quad (3_{xyz})^{-1} \quad 0,0,0 \\
(10) & \quad 3^- \quad -1/3,1/3,1/3 \\
(10) & \quad x+1/6, x+1/6, x \\
& \quad (3_{xyz}) \quad 0,1/2,1/2 \\
(11) & \quad 3^- \quad 1/3,1/3,-1/3 \\
(11) & \quad x+1/3, x+1/6, x \\
& \quad (3_{xyz}) \quad 1/2,1/2,0 \\
(12) & \quad 3^- \quad 1/3,-1/3,1/3 \\
(12) & \quad x-1/6, x+1/3, x \\
& \quad (3_{xyz}) \quad 1/2,0,1/2 \\
\end{align*}
\]
Continued

For \((1/2,1/2,1/2)'\) + set

(1) \(t' (1/2,1/2,1/2)
(1 \| 1/2,1/2,1/2)'

(2) \(2' 0,1/4,z
(2_z|0,1/2,0)'

(3) \(2' 1/4,y,0
(2_y|1/2,0,0)'

(4) \(2' x,0,1/4
(2_x|0,0,1/2)'

(5) \(3+ ' (1/2,1/2,1/2) x,x,x
(5 \| 1/2,1/2,1/2)'

(6) \(3+ ' (1/6,-1/6,1/6)
(3_yz|1/2,1/2,1/2)'

(7) \(3+ ' (1/6,1/6,-1/6)
(3_xz|1/2,1/2,1/2)'

(9) \(3- ' (1/2,1/2,1/2) x,x,x
(9 \| 1/2,1/2,1/2)'

Generators selected

(1); \(t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>c 1</td>
<td></td>
</tr>
</tbody>
</table>

(1) \(x,y,z [u,v,w]

(2) \(\bar{x}+1/2,\bar{y},z+1/2 [u,\bar{v},w]

(3) \(x,y+1/2,\bar{z}+1/2 [u,v,\bar{w}]

(4) \(x+1/2,\bar{y}+1/2,\bar{z} [u,\bar{v},\bar{w}]

(5) \(z,x,y [w,u,v]

(6) \(z+1/2,\bar{x}+1/2,\bar{y} [w,u,\bar{v}]

(7) \(\bar{z}+1/2,\bar{x},y+1/2 [\bar{w},u,v]

(8) \(\bar{z},x+1/2,\bar{y}+1/2 [w,u,\bar{v}]

(9) \(y,z,x [v,w,u]

(10) \(\bar{y},z+1/2,\bar{x}+1/2 [\bar{v},w,u]

(11) \(y+1/2,\bar{z}+1/2,\bar{x} [v,w,u]

(12) \(y+1/2,\bar{z},x+1/2 [\bar{v},w,u]

Symmetry of Special Projections

Along \([0,0,1]\) \(c_{p}2\text{mm}\) Along \([1,1,1]\) \(p31'\) Along \([1,1,0]\) \(p_{2b}.1\text{m}1\)

\(a^{*} = a\) \(b^{*} = b\) \(a^{*} = (2a - b - c)/3\) \(b^{*} = (-a + 2b - c)/3\) \(a^{*} = (-a + b)/2\) \(b^{*} = c/2\)

Origin at \(1/4,0,z\) Origin at \(x,x,x\) Origin at \(x,x+1/4,0\)
Origin at center \((m\bar{3})\)

Asymmetric unit:

\[
0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad z \leq \min (x,y)
\]

Vertices:

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 1/2,1/2,0 & \quad 0,1/2,0 & \quad 1/2,1/2,1/2
\end{align*}
\]

Symmetry Operations:

1. \(1\)
 - \((1 \mid 0,0,0)\)

2. \(2\)
 - \((0,0,z)\)
 - \((0,0,0)\)

3. \(2\)
 - \((0,y,0)\)
 - \((0,0,0)\)

4. \(2\)
 - \((x,0,0)\)
 - \((0,0,0)\)

5. \(3^{+}\)
 - \((x,x,x)\)
 - \((0,0,0)\)

6. \(3^{+}\)
 - \((x,x,x)\)
 - \((0,0,0)\)

7. \(3^{+}\)
 - \((x,x,x)\)
 - \((0,0,0)\)

8. \(3^{+}\)
 - \((x,x,x)\)
 - \((0,0,0)\)

9. \(3^{-}\)
 - \((x,x,x)\)
 - \((0,0,0)\)

10. \(3^{-}\)
 - \((x,x,x)\)
 - \((0,0,0)\)

11. \(3^{-}\)
 - \((x,x,x)\)
 - \((0,0,0)\)

12. \(3^{-}\)
 - \((x,x,x)\)
 - \((0,0,0)\)

Continued
<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
<th>Coordinates</th>
<th>Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x,y,z ([u,v,w])</td>
<td>x,y,z</td>
<td>$1,0,0$</td>
</tr>
<tr>
<td>2</td>
<td>x,x,x ([u,u,u])</td>
<td>x,x,x</td>
<td>$1,0,0$</td>
</tr>
<tr>
<td>3</td>
<td>x,y,z ([u,v,w])</td>
<td>x,y,z</td>
<td>$1,0,0$</td>
</tr>
<tr>
<td>4</td>
<td>x,y,z ([u,v,w])</td>
<td>x,y,z</td>
<td>$1,0,0$</td>
</tr>
<tr>
<td>5</td>
<td>z,x,y ([w,u,v])</td>
<td>z,x,y</td>
<td>$1,0,0$</td>
</tr>
<tr>
<td>6</td>
<td>z,x,y ([w,u,v])</td>
<td>z,x,y</td>
<td>$1,0,0$</td>
</tr>
<tr>
<td>7</td>
<td>z,x,y ([w,u,v])</td>
<td>z,x,y</td>
<td>$1,0,0$</td>
</tr>
<tr>
<td>8</td>
<td>z,x,y ([w,u,v])</td>
<td>z,x,y</td>
<td>$1,0,0$</td>
</tr>
<tr>
<td>9</td>
<td>y,z,x ([v,w,u])</td>
<td>y,z,x</td>
<td>$1,0,0$</td>
</tr>
<tr>
<td>10</td>
<td>y,z,x ([v,w,u])</td>
<td>y,z,x</td>
<td>$1,0,0$</td>
</tr>
<tr>
<td>11</td>
<td>y,z,x ([v,w,u])</td>
<td>y,z,x</td>
<td>$1,0,0$</td>
</tr>
<tr>
<td>12</td>
<td>y,z,x ([v,w,u])</td>
<td>y,z,x</td>
<td>$1,0,0$</td>
</tr>
</tbody>
</table>

Continued
6	g	mm2..	x,1/2,0 [0,0,0]	x,1/2,0 [0,0,0]	0,x,1/2 [0,0,0]
			0,x,1/2 [0,0,0]	1/2,0,x [0,0,0]	1/2,0,x [0,0,0]
6	f	mm2..	x,0,1/2 [0,0,0]	x,0,1/2 [0,0,0]	1/2,x,0 [0,0,0]
			1/2,x,0 [0,0,0]	0,1/2,x [0,0,0]	0,1/2,x [0,0,0]
6	e	mm2..	x,0,0 [0,0,0]	x,0,0 [0,0,0]	0,x,0 [0,0,0]
			0,x,0 [0,0,0]	0,0,x [0,0,0]	0,0,x [0,0,0]
3	d	mmm..	1/2,0,0 [0,0,0]	0,1/2,0 [0,0,0]	0,0,1/2 [0,0,0]
3	c	mmm..	0,1/2,1/2 [0,0,0]	1/2,0,1/2 [0,0,0]	1/2,1/2,0 [0,0,0]
1	b	m\bar{3}.	1/2,1/2,1/2 [0,0,0]		
1	a	m\bar{3}.	0,0,0 [0,0,0]		

Symmetry of Special Projections

Along [0,0,1] p2mm1'

\[\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \]

Origin at 0,0,z

Along [1,1,1] p6'

\[\mathbf{a}^* = (2\mathbf{a} - \mathbf{b} - \mathbf{c})/3 \quad \mathbf{b}^* = (-\mathbf{a} + 2\mathbf{b} - \mathbf{c})/3 \]

Origin at x,x,x

Along [1,1,0] p2'\text{mm}'

\[\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = (-\mathbf{a} + \mathbf{b})/2 \]

Origin at x,x,0
Origin at center (m$\overline{3}$1')

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad z \leq \min (x,y)$

Vertices

0,0,0 1/2,0,0 1/2,1/2,0 0,1/2,0 1/2,1/2,1/2

Symmetry Operations

For $1^+ + set$

(1) 1
(1 | 0,0,0)

(2) $2 \ 0,0,z$
($2_z | 0,0,0$)

(3) $2 \ 0,y,0$
($2_y | 0,0,0$)

(4) $2 \ x,0,0$
($2_x | 0,0,0$)

(5) $3^+ x,x,x$
($3_{xyz} | 0,0,0$)

(6) $3^+ x,x,x$
($3_{xyz}^{-1} | 0,0,0$)

(7) $3^+ x,x,x$
($3_{xyz} | 0,0,0$)

(8) $3^+ x,x,x$
($3_{xyz}^{-1} | 0,0,0$)

(9) $3^+ x,x,x$
($3_{xyz}^{-1} | 0,0,0$)

(10) $3^+ x,x,x$
($3_{xyz} | 0,0,0$)

(11) $3^+ x,x,x$
($3_{xyz} | 0,0,0$)

(12) $3^+ x,x,x$
($3_{xyz}^{-1} | 0,0,0$)

Continued

200.2.1517

Pm$\overline{3}$1'
For 1' + set

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>1 + 1' +</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x, y, z [0, 0, 0]</td>
</tr>
<tr>
<td>2</td>
<td>x', y', z' [0, 0, 0]</td>
</tr>
<tr>
<td>3</td>
<td>x, y, z' [0, 0, 0]</td>
</tr>
<tr>
<td>4</td>
<td>x, y, z [0, 0, 0]</td>
</tr>
<tr>
<td>5</td>
<td>z, x, y [0, 0, 0]</td>
</tr>
<tr>
<td>6</td>
<td>z', x', y' [0, 0, 0]</td>
</tr>
<tr>
<td>7</td>
<td>z, x, y' [0, 0, 0]</td>
</tr>
<tr>
<td>8</td>
<td>z, x, y [0, 0, 0]</td>
</tr>
<tr>
<td>9</td>
<td>y, z, x [0, 0, 0]</td>
</tr>
<tr>
<td>10</td>
<td>y', z', x' [0, 0, 0]</td>
</tr>
<tr>
<td>11</td>
<td>y, z, x' [0, 0, 0]</td>
</tr>
<tr>
<td>12</td>
<td>y, z, x [0, 0, 0]</td>
</tr>
<tr>
<td>13</td>
<td>x, y, z [0, 0, 0]</td>
</tr>
<tr>
<td>14</td>
<td>x, y, z' [0, 0, 0]</td>
</tr>
<tr>
<td>15</td>
<td>x, y, z [0, 0, 0]</td>
</tr>
<tr>
<td>16</td>
<td>x, y, z [0, 0, 0]</td>
</tr>
<tr>
<td>17</td>
<td>z, x, y [0, 0, 0]</td>
</tr>
<tr>
<td>18</td>
<td>z', x', y' [0, 0, 0]</td>
</tr>
<tr>
<td>19</td>
<td>z, x, y [0, 0, 0]</td>
</tr>
<tr>
<td>20</td>
<td>z, x, y [0, 0, 0]</td>
</tr>
<tr>
<td>21</td>
<td>y, z, x [0, 0, 0]</td>
</tr>
<tr>
<td>22</td>
<td>y, z, x' [0, 0, 0]</td>
</tr>
<tr>
<td>23</td>
<td>y, z, x [0, 0, 0]</td>
</tr>
<tr>
<td>24</td>
<td>y, z, x [0, 0, 0]</td>
</tr>
</tbody>
</table>

Generators selected

(1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5); (13); 1'.
Symmetry of Special Projections

Along [0, 0, 1] p2mm' 1'
\(a^* = a \)
\(b^* = b \)
Origin at 0, 0, z

Along [1, 1, 1] p61'
\(a^* = (2a - b - c)/3 \)
\(b^* = (-a + 2b - c)/3 \)
Origin at x, x, x

Along [1, 1, 0] p2mm' 1'
\(a^* = (-a + b)/2 \)
\(b^* = c \)
Origin at x, x, 0

\(\text{Symmetry of Special Projections} \)

\(\text{Along [0, 0, 1]} \quad \text{p2mm' 1'} \)
\(a^* = a \quad b^* = b \)
Origin at 0, 0, z

\(\text{Along [1, 1, 1]} \quad \text{p61'} \)
\(a^* = (2a - b - c)/3 \quad b^* = (-a + 2b - c)/3 \)
Origin at x, x, x

\(\text{Along [1, 1, 0]} \quad \text{p2mm' 1'} \)
\(a^* = (-a + b)/2 \quad b^* = c \)
Origin at x, x, 0

\(\text{Cubic} \)

200.3.1517
Pm31'
Origin at center (m'3')

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad z \leq \min(x, y)\]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 0,1/2,0 \quad 1/2,1/2,1/2\]

Symmetry Operations

(1) 1
 (1 | 0,0,0)

(2) 2 0,0,z
 (2_z | 0,0,0)

(3) 2 0,y,0
 (2_y | 0,0,0)

(4) 2 x,0,0
 (2_z | 0,0,0)

(5) 3^+ x,x,x
 (3_{xyz} | 0,0,0)

(6) 3^+ \bar{x},x,\bar{x}
 (3_{xyz}^{-1} | 0,0,0)

(7) 3^+ x,x,\bar{x}
 (3_{xyz}^{-1} | 0,0,0)

(8) 3^+ \bar{x},x,\bar{x}
 (3_{xyz}^{-1} | 0,0,0)

(9) 3^- x,x,x
 (3_{xyz}^{-1} | 0,0,0)

(10) 3^- \bar{x},x,\bar{x}
 (3_{xyz} | 0,0,0)

(11) 3^- \bar{x},x,\bar{x}
 (3_{xyz} | 0,0,0)

(12) 3^- x,x,\bar{x}
 (3_{xyz} | 0,0,0)

Continued
(13) 1 0,0,0
 (1) 0,0,0)
(14) m' x,y,0
 (m, [0,0,0])
(15) m' x,0,z
 (m, [0,0,0])
(16) m' 0,0,z
 (m, [0,0,0])

(17) y' x' x' x, x; 0,0,0
 (x, y, x; 0,0,0)
(18) 3' x' x' x; 0,0,0
 (3' x, y, x; 0,0,0)
(19) 3' x' x, x; 0,0,0
 (3' x, y, x; 0,0,0)
(20) 3' x' x, x; 0,0,0
 (3' x, y, x; 0,0,0)

(21) 3' x' x, x; 0,0,0
 (3' x, y, x; 0,0,0)
(22) 3' x' x, x; 0,0,0
 (3' x, y, x; 0,0,0)
(23) 3' x' x, x; 0,0,0
 (3' x, y, x; 0,0,0)
(24) 3' x' x, x; 0,0,0
 (3' x, y, x; 0,0,0)

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

24 l 1

(1) x,y,z [u,v,w]
(2) x,y,z [u,v,w]
(3) x,y,z [u,v,w]
(4) x,y,z [u,v,w]
(5) z,x,y [w,u,v]
(6) z,x,y [w,u,v]
(7) z,x,y [w,u,v]
(8) z,x,y [w,u,v]
(9) y,z,x [v,w,u]
(10) y,z,x [v,w,u]
(11) y,z,x [v,w,u]
(12) y,z,x [v,w,u]
(13) x,y,z [u,v,w]
(14) x,y,z [u,v,w]
(15) x,y,z [u,v,w]
(16) x,y,z [u,v,w]
(17) x,y,z [u,v,w]
(18) x,y,z [u,v,w]
(19) x,y,z [u,v,w]
(20) x,y,z [u,v,w]
(21) x,y,z [v,w,u]
(22) y,z,x [v,w,u]
(23) y,z,x [v,w,u]
(24) y,z,x [v,w,u]

12 k m'.. 1/2,y,z [0,v,w]
 1/2,y,z [0,v,w]
 1/2,y,z [0,v,w]
 1/2,y,z [0,v,w]
 z,1/2,y [w,0,v]
 z,1/2,y [w,0,v]
 z,1/2,y [w,0,v]
 z,1/2,y [w,0,v]
 y,z,1/2 [v,w,0]
 y,z,1/2 [v,w,0]
 y,z,1/2 [v,w,0]
 y,z,1/2 [v,w,0]

12 j m'.. 0,y,z [0,v,w]
 0,y,z [0,v,w]
 0,y,z [0,v,w]
 0,y,z [0,v,w]
 z,0,y [w,0,v]
 z,0,y [w,0,v]
 z,0,y [w,0,v]
 z,0,y [w,0,v]
 y,z,0 [v,w,0]
 y,z,0 [v,w,0]
 y,z,0 [v,w,0]
 y,z,0 [v,w,0]

8 i .3. x,x,x [u,u,u]
 x,x,x [u,u,u]
 x,x,x [u,u,u]
 x,x,x [u,u,u]
 x,x,x [u,u,u]
 x,x,x [u,u,u]
 x,x,x [u,u,u]

6 h m'm'2.. x,1/2,1/2 [u,0,0]
 x,1/2,1/2 [u,0,0]
 x,1/2,1/2 [u,0,0]
 x,1/2,1/2 [u,0,0]
 x,1/2,1/2 [u,0,0]
 x,1/2,1/2 [u,0,0]
 x,1/2,1/2 [u,0,0]

Continued 200.3.1518 Pm'3'

200.3.1518 - 3 - 3362
6 g m'm'2. x,1/2,0 [u,0,0] $\bar{x},1/2,0$ [u,0,0] 0,x,1/2 [u,0,0]
 0,x,1/2 [u,0,0] 1/2,0,x [0,0,u] 1/2,0,x [0,0,u]
6 f m'm'2. x,0,1/2 [u,0,0] $\bar{x},0,1/2$ [u,0,0] 1/2,x,0 [u,0,0]
 1/2,x,0 [u,0,0] 0,1/2,x [0,0,u] 0,1/2,x [0,0,u]
6 e m'm'2. x,0,0 [u,0,0] $x,0,0$ [u,0,0] 0,x,0 [u,0,0]
 0,x,0 [u,0,0] 0,0,x [0,0,u] 0,0,x [0,0,u]
3 d m'm'm'.. 1/2,0,0 [0,0,0] 0,1/2,0 [0,0,0] 0,0,1/2 [0,0,0]
3 c m'm'm'.. 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0]
1 b m'3. 1/2,1/2,1/2 [0,0,0]
1 a m'3. 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p2m1m'
$\mathbf{a}^{*} = \mathbf{a} \quad \mathbf{b}^{*} = \mathbf{b}$
Origin at 0,0,z

Along [1,1,1] p6
$\mathbf{a}^{*} = (2\mathbf{a} - \mathbf{b} - \mathbf{c})/3 \quad \mathbf{b}^{*} = (-\mathbf{a} + 2\mathbf{b} - \mathbf{c})/3$
Origin at x,x,x

Along [1,1,0] p2m1m'
$\mathbf{a}^{*} = (\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^{*} = \mathbf{c}$
Origin at x,x,0
Origin at center (m\(\overline{3}\))

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad z \leq \text{min}(x, y)\]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 0,1/2,0 \quad 1/2,1/2,1/2\]

Symmetry Operations

For \((0,0,0)\) + set

\begin{align*}
(1) & \quad 1 \\
(2) & \quad 3^{+} x,x,x \\
(3) & \quad 3^{+} x,x,x \\
(4) & \quad 3^{+} x,x,x \\
(5) & \quad 3^{+} x,x,x \quad (3_{xyz}|0,0,0) \\
(6) & \quad 3^{+} x,x,x \quad (3_{xyz}|0,0,0) \\
(7) & \quad 3^{+} x,x,x \quad (3_{xyz}|0,0,0) \\
(8) & \quad 3^{+} x,x,x \quad (3_{xyz}|0,0,0) \\
(9) & \quad 3^{+} x,x,x \quad (3_{xyz}|0,0,0) \\
(10) & \quad 3^{+} x,x,x \quad (3_{xyz}|0,0,0) \\
(11) & \quad 3^{+} x,x,x \quad (3_{xyz}|0,0,0) \\
(12) & \quad 3^{+} x,x,x \quad (3_{xyz}|0,0,0) \\
(13) & \quad 1 \quad 0,0,0 \\
(14) & \quad m \quad x,y,0 \\
(15) & \quad m \quad x,0,z \\
(16) & \quad m \quad 0,y,z \\
(17) & \quad x,x,x; 0,0,0 \\
(18) & \quad 3^{+} x,x,x; 0,0,0 \\
(19) & \quad 3^{+} x,x,x; 0,0,0 \\
(20) & \quad 3^{+} x,x,x; 0,0,0 \\
(21) & \quad 3^{+} x,x,x; 0,0,0 \\
(22) & \quad 3^{+} x,x,x; 0,0,0 \\
(23) & \quad 3^{+} x,x,x; 0,0,0 \\
(24) & \quad 3^{+} x,x,x; 0,0,0
\end{align*}

For \((1,0,0)\)' + set

\begin{align*}
(1) & \quad t'(1,0,0) \\
(2) & \quad 2' 1/2,0,z \\
(3) & \quad 2' 1/2,0,z \\
(4) & \quad 2' -1/2,1/2 \\
(5) & \quad x+2/3, x-1/2, 1/3 \\
(6) & \quad (3_{xyz}|1,0,0) \\
(7) & \quad (3_{xyz}|1,0,0) \\
(8) & \quad (3_{xyz}|1,0,0) \\
(9) & \quad x+1/3, x+1/3, x \\
(10) & \quad (3_{xyz}|1,0,0) \\
(11) & \quad (3_{xyz}|1,0,0) \\
(12) & \quad (3_{xyz}|1,0,0) \\
(13) & \quad 1\overline{1} 2/0,0 \\
(14) & \quad a'(1,0,0) \\
(15) & \quad a'(1,0,0) \\
(16) & \quad m' 1/2, y,z \\
(17) & \quad x+1, x+1, x \\
(18) & \quad (3_{xyz}|1,0,0) \\
(19) & \quad (3_{xyz}|1,0,0) \\
(20) & \quad (3_{xyz}|1,0,0) \\
(21) & \quad x+1, x+1, x \\
(22) & \quad (3_{xyz}|1,0,0) \\
(23) & \quad (3_{xyz}|1,0,0) \\
(24) & \quad (3_{xyz}|1,0,0)
\end{align*}
Generators selected

(1); t'(1,0,0); t'(0,1,0); t'(0,0,1); (2); (3); (5); (13).

<table>
<thead>
<tr>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
</tr>
<tr>
<td>48 l 1</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) z,x,y [w,u,v]</td>
</tr>
<tr>
<td>(9) y,z,x [v,w,u]</td>
</tr>
<tr>
<td>(13) x, ̅y, ̅z [u,v,w]</td>
</tr>
<tr>
<td>(17) ̅z,x, ̅y [w,u,v]</td>
</tr>
<tr>
<td>(21) ̅y,z,x [v,w,u]</td>
</tr>
</tbody>
</table>

24 k m'..	1/2,y,z [0,v,w]	1/2,y, ̅z [0, ̅v,w]	1/2,y, ̅z [0, ̅v,w]
24 j m..	0,y,z [u,0,0]	0,y, ̅z [u,0,0]	0,y, ̅z [u,0,0]
16 i .3:	x,x,x [u,u,u]	x, ̅x,x [u, ̅u,u]	x, ̅x,x [u, ̅u,u]
12 h m'm2..	x,1/2,1/2 [u,0,0]	x,1/2,1/2 [u,0,0]	1/2,x,1/2 [0,u,0]
12 g m'm2'..	x,1/2,0 [0,0,w]	x, ̅1/2,0 [0, ̅0,w]	0,x,1/2 [w,0,0]
12 f mm'2'..	x,0,1/2 [0,v,0]	x,0, ̅1/2 [0, ̅v,0]	1/2,x,0 [0,0,v]
12 e mm2..	x,0,0 [0,0,0]	x,0, ̅0 [0, ̅0,0]	0,x,0 [0,0,0]

200.4.1519 - 3 - 3366
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Projection</th>
<th>Symmetry</th>
<th>0,0,0 [0,0,0]</th>
<th>1/2,1,2 [0,0,0]</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p2mm1'</td>
<td>a* = a, b* = b</td>
<td>a* = (2a - b - c)/3</td>
<td>Origin at 0,0,z</td>
</tr>
<tr>
<td>Along [1,1,1]</td>
<td>p61'</td>
<td>a* = (2a - b - c)/3, b* = (-a + 2b - c)/3</td>
<td>Origin at x,x,x</td>
<td></td>
</tr>
<tr>
<td>Along [1,1,0]</td>
<td>p122</td>
<td>a* = (a - b + c)/3, b* = c</td>
<td>Origin at x-1/4,x+1/4,0</td>
<td></td>
</tr>
</tbody>
</table>

Continued

6 d m'mm.. 1/2,0,0 [0,0,0] 0,1/2,0 [0,0,0] 0,0,1/2 [0,0,0]
6 c mmm.. 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0]
2 b m'3: 1/2,1/2,1/2 [0,0,0]
2 a m'3': 0,0,0 [0,0,0]
Pn$\bar{3}$

201.1.1520

\bar{m}3

P2/n3

Cubic

Origin at 23, at $-1/4,-1/4,-1/4$ from center (3)

Asymmetric unit

$0 \leq x \leq 1$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1/2$; $y \leq \min (x,1-x)$; $z \leq y$

Vertices

$0,0,0$ $1,0,0$ $1/2,1/2,0$ $1/2,1/2,1/2$

Symmetry Operations

(1) 1
(2) $0,0,z$ $(2_z|0,0,0)$
(3) $0,y,0$ $(2_y|0,0,0)$
(4) $x,0,0$ $(2_x|0,0,0)$
(5) $3^+ x,x,x$ $(3_{xyz}|0,0,0)$
(6) $3^- x,x,x$ $(3_{xyz}^{-1}|0,0,0)$
(7) $3^+ x,x,x$ $(3_{xyz}|0,0,0)$
(8) $3^- x,x,x$ $(3_{xyz}^{-1}|0,0,0)$
(9) $3^+ x,x,x$ $(3_{xyz}|0,0,0)$
(10) $3^- x,x,x$ $(3_{xyz}^{-1}|0,0,0)$
(11) $3^+ x,x,x$ $(3_{xyz}|0,0,0)$
(12) $3^- x,x,x$ $(3_{xyz}^{-1}|0,0,0)$
Continued

(13) $\overline{1} 1/4,1/4,1/4$
(14) $n (1/2,1/2,0)$ $x,y,1/4$
(15) $n (1/2,0,1/2)$ $x,1/4,z$
(16) $n (0,1/2,1/2)$ $1/4,y,z$

(17) $3^+ x,x,x$
(18) $3^+ x+1/4,1/4,1/4$
(19) $3^+ x+1/4,1/4,3/4$
(20) $3^+ x+1,1,1$

(21) $3^+ x,x,x$
(22) $3^+ x+1,1,1$
(23) $3^+ x,x+1,1$
(24) $3^+ x+1,x,x$

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

24 h 1

(1) $x,y,z [u,v,w]$
(2) $x,y,z [u,v,w]$
(3) $x,y,z [u,v,w]$
(4) $x,y,z [u,v,w]$
(5) $z,x,y [w,u,v]$
(6) $z,x,y [w,u,v]$
(7) $z,x,y [w,u,v]$
(8) $z,x,y [w,u,v]$
(9) $y,z,x [v,w,u]$
(10) $y,z,x [v,w,u]$
(11) $y,z,x [v,w,u]$
(12) $y,z,x [v,w,u]$

(13) $x+1/2,y+1/2,z+1/2 [u,v,w]$
(14) $x+1/2,y+1/2,z+1/2 [u,v,w]$
(15) $x+1/2,y+1/2,z+1/2 [u,v,w]$
(16) $x+1/2,y+1/2,z+1/2 [u,v,w]$
(17) $x+1/2,x+1/2,y+1/2 [w,u,v]$
(18) $x+1/2,x+1/2,y+1/2 [w,u,v]$
(19) $x+1/2,x+1/2,y+1/2 [w,u,v]$
(20) $x+1/2,x+1/2,y+1/2 [w,u,v]$
(21) $y+1/2,z+1/2,x+1/2 [v,w,u]$
(22) $y+1/2,z+1/2,x+1/2 [v,w,u]$
(23) $y+1/2,z+1/2,x+1/2 [v,w,u]$
(24) $y+1/2,z+1/2,x+1/2 [v,w,u]$

201.1.1520 - 2 - 3369
Continued

6	d	222.	0,1/2,1/2 [0,0,0]	1/2,0,1/2 [0,0,0]	1/2,1/2,0 [0,0,0]	
			1/2,0,0 [0,0,0]	0,1/2,0 [0,0,0]	0,0,1/2 [0,0,0]	
4	c	$\overline{3}$.	3/4,3/4,3/4 [u,u,u]	1/4,1/4,3/4 [u,u,u]	1/4,3/4,1/4 [u,u,u]	3/4,1/4,1/4 [u,u,u]
4	b	$\overline{3}$.	1/4,1/4,1/4 [u,u,u]	3/4,3/4,1/4 [u,u,u]	3/4,1/4,3/4 [u,u,u]	1/4,3/4,3/4 [u,u,u]
2	a	23.	0,0,0 [0,0,0]	1/2,1/2,1/2 [0,0,0]		

Symmetry of Special Projections

Along $[0,0,1]$ \(c_{2} \) 2m'm'
\(a^{*} = a \) \(b^{*} = b \)
Origin at 0,0,z

Along $[1,1,1]$ \(p6' \)
\(a^{*} = (2a - b - c)/3 \) \(b^{*} = (a + 2b - c)/3 \)
Origin at x,x,x

Along $[1,1,0]$ \(p2'm'm' \)
\(a^{*} = c \) \(b^{*} = (-a + b)/2 \)
Origin at x,x,1/4

201.1.1520 - 3 - 3370
Origin at 231', at -1/4,-1/4,-1/4 from center (31')

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq \min (x,1-x); \quad z \leq y \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1,0,0 & \quad 1/2,1/2,0 & \quad 1/2,1/2,1/2
\end{align*}
\]

Symmetry Operations

For 1 + set

\[
\begin{align*}
(1) & & (2) & & (3) & & (4) \\
1 & & 2 & & 0,0,z & & 0 \quad 0,0,0 & & 2_x \quad 0,0,0 & & 2 \quad x,0,0 & & 2 \quad x,0,0,0 \\
(1 | 0,0,0) & & (2_z | 0,0,0) & & (2_y | 0,0,0) & & (2_z | 0,0,0) \\
(5) & & (6) & & (7) & & (8) \\
3^+ & & 3^+ & & 3^+ & & 3^+
\quad x,x,x & \quad x,x,x & \quad x,x,x & \quad x,x,x
\quad (3_{xyz} | 0,0,0) & \quad (3_{xyz}^{-1} | 0,0,0) & \quad (3_{xyz} | 0,0,0) & \quad (3_{xyz}^{-1} | 0,0,0) \\
(9) & & (10) & & (11) & & (12) \\
3^+ & & 3^+ & & 3^+ & & 3^+
\quad x,x,x & \quad x,x,x & \quad x,x,x & \quad x,x,x
\quad (3_{xyz}^{-1} | 0,0,0) & \quad (3_{xyz} | 0,0,0) & \quad (3_{xyz}^{-1} | 0,0,0) & \quad (3_{xyz} | 0,0,0)
\end{align*}
\]

201.2.1521 - 1 - 3371
(13) $\overline{1}$ 1/4,1/4,1/4
(1 | 1/2,1/2,1/2)

(14) n (1/2,1/2,0) x,y,1/4
(m' | 1/2,1/2,1/2)

(15) n (1/2,0,1/2) x,1/4,z
(m' | 1/2,1/2,1/2)

(16) n (0,1/2,1/2) 1/4,y,z
(m' | 1/2,1/2,1/2)

(17) $\overline{3}'$ x,x,x;
1/4,1/4,1/4
($\overline{3}_{xyz}$ | 1/2,1/2,1/2)

(18) $\overline{3}'$ x-1,x+1,x;
-1/4,1/4,3/4
($\overline{3}_{xyz}$ | 1/2,1/2,1/2)

(19) $\overline{3}'$ x,x+1,x;
1/4,3/4,-1/4
($\overline{3}_{xyz}$ | 1/2,1/2,1/2)

(20) $\overline{3}'$ x+1,x,x;
3/4,-1/4,1/4
($\overline{3}_{xyz}$ | 1/2,1/2,1/2)

(21) $\overline{3}'$ x,x,x;
1/4,1/4,1/4
($\overline{3}_{xyz}$ | 1/2,1/2,1/2)

(22) $\overline{3}'$ x+1,x-1,x;
1/4,-1/4,3/4
($\overline{3}_{xyz}$ | 1/2,1/2,1/2)

(23) $\overline{3}'$ x,x+1,x;
-1/4,3/4,1/4
($\overline{3}_{xyz}$ | 1/2,1/2,1/2)

(24) $\overline{3}'$ x+1,x,x;
3/4,1/4,-1/4
($\overline{3}_{xyz}$ | 1/2,1/2,1/2)

For 1' + set

(1) 1'
(1 | 0,0,0)'

(2) 2' 0,0,z
(2z | 0,0,0)'

(3) 2' y,0
(2y | 0,0,0)'

(4) 2' x,0,0
(2x | 0,0,0)'

(5) $\overline{3}'$ x,x,x
($\overline{3}_{xyz}$ | 0,0,0)'

(6) $\overline{3}'$ x,x,x
($\overline{3}_{xyz}$ | 0,0,0)'

(7) $\overline{3}'$ x,x,x
($\overline{3}_{xyz}$ | 0,0,0)'

(8) $\overline{3}'$ x,x,x
($\overline{3}_{xyz}$ | 0,0,0)'

(9) $\overline{3}'$ x,x,x
($\overline{3}_{xyz}$ | 0,0,0)'

(10) $\overline{3}'$ x,x,x
($\overline{3}_{xyz}$ | 0,0,0)'

(11) $\overline{3}'$ x,x,x
($\overline{3}_{xyz}$ | 0,0,0)'

(12) $\overline{3}'$ x,x,x
($\overline{3}_{xyz}$ | 0,0,0)'

(13) $\overline{1}'$ 1/4,1/4,1/4
($\overline{1}$ | 1/2,1/2,1/2)'

(14) n' (1/2,1/2,0) x,y,1/4
(m' | 1/2,1/2,1/2)'

(15) n' (1/2,0,1/2) x,1/4,z
(m' | 1/2,1/2,1/2)'

(16) n' (0,1/2,1/2) 1/4,y,z
(m' | 1/2,1/2,1/2)'

(17) $\overline{3}'$ x,x,x;
1/4,1/4,1/4
($\overline{3}_{xyz}$ | 1/2,1/2,1/2)'

(18) $\overline{3}'$ x,x,x;
1/4,1/4,1/4
($\overline{3}_{xyz}$ | 1/2,1/2,1/2)'

(19) $\overline{3}'$ x,x,x;
1/4,1/4,1/4
($\overline{3}_{xyz}$ | 1/2,1/2,1/2)'

(20) $\overline{3}'$ x,x,x;
1/4,1/4,1/4
($\overline{3}_{xyz}$ | 1/2,1/2,1/2)'

(21) $\overline{3}'$ x,x,x;
1/4,1/4,1/4
($\overline{3}_{xyz}$ | 1/2,1/2,1/2)'

(22) $\overline{3}'$ x,x,x;
1/4,1/4,1/4
($\overline{3}_{xyz}$ | 1/2,1/2,1/2)'

(23) $\overline{3}'$ x,x,x;
1/4,1/4,1/4
($\overline{3}_{xyz}$ | 1/2,1/2,1/2)'

(24) $\overline{3}'$ x,x,x;
1/4,1/4,1/4
($\overline{3}_{xyz}$ | 1/2,1/2,1/2)'

Generators selected
(1): t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

24 h 11'

(1) x,y,z [0,0,0]
(2) x,y,z [0,0,0]
(3) x,y,z [0,0,0]
(4) x,y,z [0,0,0]

(5) z,x,y [0,0,0]
(6) z,x,y [0,0,0]
(7) z,x,y [0,0,0]
(8) z,x,y [0,0,0]

(9) y,z,x [0,0,0]
(10) y,z,x [0,0,0]
(11) y,z,x [0,0,0]
(12) y,z,x [0,0,0]

(13) x+1/2,y+1/2,z+1/2 [0,0,0]
(14) x+1/2,y+1/2,z+1/2 [0,0,0]
(15) x+1/2,y+1/2,z+1/2 [0,0,0]
(16) x+1/2,y+1/2,z+1/2 [0,0,0]

(17) z+1/2,x+1/2,y+1/2 [0,0,0]
(18) z+1/2,x+1/2,y+1/2 [0,0,0]
(19) z+1/2,x+1/2,y+1/2 [0,0,0]
(20) z+1/2,x+1/2,y+1/2 [0,0,0]

(21) y+1/2,z+1/2,x+1/2 [0,0,0]
(22) y+1/2,z+1/2,x+1/2 [0,0,0]
(23) y+1/2,z+1/2,x+1/2 [0,0,0]
(24) y+1/2,z+1/2,x+1/2 [0,0,0]
<table>
<thead>
<tr>
<th>12</th>
<th>g</th>
<th>2\cdot1'</th>
<th>x,1/2,0 [0,0,0]</th>
<th>$\overline{x},1/2,0 [0,0,0]$</th>
<th>0,x,1/2 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,x,1/2 [0,0,0]</td>
<td>$1/2,0,x [0,0,0]$</td>
<td>$1/2,0,\overline{x} [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$x+1/2,0,1/2$ [0,0,0]</td>
<td>$x+1/2,0,1/2$ [0,0,0]</td>
<td>$1/2,x+1/2,0$ [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$1/2,x+1/2,0$ [0,0,0]</td>
<td>$0,1/2,\overline{x}+1/2$ [0,0,0]</td>
<td>$0,1/2,x+1/2$ [0,0,0]</td>
</tr>
<tr>
<td>12</td>
<td>f</td>
<td>2\cdot1'</td>
<td>x,0,0 [0,0,0]</td>
<td>$\overline{x},0,0 [0,0,0]$</td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,\overline{x},0 [0,0,0]</td>
<td>0,0,x [0,0,0]</td>
<td>0,0,\overline{x} [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$x+1/2,1/2,1/2$ [0,0,0]</td>
<td>$x+1/2,1/2,1/2$ [0,0,0]</td>
<td>$1/2,x+1/2,1/2$ [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$1/2,x+1/2,1/2$ [0,0,0]</td>
<td>$1/2,1/2,\overline{x}+1/2$ [0,0,0]</td>
<td>$1/2,1/2,x+1/2$ [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>e</td>
<td>.3.1'</td>
<td>x,x,x [0,0,0]</td>
<td>$\overline{x},\overline{x},\overline{x}$ [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,\overline{x} [0,0,0]</td>
<td>$x,\overline{x},\overline{x}$ [0,0,0]</td>
<td>$\overline{x},\overline{x},x$ [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$x+1/2,\overline{x}+1/2,\overline{x}+1/2$ [0,0,0]</td>
<td>$x+1/2,\overline{x}+1/2,\overline{x}+1/2$ [0,0,0]</td>
<td>$1/2,\overline{x}+1/2,\overline{x}+1/2$ [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$x+1/2,\overline{x}+1/2,\overline{x}+1/2$ [0,0,0]</td>
<td>$\overline{x}+1/2,\overline{x}+1/2,\overline{x}+1/2$ [0,0,0]</td>
<td>$\overline{x}+1/2,\overline{x}+1/2,\overline{x}+1/2$ [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>d</td>
<td>222..1'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>$1/2,0,1/2$ [0,0,0]</td>
<td>$1/2,1/2,0$ [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$1/2,0,0$ [0,0,0]</td>
<td>$1/2,0,0$ [0,0,0]</td>
<td>$0,1/2,0$ [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>.\overline{3}.1'</td>
<td>3/4,3/4,3/4 [0,0,0]</td>
<td>1/4,1/4,3/4 [0,0,0]</td>
<td>3/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/4,1/4,3/4 [0,0,0]</td>
<td>1/4,3/4,1/4 [0,0,0]</td>
<td>3/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>.\overline{3}.1'</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,1/4 [0,0,0]</td>
<td>1/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4,3/4,1/4 [0,0,0]</td>
<td>3/4,1/4,3/4 [0,0,0]</td>
<td>1/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>23.1'</td>
<td>0,0,0 [0,0,0]</td>
<td>$1/2,1/2,1/2$ [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1] c2mm1'**
 - $a^* = a$
 - $b^* = b$

- **Along [1,1,1] p61'**
 - $a^* = (2a - b - c)/3$
 - $b^* = -(a + 2b - c)/3$

- **Along [1,1,0] p2mm1'**
 - $a^* = (a + b)/2$
 - $b^* = c$

Origin

- Origin at 0,0,0 for $c2mm1'$
- Origin at x,x,x for $p61'$
- Origin at x,x,1/4 for $p2mm1'$
Origin at 23, at -1/4,-1/4,-1/4 from center (3'')

Asymmetric unit

0 ≤ x ≤ 1; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ min (x,1-x); z ≤ y

Vertices 0,0,0 1,0,0 1/2,1/2,0 1/2,1/2,1/2

Symmetry Operations

(1) 1
 (1|0,0,0)

(2) 2 0,0,z
 (2z|0,0,0)

(3) 2 0,y,0
 (2y|0,0,0)

(4) 2 x,0,0
 (2z|0,0,0)

(5) 3' x,x,x
 (3xyz|0,0,0)

(6) 3' x,x,x
 (3xyz|0,0,0)

(7) 3' x, x, x
 (3xyz|0,0,0)

(8) 3' x,x,x
 (3xyz|0,0,0)

(9) 3' x,x,x
 (3xyz'1|0,0,0)

(10) 3' x,x,x
 (3xyz'1|0,0,0)

(11) 3' x,x,x
 (3xyz|0,0,0)

(12) 3' x,x,x
 (3xyz|0,0,0)
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

24 h 1

(1) x,y,z [u,v,w] (2) x, y, z [u, v, w] (3) x, y, z [u, v, w] (4) x, y, z [u, v, w]

(5) z,x,y [w,u,v] (6) z, x, y [w, u, v] (7) z, x, y [w, u, v] (8) z, x, y [w, u, v]

(9) y,z,x [v,w,u] (10) y, z, x [v, w, u] (11) y, z, x [v, w, u] (12) y, z, x [v, w, u]

(13) x+1/2, y+1/2, z+1/2 [u, v, w] (14) x+1/2, y+1/2, z+1/2 [u, v, w] (15) x+1/2, y+1/2, z+1/2 [u, v, w] (16) x+1/2, y+1/2, z+1/2 [u, v, w]

(17) z+1/2, y+1/2, x+1/2 [w, u, v] (18) z+1/2, y+1/2, x+1/2 [w, u, v] (19) z+1/2, y+1/2, x+1/2 [w, u, v] (20) z+1/2, x+1/2, y+1/2 [w, u, v]

(21) y+1/2, z+1/2, x+1/2 [v, w, u] (22) y+1/2, z+1/2, x+1/2 [v, w, u] (23) y+1/2, z+1/2, x+1/2 [v, w, u] (24) y+1/2, z+1/2, x+1/2 [v, w, u]

12 g 2.. x,1/2,0 [u,0,0] x,1/2,0 [u,0,0] 0,x,1/2 [0,u,0]

0,x,1/2 [0,u,0] 1/2,0,x [0,0,u] 1/2,0,x [0,0,u]

x+1/2,0,1/2 [u,0,0] x+1/2,0,1/2 [u,0,0] 1/2,x+1/2,0 [0,u,0]

1/2,x+1/2,0 [0,u,0] 0,1/2,x+1/2 [0,0,u] 0,1/2,x+1/2 [0,0,u]

12 f 2.. x,0,0 [u,0,0] x,0,0 [u,0,0] 0,x,0 [0,u,0]

0,x,0 [0,u,0] 0,x,0 [0,u,0] 0,0,x [0,0,u]

x+1/2,1/2,1/2 [u,0,0] x+1/2,1/2,1/2 [u,0,0] 1/2,x+1/2,1/2 [0,u,0]

1/2,x+1/2,1/2 [0,u,0] 1/2,1/2,x+1/2 [0,0,u] 1/2,1/2,x+1/2 [0,0,u]

8 e .3. x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u]

x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u]
<table>
<thead>
<tr>
<th>6</th>
<th>d</th>
<th>222..</th>
<th>0,1/2, 1/2 [0,0,0]</th>
<th>1/2,0, 1/2 [0,0,0]</th>
<th>1/2,1/2,0 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>.3'</td>
<td>3/4,3/4,3/4 [0,0,0]</td>
<td>1/4,1/4,3/4 [0,0,0]</td>
<td>1/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>3/4,1/4,1/4 [0,0,0]</td>
<td>3/4,1/4,3/4 [0,0,0]</td>
<td>1/4,3/4,3/4 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>.3'</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,1/4 [0,0,0]</td>
<td>3/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>3/4,1/4,3/4 [0,0,0]</td>
<td>1/4,3/4,3/4 [0,0,0]</td>
<td>1/4,3/4,3/4 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>23.</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** c2m'm'
 - \(a^* = a \) \(b^* = b \)
 - Origin at 0,0,z

- **Along [1,1,1]** p6
 - \(a^* = (2a - b - c)/3 \) \(b^* = (-a + 2b - c)/3 \)
 - Origin at x,x,x

- **Along [1,1,0]** p2m'm'
 - \(a^* = (-a + b)/2 \) \(b^* = c \)
 - Origin at x,x,1/4
Origin at 23, at -1/4,-1/4,-1/4 from center (3)

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq \min(x,1-x); \quad z \leq y \]

Vertices

\(0,0,0 \quad 1,0,0 \quad 1/2,1/2,0 \quad 1/2,1/2,1/2 \)

Symmetry Operations

For \((0,0,0)\) + set

(1) \(1 \)
(2) \(2 \quad 0,0,z \)
(3) \(2 \quad y,0 \)
(4) \(2 \quad x,0,0 \)
(5) \(3^+ \quad x,x,x \)
(6) \(3^+ \quad x,x,x \)
(7) \(3^+ \quad x,x,x \)
(8) \(3^+ \quad x,x,x \)
(9) \(3^- \quad x,x,x \)
(10) \(3^- \quad x,x,x \)
(11) \(3^- \quad x,x,x \)
(12) \(3^- \quad x,x,x \)
(13) \(\overline{1} \quad 1/4,1/4,1/4 \)
(14) \(n \quad 1/2,1/2,0 \quad x,y,1/4 \)
(15) \(n \quad 1/2,0,1/2 \quad x,1/4,z \)
(16) \(n \quad 0,1/2,1/2 \quad 1/4,y,z \)
(17) \(\overline{3}^+ \quad x,x,x; \)
(18) \(\overline{3}^+ \quad x,x,x; \)
(19) \(\overline{3}^+ \quad x,x,x; \)
(20) \(\overline{3}^+ \quad x,x,x; \)
(21) \(\overline{3}^- \quad x,x,x; \)
(22) \(\overline{3}^- \quad x,x,x; \)
(23) \(\overline{3}^- \quad x,x,x; \)
(24) \(\overline{3}^- \quad x,x,x; \)

For \((1,0,0)\) + set

(1) \(t' \quad (1,0,0) \)
(2) \(2' \quad 1/2,0,z \)
(3) \(2' \quad 1/2,0,0 \)
(4) \(2' \quad 1,0,0 \)
(5) \(3'^+ \quad (1/3,1/3,1/3) \)
(6) \(3'^+ \quad (1/3,1/3,1/3) \)
(7) \(3'^+ \quad (1/3,1/3,1/3) \)
(8) \(3'^+ \quad (1/3,1/3,1/3) \)
(9) \(3'^- \quad (1/3,1/3,1/3) \)
(10) \(3'^- \quad (1/3,1/3,1/3) \)
(11) \(3'^- \quad (1/3,1/3,1/3) \)
(12) \(3'^- \quad (1/3,1/3,1/3) \)
(13) \(\overline{1} \quad 3/4,1/4,1/4 \)
(14) \(n' \quad 3/2,1/2,0 \quad x,y,1/4 \)
(15) \(n' \quad 3/2,0,1/2 \quad x,1/4,z \)
(16) \(n' \quad 0,1/2,1/2 \quad 3/4,y,z \)
(17) \(\overline{3}^+ \quad x,x,x; \)
(18) \(\overline{3}^+ \quad x,x,x; \)
(19) \(\overline{3}^+ \quad x,x,x; \)
(20) \(\overline{3}^+ \quad x,x,x; \)
(21) \(\overline{3}^- \quad x,x,x; \)
(22) \(\overline{3}^- \quad x,x,x; \)
(23) \(\overline{3}^- \quad x,x,x; \)
(24) \(\overline{3}^- \quad x,x,x; \)

Generators selected

(1); \(t'(1,0,0); t'(0,0,1); \) (2); (3); (5); (13).
<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) + (1,0,0)</td>
</tr>
<tr>
<td>48 h 1</td>
<td></td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) z,x,y [w,u,v]</td>
<td>(6) z,x,y [w,u,v]</td>
</tr>
<tr>
<td>(9) y,z,x [v,w,u]</td>
<td>(10) y,z,x [v,w,u]</td>
</tr>
<tr>
<td>(13) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
<td>(14) x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(17) z+1/2,x+1/2,y+1/2 [w,u,v]</td>
<td>(18) z+1/2,x+1/2,y+1/2 [w,u,v]</td>
</tr>
<tr>
<td>(21) y+1/2,z+1/2,x+1/2 [v,w,u]</td>
<td>(22) y+1/2,z+1/2,x+1/2 [v,w,u]</td>
</tr>
<tr>
<td>24 g 2'..</td>
<td>x,1/2,0 [v,w]</td>
</tr>
<tr>
<td>0,x,1/2 [w,0,v]</td>
<td>1/2,0,x [v,w,0]</td>
</tr>
<tr>
<td>x+1/2,0,1/2 [v,w]</td>
<td>x+1/2,0,1/2 [v,w]</td>
</tr>
<tr>
<td>1/2,x+1/2,0 [w,0,v]</td>
<td>0,1/2,x+1/2 [v,w,0]</td>
</tr>
<tr>
<td>24 f 2..</td>
<td>x,0,0 [u,0,0]</td>
</tr>
<tr>
<td>0,x,0 [u,0,0]</td>
<td>0,0,x [0,u,0]</td>
</tr>
<tr>
<td>x+1/2,1/2,1/2 [u,0,0]</td>
<td>x+1/2,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>1/2,x+1/2,1/2 [0,u,0]</td>
<td>1/2,1/2,x+1/2 [0,u,0]</td>
</tr>
<tr>
<td>16 e .3.</td>
<td>x,x,x [u,u,u]</td>
</tr>
<tr>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
</tr>
<tr>
<td>x+1/2,x+1/2,x+1/2 [u,u,u]</td>
<td>x+1/2,x+1/2,x+1/2 [u,u,u]</td>
</tr>
<tr>
<td>x+1/2,x+1/2,x+1/2 [u,u,u]</td>
<td>x+1/2,x+1/2,x+1/2 [u,u,u]</td>
</tr>
<tr>
<td>12 d 22'...</td>
<td>0,1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>1/2,0,0 [u,0,0]</td>
<td>1/2,0,0 [u,0,0]</td>
</tr>
<tr>
<td>0,1/2,0 [0,u,0]</td>
<td>0,1/2,0 [0,u,0]</td>
</tr>
<tr>
<td>4 c .3'.</td>
<td>3/4,3/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>3/4,3/4,1/4 [0,0,0]</td>
<td>3/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b .3.</td>
<td>1/4,1/4,1/4 [u,u,u]</td>
</tr>
<tr>
<td>3/4,3/4,1/4 [u,u,u]</td>
<td>3/4,1/4,3/4 [u,u,u]</td>
</tr>
<tr>
<td>2 a 23.</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Symmetry</th>
<th>a* = a</th>
<th>b* = b</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>c2mm1'</td>
<td></td>
<td></td>
<td>0,0,z</td>
</tr>
<tr>
<td>[1,1,1]</td>
<td>p61'</td>
<td>a* = (2a - b - c)/3</td>
<td>b* = (-a + 2b - c)/3</td>
<td>x,x,x</td>
</tr>
<tr>
<td>[1,1,0]</td>
<td>p_c2mm</td>
<td>a* = (-a + b)/2</td>
<td>b* = c</td>
<td>x-1/4,x+1/4,1/4</td>
</tr>
</tbody>
</table>

Origin at 0,0,z

Origin at x,x,x

Origin at x-1/4,x+1/4,1/4
Origin at center (m\textoverline{3})

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq x; \quad z \leq \min(1/2-x,y)\)

Vertices \(0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 1/4,1/4,1/4\)

Symmetry Operations

For \((0,0,0) + \) set

\begin{align*}
(1) & \quad 1 \\
(1) & \quad (1|0,0,0) \\
(2) & \quad 2 \quad 0,0,z \\
(2) & \quad (2_z|0,0,0) \\
(3) & \quad 2 \quad 0,y,0 \\
(3) & \quad (2_y|0,0,0) \\
(4) & \quad 2 \quad x,0,0 \\
(4) & \quad (2_x|0,0,0) \\
(5) & \quad 3^+ \quad x,x,x \\
(5) & \quad (3_{xyz}|0,0,0) \\
(6) & \quad 3^+ \quad x,x,x \\
(6) & \quad (3_{xyz}|0,0,0) \\
(7) & \quad 3^+ \quad x,x,x \\
(7) & \quad (3_{xyz}^{-1}|0,0,0) \\
(8) & \quad 3^+ \quad x,x,x \\
(8) & \quad (3_{xyz}^{-1}|0,0,0) \\
(9) & \quad 3^+ \quad x,x,x \\
(9) & \quad (3_{xyz}|0,0,0) \\
(10) & \quad 3^+ \quad x,x,x \\
(10) & \quad (3_{xyz}|0,0,0) \\
(11) & \quad 3^+ \quad x,x,x \\
(11) & \quad (3_{xyz}|0,0,0) \\
(12) & \quad 3^+ \quad x,x,x \\
(12) & \quad (3_{xyz}|0,0,0) \\
\end{align*}

Continued

\begin{align*}
(3) & \quad 2 \quad 0,0,z \\
(2) & \quad (2_z|0,0,0) \\
(3) & \quad 2 \quad 0,y,0 \\
(3) & \quad (2_y|0,0,0) \\
(4) & \quad 2 \quad x,0,0 \\
(4) & \quad (2_x|0,0,0) \\
(5) & \quad 3^+ \quad x,x,x \\
(5) & \quad (3_{xyz}|0,0,0) \\
(6) & \quad 3^+ \quad x,x,x \\
(6) & \quad (3_{xyz}^{-1}|0,0,0) \\
(7) & \quad 3^+ \quad x,x,x \\
(7) & \quad (3_{xyz}^{-1}|0,0,0) \\
(8) & \quad 3^+ \quad x,x,x \\
(8) & \quad (3_{xyz}^{-1}|0,0,0) \\
(9) & \quad 3^+ \quad x,x,x \\
(9) & \quad (3_{xyz}|0,0,0) \\
(10) & \quad 3^+ \quad x,x,x \\
(10) & \quad (3_{xyz}|0,0,0) \\
(11) & \quad 3^+ \quad x,x,x \\
(11) & \quad (3_{xyz}|0,0,0) \\
(12) & \quad 3^+ \quad x,x,x \\
(12) & \quad (3_{xyz}|0,0,0) \\
\end{align*}

\begin{align*}
(1) & \quad 1 \\
(1) & \quad (1|0,0,0) \\
(2) & \quad 2 \quad 0,0,z \\
(2) & \quad (2_z|0,0,0) \\
(3) & \quad 2 \quad 0,y,0 \\
(3) & \quad (2_y|0,0,0) \\
(4) & \quad 2 \quad x,0,0 \\
(4) & \quad (2_x|0,0,0) \\
(5) & \quad 3^+ \quad x,x,x \\
(5) & \quad (3_{xyz}|0,0,0) \\
(6) & \quad 3^+ \quad x,x,x \\
(6) & \quad (3_{xyz}^{-1}|0,0,0) \\
(7) & \quad 3^+ \quad x,x,x \\
(7) & \quad (3_{xyz}^{-1}|0,0,0) \\
(8) & \quad 3^+ \quad x,x,x \\
(8) & \quad (3_{xyz}^{-1}|0,0,0) \\
(9) & \quad 3^+ \quad x,x,x \\
(9) & \quad (3_{xyz}|0,0,0) \\
(10) & \quad 3^+ \quad x,x,x \\
(10) & \quad (3_{xyz}|0,0,0) \\
(11) & \quad 3^+ \quad x,x,x \\
(11) & \quad (3_{xyz}|0,0,0) \\
(12) & \quad 3^+ \quad x,x,x \\
(12) & \quad (3_{xyz}^{-1}|0,0,0) \\
\end{align*}

\begin{align*}
(1) & \quad 1 \\
(1) & \quad (1|0,0,0) \\
(2) & \quad 2 \quad 0,0,z \\
(2) & \quad (2_z|0,0,0) \\
(3) & \quad 2 \quad 0,y,0 \\
(3) & \quad (2_y|0,0,0) \\
(4) & \quad 2 \quad x,0,0 \\
(4) & \quad (2_x|0,0,0) \\
(5) & \quad 3^+ \quad x,x,x \\
(5) & \quad (3_{xyz}|0,0,0) \\
(6) & \quad 3^+ \quad x,x,x \\
(6) & \quad (3_{xyz}^{-1}|0,0,0) \\
(7) & \quad 3^+ \quad x,x,x \\
(7) & \quad (3_{xyz}^{-1}|0,0,0) \\
(8) & \quad 3^+ \quad x,x,x \\
(8) & \quad (3_{xyz}^{-1}|0,0,0) \\
(9) & \quad 3^+ \quad x,x,x \\
(9) & \quad (3_{xyz}|0,0,0) \\
(10) & \quad 3^+ \quad x,x,x \\
(10) & \quad (3_{xyz}|0,0,0) \\
(11) & \quad 3^+ \quad x,x,x \\
(11) & \quad (3_{xyz}|0,0,0) \\
(12) & \quad 3^+ \quad x,x,x \\
(12) & \quad (3_{xyz}^{-1}|0,0,0) \\
\end{align*}

Continued
(13) $\bar{1}$, 0,0,0
 (1, 0,0,0)

(14) m, x,y,0
 (m, 0,0,0)

(15) m, x,0,z
 (m, 0,0,0)

(16) m, 0,y,z
 (m, 0,0,0)

(17) $\bar{3}$, x,x,x; 0,0,0
 (3, 0,0,0)

(18) $\bar{3}$, x,x,x; 0,0,0
 (3, 0,0,0)

(19) $\bar{3}$, x,x,x; 0,0,0
 (3, 0,0,0)

(20) $\bar{3}$, x,x,x; 0,0,0
 (3, 0,0,0)

(21) $\bar{3}$, x,x,x; 0,0,0
 (3, 0,0,0)

(22) $\bar{3}$, x,x,x; 0,0,0
 (3, 0,0,0)

(23) $\bar{3}$, x,x,x; 0,0,0
 (3, 0,0,0)

(24) $\bar{3}$, x,x,x; 0,0,0
 (3, 0,0,0)

For (0,1/2,1/2) + set

(1) t, 0,1/2,1/2
 (1, 0,1/2,1/2)

(2) 2, 0,0,1/2
 (2, 0,1/2,1/2)

(3) 2, 0,1/2,0
 (2, 0,1/2,1/2)

(4) 2, 0,1/2,1/2
 (2, 0,1/2,1/2)

(5) 3, (1/3,1/3,1/3)
 x-1/3,x-1/3,x
 (3, 0,1/2,1/2)

(6) $\bar{3}$, x,x+1/2,x
 (3, 0,1/2,1/2)

(7) $\bar{3}$, x,x+1/2,x
 (3, 0,1/2,1/2)

(8) $\bar{3}$, x,x+1/2,x
 (3, 0,1/2,1/2)

For (1/2,0,1/2) + set

(1) t, 1/2,0,1/2
 (1, 1/2,0,1/2)

(2) 2, 0,0,1/2
 (2, 1/2,0,1/2)

(3) 2, 1/2,0,1/2
 (2, 1/2,0,1/2)

(4) 2, 1/2,0,1/2
 (2, 1/2,0,1/2)

(5) 3, (1/3,1/3,1/3)
 x+1/3,x+1/3,x
 (3, 0,1/2,1/2)

(6) $\bar{3}$, x,x+1/2,x
 (3, 0,1/2,1/2)

(7) $\bar{3}$, x,x+1/2,x
 (3, 0,1/2,1/2)

(8) $\bar{3}$, x,x+1/2,x
 (3, 0,1/2,1/2)

(9) $\bar{3}$, x,x+1/2,x
 (3, 0,1/2,1/2)

(10) $\bar{3}$, x,x+1/2,x
 (3, 0,1/2,1/2)

(11) $\bar{3}$, x,x+1/2,x
 (3, 0,1/2,1/2)

(12) $\bar{3}$, x,x+1/2,x
 (3, 0,1/2,1/2)

(13) $\bar{1}$, 1/4,0,1/4
 (1, 1/2,0,1/2)

(14) a, 0,1/2,0
 (a, 1/2,0,0,1/2)

(15) n, 0,0,1/2
 (n, 1/2,0,0,1/2)

(16) c, 0,0,1/2
 (c, 1/2,0,0,1/2)

(17) $\bar{3}$, x,x,x; 0,0,1/2
 (3, 1/2,0,0,1/2)

(18) $\bar{3}$, x,x,x; 0,0,1/2
 (3, 1/2,0,0,1/2)

(19) $\bar{3}$, x,x,x; 0,0,1/2
 (3, 1/2,0,0,1/2)

(20) $\bar{3}$, x,x,x; 0,0,1/2
 (3, 1/2,0,0,1/2)

(21) $\bar{3}$, x,x,x; 0,0,1/2
 (3, 1/2,0,0,1/2)

(22) $\bar{3}$, x,x,x; 0,0,1/2
 (3, 1/2,0,0,1/2)

(23) $\bar{3}$, x,x,x; 0,0,1/2
 (3, 1/2,0,0,1/2)

(24) $\bar{3}$, x,x,x; 0,0,1/2
 (3, 1/2,0,0,1/2)

Continued

202.1.1524

Fm$\bar{3}$

202.1.1524 - 2 - 3382
For (1/2, 1/2, 0) + set

(1) \(t (1/2, 1/2, 0) \)
(2) \(2 \ (1/2, 1/2, 0) \)
(3) \(2 (0, 1/2, 0) \)
(4) \(2 (1/2, 1/2, 0) \)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>96 i 1</td>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +</td>
</tr>
</tbody>
</table>

Generators selected

(1); \(t(1,0,0) \); \(t(0,1,0) \); \(t(0,0,1) \); \(t(0,1/2,1/2) \); \(t(1/2,0,1/2) \); (2); (3); (5); (13).

Continued
Symmetry of Special Projections

Along [0,0,1] p2mm1'
\[a^* = a/2\quad b^* = b/2\]
Origin at 0,0,z

Along [1,1,1] p6'
\[a^* = (2a - b - c)/6\quad b^* = (-a + 2b - c)/6\]
Origin at x,x,x

Along [1,1,0] c2'mm'
\[a^* = c\quad b^* = -(-a + b)/2\]
Origin at x,x,0

48
g 2..
\[x,1/4,1/4 [u,0,0]\quad \bar{x},3/4,1/4 [\bar{u},0,0]\quad 1/4,x,1/4 [0,u,0]\]
\[1/4,\bar{x},3/4 [0,\bar{u},0]\quad 1/4,1/4,x [0,0,u]\quad 3/4,1/4,\bar{x} [0,0,\bar{u}]\]
\[\bar{x},3/4,3/4 [u,0,0]\quad x,1/4,3/4 [\bar{u},0,0]\quad 3/4,\bar{x},3/4 [0,u,0]\]
\[3/4,x,1/4 [0,\bar{u},0]\quad 3/4,3/4,\bar{x} [0,0,u]\quad 1/4,3/4,x [0,0,\bar{u}]\]

32
f .3.
\[x,x,x [u,u,u]\quad \bar{x},x,x [\bar{u},u,u]\quad \bar{x},x,x [u,\bar{u},u]\quad x,x,x [u,u,\bar{u}]\]

24
e mm2..
\[x,0,0 [0,0,0]\quad \bar{x},0,0 [0,0,0]\quad 0,x,0 [0,0,0]\]
\[0,\bar{x},0 [0,0,0]\quad 0,0,\bar{x} [0,0,0]\quad 0,0,\bar{x} [0,0,0]\]

24
d 2/m..
\[0,1/4,1/4 [u,0,0]\quad 0,3/4,1/4 [u,0,0]\quad 1/4,0,1/4 [0,u,0]\]
\[1/4,0,3/4 [0,\bar{u},0]\quad 1/4,1/4,0 [0,0,u]\quad 3/4,1/4,0 [0,0,\bar{u}]\]

8
c 23.
\[1/4,1/4,1/4 [0,0,0]\quad 3/4,3/4,3/4 [0,0,0]\]

4
b m\bar{3}.
\[1/2,1/2,1/2 [0,0,0]\]

4
a m\bar{3}.
\[0,0,0 [0,0,0]\]
Origin at center (m\overline{3}1')

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq x; \quad z < \min (1/2-x,y) \]

Vertices

- 0,0,0
- 1/2,0,0
- 1/2,1/2,0
- 1/4,1/4,1/4

Symmetry Operations

For (0,0,0) + set

\begin{align*}
(1) & \quad 1 \\
(1) & \quad 0,0,0 \\
(2) & \quad 2,0,0,0 \\
(2) & \quad 0,0,z \\
(3) & \quad 0,y,0 \\
(3) & \quad 2,0,0,0 \\
(4) & \quad 2,0,0 \\
(5) & \quad 3^+ x,x,x \\
(5) & \quad (3_{xyz}|0,0,0) \\
(6) & \quad 3^+ x,x,x \\
(6) & \quad (3_{xyz}|0,0,0) \\
(7) & \quad 3^+ x,x,x \\
(7) & \quad (3_{xyz}|0,0,0) \\
(8) & \quad 3^+ x,x,x \\
(8) & \quad (3_{xyz}|0,0,0) \\
(9) & \quad 3^+ x,x,x \\
(9) & \quad (3_{xyz}|0,0,0) \\
(10) & \quad 3^+ x,x,x \\
(10) & \quad (3_{xyz}|0,0,0) \\
(11) & \quad 3^+ x,x,x \\
(11) & \quad (3_{xyz}|0,0,0) \\
(12) & \quad 3^+ x,x,x \\
(12) & \quad (3_{xyz}|0,0,0) \\
\end{align*}

Continued

202.2.1525

202.2.1525 - 1 - 3385
(13) \(\frac{1}{3} 0,0,0 \)
(14) \(m \ x,y,0 \)
(15) \(m \ x,0,z \)
(16) \(m \ 0,y,z \)

(17) \(\frac{1}{3} x,x,x; 0,0,0 \)
(18) \(\frac{1}{3} x,x,x; 0,0,0 \)
(19) \(\frac{1}{3} x,x,x; 0,0,0 \)
(20) \(\frac{1}{3} x,x,x; 0,0,0 \)

(21) \(\frac{3}{5} x,x,x; 0,0,0 \)
(22) \(\frac{3}{5} x,x,x; 0,0,0 \)
(23) \(\frac{3}{5} x,x,x; 0,0,0 \)
(24) \(\frac{3}{5} x,x,x; 0,0,0 \)

For (0,1/2,1/2) + set

(1) \(t (0,1/2,1/2) \)
(2) \(t (0,1/2,1/2) \)
(3) \(t (0,1/2,1/2) \)
(4) \(t (0,1/2,1/2) \)

(5) \(3 \frac{1}{2} (1/3,1/3,1/3) \)
(6) \(3 \frac{1}{2} x,x+1/2,x \)
(7) \(3 \frac{1}{2} x,x+1/2,x \)
(8) \(3 \frac{1}{2} x,x+1/2,x \)

(9) \(3 \frac{1}{2} (1/3,1/3,1/3) \)
(10) \(3 \frac{1}{2} x,x+1/2,x \)
(11) \(3 \frac{1}{2} x,x+1/2,x \)
(12) \(3 \frac{1}{2} x,x+1/2,x \)

(13) \(\frac{1}{2} 0,1/4,1/4 \)
(14) \(\frac{1}{2} x,y,0 \)
(15) \(\frac{1}{2} x,0,z \)
(16) \(\frac{1}{2} 0,y,z \)

For (1/2,0,1/2) + set

(1) \(t (1/2,0,1/2) \)
(2) \(t (1/2,0,1/2) \)
(3) \(t (1/2,0,1/2) \)
(4) \(t (1/2,0,1/2) \)

(5) \(3 \frac{1}{2} (1/3,1/3,1/3) \)
(6) \(3 \frac{1}{2} x,x+1/2,x \)
(7) \(3 \frac{1}{2} x,x+1/2,x \)
(8) \(3 \frac{1}{2} x,x+1/2,x \)

(9) \(3 \frac{1}{2} (1/3,1/3,1/3) \)
(10) \(3 \frac{1}{2} x,x+1/2,x \)
(11) \(3 \frac{1}{2} x,x+1/2,x \)
(12) \(3 \frac{1}{2} x,x+1/2,x \)

(13) \(\frac{1}{2} 1/4,0,1/4 \)
(14) \(\frac{1}{2} x,y,0 \)
(15) \(\frac{1}{2} x,0,z \)
(16) \(\frac{1}{2} 0,y,z \)

Continued

202.2.1525
Fm \(\overline{3} 1' \)

202.2.1525 - 2 - 3386
(13) \bar{T}' 0,1/4,1/4 \\
(14) $b'(0,1/2,0)$ x,y,1/4 \\
(15) $c'(0,0,1/2)$ x,1/4,z \\
(16) $n'(0,1/2,1/2)$ 0,y,z \\
(17) $3^{*'} x,x+1/2$,x; \\
(18) $3^{*'} x,-1,x+1/2$,x; \\
(19) $3^{*'} x,x+1/2$,x; \\
(20) $3^{*'} x,-1,x+1/2$,x; \\
(21) $3^{*'} x,-1/2,x,-1/2$,x; \\
(22) $3^{*'} x+1/2,x,-1/2$,x; \\
(23) $3^{*'} x-1/2,x+1/2$,x; \\
(24) $3^{*'} x+1/2,x+1/2$,x; \\
\[
\left(\frac{3}{xyz}\right)|0,1/2,1/2)' \\
\]
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>96 i 11'</td>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) + (0,0,0)' + (0,1/2,1/2)' + (1/2,0,1/2)' + (1/2,1/2,0)' +</td>
</tr>
<tr>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(5) z,x,y [0,0,0]</td>
<td>(6) z,x,y [0,0,0]</td>
</tr>
<tr>
<td>(9) y,z,x [0,0,0]</td>
<td>(10) y,z,x [0,0,0]</td>
</tr>
<tr>
<td>(13) x,y,z [0,0,0]</td>
<td>(14) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(17) x, y, z [0,0,0]</td>
<td>(18) x, y, z [0,0,0]</td>
</tr>
<tr>
<td>(21) x, y, z [0,0,0]</td>
<td>(22) x, y, z [0,0,0]</td>
</tr>
<tr>
<td>48 h m..1'</td>
<td>0,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>z,0,y [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>z,0,y [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>y,z,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>y,z,0 [0,0,0]</td>
</tr>
<tr>
<td>48 g 2..1'</td>
<td>x,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/4,x [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,1/4,x [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,x [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,1/4,x [0,0,0]</td>
</tr>
<tr>
<td>32 f 3..1'</td>
<td>x,x,x [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>x,x,x [0,0,0]</td>
</tr>
<tr>
<td>24 e mm2..1'</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td>24 d 2/m..1'</td>
<td>0,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/4,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>8 c 23.1'</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>3/4,3/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b m3.1'</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a m3.1'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Continued 202.2.1525 Fm31'
Symmetry of Special Projections

Along $[0,0,1]$ p2mm1'
$\mathbf{a}^* = \frac{a}{2}$ $\mathbf{b}^* = \frac{b}{2}$ $\mathbf{c}^* = \mathbf{c}$
Origin at 0,0,z

Along $[1,1,1]$ p61'
$\mathbf{a}^* = \frac{(2a - b - c)}{6}$ $\mathbf{b}^* = \frac{(-a + 2b - c)}{6}$ $\mathbf{c}^* = \frac{(-a + b)}{2}$
Origin at x,x,x

Along $[1,1,0]$ c2mm1'
$\mathbf{a}^* = \frac{(-a + b)}{2}$ $\mathbf{b}^* = \mathbf{c}$
Origin at x,x,0
Origin at center (m'3̅)

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ x; z ≤ min (1/2-x,y)

Vertices

0,0,0 1/2,0,0 1/2,1/2,0 1/4,1/4,1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 0,0,0)

(5) 3̅^+ x,x,x
(3_xyz|0,0,0)

(9) 3̅^+ x,x,x
(3_xyz^-1|0,0,0)

(2) 2 0,0,z
(2_z 0,0,0)

(6) 3^− x,x,x
(3_xyz^-1|0,0,0)

(10) 3^− x,x,x
(3_xyz|0,0,0)

(3) 2 0,y,0
(2_y 0,0,0)

(7) 3^− x,x,x
(3_xyz^-1|0,0,0)

(11) 3^− x,x,x
(3_xyz|0,0,0)

(4) 2 x,0,0
(2_x 0,0,0)

(8) 3^− x,x,x
(3_xyz^-1|0,0,0)

(12) 3^− x,x,x
(3_xyz|0,0,0)
For $(1/2,1/2,0) + set$

(1) t (1/2,1/2,0)
(1) $| 1/2,1/2,0)$

(2) x (1/2,1/2,0)
(2) $| 1/2,1/2,0)$

(1) y (1/2,1/2,0)
(1) $| 1/2,1/2,0)$

(3) z (1/2,1/2,0)
(3) $| 1/2,1/2,0)$

(4) x (1/2,1/2,0)
(4) $| 1/2,1/2,0)$

(5) y (1/2,1/2,0)
(5) $| 1/2,1/2,0)$

(6) z (1/2,1/2,0)
(6) $| 1/2,1/2,0)$

(7) x (1/2,1/2,0)
(7) $| 1/2,1/2,0)$

(8) y (1/2,1/2,0)
(8) $| 1/2,1/2,0)$

(9) z (1/2,1/2,0)
(9) $| 1/2,1/2,0)$

Continued 202.3.1526 Fm$3\bar{3}$

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>i</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +</td>
</tr>
</tbody>
</table>

| Generators selected | (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13). |

| Generators selected | (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13). |

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +</td>
</tr>
</tbody>
</table>

202.3.1526 - 3 - 3393
Symmetry of Special Projections

| 48 g 2. | $x,1/4,1/4 [u,0,0]$ | $\bar{x},3/4,1/4 [\bar{u},0,0]$ | $1/4,x,1/4 [0,u,0]$ |
|---|
| | $1/4 , \bar{x},3/4 [0,\bar{u},0]$ | $1/4,1/4,x [0,0,u]$ | $3/4,1/4,\bar{x} [0,0,\bar{u}]$ |
| | $\bar{x},3/4,3/4 [\bar{u},0,0]$ | $x,1/4,3/4 [u,0,0]$ | $3/4 , \bar{x},3/4 [0,u,0]$ |
| | $3/4,x,1/4 [0,u,0]$ | $3/4,3/4,\bar{x} [0,0,\bar{u}]$ | $1/4,3/4,x [0,0,u]$ |

| 32 f .3. | $x,x,x [u,u,u]$ | $\bar{x},x,x [\bar{u},u,u]$ | $\bar{x},x,x [u,u,\bar{u}]$ |
|---|
| | $\bar{x},x,x [u,u,u]$ | $\bar{x},x,x [u,u,u]$ | $\bar{x},x,x [u,u,\bar{u}]$ |

| 24 e m'm'2. | $x,0,0 [u,0,0]$ | x,0,0 [u,0,0] | 0,x,0 [0,u,0] |
|---|
| | 0,x,0 [0,u,0] | 0,0,x [0,0,u] | 0,0,x [0,0,u] |

| 24 d 2/m'. | $0,1/4,1/4 [0,0,0]$ | 0,3/4,1/4 [0,0,0] | 1/4,0,1/4 [0,0,0] |
|---|
| | 1/4,0,3/4 [0,0,0] | 1/4,1/4,0 [0,0,0] | 3/4,1/4,0 [0,0,0] |

| 8 c 23. | $1/4,1/4,1/4 [0,0,0]$ | $3/4,3/4,3/4 [0,0,0]$ |
|---|

| 4 b m'3'. | $1/2,1/2,1/2 [0,0,0]$ |

| 4 a m'3'. | $0,0,0 [0,0,0]$ |

Symmetry of Special Projections

Along [0,0,1] p2m'm'

- $a^* = a/2$
- $b^* = b/2$

Origin at 0,0,z

Along [1,1,1] p6

- $a^* = (2a - b - c)/6$
- $b^* = (-a + 2b - c)/6$

Origin at x,x,x

Along [1,1,0] c2m'm'

- $a^* = (-a + b)/2$
- $b^* = c$

Origin at x,x,0

202.3.1526 - 4 - 3394
Fd3

203.1.1527

Cubic

m3

F2/d3

Origin at 23, at -1/8,-1/8,-1/8 from center (3)

Asymmetric unit

0 \leq x \leq 1/2;
0 \leq y \leq 1/4;
-1/4 \leq z \leq 1/4;
y \leq \min(x,1/2-x);
-y \leq z \leq y

Vertices

0,0,0
1/2,0,0
1/4,1/4,1/4
1/4,1/4,-1/4

Symmetry Operations

For (0,0,0) + set

(1) 1

(1 | 0,0,0)

(2) \text{2} 0,0,z

(2_z | 0,0,0)

(3) \text{2} y,0,0

(2_y | 0,0,0)

(4) \text{2} x,0,0

(2_x | 0,0,0)

(5) 3\text{'} x,x,x

(3_{xyz} | 0,0,0)

(6) 3\text{'} x,x,x

(3_{xyz}^{-1} | 0,0,0)

(7) 3\text{'} x,x,x

(3_{xyz}^{-1} | 0,0,0)

(8) 3\text{'} x,x,x

(3_{xyz}^{-1} | 0,0,0)

(9) 3\text{'} x,x,x

(3_{xyz}^{-1} | 0,0,0)

(10) 3\text{'} x,x,x

(3_{xyz}^{-1} | 0,0,0)

(11) 3\text{'} x,x,x

(3_{xyz}^{-1} | 0,0,0)

(12) 3\text{'} x,x,x

(3_{xyz}^{-1} | 0,0,0)

203.1.1527 - 1 - 3395
Continued

(21) $\bar{3}$: x+1/2,x,x;	(22) $\bar{3}$: x+1,x-3/2,x;	(23) $\bar{3}$: x+1/2,x+3/2,x;	(24) $\bar{3}$: x+1,x,x;								
5/8,1/8,1/8	1/8,-5/8,7/8	-1/8,7/8,5/8	7/8,1/8,-1/8								
$(\bar{3}_{xyz})^1	3/4,1/4,3/4	$	$(\bar{3}_{xyz})	3/4,1/4,3/4	$	$(\bar{3}_{xyz})	3/4,1/4,3/4	$	$(\bar{3}_{xyz})	3/4,1/4,3/4	$

For $(1/2,1/2,0)+$ set

| (1) t $(1/2,1/2,0)$ | (2) 2 $1/4,1/4,z$ | (3) 2 $(0,1/2,0)$ | (4) 2 $(1/2,0,0)$ |
| (1) $1/2,1/2,0)$ | $(2_z)|1/2,1/2,0)$ | $(2_z)|1/2,1/2,0)$ | $(2_z)|1/2,1/2,0)$ |

| (5) $3^+ (1/3,1/3,1/3)$ | (6) $3^+ x+1/2,x,x$ | (7) $3^+ x+1/2,x,x$ | (8) $3^+ (1/3,1/3,-1/3)$ |
| $x+1/6,x+1/3,x$ | $(3_{xyz})|1/2,1/2,0)$ | $(3_{xyz})|1/2,1/2,0)$ | $(3_{xyz})|1/2,1/2,0)$ |

| (9) $3^+ (1/3,1/3,1/3)$ | (10) $3^+ x,x+1/2,x$ | (11) $3^+ (1/3,1/3,-1/3)$ | (12) $3^+ x+3/2,x$ |
| $x+1/3,x+1/6,x$ | $(3_{xyz})|1/2,1/2,0)$ | $(3_{xyz})|1/2,1/2,0)$ | $(3_{xyz})|1/2,1/2,0)$ |

| (13) $\bar{1} 3/8,3/8,1/8$ | (14) d $(3/4,3/4,0)$ x,y,1/8 | (15) d $(3/4,0,1/4)$ x,3/8,z | (16) d $(0,3/4,1/4)$ 3/8,y,z |
| $(\bar{1})|3/4,3/4,1/4|$ | $(m_z)|3/4,3/4,1/4|$ | $(m_y)|3/4,3/4,1/4|$ | $(m_z)|3/4,3/4,1/4|$ |

Continued

(17) $\bar{3}^+ x+1/2,x,x;$	(18) $\bar{3}^+ x-1,x+3/2,x;$	(19) $\bar{3}^+ x-1/2,x+3/2,x;$	(20) $\bar{3}^+ x+1,x,x;$								
5/8,1/8,1/8	-1/8,5/8,7/8	1/8,7/8,-5/8	7/8,-1/8,1/8								
$(\bar{3}_{xyz})	3/4,3/4,1/4	$	$(\bar{3}_{xyz})	3/4,3/4,1/4	$	$(\bar{3}_{xyz})	3/4,3/4,1/4	$	$(\bar{3}_{xyz})	3/4,3/4,1/4	$

(21) $\bar{3}^+ x,x+1/2,x;$	(22) $\bar{3}^+ x+3/2,x-1,x;$	(23) $\bar{3}^+ x,x+1,x;$	(24) $\bar{3}^+ x+3/2,x-1/2,x;$								
1/8,5/8,1/8	5/8,-1/8,7/8	-1/8,7/8,1/8	7/8,1/8,-5/8								
$(\bar{3}_{xyz})	3/4,3/4,1/4	$	$(\bar{3}_{xyz})	3/4,3/4,1/4	$	$(\bar{3}_{xyz})	3/4,3/4,1/4	$	$(\bar{3}_{xyz})	3/4,3/4,1/4	$

Generators selected

| (1); t$(1,0,0);$ t$(0,1,0);$ t$(0,0,1);$ t$(0,1/2,1/2);$ t$(1/2,0,1/2);$ (2); (3); (5); (13). |

Positions

<p>| Multiplicity, Wyckoff letter, Site Symmetry. |
| Coordinates |
| (0,0,0) + | (0,1/2,1/2) + | (1/2,0,1/2) + | (1/2,1/2,0) + |
| (1) x,y,z [u,v,w] | (2) \bar{x},\bar{y},\bar{z} [u,v,w] | (3) \bar{x},\bar{y},\bar{z} [u,v,w] | (4) x,y,z [u,v,w] |
| (5) z,x,y [w,u,v] | (6) z,x,y [w,u,v] | (7) z,x,y [w,u,v] | (8) z,x,y [w,u,v] |
| (9) y,z,x [v,w,u] | (10) y,z,x [v,w,u] | (11) y,z,x [v,w,u] | (12) y,z,x [v,w,u] |
| (13) $\bar{x}+1/4,y+1/4,\bar{z}+1/4$ [u,v,w] | (14) x+1/4,y+1/4,\bar{z}+1/4 [u,v,w] | (15) x+1/4,y+1/4,\bar{z}+1/4 [u,v,w] | (16) x+1/4,y+1/4,\bar{z}+1/4 [u,v,w] |
| (17) $\bar{z}+1/4,x+1/4,\bar{y}+1/4$ [w,u,v] | (18) $\bar{z}+1/4,x+1/4,\bar{y}+1/4$ [w,u,v] | (19) z+1/4,x+1/4,\bar{y}+1/4 [w,u,v] | (20) z+1/4,x+1/4,\bar{y}+1/4 [w,u,v] |
| (21) $\bar{y}+1/4,\bar{z}+1/4,x+1/4$ [v,w,u] | (22) $\bar{y}+1/4,\bar{z}+1/4,x+1/4$ [v,w,u] | (23) y+1/4,z+1/4,x+1/4 [v,w,u] | (24) y+1/4,z+1/4,x+1/4 [v,w,u] |</p>
<table>
<thead>
<tr>
<th>48</th>
<th>f 2.</th>
<th>(x,0,0) [u,0,0]</th>
<th>(\bar{x},0,0) [u,0,0]</th>
<th>(0,x,0) [0,u,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(0,\bar{x},0) [0,u,0]</td>
<td>(0,\bar{x},0) [0,u,0]</td>
<td>(0,\bar{x},0) [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\bar{x}+1/4,1/4,1/4) [u,0,0]</td>
<td>(\bar{x}+1/4,1/4,1/4) [u,0,0]</td>
<td>(1/4,\bar{x}+1/4,1/4) [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1/4,\bar{x}+1/4,1/4) [0,u,0]</td>
<td>(1/4,\bar{x}+1/4,1/4) [0,u,0]</td>
<td>(1/4,1/4,\bar{x}+1/4) [0,0,u]</td>
</tr>
<tr>
<td>32</td>
<td>e 3.</td>
<td>(x,x,x) [u,u,u]</td>
<td>(\bar{x},\bar{x},\bar{x}) [u,u,u]</td>
<td>(\bar{x},\bar{x},\bar{x}) [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\bar{x},x,x) [u,u,u]</td>
<td>(\bar{x},x,x) [u,u,u]</td>
<td>(\bar{x},x,x) [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\bar{x}+1/4,x+1/4,\bar{x}+1/4) [u,u,u]</td>
<td>(\bar{x}+1/4,x+1/4,\bar{x}+1/4) [u,u,u]</td>
<td>(\bar{x}+1/4,x+1/4,\bar{x}+1/4) [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(x+1/4,\bar{x}+1/4,\bar{x}+1/4) [u,u,u]</td>
<td>(x+1/4,\bar{x}+1/4,\bar{x}+1/4) [u,u,u]</td>
<td>(x+1/4,\bar{x}+1/4,\bar{x}+1/4) [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1/8,1/8,1/8) [u,u,u]</td>
<td>(7/8,1/8,1/8) [u,u,u]</td>
<td>(7/8,1/8,7/8) [u,u,u]</td>
</tr>
<tr>
<td>8</td>
<td>b 23.</td>
<td>(0,0,0) [0,0,0]</td>
<td>(1/4,1/4,1/4) [0,0,0]</td>
<td>(1/4,1/4,1/4) [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>a 23.</td>
<td>(0,0,0) [0,0,0]</td>
<td>(1/4,1/4,1/4) [0,0,0]</td>
<td>(1/4,1/4,1/4) [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] \(c_p,2m'm'\)
\[a^* = a/2\quad b^* = b/2\]
Origin at 0,0,z

Along [1,1,1] \(p6'\)
\[a^* = (2a - b - c)/6\quad b^* = (-a + 2b - c)/6\]
Origin at x,x,x

Along [1,1,0] \(c2'mm'\)
\[a^* = c\quad b^* = (-a + b)/2\]
Origin at x,x,1/8
Fd31' \hspace{1cm} m\overline{3}1' \hspace{1cm} \text{Cubic}

203.2.1528 \hspace{1cm} F2/d\overline{3}1'

Origin at 231', at -1/8,-1/8,-1/8 from center (31')

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad -1/4 \leq z \leq 1/4; \quad y \leq \min(x,1/2-x); \quad -y \leq z \leq y \]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 1/4,1/4,1/4 \quad 1/4,1/4,-1/4 \]

Symmetry Operations

For (0,0,0) + set

1. 1
 (1 | 0,0,0)

2. 2 0,0,z
 (2z | 0,0,0)

3. 2 0,y,0
 (2y | 0,0,0)

4. 2 x,0,0
 (2x | 0,0,0)

5. 3+ x,x,x
 (3_{xyz} | 0,0,0)

6. 3+ x,x,x
 (3_{xyz}^{-1} | 0,0,0)

7. 3+ x,x,x
 (3_{xyz}^{-1} | 0,0,0)

8. 3+ x,x,x
 (3_{xyz}^{-1} | 0,0,0)

9. 3- x,x,x
 (3_{xyz}^{-1} | 0,0,0)

10. 3- x,x,x
 (3_{xyz} | 0,0,0)

11. 3- x,x,x
 (3_{xyz} | 0,0,0)

12. 3- x,x,x
 (3_{xyz} | 0,0,0)
Continued

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>$\overline{1}$ 1/8,1/8,1/8</td>
<td>(14) d (1/4,1/4,0) x,y,1/8</td>
<td>(15) d (1/4,0,1/4) x,1/8,z</td>
</tr>
<tr>
<td>15</td>
<td>$\overline{1}$ 1/4,1/4,1/4</td>
<td>(m_x $\overline{1}$/4,1/4,1/4)</td>
<td>(m_y $\overline{1}$/4,1/4,1/4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3' x,x,x; 1/8,1/8,1/8</td>
<td>(18) 3' $-x/2,x+1/2,x$;</td>
<td>(19) 3' $x,x+1/2,x$;</td>
</tr>
<tr>
<td>18</td>
<td>(3_xyz $1/4,1/4,1/4$)</td>
<td>$1/8,1/8,3/8$</td>
<td>$1/8,3/8,1/8$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3_xyz $-1/4,1/4,1/4$)</td>
<td>(3_xyz $-1/4,1/4,1/4$)</td>
</tr>
<tr>
<td>21</td>
<td>3' x,x,x; 1/8,1/8,1/8</td>
<td>(22) 3' $x+1/2,x+1/2,x$;</td>
<td>(23) 3' $x,x+1/2,x$;</td>
</tr>
<tr>
<td>22</td>
<td>(3_xyz $1/4,1/4,1/4$)</td>
<td>$1/8,-1/8,3/8$</td>
<td>$-1/8,3/8,1/8$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3_xyz $1/4,1/4,1/4$)</td>
<td>(3_xyz $1/4,1/4,1/4$)</td>
</tr>
</tbody>
</table>

For (0,1/2,1/2) + set

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>t (0,1/2,1/2)</td>
<td>(1) t (0,1/2,1/2)</td>
<td>(2) 2 (0,0,1/2) 0,1/4,z</td>
</tr>
<tr>
<td>2</td>
<td>(1/2,0,1/2)</td>
<td>(2) 2 (0,1/2,1/2) 1/4,0,z</td>
<td>(3) 2 (0,1/2,0) 0,y,1/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2_z $1/2,0,1/2$)</td>
<td>(2_y $1/2,0,1/2$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3' (1/3,1/3,1/3) x+1/3,x-1/6,x</td>
<td>(6) 3' $x,x+1/2,$ x</td>
<td>(7) 3' (-1/3,1/3,1/3) $x+1/3,x-1/6,x$</td>
</tr>
<tr>
<td>6</td>
<td>(3_xyz $0,1/2,1/2$)</td>
<td>(3_xyz $1/2,0,1/2$)</td>
<td>(3_xyz $1/2,1/2$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3_xyz $1/4,3/4,3/4$)</td>
<td>(3_xyz $1/4,3/4,3/4$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>$\overline{1}$ 1/8,3/8,3/8</td>
<td>(14) d (1/4,3/4,0) x,y,3/8</td>
<td>(15) d (1/4,0,3/4) x,3/8,z</td>
</tr>
<tr>
<td>14</td>
<td>$\overline{1}$ 1/4,3/4,3/4</td>
<td>(m_x $\overline{1}$/4,3/4,3/4)</td>
<td>(m_y $\overline{1}$/4,3/4,3/4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3' x,x+1/2,x; 1/8,5/8,1/8</td>
<td>(18) 3' $x-3/2,x+1/2,$ x</td>
<td>(19) 3' $x,x+1/2,$ x</td>
</tr>
<tr>
<td>18</td>
<td>(3_xyz $1/4,3/4,3/4$)</td>
<td>$-5/8,1/8,7/8$</td>
<td>$1/8,7/8,-1/8$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3_xyz $1/4,3/4,3/4$)</td>
<td>(3_xyz $1/4,3/4,3/4$)</td>
</tr>
<tr>
<td>21</td>
<td>3' x-1/2,x-1/2,x; 1/8,1/8,5/8</td>
<td>(22) 3' $x+1/2,x-1/2,$ x</td>
<td>(23) 3' $-x+1/2,x+1/2,$ x</td>
</tr>
<tr>
<td>22</td>
<td>(3_xyz $1/4,3/4,3/4$)</td>
<td>$1/8,-1/8,7/8$</td>
<td>$-5/8,7/8,1/8$</td>
</tr>
</tbody>
</table>

For (1/2,0,1/2) + set

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>t (1/2,0,1/2)</td>
<td>(1) t (1/2,0,1/2)</td>
<td>(2) 2 (0,1/2,0) 1/4,0,z</td>
</tr>
<tr>
<td>2</td>
<td>(1/2,0,1/2)</td>
<td>(2) 2 (1/2,0,1/2) 1,4,0,z</td>
<td>(3) 2 (1/2,0,1/2) 1/4,y,1/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2_z $1/2,0,1/2$)</td>
<td>(2_y $1/2,0,1/2$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3' (1/3,1/3,1/3) x+1/6,x-1/6,x</td>
<td>(6) 3' $x-1/6,x+1/6,$ x</td>
<td>(7) 3' $x+1/2,x-1/2,$ x</td>
</tr>
<tr>
<td>6</td>
<td>(3_xyz $1/2,0,1/2$)</td>
<td>(3_xyz $-1/2,0,1/2$)</td>
<td>(3_xyz $-1/2,1/2$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3_xyz $1/4,3/4,3/4$)</td>
<td>(3_xyz $1/4,3/4,3/4$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3' (1/3,1/3,1/3) x-1/6,x+1/3,x</td>
<td>(10) 3' $x+1/2,x-1/2,$ x</td>
<td>(11) 3' $x+1/2,x-1/2,$ x</td>
</tr>
<tr>
<td>10</td>
<td>(3_xyz $1/2,0,1/2$)</td>
<td>(3_xyz $1/2,0,1/2$)</td>
<td>(3_xyz $1/2,0,1/2$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>$\overline{1}$ 3/8,1/8,3/8</td>
<td>(14) d (3/4,1/4,0) x,y,3/8</td>
<td>(15) d (3/4,0,3/4) x,1/8,z</td>
</tr>
<tr>
<td>14</td>
<td>$\overline{1}$ 3/4,1/4,3/4</td>
<td>(m_x $\overline{1}$/4,3/4,3/4)</td>
<td>(m_y $\overline{1}$/4,3/4,3/4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3' x-1/2,x+1/2,x; 1/8,1/8,5/8</td>
<td>(18) 3' $-x/2,x+1/2,$ x</td>
<td>(19) 3' $x+1/2,x+1/2,$ x</td>
</tr>
<tr>
<td>18</td>
<td>(3_xyz $3/4,1/4,3/4$)</td>
<td>$-1/8,1/8,7/8$</td>
<td>$5/8,7/8,-1/8$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3_xyz $3/4,1/4,3/4$)</td>
<td>(3_xyz $3/4,1/4,3/4$)</td>
</tr>
<tr>
<td>21</td>
<td>3' x+1/2,x,x; 5/8,1/8,1/8</td>
<td>(22) 3' $x+1/2,x-3/2,$ x</td>
<td>(23) 3' $x+1/2,x+3/2,$ x</td>
</tr>
<tr>
<td>22</td>
<td>(3_xyz $3/4,1/4,3/4$)</td>
<td>$1/8,-5/8,7/8$</td>
<td>$-1/8,7/8,-5/8$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3_xyz $3/4,1/4,3/4$)</td>
<td>(3_xyz $3/4,1/4,3/4$)</td>
</tr>
</tbody>
</table>
Continued

<table>
<thead>
<tr>
<th>(1) $t' (1/2,0,1/2)$</th>
<th>For $(1/2,1/2,0)' + \text{set}$</th>
<th>203.2.1528</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t'(1/2,1/2,0)$</td>
<td>$(1/2,0,1/2)'$</td>
<td>$d' (0,0,1/4)$</td>
</tr>
<tr>
<td>$(1/2,1/2,0)'$</td>
<td>$(2) 2'(0,0,1/4)$</td>
<td>$1/4,0,1/4$</td>
</tr>
<tr>
<td>$(2) 2' (1/2,0,1/2)'$</td>
<td>$(2_1,1/2,0,1/2)'$</td>
<td>$x,0,1/4$</td>
</tr>
<tr>
<td>$2' (1/2,1/2,0)$</td>
<td>$(3) 2' (1/4,0,1/4)$</td>
<td>$1/4,1/2,0$</td>
</tr>
<tr>
<td>$(3) 2' (1/4,0,1/4)$</td>
<td>$(3) 2' (1/2,0,1/2)'$</td>
<td>$1/2,1/4,0$</td>
</tr>
<tr>
<td>$2' (1/4,0,1/4)$</td>
<td>$(15) d' (1/4,0,3/4)$</td>
<td>$x,0,1/4$</td>
</tr>
<tr>
<td>$(15) d' (1/4,0,3/4)$</td>
<td>$(16) d' (0,3/4,1/4)$</td>
<td>$1/8,1/2,1/8$</td>
</tr>
<tr>
<td>$1/8,1/2,1/8$</td>
<td>$(17) 3' (1/3,1/3,1)$</td>
<td>$x+1/6,x+1/6,x$</td>
</tr>
<tr>
<td>$(17) 3' (1/3,1/3,1)$</td>
<td>$(18) 3' (1/3,1/3,1)$</td>
<td>$x+1/6,x+1/6,x$</td>
</tr>
<tr>
<td>$(18) 3' (1/3,1/3,1)$</td>
<td>$(19) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(19) 3' (1/3,1/3,1)$</td>
<td>$(20) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(20) 3' (1/3,1/3,1)$</td>
<td>$(21) 3' (1/3,1/3,1)$</td>
<td>$x-1/6,x+1/3,x$</td>
</tr>
<tr>
<td>$(21) 3' (1/3,1/3,1)$</td>
<td>$(22) 3' (1/3,1/3,1)$</td>
<td>$x-1/6,x+1/3,x$</td>
</tr>
<tr>
<td>$(22) 3' (1/3,1/3,1)$</td>
<td>$(23) 3' (1/3,1/3,1)$</td>
<td>$x-1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(23) 3' (1/3,1/3,1)$</td>
<td>$(24) 3' (1/3,1/3,1)$</td>
<td>$x-1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(24) 3' (1/3,1/3,1)$</td>
<td>$(25) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(25) 3' (1/3,1/3,1)$</td>
<td>$(26) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(26) 3' (1/3,1/3,1)$</td>
<td>$(27) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(27) 3' (1/3,1/3,1)$</td>
<td>$(28) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(28) 3' (1/3,1/3,1)$</td>
<td>$(29) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(29) 3' (1/3,1/3,1)$</td>
<td>$(30) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(30) 3' (1/3,1/3,1)$</td>
<td>$(31) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(31) 3' (1/3,1/3,1)$</td>
<td>$(32) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(32) 3' (1/3,1/3,1)$</td>
<td>$(33) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(33) 3' (1/3,1/3,1)$</td>
<td>$(34) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(34) 3' (1/3,1/3,1)$</td>
<td>$(35) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(35) 3' (1/3,1/3,1)$</td>
<td>$(36) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(36) 3' (1/3,1/3,1)$</td>
<td>$(37) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(37) 3' (1/3,1/3,1)$</td>
<td>$(38) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(38) 3' (1/3,1/3,1)$</td>
<td>$(39) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(39) 3' (1/3,1/3,1)$</td>
<td>$(40) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(40) 3' (1/3,1/3,1)$</td>
<td>$(41) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(41) 3' (1/3,1/3,1)$</td>
<td>$(42) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(42) 3' (1/3,1/3,1)$</td>
<td>$(43) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(43) 3' (1/3,1/3,1)$</td>
<td>$(44) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
<tr>
<td>$(44) 3' (1/3,1/3,1)$</td>
<td>$(45) 3' (1/3,1/3,1)$</td>
<td>$x+1/2,x+1/2,x$</td>
</tr>
</tbody>
</table>
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(0,1/2,1/2) +</td>
</tr>
<tr>
<td>(0,0,0)' +</td>
<td>(0,1/2,1/2)' +</td>
</tr>
<tr>
<td>(1/2,0,1/2) +</td>
<td>(1/2,0,1/2)' +</td>
</tr>
<tr>
<td>(1/2,1/2,0) +</td>
<td>(1/2,1/2,0)' +</td>
</tr>
</tbody>
</table>

96 g 11'

(1) x,y,z [0,0,0]
(2) x,y,z [0,0,0]
(3) x,y,z [0,0,0]
(4) x,y,z [0,0,0]
(5) z,x,y [0,0,0]
(6) z,x,y [0,0,0]
(7) z,x,y [0,0,0]
(8) z,x,y [0,0,0]
(9) z,x,y [0,0,0]
(10) z,x,y [0,0,0]
(11) z,x,y [0,0,0]
(12) z,x,y [0,0,0]
(13) x+1/4,y+1/4,z+1/4 [0,0,0]
(14) x+1/4,y+1/4,z+1/4 [0,0,0]
(15) x+1/4,y+1/4,z+1/4 [0,0,0]
(16) x+1/4,y+1/4,z+1/4 [0,0,0]
(17) x+1/4,y+1/4,z+1/4 [0,0,0]
(18) x+1/4,y+1/4,z+1/4 [0,0,0]
(19) x+1/4,y+1/4,z+1/4 [0,0,0]
(20) x+1/4,y+1/4,z+1/4 [0,0,0]
(21) x+1/4,y+1/4,z+1/4 [0,0,0]
(22) x+1/4,y+1/4,z+1/4 [0,0,0]
(23) x+1/4,y+1/4,z+1/4 [0,0,0]
(24) x+1/4,y+1/4,z+1/4 [0,0,0]

48 f 2..1'

x,0,0 [0,0,0]
0,0,x [0,0,0]
x+1/4,1/4,1/4 [0,0,0]
1/4,x+1/4,1/4 [0,0,0]

32 e .3.1'

x,x,x [0,0,0]
x,x,x [0,0,0]
x+1/4,x+1/4,x+1/4 [0,0,0]
x+1/4,x+1/4,x+1/4 [0,0,0]

16 d .3.1'

5/8,5/8,5/8 [0,0,0]
3/8,3/8,5/8 [0,0,0]
3/8,5/8,3/8 [0,0,0]
5/8,3/8,3/8 [0,0,0]

16 c .3.1'

1/8,1/8,1/8 [0,0,0]
7/8,7/8,1/8 [0,0,0]
7/8,1/8,7/8 [0,0,0]
1/8,7/8,7/8 [0,0,0]

8 b 23.1'

1/2,1/2,1/2 [0,0,0]
3/4,3/4,3/4 [0,0,0]

8 a 23.1'

0,0,0 [0,0,0]
1/4,1/4,1/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] c2mm1'

\(a^* = a/2 \quad b^* = b/2 \)

Origin at 0,0,z

Along [1,1,1] p61'

\(a^* = (2a - b - c)/6 \quad b^* = (-a + 2b - c)/6 \)

Origin at x,x,x

Along [1,1,0] c2mm1'

\(a^* = (-a + b)/2 \quad b^* = c \)

Origin at x,x,1/8
Origin at 23, at -1/8,-1/8,-1/8 from center (3')

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad -1/4 \leq z \leq 1/4; \quad y \leq \min(x,1/2-x); \quad -y \leq z \leq y \]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 1/4,1/4,1/4 \quad 1/4,1/4,-1/4 \]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{array}{cccc}
(1) & 1 & (2) & 2 \ 0,0,z \\
(1 | 0,0,0) & (2_z | 0,0,0) \\
(5) & 3^+ x,x,x & (6) & 3^+ \ x, \ x, \ x \\
(3_{xyz} | 0,0,0) & (3_{xyz}^{-1} | 0,0,0) \\
(9) & 3^+ x,x,x & (10) & 3^+ \ x, \ x, \ x \\
(3_{xyz}^{-1} | 0,0,0) & (3_{xyz} | 0,0,0) \\
\end{array}
\]

\[
\begin{array}{cccc}
(3) & 2 \ 0,y,0 \\
(2_y | 0,0,0) \\
(7) & 3^+ x,x,x & (8) & 3^+ \ x, \ x, \ x \\
(3_{xyz}^{-1} | 0,0,0) & (3_{xyz}^{-1} | 0,0,0) \\
(11) & 3^+ x,x,x & (12) & 3^+ \ x, \ x, \ x \\
(3_{xyz} | 0,0,0) & (3_{xyz} | 0,0,0) \\
\end{array}
\]
Continued

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0) (2) 2' 1/4,1/4,z (3) 2' (0,1/2,0) 1/4,y,0 (4) 2' (1/2,0,0) x,1/4,0
(1 | 1/2,1/2,0) (2z | 1/2,1/2,0) (2y | 1/2,1/2,0) (2x | 1/2,1/2,0)

(5) 3' (1/3,1/3,1/3) (6) 3' x+1/2,x,x (7) 3' x+1/2,x,x (8) 3' (1/3,1/3,1/3)
x+1/6,x+1/3,x (3xyz | 1/2,1/2,0) (3xyz | 1/2,1/2,0) (3xyz | 1/2,1/2,0)

(9) 3' (1/3,1/3,1/3) (10) 3' x,x+1/2,x (11) 3' (1/3,1/3,1/3) x+1/3,x+1/6,x
(x+1/3,x+1/6,x (3xyz | 1/2,1/2,0) (3xyz | 1/2,1/2,0) (3xyz | 1/2,1/2,0)

(13) 1' 3/8,3/8,1/8 (14) d' (3/4,3/4,1/4) y,1/8 (15) d' (3/4,3/4,1/4) x,3/8,z (16) d' (0,3/4,1/4) 3/8,y,z
(1 | 3/4,3/4,1/4)' (17) 3++ x+1/2,x,x; (18) 3++ x-1,x+3/2,x; (19) 3++ x-1/2,x+3/2,x;
(5/8,1/8,1/8) (3xyz | 3/4,3/4,1/4)' (3xyz | 3/4,3/4,1/4)' (3xyz | 3/4,3/4,1/4)'

(21) 3'' x,x+1/2,x; (22) 3'' x+3/2,x-1,x; (23) 3'' x,x+1/2,x; (24) 3'' x+3/2,x-1/2,x;
(1/8,5/8,1/8) (3xyz | 3/4,3/4,1/4)' (3xyz | 3/4,3/4,1/4)' (3xyz | 3/4,3/4,1/4)'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>96</th>
<th>g</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) z,x,y [w,u,v]</td>
<td>(6) z,x,y [w,u,v]</td>
<td>(7) z,x,y [w,u,v]</td>
</tr>
<tr>
<td>(9) y,z,x [v,w,u]</td>
<td>(10) y,z,x [v,w,u]</td>
<td>(11) y,z,x [v,w,u]</td>
</tr>
<tr>
<td>(13) x+1/4,y+1/4,z+1/4 [u,v,w]</td>
<td>(14) x+1/4,y+1/4,z+1/4 [u,v,w]</td>
<td>(15) x+1/4,y+1/4,z+1/4 [u,v,w]</td>
</tr>
<tr>
<td>(17) z+1/4,x+1/4,y+1/4 [w,u,v]</td>
<td>(18) z+1/4,x+1/4,y+1/4 [w,u,v]</td>
<td>(19) z+1/4,x+1/4,y+1/4 [w,u,v]</td>
</tr>
<tr>
<td>(21) y+1/4,z+1/4,x+1/4 [v,w,u]</td>
<td>(22) y+1/4,z+1/4,x+1/4 [v,w,u]</td>
<td>(23) y+1/4,z+1/4,x+1/4 [v,w,u]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>48</th>
<th>f</th>
<th>2..</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td>x,0,0 [0,u,0]</td>
<td>x,0,0 [0,u,0]</td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td>x+1/4,1/4,1/4 [u,0,0]</td>
<td>x+1/4,1/4,1/4 [u,0,0]</td>
<td>1/4,x+1/4,1/4 [0,u,0]</td>
</tr>
<tr>
<td>1/4,x+1/4,1/4 [0,u,0]</td>
<td>1/4,x+1/4,1/4 [0,u,0]</td>
<td>1/4,x+1/4,1/4 [0,u,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>e</td>
<td>.3.</td>
<td>x,x,x [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,x [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/4,x+1/4,x+1/4 [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/4,x+1/4,x+1/4 [u,u,u]</td>
</tr>
<tr>
<td>16</td>
<td>d</td>
<td>.3'.</td>
<td>5/8,5/8,5/8 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/8,3/8,5/8 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/8,5/8,3/8 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5/8,3/8,3/8 [0,0,0]</td>
</tr>
<tr>
<td>16</td>
<td>c</td>
<td>.3'.</td>
<td>1/8,1/8,1/8 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7/8,7/8,1/8 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7/8,1/8,7/8 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/8,7/8,7/8 [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>b</td>
<td>23.</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4,3/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>a</td>
<td>23.</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/4,1/4,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

| Along [0,0,1] | c2m'm' |
| a' = a/2 | b' = b/2 |
| Origin at 0,0,z |

| Along [1,1,1] | p6 |
| a' = (2a - b - c)/6 | b' = (-a + 2b - c)/6 |
| Origin at x,x,x |

| Along [1,1,0] | c2m'm' |
| a' = (-a + b)/2 | b' = c |
| Origin at x,x,1/8 |
Origin at center (m3)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq x; \quad z \leq y \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 1/2,1/2,0 & \quad 1/2,1/2,1/2 \\
\end{align*}
\]

Symmetry Operations

For (0,0,0) + set

\[
\begin{align*}
(1) & \quad 1 \\
(1 \mid 0,0,0) & \quad (2) \quad 2 \mid 0,0,z \\
(2_z \mid 0,0,0) & \quad (3) \quad 2 \mid 0,y,0 \\
(2_y \mid 0,0,0) & \quad (4) \quad 2 \mid x,0,0 \\
(2_z \mid 0,0,0) & \quad (5) \quad 3^+ \mid x,x,x \\
(3_{xyz} \mid 0,0,0) & \quad (6) \quad 3^+ \mid x,x,x \\
(3_{xyz}^{-1} \mid 0,0,0) & \quad (7) \quad 3^+ \mid x,x,x \\
(3_{xyz}^{-1} \mid 0,0,0) & \quad (8) \quad 3^+ \mid x,x,x \\
(3_{xyz}^{-1} \mid 0,0,0) & \quad (9) \quad 3^- \mid x,x,x \\
(3_{xyz} \mid 0,0,0) & \quad (10) \quad 3^- \mid x,x,x \\
(3_{xyz} \mid 0,0,0) & \quad (11) \quad 3^- \mid x,x,x \\
(3_{xyz} \mid 0,0,0) & \quad (12) \quad 3^- \mid x,x,x \\
\end{align*}
\]

Continued
Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13). \)

Positions

Multiplicty, Wyckoff letter, Site Symmetry.

48 \(h \ 1 \)

\begin{align*}
(1) & \quad x, y, z \ [u, v, w] \\
(5) & \quad z, x, y \ [w, u, v] \\
(9) & \quad y, z, x \ [v, w, u] \\
(13) & \quad x, y, z \ [u, v, w] \\
(17) & \quad z, x, y \ [w, u, v] \\
(21) & \quad y, z, x \ [v, w, u] \\
(14) & \quad m, x, y, 0 \ (m_z, 0, 0, 0) \\
(15) & \quad m, x, 0, z \ (m_y, 0, 0, 0) \\
(16) & \quad m, 0, y, z \ (m_x, 0, 0, 0) \\
(17) & \quad 3^+ \ x, x, x; 0, 0, 0 \ (3 \ \text{xyz}, 0, 0, 0) \\
(18) & \quad 3^+ \ \overline{x}, x, x; 0, 0, 0 \ (3 \ \text{xyz}^{-1}, 0, 0, 0) \\
(19) & \quad 3^+ \ x, x, x; 0, 0, 0 \ (3 \ \text{xyz}^{-1}, 0, 0, 0) \\
(20) & \quad 3^+ \ x, x, x; 0, 0, 0 \ (3 \ \text{xyz}^{-1}, 0, 0, 0) \\
(21) & \quad 3^- \ x, x, x; 0, 0, 0 \ (3 \ \text{xyz}^{-1}, 0, 0, 0) \\
(22) & \quad 3^- \ \overline{x}, x, \overline{x}; 0, 0, 0 \ (3 \ \text{xyz}, 0, 0, 0) \\
(23) & \quad 3^- \ x, x, x; 0, 0, 0 \ (3 \ \text{xyz}, 0, 0, 0) \\
(24) & \quad 3^- \ x, x, x; 0, 0, 0 \ (3 \ \text{xyz}, 0, 0, 0) \\
\end{align*}

For \((1/2,1/2,1/2) + \) set

\begin{align*}
(1) & \quad t(1/2,1/2,1/2) \\
(2) & \quad 2(0,0,1/2) \ 1/4, 1/4, z \\
(3) & \quad 2(0,1/2,0) \ 1/4, y, 1/4 \\
(4) & \quad 2(1/2,0,0) \ x, 1/4, 1/4 \\
(5) & \quad 3^+ \ (1/2,1/2,1/2) \ x, x, x \\
(6) & \quad 3^+ \ (-1/6,1/6,1/6) \ x+1/3, x+3/3, x \\
(7) & \quad 3^+ \ 1/6, 1/6, 1/6 \ x+2/3, x-1/3, x \\
(8) & \quad 3^+ \ 1/6, 1/6, 1/6 \ x+1/3, x+2/3, x \\
(9) & \quad 3^- \ (1/2,1/2,1/2) \ x, x, x \\
(10) & \quad 3^- \ 1/6, 1/6, 1/6 \ x+1/3, x+3/3, x \\
(11) & \quad 3^- \ 1/6, 1/6, 1/6 \ x+2/3, x-1/3, x \\
(12) & \quad 3^- \ 1/6, 1/6, 1/6 \ x+1/3, x+2/3, x \\
(13) & \quad 3^- \ (1/2,1/2,1/2) \ x, x, x \\
(14) & \quad 3^- \ 1/2, 1/2, 1/2 \ x, x, x \\
(15) & \quad 3^- \ 1/2, 1/2, 1/2 \ x, x, x \\
(16) & \quad 3^- \ 1/2, 1/2, 1/2 \ x, x, x \\
(17) & \quad 3^+ \ (1/2,1/2,1/2) \ x, x, x \\
(18) & \quad 3^+ \ 1/4, 1/4, 1/4 \ x-1, x+1, x \\
(19) & \quad 3^+ \ 1/4, 1/4, 1/4 \ x-1, x+1, x \\
(20) & \quad 3^+ \ 1/4, 1/4, 1/4 \ x-1, x+1, x \\
(21) & \quad 3^- \ (1/2,1/2,1/2) \ x, x, x \\
(22) & \quad 3^- \ 1/2, 1/2, 1/2 \ x, x, x \\
(23) & \quad 3^- \ 1/2, 1/2, 1/2 \ x, x, x \\
(24) & \quad 3^- \ 1/2, 1/2, 1/2 \ x, x, x \\
\end{align*}

Coordinates

\((0,0,0) + \ \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \) +
Continued

24 g m.. 0,y,z [u,0,0] 0,y,z [u,0,0] 0,y,z [u,0,0]
 0,y,z [u,0,0] z,0,y [0,u,0] z,0,y [0,u,0]
 z,0,y [0,u,0] z,0,y [0,u,0] y,z,0 [0,u,0]
 z,0,y [0,u,0] y,z,0 [0,u,0] y,z,0 [0,u,0]

16 f .3. x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u]
 x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u]

12 e mm2.. x,0,1/2 [0,0,0] 1/2,x,0 [0,0,0] 1/2,x,0 [0,0,0]
 1/2,x,0 [0,0,0] 0,1/2,x [0,0,0] 0,1/2,x [0,0,0]

12 d mm2.. x,0,0 [0,0,0] 0,x,0 [0,0,0] 0,x,0 [0,0,0]
 0,x,0 [0,0,0] 0,0,x [0,0,0] 0,0,x [0,0,0]

6 b mmm.. 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0]

2 a m3. 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] c2mm1' a* = a b* = b Origin at 0,0,z
Along [1,1,1] p6' a* = (2a - b - c)/3 b* = (-a + 2b - c)/3 Origin at x,x,x
Along [1,1,0] p2'mm' a* = c/2 b* = -(a + b)/2 Origin at x,x,0
Origin at center (m\text{3}1')

Asymmetric unit

\begin{align*}
0 \leq x \leq 1/2; & \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq x; \quad z \leq y \\
\text{Vertices} & \quad 0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 1/2,1/2,1/2
\end{align*}

Symmetry Operations

For \((0,0,0) + \text{set}

\begin{align*}
(1) 1 & \quad (2) 2 \quad 0,0,z \quad (3) 2 \quad 0,y,0 \\
(1 \mid 0,0,0) & \quad (2_z \mid 0,0,0) \quad (2_y \mid 0,0,0) \\
(5) 3^+ x,x,x & \quad (6) 3^+ \bar{x},x,\bar{x} \\
(3_{xyz} \mid 0,0,0) & \quad (3_{xyz}^{-1} \mid 0,0,0) \\
(9) 3^+ x,x,x & \quad (10) 3^+ \bar{x},\bar{x},\bar{x} \\
(3_{xyz}^{-1} \mid 0,0,0) & \quad (3_{xyz} \mid 0,0,0) \\
\text{Continued} & \quad (11) 3^+ \bar{x},\bar{x},x \\
& \quad (3_{xyz} \mid 0,0,0) \\
& \quad (12) 3^+ \bar{x},\bar{x},x \\
& \quad (3_{xyz}^{-1} \mid 0,0,0)
\end{align*}

204.2.1531 - 1 - 3411
For $(1/2,1/2,1/2)' + \text{set}$

(1) $t' (1/2,1/2,1/2)$

(2) $2' (0,0,1/2)$ 1/4,1/4,z

(3) $2' (0,1/2,0)$ 1/4,y,1/4

(4) $2' (1/2,0,0)$ x,1/4,1/4

(5) $3' (1/2,1/2,1/2) \times x,x,x$

(6) $3' (1/6,1,1,1/6) x+1/3,x+1/3,x$

(7) $3' (-1,6,1,1,1/6) x+2/3,x-1/3,x$

(8) $3' (1/6,1,1,1/6) x+1/3,x+2/3,x$

(9) $3' (1/2,1/2,1/2) \times x,x,x$

(10) $3' (-1,6,1,1,1/6) x+1/3,x+1/3,x$

(11) $3' (1,6,1,1,1/6) x+2/3,x+1/3,x$

(12) $3' (1/6,1,1,1/6) x+1/3,x+2/3,x$

(13) $3' (1/2,1/2,1/2) \times x,x,x$

(14) $3' (1/2,1/2,1/2) \times x,x,x$

(15) $3' (1/2,1/2,1/2) \times x,x,x$

(16) $3' (1/2,1/2,1/2) \times x,x,x$

(17) $3' (1/2,1/2,1/2) \times x,x,x$

(18) $3' (1/2,1/2,1/2) \times x,x,x$

(19) $3' (1/2,1/2,1/2) \times x,x,x$

(20) $3' (1/2,1/2,1/2) \times x,x,x$

(21) $3' (1/2,1/2,1/2) \times x,x,x$

(22) $3' (1/2,1/2,1/2) \times x,x,x$

(23) $3' (1/2,1/2,1/2) \times x,x,x$

(24) $3' (1/2,1/2,1/2) \times x,x,x$

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13); 1'.

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

48 h 11'

(1) x,y,z [0,0,0]

(2) $\bar{x},\bar{y},z [0,0,0]$

(3) $\bar{x},y,\bar{z} [0,0,0]$

(4) x,$\bar{y},z [0,0,0]$

(5) z,x,y [0,0,0]

(6) $z,\bar{x},\bar{y} [0,0,0]$

(7) $\bar{z},z,\bar{y} [0,0,0]$

(8) $\bar{z},z,\bar{y} [0,0,0]$

(9) y,z,x [0,0,0]

(10) $\bar{y},\bar{z},\bar{x} [0,0,0]$

(11) $y,\bar{z},\bar{x} [0,0,0]$

(12) $\bar{y},\bar{z},\bar{x} [0,0,0]$

(13) $\bar{x},\bar{y},\bar{z} [0,0,0]$

(14) x,$\bar{y},\bar{z} [0,0,0]$

(15) $x,\bar{y},\bar{z} [0,0,0]$

(16) $x,\bar{y},\bar{z} [0,0,0]$

(17) $\bar{z},\bar{x},\bar{y} [0,0,0]$

(18) $z,\bar{x},\bar{y} [0,0,0]$

(19) $\bar{z},\bar{x},\bar{y} [0,0,0]$

(20) $z,\bar{x},\bar{y} [0,0,0]$

(21) $\bar{y},\bar{z},\bar{x} [0,0,0]$

(22) y,$\bar{z},\bar{x} [0,0,0]$

(23) $\bar{y},\bar{z},\bar{x} [0,0,0]$

(24) $\bar{y},\bar{z},\bar{x} [0,0,0]$

Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13); 1'.

(25) x,y,z [0,0,0]

(26) $\bar{x},\bar{y},z [0,0,0]$

(27) $\bar{x},y,\bar{z} [0,0,0]$

(28) x,$\bar{y},z [0,0,0]$

(29) z,x,y [0,0,0]

(30) $z,\bar{x},\bar{y} [0,0,0]$

(31) $\bar{z},z,\bar{y} [0,0,0]$

(32) $\bar{z},z,\bar{y} [0,0,0]$

(33) y,z,x [0,0,0]

(34) $\bar{y},\bar{z},\bar{x} [0,0,0]$

(35) $y,\bar{z},\bar{x} [0,0,0]$

(36) $\bar{y},\bar{z},\bar{x} [0,0,0]$

(37) $\bar{y},\bar{z},\bar{x} [0,0,0]$

(38) $\bar{y},\bar{z},\bar{x} [0,0,0]$

(39) $\bar{y},\bar{z},\bar{x} [0,0,0]$

(40) $\bar{y},\bar{z},\bar{x} [0,0,0]$

(41) $\bar{y},\bar{z},\bar{x} [0,0,0]$

(42) $\bar{y},\bar{z},\bar{x} [0,0,0]$

(43) $\bar{y},\bar{z},\bar{x} [0,0,0]$

(44) $\bar{y},\bar{z},\bar{x} [0,0,0]$

(45) $\bar{y},\bar{z},\bar{x} [0,0,0]$

(46) $\bar{y},\bar{z},\bar{x} [0,0,0]$

(47) $\bar{y},\bar{z},\bar{x} [0,0,0]$

(48) $\bar{y},\bar{z},\bar{x} [0,0,0]$

Continued

204.2.1531 Im3 1'

204.2.1531 - 3 - 3413
<table>
<thead>
<tr>
<th>16</th>
<th>f</th>
<th>.3.1'</th>
<th>x,x,x [0,0,0]</th>
<th>x,x,x [0,0,0]</th>
<th>x,x,x [0,0,0]</th>
<th>x,x,x [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>e</td>
<td>mm2..1'</td>
<td>x,0,1/2 [0,0,0]</td>
<td>x,0,1/2 [0,0,0]</td>
<td>1/2,x,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2 ,x,0 [0,0,0]</td>
<td>0,1/2,x [0,0,0]</td>
<td>0,1/2,x [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>d</td>
<td>mm2..1'</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,x,0 [0,0,0]</td>
<td>0,0,x [0,0,0]</td>
<td>0,0,x [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>c</td>
<td>.3.1'</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,1/4 [0,0,0]</td>
<td>3/4,1/4,3/4 [0,0,0]</td>
<td>1/4,3/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>b</td>
<td>mmm..1'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>m3 1'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] c2mm1'
\[a^* = a \quad b^* = b\]
Origin at 0,0,z

Along [1,1,1] p61'
\[a^* = \frac{2a - b - c}{3} \quad b^* = \frac{-a + 2b - c}{3}\]
Origin at x,x,x

Along [1,1,0] p2mm1'
\[a^* = \frac{-a + b}{2} \quad b^* = \frac{c}{2}\]
Origin at x,x,0
Origin at center (m'3')

Asymmetric unit

\[0 \leq x < 1/2; \quad 0 \leq y < 1/2; \quad 0 \leq z < 1/2; \quad y < x; \quad z < y\]

Vertices

\[0,0,0; \quad 1/2,0,0; \quad 1/2,1/2,0; \quad 1/2,1/2,1/2\]

Symmetry Operations

For \((0,0,0) + \text{ set}\)

\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2,0,0,z \\
(3) & \quad 2,0,y,0 \\
(4) & \quad 2,x,0,0 \\
(5) & \quad 3^+ x,x,x \\
(6) & \quad 3^+ x,x,x \\
(7) & \quad 3^+ x,x,x \\
(8) & \quad 3^+ x,x,x \\
(9) & \quad 3^+ x,x,x \\
(10) & \quad 3^+ x,x,x \\
(11) & \quad 3^+ x,x,x \\
(12) & \quad 3^+ x,x,x \\
\end{align*}

Continued
For \((1/2,1/2,1/2) + \set\):

\[
\begin{align*}
(1) & \quad t (1/2,1/2,1/2) \\
(2) & \quad 2 (0,0,1/2) 1/4,1/4,z
\end{align*}
\]

Generators selected
(1) \(t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2);
(2); (3); (5); (13).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

48 \(\text{h} 1\)

\begin{align*}
(1) & \quad x,y,z [u,v,w] \\
(2) & \quad \bar{x},y,\bar{z} [\bar{u},\bar{v},\bar{w}] \\
(3) & \quad \bar{x},y,\bar{z} [\bar{u},\bar{v},w] \\
(4) & \quad x,y,\bar{z} [\bar{u},v,w] \\
(5) & \quad z,x,y [w,u,v] \\
(6) & \quad z,x,y [w,u,v] \\
(7) & \quad \bar{z},x,y [w,u,v] \\
(8) & \quad \bar{z},x,\bar{y} [w,u,v] \\
(9) & \quad y,z,x [v,w,u] \\
(10) & \quad \bar{y},z,\bar{x} [\bar{v},w,u] \\
(11) & \quad \bar{y},\bar{z},\bar{x} [\bar{v},w,u] \\
(12) & \quad \bar{y},z,\bar{x} [\bar{v},\bar{w},u] \\
(13) & \quad \bar{z},x,\bar{y} [\bar{u},v,w] \\
(14) & \quad \bar{z},x,\bar{y} [\bar{u},v,w] \\
(15) & \quad \bar{z},x,\bar{y} [\bar{u},v,w] \\
(16) & \quad \bar{z},x,\bar{y} [\bar{u},\bar{v},w] \\
(17) & \quad \bar{z},x,\bar{y} [\bar{u},\bar{v},w] \\
(18) & \quad \bar{z},x,\bar{y} [\bar{u},\bar{v},w] \\
(19) & \quad \bar{z},x,\bar{y} [\bar{u},\bar{v},w] \\
(20) & \quad \bar{z},x,\bar{y} [\bar{u},\bar{v},w] \\
(21) & \quad \bar{z},x,\bar{y} [\bar{u},\bar{v},w] \\
(22) & \quad \bar{z},x,\bar{y} [\bar{u},\bar{v},w] \\
(23) & \quad \bar{z},x,\bar{y} [\bar{u},\bar{v},w] \\
(24) & \quad \bar{z},x,\bar{y} [\bar{u},\bar{v},w] \\
\end{align*}

Coordinates

\((0,0,0) + (1/2,1/2,1/2) + \)
Continued

24 g m'.. 0,y,z [0,v,w] 0,y,z [0,v,w] 0,y,z [0,v,w]
0,y,z [0,v,w] z,0,y [w,0,v] z,0,y [w,0,v]
\bar{z},0,y [w,0,v] \bar{z},0,y [w,0,v] y,z,0 [v,w,0]
y,z,0 [v,w,0] y,z,0 [v,w,0] \bar{y},z,0 [\bar{v},w,0]
\bar{y},z,0 [\bar{v},w,0] \bar{y},z,0 [\bar{v},w,0] \bar{y},z,0 [\bar{v},w,0]

16 f .3. x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u]
x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u]

12 e m'm'2.. x,0,1/2 [u,0,0] 1/2,x,0 [u,0,0] 1/2,x,0 [u,0,0]
1/2,x,0 [u,0,0] 0,1/2,x [0,0,u] 0,1/2,x [0,0,u]

12 d m'm'2.. x,0,0 [u,0,0] 0,x,0 [0,0,u] 0,x,0 [0,0,u]
0,x,0 [0,0,u] 0,0,x [0,0,u] 0,0,x [0,0,u]

8 c \bar{3}'. 1/4,1/4,1/4 [0,0,0] 3/4,3/4,1/4 [0,0,0] 3/4,3/4,1/4 [0,0,0] 1/4,3/4,3/4 [0,0,0]

6 b m'm'm'.. 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,0,1/2 [0,0,0]

2 a m'3'. 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] c2m'm'
\textbf{a}^* = a \textbf{b}^* = b
Origin at 0,0,z

Along [1,1,1] p6
\textbf{a}^* = (2a - b - c)/3 \textbf{b}^* = (-a + 2b - c)/3
Origin at x,x,x

Along [1,1,0] p2m'm'
\textbf{a}^* = (-a + b)/2 \textbf{b}^* = c/2
Origin at x,x,0

204.3.1532 - 3 - 3417
Origin at center (m3)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq x; \quad z \leq y \]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 1/2,1/2,1/2 \]

Symmetry Operations

For \((0,0,0) + \text{set}\)

\[
\begin{align*}
\text{(1) } & 1 \\
\text{(1) } & (1 | 0,0,0) \\
\text{(2) } & 2 \ 0,0,z \\
\text{(2) } & (2z | 0,0,0) \\
\text{(3) } & 2 \ 0,y,0 \\
\text{(3) } & (2y | 0,0,0) \\
\text{(4) } & 2 \ x,0,0 \\
\text{(4) } & (2x | 0,0,0) \\
\text{(5) } & 3^+ \ x,x,x \\
\text{(5) } & (3_{xyz} | 0,0,0) \\
\text{(6) } & 3^+ \bar{x},x,\bar{x} \\
\text{(6) } & (3_{xyz}^{-1} | 0,0,0) \\
\text{(7) } & 3^+ \bar{x},\bar{x},x \\
\text{(7) } & (3_{xyz}^{-1} | 0,0,0) \\
\text{(8) } & 3^+ \bar{x},\bar{x},x \\
\text{(8) } & (3_{xyz}^{-1} | 0,0,0) \\
\text{(9) } & 3^+ \ x,x,x \\
\text{(9) } & (3_{xyz}^{-1} | 0,0,0) \\
\text{(10) } & 3^+ \bar{x},\bar{x},\bar{x} \\
\text{(10) } & (3_{xyz}^{-1} | 0,0,0) \\
\text{(11) } & 3^+ \bar{x},\bar{x},x \\
\text{(11) } & (3_{xyz}^{-1} | 0,0,0) \\
\text{(12) } & 3^+ \bar{x},\bar{x},x \\
\text{(12) } & (3_{xyz}^{-1} | 0,0,0) \\
\end{align*}
\]

Continued
(13) $\bar{1}$ 0,0,0 \\
(14) m x,y,0 \\
(15) m x,0,z \\
(16) m 0,y,z

(17) 3^* x,x;x 0,0,0 \\
(18) 3^* x,x,x 0,0,0 \\
(19) 3^* x,x,x 0,0,0

(21) 3^* x,x;x 0,0,0 \\
(22) 3^* x,x,x 0,0,0 \\
(23) 3^* x,x,x 0,0,0

For $(1/2,1/2,1/2)' + \text{set}$

(1) t' (1/2,1/2,1/2) \\
(2) t' (0,0,1/2) \\
(3) t' (0,1/2,0) \\
(4) t' (1/2,0,0) \\
(5) 3^* (1/2,1/2,1/2) x,x,x \\
(6) 3^* (1/6,-1/6,1/6) x+1/3,x+1/3,x \\
(7) 3^* (-1/6,1/6,1/6) x+2/3,x-1/3,x \\
(8) 3^* (1/6,1/6,-1/6) x+1/3,x+2/3,x \\
(9) 3^* (1/2,1/2,1/2) x,x,x \\
(10) 3^* (-1/6,1/6,1/6) x+1/3,x+1/3,x \\
(11) 3^* (-1/6,1/6,-1/6) x+2/3,x+1/3,x \\
(12) 3^* (1/6,-1/6,1/6) x-1/3,x+2/3,x \\
(13) $\bar{1}$ 1/4,1/4,1/4 \\
(14) n' (1/2,1/2,0) x,y,1/4 \\
(15) n' (1/2,0,1/2) x,1/4,z \\
(16) n' (0,1/2,1/2) 1/4,y,z \\
(17) 3^* x,x,x; \\
1/4,1/4,1/4 \\
(18) 3^* -x,-x+1,-x; \\
1/4,1/4,3/4 \\
(19) 3^* x,x+1,x; \\
1/4,3/4,-1/4 \\
(20) 3^* x+1,x,x; \\
3/4,-1/4,1/4

(21) 3^* x,x,x; \\
1/4,1/4,1/4 \\
(22) 3^* x+1,-x+1,-x; \\
1/4,-1/4,3/4 \\
(23) 3^* x,x+1,x; \\
1/4,3/4,1/4 \\
(24) 3^* x+1,x,-x; \\
3/4,1/4,-1/4

Generators selected
(1); (1,0,0); (0,1,0); (0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

$48 \ h \ 1$

(1) x,y,z [u,v,w] \\
(2) $\bar{x},\bar{y},\bar{z} [\bar{u},\bar{v},\bar{w}]$ \\
(3) $x,y,z [u,v,w]$ \\
(4) $x,y,\bar{z} [u,\bar{v},\bar{w}]$

(5) z,x,y [w,u,v] \\
(6) z,x,y [w,u,v] \\
(7) $\bar{z},x,y [w,u,v]$ \\
(8) $z,x,\bar{y} [w,u,\bar{v}]$

(9) y,z,x [v,w,u] \\
(10) $\bar{y},\bar{z},\bar{x} [\bar{v},\bar{w},\bar{u}]$ \\
(11) y,z,x [v,w,u] \\
(12) $\bar{y},\bar{z},\bar{x} [\bar{v},\bar{w},\bar{u}]$

(13) $\bar{x},y,\bar{z} [u,v,w]$ \\
(14) $\bar{x},y,\bar{z} [u,v,w]$ \\
(15) x,y,z [u,v,w] \\
(16) x,y,z [u,v,w]

(17) $\bar{z},x,y [w,u,v]$ \\
(18) $\bar{z},x,y [w,u,v]$ \\
(19) z,x,\bar{y} [w,u,v] \\
(20) z,x,\bar{y} [w,u,v]

(21) $\bar{y},\bar{z},\bar{x} [v,w,u]$ \\
(22) $\bar{y},\bar{z},\bar{x} [v,w,u]$ \\
(23) y,z,x [v,w,u] \\
(24) $\bar{y},\bar{z},\bar{x} [\bar{v},\bar{w},\bar{u}]$

Continued 204.4.1533 \\
Continued 204.4.1533 - 2 - 3419

$204.4.1533 \ I_{p} m\bar{3}$
24 g m.. 0,y,z [u,0,0] 0,y,z [u,0,0] 0,y,z [u,0,0]
0,y,z [u,0,0] z,0,y [0,u,0] z,0,y [0,u,0]
3,0,y [u,0,0] 3,0,y [u,0,0] y,z,0 [0,0,u] y,z,0 [0,0,u]

16 f 3. x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u]
 x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u]

12 e mm2.. x,0,1/2 [0,0,0] 1/2,x,0 [0,0,0] 1/2,x,0 [0,0,0]
1/2,x,0 [0,0,0] 0,1/2,x [0,0,0] 0,1/2,x [0,0,0]
1/2,x,0 [0,0,0] 0,1/2,x [0,0,0] 0,1/2,x [0,0,0]

12 d mm2.. x,0,0 [0,0,0] 0,x,0 [0,0,0] 0,x,0 [0,0,0]
0,x,0 [0,0,0] 0,0,x [0,0,0] 0,0,x [0,0,0]
0,x,0 [0,0,0] 0,0,x [0,0,0] 0,0,x [0,0,0]

8 c 3'. 1/4,1/4,1/4 [0,0,0] 3/4,3/4,1/4 [0,0,0] 3/4,1/4,3/4 [0,0,0] 1/4,3/4,3/4 [0,0,0]
6 b mmm.. 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0]

2 a m3. 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] c2mm1' Along [1,1,1] p61' Along [1,1,0] p2a' 2mm
a* = a, b* = b a* = (2a - b - c)/3 b* = (-a + 2b - c)/3 a* = c/2 b* = (-a + b)/2
Origin at 0,0,z Origin at x,x,x Origin at x-1/4,x+1/4,0

204.4.1533 - 3 - 3420
Origin at center ($m'3'$)

Asymmetric unit

$x: 0 \leq x \leq 1/2$

$y: 0 \leq y < 1/2$

$z: 0 \leq z < 1/2$

$y: y < x$

$z: z < y$

Vertices

$0,0,0$

$1/2,0,0$

$1/2,1/2,0$

$1/2,1/2,1/2$

Symmetry Operations

For $(0,0,0) +$ set

1. 1

2. $2,0,0,z$

3. $2,0,y,0$

4. $2,x,0,0$

5. $3^+ x,x,x$

6. $3^+ x,x,x$

7. $3^+ x,x,x$

8. $3^+ x,x,x$

9. $3^+ x,x,x$

10. $3^+ x,x,x$

11. $3^+ x,x,x$

12. $3^+ x,x,x$

Continued on the next page.
Positions selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (13).

Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (13).

Coordinates

Multiplicity, Wyckoff letter, Site Symmetry:

48 h 1

(0,0,0) + (1/2,1/2,1/2)' +

(1) x,y,z [u,v,w]
(2) x-x, z-y, z [u,v,w]
(3) x,y,z [u,v,w]
(4) x,y,z [u,v,w]

(5) z,x,y [w,u,v]
(6) z-x, y-y, y [w,u,v]
(7) z,x,y [w,u,v]
(8) z,x,y [w,u,v]

(9) y,z,x [v,w,u]
(10) y-z,x [v,w,u]
(11) y,z,x [v,w,u]
(12) y,z,x [v,w,u]

(13) x,y,z [u,v,w]
(14) x,y,z [u,v,w]
(15) x,y,z [u,v,w]
(16) x,y,z [u,v,w]

(17) z,x,y [w,u,v]
(18) z,x,y [w,u,v]
(19) z,x,y [w,u,v]
(20) z,x,y [w,u,v]

(21) y,z,x [v,w,u]
(22) y,z,x [v,w,u]
(23) y,z,x [v,w,u]
(24) y,z,x [v,w,u]

Continued

204.5.1534

l, m, 3′
Symmetry of Special Projections

Along [0,0,1] \(c_p\) 2m'm'
\[a^* = a, b^* = b\]
Origin at 0,0,z

Along [1,1,1] p61'
\[a^* = (2a - b - c)/3, b^* = (-a + 2b - c)/3\]
Origin at x,x,x

Along [1,1,0] \(p_{3a}\) 2m'm'
\[a^* = (-a + b)/2, b^* = c/2\]
Origin at x,x,0
Pa3

Cubic

205.1.1535

P21/a3

Origin at center (3)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad z \leq \min (x,y) \]

Vertices

0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 0,1/2,0 \quad 1/2,1/2,1/2

Symmetry Operations

(1) 1

(1 | 0,0,0)

(2) 2 (0,0,1/2) \quad 1/4,0,z

(2z | 1/2,0,1/2)

(3) 2 (0,1/2,0) \quad 0,y,1/4

(2y | 0,1/2,1/2)

(4) 2 (1/2,0,0) \quad x,1/4,0

(2x | 1/2,1/2,0)

(5) 3+ x,x,x

(3xyz | 0,0,0)

(6) 3+ x+1/2,x,x

(3xyz^{-1} | 1/2,1/2,0)

(7) 3+ x+1/2,x-1/2,x

(3xyz^{-1} | 1/2,0,1/2)

(8) 3+ x,x+1/2,x

(3xyz^{-1} | 0,1/2,1/2)

(9) 3- x,x,x

(3xyz^{-1} | 0,0,0)

(10) 3- (-1/3,1/3,1/3)

x+1/6,x+1/6,x

(3xyz | 0,1/2,1/2)

(11) 3- (1/3,1/3,-1/3)

x+1/3,x+1/6,x

(3xyz | 1/2,1/2,0)

(12) 3- (1/3,-1/3,1/3)

x-1/6,x+1/3,x

(3xyz | 1/2,0,1/2)
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

24 d 1

(1) x,y,z \[u,v,w\] (2) x+1/2,y,z+1/2 \[u,v,w\] (3) x,y+1/2,z+1/2 \[u,v,w\] (4) x+1/2,y+1/2,z \[u,v,w\]

Along [0,0,1] \(p_{2g} \), 2mg
\(a^* = b \) \(b^* = -a/2 \)
Origin at 0,0,z

8 c .3. x,x,x \[u,u,u\] x,x,x \[u,u,u\] x+1/2,x+1/2 \[u,u,u\] x+1/2,x+1/2 \[u,u,u\] x+1/2,x+1/2 \[u,u,u\]

4 b .3. 1/2,1/2,1/2 \[u,u,u\] 0,1/2,0 \[u,u,u\] 1/2,0,0 \[u,u,u\] 0,1/2 \[u,u,u\] 0,1/2 \[u,u,u\]

4 a .3. 0,0,0 \[u,u,u\] 1/2,0,1/2 \[u,u,u\] 0,1/2,1/2 \[u,u,u\] 1/2,1/2,0 \[u,u,u\]

Symmetry of Special Projections

Along [0,0,1] \p_{2g}, 2mg\n\(a^* = b \) \(b^* = -a/2 \)
Origin at 0,0,z

Along [1,1,1] \p_{6}'\n\(a^* = (2a-b-c)/3 \) \(b^* = (-a+2b-c)/3 \)
Origin at x,x,x

Along [1,1,0] \p_{2g}'\n\(a^* = -a + b)/2 \) \(b^* = c \)
Origin at x,x,0

205.1.1535 - 2 - 3425
Symmetry Operations

Origin at center (3 1’)

Asymmetric unit

- $0 \leq x \leq 1/2$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1/2$; $z \leq \min(x,y)$

Vertices

- $(0,0,0)$
- $(1/2,0,0)$
- $(1/2,1/2,0)$
- $(0,1/2,0)$
- $(1/2,1/2,1/2)$

Symmetry Operations

For 1 + set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Matrix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(1</td>
<td>$0,0,0$</td>
<td></td>
</tr>
<tr>
<td>(2) 2</td>
<td>$0,0,1/2$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>$(2</td>
<td>z/2</td>
<td>$1/2,0,1/2$</td>
</tr>
<tr>
<td>(3) 2</td>
<td>$(0,1/2,0)$</td>
<td>$0,y,1/4$</td>
</tr>
<tr>
<td>$(2</td>
<td>y/2</td>
<td>$0,1/2,1/2$</td>
</tr>
<tr>
<td>(4) 2</td>
<td>$(1/2,0,0)$</td>
<td>$x,1/4,0$</td>
</tr>
<tr>
<td>$(2</td>
<td>x/2</td>
<td>$1/2,1/2,0$</td>
</tr>
<tr>
<td>(5) 3^+</td>
<td>x,y,z</td>
<td>$x+1/2$</td>
</tr>
<tr>
<td>$(3</td>
<td>x/2</td>
<td>$x+1/2,0,1/2$</td>
</tr>
<tr>
<td>(6) 3^+</td>
<td>$x+1/2,x$</td>
<td>$x+1/2,1/2,0$</td>
</tr>
<tr>
<td>$(3</td>
<td>x/2</td>
<td>$x+1/2,1/2,0$</td>
</tr>
<tr>
<td>(7) 3^+</td>
<td>x,y,z</td>
<td>$x+1/2$</td>
</tr>
<tr>
<td>$(3</td>
<td>x/2</td>
<td>$x+1/2,0,1/2$</td>
</tr>
<tr>
<td>(8) 3^+</td>
<td>x,y,z</td>
<td>$x+1/2$</td>
</tr>
<tr>
<td>$(3</td>
<td>x/2</td>
<td>$x+1/2,1/2,0$</td>
</tr>
<tr>
<td>(9) 3^-</td>
<td>x,y,z</td>
<td>$x-1/2$</td>
</tr>
<tr>
<td>$(3</td>
<td>x/2</td>
<td>$x-1/2,0,1/2$</td>
</tr>
<tr>
<td>(10) 3^-</td>
<td>$x+1/6,x+1/6$</td>
<td>$x+1/6,0,1/2$</td>
</tr>
<tr>
<td>$(3</td>
<td>x/2</td>
<td>$x+1/6,0,1/2$</td>
</tr>
<tr>
<td>(11) 3^-</td>
<td>$x+1/3,x+1/6$</td>
<td>$x+1/3,0,1/2$</td>
</tr>
<tr>
<td>$(3</td>
<td>x/2</td>
<td>$x+1/3,0,1/2$</td>
</tr>
<tr>
<td>(12) 3^-</td>
<td>$(1/3,-1/3,1/3)$</td>
<td>$x-1/6,x+1/3$</td>
</tr>
<tr>
<td>$(3</td>
<td>x/2</td>
<td>$x-1/6,0,1/2$</td>
</tr>
</tbody>
</table>

Continued

205.2.1536
(13) \(\bar{1} \) 0,0,0
(1\bar{1}) 0,0,0
(1) 0,0,0
(1') 0,0,0

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity,</td>
<td></td>
</tr>
<tr>
<td>Wyckoff letter,</td>
<td></td>
</tr>
<tr>
<td>Site Symmetry.</td>
<td></td>
</tr>
<tr>
<td>24 d 11'</td>
<td></td>
</tr>
</tbody>
</table>

(1) x,y,z [0,0,0]
(2) \(x+1/2, y, z+1/2 \) [0,0,0]
(3) \(x, y+1/2, z+1/2 \) [0,0,0]
(4) \(x+1/2, y+1/2, z \) [0,0,0]
(5) z,x,y [0,0,0]
(6) \(z+1/2, x+1/2, y \) [0,0,0]
(7) \(z+1/2, x, y+1/2 \) [0,0,0]
(8) \(z, x+1/2, y+1/2 \) [0,0,0]
(9) y,z,x [0,0,0]
(10) \(y, z+1/2, x+1/2 \) [0,0,0]
(11) \(y+1/2, z+1/2, x \) [0,0,0]
(12) \(y+1/2, z, x+1/2 \) [0,0,0]
(13) \(x, y, z \) [0,0,0]
(14) \(x+1/2, y, z+1/2 \) [0,0,0]
(15) \(x, y+1/2, z+1/2 \) [0,0,0]
(16) \(x+1/2, y+1/2, z \) [0,0,0]
(17) \(z, x, y \) [0,0,0]
(18) \(z+1/2, x+1/2, y \) [0,0,0]
(19) \(z+1/2, x, y+1/2 \) [0,0,0]
(20) \(z, x+1/2, y+1/2 \) [0,0,0]
(21) \(y, z, x \) [0,0,0]
(22) \(y, z+1/2, x+1/2 \) [0,0,0]
(23) \(y+1/2, z+1/2, x \) [0,0,0]
(24) \(y+1/2, z, x+1/2 \) [0,0,0]

Generators selected

(1): t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); 1'.
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin at x,x,x</th>
<th>Origin at x,x,x</th>
<th>Origin at x,x,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,x,x [0,0,0]</td>
<td>x+1/2,x,x+1/2</td>
<td>x+1/2,x+1/2,x+1/2 [0,0,0]</td>
</tr>
<tr>
<td>x+1/2,x,x+1/2</td>
<td>x,x+1/2,x+1/2</td>
<td>x+1/2,x+1/2,x+1/2 [0,0,0]</td>
</tr>
<tr>
<td>x+1/2,x,x+1/2</td>
<td>x,x+1/2,x+1/2</td>
<td>x+1/2,x+1/2,x+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Along [0,0,1] p2mg1'

- \(a^* = b \quad b^* = -a/2 \)
- Origin at 0,0,z

Along [1,1,1] p61'

- \(a^* = (2a - b - c)/3 \quad b^* = (-a + 2b - c)/3 \)
- Origin at x,x,x

Along [1,1,0] p2gg1'

- \(a^* = (-a + b)/2 \quad b^* = c \)
- Origin at x,x,0
Origin at center (3*)

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; z ≤ min (x,y)

Vertices
0,0,0 1/2,0,0 1/2,1/2,0 0,1/2,0 1/2,1/2,1/2

Symmetry Operations

(1) 1
(1|0,0,0)

(2) 2 (0,0,1/2) 1/4,0,z
(2z|1/2,0,1/2)

(3) 2 (0,1/2,0) 0,y,1/4
(2y|0,1/2,1/2)

(4) 2 (1/2,0,0) x,1/4,0
(2z|1/2,1/2,0)

(5) 3* x,x,x
(3xy|0,0,0)

(6) 3* x+1/2,x,\overline{x}
(3xy|1/2,1/2,0)

(7) 3* x+1/2,\overline{x}-1/2,\overline{x}
(3xy|1/2,0,1/2)

(8) 3* \overline{x},x+1/2,\overline{x}
(3xy|0,1/2,1/2)

(9) 3* x,x,x
(3xy|0,0,0)

(10) 3* -1/3,1/3,1/3
(3xy|0,1/2,1/2)

(11) 3* 1/3,1/3,-1/3
(3xy|1/2,1/2,0)

(12) 3* 1/3,-1/3,1/3
(3xy|1/2,0,1/2)

205.3.1537 - 1 - 3429
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>24</th>
<th>d</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(2)</td>
<td>x+1/2,y+1/2,z+1/2</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(3)</td>
<td>x,y+1/2,z+1/2</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(4)</td>
<td>x+1/2,y+1/2,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>5</td>
<td>z,x,y</td>
<td>[w,u,v]</td>
</tr>
<tr>
<td>(6)</td>
<td>z+1/2,x+1/2,y</td>
<td>[w,u,v]</td>
</tr>
<tr>
<td>(7)</td>
<td>z+1/2,x,y+1/2</td>
<td>[w,u,v]</td>
</tr>
<tr>
<td>(8)</td>
<td>z,x+1/2,y+1/2</td>
<td>[w,u,v]</td>
</tr>
<tr>
<td>(9)</td>
<td>y,z,x</td>
<td>[v,w,u]</td>
</tr>
<tr>
<td>(10)</td>
<td>y,z+1/2,x+1/2</td>
<td>[v,w,u]</td>
</tr>
<tr>
<td>(11)</td>
<td>y+1/2,z+1/2,x</td>
<td>[v,w,u]</td>
</tr>
<tr>
<td>(12)</td>
<td>y+1/2,z,x+1/2</td>
<td>[v,w,u]</td>
</tr>
<tr>
<td>13</td>
<td>x,y,z</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(14)</td>
<td>x+1/2,y,z+1/2</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(15)</td>
<td>x,y+1/2,z+1/2</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>(16)</td>
<td>x+1/2,y,z+1/2</td>
<td>[u,v,w]</td>
</tr>
<tr>
<td>17</td>
<td>z,x,y</td>
<td>[v,w,u]</td>
</tr>
<tr>
<td>(18)</td>
<td>z+1/2,x+1/2,y</td>
<td>[v,w,u]</td>
</tr>
<tr>
<td>(19)</td>
<td>z+1/2,x,y+1/2</td>
<td>[v,w,u]</td>
</tr>
<tr>
<td>(20)</td>
<td>z,x+1/2,y+1/2</td>
<td>[v,w,u]</td>
</tr>
<tr>
<td>21</td>
<td>y,z,x</td>
<td>[v,w,u]</td>
</tr>
<tr>
<td>(22)</td>
<td>y,z+1/2,x+1/2</td>
<td>[v,w,u]</td>
</tr>
<tr>
<td>(23)</td>
<td>y+1/2,z+1/2,x</td>
<td>[v,w,u]</td>
</tr>
<tr>
<td>(24)</td>
<td>y+1/2,z,x+1/2</td>
<td>[v,w,u]</td>
</tr>
</tbody>
</table>

8 | c | .3. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x,x,x</td>
<td>[u,u,u]</td>
<td></td>
</tr>
<tr>
<td>x+1/2,x,x+1/2</td>
<td>[u,u,u]</td>
<td></td>
</tr>
<tr>
<td>x,x+1/2,x+1/2</td>
<td>[u,u,u]</td>
<td></td>
</tr>
<tr>
<td>x+1/2,x+1/2,x</td>
<td>[u,u,u]</td>
<td></td>
</tr>
<tr>
<td>x+1/2,x,x</td>
<td>[u,u,u]</td>
<td></td>
</tr>
<tr>
<td>x+1/2,x,x+1/2</td>
<td>[u,u,u]</td>
<td></td>
</tr>
<tr>
<td>x,x+1/2,x+1/2</td>
<td>[u,u,u]</td>
<td></td>
</tr>
<tr>
<td>x,x+1/2,x+1/2</td>
<td>[u,u,u]</td>
<td></td>
</tr>
</tbody>
</table>

4 | b | .3'. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2,1/2,1/2</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,1/2,0</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1/2,0,0</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>0,0,1/2</td>
<td>[0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

4 | a | .3'. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1/2,0,1/2</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1/2,1/2,0</td>
<td>[0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1/2,1/2,0</td>
<td>[0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1]: p2m'g'

a* = b b* = -a/2
Origin at 0,0,z

Along [1,1,1]: p6
a* = (2a - b - c)/3 b* = (-a + 2b - c)/3
Origin at x,x,x

Along [1,1,0]: p2g'g'
a* = (-a + b)/2 b* = c
Origin at x,x,0
Origin at center (\&)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad z \leq \min (x,y)\]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 0,1/2,0 \quad 1/2,1/2,1/2\]

Symmetry Operations

For \((0,0,0) + \text{ set}\)

\begin{align*}
1 & \quad (1^0,0,0) \\
2 & \quad (2,0,0,1/2) \quad 1/4,0,z \\
3 & \quad (2,0,1/2,0,1/2) \quad 0,y,1/4 \\
4 & \quad (2,0,1/2,1/2,0) \quad x,1/4,0 \\
5 & \quad (3,0,0,0) \quad 1/2,0,1/2 \\
6 & \quad (3,0,1/2,0) \quad 0,1/2,1/2 \\
7 & \quad (3,0,1/2,1/2,0) \quad x,1/4,0 \\
8 & \quad (3,0,1/2,2,1/2,0) \quad x,1/4,0 \\
9 & \quad (3,0,1/2,2,1/2,0) \quad x,1/4,0 \\
10 & \quad (3,0,1/2,1/2,0) \quad x,1/4,0 \\
11 & \quad (3,0,1/2,2,1/2,0) \quad x,1/4,0 \\
12 & \quad (3,0,1/2,2,1/2,0) \quad x,1/4,0 \\
\end{align*}
Continued

(13) $\overline{1}$ 0,0,0
 (1) | 0,0,0)

(14) a (1/2,0,0) x,y,1/4
 (m$_z$ | 1/2,0,1/2)

(15) c (0,0,1/2) x,1/4,z
 (m$_y$ | 0,1/2,1/2)

(16) b (0,1/2,0) 1/4,y,z
 (m$_x$ | 1/2,1/2,0)

(17) $\overline{3}$ x,x,x;
 0,0,0
 (3$_{xyz}$ | 0,0,0)

(18) $\overline{3}$ x-1/2,x+1/2,x;
 1/2,1/2
 (3$_{xyz}^{-1}$ | 1/2,1/2,0)

(19) $\overline{3}$ x+1/2,x+1/2,x;
 1/2,1/2,0
 (3$_{xyz}^{-1}$ | 1/2,0,1/2)

(20) $\overline{3}$ x+1,x+1/2,x;
 1/2,0,1/2
 (3$_{xyz}^{-1}$ | 0,1/2,1/2)

(21) $\overline{3}$ x,x,x;
 0,0,0
 (3$_{xyz}^{-1}$ | 0,1/2,1/2)

For (1/2,1/2,1/2) + set

(1) 1
(1/2,1/2,1/2)

(2) 2 0,1/4,z
(2$_z$ | 0,1/2,0)

(3) 2 1/4,y,0
(2$_y$ | 1/2,0,0)

(4) 2 x,0,1/4
(2$_x$ | 0,0,1/2)

(5) $\overline{3}$ (1/2,1/2,1/2) x,x,x
 (3$_{xyz}$ | 1/2,1/2,1/2)

(6) $\overline{3}$ (1/6,-1/6,1/6)
 x-1/6,x+1/3,x
 (3$_{xyz}^{-1}$ | 0,0,1/2)

(7) $\overline{3}$ (-1/6,1/6,1/6)
 x+1/6,x+1/3,x
 (3$_{xyz}^{-1}$ | 0,1/2,0)

(8) $\overline{3}$ (1/6,1/6,-1/6)
 x+1/3,x+1/6,x
 (3$_{xyz}^{-1}$ | 1/2,0,0)

(9) $\overline{3}$ (1/2,1/2,1/2) x,x,x
 (3$_{xyz}^{-1}$ | 1/2,1/2,1/2)

(10) $\overline{3}$ (1/6,-1/6,-1/6)
 x+1/6,x+1/3,x
 (3$_{xyz} | 0,0,1/2)

(11) $\overline{3}$ (-1/6,1/6,-1/6)
 x+1/3,x+1/6,x
 (3$_{xyz} | 0,1/2,0)

(12) $\overline{3}$ (-1/6,1/6,1/6)
 x-1/6,x+1/3,x
 (3$_{xyz} | 0,0,1/2)

(13) $\overline{1}$ 1/4,1/4,1/4
 (1/2,1/2,1/2)

(14) b (0,1/2,0) x,y,0
 (m$_z$ | 0,1/2,0)

(15) a (1/2,0,0) x,0,z
 (m$_y$ | 1/2,0,0)

(16) c (0,0,1/2) 0,y,z
 (m$_x$ | 0,0,1/2)

(17) $\overline{3}$ x,x,x;
 1/4,1/4,1/4
 (3$_{xyz} | 1/2,1/2,1/2)

(18) $\overline{3}$ x-1/2,x,x;
 1/4,-1/4,1/4
 (3$_{xyz}^{-1}$ | 0,0,1/2)

(19) $\overline{3}$ x+1/2,x+1/2,x;
 1/4,-1/4,1/4
 (3$_{xyz}^{-1}$ | 0,1/2,0)

(20) $\overline{3}$ x+1/2,x,x;
 1/4,-1/4,1/4
 (3$_{xyz}^{-1}$ | 1/2,0,0)

(21) $\overline{3}$ x,x,x;
 1/4,1/4,1/4
 (3$_{xyz}^{-1} | 1/2,1/2,1/2)

(22) $\overline{3}$ x+1/2,x-1/2,x;
 1/4,-1/4,1/4
 (3$_{xyz}^{-1} | 0,0,1/2)

(23) $\overline{3}$ x,x+1/2,x;
 1/4,-1/4,1/4
 (3$_{xyz}^{-1} | 0,1/2,0)

(24) $\overline{3}$ x+1/2,x,x;
 1/4,-1/4,1/4
 (3$_{xyz}^{-1} | 1/2,0,0)

Generators selected

(1): t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13).

Positions

Multiplicity
Wyckoff letter
Site Symmetry.
24 d 2.. x,0,1/4 [u,0,0] \(\bar{x}+1/2,0,3/4 [u,0,0] \) \(\frac{1}{4},x,0 [0,u,0] \) \(3/4,\bar{x}+1/2,0 [0,\bar{u},0] \)
 \(0,1/4,x [0,0,u] \) \(0,3/4,\bar{x}+1/2 [0,0,\bar{u}] \) \(\bar{x},0,3/4 [u,0,0] \) \(x+1/2,0,1/4 [\bar{u},0,0] \)
 \(3/4,\bar{x},0 [0,u,0] \) \(1/4,\bar{x}+1/2,0 [0,u,0] \) \(0,3/4,\bar{x} [0,0,u] \) \(0,1/4,\bar{x}+1/2 [0,0,\bar{u}] \)
16 c .3. x,x,x [u,u,u] \(\bar{x}+1/2,x,x+1/2 [u,u,u] \) \(\bar{x},x+1/2,x+1/2 [u,u,u] \) \(x+1/2,\bar{x}+1/2,x [u,u,u] \)
 \(\bar{x},\bar{x},\bar{x} [u,u,u] \) \(x+1/2,\bar{x},\bar{x}+1/2 [u,u,u] \) \(\bar{x},x+1/2,\bar{x}+1/2 [u,u,u] \) \(\bar{x}+1/2,\bar{x}+1/2,x [u,u,u] \)
8 b .3. 1/4,1/4,1/4 [u,u,u] \(1/4,3/4,3/4 [u,u,u] \) \(3/4,3/4,1/4 [u,u,u] \) \(3/4,1/4,3/4 [u,u,u] \)
8 a .3. 0,0,0 [u,u,u] \(1/2,0,1/2 [u,u,u] \) \(0,1/2,1/2 [u,u,u] \) \(1/2,1/2,0 [u,u,u] \)

Symmetry of Special Projections

Along [0,0,1] \(p_{2\bar{y}} \) 2mm
\(a^* = a/2 \) \(b^* = b/2 \)
Origin at 0,1/4,z

Along [1,1,1] \(p6' \)
\(a^* = (2a - b - c)/3 \) \(b^* = (-a + 2b - c)/3 \)
Origin at x,x,x

Along [1,1,0] \(p2'mg' \)
\(a^* = (-a + b)/2 \) \(b^* = c/2 \)
Origin at x,x,0
Origin at centre

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad z \leq \min (x,y) \]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 0,1/2,0 \quad 1/2,1/2,1/2 \]

Symmetry Operations

For \((0,0,0) + \) set

1. \(1 \quad (1') 0,0,0 \)
2. \(2 \quad (0,0,1/2) \quad 1/4,0,z \quad (2,1/2,0,1/2) \)
3. \(2 \quad (0,1/2,0) \quad 0,y,1/4 \quad (2,1/2,1/2,0) \)
4. \(2 \quad (1/2,0,0) \quad x,1/4,0 \)
5. \(3^+ x,x,x \quad (3_{xyz}^{0,0,0,0}) \)
6. \(3^- \quad \&+1/2,x,\& \quad (3_{xyz}^{-1/2,1/2,0}) \)
7. \(3^- \quad x+1/2,\&-1/2,\& \quad (3_{xyz}^{1/2,0,1/2}) \)
8. \(3^- \quad \&,\&+1/2,x \quad (3_{xyz}^{0,1/2,1/2}) \)
9. \(3^- x,x,x \quad (3_{xyz}^{-1/2,0,0,0}) \)
10. \(3^- (-1/3,1/3,1/3) \quad x+1/6,\&+1/6,\& \quad (3_{xyz}^{0,1/2,1/2}) \)
11. \(3^- (1/3,1/3,-1/3) \quad \&+1/3,\&+1/6,\& \quad (3_{xyz}^{0,1/2,1/2,0}) \)
12. \(3^- (1/3,-1/3,1/3) \quad \&-1/6,\&+1/3,\& \quad (3_{xyz}^{1/2,0,1/2}) \)
Continued 206.2.1539 la31'

For (1/2,1/2,1/2)' + set

(1) 1' (2) 2' 0,1/4,z (3) 2' 1/4,y,0 (4) 2' x,0,1/4
(1/2,1/2,1/2)' (2/2,1/2,0)' (2/2,1/2,0)' (2,0,1/2)'

(5) 3' · (1/2,1/2,1/2) x,x,x (6) 3' · (1/6,-1/6,1/6)
(3,xyz | 1/2,1/2,1/2) (3,xyz | 1/2,1/2,1/2)

(1) 1/2,1/2,1/2)' (2 0,1/2,0)' (2 y 1/2,0,0)'

(9) 3' · (1/2,1/2,1/2) x,x,x (10) 3' · (1/6,-1/6,1/6)
(3,xyz | 1/2,1/2,1/2)' (3,xyz | 1/2,1/2,1/2)'

(13) 3' · 1/4,1/4,1/4 (14) b' (0,1/2,0) x,y,0
(1/2,1/2,1/2)'

(17) 3' · x,x,x; (18) 3' · x-1/2,x, x;
(3,xyz | 1/2,1/2,1/2)' (3,xyz | 1/2,1/2,1/2)'

(21) 3' · x,x,x; (22) 3' · x+1/2,x-1/2,x;
(3,xyz | 1/2,1/2,1/2)' (3,xyz | 1/2,1/2,1/2)'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z</td>
<td>(0,0,0) + (1/2,1/2,1/2) + (0,0,0)' + (1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>(5) z,x,y</td>
<td>(0,0,0) + (1/2,1/2,1/2) + (0,0,0)' + (1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>(9) y,z,x</td>
<td>(0,0,0) + (1/2,1/2,1/2) + (0,0,0)' + (1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>(13) x,y,z</td>
<td>(0,0,0) + (1/2,1/2,1/2) + (0,0,0)' + (1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>(17) z,x,y</td>
<td>(0,0,0) + (1/2,1/2,1/2) + (0,0,0)' + (1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>(21) y,z,x</td>
<td>(0,0,0) + (1/2,1/2,1/2) + (0,0,0)' + (1/2,1/2,1/2)' +</td>
</tr>
</tbody>
</table>

24 d 2..1'

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) x+1/2,y,z+1/2</td>
<td>x+1/2,0,0</td>
</tr>
<tr>
<td>(6) z+1/2,y+1/2,x</td>
<td>z+1/2,0,0</td>
</tr>
<tr>
<td>(10) y,z+1/2,x+1/2</td>
<td>y+1/2,0,0</td>
</tr>
<tr>
<td>(14) x+1/2,y+1/2,z</td>
<td>x+1/2,0,0</td>
</tr>
<tr>
<td>(18) z+1/2,x+1/2,y</td>
<td>z+1/2,0,0</td>
</tr>
<tr>
<td>(22) y,z+1/2,x+1/2</td>
<td>y+1/2,0,0</td>
</tr>
</tbody>
</table>

206.2.1539 - 3 - 3436
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along</th>
<th>P2mm $1'$</th>
<th>P6 $1'$</th>
<th>P2mg $1'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>$a^* = a/2$</td>
<td>$a^* = (2a - b - c)/3$</td>
<td>$a^* = (-a + b)/2$</td>
</tr>
<tr>
<td>[1,1,1]</td>
<td>$b^* = b/2$</td>
<td>$b^* = (-a + 2b - c)/3$</td>
<td>$b^* = c/2$</td>
</tr>
<tr>
<td>Origin</td>
<td>0,0,z</td>
<td>x,x,x</td>
<td>x,x,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>b</th>
<th>.3 1'</th>
<th>1/4,1/4,1/4 [0,0,0]</th>
<th>1/4,3/4,3/4 [0,0,0]</th>
<th>3/4,3/4,1/4 [0,0,0]</th>
<th>3/4,1/4,3/4 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>a</td>
<td>.3 1'</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>
Origin at center (3’)

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; z ≤ min (x,y)

Vertices
0,0,0 1/2,0,0 1/2,1/2,0 0,1/2,0 1/2,1/2,1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2 (0,0,1/2) 1/4,0,z
(2z | 1/2,0,1/2)

(3) 2 (0,1/2,0) 0,y,1/4
(2y | 0,1/2,1/2)

(4) 2 (1/2,0,0) x,1/4,0
(2z | 1/2,1/2,0)

(5) 3’ x,x,x
(3xyz | 0,0,0)

(6) 3’ x+1/2,x,x
(3xyz⁻¹ | 1/2,1/2,0)

(7) 3’ x+1/2, x-1/2,x
(3xyz⁻¹ | 1/2,0,1/2)

(8) 3’ x,x+1/2,x
(3xyz⁻¹ | 0,1/2,1/2)

(9) 3' x,x,x
(3xyz⁻¹ | 0,0,0)

(10) 3’ (-1/3,1/3,1/3)

x+1/6, x+1/6, x
(3xyz | 0,1/2,1/2)

(11) 3’ (1/3,1/3,-1/3)

x+1/3, x+1/6, x
(3xyz | 1/2,1/2,0)

(12) 3’ (1/3,-1/3,1/3)

x-1/6, x+1/3, x
(3xyz | 1/2,0,1/2)
(13) \(\overline{1} \cdot \begin{array}{c} 0,0,0 \\ 0,0,0' \end{array} \)
(14) \(a' \cdot \begin{array}{c} (1/2,0,0) \\ x,y,1/4 \\ m_x,1/2,0,1/2' \end{array} \)
(15) \(c' \cdot \begin{array}{c} (0,0,1/2) \\ x,1/4,z \\ m_y,0,1/2,1/2' \end{array} \)
(16) \(b' \cdot \begin{array}{c} (0,1/2,0) \\ 1/4,y,z \\ m_z,1/2,1/2,0' \end{array} \)

(17) \(3^{+} \cdot \begin{array}{c} x,x,x; \\ 0,0,0' \end{array} \)
(18) \(3^{+} \cdot \begin{array}{c} x+1/2,x+1,\bar{x}; \\ 0,1/2,1/2 \\ \bar{x} \end{array} \)
(19) \(3^{+} \cdot \begin{array}{c} x+1/2,\bar{x}+1/2,x; \\ 1,2,1/2,0 \\ \bar{x}+1/2,0 \end{array} \)
(20) \(3^{+} \cdot \begin{array}{c} x+1,\bar{x}+1/2,x; \\ 1/2,0,1/2 \\ \bar{x}+1/2,1/2,0 \end{array} \)

(21) \(3^{+} \cdot \begin{array}{c} x,x,x; \\ 0,0,0 \\ \bar{x} \end{array} \)
(22) \(3^{+} \cdot \begin{array}{c} x+1/2,\bar{x}-1/2,\bar{x}; \\ 0,0,1/2 \\ \bar{x} \end{array} \)
(23) \(3^{+} \cdot \begin{array}{c} x+1/2,\bar{x},x; \\ 0,1/2,0 \\ \bar{x} \end{array} \)
(24) \(3^{+} \cdot \begin{array}{c} x+1/2,\bar{x},x; \\ 1/2,0,0 \\ \bar{x} \end{array} \)

For \((1/2,1/2,1/2) + \) set

\[
\begin{array}{c}
(1) 1 \\
(1/2,1/2,1/2) \\
(2) 2 \cdot 0,1/4,0 \\
(2) 2 \cdot 1/4,0,0 \\
(5) 3^{+} \cdot (1/2,1/2,1/2) \quad x,x,x \\
(6) 3^{+} \cdot (1/6,-1/6,1/6) \quad x-1/6, x+1/3, x \\
(3_{xyz},1/2,1/2,1/2) \\
(7) 3^{+} \cdot (-1/6,1/6,1/6) \quad x+1/6, x+1/6, x \\
(3_{xyz},1/2,1/2,1/2) \\
(8) 3^{+} \cdot (1/6,1/6,-1/6) \quad x+1/3, x+1/6, x \\
(3_{xyz},1/2,1/2,1/2) \\
(9) 3^{+} \cdot (1/2,1/2,1/2) \quad x,x,x \\
(10) 3^{+} \cdot (1/6,-1/6,1/6) \quad x+1/6, x+1/6, x \\
(3_{xyz},1/2,1/2,1/2) \\
(11) 3^{+} \cdot (-1/6,1/6,1/6) \quad x+1/3, x+1/6, x \\
(3_{xyz},1/2,1/2,1/2) \\
(12) 3^{+} \cdot (-1/6,1/6,-1/6) \quad x+1/3, x+1/6, x \\
(3_{xyz},1/2,1/2,1/2) \\
(13) \overline{1} \cdot 1/4,1/4,1/4 \\
(1) 1/2,1/2,1/2' \\
(14) b' \cdot (0,1/2,0) \quad x,y,0 \\
(3_{xyz},1/2,1/2,1/2) \\
(15) a' \cdot (1/2,0,0) \quad x,0,z \\
(3_{xyz},1/2,1/2,1/2) \\
(16) c' \cdot (0,0,1/2) \quad 0,y,z \\
(3_{xyz},1/2,1/2,1/2) \\
(17) 3^{+} \cdot x,x,x; \\
(18) 3^{+} \cdot x-1/2,x,x; \\
(4,1/4,1/4,1/4) \\
(3_{xyz},1/2,1/2,1/2) \\
(19) 3^{+} \cdot x-1/2,\bar{x}+1/2,\bar{x}; \\
(1/4,-1/4,1/4) \\
(3_{xyz},1/2,1/2,1/2) \\
(20) 3^{+} \cdot \bar{x}-1/2,x;x; \\
(1/4,-1/4,-1/4) \\
(3_{xyz},1/2,1/2,1/2) \\
(21) 3^{+} \cdot x,x,x; \\
(22) 3^{+} \cdot x+1/2,\bar{x}-1/2,\bar{x}; \\
(4,1/4,1/4,1/4) \\
(3_{xyz},1/2,1/2,1/2) \\
(23) 3^{+} \cdot \bar{x}-1/2,x,x; \\
(1/4,-1/4,1/4) \\
(3_{xyz},1/2,1/2,1/2) \\
(24) 3^{+} \cdot \bar{x}-1/2,x,x; \\
(1/4,-1/4,-1/4) \\
(3_{xyz},1/2,1/2,1/2) \\
\end{array}
\]

Generators selected \((1): t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13). \)

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>Wyckoff letter</td>
<td></td>
</tr>
<tr>
<td>Site Symmetry</td>
<td></td>
</tr>
<tr>
<td>48 e 1</td>
<td></td>
</tr>
</tbody>
</table>

\[\begin{array}{cccc}
(1) x,y,z [u,v,w] & (2) \bar{x}+1/2, \bar{y},z+1/2 [u,\bar{v},\bar{w}] & (3) \bar{x},y+1/2,\bar{z}+1/2 [\bar{u},\bar{v},\bar{w}] & (4) x+1/2, \bar{y}+1/2, z [u,v,w] \\
(5) x,z,y [w,u,v] & (6) z+1/2, \bar{x}+1/2, \bar{y} [w,\bar{u},\bar{v}] & (7) z+1/2, x,y+1/2 [\bar{w},u,v] & (8) \bar{z},x+1/2, \bar{y}+1/2 [w,u,v] \\
(9) y,z,x [v,w,u] & (10) \bar{y},z+1/2, x+1/2 [\bar{v},w,u] & (11) y+1/2, z+1/2, x [v,w,u] & (12) \bar{y}+1/2, z+1/2, x [\bar{v},w,u] \\
(13) \bar{x},y,z [u,\bar{v},\bar{w}] & (14) x+1/2, y,z+1/2 [u,v,\bar{w}] & (15) x,\bar{y}+1/2, z+1/2 [u,v,\bar{w}] & (16) x+1/2, y+1/2, z [\bar{u},v,\bar{w}] \\
(17) \bar{x},z,y [\bar{w},u,\bar{v}] & (18) \bar{z}+1/2,x+1/2, y [w,\bar{u},\bar{v}] & (19) z+1/2, \bar{y}, x+1/2 [w,u,v] & (20) z, x+1/2, y+1/2 [w,\bar{u},\bar{v}] \\
(21) \bar{y},z,x [\bar{v},w,u] & (22) y, \bar{z}+1/2,x+1/2 [\bar{v},w,u] & (23) \bar{y}+1/2, z+1/2, x [\bar{v},w,u] & (24) y+1/2, z+1/2, x [\bar{v},w,u] \\
\end{array}\]
Symmetry of Special Projections

Along [0,0,1] p2m'm'
\(a^* = a/2 \quad b^* = b/2 \)

Along [1,1,1] p6
\(a^* = (2a - b - c)/3 \quad b^* = (-a + 2b - c)/3 \)

Along [1,1,0] p2m'g'
\(a^* = (-a + b)/2 \quad b^* = c/2 \)

Origin at 0,0,z
Origin at x,x,x
Origin at x,x,0

Ia'\bar{3}'

Cubic
Origin at center (3)

Asymmetric unit

\[0 < x < 1/2; \quad 0 < y < 1/2; \quad 0 < z < 1/2; \quad z < \min(x, y) \]

Vertices

\[(0,0,0) \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 0,1/2,0 \quad 1/2,1/2,1/2 \]

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. \(1\)
2. \(2 (0,0,1/2) \quad 1/4,0,z\)
3. \(2 (0,1/2,0) \quad 0,y,1/4\)
4. \(2 (1/2,0,0) \quad x,1/4,0\)

5. \(3^+ x,x,x\)
6. \(3^+ x+1/2,x,x\)
7. \(3^+ x+1/2,x-1/2,x\)
8. \(3^+ x,x+1/2,x\)

9. \(3^- x,x,x\)
10. \(3^- (-1/3,1/3,1/3) \quad x+1/6,x+1/6,x\)
11. \(3^- (1/3,1/3,-1/3) \quad x+1/3,x+1/3,x\)
12. \(3^- (1/3,-1/3,1/3) \quad x-1/6,x+1/3,x\)

Continued

206.4.1541

206.4.1541 - 2 - 3441
Continued 206.4.1541 - 3 - 3442

\[
\begin{align*}
(13) & \quad \bar{1} \ 0,0,0 \\
(14) & \quad a \ (1/2,0,0) \ x,y,1/4 \\
(15) & \quad c \ (0,0,1/2) \ x,1/4,z \\
(16) & \quad b \ (0,1/2,0) \ 1/4,y,z
\end{align*}
\]

\[
\begin{align*}
(17) & \quad 3^+ \ x,x,x; \\
(18) & \quad 3^+ \ x-1/2,x+1/2,x; \\
(19) & \quad 3^+ \ x+1/2,x+1/2,x; \\
(20) & \quad 3^+ \ x+1/2,x+1/2,x
\end{align*}
\]

\[
\begin{align*}
(21) & \quad 3^- \ x,x,x; \\
(22) & \quad 3^- \ x+1/2,x-1/2,x; \\
(23) & \quad 3^- \ x,x+1/2,x; \\
(24) & \quad 3^- \ x+1/2,x,x
\end{align*}
\]

For \((1/2,1/2,1/2)^+\) + set

\[
\begin{align*}
(1) & \quad 1' \\
(2) & \quad 2' \ 0,1/4,z \\
(3) & \quad 2' \ 1/4,y,0 \\
(4) & \quad 2' \ x,0,1/4
\end{align*}
\]

\[
\begin{align*}
(5) & \quad 3^+ \ (1/2,1/2,1/2) \ x,x,x \\
(6) & \quad 3^+ \ (1/6,-1/6,1/6) \ x-1/6,x+1/3,x \\
(7) & \quad 3^+ \ (1/6,-1/6,1/6) \ x+1/6,x+1/6,x \\
(8) & \quad 3^+ \ (1/6,1/6,-1/6) \ x+1/3,x+1/6,x
\end{align*}
\]

\[
\begin{align*}
(9) & \quad 3^- \ (1/2,1/2,1/2) \ x,x,x \\
(10) & \quad 3^- \ (1/6,-1/6,1/6) \ x+1/6,x+1/6,x \\
(11) & \quad 3^- \ (1/6,-1/6,1/6) \ x+1/3,x+1/6,x \\
(12) & \quad 3^- \ (1/6,1/6,-1/6) \ x+1/3,x+1/6,x
\end{align*}
\]

\[
\begin{align*}
(13) & \quad \bar{1}^- \ 1/4,1/4,1/4 \\
(14) & \quad b' \ (0,1/2,0) \ x,y,0 \\
(15) & \quad a' \ (1/2,0,0) \ x,0,z \\
(16) & \quad c' \ (0,0,1/2) \ 0,y,z
\end{align*}
\]

\[
\begin{align*}
(17) & \quad 3^+ \ x,x; \\
(18) & \quad 3^+ \ x-1/2,x-1/2,x \\
(19) & \quad 3^+ \ x-1/2,x+1/2,x \\
(20) & \quad 3^+ \ x,x-1/2,x
\end{align*}
\]

\[
\begin{align*}
(21) & \quad 3^- \ x,x,x; \\
(22) & \quad 3^- \ x+1/2,x-1/2,x; \\
(23) & \quad 3^- \ x,x+1/2,x; \\
(24) & \quad 3^- \ x+1/2,x,x
\end{align*}
\]

Generators selected \((1): t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (13).\)

Positions

\[
\begin{align*}
\text{Multiplicity,} \\
\text{Wyckoff letter,} \\
\text{Site Symmetry.}
\end{align*}
\]

\[
\begin{align*}
&\text{Coordinates} \\
&\ (0,0,0) + (1/2,1/2,1/2)^+ \\
&\ (1) \ x,y,z \ [u,v,w] \\
&\ (2) \ x+1/2,y,z+1/2 \ [u,v,w] \\
&\ (3) \ x,y+1/2,z+1/2 \ [u,v,w] \\
&\ (4) \ x+1/2,y+1/2,z \ [u,v,w]
\end{align*}
\]

\[
\begin{align*}
&\ (5) \ z,x,y \ [w,u,v] \\
&\ (6) \ z+1/2,x+1/2,y \ [w,u,v] \\
&\ (7) \ z+1/2,x,y+1/2 \ [w,u,v] \\
&\ (8) \ z,x+1/2,y+1/2 \ [w,u,v]
\end{align*}
\]

\[
\begin{align*}
&\ (9) \ y,z,x \ [v,w,u] \\
&\ (10) \ y,z+1/2,x+1/2 \ [v,w,u] \\
&\ (11) \ y+1/2,z+1/2,x \ [v,w,u] \\
&\ (12) \ y+1/2,z,x+1/2 \ [v,w,u]
\end{align*}
\]

\[
\begin{align*}
&\ (13) \ x,y,z \ [u,v,w] \\
&\ (14) \ x+1/2,y,z+1/2 \ [u,v,w] \\
&\ (15) \ x,y+1/2,z+1/2 \ [u,v,w] \\
&\ (16) \ x+1/2,y+1/2,z \ [u,v,w]
\end{align*}
\]

\[
\begin{align*}
&\ (17) \ z,x,y \ [w,u,v] \\
&\ (18) \ z+1/2,x+1/2,y \ [w,u,v] \\
&\ (19) \ z+1/2,x,y+1/2 \ [w,u,v] \\
&\ (20) \ z,x+1/2,y+1/2 \ [w,u,v]
\end{align*}
\]

\[
\begin{align*}
&\ (21) \ y,z,x \ [v,w,u] \\
&\ (22) \ y,z+1/2,x+1/2 \ [v,w,u] \\
&\ (23) \ y+1/2,z+1/2,x \ [v,w,u] \\
&\ (24) \ y+1/2,z,x+1/2 \ [v,w,u]
\end{align*}
\]\n
Continued 206.4.1541 \(I_b, a\bar{a}\)
Symmetry of Special Projections

Along [0,0,1] \(p_{2a}\) 2mm
\[a^* = \frac{b}{2}, \quad b^* = -\frac{a}{2}\]
Origin at 0,0,z

Along [1,1,1] \(p61'\)
\[a^* = \frac{(2a - b - c)}{3}, \quad b^* = \frac{(-a + 2b - c)}{3}\]
Origin at x,x,x

Along [1,1,0] \(p_{2a}\) 2mg
\[a^* = \frac{(-a + b)}{2}, \quad b^* = \frac{c}{2}\]
Origin at x,x,0
Origin at 432

Asymmetric unit:

\begin{align*}
0 &\leq x \leq 1; \\
0 &\leq y \leq 1/2; \\
0 &\leq z \leq 1/2; \\
y &\leq \min(x,1-x); \\
z &\leq y
\end{align*}

Vertices:

\begin{align*}
0,0,0 &\quad 1,0,0 &\quad 1/2,1/2,0 &\quad 1/2,1/2,1/2
\end{align*}

Symmetry Operations:

\begin{align*}
(1) &\quad 1 \\
&\quad (1|0,0,0) \\
(2) &\quad 2,0,0,z \\
&\quad (2z|0,0,0) \\
(3) &\quad 2,0,y,0 \\
&\quad (2y|0,0,0) \\
(4) &\quad 2,x,0,0 \\
&\quad (2z|0,0,0) \\
(5) &\quad 3^+ x,x,x \\
&\quad (3xyz|0,0,0) \\
(6) &\quad 3^+ x,x,x \\
&\quad (3_{xyz}^{-1}|0,0,0) \\
(7) &\quad 3^+ x,x,x \\
&\quad (3_{xyz}^{-1}|0,0,0) \\
(8) &\quad 3^+ x,x,x \\
&\quad (3_{xyz}^{-1}|0,0,0) \\
(9) &\quad 3^- x,x,x \\
&\quad (3_{xyz}^{-1}|0,0,0) \\
(10) &\quad 3^- x,x,x \\
&\quad (3_{xyz}^{-1}|0,0,0) \\
(11) &\quad 3^- x,x,x \\
&\quad (3_{xyz}^{-1}|0,0,0) \\
(12) &\quad 3^- x,x,x \\
&\quad (3_{xyz}^{-1}|0,0,0)
\end{align*}
Continued

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 k 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(6) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(7) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(8) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(9) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(10) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(11) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(12) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(13) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(14) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(15) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(16) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(17) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(18) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(19) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(20) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(21) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(22) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(23) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(24) x,y,z [u,v,w]</td>
</tr>
</tbody>
</table>

Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13).

Positions

Site Symmetry.

207.1.1542 P432
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along</th>
<th>p4m'</th>
<th>[0,1,1]</th>
<th>p3m'1</th>
<th>[1,1,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a*</td>
<td>a</td>
<td>a* = (2a - b - c)/3</td>
<td>b*</td>
<td>(-a + 2b - c)/3</td>
</tr>
<tr>
<td>b*</td>
<td>b</td>
<td>(-a + b)/2</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>(2a - b - c)/3</td>
<td>b</td>
<td>(-a + 2b - c)/3</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>(-a + b)/2</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

Origin at 0,0,z

Origin at x,x,x

Origin at x,x,0
Origin at 4321′

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2}; \quad y \leq \min(x, 1-x); \quad z \leq y \]

Vertices

\[0,0,0 \quad 1,0,0 \quad \frac{1}{2},1/2,0 \quad 1/2,1/2,1/2 \]

Symmetry Operations

For 1 + set

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad (0,0,0) \\
(2) & \quad (0,0,0) \\
(2) & \quad (0,0,z) \\
(3) & \quad (0,y,0) \\
(3) & \quad (2,0,0,0) \\
(4) & \quad (2,0,0,0) \\
(5) & \quad (0,0,0) \\
(5) & \quad (0,0,0) \\
(6) & \quad (0,0,0) \\
(6) & \quad (0,0,0) \\
(7) & \quad (0,0,0) \\
(7) & \quad (2,0,0,0) \\
(8) & \quad (2,0,0,0) \\
(8) & \quad (2,0,0,0) \\
(9) & \quad (0,0,0) \\
(9) & \quad (0,0,0) \\
(10) & \quad (0,0,0) \\
(10) & \quad (0,0,0) \\
(11) & \quad (0,0,0) \\
(11) & \quad (0,0,0) \\
(12) & \quad (0,0,0) \\
(12) & \quad (0,0,0) \\
\end{align*}
\]
Continued

(13) 2 \ x,x,0
 (14) 2 \ x,-x,0
 (15) 4' \ 0,0,z
 (16) 4' \ 0,0,z
 (2xy \ 0,0,0)
 (2xy \ 0,0,0)
 (4z \ 0,0,0)
 (4z \ 0,0,0)

(17) 4' \ x,0,0
 (18) 2 \ 0,y,y
 (19) 2 \ 0,y,-y
 (20) 4' \ x,0,0
 (4x \ 0,0,0)
 (2yz \ 0,0,0)
 (2yz \ 0,0,0)

(21) 4' \ 0,y,0
 (22) 2 \ x,0,x
 (23) 4' \ 0,y,0
 (24) 2 \ x,0,x
 (4y \ 0,0,0)
 (2xz \ 0,0,0)
 (4y \ 0,0,0)

For 1' + set

(1) 1'
(1) 0,0,0
(2) 2' \ 0,0,z
 (2) 0,0,0
(3) 2' \ 0,y,y
 (3) 0,0,0
(4) 2' \ x,0,0
 (4) 0,0,0

(5) 3'
(3) x,x,x
(3) 0,0,0
(6) 3' \ x,-x,-x
 (3) 0,0,0
(7) 3' \ x,x,-x
 (3) 0,0,0
(8) 3' \ x,-x,-x
 (3) 0,0,0

(9) 3' \ x,x,x
(3) 0,0,0
(10) 3' \ x,-x,-x
 (3) 0,0,0
(11) 3' \ x,x,-x
 (3) 0,0,0
(12) 3' \ x,-x,-x
 (3) 0,0,0

(13) 2' \ x,0,0
 (2) x,0,0
(14) 2' \ x,-x,0
 (2) x,0,0
(15) 4' \ 0,0,z
 (4) z \ 0,0,0
(16) 4' \ 0,0,z
 (4) z \ 0,0,0

(17) 4' \ x,0,0
 (4) x \ 0,0,0
(18) 2' \ 0,y,y
 (2) y \ 0,0,0
(19) 2' \ 0,y,-y
 (2) y \ 0,0,0
(20) 4' \ x,0,0
 (4) y \ 0,0,0

(21) 4' \ 0,y,0
 (4) y \ 0,0,0
(22) 2' \ x,0,x
 (2) x \ 0,0,0
(23) 4' \ 0,y,0
 (4) z \ 0,0,0
(24) 2' \ x,0,x
 (2) x \ 0,0,0

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); 1'.

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

24 k 11'

(1) x,y,z [0,0,0]
(2) \ x,y,-z [0,0,0]
(3) \ x,y,z [0,0,0]
(4) x,y,-z [0,0,0]

(5) z,x,y [0,0,0]
(6) z,-x,-y [0,0,0]
(7) z,-x,y [0,0,0]
(8) z,x,-y [0,0,0]

(9) y,z,x [0,0,0]
(10) y,z,-x [0,0,0]
(11) y,z,x [0,0,0]
(12) y,z,-x [0,0,0]

(13) y,x,z [0,0,0]
(14) y,-x,z [0,0,0]
(15) y,x,z [0,0,0]
(16) y,-x,z [0,0,0]

(17) x,z,y [0,0,0]
(18) x,-z,y [0,0,0]
(19) x,z,y [0,0,0]
(20) x,-z,y [0,0,0]

(21) z,y,x [0,0,0]
(22) z,-y,x [0,0,0]
(23) z,y,x [0,0,0]
(24) z,-y,x [0,0,0]

12 j .21'
1/2,y,y [0,0,0]
1/2,y,y [0,0,0]
1/2,y,y [0,0,0]
1/2,y,y [0,0,0]

y,1/2,y [0,0,0]
y,1/2,y [0,0,0]
y,1/2,y [0,0,0]
y,1/2,y [0,0,0]

y,y,1/2 [0,0,0]
y,y,1/2 [0,0,0]
y,y,1/2 [0,0,0]
y,y,1/2 [0,0,0]
Symmetry of Special Projections

12	i	.21'	0,y,y [0,0,0]	0,y,y [0,0,0]	0,y,y [0,0,0]
12	h	2.1'	x,1/2,0 [0,0,0]	0,x,1/2 [0,0,0]	0,x,1/2 [0,0,0]
12	f	4.1'	x,1/2,1/2 [0,0,0]	1/2,x,1/2 [0,0,0]	
8	g	.3.1'	x,x,x [0,0,0]	x,x,x [0,0,0]	x,x,x [0,0,0]
6	f	4.1'	x,0,0 [0,0,0]	0,x,0 [0,0,0]	
6	e	4.1'	0,x,0 [0,0,0]	0,0,x [0,0,0]	
3	d	42.21'	1/2,0,0 [0,0,0]	0,0,1/2 [0,0,0]	
3	c	42.21'	0,1/2,1/2 [0,0,0]	1/2,0,1/2 [0,0,0]	
1	b	4321'	1/2,1/2,1/2 [0,0,0]		
1	a	4321'	0,0,0 [0,0,0]		

Symmetry of Special Projections

- **Along [0,0,1]** p4mm1'
 - \(a^* = a\) \(b^* = b\)

- **Along [1,1,1]** p3m11'
 - \(a^* = \frac{2a - b - c}{3}\) \(b^* = \frac{-a + 2b - c}{3}\)

- **Along [1,1,0]** p2mm1'
 - \(a^* = \frac{-a + b}{2}\) \(b^* = c\)

Origin at
- 0,0,z
- x,x,x
- x,x,0
Origin at 4'32'

Asymmetric unit:
- \(0 \leq x \leq 1\)
- \(0 \leq y \leq \frac{1}{2}\)
- \(0 \leq z \leq \frac{1}{2}\)
- \(y \leq \min(x,1-x)\)
- \(z \leq y\)

Vertices:
- \(0,0,0\)
- \(1,0,0\)
- \(\frac{1}{2},\frac{1}{2},0\)
- \(\frac{1}{2},\frac{1}{2},\frac{1}{2}\)

Symmetry Operations:

1. \(1\)
 - \((1|0,0,0)\)

2. \(2\ 0,0,z\)
 - \((2z|0,0,0)\)

3. \(2\ 0,y,0\)
 - \((2y|0,0,0)\)

4. \(2\ x,0,0\)
 - \((2x|0,0,0)\)

5. \(3^+\ x,x,x\)
 - \((3_{xyz}|0,0,0)\)

6. \(3^+\ x,x,x\)
 - \((3_{xyz}^{-1}|0,0,0)\)

7. \(3^+\ x,x,x\)
 - \((3_{xyz}^{-1}|0,0,0)\)

8. \(3^+\ x,x,x\)
 - \((3_{xyz}^{-1}|0,0,0)\)

9. \(3^-\ x,x,x\)
 - \((3_{xyz}|0,0,0)\)

10. \(3^-\ x,x,x\)
 - \((3_{xyz}|0,0,0)\)

11. \(3^-\ x,x,x\)
 - \((3_{xyz}|0,0,0)\)

12. \(3^-\ x,x,x\)
 - \((3_{xyz}|0,0,0)\)
Continued

<table>
<thead>
<tr>
<th>(13)</th>
<th>$2'$</th>
<th>$x, x, 0$</th>
<th>(14)</th>
<th>$2'$</th>
<th>$x, x, 0$</th>
<th>(15)</th>
<th>$4'$</th>
<th>$0, 0, z$</th>
<th>(16)</th>
<th>$4'$</th>
<th>$0, 0, z$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2_{xy})</td>
<td>$</td>
<td>0, 0, 0</td>
<td>$</td>
<td></td>
<td>(2_{xy})</td>
<td>$</td>
<td>0, 0, 0</td>
<td>$</td>
<td></td>
<td>(4_{x}^{-1})</td>
</tr>
<tr>
<td>(17)</td>
<td>$4'$</td>
<td>$x, 0, 0$</td>
<td>(18)</td>
<td>$2'$</td>
<td>$0, y, y$</td>
<td>(19)</td>
<td>$2'$</td>
<td>$0, y, y$</td>
<td>(20)</td>
<td>$4'$</td>
<td>$x, 0, 0$</td>
</tr>
<tr>
<td></td>
<td>(4_{y})</td>
<td>$</td>
<td>0, 0, 0</td>
<td>$</td>
<td></td>
<td>(2_{yz})</td>
<td>$</td>
<td>0, 0, 0</td>
<td>$</td>
<td></td>
<td>(2_{yz})</td>
</tr>
<tr>
<td>(21)</td>
<td>$4'$</td>
<td>$0, y, 0$</td>
<td>(22)</td>
<td>$2'$</td>
<td>$x, 0, x$</td>
<td>(23)</td>
<td>$4'$</td>
<td>$0, y, 0$</td>
<td>(24)</td>
<td>$2'$</td>
<td>$x, 0, x$</td>
</tr>
<tr>
<td></td>
<td>(4_{y})</td>
<td>$</td>
<td>0, 0, 0</td>
<td>$</td>
<td></td>
<td>(2_{xz})</td>
<td>$</td>
<td>0, 0, 0</td>
<td>$</td>
<td></td>
<td>(4_{y})</td>
</tr>
</tbody>
</table>

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>24</th>
<th>k</th>
<th>1</th>
</tr>
</thead>
</table>

(1)	x, y, z	[u,v,w]
(5)	z, x, y	[w,u,v]
(9)	y, z, x	[v,w,u]
(13)	y, x, z	[v,u,w]
(17)	x, z, y	[u,w,v]
(21)	z, y, x	[w,v,u]

<table>
<thead>
<tr>
<th>12</th>
<th>j</th>
<th>..$2'$</th>
</tr>
</thead>
</table>

(2)	x, y, z	[u,v,w]
(3)	x, y, z	[u,v,w]
(4)	x, y, z	[u,v,w]

<table>
<thead>
<tr>
<th>12</th>
<th>i</th>
<th>..$2'$</th>
</tr>
</thead>
</table>

(6)	z, x, y	[w,u,v]
(7)	z, x, y	[w,u,v]
(8)	z, x, y	[w,u,v]

<table>
<thead>
<tr>
<th>12</th>
<th>h</th>
<th>2..</th>
</tr>
</thead>
</table>

(10)	y, z, x	[v,w,u]
(11)	y, z, x	[v,w,u]
(12)	y, z, x	[v,w,u]

<table>
<thead>
<tr>
<th>8</th>
<th>g</th>
<th>..$3.$</th>
</tr>
</thead>
</table>

(12)	$y, 0, y$	[v,w,u]
(13)	$y, 0, y$	[v,w,u]
(14)	$y, 0, y$	[v,w,u]

<table>
<thead>
<tr>
<th>6</th>
<th>f</th>
<th>4$'$.</th>
</tr>
</thead>
</table>

(15)	2, $1/2, 0$	[0,0,0]
(16)	2, $1/2, 0$	[0,0,0]
(17)	2, $1/2, 0$	[0,0,0]

207.3.1544 - 2 - 3451
Symmetry of Special Projections

Along [0,0,1] p4'm'm
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,1,1] p3m1
\[a^* = (2a - b - c)/3 \quad b^* = (-a + 2b - c)/3 \]
Origin at x,x,x

Along [1,1,0] p2m'm'
\[a^* = (-a + b)/2 \quad b^* = c \]
Origin at x,x,0
Origin at 432

Asymmetric unit

\[0 \leq x \leq 1; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq \min(x,1-x); \quad z \leq y \]

Vertices

- 0,0,0
- 1,0,0
- 1/2,1/2,0
- 1/2,1/2,1/2

Symmetry Operations

For (0,0,0) + set

1. \(1\)
 \((1|0,0,0)\)

2. \(2\) 0,0,z
 \((2_z|0,0,0)\)

3. \(2\) 0,y,0
 \((2_y|0,0,0)\)

4. \(2\) x,0,0
 \((2_x|0,0,0)\)

5. \(3^+\) x,x,x
 \((3_{xyz}|0,0,0)\)

6. \(3^+\) x,x,x
 \((3_{xyz}^{-1}|0,0,0)\)

7. \(3^+\) x,x,x
 \((3_{xyz}^{-1}|0,0,0)\)

8. \(3^+\) x,x,x
 \((3_{xyz}^{-1}|0,0,0)\)

9. \(3^-\) x,x,x
 \((3_{xyz}^{-1}|0,0,0)\)

10. \(3^-\) x,x,x
 \((3_{xyz}|0,0,0)\)

11. \(3^-\) x,x,x
 \((3_{xyz}|0,0,0)\)

12. \(3^-\) x,x,x
 \((3_{xyz}|0,0,0)\)
Continued

For $(1,0,0)\,^+$ set

(1) $t\,^+ (1,0,0)$
(1) $t\,(1,0,0)$
(1) $t\,(1,0,0)$'
(1) $t\,^+ (1,0,0)$

(2) $2\,^+ 1/2,0,z$
(2) $2\,^+ 1/2,0,z$
(2) $2\,^+ 1/2,0,z$
(2) $2\,^+ 1/2,0,z$

(3) $2\,^+ 1/2,y,0$
(3) $2\,^+ 1/2,y,0$
(3) $2\,^+ 1/2,y,0$
(3) $2\,^+ 1/2,y,0$

(4) $2\,^+ (1,0,0)$
(4) $2\,^+ (1,0,0)$
(4) $2\,^+ (1,0,0)$
(4) $2\,^+ (1,0,0)$

Generators selected

(1); $t\,^+ (1,0,0)$; $t\,(0,1,0)$; $t\,(0,0,1)$; (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

48 k 1

(1) $x,y,z \,[u,v,w]$ (2) $\bar{x},\bar{y},z \,[\bar{u},\bar{v},\bar{w}]$ (3) $x,y,z \,[u,v,w]$ (4) $x,y,z \,[u,v,w]$

(5) $z,x,y \,[w,u,v]$ (6) $\bar{z},\bar{x},\bar{y} \,[\bar{w},\bar{u},\bar{v}]$ (7) $z,x,y \,[w,u,v]$ (8) $z,x,y \,[w,u,v]$

(9) $y,z,x \,[v,w,u]$ (10) $\bar{y},\bar{z},x \,[\bar{v},\bar{w},\bar{u}]$ (11) $y,z,x \,[v,w,u]$ (12) $y,z,x \,[v,w,u]$

(13) $y,x,z \,[v,u,w]$ (14) $\bar{y},\bar{x},\bar{z} \,[\bar{v},\bar{u},\bar{w}]$ (15) $y,z,x \,[v,u,w]$ (16) $y,z,x \,[v,u,w]$

(17) $x,z,y \,[u,w,v]$ (18) $\bar{x},\bar{z},\bar{y} \,[\bar{u},\bar{w},\bar{v}]$ (19) $x,z,y \,[u,w,v]$ (20) $x,z,y \,[u,w,v]$

(21) $z,y,x \,[w,v,u]$ (22) $\bar{z},\bar{y},\bar{x} \,[\bar{w},\bar{v},\bar{u}]$ (23) $z,y,x \,[w,v,u]$ (24) $z,y,x \,[w,v,u]$

(0,0,0) + (1,0,0) +
24	j	0.2'	1/2,y,y [u,v,v]	1/2,y,y [u,v,v]	1/2,y,y [u,v,v]	1/2,y,y [u,v,v]
24	i	0.2	0,y,y [0,v,v]	0,y,y [0,v,v]	0,y,y [0,v,v]	0,y,y [0,v,v]
24	h	2'..	x,1/2,0 [0,v,w]	x,1/2,0 [0,v,w]	0,x,1/2 [w,0,v]	0,x,1/2 [w,0,v]
16	g	.3	x,x,x [u,u,u]	x,x,x [u,u,u]	x,x,x [u,u,u]	x,x,x [u,u,u]
12	f	4'..	x,1/2,1/2 [0,0,0]	1/2,x,1/2 [0,0,0]	1/2,x,1/2 [0,0,0]	1/2,x,1/2 [0,0,0]
12	e	4'..	x,0,0 [u,0,0]	0,x,0 [u,0,0]	0,x,0 [u,0,0]	0,x,0 [u,0,0]
6	d	42'.2'	1/2,0,0 [u,0,0]	0,1/2,0 [u,0,0]	0,1/2,0 [u,0,0]	0,1/2,0 [u,0,0]
6	c	4'2'.2	0,1/2,1/2 [0,0,0]	1/2,0,1/2 [0,0,0]	1/2,0,1/2 [0,0,0]	1/2,0,1/2 [0,0,0]
2	b	4'32'	1/2,1/2,1/2 [0,0,0]			
2	a	432'	0,0,0 [0,0,0]			

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4mm1'</th>
<th>Along [1,1,0]</th>
<th>p3m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = (2a - b - c)/3</td>
<td>b* = (-a + 2b - c)/3</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td>Origin at x,x,x</td>
<td></td>
</tr>
</tbody>
</table>
Origin at 23

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad -\frac{1}{4} \leq z \leq \frac{1}{4}; \quad \max (-x,x-\frac{1}{2},-y,y-\frac{1}{2}) \leq z \leq \min (x,1/2-x,y,1/2-y) \]

Vertices
\[0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 0,1/2,0 \quad 1/4,1/4,1/4 \quad 1/4,1/4,-1/4 \]

Symmetry Operations

(1) 1
\[(1|0,0,0) \]

(2) 2, 0,0,z
\[(2_z|0,0,0) \]

(3) 2, 0, y,0
\[(2_y|0,0,0) \]

(4) 2, x, 0,0
\[(2_x|0,0,0) \]

(5) 3, x,x, x
\[(3_{xyz}|0,0,0) \]

(6) 3', x,x, x
\[(3_{xyz}^{-1}|0,0,0) \]

(7) 3', x,x, x
\[(3_{xyz}^{-1}|0,0,0) \]

(8) 3', x,x, x
\[(3_{xyz}^{-1}|0,0,0) \]

(9) 3', x,x, x
\[(3_{xyz}^{-1}|0,0,0) \]

(10) 3', x,x, x
\[(3_{xyz}^{-1}|0,0,0) \]

(11) 3', x,x, x
\[(3_{xyz}^{-1}|0,0,0) \]

(12) 3', x,x, x
\[(3_{xyz}^{-1}|0,0,0) \]
Continued

<table>
<thead>
<tr>
<th>Number</th>
<th>Coordinates</th>
<th>Site Symmetry</th>
<th>Multiplicity</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>(z, x, y) ((2_{xy}))</td>
<td>1/2,1/2,1/2</td>
<td>2</td>
<td>(13) ((1/2,1/2,0)) (x, x, 1/4) ((2_{xy}))</td>
</tr>
<tr>
<td>14</td>
<td>(x, \bar{x} + 1/2, 1/4) ((2_{xy}))</td>
<td>1/2,1/2,1/2</td>
<td>2</td>
<td>(14) ((2_{xy}))</td>
</tr>
<tr>
<td>15</td>
<td>(4^*) ((0,0,1/2)) (1/2,0, z) ((4_{z}))</td>
<td>1/2,1/2,1/2</td>
<td>1</td>
<td>(15) (4^*) ((0,0,1/2)) (1/2,0, z) ((4_{z}))</td>
</tr>
<tr>
<td>16</td>
<td>(4^*) ((0,0,1/2)) (0,1/2, z) ((4_{z}))</td>
<td>1/2,1/2,1/2</td>
<td>1</td>
<td>(16) (4^*) ((0,0,1/2)) (0,1/2, z) ((4_{z}))</td>
</tr>
<tr>
<td>17</td>
<td>(4^*) ((1/2,0,0)) (x, 1/2,0) ((4_{x}))</td>
<td>1/2,1/2,1/2</td>
<td>1</td>
<td>(17) (4^*) ((1/2,0,0)) (x, 1/2,0) ((4_{x}))</td>
</tr>
<tr>
<td>18</td>
<td>(2 (0,1/2,1/2)) (1/4, y, y) ((2_{yz}))</td>
<td>1/2,1/2,1/2</td>
<td>2</td>
<td>(18) (2 (0,1/2,1/2)) (1/4, y, y) ((2_{yz}))</td>
</tr>
<tr>
<td>19</td>
<td>(1/4, y + 1/2, y) ((2_{yz}))</td>
<td>1/2,1/2,1/2</td>
<td>1</td>
<td>(19) (1/4, y + 1/2, y) ((2_{yz}))</td>
</tr>
<tr>
<td>20</td>
<td>(4^*) ((1/2,0,0)) (x, 0,1/2) ((4_{x}))</td>
<td>1/2,1/2,1/2</td>
<td>1</td>
<td>(20) (4^*) ((1/2,0,0)) (x, 0,1/2) ((4_{x}))</td>
</tr>
<tr>
<td>21</td>
<td>(4^*) ((0,1/2,0)) (1/2, y, 0) ((4_{y}))</td>
<td>1/2,1/2,1/2</td>
<td>1</td>
<td>(21) (4^*) ((0,1/2,0)) (1/2, y, 0) ((4_{y}))</td>
</tr>
<tr>
<td>22</td>
<td>(2 (1/2,0,1/2)) (x, 1/4, x) ((2_{xz}))</td>
<td>1/2,1/2,1/2</td>
<td>2</td>
<td>(22) (2 (1/2,0,1/2)) (x, 1/4, x) ((2_{xz}))</td>
</tr>
</tbody>
</table>

Generators selected

1; \(t(1,0,0) \); \(t(0,1,0) \); \(t(0,0,1) \); (2); (3); (5); (13).

Coordinates

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Site Symmetry</th>
<th>Wyckoff letter</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>17</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(x, y, z)</td>
<td>[u,v,w]</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>(x, y, z)</td>
<td>[u,v,w]</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>(x, y, z)</td>
<td>[u,v,w]</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>(x, y, z)</td>
<td>[u,v,w]</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>(z, x, y)</td>
<td>[w,u,v]</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>(z, x, y)</td>
<td>[w,u,v]</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>(z, x, y)</td>
<td>[w,u,v]</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>(z, x, y)</td>
<td>[w,u,v]</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y+1/2, x+1/2, \bar{z}+1/2)</td>
<td>[v,u,w]</td>
<td>(14) (y+1/2, x+1/2, \bar{z}+1/2)</td>
<td>[v,u,w]</td>
<td>(15) (y+1/2, x+1/2, \bar{z}+1/2)</td>
<td>[v,u,w]</td>
<td>(16) (y+1/2, x+1/2, \bar{z}+1/2)</td>
<td>[v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(x+1/2, z+1/2, y+1/2)</td>
<td>[u,w,v]</td>
<td>(17) (x+1/2, z+1/2, y+1/2)</td>
<td>[u,w,v]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z+1/2, x+1/2, y+1/2)</td>
<td>[w,v,u]</td>
<td>(21) (z+1/2, x+1/2, y+1/2)</td>
<td>[w,v,u]</td>
<td>(23) (z+1/2, y+1/2, x+1/2)</td>
<td>[w,v,u]</td>
<td>(24) (z+1/2, y+1/2, x+1/2)</td>
<td>[w,v,u]</td>
<td></td>
</tr>
</tbody>
</table>
Continued

<table>
<thead>
<tr>
<th>12</th>
<th>h</th>
<th>2..</th>
<th>x,0,0 [u,0,0]</th>
<th>x,0,0 [u,0,0]</th>
<th>0,x,0 [0,u,0]</th>
<th>0,x,0 [0,0,u]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,x [0,0,u]</td>
<td>0,0,x [0,0,u]</td>
<td>1/2,x+1/2,1/2 [0,u,0]</td>
<td>1/2,0+x+1/2,1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/2,1/2,1/2 [u,0,0]</td>
<td>x+1/2,1/2,1/2 [u,0,0]</td>
<td>1/2,1/2,x+1/2 [0,0,u]</td>
<td>1/2,1/2,x+1/2 [0,0,u]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>g</th>
<th>.3.</th>
<th>x,x,x [u,u,u]</th>
<th>x,x,x [u,u,u]</th>
<th>x,x,x [u,u,u]</th>
<th>x,x,x [u,u,u]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/2,x+1/2,x+1/2 [u,u,u]</td>
<td>x+1/2,x+1/2,x+1/2 [u,u,u]</td>
<td>x+1/2,x+1/2,x+1/2 [u,u,u]</td>
<td>x+1/2,x+1/2,x+1/2 [u,u,u]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>f</th>
<th>2.22</th>
<th>1/4,1/2,0 [0,0,0]</th>
<th>3/4,1/2,0 [0,0,0]</th>
<th>0,1/4,1/2 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,3/4,1/2 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>e</th>
<th>2.22</th>
<th>1/4,0,1/2 [0,0,0]</th>
<th>3/4,0,1/2 [0,0,0]</th>
<th>1/2,1/4,0 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,3/4,0 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>d</th>
<th>222..</th>
<th>0,1/2,1/2 [0,0,0]</th>
<th>1/2,0,1/2 [0,0,0]</th>
<th>1/2,1/2,0 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>c</th>
<th>.32</th>
<th>3/4,3/4,3/4 [0,0,0]</th>
<th>1/4,1/4,3/4 [0,0,0]</th>
<th>1/4,3/4,1/4 [0,0,0]</th>
<th>3/4,1/4,1/4 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,1/4 [0,0,0]</td>
<td>3/4,1/4,3/4 [0,0,0]</td>
<td>1/4,3/4,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

| 2 | a | 23. | 0,0,0 [0,0,0] | 1/2,1/2,1/2 [0,0,0] |

Symmetry of Special Projections

Along [0,0,1] p4m\'m' \[a^* = a, \ b^* = b\] Along [1,1,1] p3m'1 \[a^* = (2a - b - c)/3, \ b^* = (-a + 2b - c)/3\] Along [1,1,0] p2m'1 \[a^* = (-a + b)/2, \ b^* = c\]
Origin at 231°

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; -1/4 ≤ z ≤ 1/4; max (-x,x-1/2,-y,y-1/2) ≤ z ≤ min (x,1/2-x,y,1/2-y)

Vertices: 0,0,0; 1/2,0,0; 1/2,1/2,0; 0,1/2,0; 1/4,1/4,1/4; 1/4,1/4,-1/4

Symmetry Operations

For 1 + set

(1) 1
(1 0 0 0)

(2) 2 0 0 z
(2 z 0 0 0)

(3) 2 0 y 0
(2 0 y 0 0)

(4) 2 x 0 0
(2 z 0 0 0)

(5) 3^* x x x
(3_{xyz} 0 0 0)

(6) 3^* x x x
(3_{xyz}^{-1} 0 0 0)

(7) 3^* x x x
(3_{xyz}^{-1} 0 0 0)

(8) 3^* x x x
(3_{xyz}^{-1} 0 0 0)

(9) 3^* x x x
(3_{xyz}^{-1} 0 0 0)

(10) 3^* x x x
(3_{xyz} 0 0 0)

(11) 3^* x x x
(3_{xyz} 0 0 0)

(12) 3^* x x x
(3_{xyz} 0 0 0)
Continued

(13) 2 (1/2,1/2,0) x,x,1/4
(2xy| 1/2,1/2,1/2)

(14) 2 x,x+1/2,1/4
(2xy| 1/2,1/2,1/2)

(15) 4' (0,0,1/2) 1/2,0,z
(4z^-1| 1/2,1/2,1/2)

(16) 4' (0,0,1/2) 0,1/2,z
(4z| 1/2,1/2,1/2)

(17) 4' (1/2,0,0) x,1/2,0
(4x^-1| 1/2,1/2,1/2)

(18) 2 (0,1/2,1/2) 1/4,y,y
(2yz| 1/2,1/2,1/2)

(19) 2 1/4,y+1/2,y
(2yz| 1/2,1/2,1/2)

(20) 4' (1/2,0,0) x,0,1/2
(4x| 1/2,1/2,1/2)

(21) 4' (0,1/2,0) 1/2,y,0
(4y| 1/2,1/2,1/2)

(22) 2 (1/2,0,1/2) x,1/4,x
(2xz| 1/2,1/2,1/2)

(23) 4' (0,1/2,0) 0,y,1/2
(4y^-1| 1/2,1/2,1/2)

(24) 2 x,x+1/2,1/4,x
(2xz| 1/2,1/2,1/2)

For 1' + set

(1) 1'
(1| 0,0,0)

(2) 2' 0,0,z
(2z| 0,0,0)

(3) 2' 0,y,0
(2y| 0,0,0)

(4) 2' x,0,0
(2x| 0,0,0)

(5) 3' x,x,x
(3xyz| 0,0,0)

(6) 3' x,x,x
(3xyz^-1| 0,0,0)

(7) 3' x,x,x
(3xyz| 0,0,0)

(8) 3' x,x,x
(3xyz^-1| 0,0,0)

(9) 3' x,x,x
(3xyz| 0,0,0)

(10) 3' x,x,x
(3xyz^-1| 0,0,0)

(11) 3' x,x,x
(3xyz| 0,0,0)

(12) 3' x,x,x
(3xyz^-1| 0,0,0)

(13) 2' (1/2,1/2,0) x,x,1/4
(2xy| 1/2,1/2,1/2)

(14) 2' x,x+1/2,1/4
(2xy| 1/2,1/2,1/2)

(15) 4' (0,0,1/2) 1/2,0,z
(4z^-1| 1/2,1/2,1/2)

(16) 4' (0,0,1/2) 0,1/2,z
(4z| 1/2,1/2,1/2)

(17) 4' (1/2,0,0) x,1/2,0
(4x^-1| 1/2,1/2,1/2)

(18) 2' (0,1/2,1/2) 1/4,y,y
(2yz| 1/2,1/2,1/2)

(19) 2' 1/4,y+1/2,y
(2yz| 1/2,1/2,1/2)

(20) 4' (1/2,0,0) x,0,1/2
(4x| 1/2,1/2,1/2)

(21) 4' (0,1/2,0) 1/2,y,0
(4y| 1/2,1/2,1/2)

(22) 2' (1/2,0,1/2) x,1/4,x
(2xz| 1/2,1/2,1/2)

(23) 4' (0,1/2,0) 0,y,1/2
(4y^-1| 1/2,1/2,1/2)

(24) 2' x,x+1/2,1/4,x
(2xz| 1/2,1/2,1/2)

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 m 11'</td>
<td></td>
</tr>
</tbody>
</table>

(1) x,y,z 0,0,0
(2) x,y,z 0,0,0
(3) x,y,z 0,0,0
(4) x,y,z 0,0,0

(5) z,x,y 0,0,0
(6) z,x,y 0,0,0
(7) z,x,y 0,0,0
(8) z,x,y 0,0,0

(9) y,z,x 0,0,0
(10) y,z,x 0,0,0
(11) y,z,x 0,0,0
(12) y,z,x 0,0,0

(13) y+1/2,x+1/2,z+1/2 0,0,0
(14) y+1/2,x+1/2,z+1/2 0,0,0
(15) y+1/2,x+1/2,z+1/2 0,0,0
(16) y+1/2,x+1/2,z+1/2 0,0,0

(17) x+1/2,z+1/2,y+1/2 0,0,0
(18) x+1/2,z+1/2,y+1/2 0,0,0
(19) x+1/2,z+1/2,y+1/2 0,0,0
(20) x+1/2,z+1/2,y+1/2 0,0,0

(21) z+1/2,y+1/2,x+1/2 0,0,0
(22) z+1/2,y+1/2,x+1/2 0,0,0
(23) z+1/2,y+1/2,x+1/2 0,0,0
(24) z+1/2,y+1/2,x+1/2 0,0,0

12 l ..21' 1/4,y,y+1/2 0,0,0
(25) 3/4,y,y+1/2 0,0,0
(26) 3/4,y,y+1/2 0,0,0
(27) 1/4,y,y+1/2 0,0,0
(28) y+1/2,1/4,y 0,0,0
(29) y+1/2,1/4,y 0,0,0
(30) y+1/2,1/4,y 0,0,0
(31) y+1/2,1/4,y 0,0,0
(32) y+y+1/2,3/4,y 0,0,0
(33) y+y+1/2,3/4,y 0,0,0
(34) y+y+1/2,3/4,y 0,0,0
(35) y+y+1/2,3/4,y 0,0,0
Symmetry of Special Projections

Along [0,0,1] p4mm\(^{1'}\)

\(a^* = a\) \quad b^* = b\)

Origin at 0,1/2,z

Along [1,1,1] p3m1\(^{1'}\)

\(a^* = (2a - b - c)/3\) \quad b^* = (-a + 2b - c)/3\)

Origin at x,x,x

Along [1,1,0] p2mm\(^{1'}\)

\(a^* = (a + b)/2\) \quad b^* = c\)

Origin at x,x,1/4

P4\(_{2}\), 321'

4'32'

Cubic

208.3.1548 - 1 - 3461
Origin at 23

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad -1/4 \leq z \leq 1/4; \quad \max (-x, x-1/2, -y, y-1/2) \leq z \leq \min (x, 1/2-x, y, 1/2-y) \]

Vertices
0,0,0 1/2,0,0 1/2,1/2,0 0,1/2,0 1/4,1/4,1/4 1/4,1/4,-1/4

Symmetry Operations
(1) 1
(1 | 0,0,0)

(2) 2 0,0,z
(2 | z | 0,0,0)

(3) 2 0,y,0
(2 | y | 0,0,0)

(4) 2 x,0,0
(2 | z | 0,0,0)

(5) 3^+ x,x,x
(3_{xyz} | 0,0,0)

(6) 3^+ x,\bar{x},\bar{x}
(3_{xyz}^{-1} | 0,0,0)

(7) 3^+ x,\bar{x},\bar{x}
(3_{xyz}^{-1} | 0,0,0)

(8) 3^+ \bar{x},x,x
(3_{xyz}^{-1} | 0,0,0)

(9) 3^- x,x,x
(3_{xyz}^{-1} | 0,0,0)

(10) 3^- x,\bar{x},\bar{x}
(3_{xyz} | 0,0,0)

(11) 3^- \bar{x},x,x
(3_{xyz} | 0,0,0)

(12) 3^- \bar{x},\bar{x},\bar{x}
(3_{xyz} | 0,0,0)

Continued

208.3.1548 P4_{1}^{\prime}32'
<table>
<thead>
<tr>
<th>Coordinates</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x,y,z)</td>
<td></td>
</tr>
<tr>
<td>(w,v,u)</td>
<td></td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

24 m 1

(1) x,y,z [u,v,w]
(2) x,y,z [u,v,w]
(3) x,y,z [u,v,w]
(4) x,y,z [u,v,w]
(5) z,x,y [w,u,v]
(6) z,x,y [w,u,v]
(7) z,x,y [w,u,v]
(8) z,x,y [w,u,v]
(9) y,z,x [v,w,u]
(10) y,z,x [v,w,u]
(11) y,z,x [v,w,u]
(12) y,z,x [v,w,u]
(13) y+1/2,x+1/2,z+1/2 [v,u,w]
(14) y+1/2,x+1/2,z+1/2 [v,u,w]
(15) y+1/2,x+1/2,z+1/2 [v,u,w]
(16) y+1/2,x+1/2,z+1/2 [v,u,w]
(17) x+1/2,z+1/2,y+1/2 [u,w,v]
(18) x+1/2,z+1/2,y+1/2 [u,w,v]
(19) x+1/2,z+1/2,y+1/2 [u,w,v]
(20) x+1/2,z+1/2,y+1/2 [u,w,v]
(21) z+1/2,y+1/2,x+1/2 [w,v,u]
(22) z+1/2,y+1/2,x+1/2 [w,v,u]
(23) z+1/2,y+1/2,x+1/2 [w,v,u]
(24) z+1/2,y+1/2,x+1/2 [w,v,u]

208.3.1548 - 3 - 3463
Continued 208.3.1548 P4₁'2'32'

12 h 2.. \(x,0,0\) \([u,0,0]\) \(\bar{x},0,0\) \([\bar{u},0,0]\) \(0,x,0\) \([0,u,0]\) \(0,\bar{x},0\) \([0,\bar{u},0]\)
0,0,x \([0,0,u]\) 0,0,\(\bar{x}\) \([0,0,\bar{u}]\) 1/2,x+1/2,1/2 \([0,\bar{u},0]\) 1/2,\(\bar{x}\)+1/2,1/2 \([0,u,0]\)
\(x+1/2,1/2,1/2\) \([\bar{u},0,0]\) \(\bar{x}+1/2,1/2,1/2\) \([\bar{u},0,0]\) 1/2,1/2,\(x+1/2\) \([0,0,u]\) 1/2,1/2,\(x+1/2\) \([0,0,\bar{u}]\)

8 g .3. \(x,\bar{x},x\) \([u,u,u]\) \(\bar{x},\bar{x},x\) \([u,\bar{u},u]\)
\(x+1/2,\bar{x}+1/2,\bar{x}+1/2\) \([\bar{u},u,u]\) \(\bar{x}+1/2,\bar{x}+1/2,\bar{x}+1/2\) \([u,u,u]\)
\(x+1/2,\bar{x}+1/2,x+1/2\) \([\bar{u},u,u]\) \(\bar{x}+1/2,\bar{x}+1/2,x+1/2\) \([u,u,u]\)

6 f 2.2"2' 1/4,1/2,0 \([u,0,0]\) 3/4,1/2,0 \([u,0,0]\) 0,1/4,1/2 \([0,u,0]\)
0,3/4,1/2 \([0,\bar{u},0]\) 1/2,0,1/4 \([0,0,u]\) 1/2,0,3/4 \([0,0,\bar{u}]\)

6 e 2.2"2' 1/4,0,1/2 \([u,0,0]\) 3/4,0,1/2 \([u,0,0]\) 1/2,1/4,0 \([0,u,0]\)
1/2,3/4,0 \([0,\bar{u},0]\) 0,1/2,1/4 \([0,0,u]\) 0,1,2/3 \([0,0,\bar{u}]\)

6 d 222.. 0,1/2,1/2 \([0,0,0]\) 1/2,0,1/2 \([0,0,0]\) 1/2,1/2,0 \([0,0,0]\)
0,1/2,0 \([0,0,0]\) 1/2,0,0 \([0,0,0]\) 0,0,1/2 \([0,0,0]\)

4 c .32' 3/4,3/4,3/4 \([u,u,u]\) 1/4,1/4,3/4 \([\bar{u},\bar{u},u]\) 1/4,3/4,1/4 \([\bar{u},\bar{u},u]\) 3/4,1/4,1/4 \([u,\bar{u},\bar{u}]\)

4 b .32' 1/4,1/4,1/4 \([u,u,u]\) 3/4,3/4,1/4 \([\bar{u},\bar{u},u]\) 3/4,1/4,3/4 \([\bar{u},\bar{u},u]\) 1/4,3/4,3/4 \([u,\bar{u},\bar{u}]\)

2 a 23. 0,0,0 \([0,0,0]\) 1/2,1/2,1/2 \([0,0,0]\)

Symmetry of Special Projections

Along \([0,0,1]\) \(p4 \prime m \prime m\) \(a^* = a\) \(b^* = b\)
Origin at 0,1/2,z

Along \([1,1,1]\) \(p3 \prime m1\) \(a^* = (2a - b - c)/3\) \(b^* = (-a + 2b - c)/3\)
Origin at \(x,x,x\)

Along \([1,1,0]\) \(p2 \prime m \prime m\) \(a^* = c\) \(b^* = -(a + b)/2\)
Origin at \(x,x,1/4\)
Origin at 23

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad -1/4 \leq z \leq 1/4; \quad \max (-x, x-1/2, -y, y-1/2) \leq z \leq \min (x, 1/2-x, y, 1/2-y) \]

Vertices

- \(0,0,0\)
- \(1/2,0,0\)
- \(1/2,1/2,0\)
- \(0,1/2,0\)
- \(1/4,1/4,1/4\)
- \(1/4,1/4,-1/4\)

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. \(1\)

2. \(2\) \(0,0,z\)

3. \(2\) \(y,0,0\)

4. \(2\) \(x,0,0\)

5. \(3^+\) \(x,x,x\)

6. \(3^+\) \(x,x,x\)

7. \(3^+\) \(x,x,x\)

8. \(3^+\) \(x,x,x\)

9. \(3^-\) \(x,x,x\)

10. \(3^-\) \(x,x,x\)

11. \(3^-\) \(x,x,x\)

12. \(3^-\) \(x,x,x\)
Symmetry of Special Projections

Along [0,0,1] p4mm1'
\(a^* = a \quad b^* = b \)
Origin at 0,1/2,z

Along [1,1,1] p3m11'
\(a^* = (2a - b - c)/3 \quad b^* = (-a + 2b - c)/3 \)
Origin at x,x,x

Along [1,1,0] p_c_2mm
\(a^* = (-a + b)/2 \quad b^* = c \)
Origin at x-1/4,x+1/4,3/4
209.1.1550 - 1 - 3469

Origin at 432

Asymmetric unit

\[
0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad -1/4 \leq z \leq 1/4; \quad y \leq \min(x, 1/2-x); \quad -y \leq z \leq y
\]

Vertices

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1/2,0,0</td>
<td>1/4,1/4,1/4</td>
<td>1/4,1/4,-1/4</td>
</tr>
</tbody>
</table>

Symmetry Operations

For \((0,0,0) + \text{set} \)

\[
\begin{align*}
(1) & \quad 1 \\
(1 & \ 0,0,0) \\
(2) & \quad 2 \ 0,0,z \\
(2_z & \ 0,0,0) \\
(3) & \quad 2 \ 0,y,0 \\
(2_y & \ 0,0,0) \\
(4) & \quad 2 \ x,0,0 \\
(2_x & \ 0,0,0) \\
(5) & \quad 3^+ \ x,x,x \\
(3_{xyz} & \ 0,0,0) \\
(6) & \quad 3^+ \ x,x,x \\
(3_{xyz}^{-1} & \ 0,0,0) \\
(7) & \quad 3^+ \ x,x,x \\
(3_{xyz}^{-1} & \ 0,0,0) \\
(8) & \quad 3^+ \ x,x,x \\
(3_{xyz}^{-1} & \ 0,0,0) \\
(9) & \quad 3^- \ x,x,x \\
(3_{xyz}^{-1} & \ 0,0,0) \\
(10) & \quad 3^- \ x,x,x \\
(3_{xyz} & \ 0,0,0) \\
(11) & \quad 3^- \ x,x,x \\
(3_{xyz} & \ 0,0,0) \\
(12) & \quad 3^- \ x,x,x \\
(3_{xyz} & \ 0,0,0)
\end{align*}
\]
Continued

(13) 2 x.x,0
 (2xy|0,0,0) (14) 2 x.x,0
 (2xy|0,0,0) (15) 4* 0,0,z
 (4z|0,0,0) (16) 4* 0,0,z
 (4z|0,0,0)

(17) 4* x,0,0
 (4x|0,0,0) (18) 2 0,y,y
 (2yz|0,0,0) (19) 2 0,y,y
 (2yz|0,0,0) (20) 4* x,0,0
 (4x|0,0,0)

(21) 4* y,0,0
 (4y|0,0,0) (22) 2 x,0,x
 (2xz|0,0,0) (23) 4* y,0,0
 (4y|0,0,0) (24) 2 x+1/2,0,x
 (2xz|0,0,0)

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2) (2) 2 (0,0,1/2) 0,1/4,z
 (2z|0,1/2,1/2) (3) 2 (0,1/2,0) 0,y,1/4
 (2y|0,1/2,1/2) (4) 2 x,1/4,1/4
 (2xz|0,1/2,1/2)

(5) 3* (1/3,1/3,1/3)
 x-1/3,x-1/6,x (6) 3* x,x+1/2,
 x (7) 3* (-1/3,1/3,1/3)
 x+1/3,x-1/6,x
 (3xyz|0,1/2,1/2) (3xyz|0,1/2,1/2) (3xyz|0,1/2,1/2)

(9) 3* (1/3,1/3,1/3)
 x-1/6,x+1/6,x (10) 3* x+1/4,1/4,x
 (3xyz|0,1/2,1/2) (3xyz|0,1/2,1/2)

(13) 2 (1/4,1/4,0)
 x,x+1/4,1/4 (14) 2 (-1/4,1/4,0)
 x,x+1/4,1/4 (15) 4* (0,0,1/2) 1/4,1/4,z
 (2xy|0,1/2,1/2) (2y|0,1/2,1/2) (4z|0,1/2,1/2)

(17) 4* x,1/2,0
 (4x|0,1/2,1/2) (18) 2 (0,1/2,1/2) 0,y,y
 (2yz|0,1/2,1/2) (19) 2 0,y+1/2,y
 (2yz|0,1/2,1/2) (20) 4* x,0,1/2
 (4x|0,1/2,1/2)

(21) 4* (0,1/2,0)
 1/4,y,1/4 (22) 2 (1/4,0,1/4)
 x,1/4,1/4,x (23) 4* (0,1/2,0)
 -1/4,y,1/4
 (2yz|0,1/2,1/2) (4y|0,1/2,1/2)

For (1/2,0,1/2) + set

(1) t (1/2,0,1/2) (2) 2 (0,0,1/2) 1/4,0,z
 (2z|1/2,0,1/2) (3) 2 1/4,y,1/4
 (2y|1/2,0,1/2) (4) 2 (1/2,0,0)
 x,0,1/4
 (2z|1/2,0,1/2)

(5) 3* (1/3,1/3,1/3)
 x+1/6,x+1/6,x (6) 3* x+1/2,
 x (7) 3* x+1/2,x
 x+1/3,x-1/6,x
 (3xyz|1/2,0,1/2) (3xyz|1/2,0,1/2) (3xyz|1/2,0,1/2)

(9) 3* (1/3,1/3,1/3)
 x-1/6,x+1/3,x (10) 3* x+1/2,
 x (11) 3* x+1/2,
 x (12) 3* x-1/6,x-1/3,x
 (3xyz|1/2,0,1/2) (3xyz|1/2,0,1/2)

(13) 2 (1/4,1/4,0)
 x,x-1/4,1/4 (14) 2 (1/4,-1/4,0)
 x,x+1/4,1/4 (15) 4* (0,0,1/2) 1/4,-1/4,z
 (2xy|1/2,0,1/2) (2y|1/2,0,1/2) (4z|1/2,0,1/2)

(17) 4* (1/2,0,0)
 1/4,y,1/4 (18) 2 (0,1/4,1/4)
 x,-1/4,1/4 (19) 2 (0,-1/4,1/4)
 x,-1/4,1/4
 (2yz|1/2,0,1/2) (2yz|1/2,0,1/2)

(21) 4* y,0,0
 (4y|1/2,0,1/2) (22) 2 (1/2,0,1/2) x,0,x
 (2xz|1/2,0,1/2) (23) 4* y,0,1/2
 (4y|1/2,0,1/2) (24) 2 x+1/2,0,x
 (2xz|1/2,0,1/2)
Continued 209.1.1550 F432

For \((1/2,1/2,0) + \text{set}\)

(1) \(t\) \((1/2,1/2,0)\)
(1) \(t\) \((1/2,1/2,0)\)
(2) \(2\) \((1/4,1/4,z)\)
(2) \((1/2,1/2,0)\)
(3) \(2(0,1/2,0)\) \((1/4,y,0)\)
(3) \((2,1/2,0)\)
(4) \(2\) \((1/2,0,0)\) \((x,1/4,0)\)
(4) \((1/2,1/2,0)\)

(5) \(3^+\) \((1/3,1/3,1/3)\)
(6) \(3^+\) \(\vec{x}+1/2,\vec{x}\)
(7) \(3^+\) \(\vec{x}+1/2,\vec{x}\)
(8) \(3^+\) \((1/3,1/3,-1/3)\)

(9) \(3^+\) \((1/3,1/3,1/3)\)
(10) \(3^+\) \(x,\vec{x}+1/2,\vec{x}\)
(11) \(3^+\) \((1/3,1/3,-1/3)\)
(12) \(3^+\) \(x,\vec{x}+1/2,\vec{x}\)

(13) \(2\) \((1/2,1/2,0)\) \((x,x,0)\)
(14) \(2\) \((x,x,1/2,0)\)
(15) \(4^+\) \((1/2,0,z)\)
(16) \(4^+\) \((0,1/2,z)\)

(17) \(4^+\) \((1/2,0,0)\) \((x,1/4,-1/4)\)
(18) \(2\) \((0,1/4,1/4)\)
(19) \(2\) \((0,1/4,-1/4)\)
(20) \(4^+\) \((1/2,0,0)\) \((x,1/4,1/4)\)

(21) \(4^+\) \((0,1/2,0)\) \((1/4,y,-1/4)\)
(22) \(2\) \((1/4,0,1/4)\)
(23) \(4^+\) \((0,1/2,0)\) \((1/4,y,1/4)\)
(24) \(2\) \((1/4,0,-1/4)\)

Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13).\)

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

96 \(j\) 1

(1) \(x,y,z\) \([u,v,w]\)
(2) \(\vec{x},\vec{y},\vec{z}\) \([\vec{u},\vec{v},\vec{w}]\)
(3) \(\vec{x},y,\vec{z}\) \([\vec{u},v,w]\)
(4) \(x,y,\vec{z}\) \([u,v,\vec{w}]\)

(5) \(z,x,y\) \([w,u,v]\)
(6) \(z,\vec{x},\vec{y}\) \([w,\vec{u},\vec{v}]\)
(7) \(\vec{z},\vec{x},y\) \([\vec{w},u,v]\)
(8) \(\vec{z},x,\vec{y}\) \([\vec{w},u,\vec{v}]\)

(9) \(y,z,x\) \([v,w,u]\)
(10) \(\vec{y},\vec{z},\vec{x}\) \([\vec{v},\vec{w},\vec{u}]\)
(11) \(y,z,\vec{x}\) \([v,\vec{w},u]\)
(12) \(\vec{y},z,x\) \([\vec{v},w,u]\)

(13) \(x,y,\vec{z}\) \([v,u,\vec{w}]\)
(14) \(\vec{x},y,\vec{z}\) \([\vec{v},u,\vec{w}]\)
(15) \(y,\vec{x},z\) \([v,\vec{u},w]\)
(16) \(\vec{y},x,z\) \([\vec{v},u,\vec{w}]\)

(17) \(x,z,y\) \([u,w,v]\)
(18) \(\vec{x},\vec{z},y\) \([\vec{u},w,\vec{v}]\)
(19) \(x,\vec{z},y\) \([u,\vec{w},v]\)
(20) \(x,z,\vec{y}\) \([u,v,\vec{w}]\)

(21) \(z,y,\vec{x}\) \([w,v,u]\)
(22) \(z,\vec{y},x\) \([w,\vec{v},u]\)
(23) \(\vec{z},y,\vec{x}\) \([\vec{w},v,u]\)
(24) \(\vec{z},\vec{y},\vec{x}\) \([\vec{w},\vec{v},\vec{u}]\)

48 \(i\) 2

48 \(h\) 2

Axes, \(x,1/4,1/4 [u,0,0]\) \(x,3/4,1/4 [u,0,0]\) \(1/4,x,1/4 [0,u,0]\) \(1/4,x,3/4 [0,u,0]\)

\(3/4,1/4,x [0,0,u]\) \(1/4,x,3/4 [0,u,0]\)

\(1/4,3/4,x [u,0,0]\) \(1/4,1/4,x [0,0,u]\)
<table>
<thead>
<tr>
<th>48</th>
<th>g</th>
<th>0.y.y [0,v,v]</th>
<th>0.v.y [0,v,v]</th>
<th>0.v.y [0,v,v]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>y.y.0 [v,0,0]</td>
<td>y.y.0 [v,0,0]</td>
<td>y.y.0 [v,0,0]</td>
</tr>
<tr>
<td>32</td>
<td>f</td>
<td>x.x.x [u,u,u]</td>
<td>x.x.x [u,u,u]</td>
<td>x.x.x [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x.x.0 [u,u,u]</td>
<td>x.x.0 [u,u,u]</td>
<td>x.x.0 [u,u,u]</td>
</tr>
<tr>
<td>24</td>
<td>e</td>
<td>x.0,0 [u,0,0]</td>
<td>0.x.0 [u,0,0]</td>
<td>0.0.x [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.x.0 [u,0,0]</td>
<td>0.x.0 [u,0,0]</td>
<td>0.x.0 [u,0,0]</td>
</tr>
<tr>
<td>24</td>
<td>d</td>
<td>0.1/4,1/4 [0,0,0]</td>
<td>0.3/4,1/4 [0,0,0]</td>
<td>1/4,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4,0,1/4 [0,0,0]</td>
<td>1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>c</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>1/4,1/4,3/4 [0,0,0]</td>
<td>1/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>0.0,0 [0,0,0]</td>
<td>0.0,0 [0,0,0]</td>
<td>0.0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]** p4m'm'
 - \(a^* = a/2 \quad b^* = b/2 \)
 - Origin at 0,0,z

- **Along [1,1,1]** p3m'1
 - \(a^* = (2a - b - c)/6 \quad b^* = (-a + 2b - c)/6 \)
 - Origin at x,x,x

- **Along [1,1,0]** c2m'm'
 - \(a^* = (-a + b)/2 \quad b^* = c \)
 - Origin at x,x,0
Origin at 4321'

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad -1/4 \leq z \leq 1/4; \quad y \leq \min(x,1/2-x); \quad -y \leq z \leq y \]

Vertices
\[0,0,0 \quad 1/2,0,0 \quad 1/4,1/4,1/4 \quad 1/4,1/4,-1/4 \]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \\
& \quad (1 | 0,0,0) \\
(2) & \quad \bar{z} \quad (2_z | 0,0,0) \\
(3) & \quad y \quad (2_y | 0,0,0) \\
(4) & \quad x \quad (2_x | 0,0,0) \\
(5) & \quad 3^+ \quad x,x,x \\
& \quad (3_{xyz} | 0,0,0) \\
(6) & \quad 3^+ \quad \bar{x},\bar{x},\bar{x} \\
& \quad (3_{xyz}^{-1} | 0,0,0) \\
(7) & \quad \bar{y} \quad (3_y | 0,0,0) \\
(8) & \quad \bar{x} \quad (3_x | 0,0,0) \\
(9) & \quad 3^- \quad x,x,x \\
& \quad (3_{xyz}^{-1} | 0,0,0) \\
(10) & \quad 3^- \quad \bar{x},\bar{x},\bar{x} \\
& \quad (3_{xyz} | 0,0,0) \\
(11) & \quad \bar{x} \quad (3_x | 0,0,0) \\
(12) & \quad \bar{y} \quad (3_y | 0,0,0)
\end{align*}
\]
Continued

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2) (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (1) t (0,1/2,1/2) (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4
(1) 0,1/2,1/2) (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4 (2) 0,1/2,1/2 (2) 2 (0,0,1/2) 0,1/4,z (3) 2 (0,1/2,0) 0,y,1/4 (4) 2 x,1/4,1/4
Continued

(13) \(2' \cdot (1/4,1/4,0)\) \(x,x+1/4,1/4\)
(14) \(2' \cdot (-1/4,1/4,0)\) \(x\bar{x}+1/4,1/4\)
(15) \(4' \cdot (0,0,1/2)\) \(1/4,1/4,z\)
(16) \(4' \cdot (0,0,1/2)\) \(-1/4,1/4,z\)

(17) \(4' \cdot (x,1/2,0)\)
(18) \(2' \cdot (0,1/2,1/2)\) \(0,y,y\)
(19) \(2' \cdot y,+1/2,\bar{y}\) \(2y\) \(0,1/2,1/2)\) \(0,1/2,1/2)\)

(20) \(4' \cdot x,0,1/2)\)

(21) \(4' \cdot (0,1/2,0)\) \(1/4,y,1/4\)
(22) \(2' \cdot (1/4,0,1/4)\) \(x-1/4,1/4,x\)
(23) \(4' \cdot (0,1/2,0)\) \(-1/4,y,1/4\)
(24) \(2' \cdot (-1/4,0,1/4)\) \(x+1/4,1/4,x\)

(209.2.1551 - 4 - 3476)

Continued

(1) \(t' \cdot (1/2,0,1/2)\)
(2) \(2' \cdot (0,0,1/2)\) \(1/4,0,z\)
(3) \(2' \cdot 1/4,y,1/4\)
(4) \(2' \cdot (1/2,0,1/2)\)

(5) \(3' \cdot (1/3,3/1,3)\) \(x+1/6,x-1/6,x\)
(6) \(3' \cdot (1/3,-1/3,1/3)\) \(x+1/6,x+1/6,x\)

(7) \(3' \cdot x+1/2,x-1/2,x\)

For \((1/2,0,1/2)\) + set

(13) \(2' \cdot (1/4,1/4,0)\) \(x,x-1/4,1/4\)
(14) \(2' \cdot (1/4,-1/4,0)\) \(x\bar{x}+1/4,1/4\)
(15) \(4' \cdot (0,0,1/2)\) \(1/4,-1/4,z\)
(16) \(4' \cdot (0,0,1/2)\) \(1/4,1/4,z\)

(17) \(4' \cdot (1/2,0,0)\) \(x,1/4,1/4\)
(18) \(2' \cdot (0,1/4,1/4)\) \(1/4,y,1/4\)
(19) \(2' \cdot (0,-1/4,1/4)\) \(1/4,y+1/4,y\)

(20) \(4' \cdot (1/2,0,0)\) \(x,-1/4,1/4\)
(4' \cdot (1/2,0,1/2)\)

(21) \(4' \cdot (1/2,y,0)\) \(4' \cdot y,1/2,0\)
(22) \(2' \cdot (1/2,0,1/2)\) \(x,0,x\)
(23) \(4' \cdot 0,y,1/2\)
(24) \(2' \cdot \bar{x}+1/2,0,x\)

For \((1/2,1/2,0)\) + set

(1) \(t' \cdot (1/2,1/2,0)\)
(2) \(2' \cdot 1/4,1/4,z\)
(3) \(2' \cdot (0,1/2,0)\) \(1/4,y,0\)
(4) \(2' \cdot (1/2,0,0)\) \(x,1/4,0\)

(5) \(3' \cdot (1/3,1/3,1/3)\) \(x+1/6,x+1/3,x\)
(6) \(3' \cdot x+1/2,x,\bar{x}\)

For \((1/2,1/2,0)\) + set

(13) \(2' \cdot (1/2,1/2,0)\) \(x,x,0\)
(14) \(2' \cdot x,\bar{x}+1/2,0\)
(15) \(4' \cdot 1/2,0,z\)
(16) \(4' \cdot 0,1/2,z\)

(17) \(4' \cdot (1/2,0,0)\) \(x,1/4,-1/4\)
(18) \(2' \cdot (0,1/4,1/4)\) \(1/4,y+1/4,y\)
(19) \(2' \cdot (0,1/4,-1/4)\) \(1/4,y+1/4,y\)

(20) \(4' \cdot (1/2,0,0)\) \(x,1/4,1/4\)
(4' \cdot (1/2,1/2,0)\)

(21) \(4' \cdot (0,1/2,0)\) \(1/4,y,-1/4\)
(22) \(2' \cdot (1/4,0,1/4)\) \(x+1/4,1/4,x\)
(23) \(4' \cdot (0,1/2,0)\) \(1/4,y,1/4\)
(24) \(2' \cdot (1/4,0,-1/4)\) \(x+1/4,1/4,x\)

Generators selected \(1); t(1,0,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13); 1'.
<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) + (0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) + (0,0,0)' + (0,1/2,1/2)' + (1/2,0,1/2)' + (1/2,1/2,0)' +</td>
</tr>
<tr>
<td>96 j 11'</td>
<td>(1) x,y,z [0,0,0] (2) x, y,z [0,0,0] (3) x,y, z [0,0,0] (4) x, y, z [0,0,0] (5) z,x,y [0,0,0] (6) z, x,y [0,0,0] (7) z, x, y [0,0,0] (8) z, x, y [0,0,0] (9) y,z,x [0,0,0] (10) y, z,x [0,0,0] (11) y, z, x [0,0,0] (12) y, z, x [0,0,0] (13) y,x, z [0,0,0] (14) y, x, z [0,0,0] (15) y, x, z [0,0,0] (16) y, x, z [0,0,0] (17) x,z, y [0,0,0] (18) x, z, y [0,0,0] (19) x, z, y [0,0,0] (20) x, z, y [0,0,0] (21) z,y,x [0,0,0] (22) z, y,x [0,0,0] (23) z, y,x [0,0,0] (24) z, y,x [0,0,0]</td>
</tr>
<tr>
<td>48 i 2..1'</td>
<td>x,1/4,1/4 [0,0,0] x,3/4,1/4 [0,0,0] 1/4,x,1/4 [0,0,0] 1/4,x,3/4 [0,0,0] 1/4,3/4,x [0,0,0] 1/4,3/4,1/4 [0,0,0] 1/4,1/4,x [0,0,0] 1/4,1/4,3/4 [0,0,0] 1/4,1/4,1/4 [0,0,0] 1/4,3/4,1/4 [0,0,0] 1/4,3/4,3/4 [0,0,0] 1/4,3/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>48 h ..21'</td>
<td>1/2,y,y [0,0,0] 1/2, y,y [0,0,0] 1/2,y, y [0,0,0] 1/2, y, y [0,0,0] 1/2,y, y [0,0,0]</td>
</tr>
<tr>
<td>48 g ..21'</td>
<td>0,y,y [0,0,0] 0, y,y [0,0,0] 0,y, y [0,0,0] 0, y, y [0,0,0] 0,y, y [0,0,0]</td>
</tr>
<tr>
<td>32 f .3.1'</td>
<td>x,x,x [0,0,0] x,x,x [0,0,0]</td>
</tr>
<tr>
<td>24 e 4..1'</td>
<td>x,0,0 [0,0,0] x,0,0 [0,0,0]</td>
</tr>
<tr>
<td>24 d 2.221'</td>
<td>0,1/4,1/4 [0,0,0] 0,3/4,1/4 [0,0,0] 1/4,0,1/4 [0,0,0] 1/4,0,1/4 [0,0,0] 1/4,3/4,0 [0,0,0] 1/4,3/4,1/4 [0,0,0] 3/4,1/4,0 [0,0,0] 3/4,1/4,0 [0,0,0] 3/4,1/4,0 [0,0,0] 3/4,1/4,0 [0,0,0] 3/4,1/4,0 [0,0,0] 3/4,1/4,0 [0,0,0] 3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>8 c 23.1'</td>
<td>1/4,1/4,1/4 [0,0,0] 1/4,1/4,3/4 [0,0,0] 1/4,1/4,3/4 [0,0,0] 1/4,1/4,3/4 [0,0,0] 1/4,1/4,3/4 [0,0,0] 1/4,1/4,3/4 [0,0,0] 1/4,1/4,3/4 [0,0,0] 1/4,1/4,3/4 [0,0,0] 1/4,1/4,3/4 [0,0,0] 1/4,1/4,3/4 [0,0,0] 1/4,1/4,3/4 [0,0,0] 1/4,1/4,3/4 [0,0,0] 1/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>4 b 4321'</td>
<td>1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>4 a 4321'</td>
<td>0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p4mm1'
\[a^* = a/2 \quad b^* = b/2\]
Origin at 0,0,z

Along [1,1,1] p3m11'
\[a^* = (2a - b - c)/6 \quad b^* = (-a + 2b - c)/6\]
Origin at x,x,x

Along [1,1,0] c2mm1'
\[a^* = (-a + b)/2 \quad b^* = c\]
Origin at x,x,0
Origin at 4'32'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad -1/4 \leq z \leq 1/4; \quad y \leq \min(x, 1/2-x); \quad -y \leq z \leq y \]

Vertices

\(0,0,0 \) \hspace{0.5cm} 1/2,0,0 \hspace{0.5cm} 1/4,1/4,1/4 \hspace{0.5cm} 1/4,1/4,-1/4

Symmetry Operations

For \((0,0,0) + \text{set}\)

\begin{align*}
(1) & \quad 1 \\
& \quad (1 | 0,0,0) \\
(2) & \quad 2 \quad 0,0,z \\
& \quad (2_z | 0,0,0) \\
(5) & \quad 3^+ \quad x,x,x \\
& \quad (3_{xyz} | 0,0,0) \\
(6) & \quad 3^{-} \quad x,x,x \\
& \quad (3_{xyz}^{-1} | 0,0,0) \\
(9) & \quad 3^+ \quad x,x,x \\
& \quad (3_{xyz} | 0,0,0) \\
(10) & \quad 3^{-} \quad x,x,x \\
& \quad (3_{xyz}^{-1} | 0,0,0) \\
(11) & \quad 2 \quad x,0,0 \\
& \quad (2_z | 0,0,0) \\
(12) & \quad 3^+ \quad x,x,x \\
& \quad (3_{xyz} | 0,0,0)
\end{align*}
For $(1/2,1/2,0) + \text{set}$

$(1) \ t(1/2,1/2,0) \quad (2) \ 2 \ 1/4,1/4,z \quad (3) \ 2 \ (0,1/2,0) \ 1/4,y,0 \quad (4) \ 2 \ (1/2,0,0) \ x,1/4,0$

$(1) \ |1/2,1/2,0) \quad (2) \ z,1/2,1/2,0) \quad (3) \ y,1/2,1/2,0) \quad (4) \ x,1/2,1/2,0) \quad (5) \ z,x,y [w,u,v] \quad (6) \ z,x,y [v,u,w] \quad (7) \ z,x,y [v,w,u] \quad (8) \ z,x,y [u,v,w] \quad (9) \ z,x,y [u,w,v] \quad (10) \ z,x,y [v,w,u] \quad (11) \ z,x,y [v,u,w] \quad (12) \ z,x,y [v,u,w] \quad (13) \ z,x,y [u,w,v] \quad (14) \ z,x,y [v,w,u] \quad (15) \ z,x,y [w,u,v] \quad (16) \ z,x,y [w,v,u]$

$Generators selected \quad (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,0,1/2); t(1/2,1/2,0); (2); (3); (5); (13).$

| Positions |
| Coordinates |
| Multiplicity, Wyckoff letter, Site Symmetry. |
| 96 j 1 |

$(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +$
48	g	0.2'	0,y,y [u,v,v]	0,y,y [u,v,v]	0,y,y [u,v,v]
			y,0,y [v,u,v]	y,0,y [v,u,v]	y,0,y [v,u,v]
			y,y,0 [v,v,u]	y,y,0 [v,v,u]	y,y,0 [v,v,u]
32	f	0.3'	x,x,x [u,u,u]	x,x,x [u,u,u]	x,x,x [u,u,u]
			x,x,x [u,u,u]	x,x,x [u,u,u]	x,x,x [u,u,u]
24	e	4.	x,0,0 [u,0,0]	x,0,0 [u,0,0]	0,x,0 [0,u,0]
			0,x,0 [0,u,0]	0,x,0 [0,u,0]	0,0,x [0,0,u]
24	d	2.2'	0,1/4,1/4 [u,0,0]	0,3/4,1/4 [u,0,0]	1/4,0,1/4 [0,u,0]
			1/4,0,3/4 [0,u,0]	1/4,1/4,0 [0,u,0]	3/4,1/4,0 [0,0,u]
8	c	23.	1/4,1/4,1/4 [0,0,0]	1/4,1/4,3/4 [0,0,0]	1/4,1/4,3/4 [0,0,0]
4	b	4'32'	1/2,1/2,1/2 [0,0,0]	0,0,0 [0,0,0]	0,0,0 [0,0,0]
4	a	4'32'	0,0,0 [0,0,0]	0,0,0 [0,0,0]	0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4'm'm
\[a^* = a/2 \hspace{1cm} b^* = b/2 \]
Origin at 0,0,z

Along [1,1,1] p3m1
\[a^* = (2a - b - c)/6 \hspace{1cm} b^* = (-a + 2b - c)/6 \]
Origin at x,x,x

Along [1,1,0] c2'mm'
\[a^* = -a/2 \hspace{1cm} b^* = -(-a + b)/2 \]
Origin at x,x,0
Origin at 23

Asymmetric unit
0 ≤ x ≤ 1/2; -1/8 ≤ y ≤ 1/8; -1/8 ≤ z ≤ 1/8; y ≤ min (x,1/2-x); -y ≤ z ≤ min (x,1/2-x)

Vertices
0,0,0 1/8,1/8,1/8 1/8,1/8,-1/8 1/8,-1/8,1/8 1/2,0,0 3/8,1/8,1/8 3/8,1/8,-1/8 3/8,-1/8,1/8

Symmetry Operations
For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) 2 (0,0,1/2) 0,1/4,z
2z|0,1/2,1/2

(3) 2 (0,1/2,0) 1/4,y,0
2y|1/2,1/2,0

(4) 2 (1/2,0,0) x,0,1/4
2x|1/2,0,1/2

(5) 3+(x,x,x)

(6) 3+(1/3,-1/3,1/3)
3xz\|1/2,0,1/2

(7) 3+(1/3,1/3,-1/3)
3yz\|1/2,0,1/2

(8) 3+(1/3,1/3,-1/3)
3xyz\|1/2,1/2,0

(9) 3+(x,x,x)

(10) 3+(1/2,x,x)
3xy|0,1/2,1/2

(11) 3+(1/2,x,1/2)
3xy|0,1/2,1/2

(12) 3+(1/2,x,1/2)
3xy|0,1/2,1/2

210.1.1553 - 1 - 3483
(13) 2 (1/2,1/2,0) x,x-1/4,3/8 \\
(2xy) | 3/4,1/4,3/4
(14) 2 x,x+1/4,1/8 \\
(2xy) | 1/4,1/4,1/4
(15) 4 (0,0,3/4) 1/2,1/4,z \\
(4z) | 1/4,3/4,3/4
(16) 4 (0,0,1/4) 0,3/4,z \\
(4z) | 3/4,3/4,1/4

(17) 4' (3/4,0,0) x,1/2,1/4 \\
(4x) | 3/4,1/4,3/4
(18) 2 (0,1/2,1/2) 3/8,y+1/4,y \\
(2yz) | 3/4,3/4,1/4
(19) 2 1/8,y+1/4, y \\
(2yz) | 1/4,1/4,1/4
(20) 4 (1/4,0,0) x,0,3/4 \\
(4x) | 1/4,3/4,3/4

(21) 4' (0,1/4,0) 3/4,y,0 \\
(4y) | 3/4,1/4,3/4
(22) 2 (1/2,0,1/2) x-1/4,3/8,x \\
(2xz) | 1/4,1/4,3/4
(23) 4' (0,3/4,0) 1/4,y,1/2 \\
(4y) | 3/4,3/4,1/4
(24) 2 x+1/4,1/8,x \\
(2xz) | 1/4,1/4,1/4

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2) \\
(1) 0,1/2,1/2
(2) 2 0,0,z \\
(2z) | 0,0,0
(3) 2 1/4,y,1/4 \\
(2yz) | 1/2,0,1/2
(4) 2 (1/2,0,0) x,1/4,0 \\
(2z) | 1/2,1/2,0

(5) 3' (1/3,1/3,1/3) x-1/6,x+1/6,x \\
(3xyz) | 0,1/2,1/2
(6) 3' x+1/2,x,x \\
(3xyz) | 1/2,1/2,0
(7) 3' x,x,x \\
(3xyz) | 0,0,0
(8) 3' x+1/2,x+1/2,x \\
(3xyz) | 1/2,0,1/2

(9) 3' (1/3,1/3,1/3) x-1/6,x+1/6,x \\
(3xyz) | 0,1/2,1/2
(10) 3' x+1/2,x,x \\
(3xyz) | 1/2,0,1/2
(11) 3' x+1/2,x,x,x \\
(3xyz) | 0,0,0
(12) 3' x,x,x+1/2,x \\
(3xyz) | 1/2,1/2,0

(13) 2 (3/4,3,4,0) x,x,1/8 \\
(2xz) | 3/4,3,4,1/4
(14) 2 (-1/4,1,4,0) x,x+1/2,3/8 \\
(2yz) | 1/4,3,4,3/4
(15) 4' (0,0,1/4) 1/4,0,z \\
(4z) | 1/4,1/4,1/4
(16) 4' (0,0,3/4) 1/4,1/2,z \\
(4z) | 3/4,1/4,3/4

(17) 4' (3/4,0,0) x,1/2,-1/4 \\
(4x) | 3/4,3,4,1/4
(18) 2 (0,1/2,1/2) 3/8,y-1/4,y \\
(2yz) | 3/4,1/4,3/4
(19) 2 1/8,y+3/4, y \\
(2yz) | 1/4,3,4,3/4
(20) 4' (1/4,0,0) x,0,1/4 \\
(4x) | 1/4,1,4,1/4

(21) 4' (0,3/4,0) 1/2,y,-1/4 \\
(4y) | 3/4,3,4,1/4
(22) 2 (1/4,0,1/4) x,1/8,x \\
(2xz) | 1/4,1/4,1/4
(23) 4' (0,1/4,0) 0,y,3/4 \\
(4y) | 3/4,1/4,3/4
(24) 2 (-1/4,0,1/4) x+1/2,3/8,x \\
(2xz) | 1/4,3,4,3/4

For (1/2,0,1/2) + set

(1) t (1/2,0,1/2) \\
(1) 1/2,0,1/2
(2) 2 1/4,1/4,z \\
(2z) | 1/2,1/2,0
(3) 2 0,1/2,0) 0,y,1/4 \\
(2yz) | 0,1/2,1/2
(4) 2 x,0,0 \\
(2z) | 0,0,0

(5) 3' (1/3,1/3,1/3) x+1/6,x-1/6,x \\
(3xyz) | 1/2,0,1/2
(6) 3' x,x,x \\
(3xyz) | 0,0,0
(7) 3' x+x+1/2,x,x \\
(3xyz) | 1/2,1/2,0
(8) 3' x,x+1/2,x \\
(3xyz) | 0,0,0

(9) 3' (1/3,1/3,1/3) x+1/6,x-1/6,x \\
(3xyz) | 1/2,0,1/2
(10) 3' (-1/3,1/3,1/3) x+1/6,x+1/6,x \\
(3xyz) | 1/2,1/2,0
(11) 3' x,x,x \\
(3xyz) | 0,0,0
(12) 3' x,x+1/2,x \\
(3xyz) | 1/2,1/2,0

(13) 2 (1/4,1,4,0) x,x,1/8 \\
(2xz) | 1/4,1,4,1/4
(14) 2 (1/4,-1/4,0) x,x+1/2,3/8 \\
(2yz) | 3/4,1/4,3/4
(15) 4 (0,0,1/4) 3/4,0,z \\
(4z) | 3/4,3/4,1/4
(16) 4 (0,0,3/4) -1/4,1/2,z \\
(4z) | 1/4,3,4,3/4

(17) 4' (1/4,0,0) x,1/4,0 \\
(4x) | 1/4,1,4,1/4
(18) 2 (0,3/4,3/4) 1/8,y,y \\
(2yz) | 1/4,3,4,3/4
(19) 2 0,-1/4,1/4) 3/8,y+1/2, y \\
(2yz) | 3/4,1/4,3/4
(20) 4' (3/4,0,0) x,1/4,1/2 \\
(4x) | 3/4,3,4,1/4

(21) 4' (0,1/4,0) 1/4,y,0 \\
(4y) | 1/4,1,4,1/4
(22) 2 (1/2,0,1/2) x+1/4,3/8,x \\
(2xz) | 3/4,3,4,1/4
(23) 4' (0,3/4,0) -1/4,y,1/2 \\
(4y) | 1/4,3,4,3/4
(24) 2 x+3/4,1/8,x \\
(2xz) | 1/4,1/4,3/4

210.1.1553 - 2 - 3484
Continued

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0) (2) 2 (0,0,1/2) 1/4,0,z (3) 2 0,y,0 (4) 2 x,1/4,1/4
 (1|1/2,1/2,0) (2z|1/2,0,1/2) (2y|0,0,0) (2x|0,1/2,1/2)

(5) 3* (1/3,1/3,1/3) (6) 3* x,x+1/2,x (7) 3* x+1/2,x-1/2,x (8) 3* x,x,x
 x+1/6,x+1/3,x (3xz|1/2,1/2,0) (3xz⁻¹|0,1/2,1/2) (3xz⁻¹|1/2,0,1/2) (3xz⁻¹|0,0,0)

(9) 3* (1/3,1/3,1/3) (10) 3* x,x,x (11) 3* x+1/2,x+1/2,x (12) 3* (1/3,-1/3,1/3)
 x+1/3,x+1/6,x (3yz⁻¹|1/2,1/2,0) (3yz|0,1,2,1/2) (3yz|1/2,0,1/2)

(13) 2 (1/2,1/2,0) (14) 2 x,x+3/4,1/8 (15) 4* (0,0,3/4) 1/2,-1/4,z (16) 4* (0,0,1/4) 0,1/4,z
 x,x+1/4,3/8 (2xz|1/4,3/4,3/4) (2xz|3/4,3/4,1/4) (4z|1/4,1/4,1/4)

(17) 4* (1/4,0,0) (18) 2 (0,1/4,1/4) 1/8,y,y (19) 2 (0,1/4,-1/4) 3/8,y+1/2,y (20) 4* (3/4,0,0) x,-1/4,1/2
 x,3/4,0 (4z⁻¹|1/4,3/4,3/4) (2yz|1/4,1/4,1/4) (4x|3/4,1/4,3/4)

(21) 4* (0,3/4,0) (22) 2 (3/4,0,3/4) x,1/8,x (23) 4* (0,1/4,0) 0,y,1/4 (24) 2 (1/4,0,-1/4)
 1/2,y,1/4 (4z⁻¹|1/4,1/4,1/4) (2xz|3/4,3/4,1/4)

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Coordinate</th>
<th>(0,0,0) +</th>
<th>(0,1/2,1/2) +</th>
<th>(1/2,0,1/2) +</th>
<th>(1/2,1/2,0) +</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,y,z [u,v,w]</td>
<td>x,y+1/2,z+1/2 [u,v,w]</td>
<td>x+1/2,y+1/2,z [u,v,w]</td>
<td>x+1/2,y,z+1/2 [u,v,w]</td>
<td>x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>z,x,y [w,u,v]</td>
<td>z+1/2,x,y+1/2 [w,u,v]</td>
<td>z+1/2,x+1/2,y [w,u,v]</td>
<td>z+1/2,x+1/2,y [w,u,v]</td>
<td>z+1/2,x+1/2,y [w,u,v]</td>
</tr>
<tr>
<td>y,z,x [v,w,u]</td>
<td>y+1/2,z+1/2,x [v,w,u]</td>
<td>y+1/2,z+1/2,x [v,w,u]</td>
<td>y+1/2,z+1/2,x [v,w,u]</td>
<td>y+1/2,z+1/2,x [v,w,u]</td>
</tr>
<tr>
<td>y,z+1/2,x+1/4,3/4 [v,u,w]</td>
<td>y+1/2,x+1/4,3/4 [v,u,w]</td>
<td>y+1/2,x+1/4,3/4 [v,u,w]</td>
<td>y+1/2,x+1/4,3/4 [v,u,w]</td>
<td>y+1/2,x+1/4,3/4 [v,u,w]</td>
</tr>
<tr>
<td>1/8,y,y+1/4,0 [v,v]</td>
<td>7/8,y+1/2,y+3/4,0 [v,v]</td>
<td>7/8,y+1/2,y+3/4,0 [v,v]</td>
<td>7/8,y+1/2,y+3/4,0 [v,v]</td>
<td>7/8,y+1/2,y+3/4,0 [v,v]</td>
</tr>
<tr>
<td>1/8,y+1/4,1/8 [v,v,0]</td>
<td>1/8,y+1/4,1/8 [v,v,0]</td>
<td>1/8,y+1/4,1/8 [v,v,0]</td>
<td>1/8,y+1/4,1/8 [v,v,0]</td>
<td>1/8,y+1/4,1/8 [v,v,0]</td>
</tr>
<tr>
<td>1/4,0,0 [u,0,0]</td>
<td>1/4,0,0 [u,0,0]</td>
<td>1/4,0,0 [u,0,0]</td>
<td>1/4,0,0 [u,0,0]</td>
<td>1/4,0,0 [u,0,0]</td>
</tr>
<tr>
<td>1/4,0,0 [0,u,0]</td>
<td>1/4,0,0 [0,u,0]</td>
<td>1/4,0,0 [0,u,0]</td>
<td>1/4,0,0 [0,u,0]</td>
<td>1/4,0,0 [0,u,0]</td>
</tr>
<tr>
<td>1/4,0,0 [0,0,0]</td>
<td>1/4,0,0 [0,0,0]</td>
<td>1/4,0,0 [0,0,0]</td>
<td>1/4,0,0 [0,0,0]</td>
<td>1/4,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

210.1.1553 - 3 - 3485
32 e .3. x,x,x [u,u,u] \[\bar{x}, \bar{x}+1/2, x+1/2 [u,u,u] \]
\[\bar{x}+1/2, x+1/2, x [u,u,u] \] \[x+1/2, \bar{x}, x+1/2 [u,u,u] \]
\[x+3/4, x+1/4, x+3/4 [u,u,\bar{u}] \] \[\bar{x}+1/4, \bar{x}+1/4, x+1/4 [u,u,u] \]
\[x+1/4, x+3/4, x+3/4 [u,u,u] \] \[\bar{x}+3/4, x+3/4, x+1/4 [u,u,u] \]

16 d .32 5/8,5/8,5/8 [0,0,0] \[3/8,7/8,1/8 [0,0,0] \] \[7/8,1/8,3/8 [0,0,0] \] \[1/8,3/8,7/8 [0,0,0] \]

16 c .32 1/8,1/8,1/8 [0,0,0] \[7/8,3/8,5/8 [0,0,0] \] \[3/8,5/8,7/8 [0,0,0] \] \[5/8,7/8,3/8 [0,0,0] \]

8 b 23. 1/2,1/2,1/2 [0,0,0] \[1/4,3/4,1/4 [0,0,0] \]

8 a 23. 0,0,0 [0,0,0] \[3/4,1/4,3/4 [0,0,0] \]

Symmetry of Special Projections

Along [0,0,1] p4m' m'
\[a^* = a/2 \quad b^* = b/2 \]
Origin at 1/4,0,z

Along [1,1,1] p3m'1
\[a^* = (2a - b - c)/6 \quad b^* = (-a + 2b - c)/6 \]
Origin at x,x,x

Along [1,1,0] c2m' m'
\[a^* = (-a + b)/2 \quad b^* = c \]
Origin at x,x,1/8
Origin at 231°

Asymmetric unit

\[0 \leq x \leq 1/2; \quad -1/8 \leq y \leq 1/8; \quad -1/8 \leq z \leq 1/8; \quad y \leq \min(x,1/2-x); \quad -y \leq z \leq \min(x,1/2-x) \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/8,1/8,1/8 & \quad 1/8,1/8,-1/8 & \quad 1/8,-1/8,1/8 & \quad 1/8,-1/8,1/8 \\
1/2,0,0 & \quad 3/8,1/8,1/8 & \quad 3/8,1/8,-1/8 & \quad 3/8,-1/8,1/8 & \quad 3/8,-1/8,1/8
\end{align*}
\]

Symmetry Operations

For \((0,0,0) + \text{set}\)

\[
\begin{align*}
(1) & \quad 1 \\
(1 \mid 0,0,0) & \quad (2) \quad 2 \ (0,0,1/2) \quad 0,1/4,z \\
(2z \mid 0,1/2,1/2) & \quad (3) \quad 2 \ (0,1/2,0) \quad 1/4,y,0 \\
(2y \mid 1/2,1/2,0) & \quad (4) \quad 2 \ (1/2,0,0) \quad x,0,1/4 \\
(2z \mid 1/2,0,1/2) & \quad (5) \quad 3^+ \ x,x,x \\
(6) \quad 3^+ \ (1/3,-1/3,1/3) \quad x+1/6,x+1/6,x & \quad (7) \quad 3^+ \ (-1/3,1/3,1/3) \quad x+1/3,x+1/6,x \\
(3_{xyz} \mid 1/2,0,1/2) & \quad (3_{xyz}^{-1} \mid 0,1/2,1/2) & \quad (3_{xyz}^{-1} \mid 1/2,1/2,0) \\
(8) \quad 3^+ \ (1/3,1/3,-1/3) \quad x+1/6,x+1/3,x & \quad (9) \quad 3^+ \ x,x,x \\
(3_{xyz}^{-1} \mid 0,0,0) & \quad (10) \quad 3^- \ x,x+1/2,x & \quad (11) \quad 3^- \ x+1/2,x,x \\
(3_{xyz} \mid 1/2,1/2,0) & \quad (3_{xyz} \mid 1/2,0,1/2) & \quad (3_{xyz} \mid 0,1/2,1/2) & \quad (3_{xyz} \mid 1/2,1/2,0) \\
(12) & \quad 3^- \ x-1/2,x+1/2,x
\end{align*}
\]
<table>
<thead>
<tr>
<th>(13)</th>
<th>2 (1/2, 1/2, 0)</th>
<th>x, x−1/4, 3/8 (2xy) 3/4, 1/4, 3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14)</td>
<td>2 x, x+1/4, 1/8 (2xy) 1/4, 1/4, 1/4</td>
<td></td>
</tr>
<tr>
<td>(15)</td>
<td>4 (0, 0, 3/4) 1/2, 1/4, z (4z) 1/4, 3/4, 3/4</td>
<td></td>
</tr>
<tr>
<td>(16)</td>
<td>4 (0, 0, 1/4) 3/4, z (4z) 3/4, 3/4, 1/4</td>
<td></td>
</tr>
<tr>
<td>(17)</td>
<td>4 (3/4, 0, 0)</td>
<td>x, 1/2, 1/4 (4x) 1/2, 3/4, 3/4</td>
</tr>
<tr>
<td>(18)</td>
<td>2 (0, 1/2, 1/2)</td>
<td>3/8, y+1/4, y (2yz) 3/4, 3/4, 1/4</td>
</tr>
<tr>
<td>(19)</td>
<td>2 1/8, y+1/4, y (2yz) 1/4, 1/4, 1/4</td>
<td></td>
</tr>
<tr>
<td>(20)</td>
<td>4 (1/4, 0, 0) x, 0, 3/4 (4x) 1/4, 3/4, 3/4</td>
<td></td>
</tr>
<tr>
<td>(21)</td>
<td>4 (0, 1/4, 0)</td>
<td>3/4, y, 0 (4y) 3/4, 1/4, 3/4</td>
</tr>
<tr>
<td>(22)</td>
<td>2 (1/2, 0, 1/2)</td>
<td>x−1/4, 3/8, x (2xz) 1/4, 1/4, 3/4</td>
</tr>
<tr>
<td>(23)</td>
<td>4 y (0, 3/4, 0) 1/4, y, 1/2 (4y) 3/4, 3/4, 1/4</td>
<td></td>
</tr>
<tr>
<td>(24)</td>
<td>2 x+1/4, 1/8, x (2xz) 1/4, 1/4, 1/4</td>
<td></td>
</tr>
</tbody>
</table>

For (0, 1/2, 1/2) + set

<table>
<thead>
<tr>
<th>(1)</th>
<th>t (0, 1/2, 1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>2 0, 0, z (2z) 0, 0, 0</td>
</tr>
<tr>
<td>(3)</td>
<td>2 1/4, y, 1/4 (2y) 1/2, 1/2, 0</td>
</tr>
<tr>
<td>(4)</td>
<td>2 (1/2, 0, 0) x, 1/4, 0 (2z) 1/2, 1/2, 0</td>
</tr>
<tr>
<td>(5)</td>
<td>3 (1/3, 1/3, 1/3) [x−1/3, x−1/6, x (3xyz) 0, 1/2, 1/2]</td>
</tr>
<tr>
<td>(6)</td>
<td>3 x+1/2, x, x (3xyz) 1/2, 2, 1/2</td>
</tr>
<tr>
<td>(7)</td>
<td>3 x, x, x (3xyz) 1/2, 1/2, 0</td>
</tr>
<tr>
<td>(8)</td>
<td>3 x+1/2, x+1/2, x (3xyz) 0, 1/2, 1/2</td>
</tr>
<tr>
<td>(9)</td>
<td>3 (1/3, 1/3, 1/3) [x−1/6, x+1/6, x (3xyz) 0, 1/2, 1/2]</td>
</tr>
<tr>
<td>(10)</td>
<td>3 x+1/2, x, x (3xyz) 1/2, 2, 1/2</td>
</tr>
<tr>
<td>(11)</td>
<td>3 x+1/3, x+1/3, x (3xyz) 1/2, 1/2, 0</td>
</tr>
<tr>
<td>(12)</td>
<td>3 x, x, x (3xyz) 0, 1/2, 1/2</td>
</tr>
<tr>
<td>(13)</td>
<td>2 (3/4, 3/4, 0)</td>
</tr>
<tr>
<td>(14)</td>
<td>2 [-1/4, 1/4, 0] x, x+1/2, 3/8 (2xy) 1/4, 3/4, 1/4</td>
</tr>
<tr>
<td>(15)</td>
<td>4 (0, 0, 1/4) 1/4, 0, z (4z) 1/4, 1/4, 1/4</td>
</tr>
<tr>
<td>(16)</td>
<td>4 (0, 0, 3/4) 1/4, 1/2, z (4z) 3/4, 1/4, 3/4</td>
</tr>
<tr>
<td>(17)</td>
<td>4 (3/4, 0, 0)</td>
</tr>
<tr>
<td>(18)</td>
<td>2 (0, 1/2, 1/2)</td>
</tr>
<tr>
<td>(19)</td>
<td>2 1/8, y+3/4, y (2yz) 1/4, 3/4, 1/4</td>
</tr>
<tr>
<td>(20)</td>
<td>4 (1/4, 0, 0) x, 0, 1/4 (4x) 1/4, 1/4, 1/4</td>
</tr>
<tr>
<td>(21)</td>
<td>4 (0, 3/4, 0)</td>
</tr>
<tr>
<td>(22)</td>
<td>2 (1/4, 0, 1/4)</td>
</tr>
<tr>
<td>(23)</td>
<td>4 (0, 1/4, 0) 0, y, 3/4 (4y) 3/4, 1/4, 3/4</td>
</tr>
<tr>
<td>(24)</td>
<td>2 [-1/4, 0, 1/4] x+1/2, 3/8, x (2xz) 1/4, 3/4, 1/4</td>
</tr>
</tbody>
</table>

For (1/2, 0, 1/2) + set

<table>
<thead>
<tr>
<th>(1)</th>
<th>t (1/2, 0, 1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>2 1/4, 1/4, z (2z) 1/2, 1/2, 0</td>
</tr>
<tr>
<td>(3)</td>
<td>2 (0, 1/2, 0) 0, y, 1/4 (2y) 0, 1/2, 1/2</td>
</tr>
<tr>
<td>(4)</td>
<td>2 x, 0, 0 (2x) 0, 0, 0</td>
</tr>
<tr>
<td>(5)</td>
<td>3 (1/3, 1/3, 1/3) [x+1/6, x−1/6, x (3xyz) 1/2, 0, 1/2]</td>
</tr>
<tr>
<td>(6)</td>
<td>3 x, x, x (3xyz) 1/2, 2, 1/2</td>
</tr>
<tr>
<td>(7)</td>
<td>3 x+1/2, x, x (3xyz) 1/2, 1/2, 0</td>
</tr>
<tr>
<td>(8)</td>
<td>3 x, x+1/2, x (3xyz) 0, 1/2, 1/2</td>
</tr>
<tr>
<td>(9)</td>
<td>3 (1/3, 1/3, 1/3) [x−1/6, x+1/6, x (3xyz) 1/2, 0, 1/2]</td>
</tr>
<tr>
<td>(10)</td>
<td>3 x, x, x (3xyz) 1/2, 2, 1/2</td>
</tr>
<tr>
<td>(11)</td>
<td>3 x, x, x (3xyz) 0, 1/2, 1/2</td>
</tr>
<tr>
<td>(12)</td>
<td>3 x, x+1/2, x (3xyz) 0, 1/2, 1/2</td>
</tr>
<tr>
<td>(13)</td>
<td>2 (1/4, 1/4, 0)</td>
</tr>
<tr>
<td>(14)</td>
<td>2 (1/4, −1/4, 0) x, x+1/2, 3/8 (2xy) 1/4, 3/4, 1/4</td>
</tr>
<tr>
<td>(15)</td>
<td>4 (0, 0, 1/4) 3/4, 0, z (4z) 3/4, 1/4, 3/4</td>
</tr>
<tr>
<td>(16)</td>
<td>4 (0, 0, 3/4) −1/4, 1/2, z (4z) 1/4, 3/4, 3/4</td>
</tr>
<tr>
<td>(17)</td>
<td>4 (1/4, 0, 0)</td>
</tr>
<tr>
<td>(18)</td>
<td>2 (0, 3/4, 3/4) 1/8, y, y (2yz) 1/4, 3/4, 3/4</td>
</tr>
<tr>
<td>(19)</td>
<td>2 (0, −1/4, 1/4) 3/8, y+1/2, y (2yz) 3/4, 1/4, 3/4</td>
</tr>
<tr>
<td>(20)</td>
<td>4 (3/4, 0, 0) x, 1/4, 1/2 (4x) 3/4, 3/4, 1/4</td>
</tr>
<tr>
<td>(21)</td>
<td>4 (0, 1/4, 0)</td>
</tr>
<tr>
<td>(22)</td>
<td>2 (1/2, 0, 1/2)</td>
</tr>
<tr>
<td>(23)</td>
<td>4 y (0, 3/4, 0) −1/4, y, 1/2 (4y) 1/4, 3/4, 3/4</td>
</tr>
<tr>
<td>(24)</td>
<td>2 x+3/4, 1/8, x (2xz) 3/4, 1/4, 3/4</td>
</tr>
</tbody>
</table>
(1) t (1/2,1/2,0) (2) 2 (0,0,1/2) 1/4,0,z (3) 2 0,y,0 (4) 2 x,1/4,1/4
 (1 1/2,1/2,0) (2z 1/2,0,1/2) (2y 0,0,0) (2x 0,1/2,1/2)

(5) 3' (1/3,1/3,1/3) x+1/6,x+1/3,x
 (3xyz 1/2,1/2,0) (3xyz 1/2,1/2,0)

(6) 3' x,x+1/2,x (7) 3' x+1/2,x-1/2,x (8) 3' x,x,x
 (3xyz 1/2,1/2,0) (3xyz 1/2,1/2,1/2) (3xyz 0,0,0)

(9) 3' (1/3,1/3,1/3) x+1/3,x+1/6,x
 (3xyz 1/2,1/2,0) (3xyz 0,0,0)

(10) 3' x,x,x (11) 3' x+1/2,x+1/2,x (12) 3' x,x,x
 (3xyz 1/2,1/2,0) (3xyz 0,0,0) (3xyz 0,0,0)

For (1/2,1/2,0) + set

(1) 1' (0,0,0)' (2) 2' (0,0,1/2) 0,1/4,z (3) 2' (0,1/2,0) 1/4,y,0 (4) 2' (1/2,0,0) x,0,1/4
 (1 0,0,0)' (2z 1/2,1/2,0)' (2y 1/2,1/2,0)' (2x 1/2,1/2,0)'

(5) 3'' x,x,x (6) 3'' (1/3,-1/3,1/3) x+1/6,x+1/6,x
 (3xyz 0,0,0)' (3xyz 1/2,1/2,0)' (3xyz 1/2,1/2,0)'

(7) 3'' (-1/3,1/3,1/3) x+1/3,x-1/6,x (8) 3'' (1/3,1/3,1/3)
 (3xyz 1/2,1/2,1/2) (3xyz 0,0,0)' (3xyz 0,0,0)

(9) 3' x,x,x (10) 3' x,x,x (11) 3' x+1/2,x (12) 3' x,x,x
 (3xyz 1/2,1/2,0) (3xyz 0,0,0) (3xyz 0,1/2,1/2) (3xyz 1/2,0,1/2)

For (0,0,0) + set

(13) 2' (1/2,1/2,0) x,x+1/4,3/8 (14) 2' x,x+1/4,1/8 (15) 4' (0,0,3/4) 1/2,1/4,z (16) 4' (0,0,1/4) 0,1/4,z
 (2zxy 3/4,1/4,3/4)' (2zxy 1/4,1/4,1/4)' (4zxy 1/4,3/4,3/4)'

(17) 4' (3/4,0,0) x,1/2,1/4 (18) 2' (0,1/2,1/2) 3/8,y+1/4,y (19) 2' 1/8,y+1/4,y
 (4zxy 3/4,1/4,3/4) (2zxy 3/4,3/4,1/4)' (2zxy 1/4,1/4,1/4)'

(20) 4' (1/4,0,0) x,0,3/4 (4zxy 1/4,3/4,3/4)'

(21) 4' (0,1/4,0) 3/4,y,0 (22) 2' (1/2,0,1/2) -1/2,3/8,x (23) 4' (0,3/4,0) 1/4,y,1/2
 (4zxy 3/4,1/4,3/4) (2zxy 1/4,3/4,3/4)' (2zxy 1/4,1/4,1/4)'

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2) (2) 2' (0,0,1/2) 0,1/4,z (3) 2' 1/4,y,1/4 (4) 2' (1/2,0,0) x,1/4,0
 (1 0,1/2,1/2)' (2z 0,0,0) (2y 1/2,0,1/2) (2x 1/2,1/2,0)'

(5) 3'' (1/3,1/3,1/3) x-1/3,x-1/6,x
 (3xyz 0,1/2,1/2)' (3xyz 1/2,1/2,2)'

(6) 3'' x+1/2,x,x (7) 3'' x,x,x (8) 3'' x+1/2,x+1/2,x
 (3xyz 1/2,1/2,2)' (3xyz 0,0,0)' (3xyz 0,0,0)

(9) 3' (1/3,1/3,1/3) x-1/6,x+1/6,x
 (3xyz 1/2,1/2,2)' (3xyz 1/2,0,1/2)

(10) 3' x+1/2,x,x (11) 3' x+1/2,x+1/2,x (12) 3' x,x,x
 (3xyz 1/2,0,1/2) (3xyz 1/2,1/2,0)' (3xyz 0,0,0)
Continued

(13) 2' (3/4,3/4,0) x,x,1/8
 (2'xy) 3/4,3/4,1/4)

(14) 2' (-1/4,1/4,0) x,x+1/2,3/8
 (2'xy) 1/4,3/4,3/4)

(15) 4' - (0,0,1/4) 1/4,0,z
 (4'z) 1/4,1/4,1/4)

(16) 4' - (0,0,3/4) 1/4,1/2,z
 (4'z) 3/4,1/4,3/4)

(17) 4' - (3/4,0,0) x,1/2,-1/4
 (4'-xy) 3/4,3/4,1/4)

(18) 2' (0,1/2,1/2) 3/8,y-1/4,y
 (2'xy) 3/4,1/4,3/4)

(19) 2' - (1/2,0,1/2) 1/4,0,z
 (2'xy) 1/4,3/4,3/4)

(20) 4' - (1/4,0,0) x,0,1/4
 (4') 1/4,1,1/4)

(21) 4' - (0,3/4,0) 1/2,y,-1/4
 (4'xy) 3/4,3/4,1/4)

(22) 2' (1/4,0,1/4) x,1/8,x
 (2'xy) 1/4,1/4,1/4)

(23) 4' - (0,1/4,0) 0,y,3/4
 (4'y) 3/4,1/4,3/4)

(24) 2' - (1/4,0,1/4) x,x+1/2,3/8,x
 (2'xy) 1/4,3/4,3/4)

For (1/2,0,1/2) + set

(1) 1' (1/2,0,1/2)
 (1'xy) 1/2,0,1/2)

(2) 2' 1/4,1/4,z
 (2'xy) 1/2,1,2/0,1/2)

(3) 2' (0,1/2,0) 0,y,1/4
 (2'y) 0,1/2,1/2,0)

(4) 2' x,0,0
 (2'z) 0,1/2,1/2,0)

(5) 3' - (1/3,3/1,3/3)

(6) 3' - x,x,x
 (3'xyz) 1/2,0,1/2)

(7) 3' - x+1/2,x,x
 (3'xyz) 1/2,1,2/0,1/2)

(8) 3' - x,x+1/2,x
 (3'xyz) 1/2,0,1/2)

(9) 3' - (1/3,3/1,3/3)

(10) 3' - x,x,x,x+1/6,x
 (3'xyz) 3/4,3/4,1/4)

(11) 3' - x,x,x,x+1/6,x
 (3'xyz) 3/4,3/4,1/4)

(12) 3' - x,x+1/2,x
 (3'xyz) 1/2,0,1/2)

(13) 2' (1/4,1/4,0) x,x,1/8
 (2'xy) 1/4,1/4,1/4)

(14) 2' (1/4,1/4,0) x,x+1/2,3/8
 (2'xy) 3/4,3/4,3/4)

(15) 4' - (0,0,1/4) 3/4,0,z
 (4'z) 1/4,3/4,3/4)

(16) 4' - (0,0,3/4) 1/4,1/2,z
 (4'z) 3/4,1/4,3/4)

(17) 4' - (3/4,0,0) x,1/4,0
 (4'-xy) 3/4,3/4,1/4)

(18) 2' (0,1/4,1/4) 1/8,y,y
 (2'xy) 3/4,3/4,3/4)

(19) 2' (0,1/4,1/4) 3/8,y+1/2,y
 (2'xy) 3/4,3/4,3/4)

(20) 4' - (3/4,0,0) x,1/4,1/2
 (4') 3/4,3/4,1/4)

(21) 4' - (0,3/4,0) 1/2,y,1/4
 (4'xy) 3/4,3/4,1/4)

(22) 2' (3/4,0,3/4) x,1/8,x
 (2'xy) 3/4,3/4,1/4)

(23) 4' - (0,1/4,0) 0,y,1/4
 (4'y) 3/4,1/4,1/4)

(24) 2' (1/4,0,1/4) x,x+1/2,3/8,x
 (2'xy) 3/4,3/4,1/4)

For (1/2,1,2,0) + set

(1) 1' (1/2,1,2,0)
 (1'xy) 1/2,1,2,0)

(2) 2' (0,0,1/2) 1/4,0,z
 (2'xy) 1/2,1,2,0)

(3) 2' (0,0,1/2) 0,y,0
 (2'y) 0,1/2,1/2,0)

(4) 2' x,1/4,1/4
 (2'z) 0,1/2,1/2,0)

(5) 3' - (1/3,3/1,3/3)

(6) 3' - x,x+1/2,x
 (3'xyz) 1/2,1,2,0)

(7) 3' - x,x+1/2,x,x+1/2,x
 (3'xyz) 1/2,1,2,0)

(8) 3' - x,x,x
 (3'xyz) 1/2,1,2,0)

(9) 3' - (1/3,3/1,3/3)

(10) 3' - x,x,x
 (3'xyz) 1/2,1,2,0)

(11) 3' - x,x+1/2,x
 (3'xyz) 1/2,1,2,0)

(12) 3' - x,x+1/2,x,x+1/2,x
 (3'xyz) 1/2,1,2,0)

(13) 2' (1/2,1,2,0) x,x+1/4,3/8
 (2'xy) 1/4,3/4,3/4)

(14) 2' x,x+3/4,1/8
 (2'xy) 3/4,3/4,1/4)

(15) 4' - (0,0,3/4) 1/2,-1/4,z
 (4'z) 3/4,1/4,1/2)

(16) 4' - (0,0,1/4) 0,1/4,z
 (4'z) 1/4,1,1/4)

(17) 4' - (1/4,0,0) x,3/4,0
 (4'-xy) 3/4,3/4,1/4)

(18) 2' (0,1/4,1/4) 1/8,y,y
 (2'xy) 3/4,3/4,1/4)

(19) 2' (0,1/4,1/4) 3/8,y+1/2,y
 (2'xy) 3/4,3/4,1/4)

(20) 4' - (3/4,0,0) x,-1/4,1/2
 (4') 3/4,1,1/4)

(21) 4' - (0,3/4,0) 1/2,y,1/4
 (4'xy) 3/4,3/4,1/4)

(22) 2' (3/4,0,3/4) x,1/8,x
 (2'xy) 3/4,3/4,1/4)

(23) 4' - (0,1/4,0) 0,y,1/4
 (4'y) 3/4,1/4,1/4)

(24) 2' (1/4,0,1/4) x,x+1/2,3/8,x
 (2'xy) 3/4,3/4,1/4)

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1,0,1/2); t(1/2,0,1/2); (2); (3); (5); (13): 1'.
Continued

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) + (0,0,0)' + (0,1/2,1/2)' + (1/2,0,1/2)' + (1/2,1/2,0)' +</td>
<td></td>
</tr>
<tr>
<td>96 h 11'</td>
<td></td>
</tr>
</tbody>
</table>

(1) x,y,z [0,0,0] (2) x̅,y̅ +1/2,z̅ +1/2 [0,0,0] (3) x̅ +1/2,y̅ +1/2,z̅ [0,0,0] (4) x̅ +1/2,y̅ ,z̅ +1/2 [0,0,0]

(5) z,x,y [0,0,0] (6) z̅ +1/2,x̅ ,y̅ +1/2 [0,0,0] (7) z̅ ,x̅ +1/2,y̅ +1/2 [0,0,0] (8) z̅ +1/2,x̅ +1/2,y̅ [0,0,0]

(9) y,z,x [0,0,0] (10) y̅ +1/2,z̅ +1/2,x̅ [0,0,0] (11) y̅ +1/2,z̅ ,x̅ +1/2 [0,0,0] (12) y̅ ,z̅ +1/2,x̅ +1/2 [0,0,0]

(13) y+3/4,x+1/4,z+3/4 [0,0,0] (14) y̅ +1/4,x̅ +1/4,z̅ +1/4 [0,0,0] (15) y̅ +1/4,x̅ +3/4,z̅ +3/4 [0,0,0] (16) y̅ +3/4,x̅ +3/4,z̅ +1/4 [0,0,0]

(17) x+3/4,z+1/4,y+3/4 [0,0,0] (18) x̅ +3/4,z̅ +1/4,y̅ +1/4 [0,0,0] (19) x̅ +1/4,z̅ +1/4,y̅ +1/4 [0,0,0] (20) x̅ +1/4,z̅ +3/4,y̅ +3/4 [0,0,0]

(21) z+3/4,y+1/4,x+3/4 [0,0,0] (22) z̅ +1/4,y̅ +3/4,x̅ +1/4 [0,0,0] (23) z̅ +3/4,y̅ +3/4,x̅ +1/4 [0,0,0] (24) z̅ +1/4,y̅ +1/4,x̅ +1/4 [0,0,0]

48 g ..21' 1/8, y̅ ,y̅ +1/4 [0,0,0] 7/8, y̅ +1/2, y̅ +3/4 [0,0,0] 3/8, y̅ +1/2, y̅ +3/4 [0,0,0] 5/8, y̅ ,y̅ +1/4 [0,0,0]

48 f 2..1' x, 0,0 [0,0,0] x̅ ,1/2,1/2 [0,0,0] 0, x, 0 [0,0,0] 1/2, x, 1/2 [0,0,0]

32 e ..3.1' x, x, x [0,0,0] x̅ , x̅ +1/2,x̅ +1/2 [0,0,0] x̅ +1/2,x̅ +1/2] [0,0,0] x̅ +1/2,x̅ +1/2 [0,0,0]

16 d .321' 5/8, 5/8, 5/8 [0,0,0] 3/8, 7/8, 1/8 [0,0,0] 7/8, 1/8, 3/8 [0,0,0] 1/8, 3/8, 7/8 [0,0,0]

16 c .321' 1/8, 1/8, 1/8 [0,0,0] 7/8, 3/8, 5/8 [0,0,0] 3/8, 5/8, 7/8 [0,0,0] 5/8, 7/8, 3/8 [0,0,0]

8 b 23.1' 1/2, 1/2, 1/2 [0,0,0] 1/4, 3/4, 1/4 [0,0,0]

8 a 23.1' 0, 0, 0 [0,0,0] 3/4, 1/4, 3/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm1' Along [1,1,1] p3m11' Along [1,1,0] c2mm1'

a* = a/2 b* = b/2 a* = (2a - b - c)/6 b* = (-a + 2b - c)/6 a* = (-a + b)/2 b* = c

Origin at 1/4,0,z Origin at x,x,x Origin at x,x,1/8
Origin at 3$
$2

Asymmetric unit

\[0 \leq x \leq 1/2; \quad -1/8 \leq y \leq 1/8; \quad -1/8 \leq z \leq 1/8; \quad y \leq \min(x,1/2-x); \quad -y \leq z \leq \min(x,1/2-x) \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/8,1/8,1/8 & \quad 1/8,1/8,-1/8 & \quad 1/8,-1/8,1/8 \\
1/2,0,0 & \quad 3/8,1/8,1/8 & \quad 3/8,1/8,-1/8 & \quad 3/8,-1/8,1/8
\end{align*}
\]

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 (0,0,1/2) \quad 0,1/4,z \\
(3) & \quad 2 (0,1/2,0) \quad 1/4,y,0 \\
(4) & \quad 2 (1/2,0,0) \quad x,0,1/4 \\
(5) & \quad 3^+ \quad x,x,x \\
(6) & \quad 3^+ (1/3,-1/3,1/3) \quad x+1/6,x+1/6,x \\
(7) & \quad 3^+ (-1/3,1/3,1/3) \quad x+1/3,x-1/6,x \\
(8) & \quad 3^+ (1/3,1/3,-1/3) \quad x+1/6,x+1/3,x \\
(9) & \quad 3^- \quad x,x,x \\
(10) & \quad 3^- (1/3,-1/3,1/3) \quad x+1/6,x+1/6,x \\
(11) & \quad 3^- (-1/3,1/3,1/3) \quad x+1/3,x-1/6,x \\
(12) & \quad 3^- (1/3,1/3,-1/3) \quad x+1/6,x+1/3,x \\
(3) & \quad 3^- \quad x,x,x \\
(10) & \quad 3^- (1/3,-1/3,1/3) \quad x+1/6,x+1/6,x \\
(11) & \quad 3^- (-1/3,1/3,1/3) \quad x+1/3,x-1/6,x \\
(12) & \quad 3^- (1/3,1/3,-1/3) \quad x+1/6,x+1/3,x \\
(3) & \quad 3^- \quad x,x,x \\
(10) & \quad 3^- (1/3,-1/3,1/3) \quad x+1/6,x+1/6,x \\
(11) & \quad 3^- (-1/3,1/3,1/3) \quad x+1/3,x-1/6,x \\
(12) & \quad 3^- (1/3,1/3,-1/3) \quad x+1/6,x+1/3,x
\end{align*}
\]
Continued 210.3.1555 F4,'32'

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
 (1 | 1/2,1/2,0)

(2) 2 (0,0,1/2) 1/4,0,z
 (2_z| 1/2,0,1/2)

(3) 2 0,y,0
 (2_y| 0,0,0)

(4) 2 x,1/4,1/4
 (2_x| 0,1/2,1/2)

(5) 3* (1/3,1/3,1/3)
 x+1/6,x+1/3,x
 (3_{xyz} | 1/2,1/2,0)

(6) 3* x,x+1/2,x
 (3_{xyz}^* | 0,1/2,1/2)

(7) 3* x+1/2,x+1/2,x+1/2
 (3_{xyz}^* | 1/2,0,1/2)

(8) 3* x,x,x
 (3_{xyz}^* | 0,0,0)

(9) 3* (1/3,1/3,1/3)
 x+1/3,x+1/6,x
 (3_{xyz}^* | 1/2,1/2,0)

(10) 3* x,x,x
 (3_{xyz} | 0,0,0)

(11) 3* x+1/2,x+1/2,x+1/2
 (3_{xyz} | 0,1/2,1/2)

(12) 3* (1/3,-1/3,1/3)
 x-1/6,x+1/3,x
 (3_{xyz} | 1/2,0,1/2)

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

96 h 1

(1) x,y,z [u,v,w]
 (2) x,x+1/2,z+1/2 [u,v,w]
 (3) x+1/2,y+1/2,z [u,v,w]
 (4) x+1/2,y,z+1/2 [u,v,w]

(5) z,x,y [w,u,v]
 (6) z+1/2,x,y+1/2 [w,u,v]
 (7) z,x+1/2,y+1/2 [w,u,v]
 (8) z+1/2,x+1/2,y [w,u,v]

(9) y,z,x [v,w,u]
 (10) y+1/2,z+1/2,x [v,w,u]
 (11) y+1/2,z,x+1/2 [v,w,u]
 (12) y,z+1/2,x+1/2 [v,w,u]

(13) y+3/4,x+1/4,z+3/4 [u,v,w]
 (14) y+1/4,x+1/4,z+1/4 [v,u,w](15) y+1/4,x+3/4,z+3/4 [v,u,w](16) y+3/4,x+3/4,z+1/4 [v,u,w]

(17) x+3/4,z+1/4,y+3/4 [u,w,v]
 (18) x+3/4,z+3/4,y+1/4 [u,w,v]
 (19) x+1/4,z+1/4,y+1/4 [u,w,v]
 (20) x+1/4,z+3/4,y+3/4 [u,w,v]

(21) z+3/4,y+1/4,x+3/4 [w,v,u]
 (22) z+1/4,y+3/4,x+1/4 [w,v,u]
 (23) z+3/4,y+3/4,x+1/4 [w,v,u]
 (24) z+1/4,y+1/4,x+1/4 [w,v,u]

48 g .2'

1/8,y+1/4 [u,v,u]
 y+1/4,1/8 [v,u,v]
 y+3/4,7/8,y+1/2 [u,v,u] y+3/4,3/8,y+1/2 [v,u,u] y+1/4,5/8,y [v,u,v]
 y,y+1/4,1/8 [v,v,u]

48 f 2.

x,0,0 [u,v]
 x,1/2,1/2 [u,0,0]
 0,x,0 [0,v,0]
 1/2,x,1/2 [0,0,u]
 0,0,x [0,0,u]
 1/2,1/2,x [0,0,u]
 3/4,x+1/4,3/4 [0,0,u]
 1/4,x+1/4,1/4 [0,0,u]
 x+3/4,1/4,3/4 [u,0,0]
 x+3/4,3/4,1/4 [u,0,0]
 3/4,1/4,x+3/4 [0,0,u]
 1/4,3/4,x+3/4 [0,0,u]
Continued

<table>
<thead>
<tr>
<th>32</th>
<th>e</th>
<th>0.3</th>
<th>x, x, x [u, u, u]</th>
<th>x, x+1/2, x+1/2 [u, u, u]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x + 1/2, x + 1/2, x) [u, u, u]</td>
<td>x + 1/2, x + 1/2 [u, u, u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x + 3/4, x + 1/4, x + 3/4 [u, u, u]</td>
<td>x + 1/4, x + 1/4, x + 1/4 [u, u, u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x + 1/4, x + 3/4, x + 3/4 [u, u, u]</td>
<td>x + 3/4, x + 3/4, x + 1/4 [u, u, u]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>d</th>
<th>0.32'</th>
<th>5/8, 5/8, 5/8 [u, u, u]</th>
<th>3/8, 7/8, 1/8 [u, u, u]</th>
<th>7/8, 1/8, 3/8 [u, u, u]</th>
<th>1/8, 3/8, 7/8 [u, u, u]</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>b</th>
<th>23.</th>
<th>1/2, 1/2, 1/2 [0, 0, 0]</th>
<th>1/4, 3/4, 1/4 [0, 0, 0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0, 0, 0 [0, 0, 0]</td>
<td>3/4, 1/4, 3/4 [0, 0, 0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0, 0, 1] p4'm'm

- \(a^* = a/2\)
- \(b^* = b/2\)
- Origin at 1/4, 0, z

Along [1, 1, 1] p3m1

- \(a^* = (2a - b - c)/6\)
- \(b^* = (-a + 2b - c)/6\)
- Origin at x, x, x

Along [1, 1, 0] c2'm'm'

- \(a^* = c\)
- \(b^* = -(a + b)/2\)
- Origin at x, x, 1/8
Origin at 432

Asymmetric unit

\[
0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad z \leq \min(x,1/2-x,y,1/2-y)
\]

Vertices

\[
0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 0,1/2,0 \quad 1/4,1/4,1/4
\]

Symmetry Operations

For \((0,0,0) + \text{set}\)

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \ 0,0,z \\
(3) & \quad 2 \ 0,y,0 \\
(4) & \quad 2 \ x,0,0 \\
(5) & \quad 3^+ \ x,x,x \\
(6) & \quad 3^+ \ x,x,x \\
(7) & \quad 3^+ \ x,x,x \\
(8) & \quad 3^+ \ x,x,x \\
(9) & \quad 3^- \ x,x,x \\
(10) & \quad 3^- \ x,x,x \\
(11) & \quad 3^- \ x,x,x \\
(12) & \quad 3^- \ x,x,x \\
\end{align*}
\]
Continued

<table>
<thead>
<tr>
<th>Site Symmetry.</th>
<th>Wyckoff letter,</th>
<th>Multiplicity,</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(13) 2 x,x,0</td>
<td>(2x) 0,0,0</td>
<td>(2x) 1/2,1/2,1/2</td>
<td>(2x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(14) 2 x,x,0</td>
<td>(2y) 0,0,0</td>
<td>(2y) 1/2,1/2,1/2</td>
<td>(2y) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(15) 4' 0,0,z</td>
<td>(4z) 0,0,0</td>
<td>(4z) 0,0,0</td>
<td>(4z) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(16) 4' 0,0,z</td>
<td>(4z) 0,0,0</td>
<td>(4z) 0,0,0</td>
<td>(4z) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(17) 4' x,0,0</td>
<td>(4z) 0,0,0</td>
<td>(4z) 1/2,1/2,1/2</td>
<td>(4z) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(18) 2 y,y,y</td>
<td>(2yz) 0,0,0</td>
<td>(2yz) 0,0,0</td>
<td>(2yz) 0,0,0</td>
</tr>
<tr>
<td>(19) 2 y,y,y</td>
<td>(2yz) 0,0,0</td>
<td>(2yz) 0,0,0</td>
<td>(2yz) 0,0,0</td>
</tr>
<tr>
<td>(20) 4' x,0,0</td>
<td>(4z) 0,0,0</td>
<td>(4z) 0,0,0</td>
<td>(4z) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(21) 4' y,0,0</td>
<td>(4y) 0,0,0</td>
<td>(4y) 0,0,0</td>
<td>(4y) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(22) 2 x,0,x</td>
<td>(2xz) 0,0,0</td>
<td>(2xz) 0,0,0</td>
<td>(2xz) 0,0,0</td>
</tr>
<tr>
<td>(23) 4' y,0,0</td>
<td>(4y) 0,0,0</td>
<td>(4y) 0,0,0</td>
<td>(4y) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(24) 2 y,0,x</td>
<td>(4y) 0,0,0</td>
<td>(4y) 0,0,0</td>
<td>(4y) 1/2,1/2,1/2</td>
</tr>
</tbody>
</table>

For (1/2,1/2,1/2) + set

<table>
<thead>
<tr>
<th>Site Symmetry.</th>
<th>Wyckoff letter,</th>
<th>Multiplicity,</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t (1/2,1/2,1/2)</td>
<td>(2x) 0,0,0</td>
<td>(2x) 1/2,1/2,1/2</td>
<td>(2x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(1) (1/2,1/2,1/2)</td>
<td>(2x) 0,0,0</td>
<td>(2x) 1/2,1/2,1/2</td>
<td>(2x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(5) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(6) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(7) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(8) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(9) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(10) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(11) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(12) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(13) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(14) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(15) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(16) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(17) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(18) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(19) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(20) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(21) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(22) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(23) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
<tr>
<td>(24) 3' (1/2,1/2,1/2) x,x,x</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
<td>(3x) 1/2,1/2,1/2</td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13).

Coordinates

(0,0,0) + (1/2,1/2,1/2) +

211.1.1556 - 2 - 3497
Symmetry of Special Projections

Along [0,0,1] p4m'm'

\[a^* = \frac{(a - b)}{2} \quad b^* = \frac{(a + b)}{2} \]

Origin at 0,0,z

Along [1,1,1] p3m'1

\[a^* = \frac{(2a - b - c)}{3} \quad b^* = \frac{(a + 2b - c)}{3} \]

Origin at x,x,x

Along [1,1,0] p2m'm'

\[a^* = \frac{-(a + b)}{2} \quad b^* = \frac{c}{2} \]

Origin at x,x,0

24 i .2 1/4,y,\(y+1/2\) [0,v,v] 3/4,y,\(y+1/2\) [0,v,v] 3/4,y,\(y+1/2\) [0,v,v] 1/4,y,\(y+1/2\) [0,v,v] \\
\(y+1/2,3/4\) [v,v,0] \(y+1/2,3/4\) [v,v,0] \(y+1/2,3/4\) [v,v,0] \(y+1/2,3/4\) [v,v,0] \\
\(y,\overline{y}+1/2,1/4\) [v,v,0] \(\overline{y},\overline{y}+1/2,1/4\) [v,v,0] \(\overline{y},\overline{y}+1/2,1/4\) [v,v,0] \(\overline{y},\overline{y}+1/2,1/4\) [v,v,0]

24 h .2 0,y,\(0,0\) 0,y,\(0,0\) 0,y,\(0,0\) 0,y,\(0,0\) \\
y,0,y [v,0,v] \(\overline{y},0,y[v,0,v]\) \(\overline{y},0,y[v,0,v]\) \(\overline{y},0,y[v,0,v]\) \\
y,0,y [v,0,v] \(\overline{y},0,y[v,0,v]\) \(\overline{y},0,y[v,0,v]\) \(\overline{y},0,y[v,0,v]\)

24 g 2.. 1/2,0,x [0,0,u] 0,1/2,0 [0,0,u] 0,1/2,0 [0,0,u] 0,1/2,0 [0,0,u] \\
1/2,0,x [0,0,u] \(\overline{x},1/2,0\) [\(\overline{u},0,0\)] \(\overline{x},1/2,0\) [\(\overline{u},0,0\)] \(\overline{x},1/2,0\) [\(\overline{u},0,0\)] \\
x,0,1/2 [0,0,u] \(\overline{x},0,1/2\) [\(\overline{u},0,0\)] \(\overline{x},0,1/2\) [\(\overline{u},0,0\)] \(\overline{x},0,1/2\) [\(\overline{u},0,0\)]

16 f .3. x,x,x [u,u,u] \(\overline{x},\overline{x},x[u,u,u]\) \(\overline{x},\overline{x},x[u,u,u]\) \(\overline{x},\overline{x},x[u,u,u]\) \\
x,x,x [u,u,u] \(\overline{x},\overline{x},x[u,u,u]\) \(\overline{x},\overline{x},x[u,u,u]\) \(\overline{x},\overline{x},x[u,u,u]\)

12 e 4.. x,0,0 [u,0,0] \(\overline{x},0,0 [\overline{u},0,0]\) \(\overline{x},0,0 [\overline{u},0,0]\) \(\overline{x},0,0 [\overline{u},0,0]\) \\
0,x,0 [0,0,u] 0,0,x [0,0,u] 0,0,x [0,0,u] 0,0,x [0,0,u] \\
12 d 2.22 1/4,1/2,0 [0,0,0] 3/4,1/2,0 [0,0,0] 0,1/4,1/2 [0,0,0] \\
0,3/4,1/2 [0,0,0] \(1/2,0,1/4\) [0,0,0] \(1/2,0,1/4\) [0,0,0] \(1/2,0,1/4\) [0,0,0]

8 c .32 1/4,1/4,1/4 [0,0,0] 3/4,3/4,1/4 [0,0,0] 3/4,1/4,3/4 [0,0,0] 1/4,3/4,3/4 [0,0,0] \\
6 b 42.2 0,1/2,1/2 [0,0,0] \(1/2,0,1/2\) [0,0,0] \(1/2,1/2,0\) [0,0,0] \\
2 a 432 0,0,0 [0,0,0]

211.1.1556 - 3 - 3498
I4321' Cubic
211.2.1557 I4321'

Origin at 432
Asymmetric unit
0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1/4; z \leq \min(x, 1/2-x, y, 1/2-y)

Vertices
0,0,0 1/2,0,0 1/2,1/2,0 0,1/2,0 1/4,1/4,1/4

Symmetry Operations
For (0,0,0) + set

(1) 1
(1) 0,0,0
(1) 0,0,0

(2) 2 0,0,z
(2) 0,0,0
(2) 0,0,0

(3) 2 y,0,0
(3) 0,0,0
(3) 0,0,0

(4) 2 x,0,0
(4) 0,0,0
(4) 0,0,0

(5) 3^+ x,x,x
(3_{xyz}^{-1} 0,0,0)

(6) 3^+ x,x,x
(3_{xyz}^{-1} 0,0,0)

(7) 3^+ x,x,x
(3_{xyz}^{-1} 0,0,0)

(8) 3^- x,x,x
(3_{xyz}^{-1} 0,0,0)

(9) 3^- x,x,x
(3_{xyz}^{-1} 0,0,0)

(10) 3^- x,x,x
(3_{xyz}^{-1} 0,0,0)

(11) 3^- x,x,x
(3_{xyz}^{-1} 0,0,0)

(12) 3^- x,x,x
(3_{xyz}^{-1} 0,0,0)
(13) 2 x,x,0
(2xy 0,0,0)

(14) 2 x,x,0
(2xy 0,0,0)

(15) 4' 0,0,0 z
(4z 0,0,0)

(16) 4* 0,0,0
(4z 0,0,0)

(17) 4* x,0,0
(4' z 0,0,0)

(18) 2 0,y,0
(2yz 0,0,0)

(19) 2 0,y,0
(2yz 0,0,0)

(20) 4* x,0,0
(4z 0,0,0)

(21) 4* y,0,0
(4y 0,0,0)

(22) 2 x,0,x
(2xz 0,0,0)

(23) 4* y,0,0
(4y 0,0,0)

(24) 2* x,0,0
(2xz 0,0,0)

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(2) 2 (0,0,1/2) 1/4,1/4,z
(3) 2 (0,1/2,0) 1/4,y,1/4
(4) 2 (1/2,0,0) x,1/4,1/4

(2) 2 (1/2,1/2,1/2)

(3) 2 (1/2,1/2,1/2)
(4) 2 (1/2,1/2,1/2)

(5) 3* (1/2,1/2,1/2) x,x,x
(6) 3* (1/6,-1/6,1/6)

(7) 3* (-1/6,1/6,1/6)

(8) 3* (1/6,1/6,-1/6)

(2) x,x,0
(8) 2 0,y,0

(9) 3' (1/2,1/2,1/2) x,x,x
(10) 3' (-1/6,1/6,1/6)

(11) 3' (1/6,1/6,-1/6)

(12) 3' (1/6,-1/6,1/6)

(3xyz -1 1/2,1/2,1/2)

(4z 1/2,1/2,1/2)

(2) x,x,0
(8) 2 0,y,0

(13) 2 (1/2,1/2,0) x,x,1/4
(2xy 1/2,1/2,1/2)

(14) 2 x,x+1/2,1/4
(2y 1/2,1/2,1/2)

(15) 4* (0,0,1/2) 1/2,0,z
(4z 1/2,1/2,1/2)

(16) 4* (0,1/2,0) 1/2,0,z
(4z 1/2,1/2,1/2)

(17) 4* (1/2,0,0) x,1/2,0
(4x -1 1/2,1/2,1/2)

(18) 2 (0,1/2,1/2) 1/4,y,y
(2yz 1/2,1/2,1/2)

(19) 2 1/4,y+1/2,y
(2yz 1/2,1/2,1/2)

(20) 4* (1/2,0,0) x,0,1/2
(4z 1/2,1/2,1/2)

(21) 4* (0,1/2,0) 1/2,y,0
(4y 1/2,1/2,1/2)

(22) 2 (1/2,0,1/2) x,1/4,x
(2xz 1/2,1/2,1/2)

(23) 4* (0,1/2,0) 0,y,1/2
(4y -1 1/2,1/2,1/2)

(24) 2* x+1/2,1/4,x
(2xz 1/2,1/2,1/2)

For (0,0,0)' + set

(1) 1'
(1* 0,0,0)

(2) 2' 0,0,0
(2z 0,0,0)

(3) 2' 0,y,0
(2y 0,0,0)

(4) 2' x,0,0
(2x 0,0,0)

(5) 3* x,x,x
(3xyz 0,0,0)

(6) 3* x,x,x
(3xyz -1 0,0,0)

(7) 3* x,x,x
(3xyz -1 0,0,0)

(8) 3* x,x,x
(3xyz -1 0,0,0)

(9) 3' x,x,x
(3xyz 0,0,0)

(10) 3' x,x,x
(3xyz 0,0,0)

(11) 3' x,x,x
(3xyz 0,0,0)

(12) 3' x,x,x
(3xyz 0,0,0)

(13) 2' x,x,0
(2xy 0,0,0)

(14) 2' x,x,0
(2xy 0,0,0)

(15) 4* 0,0,0
(4z 0,0,0)

(16) 4* 0,0,0
(4z 0,0,0)

(17) 4* x,0,0
(4x -1 0,0,0)

(18) 2' 0,y,0
(2yz 0,0,0)

(19) 2' 0,y,0
(2yz 0,0,0)

(20) 4* x,0,0
(4z 0,0,0)

(21) 4* y,0,0
(4y 0,0,0)

(22) 2' x,0,x
(2xz 0,0,0)

(23) 4* y,0,0
(4y 0,0,0)

(24) 2* x,0,x
(2xz 0,0,0)
Continued

For \((1/2,1/2,1/2)^{\prime}\) + set

\((1)\) \(t^{\prime}(1/2,1/2,1/2)\)
\((2)\) \(2^{\prime}(0,0,1/2)\) \(1/4,1/4,z\)
\((3)\) \(2^{\prime}(0,1/2,0)\) \(1/4,y,1/4\)
\((4)\) \(2^{\prime}(1/2,0,0)\) \(x,1/4,1/4\)
\((5)\) \(3^{\prime} (1/2,1/2,1/2)\) \(x,x,x\)
\((6)\) \(3^{\prime} (1/6,-1/6,1/6)\) \(x+1/3,x+1/3,x\)
\((7)\) \(3^{\prime} (-1/6,1/6,-1/6)\) \(x+2/3,x+1/3,x\)
\((8)\) \(3^{\prime} (1/6,1/6,-1/6)\) \(x+1/3,x+2/3,x\)
\((9)\) \(3^{\prime} (1/2,1/2,1/2)\) \(x,x,x\)
\((10)\) \(3^{\prime} (-1/6,1/6,1/6)\) \(x+1/3,x+1/3,x\)
\((11)\) \(3^{\prime} (1/6,1/6,-1/6)\) \(x+2/3,x+1/3,x\)
\((12)\) \(3^{\prime} (1/6,-1/6,1/6)\) \(x-1/3,x+2/3,x\)
\((13)\) \(2^{\prime} (1/2,1/2,0)\) \(x,x,1/4\)
\((14)\) \(2^{\prime} (0,1/2,1/2)\) \(1/2,0,z\)
\((15)\) \(4^{\prime} (0,0,1/2)\) \(1/2,0,z\)
\((16)\) \(4^{\prime} (0,1/2,1/2)\) \(x,1/4,1/4\)
\((17)\) \(4^{\prime} (1/2,0,0)\) \(x,1/2,1/2\)
\((18)\) \(2^{\prime} (1/2,1/2,0)\) \(1/4,y,y\)
\((19)\) \(2^{\prime} (1/2,1/2,0)\) \(1/4,y+1/2,y\)
\((20)\) \(4^{\prime} (1/2,0,0)\) \(x,1/2,1/2\)
\((21)\) \(4^{\prime} (0,1/2,0)\) \(x,1/4,4\)
\((22)\) \(4^{\prime} (0,1/2,0)\) \(1/2,0,z\)
\((23)\) \(4^{\prime} (0,1/2,0)\) \(1/4,y,1/4\)
\((24)\) \(4^{\prime} (1/2,1/2,0)\) \(1/4,y+1/2,1/4\)

Generators selected
(1); \(t(1,0,0)\); \(t(0,1,0)\); \(t(0,0,1)\); \(t(1/2,1/2,1/2)\);
(2); (3); (5); (13); 1'.

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>(0,0,0) +</td>
</tr>
<tr>
<td></td>
<td>(0,0,0)' +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td>(1/2,1/2,1/2)' +</td>
</tr>
</tbody>
</table>

(1)	x,y,z [0,0,0]
(2)	\(\bar{x},\bar{y},\bar{z} [0,0,0]\)
(3)	\(\bar{x},\bar{y},\bar{z} [0,0,0]\)
(4)	\(x,\bar{y},\bar{z} [0,0,0]\)
(5)	z,x,y [0,0,0]
(6)	\(z,\bar{x},\bar{y} [0,0,0]\)
(7)	\(\bar{z},\bar{x},y [0,0,0]\)
(8)	\(z,x,\bar{y} [0,0,0]\)
(9)	y,z,x [0,0,0]
(10)	\(y,\bar{z},\bar{x} [0,0,0]\)
(11)	\(\bar{y},\bar{z},x [0,0,0]\)
(12)	\(y,\bar{z},x [0,0,0]\)
(13)	y,z,\(\bar{z} [0,0,0]\)
(14)	\(y,\bar{x},\bar{z} [0,0,0]\)
(15)	\(y,\bar{x},\bar{z} [0,0,0]\)
(16)	\(\bar{y},x,z [0,0,0]\)
(17)	x,z,\(\bar{y} [0,0,0]\)
(18)	\(\bar{x},z,\bar{y} [0,0,0]\)
(19)	\(\bar{x},\bar{z},y [0,0,0]\)
(20)	\(x,\bar{z},y [0,0,0]\)
(21)	z,y,\(\bar{z} [0,0,0]\)
(22)	\(z,\bar{y},x [0,0,0]\)
(23)	\(\bar{z},\bar{y},x [0,0,0]\)
(24)	\(\bar{z},\bar{y},x [0,0,0]\)

211.2.1557 - 3 - 3501
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 h</td>
<td>0.21'</td>
<td>0, y, [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td>0, y, y, [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0, y, y, y, [0, 0, 0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0, y, 0, 0, 0, 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0, y, 0, 0, 0, 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y, 0, 0, 0, 0, 0</td>
<td></td>
</tr>
<tr>
<td>24 g</td>
<td>0.21'</td>
<td>x, 1/2, 0, [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td>x, 1/2, 0, 0, 0, 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x, 1/2, 0, 0, 0, 0</td>
<td></td>
</tr>
<tr>
<td>16 f</td>
<td>0.31'</td>
<td>x, x, x, 0, 0, 0</td>
</tr>
<tr>
<td></td>
<td>x, x, x, 0, 0, 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x, x, x, 0, 0, 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x, x, x, 0, 0, 0</td>
<td></td>
</tr>
<tr>
<td>12 e</td>
<td>0.41'</td>
<td>x, 0, 0, 0, 0, 0</td>
</tr>
<tr>
<td></td>
<td>x, 0, 0, 0, 0, 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x, 0, 0, 0, 0, 0</td>
<td></td>
</tr>
<tr>
<td>12 d</td>
<td>2.221'</td>
<td>0.34, 1/2, 0, 0, 0, 0</td>
</tr>
<tr>
<td></td>
<td>0.34, 1/2, 0, 0, 0, 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.34, 1/2, 0, 0, 0, 0</td>
<td></td>
</tr>
<tr>
<td>8 c</td>
<td>0.321'</td>
<td>3.43, 1/4, 1/4, 0, 0, 0</td>
</tr>
<tr>
<td></td>
<td>3.43, 1/4, 1/4, 0, 0, 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.43, 1/4, 1/4, 0, 0, 0</td>
<td></td>
</tr>
<tr>
<td>6 b</td>
<td>4.21'</td>
<td>1/2, 0, 1/2, 0, 0, 0</td>
</tr>
<tr>
<td></td>
<td>1/2, 0, 1/2, 0, 0, 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2, 0, 1/2, 0, 0, 0</td>
<td></td>
</tr>
<tr>
<td>2 a</td>
<td>4321'</td>
<td>0, 0, 0, 0, 0, 0</td>
</tr>
<tr>
<td></td>
<td>0, 0, 0, 0, 0, 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0, 0, 0, 0, 0, 0</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0, 0, 1] p4mm1'
\[\mathbf{a}^* = (\mathbf{a} - \mathbf{b})/2 \quad \mathbf{b}^* = (\mathbf{a} + \mathbf{b})/2 \]
Origin at 0, 0, z
Along [1, 1, 1] p3m11'
\[\mathbf{a}^* = (2\mathbf{a} - \mathbf{b} - \mathbf{c})/3 \quad \mathbf{b}^* = (-\mathbf{a} + 2\mathbf{b} - \mathbf{c})/3 \]
Origin at x, x, x
Along [1, 1, 0] p2mm1'
\[\mathbf{a}^* = (\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c}/2 \]
Origin at x, x, 0
Origin at 4'32'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad z \leq \min(x,1/2-x,y,1/2-y) \]

Vertices

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0,0</td>
<td>1/2,0,0</td>
<td>1/2,1/2,0</td>
</tr>
</tbody>
</table>

Symmetry Operations

For \((0,0,0) + \text{ set}\)

1. \(1\)

2. \(2 \ 0,0,z\)
 \(2 \ 0,0,0\)

3. \(2 \ 0,y,0\)
 \(2 \ 0,0,0\)

4. \(2 \ x,0,0\)
 \(2 \ 0,0,0\)

5. \(3^+ \ x,x,x\)
 \((3_{xyz} \ | \ 0,0,0)\)

6. \(3^+ \ x,x,x\)
 \((3_{xyz}^{-1} \ | \ 0,0,0)\)

7. \(3^+ \ x,x,x\)
 \((3_{xyz}^{-1} \ | \ 0,0,0)\)

8. \(3^+ \ x,x,x\)
 \((3_{xyz}^{-1} \ | \ 0,0,0)\)

9. \(3^- \ x,x,x\)
 \((3_{xyz} \ | \ 0,0,0)\)

10. \(3^- \ x,x,x\)
 \((3_{xyz}^{-1} \ | \ 0,0,0)\)

11. \(3^- \ x,x,x\)
 \((3_{xyz} \ | \ 0,0,0)\)

12. \(3^- \ x,x,x\)
 \((3_{xyz}^{-1} \ | \ 0,0,0)\)
Continued

(13) $2'\ x,x,0$
(21) $4'\ x,y,0$
(17) $4'\ x,0,0$
(20) $x+y,0$
(14) $2'\ x,0,0$
(18) $2'\ 0,y,0$
(19) $2'\ 0,y,0$
(22) $2'\ x,0,0$
(15) $4'\ 0,0,z$
(19) $2'\ 0,y,0$
(23) $4'\ 0,y,0$
(16) $4'\ 0,0,z$
(24) $2'\ x,0,0$
(25) $4'\ 0,0,0$

For $(1/2,1/2,1/2) +$ set

(1) $t(1/2,1/2,1/2)$
(5) $3^+ (1/2,1/2,1/2)$
(9) $3^- (1/2,1/2,1/2)$
(13) $2' (1/2,1/2,0)$
(17) $4' (1/2,0,0)$
(21) $4' (0,1/2,0)$

Generators selected
(1); $t(1,0,0)$; $t(0,1,0)$; $t(0,0,1)$; $t(1/2,1/2,1/2)$; (2); (3); (5); (13).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

Coordinates

$(0,0,0) + \frac{1}{2},1/2,1/2 +$

48 j 1

(1) $x,y,z [u,v,w]$
(5) $z,x,y [w,u,v]$
(9) $y,z,x [v,w,u]$
(13) $y,x,z [\bar{v},\bar{u},w]$
(17) $x,z,y [u,w,v]$
(21) $z,y,x [w,v,u]$

(2) $\bar{x},y,z [\bar{u},\bar{v},w]$
(6) $z,x,y [w,u,v]$
(10) $\bar{y},z,x [\bar{v},\bar{w},u]$
(14) $\bar{y},x,z [\bar{v},\bar{w},u]$
(18) $x,z,y [u,w,v]$
(22) $z,y,x [w,v,u]$

(3) $x,y,z [u,v,w]$
(7) $\bar{z},x,y [\bar{v},\bar{u},v]$
(11) $\bar{y},z,x [\bar{v},\bar{w},u]$
(15) $y,x,z [v,u,w]$
(19) $x,z,y [u,w,v]$
(23) $\bar{z},y,x [w,v,u]$

(4) $x,y,z [u,v,w]$
(8) $\bar{z},x,y [\bar{v},\bar{u},v]$
(12) $\bar{y},z,x [\bar{v},\bar{w},u]$
(16) $y,x,z [v,u,w]$
(20) $x,z,y [u,w,v]$
(24) $\bar{z},y,x [w,v,u]$
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>i</td>
<td>.2'</td>
<td>1/4, y, y + 1/2 [u, v, v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4, y, y + 1/2 [u, v, v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4, y, y + 1/2 [u, v, v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/4, y, y + 1/2 [u, v, v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y + 1/2, 1/4 [v, u, v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y + 1/2, 1/4 [v, u, v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y + 1/2, 1/4 [v, u, v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y + 1/2, 1/4 [v, u, v]</td>
</tr>
<tr>
<td>24</td>
<td>h</td>
<td>.2'</td>
<td>0, y, y [u, v, v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0, y, y [u, v, v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0, y, y [u, v, v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0, y, y [u, v, v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0, y, y [u, v, v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0, y, y [u, v, v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0, y, y [u, v, v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0, y, y [u, v, v]</td>
</tr>
<tr>
<td>24</td>
<td>g</td>
<td>2.'</td>
<td>x, 1/2, 0 [u, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x, 1/2, 0 [u, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x, 1/2, 0 [u, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x, 1/2, 0 [u, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x, 1/2, 0 [u, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x, 1/2, 0 [u, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x, 1/2, 0 [u, 0, 0]</td>
</tr>
<tr>
<td>16</td>
<td>f</td>
<td>.3'</td>
<td>x, x, x [u, u, u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x, x, x [u, u, u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x, x, x [u, u, u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x, x, x [u, u, u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x, x, x [u, u, u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x, x, x [u, u, u]</td>
</tr>
<tr>
<td>12</td>
<td>e</td>
<td>4.'</td>
<td>x, 0, 0 [u, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x, 0, 0 [u, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x, 0, 0 [u, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x, 0, 0 [u, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x, 0, 0 [u, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x, 0, 0 [u, 0, 0]</td>
</tr>
<tr>
<td>12</td>
<td>d</td>
<td>2.'</td>
<td>1/4, 1/2, 0 [u, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4, 1/2, 0 [u, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4, 1/2, 0 [u, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4, 1/2, 0 [u, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4, 1/2, 0 [u, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4, 1/2, 0 [u, 0, 0]</td>
</tr>
<tr>
<td>8</td>
<td>c</td>
<td>.3'</td>
<td>1/4, 1/4, 1/4 [u, u, u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4, 3/4, 1/4 [u, u, u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4, 3/4, 1/4 [u, u, u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4, 3/4, 1/4 [u, u, u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4, 3/4, 1/4 [u, u, u]</td>
</tr>
<tr>
<td>6</td>
<td>b</td>
<td>4.'</td>
<td>0, 1/2, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2, 0, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2, 0, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2, 0, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2, 0, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4.'</td>
<td>0, 0, 0 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0, 0, 0 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0, 0, 0 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0, 0, 0 [0, 0, 0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0, 0, 0 [0, 0, 0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0, 0, 1] p4'mm'

<table>
<thead>
<tr>
<th>a*</th>
<th>b*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a - b)/2</td>
<td>(a + b)/2</td>
</tr>
</tbody>
</table>

Origin at 0, 0, z

Along [1, 1, 1] p3m1

<table>
<thead>
<tr>
<th>a*</th>
<th>b*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2a - b - c)/3</td>
<td>(-a + 2b - c)/3</td>
</tr>
</tbody>
</table>

Origin at x, x, x

Along [1, 1, 0] p2'mm'

<table>
<thead>
<tr>
<th>a*</th>
<th>b*</th>
</tr>
</thead>
<tbody>
<tr>
<td>c/2</td>
<td>-(a + b)/2</td>
</tr>
</tbody>
</table>

Origin at x, x, 0
Origin at 432

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad z \leq \min(x,1/2-x,y,1/2-y) \]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 0,1/2,0 \quad 1/4,1/4,1/4 \]

Symmetry Operations

For \((0,0,0) + \) set

\begin{align*}
(1) & \quad 1 \\
(1) & \quad (0,0,0) \\
(2) & \quad 0,0,z \\
(2) & \quad (0,0,0) \\
(3) & \quad 0,y,0 \\
(3) & \quad (0,0,0) \\
(4) & \quad x,0,0 \\
(4) & \quad (0,0,0) \\
(5) & \quad 3^+ \ x,x,x \\
(5) & \quad (3_{xyz} \ | 0,0,0) \\
(6) & \quad x,x,x \\
(6) & \quad (3_{xyz}^{-1} \ | 0,0,0) \\
(7) & \quad 3^+ \ x,x,x \\
(7) & \quad (3_{xyz}^{-1} \ | 0,0,0) \\
(8) & \quad 3^+ \ x,x, \ x \\
(8) & \quad (3_{xyz}^{-1} \ | 0,0,0) \\
(9) & \quad 3^+ \ x,x,x \\
(9) & \quad (3_{xyz}^{-1} \ | 0,0,0) \\
(10) & \quad 3^+ \ x,x, \ x \\
(10) & \quad (3_{xyz}^{-1} \ | 0,0,0) \\
(11) & \quad 3^+ \ x,x, \ x \\
(11) & \quad (3_{xyz}^{-1} \ | 0,0,0) \\
(12) & \quad 3^+ \ x,x, \ x \\
(12) & \quad (3_{xyz}^{-1} \ | 0,0,0) \\
\end{align*}
Continued

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>j</td>
<td>1</td>
</tr>
</tbody>
</table>

(0,0,0) + (1/2,1/2,1/2)’ + set

1. t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (13).

For (1/2,1/2,1/2)’ + set

1. t(1/2,1/2,1/2)
2. 2’ (0,0,1/2) 1/4,1/4,1/4 (2xy) 1/2,1/2,1/2’
3. 2’ (0,1/2,0) 1/4,y,1/4 (2xz) 1/2,1/2,1/2’
4. 2’ (1/2,0,0) x,1/4,1/4 (2yz) 1/2,1/2,1/2’

5. 3* ’ (1/2,1/2,1/2) x,x,x
6. 3* ’ (1/2,1/2,1/2) x,x,x
7. 3* ’ (1/2,1/2,1/2) x,x,x
8. 3* ’ (1/2,1/2,1/2) x,x,x

9. 3’ (1/2,1/2,1/2) x,x,x
10. 3’ (1/2,1/2,1/2) x,x,x
11. 3’ (1/2,1/2,1/2) x,x,x
12. 3’ (1/2,1/2,1/2) x,x,x

13. 2’ (1/2,1/2,1/2) x,x,1/4 (2xz) 1/2,1/2,1/2’
14. 2’ (1/2,1/2,1/2) x,x,1/4 (2xz) 1/2,1/2,1/2’
15. 4 ’ (0,0,1/2) 1/2,0,1/2 (2yz) 1/2,1/2,1/2’
16. 4 ’ (0,0,1/2) 1/2,0,1/2 (2yz) 1/2,1/2,1/2’

17. 4’ (1/2,0,0) x,1/2,0 (2xy) 1/2,1/2,1/2’
18. 2’ (0,1/2,1/2) 1/4,y,y (2yz) 1/2,1/2,1/2’
19. 2’ (0,1/2,1/2) 1/4,y,y (2yz) 1/2,1/2,1/2’
20. 4’ (1/2,0,0) x,0,1/2 (2xz) 1/2,1/2,1/2’

21. 4’ (0,1/2,0) 1/2,y,0 (2xz) 1/2,1/2,1/2’
22. 2’ (1/2,0,1/2) x,1/4,x (2xz) 1/2,1/2,1/2’
23. 4’ (0,1/2,0) 0,y,1/2 (2xz) 1/2,1/2,1/2’
24. 2’ x+1/2,1/4,x (2xz) 1/2,1/2,1/2’

25. 3+ (1/2,1/2,1/2) x,x,x (2xy) 1/2,1/2,1/2’
26. 3+ (1/2,1/2,1/2) x,x,x (2xy) 1/2,1/2,1/2’
27. 3+ (1/2,1/2,1/2) x,x,x (2xy) 1/2,1/2,1/2’
28. 3+ (1/2,1/2,1/2) x,x,x (2xy) 1/2,1/2,1/2’

29. 2 - x,x,0 (2xz) 0,0,0,0 (2yz) 0,0,0,0
30. 2 - x,x,0 (2xz) 0,0,0,0 (2yz) 0,0,0,0
31. 2 - x,x,0 (2xz) 0,0,0,0 (2yz) 0,0,0,0
32. 2 - x,x,0 (2xz) 0,0,0,0 (2yz) 0,0,0,0

33. 4’ 0,0,z (4z) 0,0,0,0
34. 4’ 0,0,z (4z) 0,0,0,0
35. 4’ 0,0,z (4z) 0,0,0,0
36. 4’ 0,0,z (4z) 0,0,0,0

37. 4 - 0,0,z (4z) 0,0,0,0
38. 4 - 0,0,z (4z) 0,0,0,0
39. 4 - 0,0,z (4z) 0,0,0,0
40. 4 - 0,0,z (4z) 0,0,0,0

41. 4+ 0,0,z (4z) 0,0,0,0
42. 4+ 0,0,z (4z) 0,0,0,0
43. 4+ 0,0,z (4z) 0,0,0,0
44. 4+ 0,0,z (4z) 0,0,0,0

45. 4 - 0,0,z (4z) 0,0,0,0
46. 4 - 0,0,z (4z) 0,0,0,0
47. 4 - 0,0,z (4z) 0,0,0,0
48. 4 - 0,0,z (4z) 0,0,0,0
Symmetry of Special Projections

Origin at 0,0,z

<table>
<thead>
<tr>
<th>Along [1,0,0]</th>
<th>a' = (a - b)/2</th>
<th>b' = (a + b)/2</th>
<th>Origin at 0,0,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,1,0]</td>
<td>a' = c/2</td>
<td>b' = -(a + b)/2</td>
<td>Origin at x,x,0</td>
</tr>
<tr>
<td>Along [1,1,1]</td>
<td>p3m11'</td>
<td>b = (a - 2b - c)/3</td>
<td>Origin at x,x,x</td>
</tr>
</tbody>
</table>

Origin at x,x,x

<table>
<thead>
<tr>
<th>Along [1,0,1]</th>
<th>a' = (a - b)/2</th>
<th>b' = (a + b)/2</th>
<th>Origin at 0,0,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,1,1]</td>
<td>p4mm'</td>
<td>b = (a + b)/2</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>

Origin at x,x,0

<table>
<thead>
<tr>
<th>Along [1,0,1]</th>
<th>a' = (a + b)/2</th>
<th>b' = (a - b)/2</th>
<th>Origin at 0,0,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,1,1]</td>
<td>p2m1</td>
<td>b = (a - b)/2</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>

Origin at x,x,x

<table>
<thead>
<tr>
<th>Along [1,0,1]</th>
<th>a' = (a + b)/2</th>
<th>b' = (a - b)/2</th>
<th>Origin at 0,0,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [1,1,1]</td>
<td>p4mm'</td>
<td>b = (a - b)/2</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**
 - \(a' = \frac{(a - b)}{2} \)
 - \(b' = \frac{(a + b)}{2} \)
- **Along [1,1,1]**
 - \(a' = \frac{c}{3} \)
 - \(b' = -\frac{a + b}{2} \)
 - \(a' = \frac{2c}{3} \)
 - \(b' = -\frac{a + b}{2} \)
 - \(a' = \frac{c}{2} \)
 - \(b' = \frac{-(a + b)}{2} \)

Extended Symmetry

- **2d**
 - \(a' = \frac{a + b}{2} \)
 - \(b' = \frac{a - b}{2} \)
 - \(c' = \frac{c}{2} \)

- **2c**
 - \(a' = \frac{(a + b + c)}{3} \)
 - \(b' = -\frac{(a + b)}{3} \)
 - \(c' = \frac{c}{3} \)

- **2a**
 - \(a' = 0 \)
 - \(b' = 0 \)
 - \(c' = 0 \)

Symmetry of Planes

- **[001]**
 - \(a = b \)
 - \(c = 0 \)
- **[100]**
 - \(a = 0 \)
 - \(b = 0 \)
 - \(c = 0 \)
- **[111]**
 - \(a = b = c \)

Symmetry of Axes

- **[001]**
 - \(a = b \)
 - \(c = 0 \)
- **[100]**
 - \(a = 0 \)
 - \(b = 0 \)
 - \(c = 0 \)
- **[111]**
 - \(a = b = c \)
Origin at 4'32'

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad z \leq \min(x,1/2-x,y,1/2-y) \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 1/2,1/2,0 & \quad 0,1/2,0 & \quad 1/4,1/4,1/4 \\
\end{align*}
\]

Symmetry Operations

For \((0,0,0) + \text{set}\)

\[
\begin{align*}
(1) \quad & 1 \\
& (1|0,0,0) \\
(2) \quad & 2 \quad 0,0,z \\
& (2|0,0,0) \\
(3) \quad & 2 \quad 0,y,0 \\
& (2|0,0,0) \\
(4) \quad & 2 \quad x,0,0 \\
& (2|0,0,0) \\
(5) \quad & 3^+ \quad x,x,x \\
& (3_{xyz}|0,0,0) \\
(6) \quad & 3^+ \quad x,x,x \\
& (3_{xyz}^{-1}|0,0,0) \\
(7) \quad & 3^+ \quad x,x,x \\
& (3_{xyz}^{-1}|0,0,0) \\
(8) \quad & 3^+ \quad x,x,x \\
& (3_{xyz}^{-1}|0,0,0) \\
(9) \quad & 3^- \quad x,x,x \\
& (3_{xyz}^{-1}|0,0,0) \\
(10) \quad & 3^- \quad x,x,x \\
& (3_{xyz}^{-1}|0,0,0) \\
(11) \quad & 3^- \quad x,x,x \\
& (3_{xyz}^{-1}|0,0,0) \\
(12) \quad & 3^- \quad x,x,x \\
& (3_{xyz}^{-1}|0,0,0) \\
\end{align*}
\]
Continued

(13) $2' \ x,x,0$
(20) $2' \ y,y,0$
(27) $2' \ x,x,0$
(34) $2' \ y,y,0$

For $(1/2,1/2,1/2)^{'} +$ set

(1) $t(1/2,1/2,1/2)^{'}$
(2) $2' (0,0,1/2)$
(3) $2' (0,1/2,0)$
(4) $2' (1/2,0,0)$

(5) $3^{+} (1/2,1/2,1/2) x,x,x$
(6) $3^{+} (1/6,-1/6,1/6) x+1/3,x+1/3,x$
(7) $3^{+} (-1/6,1/6,1/6) x+2/3,x-1/3,x$
(8) $3^{+} (1/6,1/6,-1/6) x+1/3,x+2/3,x$

(9) $3^{+} (1/2,1/2,1/2) x,x,x$
(10) $3^{+} (-1/6,1/6,1/6) x+1/3,x+1/3,x$
(11) $3^{+} (1/6,1/6,-1/6) x+2/3,x+1/3,x$
(12) $3^{+} (1/6,1/6,-1/6) x-1/3,x+2/3,x$

(13) $2 (1/2,1/2,0) x,x,1/4$
(14) $2 x,x+1/2,1/4$
(15) $4' (0,0,1/2) 1/2,0,z$
(16) $4^{+} (0,0,1/2) 0,1/2,z$

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

(0,0,0) + (1/2,1/2,1/2)'

48 j 1

(1) $x,y,z \ [u,v,w]$ (2) $\bar{x},\bar{y},\bar{z} \ [\bar{u},\bar{v},\bar{w}]$ (3) $x,y,z \ [u,v,w]$ (4) $x,y,z \ [u,v,w]$
(5) $z,x,y \ [w,u,v]$ (6) $z,x,y \ [w,u,v]$ (7) $\bar{z},\bar{x},\bar{y} \ [\bar{w},\bar{u},\bar{v}]$ (8) $\bar{z},\bar{x},\bar{y} \ [\bar{w},\bar{u},\bar{v}]$
(9) $y,z,x \ [v,w,u]$ (10) $\bar{y},\bar{z},\bar{x} \ [\bar{v},\bar{w},\bar{u}]$ (11) $y,z,x \ [v,w,u]$ (12) $\bar{y},\bar{z},\bar{x} \ [\bar{v},\bar{w},\bar{u}]$
(13) $y,z,x \ [\bar{v},\bar{u},\bar{w}]$ (14) $y,z,x \ [v,u,w]$ (15) $y,z,x \ [v,u,w]$ (16) $\bar{y},\bar{z},\bar{x} \ [\bar{v},\bar{u},\bar{w}]$
(17) $x,z,y \ [u,w,v]$ (18) $x,z,y \ [u,w,v]$ (19) $x,z,y \ [u,w,v]$ (20) $x,z,y \ [u,w,v]$
(21) $z,y,x \ [w,v,u]$ (22) $z,y,x \ [w,v,u]$ (23) $z,y,x \ [w,v,u]$ (24) $\bar{z},\bar{y},\bar{x} \ [\bar{w},\bar{v},\bar{u}]$

211.5.1560 - 2 - 3510
Symmetry of Special Projections

Along [0,0,1] \(p_4 4m'm' \)
\[a^* = \frac{a - b}{2}, \quad b^* = \frac{a + b}{2} \]
Origin at 1/2,0,z

Along [1,1,1] \(p3m11' \)
\[a^* = \frac{2a - b - c}{3}, \quad b^* = \frac{-a + 2b - c}{3} \]
Origin at x,x,x

Along [1,1,0] \(p_2 2m'm' \)
\[a^* = \frac{c}{2}, \quad b^* = \frac{-a + b}{2} \]
Origin at x,x,1/4

211.5.1560 - 3 - 3511
Origin on 3 \([111]\) at midpoint of three non-intersecting pairs of parallel screw axes \(4_3\) and \(2_1\).

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 3/4; \quad -1/2 \leq z \leq 1/4; \quad \max(-y,x-1/2) \leq y \leq \min(-y+1/2,2x-y,2y-x,y-2x+1/2)\]

Vertices

\((0,0,0)\), \((3/8,1/8,-1/8)\), \((1/2,1/2,0)\), \((1/4,3/4,-1/4)\), \((0,1/2,-1/2)\), \((1/4,1/4,1/4)\)

Symmetry Operations

1. \(1\)
2. \(2 \cdot (0,0,1/2)\) \(\quad 1/4,0,z\)
3. \(2 \cdot (0,1/2,0)\) \(\quad 0,y,1/4\)
4. \(2 \cdot (1/2,0,0)\) \(\quad x,1/4,0\)
5. \(3^+ \times,\times,\times\)
 \(\quad (3_{xyz}^{-1} \times,\times,\times)\)
6. \(3^+ \times+1/2,\times,\times\)
 \(\quad (3_{xyz}^{-1} \times,\times,\times)\)
7. \(3^+ \times+1/2,\times-1/2,\times\)
 \(\quad (3_{xyz}^{-1} \times,\times,\times)\)
8. \(3^+ \times,\times+1/2,\times\)
 \(\quad (3_{xyz}^{-1} \times,\times,\times)\)
9. \(3^- \times,\times,\times\)
 \(\quad (3_{xyz}^{-1} \times,\times,\times)\)
10. \(3^- (-1/3,1/3,1/3)\)
 \(\quad \times+1/6,\times+1/6,\times\)
11. \(3^- (1/3,1/3,-1/3)\)
 \(\quad \times+1/3,\times+1/3,\times\)
12. \(3^- (1/3,-1/3,1/3)\)
 \(\quad \times-1/6,\times+1/3,\times\)
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 e 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 d .2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 c .3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 b .32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 a .32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4g'm'</th>
<th>Along [1,1,1]</th>
<th>p3m'1</th>
<th>Along [1,1,0]</th>
<th>p2m'g'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = a</td>
<td>b* = b</td>
<td>a* = (2a - b - c)/3</td>
<td>b* = (-a + 2b - c)/3</td>
<td>a* = c</td>
<td>b* = -(a + b)/2</td>
</tr>
<tr>
<td>Origin at 1/4,1/2,z</td>
<td>Origin at x,x,x</td>
<td></td>
<td></td>
<td>Origin at x,x,x</td>
<td></td>
</tr>
</tbody>
</table>
Origin on 31' [111] at midpoint of three non-intersecting pairs of parallel screw axes 431' and 211'

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 3/4; -1/2 ≤ z ≤ 1/4; max (-y,x-1/2) ≤ y ≤ min(-y+1/2,2x-y,y-2x+1/2)

Vertices
0,0,0 3/8,1/8,-1/8 1/2,1/2,0 1/4,3/4,-1/4 0,1/2,-1/2 1/4,1/4,1/4

Symmetry Operations

For 1 + set

(1) 1
(1 | 0,0,0)

(2) 2 (0,0,1/2) 1/4,0,z
(2 | 1/2,0,1/2)

(3) 2 (0,1/2,0) 0,y,1/4
(2 | 0,1/2,1/2)

(4) 2 (1/2,0,0) x,1/4,0
(2 | 1/2,1/2,0)

(5) 3' x,x,x
(3xyz | 0,0,0)

(6) 3* x+1/2,x,x
(3xyz' | 1/2,1/2,0)

(7) 3* x+1/2,x-1/2,x
(3xyz-1 | 1/2,0,1/2)

(8) 3* x,x+1/2,x
(3xyz-1 | 0,1/2,1/2)

(9) 3' x,x,x
(3xyz-1 | 0,0,0)

(10) 3* x+1/6,x+1/6,x
(3xyz | 0,1/2,1/2)

(11) 3* x+1/3,x+1/6,x
(3xyz | 1/2,1/2,0)

(12) 3* x-1/6,x+1/3,x
(3xyz | 1/2,0,1/2)

212.2.1562 - 1 - 3514
Continued 212.2.1562 P4₃ 321'

For 1' + set

1'
(1) 1'
(0,0,0)'
(2) 2'
(0,0,1/2)
(1/2,0,1/2)'
(3) 2'
(0,1/2,0)
(0,1/2,0)'
(4) 2'
(1/2,0,0)
(1/2,0,1/2)'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

24 e 11'

1 + 1'

(1) x,y,z [0,0,0]
(2) x+1/2,y,z+1/2 [0,0,0]
(3) x,y+1/2,z+1/2 [0,0,0]
(4) x+1/2,y+1/2,z [0,0,0]

(5) z,x,y [0,0,0]
(6) z+1/2,x+1/2,y [0,0,0]
(7) z+1/2,x,y+1/2 [0,0,0]
(8) z+1/2,y+1/2,z [0,0,0]

(9) y,z,x [0,0,0]
(10) y,z+1/2,x+1/2 [0,0,0]
(11) y+1/2,z+1/2,x [0,0,0]
(12) y+1/2,z,x+1/2 [0,0,0]

(13) y+1/4,x+3/4,z+3/4 [0,0,0]
(14) y+1/4,x+1/4,z+1/4 [0,0,0]
(15) y+3/4,x+3/4,z+1/4 [0,0,0]
(16) y+3/4,x+1/4,z+3/4 [0,0,0]

(17) x+1/4,z+3/4,y+3/4 [0,0,0]
(18) x+3/4,z+1/4,y+3/4 [0,0,0]
(19) x+1/4,z+1/4,y+1/4 [0,0,0]
(20) x+3/4,z+3/4,y+1/4 [0,0,0]

(21) z+1/4,y+3/4,x+3/4 [0,0,0]
(22) z+3/4,y+3/4,x+1/4 [0,0,0]
(23) z+3/4,y+1/4,x+3/4 [0,0,0]
(24) z+1/4,y+1/4,x+1/4 [0,0,0]

212.2.1562 - 2 - 3515
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along</th>
<th>p4gm1'</th>
<th>p3m11'</th>
<th>p2mg1'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[0,0,1]</td>
<td>[1,1,1]</td>
<td>[1,1,0]</td>
</tr>
<tr>
<td>a = a</td>
<td>b = b</td>
<td>a = (2a - b - c)/3</td>
<td>a = c</td>
</tr>
<tr>
<td>b = b</td>
<td>Origin at 1/4,1/2,z</td>
<td>b = (-a + 2b - c)/3</td>
<td>b = -(-a + b)/2</td>
</tr>
<tr>
<td>Origin at x,x,x</td>
<td></td>
<td>Origin at x,x</td>
<td>Origin at x,x+1/4,3/8</td>
</tr>
</tbody>
</table>
Origin on 3 [111] at midpoint of three non-intersecting pairs of parallel screw axes $4_3'$ and 2_1.

Asymmetric unit

\[
0 \leq x \leq 1/2; \quad 0 \leq y \leq 3/4; \quad -1/2 \leq z \leq 1/4; \quad \max(-y,x-1/2) \leq y \leq \min(-y+1/2,2x-y,2y-x,y-2x+1/2)
\]

Vertices

\[
0,0,0 \quad 3/8,1/8,-1/8 \quad 1/2,1/2,0 \quad 1/4,3/4,-1/4 \quad 0,1/2,-1/2 \quad 1/4,1/4,1/4
\]

Symmetry Operations

1. 1
2. $2 (0,0,1/2) \quad 1/4,0,z$
 (2) $1/2,0,1/2$
3. $2 (0,1/2,0) \quad 0,y,1/4$
 (2) $0,1/2,1/2$
4. $2 (1/2,0,0) \quad x,1/4,0$
 (2) $1/2,1/2,0$
5. $3^+ \ x,x,x$
 (5) $3^+ x,x,0$
 (2) $1/2,1/2,0$
6. $3^+ \ x+1/2,x,\bar{x}$
 (3) $1/2,0,1/2$
7. $3^+ \ x+1/2,\bar{x}-1/2,\bar{x}$
 (3) $1/2,0,1/2$
8. $3^+ \ \bar{x},\bar{x}+1/2,\bar{x}$
 (3) $0,1/2,1/2$
9. $3^- \ x,x,x$
 (9) $3^- x,x,0$
 (2) $1/2,1/2,0$
10. $3^- x+1/6,x+1/6,x$
 (2) $1/2,1/2,0$
11. $3^- x+1/3,x+1/6,x$
 (2) $1/2,1/2,0$
12. $3^- (1/3,-1/3,1/3)$
 (2) $1/2,0,1/2$

212.3.1563 - 1 - 3517
Continued

212.3.1563
P4$_3$ '32'

<table>
<thead>
<tr>
<th>Generators selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13).</td>
</tr>
</tbody>
</table>

Positions

- **Multiplicity**
- **Wyckoff letter**
- **Site Symmetry**

<table>
<thead>
<tr>
<th>(1) x,y,z [u,v,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) x+1/2,y,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(3) x,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(4) x+1/2,y+1/2,z [u,v,w]</td>
</tr>
<tr>
<td>(5) z,x,y [w,u,v]</td>
</tr>
<tr>
<td>(6) z+1/2,x+1/2,y [w,u,v]</td>
</tr>
<tr>
<td>(7) z+1/2,x,y+1/2 [w,u,v]</td>
</tr>
<tr>
<td>(8) z,x+1/2,y+1/2 [w,u,v]</td>
</tr>
<tr>
<td>(9) y,z,x [v,w,u]</td>
</tr>
<tr>
<td>(10) y,z+1/2,x+1/2 [v,w,u]</td>
</tr>
<tr>
<td>(11) y+1/2,z+1/2,x [v,w,u]</td>
</tr>
<tr>
<td>(12) y+1/2,z,x+1/2 [v,w,u]</td>
</tr>
<tr>
<td>(13) y+1/4,x+3/4,z+3/4 [v,u,w]</td>
</tr>
<tr>
<td>(14) y+1/4,x+1/4,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td>(15) y+3/4,x+3/4,z+1/4 [v,u,w]</td>
</tr>
<tr>
<td>(16) y+3/4,x+1/4,z+3/4 [v,u,w]</td>
</tr>
<tr>
<td>(17) x+1/4,z+3/4,y+3/4 [u,v,w]</td>
</tr>
<tr>
<td>(18) x+3/4,z+1/4,y+3/4 [u,v,w]</td>
</tr>
<tr>
<td>(19) x+1/4,z+1/4,y+1/4 [w,u,v]</td>
</tr>
<tr>
<td>(20) x+3/4,z+3/4,y+1/4 [u,v,w]</td>
</tr>
<tr>
<td>(21) z+1/4,y+3/4,x+3/4 [w,u,v]</td>
</tr>
<tr>
<td>(22) z+3/4,y+1/4,x+3/4 [w,u,v]</td>
</tr>
<tr>
<td>(23) z+3/4,y+1/4,x+3/4 [w,v,u]</td>
</tr>
<tr>
<td>(24) z+1/4,y+1/4,x+1/4 [w,v,u]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 d .2' 1/8,y+1/4 [u,v,w] 3/8,y+3/4 [u,v,w] 7/8,y+1/4 [u,v,w] 5/8,y+1/2,y+3/4 [u,v,w]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 c .3' x,x,x [u,u,u] x+1/2,x,x+1/2 [u,u,u] x+1/2,x+1/2 [u,u,u] x+1/2,x+1/2 [u,u,u]</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,x+1/2,x+1/2 [u,u,u] x+1/2,x+1/2 [u,u,u] x+1/4,x+3/4,x+3/4 [u,u,u] x+1/4,x+3/4,x+1/4 [u,u,u]</td>
</tr>
<tr>
<td>x+3/4,x+3/4,x+1/4 [u,u,u] x+3/4,x+1/4,x+3/4 [u,u,u]</td>
</tr>
</tbody>
</table>

|-------------|

Symmetry of Special Projections

- **Along [0,0,1]**
P4'g'm
- **Along [1,1,1]**
P3m1
- **Along [1,1,0]**
P2'm'g

a' = a
b' = b

Origin at 1/4,1/2,z

- **Along [0,0,1]**
 - **a' = 2a - b, c' = 3b**
 - **Origin at x,x,x**

- **Along [1,1,1]**
 - **a' = (2a - b) / 3, b' = (b + 2c) / 3**
 - **Origin at x,x,x**

- **Along [1,1,0]**
 - **a' = c, b' = -a + b / 2**
 - **Origin at x,x,x+1/4,3/8**

212.3.1563 - 2 - 3518
Origin on 3 [111] at midpoint of three non-intersecting pairs of parallel screw axes 4₁ and 2₁

Asymmetric unit

\[-1/4 \leq x \leq 1/2; \quad 0 \leq y \leq 3/4; \quad 0 \leq z \leq 1/2; \quad x \leq y \leq x+1/2;\]

\[(y-x)/2 \leq z \leq \min(y,(-4x-2y+3)/2,(3-2x-2y)/4)\]

Vertices

0,0,0 1/2,1/2,0 1/4,3/4,1/4 -1/4,1/4,1/4 0,1/2,1/2 3/8,3/8,3/8

Symmetry Operations

(1) 1
(1) 0,0,0

(5) 3⁺ x,x,x
(3)xyz | 0,0,0

(6) 3⁺ x+1/2,x,x
(3)xyz⁻¹ | 1/2,1/2,0

(9) 3⁻ x,x,x
(3)xyz⁻¹ | 0,0,0

(10) 3⁻ (-1/3,1/3,1/3) x+1/6,x+1/6,x
(3)xyz⁻¹ | 0,1/2,1/2

(11) 3⁻ (1/3,1/3,-1/3) x+1/3,x+1/3,x
(3)xyz⁻¹ | 1/2,1/2,0

(12) 3⁻ (1/3,-1/3,1/3) x-1/6,x+1/3,x
(3)xyz⁻¹ | 1/2,0,1/2
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

24 e 1

(1) x,y,z [u,v,w] (2) x+1/2,y,z+1/2 [u,v,w] (3) x,y+1/2,z+1/2 [u,v,w] (4) x+1/2,y+1/2,z [u,v,w]

(5) z,x,y [w,u,v] (6) z+1/2,x+1/2,y [w,u,v] (7) z+1/2,x,y+1/2 [w,u,v] (8) z,x+1/2,y+1/2 [w,u,v]

(9) y,z,x [v,w,u] (10) y,z+1/2,x+1/2 [v,w,u] (11) y+1/2,z+1/2,x [v,w,u] (12) y+1/2,z,x+1/2 [v,w,u]

(13) y+3/4,x+1/4,z+1/4 [v,u,w] (14) y+3/4,x+3/4,z+3/4 [v,u,w] (15) y+1/4,x+1/4,z+3/4 [v,u,w] (16) y+1/4,x+3/4,z+1/4 [v,u,w]

(17) x+3/4,z+1/4,y+1/4 [u,w,v] (18) x+1/4,z+3/4,y+1/4 [u,w,v] (19) x+3/4,z+3/4,y+3/4 [u,w,v] (20) x+1/4,z+1/4,y+3/4 [u,w,v]

(21) z+3/4,y+1/4,x+1/4 [w,v,u] (22) z+1/4,y+1/4,x+3/4 [w,v,u] (23) z+1/4,y+3/4,x+1/4 [w,v,u] (24) z+3/4,y+3/4,x+3/4 [w,v,u]

12 d .2 1/8,y+1/4,0 [v,v,0] 3/8,y+3/4,0 [v,v,0] 7/8,y+1/2,0 [v,v,0] 5/8,y+1/2,0 [v,v,0]

y+1/4,1/8,0 [v,v,0] y+3/4,3/8,0 [v,v,0] y+1/4,7/8,1/2 [v,v,0] y+3/4,5/8,1/2 [v,v,0]

y,y+1/4,1/8 [v,v,0] y,y+3/4,3/8 [v,v,0] y,y+1/4,7/8 [v,v,0] y,y+3/4,5/8 [v,v,0]

8 c .3 x,x,x [u,u,u] x+1/2,x,x+1/2 [u,u,u] x+1/2,x+1/2,x [u,u,u]

x+3/4,x,1/4 [u,u,u] x+3/4,x+1/4,x+1/4 [u,u,u] x+1/4,x+1/4,x+3/4 [u,u,u] x+1/4,x+3/4,x+1/4 [u,u,u]

4 b .32 7/8,7/8,7/8 [0,0,0] 5/8,7/8,3/8 [0,0,0] 1/8,3/8,5/8 [0,0,0] 3/8,5/8,1/8 [0,0,0]

4 a .32 3/8,3/8,3/8 [0,0,0] 1/8,5/8,7/8 [0,0,0] 5/8,7/8,1/8 [0,0,0] 7/8,1/8,5/8 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4g'm' a* = a b* = b

Origin at 1/4,0,z

Along [1,1,1] p3m'1 a* = (2a - b - c)/3 b* = (-a + 2b - c)/3

Origin at x,x,x

Along [1,1,0] p2m'q' a* = c b* = -(a + b)/2

Origin at x,x+1/4,1/8

213.1.1564 - 2 - 3520
Origin on 31' [111] at midpoint of three non-intersecting pairs of parallel screw axes 4,1' and 2,1'

Asymmetric unit

\[-\frac{1}{4} \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{3}{4}; \quad 0 \leq z \leq \frac{1}{2}; \quad x \leq y \leq x+\frac{1}{2};\]

\[(y-x)/2 \leq z \leq \min(y,(-4x-2y+3)/2,(3-2x-2y)/4)\]

Vertices

\[
\begin{align*}
0,0,0 & & 1/2,1/2,0 & & 1/4,3/4,1/4 & & -1/4,1/4,1/4 & & 0,1/2,1/2 & & 3/8,3/8,3/8
\end{align*}
\]

Symmetry Operations

For 1 + set

\[
\begin{align*}
(1) & & \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 0,0,0 \end{pmatrix} & & \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 0,1/2 \end{pmatrix} \begin{pmatrix} 1/4,0,z \end{pmatrix} & & \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 0,1/2,0 \end{pmatrix} \begin{pmatrix} 0,y,1/4 \end{pmatrix} & & \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 1/2,0,0 \end{pmatrix} \begin{pmatrix} x,1/4,0 \end{pmatrix} \\
(2) & & \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 0,0,1/2 \end{pmatrix} \begin{pmatrix} 1/4,0,z \end{pmatrix} & & \begin{pmatrix} 1/2 \end{pmatrix} \begin{pmatrix} 2,0,1/2 \end{pmatrix} & & \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 0,1/2,0 \end{pmatrix} \begin{pmatrix} 0,y,1/4 \end{pmatrix} & & \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 1/2,1/2 \end{pmatrix} \begin{pmatrix} 1/2,1/2,0 \end{pmatrix} \\
(5) & & \begin{pmatrix} 3^+ \end{pmatrix} \begin{pmatrix} x,0,0 \end{pmatrix} \begin{pmatrix} x,x,x \end{pmatrix} & & \begin{pmatrix} 3^+ \end{pmatrix} \begin{pmatrix} 0,1/2,0 \end{pmatrix} \begin{pmatrix} x+1/2,x,x \end{pmatrix} & & \begin{pmatrix} 3^+ \end{pmatrix} \begin{pmatrix} 1/2,0,1/2 \end{pmatrix} \begin{pmatrix} x+1/2,x,x \end{pmatrix} & & \begin{pmatrix} 3^+ \end{pmatrix} \begin{pmatrix} 0,1/2,0 \end{pmatrix} \begin{pmatrix} x+1/2,x,x \end{pmatrix} \\
& & \begin{pmatrix} 3_{x,y,z} \end{pmatrix} \begin{pmatrix} 0,0,0 \end{pmatrix} & & \begin{pmatrix} 3_{x,y,z} \end{pmatrix} \begin{pmatrix} 0,1/2,0 \end{pmatrix} \begin{pmatrix} 1/2,1/2,0 \end{pmatrix} & & \begin{pmatrix} 3_{x,y,z} \end{pmatrix} \begin{pmatrix} 1/2,0,1/2 \end{pmatrix} \begin{pmatrix} x+1/2,x,x \end{pmatrix} & & \begin{pmatrix} 3_{x,y,z} \end{pmatrix} \begin{pmatrix} 0,1/2,0 \end{pmatrix} \begin{pmatrix} x+1/2,x,x \end{pmatrix} \\
(9) & & \begin{pmatrix} 3^- \end{pmatrix} \begin{pmatrix} x,0,0 \end{pmatrix} \begin{pmatrix} x,x,x \end{pmatrix} & & \begin{pmatrix} 3^- \end{pmatrix} \begin{pmatrix} -1/3,1/3,1/3 \end{pmatrix} \begin{pmatrix} x+1/6,x+1/6,x \end{pmatrix} & & \begin{pmatrix} 3^- \end{pmatrix} \begin{pmatrix} 1/3,-1/3,1/3 \end{pmatrix} \begin{pmatrix} x+1/3,x+1/3,x \end{pmatrix} & & \begin{pmatrix} 3^- \end{pmatrix} \begin{pmatrix} 1/3,-1/3,1/3 \end{pmatrix} \begin{pmatrix} x+1/3,x+1/3,x \end{pmatrix} \\
& & \begin{pmatrix} 3_{x,y,z}^{-1} \end{pmatrix} \begin{pmatrix} 0,0,0 \end{pmatrix} & & \begin{pmatrix} 3_{x,y,z}^{-1} \end{pmatrix} \begin{pmatrix} 0,1/2,0 \end{pmatrix} \begin{pmatrix} 1/2,1/2,0 \end{pmatrix} & & \begin{pmatrix} 3_{x,y,z}^{-1} \end{pmatrix} \begin{pmatrix} 1/2,0,1/2 \end{pmatrix} \begin{pmatrix} x+1/3,x+1/3,x \end{pmatrix} & & \begin{pmatrix} 3_{x,y,z}^{-1} \end{pmatrix} \begin{pmatrix} 1/2,0,1/2 \end{pmatrix} \begin{pmatrix} x+1/3,x+1/3,x \end{pmatrix}
\end{align*}
\]
Continued

Coordinates

<table>
<thead>
<tr>
<th>Generators selected</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); 1'.</td>
<td>Coordinates</td>
</tr>
</tbody>
</table>

213.2.1565 - 2 - 3522
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin at x,x,x</th>
<th>Along [1,0,0]</th>
<th>p4gm1'</th>
<th>a* = a b* = b</th>
</tr>
</thead>
</table>

| Origin at x,x+1/4,0 | Along [1,1,1] | p3m11' | a* = (2a - b - c)/3 b* = (-a + 2b - c)/3 |

| Origin at x,x+1/4,1/8 | Along [1,1,0] | p2mg1' | a* = c b* = (-a + b)/2 |

| Origin at 1/4,0,z | Along [0,0,1] | p4gm1' | a* = a b* = b |

| Origin at x,x,x | Along [1,0,0] | p4gm1' | a* = a b* = b |

| Origin at x,x+1/4,0 | Along [1,1,1] | p3m11' | a* = (2a - b - c)/3 b* = (-a + 2b - c)/3 |

| Origin at x,x+1/4,1/8 | Along [1,1,0] | p2mg1' | a* = c b* = (-a + b)/2 |

| Origin at 1/4,0,z | Along [0,0,1] | p4gm1' | a* = a b* = b |
Origin on 3 [111] at midpoint of three non-intersecting pairs of parallel screw axes 4' and 2₁.

Asymmetric unit

\[-1/4 \leq x \leq 1/2; \quad 0 \leq y \leq 3/4; \quad 0 \leq z \leq 1/2; \quad x \leq y \leq x+1/2;\]

\[(y-x)/2 \leq z \leq \min(y,(-4x-2y+3)/2,(3-2x-2y)/4)\]

Vertices

<table>
<thead>
<tr>
<th></th>
<th>0,0,0</th>
<th>1/2,1/2,0</th>
<th>1/4,3/4,1/4</th>
<th>-1/4,1/4,1/4</th>
<th>0,1/2,1/2</th>
<th>3/8,3/8,3/8</th>
</tr>
</thead>
</table>

Symmetry Operations

(1) 1
(2) 2 (0,0,1/2) 1/4,0,z
(2₁ | 1/2,0,1/2)
(3) 2 (0,1/2,0) 0,y,1/4
(2₁ | 0,1/2,1/2)
(4) 2 (1/2,0,0) x,1/4,0
(2₁ | 1/2,1/2,0)
(5) 3⁺ x,x,x
(3xyz | 0,0,0)
(6) 3⁺ x+1/2,x,x
(3xyz⁻¹ | 1/2,1,2,0)
(7) 3⁺ x+1/2,x,x-1/2,x
(3xyz⁻¹ | 1/2,0,1/2)
(8) 3⁺ x⁺1/2,x
(3xyz⁻¹ | 0,1/2,1/2)
(9) 3⁻ x,x,x
(3xyz⁻¹ | 0,0,0)
(10) 3⁻ (-1/3,1/3,1/3)
(3xyz⁻¹ | 1/2,1/2,0)
(11) 3⁻ (1/3,1/3,-1/3)
(3xyz⁻¹ | 1/2,1/2,0)
(12) 3⁻ (1/3,-1/3,1/3)
(3xyz⁻¹ | 1/2,0,1/2)
Continued 213.3.1566 P4₁ 32'

(13) 2' (1/2,1/2,0) x,x-1/4,1/8
(2ₚ) 3/4,1/4,1/4')

(14) 2' x,x+3/4,3/8
(2ₚ) 3/4,3/4,3/4')

(15) 4' (0,0,3/4) 1/4,0,z
(4₋₁) 1/4,1/4,3/4')

(16) 4' (0,0,1/4) -1/4,1/2,z
(4₋₁) 1/4,1/4,3/4')

(17) 4' (3/4,0,0) x,1/4,0
(4₋₁) 3/4,1/4,1/4')

(18) 2' (0,1/2,1/2) 1/8,y+1/4,y
(2ₚ) 1/4,3/4,3/4')

(19) 2' 3/8,y+3/4,y
(2ₚ) 3/4,3/4,3/4')

(20) 4' (1/4,0,0) x,-1/4,1/2
(4₋₁) 1/4,1/4,3/4')

(21) 4' (0,1/4,0) 1/2,y,-1/4
(4₋₁) 3/4,1/4,1/4')

(22) 2' (1/2,0,1/2) x-1/4,1/8,x
(2ₚ) 1/4,1/4,3/4')

(23) 4' (0,3/4,0) 0,y,1/4
(4₋₁) 1/4,1/4,3/4')

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

24.e 1

(1) x,y,z [u,v,w]
(2) x+1/2,y,z+1/2 [u,v,w]
(3) x,y+1/2,z+1/2 [u,v,w]
(4) x+1/2,y+1/2,z [u,v,w]

(5) z,x,y [w,u,v]
(6) z+1/2,x,y+1/2 [w,u,v]
(7) z+1/2,x,y+1/2 [w,u,v]
(8) z,x+1/2,y+1/2 [w,u,v]

(9) y,z,x [v,w,u]
(10) y,z+1/2,x+1/2 [v,w,u]
(11) y+1/2,z,x+1/2 [v,w,u]
(12) y+1/2,z,x+1/2 [v,w,u]

(13) y+3/4,x+1/4,z+1/4 [v,u,w]
(14) y+3/4,x+3/4,z+3/4 [v,u,w]
(15) y+1/4,x+1/4,z+3/4 [v,u,w]
(16) y+1/4,x+3/4,z+1/4 [v,u,w]

(17) x+3/4,z+1/4,y+1/4 [u,v,w]
(18) x+1/4,z+3/4,y+1/4 [u,v,w]
(19) x+3/4,z+3/4,y+3/4 [u,v,w]
(20) x+1/4,z+1/4,y+3/4 [u,v,w]

(21) z+3/4,y+1/4,x+1/4 [w,v,u]
(22) z+1/4,y+1/4,x+1/4 [w,v,u]
(23) z+1/4,y+3/4,x+1/4 [w,v,u]
(24) z+3/4,y+3/4,x+1/4 [w,v,u]

12.d .2' 1/8,y,y+1/4 [u,v,v]
3/8,y,y+3/4 [u,v,v]
7/8,y+1/2,y+1/4 [u,v,v]
5/8,y+1/2,y+3/4 [u,v,v]

y+1/4,1/8,y [v,u,v]
y+3/4,3/8,y [u,v,v]
y+1/4,7/8,y+1/2 [v,u,v]
y+3/4,5/8,y+1/2 [v,u,v]

y,y+1/4,1/8 [v,u,v]
y,y+3/4,3/8 [v,u,v]
y+1/2,y+1/4,7/8 [v,u,v]
y+1/2,y+3/4,5/8 [v,u,v]

8.c .3. x,x,x [u,u,u]
3/8,y,y+3/4 [u,v,v]
7/8,y+1/2,y+1/4 [u,v,v]
5/8,y+1/2,y+3/4 [u,v,v]

x+1/2,x+1/2 [u,u,u]
x+3/4,x+1/4,x+1/4 [u,u,u]
x+1/4,x+1/4,x+3/4 [u,u,u]

4.b .32' 7/8,7/8,7/8 [u,u,u]
5/8,1/8,3/8 [u,u,u]
1/8,3/8,5/8 [u,u,u]
3/8,5/8,1/8 [u,u,u]

4.a .32' 3/8,3/8,3/8 [u,u,u]
1/8,5/8,7/8 [u,u,u]
5/8,7/8,1/8 [u,u,u]
7/8,1/8,5/8 [u,u,u]

Symmetry of Special Projections

Along [0,0,1] p4'g'm
Along [1,1,1] p3m1
Along [1,1,0] p2'mg'

a* = a b* = b
Origin at 1/4,0,z

a* = (2a - b - c)/3 b* = (-a + 2b - c)/3
Origin at x,x,x

a* = c b* = (-a + b)/2
Origin at x,x+1/4,1/8
Origin on 3 [111] at midpoint of three non-intersecting pairs of parallel screw axes 41 and 43 and of three non-intersection pairs of parallel 2 axes.

Asymmetric unit

\[-\frac{3}{8} < x < \frac{1}{8}; \quad -\frac{1}{8} < y < \frac{1}{8}; \quad \frac{1}{8} < z < \frac{3}{8}; \quad \max(x, y, y - x - \frac{1}{8}) < z < y + \frac{1}{4}\]

Vertices

\[
\begin{align*}
1/8,1/8,1/8 & \quad 1/8,1/8,3/8 & \quad 1/8,-1/8,1/8 & \quad -1/8,1/8,1/8 & \quad -1/8,-1/8,-1/8 & \quad -3/8,1/8,3/8 & \quad -3/8,-1/8,1/8 \\
\end{align*}
\]

Symmetry Operations

For (0,0,0) + set

\[
\begin{align*}
(1) & \quad 1 & \quad (2) & \quad (0,0,1/2) & \quad 1/4,0,z & \quad (3) & \quad (0,1/2,0) & \quad 0,y,1/4 & \quad (4) & \quad (1/2,0,0) & \quad x,1/4,0 \\
& \quad (1|0,0,0) & \quad (2_z|1/2,0,1/2) & \quad (2_y|0,1/2,1/2) & \quad (2_x|1/2,1/2,0) & \\
(5) & \quad 3^+ x,x,x & \quad (6) & \quad 3^- x+1/2,x,x & \quad (7) & \quad 3^+ x+1/2,x-1/2,x & \quad (8) & \quad 3^- x,x+1/2,x & \\
& \quad (3_{xyz}|0,0,0) & \quad (3_{xyz}^{-1}|1/2,1/2,0) & \quad (3_{xyz}^{-1}|1/2,0,1/2) & \quad (3_{xyz}^{-1}|1,1/2,1/2) & \\
(9) & \quad 3^+ x,x,x & \quad (10) & \quad 3^- (-1/3,1/3,1/3) x+1/6,x+1/6,x & \quad (11) & \quad 3^+ (1/3,1/3,-1/3) x+1/3,x+1/3,x & \quad (12) & \quad 3^- (1/3,-1/3,1/3) x-1/6,x+1/3,x & \\
& \quad (3_{xyz}^{-1}|0,0,0) & \quad (3_{xyz}|0,1/2,1/2) & \quad (3_{xyz}^{-1}|1/2,1/2,0) & \quad (3_{xyz}^{-1}|2/2,0,1/2) & \\
\end{align*}
\]
Continued

(13) 2 (1/2,1/2,0) x,x-1/4,1/8
(2yz) 3/4,1/4,1/4

(14) 2 x,\(x+3/4,3/8\)
(2yz) 3/4,3/4,3/4

(15) 4\(\frac{1}{4}\),0,3/4) 1/4,0,z
(4z) 1/4,1/4,3/4

(16) 4\(\frac{1}{4}\),0,1/4) -1/4,1/2,z
(4z) 1/4,3/4,1/4

(17) 4\(\frac{1}{4}\),3/4,0) x,1/4,0
(4z) 3/4,1/4,1/4

(18) 2 (0,1/2,1/2) 1/8,y+1/4,y
(2yz) 1/4,3/4,1/4

(19) 2 3/8,y+3/4,y
(2yz) 3/4,3/4,3/4

(20) 4\(\frac{1}{4}\),0,0) x,-1/4,1/2
(4z) 1/4,1/4,3/4

(21) 4\(\frac{1}{4}\),0,1/4) 1/2,y,-1/4
(4z) 3/4,1/4,1/4

(22) 2 (1/2,0,1/2) x-1/4,1/8,x
(2yz) 1/4,1/4,3/4

(23) 4\(\frac{1}{4}\),0,3/4) 0,y,1/4
(4z) 1/4,3/4,1/4

(24) 2 x+3/4,3/8,x
(2yz) 3/4,3/4,3/4

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(2) 2 0,1/4,z
(3) 2 1/4,y,0
(4) 2 x,0,1/4
(2z) 0,1/2,0

(5) 3\(\frac{1}{2}\) (1/2,1/2,1/2) x,x,x
(6) 3\(\frac{1}{2}\) (1/6,-1/6,1/6)
(7) 3\(\frac{1}{2}\) -1/6,1/6,1/6
(8) 3\(\frac{1}{2}\) (1/6,1/6,1/6)

(3) x,y,z [u,v,w] (1/2,1/2,1/2)
(z) x+1/6,x+1/6,x

(9) 3\(\frac{1}{2}\) (1/2,1/2,1/2) x,x,x
(10) 3\(\frac{1}{2}\) (1/6,-1/6,1/6)
(11) 3\(\frac{1}{2}\) -1/6,-1/6,1/6
(12) 3\(\frac{1}{2}\) (1/6,1/6,1/6)

(3) x,y,z [u,v,w] (1/2,1/2,1/2)
(z) x+1/6,x+1/6,x

(13) 2 (1/2,1/2,0) x,x+1/4,3/8
(2yz) 1/4,3/4,3/4

(14) 2 x,\(x+1/4,1/8\)
(2yz) 1/4,1/4,1/4

(15) 4\(\frac{1}{4}\),0,0) 3/4,0,z
(4z) 3/4,3/4,3/4

(16) 4\(\frac{1}{4}\),0,3/4) 1/4,1/2,z
(4z) 3/4,1/4,3/4

(17) 4\(\frac{1}{4}\),1/4,0) x,3/4,0
(4z) 1/4,3/4,3/4

(18) 2 (0,1/2,1/2) 3/8,y-1/4,y
(2yz) 3/4,1/4,3/4

(19) 2 1/8,y-1/4,y
(2yz) 1/4,1/4,1/4

(20) 4\(\frac{1}{4}\),0,0) x,1/4,1/2
(4z) 3/4,3/4,1/4

(21) 4\(\frac{1}{4}\),0,3/4) 1/2,y,1/4
(4z) 1/4,3/4,3/4

(22) 2 (1/2,0,1/2) x+1/4,3/8,x
(2yz) 3/4,3/4,3/4

(23) 4\(\frac{1}{4}\),0,1/4) 0,y,3/4
(4z) 3/4,1/4,3/4

(24) 2 x+1/4,1/8,x
(2yz) 1/4,1/4,1/4

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

(0,0,0) + (1/2,1/2,1/2) + 48 i 1

(1) x,y,z [u,v,w] (2) \(\bar{x}+1/2,\bar{y},z+1/2\) [\(\bar{u},\bar{v},\bar{w}\)] (3) x,y+1/2,z+1/2 [u,v,w] (4) x+1/2,\(\bar{y}+1/2,\bar{z}\) [u,\(\bar{v},\bar{w}\)]

(5) z,x,y [w,u,v] (6) z+1/2,x+1/2,\(\bar{y}\) [w,\(\bar{u},\bar{v}\)] (7) \(\bar{z}+1/2,\bar{x},y+1/2\) [w,u,v] (8) \(\bar{z},x+1/2,\bar{y}+1/2\) [w,u,v]

(9) y,z,x [v,w,u] (10) \(\bar{y},z+1/2,\bar{x}+1/2\) [v,\(\bar{w},\bar{u}\)] (11) y+1/2,\(\bar{z}+1/2,\bar{x}\) [v,w,u] (12) \(\bar{y}+1/2,\bar{z},x+1/2\) [v,\(\bar{w},\bar{u}\)]

(13) y+3/4,x+1/4,\(\bar{z}+1/4\) [v,u,w] (14) \(\bar{y}+3/4,\bar{x}+3/4,\bar{z}+3/4\) [\(\bar{v},\bar{u},\bar{w}\)] (15) y+1/4,\(\bar{x}+1/4,\bar{z}+3/4\) [v,u,w] (16) \(\bar{y}+1/4,\bar{x}+3/4,\bar{z}+1/4\) [v,u,w]

(17) x+3/4,z+1/4,\(y+1/4\) [u,w,v] (18) \(\bar{x}+1/4,\bar{z}+3/4,\bar{y}+1/4\) [u,w,v] (19) x+3/4,z+3/4,y+3/4 [u,\(\bar{w},\bar{v}\)] (20) x+1/4,z+1/4,y+3/4 [u,w,v]

(21) z+3/4,y+1/4,x+1/4 [w,v,\(\bar{u}\)] (22) z+1/4,\(y+1/4,x+3/4\) [w,v,u] (23) \(\bar{z}+1/4,y+3/4,x+1/4\) [w,v,u] (24) \(\bar{z}+3/4,\bar{y}+3/4,\bar{x}+3/4\) [v,\(\bar{w},\bar{u}\)]
24	h	1/8,y+1/4 [0,v,v]	3/8,y+3/4 [0,v,v]	7/8,y+1/2,y+1/4 [v,v,0]	5/8,y+1/2,y+3/4 [0,v,v]
24	g	1/8,y+1/4 [0,v,v]	y+3/4,3/8,y [v,0,v]	y+1/4,7/8,y+1/2 [v,0,v]	y+3/4,5/8,y+1/2 [v,0,v]
24	f	x,0,1/4 [u,0,0]	x+1/2,0,3/4 [u,0,0]	1/4,x,0 [0,u,0]	3/4,x+1/2,0 [0,u,0]
16	e	x,x,x [u,u,u]	x+1/2,x+1/2 [u,u,u]	x,x+1/2,x+1/2 [u,u,u]	x+3/4,x+1/4,x+1/4 [u,u,u]
12	d	5/8,0,1/4 [0,0,0]	7/8,0,3/4 [0,0,0]	1/4,5/8,0 [0,0,0]	3/4,7/8,0 [0,0,0]
12	c	1/8,0,1/4 [0,0,0]	3/8,0,3/4 [0,0,0]	1/4,1/8,0 [0,0,0]	3/4,3/8,0 [0,0,0]
8	b	7/8,7/8,7/8 [0,0,0]	5/8,1/8,3/8 [0,0,0]	1/8,3/8,5/8 [0,0,0]	3/8,5/8,1/8 [0,0,0]
8	a	1/8,1/8,1/8 [0,0,0]	3/8,7/8,5/8 [0,0,0]	7/8,5/8,3/8 [0,0,0]	5/8,3/8,7/8 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4m'm'

\[a^* = (a - b)/2 \quad b^* = (a + b)/2 \]

Origin at 1/4,0,z

Along [1,1,1] p3m'1

\[a^* = (2a - b - c)/3 \quad b^* = (-a + 2b - c)/3 \quad c^* = c/2 \]

Origin at x,x,x

Along [1,1,0] p2m'm'

\[a^* = -a + b/2 \quad b^* = c/2 \]

Origin at x,x+1/4,1/8

214.1.1567 - 3 - 3528
Origin on $31^1[111]$ at midpoint of three non-intersecting pairs of parallel screw axes $4,1^1$ and $4,1^1$ and of three non-intersection pairs of parallel 2 axes.

Asymmetric unit

$$-3/8 < x < 1/8; \quad -1/8 \leq y \leq 1/8; \quad 1/8 \leq z \leq 3/8; \quad \max(x,y,y - x - 1/8) \leq z \leq y+1/4$$

Vertices

$$1/8,1/8,1/8 \quad 1/8,1/8,3/8 \quad 1/8,-1/8,1/8 \quad -1/8,1/8,1/8 \quad -1/8,-1/8,-1/8 \quad -3/8,1/8,3/8 \quad -3/8,-1/8,1/8$$

Symmetry Operations

For $(0,0,0) +$ set

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
<th>Matrix</th>
<th>Translation</th>
<th>Identity</th>
<th>$(1/2,0,0)$</th>
<th>$(1/2,1,2,0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1</td>
<td></td>
<td></td>
<td>(1)</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
</tr>
<tr>
<td>(2)</td>
<td>$2(0,0,1/2)$</td>
<td>$1/4,0,z$</td>
<td>(2)</td>
<td>$1/2,0,1/2$</td>
<td>$0,1/2,0$</td>
<td>$1/2,1/2,0$</td>
</tr>
<tr>
<td>(3)</td>
<td>$2(0,1/2,0)$</td>
<td>$0,y,1/4$</td>
<td>(3)</td>
<td>$0,1/2,1/2$</td>
<td>$1/2,1/2,0$</td>
<td>$0,1/2,0$</td>
</tr>
<tr>
<td>(4)</td>
<td>$2(1/2,0,0)$</td>
<td>$x,1/4,0$</td>
<td>(4)</td>
<td>$1/2,1/2,0$</td>
<td>$0,1/2,0$</td>
<td>$1/2,0,0$</td>
</tr>
<tr>
<td>(5)</td>
<td>$3^+ x,x,x$</td>
<td></td>
<td></td>
<td>(5)</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
</tr>
<tr>
<td>(6)</td>
<td>$3^+ x+1/2,x,x$</td>
<td></td>
<td></td>
<td>(6)</td>
<td>$1/2,1/2,0$</td>
<td>$1/2,1/2,0$</td>
</tr>
<tr>
<td>(7)</td>
<td>$3^+ x+1/2,x-1/2,x$</td>
<td></td>
<td></td>
<td>(7)</td>
<td>$0,1/2,1/2$</td>
<td>$0,1/2,0$</td>
</tr>
<tr>
<td>(8)</td>
<td>$3^- x,x+1/2,x$</td>
<td></td>
<td></td>
<td>(8)</td>
<td>$1/2,0,1/2$</td>
<td>$1/2,0,1/2$</td>
</tr>
<tr>
<td>(9)</td>
<td>$3^- x,x,x$</td>
<td></td>
<td></td>
<td>(9)</td>
<td>$0,0,0$</td>
<td>$0,0,0$</td>
</tr>
<tr>
<td>(10)</td>
<td>$3^- x-1/3,1/3,1/3$</td>
<td></td>
<td></td>
<td>(10)</td>
<td>$0,1/2,1/2$</td>
<td>$0,1/2,1/2$</td>
</tr>
<tr>
<td>(11)</td>
<td>$3^- x+1/3,1/3,-1/3$</td>
<td></td>
<td></td>
<td>(11)</td>
<td>$1/2,1/2,0$</td>
<td>$1/2,1/2,0$</td>
</tr>
<tr>
<td>(12)</td>
<td>$3^- x-1/6,x+1/3,x$</td>
<td></td>
<td></td>
<td>(12)</td>
<td>$1/2,0,1/2$</td>
<td>$1/2,0,1/2$</td>
</tr>
</tbody>
</table>

Diagram

214.2.1568 - 1 - 3529
Continued 214.2.1568 I4, 321'

For (1/2,1/2,1/2) + set

(1) t' (1/2,1/2,1/2) (2) 2' 0,1/4, z (3) 2' 1/4, y, 0 (4) 2' x, 0,1/4
(1 1/2,1/2,1/2) (2') 0,1/2, 0' (2') 1/2,0,0' (2') 0,0,1/2'

(5) 3' - (1/2,1/2,1/2) x,x,x (6) 3' (1/6,-1/6,1/6) x-1/6,x+1/3,x (7) 3' - (1/6,1/6,1/6) x+1/6,x+1/6,x
(3xyz 1/2,1/2,1/2)' (3xyz -1/2,0,1/2)' (3xyz 1/2,0,0)'

(9) 3' (1/2,1/2,1/2) x,x,x (10) 3' (1/6,-1/6,-1/6) x+1/6,x+1/6,x (11) 3' (1/6,1/6,-1/6)
(3xyz -1/2,1/2,1/2)' (3xyz 0,1/2,0)' (3xyz 1/2,0,0)'

(13) 2' (1/2,1/2,0) x,x+1/4,3/8 (14) 2' x,x+1/4,1/8 (15) 4' (0,0,1/4) 3/4,0,z
(2xy 1/4,3/4,3/4)' (2xy 1/4,1/4,1/4)' (4z -1 3/4,3/4,1/4)'

(17) 4' (1/4,0,0) x,3,4,0 (18) 2' (0,1/2,1/2) 3/8,y-1/4,y (19) 2' (0,1/4,0)
(4z -1 1/4,3,4,3/4)' (2yz 3/4,1/4,1/4)' (4z 1/4,1/4,1/4)'

(21) 4' (0,3/4,0) 1/2,y,1/4 (22) 2' (1/2,0,1/2) x+1/4,3/8,x (23) 4' (0,1/4,0) 0,y,3/4
(4y 1/4,3,4,3/4)' (2xy 3/4,3,4,3/4)'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

 (0,0,0) + (1/2,1/2,1/2) +
 (0,0,0)' + (1/2,1/2,1/2)' +

48 i 11'

(1) x,y,z [0,0,0] (2) x+1/2,y,z+1/2 [0,0,0] (3) x,y+1/2,z+1/2 [0,0,0] (4) x+1/2,y+1/2,z [0,0,0]
(5) z,x,y [0,0,0] (6) z+1/2,x+1/2,y [0,0,0] (7) z+1/2,x,y+1/2 [0,0,0] (8) z,x+1/2,y+1/2 [0,0,0]
(9) y,z,x [0,0,0] (10) y,z+1/2,x+1/2 [0,0,0] (11) y+1/2,z+1/2,x [0,0,0] (12) y+1/2,z,x+1/2 [0,0,0]
(13) y+3/4,x+1/4,z+1/4 [0,0,0] (14) y+3/4,x+3/4,z+3/4 [0,0,0] (15) y+1/4,x+1/4,z+3/4 [0,0,0] (16) y+1/4,x+3/4,z+1/4 [0,0,0]
(17) x+3/4,z+1/4,y+1/4 [0,0,0] (18) x+1/4,z+3/4,y+1/4 [0,0,0] (19) x+3/4,z+3/4,y+3/4 [0,0,0] (20) x+1/4,z+1/4,y+3/4 [0,0,0]
(21) z+3/4,y+1/4,x+1/4 [0,0,0] (22) z+1/4,y+1/4,x+3/4 [0,0,0] (23) z+1/4,y+3/4,x+1/4 [0,0,0] (24) z+3/4,y+3/4,x+3/4 [0,0,0]

24 h .21' 1/8,y,x+1/4 [0,0,0] 3/8,y,x+3/4 [0,0,0] 7/8,y+1/2,y+1/4 [0,0,0] 5/8,y+1/2,y+3/4 [0,0,0]
 y+1/4,1/8,y [0,0,0] y+3/4,3/8,y [0,0,0] y+1/4,7/8,y+1/2 [0,0,0] y+3/4,5/8,y+1/2 [0,0,0]
 y,y+1/4,1/8 [0,0,0] y,y+3/4,3/8 [0,0,0] y+1/2,y+1/4,7/8 [0,0,0] y+1/2,y+3/4,5/8 [0,0,0]
24 g .21' 1/8, y + 1/4 [0, 0, 0] 3/8, y, y + 3/4 [0, 0, 0] 7/8, y + 1/2, y + 1/4 [0, 0, 0] 5/8, y + 1/2, y + 1/4 [0, 0, 0] y + 1/4, 1/8, y [0, 0, 0] y + 3/4, 3/8, y [0, 0, 0] y + 1/4, 1/8, y [0, 0, 0] y + 3/4, 3/8, y [0, 0, 0] y + 1/2, y + 1/4, 1/8 [0, 0, 0] y + 3/4, 3/8, y + 1/2 [0, 0, 0] 24 f 2..1' x, 0, 1/4 [0, 0, 0] x + 1/2, 0, 3/4 [0, 0, 0] 1/4, x, 0 [0, 0, 0] 3/4, x + 1/2, 0 [0, 0, 0] 0, 1/4, x [0, 0, 0] 0, 3/4, x + 1/2 [0, 0, 0] 3/4, x + 1/4, 0 [0, 0, 0] 3/4, x + 3/4, 1/2 [0, 0, 0] x + 3/4, 1/2, 1/4 [0, 0, 0] x + 1/4, 0, 1/4 [0, 0, 0] 0, 1/4, x + 1/4 [0, 0, 0] 1/2, 1/4, x + 3/4 [0, 0, 0] 16 e .3.1' x, x, x [0, 0, 0] x + 1/2, x, x + 1/2 [0, 0, 0] x + 3/4, x + 1/4, x + 1/4 [0, 0, 0] x + 3/4, x + 3/4, x + 3/4 [0, 0, 0] x + 1/4, x + 1/4, x + 3/4 [0, 0, 0] x + 1/4, x + 3/4, x + 1/4 [0, 0, 0] 12 d 2.221' 5/8, 0, 1/4 [0, 0, 0] 7/8, 0, 3/4 [0, 0, 0] 1/4, 5/8, 0 [0, 0, 0] 3/4, 7/8, 0 [0, 0, 0] 0, 1/4, 5/8 [0, 0, 0] 0, 3/4, 7/8 [0, 0, 0] 12 c 2.221' 1/8, 0, 1/4 [0, 0, 0] 3/8, 0, 3/4 [0, 0, 0] 1/4, 1/8, 0 [0, 0, 0] 3/4, 3/8, 0 [0, 0, 0] 0, 1/4, 1/8 [0, 0, 0] 0, 3/4, 3/8 [0, 0, 0] 8 b .321' 7/8, 7/8, 7/8 [0, 0, 0] 5/8, 1/8, 3/8 [0, 0, 0] 1/8, 3/8, 5/8 [0, 0, 0] 3/8, 5/8, 1/8 [0, 0, 0] 8 a .321' 1/8, 1/8, 1/8 [0, 0, 0] 3/8, 7/8, 5/8 [0, 0, 0] 7/8, 5/8, 3/8 [0, 0, 0] 5/8, 3/8, 7/8 [0, 0, 0] 214.2.1568

Symmetry of Special Projections

Along [0, 0, 1] p4mm1'
\[\mathbf{a}^* = (\mathbf{a} - \mathbf{b})/2 \quad \mathbf{b}^* = (\mathbf{a} + \mathbf{b})/2 \]
Origin at 1/4, 0, z

Along [1, 1, 1] p3m11'
\[\mathbf{a}^* = (2\mathbf{a} - \mathbf{b} - \mathbf{c})/3 \quad \mathbf{b}^* = (-\mathbf{a} + 2\mathbf{b} - \mathbf{c})/3 \]
Origin at x, x, x

Along [1, 1, 0] p2mm1'
\[\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c}/2 \]
Origin at x, x + 1/4, 1/8
Origin on [111] at midpoint of three non-intersecting pairs of parallel screw axes $4_1'$ and $4_3'$ and of three non-intersection pairs of parallel 2 axes.

Asymmetric unit

$$\begin{align*}
-3/8 \leq x &\leq 1/8; \\
-1/8 \leq y &\leq 1/8; \\
1/8 \leq z &\leq 3/8; \\
\max(x,y,y-x-1/8) &\leq z \leq y+1/4
\end{align*}$$

Vertices

$$\begin{align*}
1/8,1/8,1/8 & \\
1/8,1/8,3/8 & \\
1/8,-1/8,1/8 & \\
-1/8,1/8,1/8 & \\
-1/8,-1/8,-1/8 & \\
-3/8,1/8,3/8 & \\
-3/8,-1/8,1/8 &
\end{align*}$$

Symmetry Operations

For $(0,0,0)$ + set

$$\begin{align*}
(1) & \quad 1 \\
(1) & \quad 0,0,0 \\
(2) & \quad 2 \quad (0,0,1/2) \\
(2) & \quad 1/4,0,z \\
(2_1) & \quad 1/2,0,1/2 \\
(2_2) & \quad 0,1/2,1/2 \\
(3) & \quad 2 \quad (0,1/2,0) \\
(3) & \quad 0,y,1/4 \\
(3_1) & \quad 0,1/2,1/2 \\
(3_2) & \quad 1/2,1/2,0 \\
(4) & \quad 2 \quad (1/2,0,0) \\
(4) & \quad x,1/4,0 \\
(4_1) & \quad 1/2,1/2,0 \\
(5) & \quad 3^+ \quad x,x,x \\
(5) & \quad (3_{xyz} | 0,0,0) \\
(6) & \quad 3^+ \quad x+1/2,x,x \\
(6) & \quad (3_{xyz}^{-1} | 1/2,1/2,0) \\
(7) & \quad 3^+ \quad x+1/2,x-1/2,x \\
(7) & \quad (3_{xyz}^{-1} | 1/2,0,1/2) \\
(8) & \quad 3^+ \quad x,x+1/2,x \\
(8) & \quad (3_{xyz}^{-1} | 0,1/2,1/2) \\
(9) & \quad 3^- \quad x,x,x \\
(9) & \quad (3_{xyz}^{-1} | 0,0,0) \\
(10) & \quad 3^- \quad (-1/3,1/3,1/3) \\
(10) & \quad x+1/6,x+1/6,x \\
(10) & \quad (3_{xyz} | 0,1/2,1/2) \\
(11) & \quad 3^- \quad (1/3,1/3,-1/3) \\
(11) & \quad x+1/3,x+1/3,x \\
(11) & \quad (3_{xyz} | 1/2,1/2,0) \\
(12) & \quad 3^- \quad (1/3,-1/3,1/3) \\
(12) & \quad x-1/6,x+1/3,x \\
(12) & \quad (3_{xyz}^{-1} | 1/2,0,1/2) \\
\end{align*}$$
(13) 2' (1/2,1/2,0) x,x-1/4,1/8
(2y) 3/4,1/4,1/4)

(14) 2' x,x+3/4,3/8
(2y) 3/4,3/4,3/4)

(15) 4' * (0,0,3/4) 1/4,0,z
(4y) 1/4,1/4,3/4)

(16) 4' * (0,0,1/4) -1/4,1/2,z
(4y) 1/4,3/4,1/4)

(17) 4' * (3/4,0,0) x,1/4,0
(4x) 1/4,1/4,1/4)

(18) 4' (0,1/2,1/2) 1/8,y+1/4,y
(2yz) 1/4,3/4,3/4)

(19) 2' 3/8,y+3/4,y
(2yz) 3/4,3/4,3/4)

(20) 4' * (1/4,0,0) x,-1/4,1/2
(4x) 1/4,1/4,3/4)

(21) 4' * (0,1/4,0) 1/2,y,-1/4
(4y) 3/4,1/4,1/4)

(22) 2' (1/2,0,1/2) x-1/4,1/8,x
(2yz) 1/4,1/4,3/4)

(23) 4' * (0,3/4,0) 0,y,1/4
(4y) 1/4,3/4,3/4)

(24) 2' x+3/4,3/8,x
(2yz) 3/4,3/4,3/4)

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(2) 2 0,1/4,z
(2y) 1/2,0,0)

(3) 2 1/4,y,0
(4) 2 x,0,1/4

(5) 3' (1/2,1/2,0) x,x,x
(6) 3' (1/6,-1/6,1/6)
(7) 3' (-1/6,1/6,1/6)

(8) 3' (1/6,1/6,-1/6)

(9) 3' (1/2,1/2,1/2) x,x,x
(10) 3' (1/6,-1/6,-1/6)

(11) 3' (-1/6,-1/6,1/6)

(12) 3' (-1/6,1/6,-1/6)

(13) 2' (1/2,1/2,0) x,x+1/4,3/8
(2y) 1/4,3/4,3/4)

(14) 2' x,x+1/4,1/8
(2y) 1/4,1/4,1/4)

(15) 4' * (0,0,1/4) 3/4,0,z
(4y) 1/4,3/4,3/4)

(16) 4' * (0,0,3/4) 1/4,1/2,z

(17) 4' * (1/4,0,0) x,3/4,0
(4x) 1/4,3/4,3/4)

(18) 2' (0,1/2,1/2) 3/8,y-1/4,y
(2yz) 3/4,1/4,3/4)

(19) 2' 1/8,y+1/4,y
(2yz) 1/4,1/4,1/4)

(20) 4' * (3/4,0,0) x,1/4,1/2

(21) 4' * (0,3/4,0) 1/2,y,1/4
(4y) 1/4,3/4,3/4)

(22) 2' (1/2,0,1/2) x+1/4,3/8,x
(2yz) 3/4,3/4,3/4)

(23) 4' * (0,1/4,0) 0,y,3/4
(4y) 3/4,1/4,3/4)

(24) 2' x+1/4,1/8,x
(2yz) 1/4,1/4,1/4)

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13).

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Symmetry.</td>
<td>(0,0,0) + (1/2,1,2/1,2) +</td>
</tr>
<tr>
<td>Multiplicity, Wyckoff letter,</td>
<td></td>
</tr>
<tr>
<td>Generators selected</td>
<td></td>
</tr>
</tbody>
</table>

48 i 1

(1) x,y,z [u,v,w]
(2) x+1/2,y,z+1/2 [u,v,w]
(3) x,y+1/2,z+1/2 [u,v,w]
(4) x+1/2,y+1/2,z [u,v,w]

(5) z,x,y [w,u,v]
(6) z+1/2,x+1/2,y [w,u,v]
(7) z+1/2,x,y+1/2 [w,u,v]
(8) z,x+1/2,y+1/2 [w,u,v]

(9) y,z,x [v,w,u]
(10) y,z+1/2,x+1/2 [v,w,u]
(11) y+1/2,z+1/2,x [v,w,u]
(12) y+1/2,z,x+1/2 [v,w,u]

(13) y+3/4,x+1/4,z+1/4 [v,u,w]
(14) y+3/4,x+3/4,z+3/4 [v,u,w]

(15) y+1/4,x+1/4,z+3/4 [v,u,w]

(16) y+1/4,x+3/4,z+1/4 [v,u,w]

(17) x+3/4,z+1/4,y+1/4 [u,w,v]
(18) x+3/4,z+3/4,y+1/4 [u,w,v]
(19) x+3/4,z+3/4,y+3/4 [u,w,v]

(20) x+1/4,z+1/4,y+3/4 [u,w,v]

(21) z+3/4,y+1/4,x+1/4 [w,v,u]
(22) z+1/4,y+1/4,x+3/4 [w,v,u]
(23) z+1/4,y+3/4,x+1/4 [w,v,u]
(24) z+3/4,y+3/4,x+3/4 [w,v,u]
Symmetry of Special Projections

Along [0,0,1] p4mm'
\(a^* = (a - b)/2 \)
\(b^* = (a + b)/2 \)
Origin at 1/4,0,z

Along [1,1,1] p3m1
\(a^* = (2a - b - c)/3 \)
\(b^* = (-a + 2b - c)/3 \)
Origin at x,x,x

Along [1,1,0] p2'2mm'
\(a^* = c/2 \)
\(b^* = -(-a + b)/2 \)
Origin at x,x,x+1/4,1/8
Origin on 3 [111] at midpoint of three non-intersecting pairs of parallel screw axes 41 and 43 and of three non-intersection pairs of parallel 2 axes.

Asymmetric unit
-3/8 ≤ x ≤ 1/8; -1/8 ≤ y ≤ 1/8; 1/8 ≤ z ≤ 3/8; max(x,y,y - x - 1/8) ≤ z ≤ y+1/4

Vertices

Symmetry Operations

For (0,0,0) + set

1
(1) 1
(1) 0,0,0

(2) 2 (0,0,1/2) 1/4,0,z
(2) 1/2,0,1/2

(3) 2 (0,1/2,0) 0,y,1/4
(3) 0,1/2,1/2

(4) 2 (1/2,0,0) x,1/4,0
(4) 1/2,1/2,0

(5) 3+x,x,x
(3xyz 0,0,0)

(6) 3+ x+1/2,x,x
(3xyz -1 1/2,1/2,0)

(7) 3+ x+1/2, x-1/2,x
(3xyz -1 1/2,0,1/2)

(8) 3+ x,x+1/2,x
(3xyz -1 0,1/2,1/2)

(9) 3- x,x,x
(3xyz -1 0,0,0)

(10) 3- (-1/3,1/3,1/3)
(3xyz -1 0,1/2,1/2)

(11) 3- (1/3,1/3,-1/3)
(3xyz -1 1/2,1/2,0)

(12) 3- (1/3,-1/3,1/3)
(3xyz -1 1/2,0,1/2)
Continued

For $(1/2,1/2,1/2)' +$ set

(1) $t'(1/2,1/2,1/2)$
(2) $2' 0,1/4,z$
(3) $2' 1/4,y,0$
(4) $2' x,0,1/4$

(5) $3' ' (1/2,1/2,1/2) x,x,x$
(6) $3' ' (1/6,-1/6,1/6)$
(7) $3' ' (-1/6,1/6,1/6)$
(8) $3' ' (1/6,1/6,-1/6)$

(9) $3' ' (1/2,1/2,1/2) x,x,x$
(10) $3' ' (1/6,-1/6,-1/6)$
(11) $3' ' (-1/6,-1/6,1/6)$
(12) $3' ' (-1/6,1/6,-1/6)$

(13) $2' (1/2,1/2,0) x,x+1/4,3/8$
(14) $2' x,x+1/4,1/8$
(15) $4' ' (0,0,1/4) 3/4,0,z$
(16) $4' ' (0,0,3/4) 1/4,1/2,z$

(17) $4' ' (1/4,0,0) x,3/4,0$
(18) $2' (0,1/2,1/2) 3/8,y-1/4,y$
(19) $2' 1/8,y+1/4,y$
(20) $4' ' (3/4,0,0) x,1/4,1/2$

(21) $4' ' (0,3/4,0) 1/2,y,1/4$
(22) $2' (1/2,0,1/2) x+1/4,3/8,x$
(23) $4' ' (0,1/4,0) 0,y,3/4$
(24) $2' x+1/4,1/8,x$

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[
\begin{array}{ccc}
& (0,0,0) + & (1/2,1/2,1/2)' + \\
48 & i & 1 \\
(1) x,y,z [u,v,w] & (2) x+1/2,\bar{y},z+1/2 [u,\bar{v},\bar{w}] & (3) x,y+1/2,z+1/2 [u,v,w] \\
(5) z,x,y [w,u,v] & (6) z+1/2,x+1/2,\bar{y} [w,\bar{u},\bar{v}] & (7) \bar{z}+1/2,x,y+1/2 [\bar{w},u,v] \\
(9) y,z,x [v,w,u] & (10) \bar{y},z+1/2,x+1/2 [\bar{v},w,\bar{u}] & (11) y+1/2,\bar{z}+1/2,x [v,w,u] \\
(13) y+3/4,x+1/4,\bar{z}+1/4 [v,u,w] & (14) \bar{y}+3/4,\bar{x}+3/4,z+3/4 [\bar{v},\bar{u},\bar{w}] & (15) y+1/4,x+1/4,z+3/4 [v,u,w] \\
(17) x+3/4,z+1/4,y+1/4 [u,w,v] & (18) x+1/4,z+3/4,y+1/4 [u,w,v] & (19) x+3/4,z+3/4,y+3/4 [u,w,v] \\
(21) z+3/4,y+1/4,x+1/4 [w,v,u] & (22) z+1/4,y+1/4,x+3/4 [w,v,u] & (23) \bar{z}+1/4,y+3/4,x+1/4 [\bar{w},v,u] \\
\end{array}
\]
Continued

24 f 2'.2' x, 0, 1/4 [u, 0, u] x+1/2, 0, 3/4 [u, 0, u] 1/4, x, 0 [0, u, 0] 3/4, x+1/2, 0 [0, u, 0] 0, 1/4, x [0, 0, u] 3/4, x+1/2, 0 [0, u, 0] 3/4, x+1/2, 1/4 [0, 0, u] 0, 1/4, x+1/4, 0 [0, u, 0] 1/2, 1/4, x+3/4 [0, u, 0] x+1/2, x, 1/4 [u, u, u] x+3/4, x+1/2, x [u, u, u] x+3/4, x+1/4, x+1/4 [u, u, u] x+1/4, x+1/2, x+3/4 [u, u, u]

16 e .3'. x, x, x [u, u, u] x+1/2, x, 1/2 [u, u, u] x+1/2, x+1/2, x [u, u, u] x+3/4, x+1/4, x+3/4 [u, u, u] x+1/4, x+1/4, x+3/4 [u, u, u] x+1/4, x+3/4, x+3/4 [u, u, u]

12 d 2'.22' 5/8, 0, 1/4 [0, v, v] 7/8, 0, 3/4 [0, v, v] 1/4, 5/8, 0 [v, 0, v] 3/4, 7/8, 0 [v, 0, v] 0, 1/4, 5/8 [v, v, 0] 0, 3/4, 7/8 [v, v, 0]

12 c 2'.22' 1/8, 0, 1/4 [0, v, v] 3/8, 0, 3/4 [0, v, v] 1/4, 1/8, 0 [v, v, 0] 3/4, 3/8, 0 [v, 0, v] 0, 1/4, 1/8 [v, v, 0] 0, 3/4, 3/8 [v, v, 0]

8 b .32' 7/8, 7/8, 7/8 [0, 0, 0] 5/8, 1/8, 3/8 [0, 0, 0] 1/8, 3/8, 5/8 [0, 0, 0] 3/8, 5/8, 1/8 [0, 0, 0]

Symmetry of Special Projections

Along [0, 0, 1] p_4' 4m'm'

a* = (a - b)/2

b* = (a + b)/2

Origin at 1/4, 0, z

Along [1, 1, 1] p3m11'

a* = (2a - b - c)/3

b* = (-a + 2b - c)/3

Origin at x, x, x

Along [1, 1, 0] p_2'' 2m'm'

a* = c/2

b* = -(a + b)/2

Origin at x, x+1/4, 1/8

Asymmetric unit
-3/8 ≤ x ≤ 1/8; -1/8 ≤ y ≤ 1/8; 1/8 ≤ z ≤ 3/8; max(x,y,y - x - 1/8) ≤ z ≤ y+1/4

Vertices

Symmetry Operations
For (0,0,0) + set

(1) 1
(2) 2 (0,0,1/2) 1/4,0,z
(3) 2 (0,1/2,0) 0,y,1/4
(4) 2 (1/2,0,0) x,1/4,0
(2z) 1/2,0,1/2
(2y) 0,1/2,1/2
(2x) 1/2,1/2,0

(5) 3^+ x,x,x
(6) 3^- x+1/2,x,x
(3xyz^-1) 1/2,1/2,0

(9) 3^- x,x,x
(10) 3^- (-1/3,1/3,1/3) x+1/6,x +1/6,x
(3xyz^-1) 0,1/2,1/2
(3x) 1/2,1/2,0

(11) 3^- (1/3,1/3,-1/3) x+1/3,x +1/6,x
(3xyz^-1) 1/2,1/2,0
(3x) 1/2,0,1/2
Continued

(13) $2' (1/2, 1/2, 0)$ $x, x'-1/4, 1/8$

(14) $2' x, x+3/4, 3/8$

(15) $4' (0, 0, 3/4) 1/4, 0, z$

(16) $4' (0, 0, 1/4) -1/4, 1/2, z$

(17) $4' (3/4, 0, 0) x, 1/4, 0$

(18) $2' (0, 1/2, 1/2) 1/8, y+1/4, y$

(19) $2' 3/8, y+3/4, y$

(20) $4' (1/4, 0, 0) x, -1/4, 1/2$

(21) $4' (0, 1/4, 0) 1/2, y, -1/4$

For $(1/2, 1/2, 1/2') +$ set

(1) $t' (1/2, 1/2, 1/2)$

(2) $2' 0, 1/4, z$

(3) $2' 1/4, y, 0$

(4) $2' x, 0, 1/4$

(5) $3' (1/2, 1/2, 1/2) x, x, x$

(6) $3' (1/6, -1/6, 1/6)$

(7) $3' (-1/6, 1/6, 1/6)$

(8) $3' (1/6, 1/6, -1/6)$

(3) x, y, z

(2) $1/4, 1/4, 1/4$

(4) $1/4, 3/4, 3/4$

(17) $4' (1/4, 0, 0) x, 3/4, 0$

(18) $2' (0, 1/2, 1/2) 3/8, y-1/4, y$

(19) $2' 1/8, y-1/4, y$

(20) $4' (3/4, 0, 0) x, 1/4, 1/2$

(21) $4' (0, 3/4, 0) 1/2, y, 1/4$

(22) $2' (1/2, 0, 1/2) x+1/4, 3/8, x$

(23) $4' (0, 1/4, 0) 0, y, 3/4$

(24) $2' x+1/4, 1/8, x$

Generators selected

(1); $t(1, 0, 0); t(0, 1, 0); t'(1/2, 1/2, 1/2); (2); (3); (5); (13).

Positions

Multiplicity: 48

Wyckoff letter: i

Site Symmetry: 1

Positions selected

$\mathbf{(0,0,0)} + (1/2, 1/2, 1/2') +$

Coordinates

(1) $x, y, z [u, v, w]$

(2) $\bar{x} + 1/2, \bar{y}, z+1/2 [u, v, w]$

(3) $x, y+1/2, z+1/2 [u, v, w]$

(4) $x+1/2, y+1/2, z [u, v, w]$

(5) $z, x, y [w, u, v]$

(6) $z+1/2, x+1/2, \bar{y} [w, u, v]$

(7) $z+1/2, x, y+1/2 [w, u, v]$

(8) $z, x+1/2, y+1/2 [w, u, v]$

(9) $y, z, x [v, w, u]$

(10) $\bar{y}, z+1/2, x+1/2 [v, w, u]$

(11) $y+1/2, z+1/2, x [v, w, u]$

(12) $\bar{y}+1/2, z, x+1/2 [v, w, u]$

(13) $y+3/4, x+1/4, z+1/4 [v, w, u]$

(14) $\bar{y}+3/4, x+3/4, z+3/4 [v, w, u]$

(15) $y+1/4, x+1/4, z+3/4 [v, w, u]$

(16) $\bar{y}+1/4, x+3/4, z+1/4 [v, w, u]$

(17) $x+3/4, z+1/4, y+1/4 [u, w, v]$

(18) $x+1/4, z+3/4, y+1/4 [u, w, v]$

(19) $x+3/4, z+3/4, y+3/4 [u, w, v]$

(20) $x+1/4, z+1/4, y+3/4 [u, w, v]$

(21) $z+3/4, y+1/4, x+1/4 [w, v, u]$

(22) $z+1/4, y+3/4, x+3/4 [w, v, u]$

(23) $\bar{z}+1/4, y+3/4, x+1/4 [w, v, u]$

(24) $\bar{z}+3/4, y+3/4, x+3/4 [w, v, u]$

214.5.1571 - 2 - 3540
Symmetry of Special Projections

Along [0,0,1] \(p_{0\nu} 4'mm' \)
\(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \)
Origin at 1/4,0,z

Along [1,1,1] \(p3m11' \)
\(a^* = (2a - b - c)/3 \) \(b^* = (-a + 2b - c)/3 \)
Origin at x,x,x

Along [1,1,0] \(p_{2\nu} 2m'm' \)
\(a^* = (-a + b)/2 \) \(b^* = c/2 \)
Origin at x,x+1/4,5/8
Origin at $\overline{43m}$

Asymmetric unit

\begin{align*}
0 \leq x \leq 1; & \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq \min(x, 1-x); \quad z \leq y \\
\text{Vertices} & \quad 0,0,0 \quad 1,0,0 \quad 1/2,1/2,0 \quad 1/2,1/2,1/2
\end{align*}

Symmetry Operations

\begin{align*}
(1) & \quad 1 \\
& \quad (1,0,0) \\
(5) & \quad 3^+ \ x,x,x \\
& \quad (3_{xyz}^{1},0,0,0) \\
(9) & \quad 3^- \ x,x,x \\
& \quad (3_{xyz}^{1},0,0,0) \\
(2) & \quad 2 \ 0,0,z \quad (2z,0,0,0) \\
(6) & \quad 3^+ \ x,x,x \\
& \quad (3_{xyz}^{1},0,0,0) \\
(10) & \quad 3^+ \ x,x,x \\
& \quad (3_{xyz}^{1},0,0,0) \\
(3) & \quad 2 \ 0,y,0 \quad (2y,0,0,0) \\
(7) & \quad 3^+ \ x,x,x \\
& \quad (3_{xyz}^{1},0,0,0) \\
(11) & \quad 3^- \ x,x,x \quad (3_{xyz}^{1},0,0,0) \\
(4) & \quad 2 \ x,0,0 \quad (2z,0,0,0) \\
(8) & \quad 3^+ \ x,x,x \\
& \quad (3_{xyz}^{1},0,0,0) \\
(12) & \quad 3^- \ x,x,x \quad (3_{xyz}^{1},0,0,0)
\end{align*}

\textit{215.1.1572 - 1 - 3542}
Continued 215.1.1572 P4 3m

(13) m x,x,z \\
\text{(m}_{xy}\big|0,0,0) \\
(14) m x,x,z \\
\text{(m}_{xy}\big|0,0,0) \\
(15) \text{4}^{+} 0,0,z; 0,0,0 \\
\text{(4}_{z}\big|0,0,0) \\
(16) \text{4}^{-} 0,0,z; 0,0,0 \\
\text{(4}_{z}^{-}\big|0,0,0) \\
(17) m x,y,y \\
\text{(m}_{yz}\big|0,0,0) \\
(18) \text{4}^{+} x,0,0; 0,0,0 \\
\text{(4}_{y}\big|0,0,0) \\
(19) \text{4}^{-} x,0,0; 0,0,0 \\
\text{(4}_{y}^{-}\big|0,0,0) \\
(20) m x,y,y \\
\text{(m}_{yz}\big|0,0,0) \\
(21) m x,y,x \\
\text{(m}_{xz}\big|0,0,0) \\
(22) \text{4}^{-} 0,y,0; 0,0,0 \\
\text{(4}_{x}^{-}\big|0,0,0) \\
(23) m x,y,x \\
\text{(m}_{xz}\big|0,0,0) \\
(24) \text{4}^{+} 0,y,0; 0,0,0 \\
\text{(4}_{y}\big|0,0,0) \\

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>24</th>
<th>j</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z ([u,v,w])</td>
<td>(2) \text{x},\text{y},z ([u,v,w])</td>
<td>(3) \text{x},\text{y},z ([u,v,w])</td>
</tr>
<tr>
<td>(5) z,x,y ([w,u,v])</td>
<td>(6) z,x,y ([w,u,v])</td>
<td>(7) \text{z},z,x ([w,u,v])</td>
</tr>
<tr>
<td>(9) y,z,x ([v,w,u])</td>
<td>(10) y,z,x ([v,w,u])</td>
<td>(11) \text{y},z,x ([v,w,u])</td>
</tr>
<tr>
<td>(13) x,z,y ([u,w,v])</td>
<td>(14) x,z,y ([u,w,v])</td>
<td>(15) \text{y},x,z ([v,u,w])</td>
</tr>
<tr>
<td>(17) x,z,y ([u,w,v])</td>
<td>(18) x,z,y ([u,w,v])</td>
<td>(19) \text{x},\text{y},z ([u,w,v])</td>
</tr>
<tr>
<td>(21) x,y,x ([w,v,u])</td>
<td>(22) \text{z},\text{y},\text{x} ([w,v,u])</td>
<td>(23) \text{z},\text{y},\text{x} ([w,v,u])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>i</th>
<th>.m</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,x,z ([u,u,0])</td>
<td>x,x,z ([u,u,0])</td>
<td>x,x,z ([u,u,0])</td>
</tr>
<tr>
<td>z,x,x ([0,u,0])</td>
<td>z,x,x ([0,u,0])</td>
<td>z,x,x ([0,u,0])</td>
</tr>
<tr>
<td>x,z,x ([u,0,0])</td>
<td>x,z,x ([u,0,0])</td>
<td>x,z,x ([u,0,0])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>h</th>
<th>2..</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,1/2,0 ([u,0,0])</td>
<td>x,1/2,0 ([u,0,0])</td>
<td>0,x,1/2 ([0,u,0])</td>
</tr>
<tr>
<td>1/2,0,x ([0,u,0])</td>
<td>1/2,0,x ([0,u,0])</td>
<td>1/2,x,0 ([0,u,0])</td>
</tr>
<tr>
<td>x,0,1/2 ([u,0,0])</td>
<td>x,0,1/2 ([u,0,0])</td>
<td>0,1/2,x ([0,u,0])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>g</th>
<th>2.mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,1/2,1/2 ([0,0,0])</td>
<td>x,1/2,1/2 ([0,0,0])</td>
<td>1/2,x,1/2 ([0,0,0])</td>
</tr>
<tr>
<td>1/2,1/2,0 ([0,0,0])</td>
<td>1/2,1/2,0 ([0,0,0])</td>
<td>1/2,1/2,x ([0,0,0])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>f</th>
<th>2.mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,0,0 ([0,0,0])</td>
<td>x,0,0 ([0,0,0])</td>
<td>0,x,0 ([0,0,0])</td>
</tr>
<tr>
<td>0,0,0 ([0,0,0])</td>
<td>0,0,0 ([0,0,0])</td>
<td>0,0,x ([0,0,0])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>e</th>
<th>.3m</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,x,x ([0,0,0])</td>
<td>x,x,x ([0,0,0])</td>
<td>x,x,x ([0,0,0])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>d</th>
<th>4.mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2,0,0 ([0,0,0])</td>
<td>1/2,0,0 ([0,0,0])</td>
<td>0,1/2,0 ([0,0,0])</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Projection</th>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p4m'</td>
<td>(a^* = a) (b^* = b) (c^* = \frac{1}{2},1/2,1/2) ({0,0,0}) (1/2,1/2,1/2) ({0,0,0})</td>
</tr>
<tr>
<td>Along [1,1,1]</td>
<td>p31m</td>
<td>(a^* = \frac{1}{2}(2a - b - c)) (b^* = \frac{1}{2}(-a + 2b - c))</td>
</tr>
<tr>
<td>Along [1,1,0]</td>
<td>p1m11'</td>
<td>(a^* = (a + b)/2) (b^* = c)</td>
</tr>
</tbody>
</table>

Origin at 0,0,z Origin at x,x,x Origin at x,x,0
Origin at \(\overline{4}3m1' \)

Asymmetric unit

\[
0 \leq x \leq 1; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq \min(x, 1-x); \quad z \leq y
\]

Vertices

\[
(0,0,0) \quad (1,0,0) \quad (1/2,1/2,0) \quad (1/2,1/2,1/2)
\]

Symmetry Operations

For 1 + set

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad (0,0,0) \\
(2) & \quad 2 \quad 0,0,z \\
(2) & \quad (2,0,0,0) \\
(3) & \quad 2 \quad 0,y,0 \\
(3) & \quad (2,0,0,0) \\
(4) & \quad 2 \quad x,0,0 \\
(4) & \quad (2,0,0,0) \\
(5) & \quad 3^+ \quad x,x,x \\
(5) & \quad (3_{xyz}|0,0,0) \\
(6) & \quad 3^+ \quad x,x,x \\
(6) & \quad (3_{xyz}^{-1}|0,0,0) \\
(7) & \quad 3^+ \quad x,x,x \\
(7) & \quad (3_{xyz}^{-1}|0,0,0) \\
(8) & \quad 3^+ \quad x,x,x \\
(8) & \quad (3_{xyz}^{-1}|0,0,0) \\
(9) & \quad 3^- \quad x,x,x \\
(9) & \quad (3_{xyz}^{-1}|0,0,0) \\
(10) & \quad 3^- \quad x,x,x \\
(10) & \quad (3_{xyz}|0,0,0) \\
(11) & \quad 3^- \quad x,x,x \\
(11) & \quad (3_{xyz}|0,0,0) \\
(12) & \quad 3^- \quad x,x,x \\
(12) & \quad (3_{xyz}|0,0,0)
\end{align*}
\]
Continued

<table>
<thead>
<tr>
<th>215.2.1573</th>
<th>P4 3m1'</th>
</tr>
</thead>
</table>

(13) m x,x,z
(m x y \(0,0,0\))

(14) m x,x,z
(m x y \(0,0,0\))

(15) m x,x,z
(m x y \(0,0,0\))

(16) m x,x,z
(m x y \(0,0,0\))

(17) m x,y,y
(m y z \(0,0,0\))

(18) m x,y,y
(m y z \(0,0,0\))

(19) m x,y,y
(m y z \(0,0,0\))

(20) m x,y,y
(m y z \(0,0,0\))

(21) m x,y,x
(m z x \(0,0,0\))

(22) m x,y,x
(m z x \(0,0,0\))

(23) m x,y,x
(m z x \(0,0,0\))

(24) m x,y,x
(m z x \(0,0,0\))

For 1' + set

(1) 1'
(1 | 0,0,0)

(2) 2' 0,0,z
(2 | 0,0,0)

(3) 2' 0,y,0
(2 | 0,0,0)

(4) 2' 0,x,0
(2 | 0,0,0)

(5) 3' x,x,x
(3 x y z \(0,0,0\))

(6) 3' x,x,x
(3 x y z \(0,0,0\))

(7) 3' x,x,x
(3 x y z \(0,0,0\))

(8) 3' x,x,x
(3 x y z \(0,0,0\))

(9) 3' x,x,x
(3 x y z \(0,0,0\))

(10) 3' x,x,x
(3 x y z \(0,0,0\))

(11) 3' x,x,x
(3 x y z \(0,0,0\))

(12) 3' x,x,x
(3 x y z \(0,0,0\))

(13) m' x,x,z
(m x y \(0,0,0\))

(14) m' x,x,z
(m x y \(0,0,0\))

(15) m' x,x,z
(m x y \(0,0,0\))

(16) m' x,x,z
(m x y \(0,0,0\))

(17) m' x,y,y
(m y z \(0,0,0\))

(18) m' x,y,y
(m y z \(0,0,0\))

(19) m' x,y,y
(m y z \(0,0,0\))

(20) m' x,y,y
(m y z \(0,0,0\))

(21) m' x,y,x
(m z x \(0,0,0\))

(22) m' x,y,x
(m z x \(0,0,0\))

(23) m' x,y,x
(m z x \(0,0,0\))

(24) m' x,y,x
(m z x \(0,0,0\))

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 j 11'</td>
<td></td>
</tr>
</tbody>
</table>

(1) x,y,z \([0,0,0]\)

(2) x,y,z \([0,0,0]\)

(3) x,y,z \([0,0,0]\)

(4) x,y,z \([0,0,0]\)

(5) z,x,y \([0,0,0]\)

(6) z,x,y \([0,0,0]\)

(7) z,x,y \([0,0,0]\)

(8) z,x,y \([0,0,0]\)

(9) y,z,x \([0,0,0]\)

(10) y,z,x \([0,0,0]\)

(11) y,z,x \([0,0,0]\)

(12) y,z,x \([0,0,0]\)

(13) y,x,z \([0,0,0]\)

(14) y,x,z \([0,0,0]\)

(15) y,x,z \([0,0,0]\)

(16) y,x,z \([0,0,0]\)

(17) x,z,y \([0,0,0]\)

(18) x,z,y \([0,0,0]\)

(19) x,z,y \([0,0,0]\)

(20) x,z,y \([0,0,0]\)

(21) z,y,x \([0,0,0]\)

(22) z,y,x \([0,0,0]\)

(23) z,y,x \([0,0,0]\)

(24) z,y,x \([0,0,0]\)

215.2.1573 - 2 - 3546
Symmetry of Special Projections

Along [0,0,1] \(p4mm1' \) \(a^* = a \quad b^* = b \) Origin at 0,0,z
Along [1,1,1] \(p31m1' \) \(a^* = (2a - b - c)/3 \quad b^* = (-a + 2b - c)/3 \) Origin at x,x,x
Along [1,1,0] \(p1m1' \) \(a^* = (-a + b)/2 \quad b^* = c \) Origin at x,x,0
Origin at $\overline{4}3m'$

Asymmetric unit:

\[
\begin{align*}
0 & \leq x \leq 1; \\
0 & \leq y \leq 1/2; \\
0 & \leq z \leq 1/2; \\
y & \leq \min(x, 1-x); \\
z & \leq y
\end{align*}
\]

Vertices:

\[
\begin{align*}
0,0,0 & \\
1,0,0 & \\
1/2,1/2,0 & \\
1/2,1/2,1/2
\end{align*}
\]

Symmetry Operations:

\[
\begin{align*}
(1) & \ 1 \\
(2) & \ 2 0,0,z \\
(3) & \ 2 0,y,0 \\
(4) & \ 2 x,0,0 \\
(5) & \ 3^+ x,x,x \\
(6) & \ 3^+ x,x,x \\
(7) & \ 3^+ x,x,x \\
(8) & \ 3^+ x,x,x \\
(9) & \ 3^- x,x,x \\
(10) & \ 3^- x,x,x \\
(11) & \ 3^- x,x,x \\
(12) & \ 3^- x,x,x \\
(3_{xyz}) & \ |0,0,0|
\end{align*}
\]
Continued 215.3.1574

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 j 1</td>
<td>1</td>
</tr>
<tr>
<td>12 i ..m’</td>
<td>2.. x,1/2,0 [0,u,0] 0,x,1/2 [0,u,0] 0,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td>12 h 2..</td>
<td>2.m’m’ x,0,0 [0,u,0] x,0,0 [0,u,0] 0,x,0 [0,u,0]</td>
</tr>
<tr>
<td>6 f 2.m’m’</td>
<td>x,0,0 [0,u,0] x,0,0 [0,u,0] 0,x,0 [0,u,0]</td>
</tr>
<tr>
<td>4 e .3m’</td>
<td>x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u]</td>
</tr>
<tr>
<td>3 d 4’.2.m’</td>
<td>1/2,0,0 [0,0,0] 0,1/2,0 [0,0,0] 0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>
Continued

\[\begin{array}{ccc}
3 & c & 4'2.m' \ 0,1/2,1/2 [0,0,0] \\
1 & b & 4'3m' \ 1/2,1/2,1/2 [0,0,0] \\
1 & a & 4'3m' \ 0,0,0 [0,0,0]
\end{array} \]

Symmetry of Special Projections

Along [0,0,1] \(p4m'm' \)

\[\begin{array}{ccc}
a^* &=& a \\
b^* &=& b
\end{array} \]

Origin at 0,0,z

Along [1,1,1] \(p31m' \)

\[\begin{array}{ccc}
a^* &=& (2a - b - c)/3 \\
b^* &=& (-a + 2b - c)/3
\end{array} \]

Origin at x,x,x

Along [1,1,0] \(p1m'1 \)

\[\begin{array}{ccc}
a^* &=& (-a + b)/2 \\
b^* &=& c
\end{array} \]

Origin at x,x,0
Origin at $\overline{4}3m$

Asymmetric unit $0 \leq x \leq 1$; $0 \leq y \leq 1/2$; $0 \leq z \leq 1/2$; $y \leq \min(x,1-x)$; $z \leq y$

Vertices $0,0,0$ $1,0,0$ $1/2,1/2,0$ $1/2,1/2,1/2$

Symmetry Operations

For $(0,0,0) +$ set

1. 1

2. 2 0,0,z

3. 2 0,$y,0$

4. 2 $x,0,0$

For $(1,0,0)' +$ set

1. t' (1,0,0)

2. $2'$ 1/2,0,z

3. $2'$ 1/2,$y,0$

4. $2'$ (1,0,0) $x,0,0$

Generators selected $(1); t'(1,0,0); t'(0,0,1); t'(0,1,0); (2); (3); (5); (13).
Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1,0,0)' +</td>
</tr>
</tbody>
</table>

48 j 1

(1) x,y,z [u,v,w] (2) x, y, z [u, v, w] (3) x, y, z [u, v, w] (4) x, y, z [u, v, w]
(5) z,x,y [w,u,v] (6) z, x, y [w, u, v] (7) z, x, y [w, u, v] (8) z, x, y [w, u, v]
(9) y,z,x [v,w,u] (10) y, z, x [v, w, u] (11) y, z, x [v, w, u] (12) y, z, x [v, w, u]
(13) y,x,z [v,u,w] (14) y, x, z [v, u, w] (15) y, x, z [v, u, w] (16) y, x, z [v, u, w]
(17) x,y,z [u,v,w] (18) x, y, z [u, v, w] (19) x, y, z [u, v, w] (20) x, y, z [u, v, w]
(21) z,y,x [w,u,v] (22) z, y, x [w, u, v] (23) z, y, x [w, u, v] (24) z, y, x [w, u, v]

24 i .m 24 i .m

x,x,z [u,u,0] x, x, z [u, u, 0] x, x, z [u, u, 0] x, x, z [u, u, 0]

z,x,x [0,u,u] z, x, x [0, u, u] z, x, x [0, u, u] z, x, x [0, u, u]

x,z,x [u,0,u] x, z, x [u, 0, u] x, z, x [u, 0, u] x, z, x [u, 0, u]

24 h 2'.. 24 h 2'..

x,1/2,0 [0,v,w] 0,x,1/2 [w,0,v] 0,x,1/2 [w,0,v] 0,x,1/2 [w,0,v]

1/2,0,x [v,w,0] 1/2,0,x [v, w, 0] 1/2,0,x [v, w, 0] 1/2,0,x [v, w, 0]

x,0,1/2 [0,w,v] 0,1/2,x [w, v, 0] 0,1/2,x [w, v, 0] 0,1/2,x [w, v, 0]

12 g 2.mm 12 g 2.mm

x,1/2,1/2 [0,0,0] x, 1/2,1/2 [0,0,0] 1/2,x,1/2 [0,0,0] 1/2,x,1/2 [0,0,0]

1/2,x,1/2 [0,0,0] 1/2,1/2,x [0,0,0] 1/2,1/2,x [0,0,0] 1/2,1/2,x [0,0,0]

12 f 2.mm 12 f 2.mm

x,0,0 [0,0,0] x, 0,0 [0,0,0] 0,x,0 [0,0,0] 0,x,0 [0,0,0]

0,x,0 [0,0,0] 0,0,x [0,0,0] 0,0,x [0,0,0] 0,0,x [0,0,0]

8 e .3m 8 e .3m

x,x,x [0,0,0] x, x, x [0,0,0] x, x, x [0,0,0] x, x, x [0,0,0]

2 b 43m 2 b 43m

1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0] 1/2,1/2,1/2 [0,0,0]

2 a 43m 2 a 43m

0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0] 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm1' Along [1,1,1] p31m1' Along [1,1,0] p1m11'

\[\mathbf{a}^* = \mathbf{a} \] \[\mathbf{b}^* = \mathbf{b} \] \[\mathbf{a}^* = (2\mathbf{a} - \mathbf{b} - \mathbf{c})/3 \] \[\mathbf{b}^* = (-\mathbf{a} + 2\mathbf{b} - \mathbf{c})/3 \] \[\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \] \[\mathbf{b}^* = \mathbf{c} \]

Origin at 0,0,z Origin at x,x,x Origin at x,x,0
Origin at $\overline{4}3m$

Asymmetric unit

\[0 < x < 1; \quad 0 < y < 1/2; \quad 0 < z < 1/2; \quad y \leq \min(x,1-x); \quad z \leq y\]

Vertices

\[0,0,0 \quad 1,0,0 \quad 1/2,1/2,0 \quad 1/2,1/2,1/2\]

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{align*}
(1) & \quad 1 \\
(1 | 0,0,0) & \quad (2) & \quad 2 \quad 0,0,z \\
& & \quad (2_z | 0,0,0) \\
(5) & \quad 3^+ \ x,x,x \\
(3_{xyz} | 0,0,0) & \quad (6) & \quad 3^+ \ x,x,x \\
& & \quad (3_{xyz}^{-1} | 0,0,0) \\
(9) & \quad 3^- \ x,x,x \\
(3_{xyz}^{-1} | 0,0,0) & \quad (10) & \quad 3^- \ x,x,x \\
& & \quad (3_{xyz} | 0,0,0) \\
(13) & \quad m' \ x,x,z \\
(m_{yz} | 0,0,0)' & \quad (14) & \quad m' \ x,x,z \\
& & \quad (m_{xy} | 0,0,0)' \\
(17) & \quad m' \ x,y,y \\
(m_{yz}^{-1} | 0,0,0)' & \quad (18) & \quad 4^- \ x,0,0; 0,0,0 \\
& & \quad (4_x | 0,0,0)' \\
(21) & \quad m' \ x,y,x \\
(m_{xz}^{-1} | 0,0,0)' & \quad (22) & \quad 4^- \ y,0,0; 0,0,0 \\
& & \quad (4_y | 0,0,0)' \\
(1) & \quad t'(1,0,0) \\
(1 | 1,0,0)' & \quad (2) & \quad 2' \ 1/2,0,0 \\
& & \quad (2_z | 1,0,0)' \\
(5) & \quad 3^- \ (1/3,1/3,1/3) \\
(3_{xyz} | 0,0,0)' & \quad (6) & \quad 3^- \ (1/3,1/3,1/3) \\
& & \quad (3_{xyz}^{-1} | 1,0,0)' \\
(9) & \quad 3^- \ (1/3,1/3,1/3) \\
(3_{xyz}^{-1} | 1,0,0)' & \quad (10) & \quad 3^- \ (1/3,1/3,1/3) \\
& & \quad (3_{xyz} | 1,0,0)' \\
(13) & \quad g(1/2,1/2,0) \ x+1/2,x,z \\
(m_{xy} | 0,0,0) & \quad (14) & \quad g(1/2,1/2,0) \ x+1/2,x,z \\
& & \quad (m_{xy} | 1,0,0) \\
(17) & \quad a(1,0,0) \ x,y,y \\
(m_{yz} | 0,0,0) & \quad (18) & \quad 4^- \ x+1/2,0,0; 1/2,0,0 \\
& & \quad (4_x | 1,0,0) \\
(21) & \quad g(1/2,1/2,0) \ x+1/2,y,x \\
(m_{xz} | 0,0,0) & \quad (22) & \quad 4^- \ y,1/2,-1/2; 1/2,0,1/2 \\
& & \quad (4_y | 1,0,0) \\
\end{align*}
\]

For \((1,0,0)'\) + set

\[
\begin{align*}
(1) & \quad t'(1,0,0) \\
(1 | 1,0,0) & \quad (2) & \quad 2' \ 1/2,0,0 \\
& & \quad (2_z | 1,0,0)' \\
(5) & \quad 3^- \ (1/3,1/3,1/3) \\
(3_{xyz}^{-1} | 0,0,0)' & \quad (6) & \quad 3^- \ (1/3,1/3,1/3) \\
& & \quad (3_{xyz}^{-1} | 1,0,0)' \\
(9) & \quad 3^- \ (1/3,1/3,1/3) \\
(3_{xyz}^{-1} | 1,0,0)' & \quad (10) & \quad 3^- \ (1/3,1/3,1/3) \\
& & \quad (3_{xyz} | 1,0,0)' \\
(13) & \quad g(1/2,1/2,0) \ x+1/2,x,z \\
(m_{xy} | 0,0,0) & \quad (14) & \quad g(1/2,1/2,0) \ x+1/2,x,z \\
& & \quad (m_{xy} | 1,0,0) \\
(17) & \quad a(1,0,0) \ x,y,y \\
(m_{yz} | 0,0,0) & \quad (18) & \quad 4^- \ x+1/2,0,0; 1/2,0,0 \\
& & \quad (4_x | 1,0,0) \\
(21) & \quad g(1/2,1/2,0) \ x+1/2,y,x \\
(m_{xz} | 0,0,0) & \quad (22) & \quad 4^- \ y,1/2,-1/2; 1/2,0,1/2 \\
& & \quad (4_y | 1,0,0) \\
\end{align*}
\]

Generators selected

\(1); \ t'(1,0,0); \ t'(0,0,1); \ t'(0,0,1); \ (2); \ (3); \ (5); \ (13).\)
Positions

Multiplicity, Wyckoff letter, Site Symmetry.

$$\begin{align*}
\text{Positions} & \quad \text{Coordinates} \\
(0,0,0) & + \quad (1,0,0)' + \\
\end{align*}$$

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>_mob_1</th>
<th>Wyckoff letter</th>
<th>_mob_2</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>j</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) x,y,z [u,v,w]
(2) $\bar{x},\bar{y},\bar{z} [\bar{u},\bar{v},\bar{w}]$
(3) $x,y,z [u,v,w]$
(4) $x,y,z [u,v,w]$

(5) z,x,y [w,u,v]
(6) $\bar{z},\bar{x},\bar{y} [\bar{w},\bar{u},\bar{v}]$
(7) $z,x,y [w,u,v]$
(8) $z,x,y [w,u,v]$

(9) y,z,x [v,w,u]
(10) $\bar{y},\bar{z},\bar{x} [\bar{v},\bar{w},\bar{u}]$
(11) $y,z,x [v,w,u]$
(12) $y,z,x [v,w,u]$

(13) y,x,z [v,u,w]
(14) $\bar{y},\bar{x},\bar{z} [\bar{v},\bar{u},\bar{w}]$
(15) $y,x,z [v,u,w]$
(16) $y,x,z [v,u,w]$

(17) x,z,y [w,u,v]
(18) $\bar{x},\bar{z},\bar{y} [\bar{w},\bar{u},\bar{v}]$
(19) $x,z,y [w,u,v]$
(20) $x,z,y [w,u,v]$

(21) z,y,x [w,v,u]
(22) $\bar{z},\bar{y},\bar{x} [\bar{w},\bar{v},\bar{u}]$
(23) $z,y,x [w,v,u]$
(24) $z,y,x [w,v,u]$

24 i ...m' x,x,z [u,u,w]
$x,x,z [u,u,w]$
$z,x,x [w,u,u]$
$\bar{z},\bar{x},\bar{z} [\bar{w},\bar{u},\bar{u}]$
$\bar{z},\bar{x},\bar{z} [\bar{w},\bar{u},\bar{u}]$

24 h 2'.. x,1/2,0 [0,v,w]
$x,1/2,0 [0,v,w]$
$0,x,1/2 [w,0,v]$
$0,x,1/2 [w,0,v]$

12 g 2.m'm' x,1/2,1/2 [u,0,0]
$x,1/2,1/2 [u,0,0]$
$1/2,x,1/2 [0,u,0]$
$1/2,x,1/2 [0,u,0]$

12 f 2.mm x,0,0 [u,0,0]
$x,0,0 [u,0,0]$
$0,x,0 [0,u,0]$
$0,x,0 [0,u,0]$

8 e .3m x,x,x [u,u,u]
$x,x,x [u,u,u]$
$x,x,x [u,u,u]$
$x,x,x [u,u,u]$

6 d 42'.m' 1/2,0,0 [u,0,0]
$0,1/2,0 [u,0,0]$
$0,1/2,0 [u,0,0]$
$0,1/2,0 [u,0,0]$

6 c 42'.m' 1/2,1/2,0 [u,0,0]
$0,1/2,0 [u,0,0]$
$0,1/2,0 [u,0,0]$
$0,1/2,0 [u,0,0]$

2 b 43'm' 1/2,1/2,1/2 [0,0,0]
$1/2,1/2,0 [0,0,0]$
$1/2,1/2,0 [0,0,0]$
$1/2,1/2,0 [0,0,0]$

2 a 43'm' 0,0,0 [0,0,0]
$0,0,0 [0,0,0]$
$0,0,0 [0,0,0]$
$0,0,0 [0,0,0]$

Symmetry of Special Projections

Along [0,0,1] p4mm1

<table>
<thead>
<tr>
<th>a* = a</th>
<th>b* = b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

Along [1,1,1] p31m1

<table>
<thead>
<tr>
<th>a* = (2a - b - c)/3</th>
<th>b* = (-a + 2b - c)/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin at x,x,x</td>
<td></td>
</tr>
</tbody>
</table>

Along [1,1,0] p21m1

<table>
<thead>
<tr>
<th>a* = (-a + b)/2</th>
<th>b* = c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin at x-1/4,x+1/4,0</td>
<td></td>
</tr>
</tbody>
</table>

215.5.1576 - 3 - 3556
Origin at $\overline{4}3m$

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad -1/4 \leq z \leq 1/4; \quad y \leq \min(x,1/2-x); \quad -y \leq z \leq y \]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 1/4,1/4,1/4 \quad 1/4,1/4,-1/4 \]

Symmetry Operations

For $(0,0,0) + \text{set}$

(1) 1

(5) $3^{+} x,x,x$

(9) $3^{+} x,x,x$

(2) $2 \quad 0,0,z$

(6) $3^{+} x,x,x$

(10) $3^{+} x,x,x$

(3) $2 \quad 0,y,0$

(7) $3^{+} x,x,x$

(11) $3^{+} x,x,x$

(4) $2 \quad x,0,0$

(8) $3^{+} x,x,x$

(12) $3^{+} x,x,x$
For $0,1/2,1/2$ + set

For $1/2,0,1/2$ + set

216.1.1577 - 2 - 3558
Continued

For (1/2,1/2,0) + set

| (1) t(1/2,1/2,0) | (2) 2 1/4,1/4,z | (3) 2 (0,1/2,0) 1/4,y,0 | (4) 2 (1/2,0,0) x,1/4,0 |
| (1) | 1/2,1/2,0) | (2) 1/2,1/2,0) | (3) 1/2,1/2,0) | (4) 1/2,1/2,0) |

(5) 3* (1/3,1/3,1/3) x+1/6,x+1/3,x (3,xyz | 1/2,1/2,0) | (6) 3* x+1/2,x,x (7) 3* x+1/2,x,x (8) 3* (1/3,1/3,-1/3) x+1/6,x+1/3,x (3,xyz | 1/2,1/2,0) |

(9) 3* (1/3,1/3,1/3) x+1/3,x+1/6,x (3,xyz | 1/2,1/2,0) | (10) 3* x,x+1/2,x (11) 3* (1/3,1/3,-1/3) x+1/3,x+1/6,x (3,xyz | 1/2,1/2,0) |

(13) g (1/2,1/2,0) x,x,z (m,xyz | 1/2,1/2,0) | (14) m x+1/2,x,z (m,xyz | 1/2,1/2,0) | (15) 4* 1/2,0,z; 1/2,0,0 | (16) 4* 0,1/2,z; 0,1/2,0 |

(17) g (1/2,1/4,1/4) x,y+1/4,y (m,yz | 1/2,1/2,0) | (18) 4* x,1/4,-1/4; 1/4,1/4,-1/4 (19) 4* x,1/4,1/4; 1/4,1/4,1/4 (20) g (1/2,1/4,-1/4) x,y+1/4,y (m,yz | 1/2,1/2,0) |

(21) g (1/4,1/2,1/4) x+1/4,y,x (m,xz | 1/2,1/2,0) | (22) 4* 1/4,y,-1/4; 1/4,1/4,-1/4 (23) g (1/4,1/2,-1/4) x+1/4,y,x (m,xz | 1/2,1/2,0) | (24) 4* 1/4,y,1/4; 1/4,1/4,1/4 (m,xz | 1/2,1/2,0) |

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

96 i 1

(1) x,y,z [u,v,w]	(2) x,y,z [u,v,w]	(3) x,y,z [u,v,w]	(4) x,y,z [u,v,w]
(5) z,x,y [w,u,v]	(6) z,x,y [w,u,v]	(7) z,x,y [w,u,v]	(8) z,x,y [w,u,v]
(9) y,z,x [v,w,u]	(10) y,z,x [v,w,u]	(11) y,z,x [v,w,u]	(12) y,z,x [v,w,u]
(13) y,x,z [v,u,w]	(14) y,x,z [v,u,w]	(15) y,x,z [v,u,w]	(16) y,x,z [v,u,w]
(17) x,z,y [u,w,v]	(18) x,z,y [u,w,v]	(19) x,z,y [u,w,v]	(20) x,z,y [u,w,v]
(21) z,y,x [w,v,u]	(22) z,y,x [w,v,u]	(23) z,y,x [w,v,u]	(24) z,y,x [w,v,u]

48 h ..m x,x,z [u,u,0] | x,x,z [u,u,0] | x,x,z [u,u,0] | x,x,z [u,u,0] |
Z,x,x [0,u,0] | Z,x,x [0,u,0] | Z,x,x [0,u,0] | Z,x,x [0,u,0] |
X,x,x [u,0,u] | X,x,x [u,0,u] | X,x,x [u,0,u] | X,x,x [u,0,u] |

24 g 2.mm x,1/4,1/4 [0,0,0] | x,3/4,1/4 [0,0,0] | 1/4,x,1/4 [0,0,0] |
| 1/4,x,3/4 [0,0,0] | 1/4,1/4,x [0,0,0] | 3/4,1/4,x [0,0,0] |
| 24.f | 2mm | x,0,0 [0,0,0] | x,0,0 [0,0,0] | 0,x,0 [0,0,0] |
|------|-----|----------------|
| | | 0,x,0 [0,0,0] | 0,0,x [0,0,0] | 0,0,0 [0,0,0] |
| 16.e | .3m | x,x,x [0,0,0] | x,x,x [0,0,0] | x,x,x [0,0,0] |
| 4.d | 43m | 3/4,3/4,3/4 [0,0,0] |
| 4.c | 43m | 1/4,1/4,1/4 [0,0,0] |
| 4.b | 43m | 1/2,1/2,1/2 [0,0,0] |
| 4.a | 43m | 0,0,0 [0,0,0] |

Symmetry of Special Projections

Along [0,0,1] p4'm'm
\[a^* = a/2 \quad b^* = b/2 \]
Origin at 0,0,z

Along [1,1,1] p31m
\[a^* = (2a - b - c)/6 \quad b^* = (-a + 2b - c)/6 \]
Origin at x,x,x

Along [1,1,0] c1m11'
\[a^* = (-a + b)/2 \quad b^* = c \]
Origin at x,x,0
Origin at $\overline{4}3m1'$

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad -1/4 \leq z \leq 1/4; \quad y \leq \min(x, 1/2-x); \quad -y \leq z \leq y \]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 1/4,1/4,1/4 \quad 1/4,1/4,-1/4 \]

Symmetry Operations

For $(0,0,0) + \text{set}$

(1) 1

(1|0,0,0)

(2) 2 $0,0,z$

(2|0,0,0)

(3) 2 $0,y,0$

(2|0,0,0)

(4) 2 $x,0,0$

(2|0,0,0)

(5) 3^+ x,x,x

(3_{xyz}|0,0,0)

(6) 3^+ x,x,x

(3_{xyz}^{-1}|0,0,0)

(7) 3^+ x,x,x

(3_{xyz}^{-1}|0,0,0)

(8) 3^+ x,x,x

(3_{xyz}^{-1}|0,0,0)

(9) 3^- x,x,x

(3_{xyz}^{-1}|0,0,0)

(10) 3^- x,x,x

(3_{xyz}^{-1}|0,0,0)

(11) 3^- x,x,x

(3_{xyz}^{-1}|0,0,0)

(12) 3^- x,x,x

(3_{xyz}^{-1}|0,0,0)
For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(1/2,1/2,0)

(5) 3' (1/3,1/3,1/3)
 x+1/6,x+1/3,x
 (3_{xyz}^{-1} | 1/2,1/2,0)

(9) 3' (1/3,1/3,1/3)
 x+1/3,x+1/6,x
 (3_{xyz}^{-1} | 1/2,1/2,0)

(13) g (1/2,1/2,0) x,x,z
 (m_{xy} | 1/2,1/2,0)

(17) g (1/4,1/2,1/4) x,y+1/4,y
 (m_{yz} | 1/2,1/2,0)

(21) g (1/4,1/2,1/4) x+1/4,y,x
 (m_{xz} | 1/2,1/2,0)

For (0,0,0) + set

(1) 1' (0,0,0)
(1 | 0,0,0)

(5) 3' ' x,x,x
 (3_{xyz} | 0,0,0)

(9) 3' ' x,x,x
 (3_{xyz}^{-1} | 0,0,0)

(13) m' x,x,z
 (m_{xy} | 0,0,0)

(17) m' x,y,y
 (m_{yz} | 0,0,0)

(21) m' x,y,x
 (m_{xz} | 0,0,0)

For (0,1/2,1/2) + set

(1) t' (0,1/2,1/2)
(1/0,1/2,1/2)

(5) 3' ' (1/3,1/3,1/3)
 x+1/3,x+1/6,x
 (3_{xyz}^{-1} | 1/2,1/2,2)

(9) 3' ' (1/3,1/3,1/3)
 x+1/6,x+1/6,x
 (3_{xyz}^{-1} | 0,1/2,1/2)

216.2.1578 - 3 - 3563
Continued 216.2.1578 F4 3m1'

For (1/2,0,1/2) + set

(1) t' (1/2,0,1/2) (2) 2' (0,0,1/2) 1/4,0,0 1/4,1/4,0 1/4,1/4,1/4 1/4,1/4,1/4
(1 | 2,0,1/2)' (2 | 1/2,0,1/2)' (3 | 1/2,0,1/2)' (4 | 1/2,0,1/2)'

(13) g' (1/4,1/4,1/2) x+1/4,x,z
(m_xz | 1/2,0,1/2)'

(14) g' (-1/4,1/4,1/2) 1/4,0,0 1/4,1/4,0 1/4,1/4,1/4 1/4,1/4,1/4
(m_xz | 1/2,0,1/2)'

(15) 4' + 1/4,1/4,0 1/4,1/4,0 1/4,1/4,1/4 1/4,1/4,1/4
(m_xz | 1/2,0,1/2)'

(16) 4' - 1/4,1/4,0 -1/4,1/4,0 1/4,1/4,1/4 1/4,1/4,1/4
(m_xz | 1/2,0,1/2)'

Generators selected (1); t(1,0,0); t(0,0,1); t(0,1,2,1/2); t(1,2,0,1/2); (2); (3); (5); (13); 1'.
Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) + (0,0,0)' + (0,1/2,1/2)' + (1/2,0,1/2)' + (1/2,1/2,0)' + 96</td>
<td>i 11'</td>
</tr>
<tr>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(5) z,x,y [0,0,0]</td>
<td>(6) z,x,y [0,0,0]</td>
</tr>
<tr>
<td>(9) y,z,x [0,0,0]</td>
<td>(10) y,z,x [0,0,0]</td>
</tr>
<tr>
<td>(13) y,x,z [0,0,0]</td>
<td>(14) y,x,z [0,0,0]</td>
</tr>
<tr>
<td>(17) x,z,y [0,0,0]</td>
<td>(18) x,z,y [0,0,0]</td>
</tr>
<tr>
<td>(21) y,x,z [0,0,0]</td>
<td>(22) y,x,z [0,0,0]</td>
</tr>
</tbody>
</table>

| Symmetry of Special Projections |

p4mm1'

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>4d = a/2 b* = b/2</td>
<td></td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
</tr>
</tbody>
</table>

p31m1'

<table>
<thead>
<tr>
<th>Along [1,1,1]</th>
<th>p31m1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>4c = (2a - b - c)/6 b* = (-a + 2b - c)/6</td>
<td></td>
</tr>
<tr>
<td>Origin at x,x,x</td>
<td></td>
</tr>
</tbody>
</table>

c1m11'

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>c1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>4b = a/2 b* = b/2</td>
<td></td>
</tr>
<tr>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>

216.2.1578 - 5 - 3565
Origin at $\overline{4}3'm'$

Asymmetric unit

\[
0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{4}; \quad -\frac{1}{4} \leq z \leq \frac{1}{4}; \quad y \leq \min(x, \frac{1}{2}-x); \quad -y \leq z \leq y
\]

Vertices

\[
0,0,0 \quad \frac{1}{2},0,0 \quad \frac{1}{4},\frac{1}{4},\frac{1}{4} \quad \frac{1}{4},\frac{1}{4},-\frac{1}{4}
\]

Symmetry Operations

For $(0,0,0) + \text{set}$

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad (0,0,0) \\
(5) & \quad 3^+ \ x,\frac{x}{2},\frac{x}{2} \\
(5) & \quad (3_{xyz})^{0,0,0} \\
(9) & \quad 3^+ \ x,\frac{x}{2},\frac{x}{2} \\
(9) & \quad (3_{xyz})^{-1,0,0,0} \\
(10) & \quad 3^+ \ x,\frac{x}{2},\frac{x}{2} \\
(10) & \quad (3_{xyz})^{0,0,0,0} \\
(11) & \quad 3^+ \ x,\frac{x}{2},\frac{x}{2} \\
(11) & \quad (3_{xyz})^{0,0,0,0} \\
(12) & \quad 3^+ \ x,\frac{x}{2},\frac{x}{2} \\
(12) & \quad (3_{xyz})^{0,0,0,0}
\end{align*}
\]
For $(1/2,1/2,0) + \text{set}$

(1) t $(1/2,1/2,0)$
(1) $t (1/2,1/2,0)$
(2) 2 $1/4,1/4,z$
(2) 2 $(1/2,1/2,0)$ $1/4,y,0$
(3) 2 $(0,1/2,0)$ $1/4,y,0$
(4) 2 $(1/2,0,0)$ $x,1/4,o$
(5) 3^* $(1/3,1/3,1/3)$
(6) 3^* $x+1/2,x,x$
(7) 3^* $x+1/2,x,x$
(8) 3^* $(1/3,1/3,-1/3)$ $x+1/6,x+1/3,x$
(9) 3^* $(1/3,1/3,1/3)$
(10) 3^* $x,x+1/2,x$
(11) 3^* $(1/3,1/3,-1/3)$ $x+1/3,x+1/6,x$
(12) 3^* $x,x+1/2,x$
(13) $g'(1/2,1/2,0)$ x,x,z
(14) $m' x+1/2,x,z$
(15) $4'*'' 1/2,0,z; 1/2,0,0$
(16) $4'*' 0,1/2,z; 0,1/2,0$
(17) $g'(1/2,1/4,1/4) x,y+1/4,y$
(18) $4'*' x,1/4,-1/4; 1/4,1/4,-1/4$
(19) $4'*' x,1/4,1/4; 1/4,1/4,1/4$
(20) $g'(1/2,1/4,-1/4) x,y+1/4,y$
(21) $g'(1/4,1/2,1/4) x+1/4,y,x$
(22) $4'*' 1/4,y,-1/4; 1/4,1/4,-1/4$
(23) $g'(1/4,1/2,-1/4) x+1/4,y,x$
(24) $4'*' 1/4,y,1/4; 1/4,1/4,1/4$

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

96

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
<th>(0,0,0) +</th>
<th>(0,1/2,1/2) +</th>
<th>(1/2,0,1/2) +</th>
<th>(1/2,1/2,0) +</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(3) x,y,z [u,v,w]</td>
<td>(4) x,y,z [u,v,w]</td>
<td>(5) z,x,y [w,u,v]</td>
<td>(6) z,x,y [w,u,v]</td>
<td>(7) z,x,y [w,u,v]</td>
</tr>
</tbody>
</table>

h

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
<th>(0,0,0) +</th>
<th>(0,1/2,1/2) +</th>
<th>(1/2,0,1/2) +</th>
<th>(1/2,1/2,0) +</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 h ...m' x,x,z [u,u,w]</td>
<td>(23) z,y,x [w,v,u]</td>
<td>(24) z,y,x [w,v,u]</td>
<td>(25) z,y,x [w,v,u]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 g 2.m'm' x,1/4,1/4 [u,0,0]</td>
<td>x,3/4,1/4 [u,0,0]</td>
<td>1/4,x,1/4 [0,u,0]</td>
<td>1/4,x,3/4 [0,u,0]</td>
<td>1/4,1/4,x [0,0,u]</td>
<td>3/4,1/4,x [0,0,u]</td>
</tr>
</tbody>
</table>
24 f $2.m'm' \ x,0,0 [u,0,0]$ \[x,0,0 [u,0,0] \quad 0,x,0 [0,u,0] \quad 0,0,0 [u,0,0] \]

16 e $.3m' \ x,x,x [u,u,u] \ [x,x,x [u,u,u] \quad x,x,x [u,u,u] \quad x,x,x [u,u,u]$

4 d $\bar{4}3m' \ 3/4,3/4,3/4 [0,0,0]$

4 c $\bar{4}3m' \ 1/4,1/4,1/4 [0,0,0]$

4 b $\bar{4}3m' \ 1/2,1/2,1/2 [0,0,0]$

4 a $\bar{4}3m' \ 0,0,0 [0,0,0]$

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along</th>
<th>$[0,0,1]$</th>
<th>$[1,1,1]$</th>
<th>$[1,1,0]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^*</td>
<td>$a/2$</td>
<td>$(2a - b - c)/6$</td>
<td>$(-a + b)/2$</td>
</tr>
<tr>
<td>b^*</td>
<td>$b/2$</td>
<td>$(-a + 2b - c)/6$</td>
<td>c</td>
</tr>
</tbody>
</table>

Origin at $0,0,z$
Origin at x,x,x
Origin at $x,x,0$
Origin at \(\bar{4}3m \)

Asymmetric unit:
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq x; \quad z \leq y \]

Vertices:
\[0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 1/2,1/2,1/2 \]

Symmetry Operations:

For \((0,0,0)\) + set

\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \quad 0,0,z \\
(3) & \quad 2 \quad 0,y,0
\\
(4) & \quad 2 \quad x,0,0
\\
(5) & \quad 3^+ \quad x,x,x \\
& \quad (3_{xyz} \quad 0,0,0) \\
(6) & \quad 3^+ \quad x,x,x \\
& \quad (3_{xyz}^{-1} \quad 0,0,0) \\
(7) & \quad 3^+ \quad x,x,x \\
& \quad (3_{xyz}^{-1} \quad 0,0,0) \\
(8) & \quad 3^- \quad x,x,x \\
& \quad (3_{xyz}^{-1} \quad 0,0,0) \\
(9) & \quad 3^+ \quad x,x,x \\
& \quad (3_{xyz}^{-1} \quad 0,0,0) \\
(10) & \quad 3^+ \quad x,x,x \\
& \quad (3_{xyz} \quad 0,0,0) \\
(11) & \quad 3^- \quad x,x,x \\
& \quad (3_{xyz} \quad 0,0,0) \\
(12) & \quad 3^- \quad x,x,x \\
& \quad (3_{xyz} \quad 0,0,0)
\end{align*}
Continued

(13) m x,x,z
(m_{xy} | 0,0,0)
(14) m x,x,z
(m_{xy} | 0,0,0)
(15) 4^+ 0,0,z; 0,0,0
(4_z | 0,0,0)
(16) 4^- 0,0,z; 0,0,0
(4_z^- | 0,0,0)
(17) m x,y,y
(m_{yz} | 0,0,0)
(18) 4^- x,0,0; 0,0,0
(4_x^- | 0,0,0)
(19) 4^- x,0,0; 0,0,0
(4_x^- | 0,0,0)
(20) m x,y,y
(m_{yz} | 0,0,0)
(21) m x,y,x
(m_{xz} | 0,0,0)
(22) 4^- 0,y,0; 0,0,0
(4_y^- | 0,0,0)
(23) m x,y,x
(m_{xz} | 0,0,0)
(24) 4^+ 0,y,0; 0,0,0
(4_y^+ | 0,0,0)

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(2) 2 (0,0,1/2) 1/4,1/4,z
(2_z | 1/2,1/2,1/2)
(3) 2 (0,1/2,0) 1/4,y,1/4
(2_y | 1/2,1/2,1/2)
(4) 2 (1/2,0,0) x,1/4,1/4
(2_x | 1/2,1/2,1/2)
(5) 3^- (1/2,1/2,1/2) x,x,x
(3_{xyz} | 1/2,1/2,1/2)
(6) 3^- (1/6,-1/6,1/6) x+1/3,x+1/3,x+1/3
(3_{xyz}^- | 1/2,1/2,1/2)
(7) 3^- (-1/6,1/6,1/6) x+2/3,x-1/3,x
(3_{xyz}^- | 1/2,1/2,1/2)
(8) 3^- (1/6,1/6,-1/6) x+1/3,x+2/3,x
(3_{xyz}^- | 1/2,1/2,1/2)
(9) 3^- (1/2,1/2,1/2) x,x,x
(3_{xyz}^- | 1/2,1/2,1/2)
(10) 3^- (-1/6,1/6,1/6) x+1/3,x+1/3,x+1/3
(3_{xyz}^- | 1/2,1/2,1/2)
(11) 3^- (1/6,1/6,-1/6) x+2/3,x+1/3,x
(3_{xyz}^- | 1/2,1/2,1/2)
(12) 3^- (1/6,-1/6,1/6) x-1/3,x+2/3,x
(3_{xyz}^- | 1/2,1/2,1/2)
(13) n (1/2,1/2,1/2) x,x,z
(m_{xy} | 1/2,1/2,1/2)
(14) c (0,0,1/2) x+1/2,x+1/2,z
(m_{xy} | 1/2,1/2,1/2)
(15) 4^+ 1/2,0,z; 1/2,0,1/4
(4_z | 1/2,1/2,1/2)
(16) 4^- 0,1/2,z; 0,1/2,1/4
(4_z^- | 1/2,1/2,1/2)
(17) n (1/2,1/2,1/2) x,y,y
(m_{yz} | 1/2,1/2,1/2)
(18) 4^- x,1/2,0;1/4,1/2,0
(4_x^- | 1/2,1/2,1/2)
(19) 4^- x,0,1/2;1/4,0,1/2
(4_x^- | 1/2,1/2,1/2)
(20) a (1/2,0,0) x,y+1/2,y
(m_{yz} | 1/2,1/2,1/2)
(21) n (1/2,1/2,1/2) x,y,x
(m_{xz} | 1/2,1/2,1/2)
(22) 4^- 1/2,y,0; 1/2,1/4,0
(4_y^- | 1/2,1/2,1/2)
(23) b (0,1/2,0) x+1/2,y,x
(m_{xz} | 1/2,1/2,1/2)
(24) 4^+ 0,y,1/2; 0,1/4,1/2
(4_y^+ | 1/2,1/2,1/2)

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

48

h

1

(1) x,y,z [u,v,w]
(2) z,x,y [u,v,w]
(3) x,y,z [u,v,w]
(4) x,y,z [u,v,w]
(5) z,x,y [w,u,v]
(6) z,x,y [w,u,v]
(7) z,x,y [w,u,v]
(8) z,x,y [w,u,v]
(9) y,z,x [v,w,u]
(10) y,z,x [v,w,u]
(11) y,z,x [v,w,u]
(12) y,z,x [v,w,u]
(13) y,z,x [v,w,u]
(14) y,z,x [v,w,u]
(15) y,z,x [v,w,u]
(16) y,z,x [v,w,u]
(17) x,z,y [u,w,v]
(18) x,z,y [u,w,v]
(19) x,z,y [u,w,v]
(20) x,z,y [u,w,v]
(21) z,y,x [w,v,u]
(22) z,y,x [w,v,u]
(23) z,y,x [w,v,u]
(24) z,y,x [w,v,u]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>24</th>
<th>g</th>
<th>24</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>g</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Origin at 0,0,z

<table>
<thead>
<tr>
<th>12</th>
<th>e</th>
<th>12</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>d</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Origin at x,x,x

<table>
<thead>
<tr>
<th>8</th>
<th>c</th>
<th>6</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Origin at x,x,0

<table>
<thead>
<tr>
<th>2</th>
<th>a</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4'mmm'</th>
<th>Along [1,1,1]</th>
<th>p31m</th>
<th>Along [1,1,0]</th>
<th>p1m11'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (a - b)/2</td>
<td>b* = (a + b)/2</td>
<td>a* = (2a - b - c)/3</td>
<td>b* = (-a + 2b - c)/3</td>
<td>a* = (-a + b)/2</td>
<td>b* = c/2</td>
</tr>
</tbody>
</table>

Origin at 0,0,z

| 217.1.1580 - 3 - 3572 |
Origin at \(\overline{4}3m1' \)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq x; \quad z \leq y \]

Vertices

\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 1/2,1/2,0 & \quad 1/2,1/2,1/2
\end{align*}

Symmetry Operations

For \((0,0,0) + \text{set}\)

\begin{align*}
(1) & \quad 1 & \quad \text{For \((0,0,0) + \text{set}\)} \\
(1) & \quad 0,0,z & \quad (2) & \quad 0,y,0 & \quad (3) & \quad 0,z,0 & \quad (4) & \quad x,0,0 & \quad (2,0,0,0) \\
(5) & \quad 3^+ x,x,x & \quad (2) & \quad 3^+ x,y,x & \quad (2) & \quad x,0,0 & \quad (2,0,0,0) \\
(3) & \quad 0,0,0 & \quad (3) & \quad y,0,0 & \quad (3) & \quad y,0,0 & \quad (3) & \quad y,0,0 \\
(9) & \quad x,x,x & \quad (3) & \quad x,x,0 & \quad (3) & \quad x,x,0 & \quad (3) & \quad x,x,0 \\
(10) & \quad x,x,x & \quad (3) & \quad x,x,0 & \quad (3) & \quad x,x,0 & \quad (3) & \quad x,x,0 \\
(11) & \quad x,x,x & \quad (3) & \quad x,x,0 & \quad (3) & \quad x,x,0 & \quad (3) & \quad x,x,0 \\
(12) & \quad x,x,x & \quad (3) & \quad x,x,0 & \quad (3) & \quad x,x,0 & \quad (3) & \quad x,x,0
\end{align*}
For \((1/2,1/2,1/2)' + \text{set}\)

(1) \(t'\ (1/2,1/2,1/2)\)
(2) \(2'\ (0,0,1/2)\)
(3) \(2'\ (0,1/2,0)\)
(4) \(2'\ (1/2,0,0)\)
(5) \(3'\ (1/2,1/2,1/2)\)
(6) \(3'\ (1/6,-1/6,1/6)\)
(7) \(3'\ (-1/6,1/6,1/6)\)
(8) \(3'\ (1/6,1/6,-1/6)\)
(9) \(3'\ (1/2,1/2,1/2)\)
(10) \(3'\ (-1/6,1/6,-1/6)\)
(11) \(3'\ (1/6,-1/6,1/6)\)
(12) \(3'\ (1/6,1/6,-1/6)\)
(13) \(n'\ (1/2,1/2,1/2)\)
(14) \(c'\ (0,0,1/2)\)
(15) \(4\ (1/2,0,0)\)
(16) \(4\ (1/2,1/2,1/2)\)
(17) \(n'\ (1/2,1/2,1/2)\)
(18) \(4\ (1/2,1/2,1/2)\)
(19) \(4\ (1/2,1/2,1/2)\)
(20) \(4\ (1/2,1/2,1/2)\)
(21) \(n'\ (1/2,1/2,1/2)\)
(22) \(4\ (1/2,1/2,1/2)\)
(23) \(4\ (1/2,1/2,1/2)\)
(24) \(4\ (1/2,1/2,1/2)\)

Generators selected

(1); \(t(1,0,0)\); \(t(0,1,0)\); \(t(0,0,1)\); \(t(1/2,1/2,1/2)\); (2); (3); (5); (13); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0,0)) + ((1/2,1/2,1/2)) + ((0,0,0)' + (1/2,1/2,1/2))' +</td>
<td></td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Projection</th>
<th>Axes</th>
<th>Formula for (a^*)</th>
<th>Formula for (b^*)</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>p4mm1'</td>
<td>[0,0,1]</td>
<td>(a^* = \frac{a - b}{2})</td>
<td>(b^* = \frac{a + b}{2})</td>
<td>0,0,z</td>
</tr>
<tr>
<td>p31m1'</td>
<td>[1,1,1]</td>
<td>(a^* = \frac{2a - b - c}{3})</td>
<td>(b^* = \frac{-a + 2b - c}{3})</td>
<td>x,x,x</td>
</tr>
<tr>
<td>p1m11'</td>
<td>[1,1,0]</td>
<td>(a^* = \frac{a + b}{2})</td>
<td>(b^* = \frac{c}{2})</td>
<td>x,x,0</td>
</tr>
</tbody>
</table>
Origin at \(\bar{4}3m' \)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq x; \quad z \leq y \]

Vertices

\[0,0,0 \quad \text{and} \quad 1/2,0,0 \quad \text{and} \quad 1/2,1/2,0 \quad \text{and} \quad 1/2,1/2,1/2 \]

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. 1
 \((1|0,0,0)\)
2. 2 0,0,z
 \((2|0,0,0)\)
3. 2 0,y,0
 \((2|0,0,0)\)
4. 2 x,0,0
 \((2|0,0,0)\)
5. \(3^+ x,x,x\)
 \((3_{xyz}|0,0,0)\)
6. \(3^+ x,x,x\)
 \((3_{xyz}^{-1}|0,0,0)\)
7. \(3^+ x,x,x\)
 \((3_{xyz}^{-1}|0,0,0)\)
8. \(3^+ x,x,x\)
 \((3_{xyz}^{-1}|0,0,0)\)
9. \(3^- x,x,x\)
 \((3_{xyz}^{-1}|0,0,0)\)
10. \(3^- x,x,x\)
 \((3_{xyz}^{-1}|0,0,0)\)
11. \(3^- x,x,x\)
 \((3_{xyz}^{-1}|0,0,0)\)
12. \(3^- x,x,x\)
 \((3_{xyz}^{-1}|0,0,0)\)
Continued

217.2.1581 I43m1

(13) m' x,x,z
 (m_xz|0,0,0)'
(14) m' x,x,z
 (m_xy|0,0,0)'
(15) 4'' 0,0,z; 0,0,0
 (4_z|0,0,0)'
(16) 4'' 0,0,z; 0,0,0
 (4_z|0,0,0)'
(17) m' x,y,y
 (m_yz|0,0,0)'
(18) 4'' x,0,0; 0,0,0
 (4_y,0,0,0)'
(19) 4'' x,0,0; 0,0,0
 (4_y,0,0,0)'
(20) m' x,y,y
 (m_yz|0,0,0)'
(21) m' x,y,x
 (m_xz|0,0,0)'
(22) 4'' 0,y,0; 0,0,0
 (4_y,0,0,0)'
(23) m' x,y,x
 (m_xz|0,0,0)'
(24) 4'' 0,y,0; 0,0,0
 (4_y,0,0,0)'

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(2) 2 (0,0,1/2) 1/4,1/4,z
(2|z|1/2,1/2,1/2)
(3) 2 (0,1/2,0) 1/4,y,1/4
(2|y|1/2,1/2,1/2)
(4) 2 (1/2,0,0) x,1/4,1/4
(2|x|1/2,1/2,1/2)
(5) 3' (1/2,1/2,1/2) x,x,x
(3_xz|1/2,1/2,1/2)
(6) 3' (1/6,-1/6,1/6)
(3_xz-1|1/2,1/2,1/2)
(7) 3' (-1/6,1/6,1/6)
(3_xz-1|1/2,1/2,1/2)
(8) 3' (1/6,1/6,-1/6)
(3_xz-1|1/2,1/2,1/2)
(9) 3' (1/2,1/2,1/2) x,x,x
(3_xz-1|1/2,1/2,1/2)
(10) 3' (-1/6,1/6,1/6)
(3_xz-1|1/2,1/2,1/2)
(11) 3' (1/6,1/6,-1/6)
(3_xz-1|1/2,1/2,1/2)
(12) 3' (1/6,1/6,-1/6)
(3_xz-1|1/2,1/2,1/2)
(13) n' (1/2,1/2,1/2) x,x,z
 (m_xy|1/2,1/2,1/2)'
(14) c' (0,0,1/2)
 (m_xy|1/2,1/2,1/2)'
(15) 4'' 1/2,0,z; 1/2,0,1/4
 (4_z|1/2,1/2,1/2)'
(16) 4'' 1/2,0,z; 0,1/2,1/4
 (4_z|1/2,1/2,1/2)'
(17) n' (1/2,1/2,1/2) x,y,y
 (m_yz|1/2,1/2,1/2)'
(18) 4'' x,1/2,0; 1/4,1/2,0
 (4_x|1/2,1/2,1/2)'
(19) 4'' x,0,1/2; 1/4,0,1/2
 (4_x|1/2,1/2,1/2)'
(20) a' (1/2,0,0) x,y+1/2,1/2
 (m_yz|1/2,1/2,1/2)'
(21) n' (1/2,1/2,1/2) x,y,x
 (m_xz|1/2,1/2,1/2)'
(22) 4'' 1/2,0,y; 1,2,1/4,0
 (4_y,1/2,1/2,1/2)'
(23) b' (0,1/2,0)
 (m_xz|1/2,1/2,1/2)'
(24) 4'' 0,y,1/2; 0,1,4,1/2
 (4_y,1/2,1/2,1/2)'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

(0,0,0) +
(1/2,1/2,1/2) +

48 h 1

(1) x,y,z [u,v,w]
(2) x,y,z [u,v,w]
(3) x,y,z [u,v,w]
(4) x,y,z [u,v,w]
(5) z,x,y [w,u,v]
(6) z,x,y [w,u,v]
(7) z,x,y [w,u,v]
(8) z,x,y [w,u,v]
(9) y,z,x [v,w,u]
(10) y,z,x [v,w,u]
(11) y,z,x [v,w,u]
(12) y,z,x [v,w,u]
(13) y,x,z [v,u,w]
(14) y,x,z [v,u,w]
(15) y,x,z [v,u,w]
(16) y,x,z [v,u,w]
(17) x,z,y [u,w,v]
(18) x,z,y [u,w,v]
(19) x,z,y [u,w,v]
(20) x,z,y [u,w,v]
(21) z,y,x [w,v,u]
(22) z,y,x [w,v,u]
(23) z,y,x [w,v,u]
(24) z,y,x [w,v,u]

217.3.1582 - 2 - 3578
Continued

217.3.1581
I 4 3m1'

24 g ..m' x,x,z [u,u,w] x,x,z [u,u,w] x,x,z [u,u,w]
 z,x,x [w,u,u] z,x,x [w,u,u] z,x,x [w,u,u]
 x,z,x [u,w,u] x,z,x [u,w,u] x,z,x [u,w,u]

24 f 2.. x,1/2,0 [u,0,0] x,1/2,0 [u,0,0] 0,x,1/2 [0,u,0] 0,x,1/2 [0,u,0]
 1/2,0,x [0,0,u] 1/2,0,x [0,0,u] 1/2,x,0 [0,u,0] 1/2,x,0 [0,u,0]
 x,0,1/2 [u,0,0] x,0,1/2 [u,0,0] 0,1/2,x [0,0,u] 0,1/2,x [0,0,u]

12 e 2.m'm' x,0,0 [u,0,0] x,0,0 [u,0,0] 0,x,0 [0,u,0] 0,x,0 [0,u,0]
 0,0,x [0,0,u] 0,0,x [0,0,u] 0,0,x [0,0,u] 0,0,x [0,0,u]

12 d 4' 1/4,1/2,0 [0,0,0] 3/4,1/2,0 [0,0,0] 0,1/4,1/2 [0,0,0] 0,1/4,1/2 [0,0,0]
 0,3/4,1/2 [0,0,0] 1/2,0,1/4 [0,0,0] 1/2,0,1/4 [0,0,0] 1/2,0,3/4 [0,0,0]

8 c .3m' x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u]

6 b 4'2.m' 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,1,2/0 [0,0,0]

2 a 4'3m' 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4m'm'
A* = (a - b)/2 B* = (a + b)/2
Origin at 0,0,0

Along [1,1,1] p31m'
A* = (2a - b - c)/3 B* = (-a + 2b - c)/3
Origin at x,x,x

Along [1,1,0] p1m'
A* = (a + b)/2 B* = c/2
Origin at x,x,0
Origin at \(\overline{43m}\)

Asymmetric unit

\[
0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq x; \quad z \leq y
\]

Vertices

\[
0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 1/2,1/2,1/2
\]

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{align*}
(1) & \quad \mathbf{1} \\
(1) & \quad (0,0,0) \\
(2) & \quad 2 \quad 0,0,z \\
(2) & \quad (0,0,0) \\
(3) & \quad 2 \quad 0,y,0 \\
(3) & \quad (0,0,0) \\
(4) & \quad 2 \quad x,0,0 \\
(4) & \quad (0,0,0) \\
(5) & \quad 3^+ \quad x,x,x \\
(5) & \quad (0,0,0) \\
(6) & \quad 3^+ \quad x,x,x \\
(6) & \quad (0,0,0) \\
(7) & \quad 3^+ \quad x,x,x \\
(7) & \quad (0,0,0) \\
(8) & \quad 3^+ \quad x,x,x \\
(8) & \quad (0,0,0) \\
(9) & \quad 3^- \quad x,x,x \\
(9) & \quad (0,0,0) \\
(10) & \quad 3^- \quad x,x,x \\
(10) & \quad (0,0,0) \\
(11) & \quad 3^- \quad x,x,x \\
(11) & \quad (0,0,0) \\
(12) & \quad 3^- \quad x,x,x \\
(12) & \quad (0,0,0)
\end{align*}
\]
Continued

$$\begin{align*}
(13) \ m \ x,x,z \\
& (m_{xy}|0,0,0) \\
(14) \ m \ x,x,z \\
& (m_{xy}|0,0,0) \\
(15) \ 4^+ \ 0,0,z; 0,0,0 \\
& (4^-|0,0,0) \\
(16) \ 4^- \ 0,0,z; 0,0,0 \\
& (4^-|0,0,0) \\
(17) \ m \ x,y,y \\
& (m_{yz}|0,0,0) \\
(18) \ 4^+ \ x,0,0; 0,0,0 \\
& (4^-|0,0,0) \\
(19) \ 4^- \ x,0,0; 0,0,0 \\
& (4^-|0,0,0) \\
(20) \ m \ x,y,$$

$$\begin{align*}
(21) \ m \ x,y,x \\
& (m_{zx}|0,0,0) \\
(22) \ 4^- \ 0,y,0; 0,0,0 \\
& (4^-|0,0,0) \\
(23) \ m \ x,y,x \\
& (m_{zx}|0,0,0) \\
(24) \ 4^- \ 0,y,0; 0,0,0 \\
& (4^-|0,0,0)
\end{align*}
$$

For (1/2,1/2,1/2) + set

$$\begin{align*}
(1) \ t' \ (1/2,1/2,1/2) \\
& (1|1/2,1/2,1/2)' \\
(2) \ 2' \ (0,0,1/2) \ 1/4,1/4,z \\
& (2|1/2,1/2,1/2)' \\
(3) \ 2' \ (0,1/2,0) \ 1/4,y,1/4 \\
& (2|1/2,1/2,1/2)' \\
(4) \ 2' \ (1/2,0,0) \ x,1/4,1/4 \\
& (2|1/2,1/2,1/2)' \\
(5) \ 3' \ (1/2,1/2,1/2) \ x,x,x \\
& (3_{xy}|1/2,1/2,1/2)' \\
(6) \ 3' \ (1/6,1/6,1/6) \ \overline{x}+1/3,\overline{x}+1/3,\overline{x} \\
& (3_{xy}|1/2,1/2,1/2)' \\
(7) \ 3' \ (-1/6,1/6,1/6) \ x+2/3,x-1/3,x \\
& (3_{xy}|1/2,1/2,1/2)' \\
(8) \ 3' \ (1/6,1/6,-1/6) \ x+1/3,x+2/3,x \\
& (3_{xy}|1/2,1/2,1/2)' \\
(9) \ 3' \ (1/2,1/2,1/2) \ x,x,x \\
& (3_{xy}|1/2,1/2,1/2)' \\
(10) \ 3' \ (-1/6,1/6,1/6) \ \overline{x}+1/3,\overline{x}+1/3,\overline{x} \\
& (3_{xy}|1/2,1/2,1/2)' \\
(11) \ 3' \ (1/6,1/6,-1/6) \ x+2/3,x+1/3,x \\
& (3_{xy}|1/2,1/2,1/2)' \\
(12) \ 3' \ (1/6,1/6,1/6) \ x-1/3,x+2/3,x \\
& (3_{xy}|1/2,1/2,1/2)' \\
(13) \ n' \ (1/2,1/2,1/2) \ x,x,z \\
& (m_{xy}|1/2,1/2,1/2)' \\
(14) \ n' \ (1/2,1/2,1/2) \ \overline{x}+1/2,\overline{x},z \\
& (m_{xy}|1/2,1/2,1/2)' \\
(15) \ 4^+ \ (1/2,0,0; 1/2,0,1/4 \\
& (4^-|1/2,1/2,1/2)' \\
(16) \ 4^- \ 0,1/2,z; 0,1/2,1/4 \\
& (4^-|1/2,1/2,1/2)' \\
(17) \ n' \ (1/2,1/2,1/2) \ x,y,y \\
& (m_{yz}|1/2,1/2,1/2)' \\
(18) \ n' \ (1/2,1/2,1/2) \ x,1/2,0; 1/4,1/2,0 \\
& (4^-|1/2,1/2,1/2)' \\
(19) \ 4^- \ x,0,1/2; 1/4,0,1/2 \\
& (4^-|1/2,1/2,1/2)' \\
(20) \ a' \ (1/2,0,0) \ x,y+1/2,\overline{y} \\
& (m_{yz}|1/2,1/2,1/2)' \\
(21) \ n' \ (1/2,1/2,1/2) \ x,y,x \\
& (m_{zx}|1/2,1/2,1/2)' \\
(22) \ n' \ (1/2,1/2,1/2) \ \overline{y}+1/2,\overline{y},x \\
& (m_{zx}|1/2,1/2,1/2)' \\
(23) \ b' \ (0,1/2,0) \ \overline{x}+1/2,\overline{y},x \\
& (m_{zx}|1/2,1/2,1/2)' \\
(24) \ 4^+ \ 0,y,1/2; 0,1/4,1/2 \\
& (4^-|1/2,1/2,1/2) \\
& (4^-|1/2,1/2,1/2) \\
& (4^-|1/2,1/2,1/2) \\
& (4^-|1/2,1/2,1/2)
\end{align*}
$$

Generators selected

$$\begin{align*}
(1) \ t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (13).
\end{align*}$$

Positions

- Multicplicity
- Wyckoff letter
- Site Symmetry

48 h 1

$$\begin{align*}
(1) \ x,y,z [u,v,w] \\
& (2) \ x,\overline{y},z [\overline{u},\overline{v},w] \\
& (3) \ x,y,\overline{z} [u,v,\overline{w}] \\
& (4) \ x,y,\overline{z} [u,\overline{v},w] \\
(5) \ z,x,y [w,u,v] \\
& (6) \ z,\overline{x},\overline{y} [w,\overline{u},\overline{v}] \\
& (7) \ \overline{z},x,\overline{y} [\overline{w},u,v] \\
& (8) \ \overline{z},x,\overline{y} [\overline{w},u,\overline{v}] \\
(9) \ y,z,x [v,w,u] \\
& (10) \ y,\overline{z},\overline{x} [\overline{v},w,\overline{u}] \\
& (11) \ y,\overline{z},\overline{x} [v,\overline{w},u] \\
& (12) \ y,\overline{z},\overline{x} [v,\overline{w},\overline{u}] \\
(13) \ y,z,x [\overline{v},u,\overline{w}] \\
& (14) \ y,\overline{z},\overline{x} [v,\overline{w},u] \\
& (15) \ y,\overline{z},\overline{x} [v,\overline{w},\overline{u}] \\
& (16) \ y,\overline{z},\overline{x} [\overline{v},u,\overline{w}] \\
(17) \ x,z,y [u,w,v] \\
& (18) \ x,\overline{z},\overline{y} [u,\overline{w},v] \\
& (19) \ x,z,\overline{y} [u,w,\overline{v}] \\
& (20) x,z,y [u,w,v] \\
(21) \ z,y,x [\overline{w},v,\overline{u}] \\
& (22) z,\overline{y},\overline{x} [\overline{w},v,\overline{u}] \\
& (23) z,\overline{y},\overline{x} [\overline{w},v,u] \\
& (24) \overline{z},\overline{y},x [\overline{w},v,\overline{u}]
\end{align*}$$

217.4.1583 - 2 - 3581
Symmetry of Special Projections

Along \([0,0,1]\) \(p_4\) 4m\(m'\)
\(a^* = (a - b)/2\) \(b^* = (a + b)/2\)
Origin at 1/2,0,z

Along \([1,1,1]\) \(p31m\) 1'
\(a^* = (2a - b - c)/3\) \(b^* = (-a + 2b - c)/3\)
Origin at x,x,x

Along \([1,1,0]\) \(p1m1\) 1'
\(a^* = (-a + b)/2\) \(b^* = c/2\)
Origin at x,x,0
Origin at $4'3m'$

Asymmetric unit

\[0 \leq x < 1/2; \quad 0 \leq y < 1/2; \quad 0 \leq z < 1/2; \quad y < x; \quad z < y \]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 1/2,1/2,1/2 \]

Symmetry Operations

For \((0,0,0) + \text{set}\)

(1) \(1\)
(2) \(2\) \(0,0,z\)
(3) \(2\) \(0,y,0\)
(4) \(2\) \(x,0,0\)
(5) \(3^+\) \(x,x,x\)
(6) \(3^+\) \(x,x,x\)
(7) \(3^+\) \(x,x,x\)
(8) \(3^+\) \(x,x,x\)
(9) \(3^-\) \(x,x,x\)
(10) \(3^-\) \(x,x,x\)
(11) \(3^-\) \(x,x,x\)
(12) \(3^-\) \(x,x,x\)

\(3xyz|0,0,0\)

\(3xyz|0,0,0\)

\(3xyz^{-1}|0,0,0\)

\(3xyz^{-1}|0,0,0\)
Continued

217.5.1584

(13) $m' \times x, x, z$

(14) $m' \times x, x, z$

(15) $4^{+}\cdot 0, 0, z; 0, 0, 0$

(16) $4^{+}\cdot 0, 0, z; 0, 0, 0$

(17) $m' \times y, y$

(18) $4^{+}\cdot 0, 0, 0; 0, 0, 0$

(19) $4^{+}\cdot x, 0, 0; 0, 0, 0$

(20) $m' \times y, y$

(21) $m' \times y, x$

(22) $4^{+}\cdot 0, y, 0; 0, 0, 0$

(23) $m' \times y, y$

(24) $4^{+}\cdot 0, y, 0; 0, 0, 0$

For $(1/2, 1/2, 1/2)^{\prime} +$ set

(1) $t' (1/2, 1/2, 1/2)^{\prime}$

(2) $2' (0, 1/2, 0) 1/4, 1/4, z$

(3) $2' (0, 1/2, 0) 1/4, 1/4, z$

(4) $2' (1/2, 0, 0) x, 1/4, 1/4$

(5) $3^{+}\cdot (1/2, 1/2, 1/2) x, x, x$

(6) $3^{+}\cdot (1/6, -1/6, 1/6) x + 1/3, x + 1/3, x$

(7) $3^{+}\cdot (1/6, 1/6, -1/6) x + 1/3, x - 1/3, x$

(8) $3^{+}\cdot (1/6, 1/6, -1/6) x + 1/3, x + 2/3, x$

(9) $3^{+}\cdot (1/2, 1/2, 1/2) x, x, x$

(10) $3^{+}\cdot (-1/6, 1/6, 1/6) x + 1/3, x + 1/3, x$

(11) $3^{+}\cdot (-1/6, 1/6, -1/6) x + 1/3, x + 2/3, x$

(12) $3^{+}\cdot (1/2, 1/2, 1/2) x, x, x$

(13) $n (1/2, 1/2, 1/2) x, x, z$

(14) $c (0, 1/2, 0) x + 1/2, x, z$

(15) $4^{+} 1/2, 0, z; 1/2, 0, 1/4$

(16) $4^{+} 0, 1/2, z; 0, 1/2, 1/4$

(17) $n (1/2, 1/2, 1/2) x, y, y$

(18) $4^{+} x, 1/2, 0; 1/4, 1/2, 0$

(19) $4^{+} x, 0, 1/2; 1/4, 0, 1/2$

(20) $a (1/2, 0, 0) x, y + 1/2, y$

(21) $n (1/2, 1/2, 1/2) x, y, x$

(22) $4^{+} 1/2, y, 0; 1/2, 1/4, 0$

(23) $b (0, 1/2, 0) x + 1/2, y, x$

(24) $4^{+} 0, y, 1/2; 0, 1/4, 1/2$

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t’(1/2,1/2,1/2); (2); (3); (5); (13).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

48 h 1

(1) x,y,z [u,v,w]

(2) $x, y, z [u, v, w]$

(3) $x, y, z [u, v, w]$

(4) $x, y, z [u, v, w]$

(5) z,x,y [w,u,v]

(6) z,x,y [w,u,v]

(7) $z, x, y [w, u, v]$

(8) $z, x, y [w, u, v]$

(9) y,z,x [v,w,u]

(10) $y, z, x [v, w, u]$

(11) $y, z, x [v, w, u]$

(12) $y, z, x [v, w, u]$

(13) y,x,z [v,u,w]

(14) $y, x, z [v, u, w]$

(15) $y, x, z [v, u, w]$

(16) $y, x, z [v, u, w]$

(17) x,z,y [u,w,v]

(18) x,z,y [u,w,v]

(19) x,z,y [u,w,v]

(20) x,z,y [u,w,v]

(21) z,y,x [w,v,u]

(22) z,y,x [w,v,u]

(23) $z, y, x [w, v, u]$

(24) $z, y, x [w, v, u]$
<table>
<thead>
<tr>
<th>24 g</th>
<th>m'</th>
<th>x,x,z [u,u,w]</th>
<th>x,x,z [u,u,w]</th>
<th>x,x,z [u,u,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>z,x,x [w,u,u]</td>
<td>z,x,x [w,u,u]</td>
<td>z,x,x [w,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,z,x [u,w,u]</td>
<td>x,z,x [u,w,u]</td>
<td>x,z,x [u,w,u]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24 f</th>
<th>2..</th>
<th>x,1/2,0 [u,0,0]</th>
<th>0,x,1/2 [0,u,0]</th>
<th>0,x,1/2 [0,u,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1/2,0,x [0,0,u]</td>
<td>1/2,x,0 [0,u,0]</td>
<td>1/2,x,0 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/2 [u,0,0]</td>
<td>0,1/2,x [0,0,u]</td>
<td>0,1/2,x [0,0,u]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12 e</th>
<th>2.m'm'</th>
<th>x,0,0 [u,0,0]</th>
<th>0,x,0 [0,u,0]</th>
<th>0,x,0 [0,u,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0,0,x [0,0,u]</td>
<td>0,0,0 [0,0,u]</td>
<td>0,0,0 [0,0,u]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12 d</th>
<th>4</th>
<th>1/4,1/2,0 [u,0,0]</th>
<th>3/4,1/2,0 [u,0,0]</th>
<th>0,1/4,1/2 [0,u,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0,3/4,1/2 [0,u,0]</td>
<td>1/2,0,1/4 [0,0,u]</td>
<td>1/2,0,3/4 [0,0,u]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 c</th>
<th>.3m'</th>
<th>x,x,x [u,u,u]</th>
<th>x,x,x [u,u,u]</th>
<th>x,x,x [u,u,u]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6 b</th>
<th>4'2.m'</th>
<th>0,1/2,1/2 [0,0,0]</th>
<th>1/2,0,1/2 [0,0,0]</th>
<th>1/2,1/2,0 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 a</th>
<th>4'3m'</th>
<th>0,0,0 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: $p_{p^*} 4m'm'$
 - $a^* = (a - b)/2$
 - $b^* = (a + b)/2$
 - Origin at 0,0,0

- **Along [1,1,1]**: $p31m1'$
 - $a^* = (2a - b - c)/3$
 - $b^* = (-a + 2b - c)/3$
 - Origin at x,x,x

- **Along [1,1,0]**: $p_{2b1}1m1$
 - $a^* = (-a + b)/2$
 - $b^* = c/2$
 - Origin at x,x,0
Origin at 23

Asymmetric unit 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; z ≤ min(x, y)

Vertices 0,0,0 1/2,0,0 1/2,1/2,0 0,1/2,0 1/2,1/2,1/2

Symmetry Operations

(1) 1
 (1|0,0,0)

(2) 2 0,0,z
 (2|0,0,0)

(3) 2 0,y,0
 (2|0,0,0)

(4) 2 x,0,0
 (2|0,0,0)

(5) 3⁺ x,x,x
 (3xyz|0,0,0)

(6) 3⁺ x,x,x
 (3xyz⁻¹|0,0,0)

(7) 3⁺ x,x,x
 (3xyz⁻¹|0,0,0)

(8) 3⁺ x,x,x
 (3xyz⁻¹|0,0,0)

(9) 3ˊ x,x,x
 (3',yz⁻¹|0,0,0)

(10) 3ˊ x,x,x
 (3',yz⁻¹|0,0,0)

(11) 3ˊ x,x,x
 (3',yz⁻¹|0,0,0)

(12) 3ˊ x,x,x
 (3',yz⁻¹|0,0,0)
Continued

Generators selected

(13) n (1/2,1/2,1/2) x,x,z
(m_x \parallel 1/2,1/2,1/2)

(14) c (0,0,1/2) x+1/2,x,x
(m_y \parallel 1/2,1/2,1/2)

(15) \(n^{4+} \) 1/2,0,z;1/2,0,1/4
(4_z \parallel 1/2,1/2,1/2)

(16) \(n^{-} \) 0,1/2,z; 0,1/2,1/4
(4_z^{-1} \parallel 1/2,1/2,1/2)

(17) n (1/2,1/2,1/2) x,y,y
(m_y \parallel 1/2,1/2,1/2)

(18) \(n^{4+} \) x,1/2,0;1/4,1/2,0
(4_x \parallel 1/2,1/2,1/2)

(19) \(n^{-} \) x,0,1/2;1/4,0,1/2
(4_x^{-1} \parallel 1/2,1/2,1/2)

(20) a (1/2,0,0) y+1/2,y
(4_y \parallel 1/2,1/2,1/2)

(21) n (1/2,1/2,1/2) x,y,x
(m_z \parallel 1/2,1/2,1/2)

(22) \(n^{4-} \) 1/2,1/2,1/2
(4_y \parallel 1/2,1/2,1/2)

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 i 1</td>
<td>(1) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [u,v,w]</td>
</tr>
<tr>
<td></td>
<td>(5) z,x,y [w,u,v]</td>
</tr>
<tr>
<td></td>
<td>(6) z,x,y [w,u,v]</td>
</tr>
<tr>
<td></td>
<td>(7) z,x,y [w,u,v]</td>
</tr>
<tr>
<td></td>
<td>(8) z,x,y [w,u,v]</td>
</tr>
<tr>
<td></td>
<td>(9) y,z,x [v,w,u]</td>
</tr>
<tr>
<td></td>
<td>(10) y,z,x [v,w,u]</td>
</tr>
<tr>
<td></td>
<td>(11) y,z,x [v,w,u]</td>
</tr>
<tr>
<td></td>
<td>(12) y,z,x [v,w,u]</td>
</tr>
<tr>
<td></td>
<td>(13) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(14) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(15) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
</tr>
<tr>
<td></td>
<td>(17) x+1/2,z+1/2,y+1/2 [w,v,u]</td>
</tr>
<tr>
<td></td>
<td>(18) x+1/2,z+1/2,y+1/2 [w,v,u]</td>
</tr>
<tr>
<td></td>
<td>(19) x+1/2,z+1/2,y+1/2 [w,v,u]</td>
</tr>
<tr>
<td></td>
<td>(20) x+1/2,z+1/2,y+1/2 [w,v,u]</td>
</tr>
<tr>
<td></td>
<td>(21) z+1/2,y+1/2,x+1/2 [w,v,u]</td>
</tr>
<tr>
<td></td>
<td>(22) z+1/2,y+1/2,x+1/2 [w,v,u]</td>
</tr>
<tr>
<td></td>
<td>(23) z+1/2,y+1/2,x+1/2 [w,v,u]</td>
</tr>
<tr>
<td></td>
<td>(24) z+1/2,y+1/2,x+1/2 [w,v,u]</td>
</tr>
</tbody>
</table>

12 h 2.. x,0,1/2 [u,0,0] x,0,1/2 [u,0,0] 1/2,x,0 [0,u,0] 1/2,x,0 [0,u,0]

0,1/2,x [0,0,u] 0,1/2,x [0,0,u] 1/2,x+1/2,0 [0,u,0] 1/2,x+1/2,0 [0,u,0]

x+1/2,0,1/2 [u,0,0] x+1/2,0,1/2 [u,0,0] 0,1/2,x+1/2 [0,0,u] 0,1/2,x+1/2 [0,0,u]

12 g 2.. x,1/2,0 [u,0,0] x,1/2,0 [u,0,0] 0,x,1/2 [0,u,0] 0,x,1/2 [0,u,0]

1/2,0,x [0,u,0] 1/2,0,x [0,u,0] 0,x+1/2,1/2 [0,u,0] 0,x+1/2,1/2 [0,u,0]

x+1/2,1/2,0 [u,0,0] x+1/2,1/2,0 [u,0,0] 1/2,0,x+1/2 [0,u,0] 1/2,0,x+1/2 [0,u,0]

12 f 2.. x,0,0 [u,0,0] x,0,0 [u,0,0] 0,x,0 [0,u,0] 0,x,0 [0,u,0]

0,0,x [0,0,u] 0,0,x [0,0,u] 1/2,x+1/2,1/2 [0,u,0] 1/2,x+1/2,1/2 [0,u,0]

x+1/2,1/2,1/2 [u,0,0] x+1/2,1/2,1/2 [u,0,0] 1/2,1/2,x+1/2 [0,u,0] 1/2,1/2,x+1/2 [0,u,0]
8 e 3. x,x,x [u,u,u]
 x,x,x [u,u,u]
 x+1/2,x+1/2,x+1/2 [u,u,u]
 x+1/2,x+1/2,x+1/2 [u,u,u]

6 d 4 1/4,0,1/2 [u,0,0]
 1/2,3/4,0 [0,u,0]
 0,1/2,1/4 [0,0,u]
 1/2,3/4,0 [0,u,0]
 0,1/2,1/4 [0,0,u]
 1/2,3/4,0 [0,u,0]
 0,1/2,1/4 [0,0,u]
 1/2,0,1/4 [0,0,u]
 1/2,0,3/4 [0,0,u]

6 c 4 1/4,1/2,0 [u,0,0]
 0,3/4,1/2 [0,u,0]
 0,1/2,0 [0,0,0]
 1/2,0,0 [0,0,0]
 0,1/2,0 [0,0,0]
 1/2,0,0 [0,0,0]
 0,1/2,0 [0,0,0]
 1/2,0,0 [0,0,0]

2 a 23. 0,0,0 [0,0,0]
 1/2,1/2,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4'm'm
a* = a b* = b
Origin at 1/2,0,z

Along [1,1,1] p31m
a* = (2a - b - c)/3 b* = (-a + 2b - c)/3
Origin at x,x,x

Along [1,1,0] p21m
a* = (-a + b)/2 b* = c/2
Origin at x,x,0
Origin at 231°

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2}; \quad z \leq \min(x,y)\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 1/2,1/2,0 & \quad 0,1/2,0 & \quad 1/2,1/2,1/2
\end{align*}
\]

Symmetry Operations

For 1 + set

\[
\begin{align*}
(1) & \quad 1 \\
(1,0,0,0) & \quad (2) & \quad 2,0,0 \, z \\
(2,0,0,0) & \quad (3) & \quad 2,0,0 \, y,0 \\
(2,0,0,0) & \quad (4) & \quad 2,0,0 \, x,0,0 \\
(2,0,0,0) & \quad (5) & \quad 3^+ \, x,x,x \\
(3,xyz,0,0,0) & \quad (6) & \quad 3^+ \, x,x,x \\
(3,xyz,0,0,0) & \quad (7) & \quad 3^+ \, x,x,x \\
(3,xyz,0,0,0) & \quad (8) & \quad 3^- \, x,x,x \\
(3,xyz,0,0,0) & \quad (9) & \quad 3^- \, x,x,x \\
(3,xyz^{-1},0,0,0) & \quad (10) & \quad 3^- \, x,x,x \\
(3,xyz,0,0,0) & \quad (11) & \quad 3^- \, x,x,x \\
(3,xyz,0,0,0) & \quad (12) & \quad 3^- \, x,x,x
\end{align*}
\]
Continued

continued 218.2.1586 & P43n1'

(13) n (1/2,1/2,1/2) x,x,z
(m_{xy} | 1/2,1/2,1/2)

(14) c (0,0,1/2) x+1/2,x,z
(m_{xy} | 1/2,1/2,1/2)

(15) 4^+ 1/2,0,z;1/2,0,1/4
(4 | 1/2,1/2,1/2)

(16) 4^- 0,1/2,z; 0,1/2,1/4
(4^- | 1/2,1/2,1/2)

(17) n (1/2,1/2,1/2) x,y,y
(m_{yz} | 1/2,1/2,1/2)

(18) 4^- x,1/2,0; 1/4,1/2,0
(4^- | 1/2,1/2,1/2)

(19) 4^- x,0,1/2; 1/4,0,1/2
(4^- | 1/2,1/2,1/2)

(20) a (1/2,0,0) x,y+1/2,y
(m_{yz} | 1/2,1/2,1/2)

(21) n (1/2,1/2,1/2) x,y,x
(m_{xz} | 1/2,1/2,1/2)

(22) 4^- 1/2,y,0; 1/2,1/4,0
(4^- | 1/2,1/2,1/2)

(23) b (0,1/2,0) x+1/2,y,x
(m_{xz} | 1/2,1/2,1/2)

(24) 4^- 0,y,1/2; 0,1/4,1/2
(4^- | 1/2,1/2,1/2)

For 1' + set

(1) 1'
(1' | 0,0,0')

(3) 2' 0,y,0
(2 | 0,0,0')

(5) 3' x,x,x
(3 | 0,0,0')

(6) 3' x,x,x
(3 | 0,0,0')

(7) 3' x,x,x
(3 | 0,0,0')

(9) 3' x,x,x
(3 | 0,0,0')

(10) 3' x,x,x
(3 | 0,0,0')

(11) 3' x,x,x
(3 | 0,0,0')

(12) 3' x,x,x
(3 | 0,0,0')

(13) n' (1/2,1/2,1/2) x,x,z
(m_{xy} | 1/2,1/2,1/2')

(14) c' (0,0,1/2) x+1/2,x,z
(m_{xy} | 1/2,1/2,1/2')

(15) 4' 1/2,0,z;1/2,0,1/4
(4 | 1/2,1/2,1/2')

(16) 4' 0,1/2,z; 0,1/2,1/4
(4^- | 1/2,1/2,1/2')

(17) n' (1/2,1/2,1/2) x,y,y
(m_{yz} | 1/2,1/2,1/2')

(18) 4' x,1/2,0; 1/4,1/2,0
(4^- | 1/2,1/2,1/2')

(19) 4' x,0,1/2; 1/4,0,1/2
(4^- | 1/2,1/2,1/2')

(20) a (1/2,0,0) x,y+1/2,y
(m_{yz} | 1/2,1/2,1/2')

(21) n' (1/2,1/2,1/2) x,y,x
(m_{xz} | 1/2,1/2,1/2')

(22) 4' 1/2,y,0; 1/2,1/4,0
(4^- | 1/2,1/2,1/2')

(23) b' (0,1/2,0) x+1/2,y,x
(m_{xz} | 1/2,1/2,1/2')

(24) 4' 0,y,1/2; 0,1/4,1/2
(4^- | 1/2,1/2,1/2')

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); 1'.

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

24 i 11'

1 + 1' +

(1) x,y,z [0,0,0]

(2) x,y,z [0,0,0]

(3) x,y,z [0,0,0]

(4) x,y,z [0,0,0]

(5) z,x,y [0,0,0]

(6) z,x,y [0,0,0]

(7) z,x,y [0,0,0]

(8) z,x,y [0,0,0]

(9) y,z,x [0,0,0]

(10) y,z,x [0,0,0]

(11) y,z,x [0,0,0]

(12) y,z,x [0,0,0]

(13) y+1/2,x+1/2,z+1/2 [0,0,0]

(14) y+1/2,x+1/2,z+1/2 [0,0,0]

(15) y+1/2,x+1/2,z+1/2 [0,0,0]

(16) y+1/2,x+1/2,z+1/2 [0,0,0]

(17) x+1/2,z+1/2,y+1/2 [0,0,0]

(18) x+1/2,z+1/2,y+1/2 [0,0,0]

(19) x+1/2,z+1/2,y+1/2 [0,0,0]

(20) x+1/2,z+1/2,y+1/2 [0,0,0]

(21) z+1/2,y+1/2,x+1/2 [0,0,0]

(22) z+1/2,y+1/2,x+1/2 [0,0,0]

(23) z+1/2,y+1/2,x+1/2 [0,0,0]

(24) z+1/2,y+1/2,x+1/2 [0,0,0]
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>h</td>
<td>2..1'</td>
<td>x,0,1/2 [0,0,0]</td>
<td>x,0,1/2 [0,0,0]</td>
<td>1/2,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,x [0,0,0]</td>
<td>0,1/2,x [0,0,0]</td>
<td>1/2,x+1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/2,0,1/2 [0,0,0]</td>
<td>x+1/2,0,1/2 [0,0,0]</td>
<td>0,1/2,x+1/2 [0,0,0]</td>
</tr>
<tr>
<td>12</td>
<td>g</td>
<td>2..1'</td>
<td>x,1/2,0 [0,0,0]</td>
<td>x,1/2,0 [0,0,0]</td>
<td>0,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,0,x [0,0,0]</td>
<td>1/2,0,x [0,0,0]</td>
<td>0,x+1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/2,1/2,2 [0,0,0]</td>
<td>x+1/2,1/2,2 [0,0,0]</td>
<td>1/2,0,x+1/2 [0,0,0]</td>
</tr>
<tr>
<td>12</td>
<td>f</td>
<td>2..1'</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,0,x [0,0,0]</td>
<td>0,0,x [0,0,0]</td>
<td>1/2,x+1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/2,1/2,2 [0,0,0]</td>
<td>x+1/2,1/2,2 [0,0,0]</td>
<td>1/2,1/2,x+1/2 [0,0,0]</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>.3.1'</td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x+1/2,x+1/2,x+1/2 [0,0,0]</td>
<td>x+1/2,x+1/2,x+1/2 [0,0,0]</td>
<td>1/2,1/2,x+1/2 [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>d</td>
<td>4 1'</td>
<td>1/4,0,1/2 [0,0,0]</td>
<td>3/4,0,1/2 [0,0,0]</td>
<td>1/2,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,3/4,0 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>c</td>
<td>4 1'</td>
<td>1/4,1/2,0 [0,0,0]</td>
<td>3/4,1/2,0 [0,0,0]</td>
<td>01/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,3/4,1/2 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
<td>1/2,0,3/4 [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>b</td>
<td>222..1'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,1,2/0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>23.1'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1] p4mm1':**
 \[a^* = a \quad b^* = b\]
 Origin at 1/2,0,z

- **Along [1,1,1] p31m1':**
 \[a^* = (2a - b - c)/3 \quad b^* = (-a + 2b - c)/3\]
 Origin at x,x,x

- **Along [1,1,0] p1m11':**
 \[a^* = (-a + b)/2 \quad b^* = c/2\]
 Origin at x,x,0
Origin at 23

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2}; \quad z \leq \min(x, y)\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 1/2,1/2,0 & \quad 0,1/2,0 & \quad 1/2,1/2,1/2 \\
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) \quad & 1 \\
(1) \quad & 0,0,0 \\
\left(1 \right| 0,0,0) \\
(2) \quad & 0,0,z \\
\left(2 \right| 0,0,0) \\
(2_y) \quad & 0,y,0 \\
\left(2_y \right| 0,0,0) \\
(3) \quad & x,0,0 \\
\left(3_x \right| 0,0,0) \\
(4) \quad & 0,0,z \\
\left(2_z \right| 0,0,0) \\
(5) \quad & x,x,x \\
\left(3_{xyz} \right| 0,0,0) \\
(6) \quad & x,x,x \\
\left(3_{xyz}^{-1} \right| 0,0,0) \\
(7) \quad & x,x,x \\
\left(3_{xyz}^{-1} \right| 0,0,0) \\
(8) \quad & x,x,x \\
\left(3_{xyz}^{-1} \right| 0,0,0) \\
(9) \quad & x,x,x \\
\left(3_{xyz}^{-1} \right| 0,0,0) \\
(10) \quad & x,x,x \\
\left(3_{xyz}^{-1} \right| 0,0,0) \\
(11) \quad & x,x,x \\
\left(3_{xyz}^{-1} \right| 0,0,0) \\
(12) \quad & x,x,x \\
\left(3_{xyz}^{-1} \right| 0,0,0) \\
\end{align*}
\]
Continued

(13) n' (1/2,1/2,1/2) x,x,z
(14) c' (0,0,1/2) x+1/2,x,x,z
(15) 4' ' 1/2,0,z;1/2,0,1/4
(16) 4' ' 0,1/2,z; 0,1/2,1/4
(4' z' |1/2,1/2,1/2')

(17) n' (1/2,1/2,1/2) x,y,y
(18) 4' ' x,1/2,0; 1/4,1/2,0
(19) 4' ' x,0,1/2; 1/4,0,1/2
(4' x' |1/2,1/2,1/2')

(21) n' (1/2,1/2,1/2) x,y,x
(22) 4' ' 1/2, y,0; 1/2,1/4,0
(23) b' (0,1/2,0) x+1/2,x,x
(24) 4' ' 0,y,1/2; 0,1/4,1/2
(4' y |1/2,1/2,1/2')

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13).

Positions

Continuity
Wyckoff letter,
Site Symmetry.

24 i 1

(1) x,y,z [u,v,w]
(2) x,y,z [u,v,w]
(3) x,y,z [u,v,w]
(4) x,y,z [u,v,w]

(5) z,x,y [w,u,v]
(6) z,x,y [w,u,v]
(7) z,x,y [w,u,v]
(8) z,x,y [w,u,v]

(9) y,z,x [v,w,u]
(10) y,z,x [v,w,u]
(11) y,z,x [v,w,u]
(12) y,z,x [v,w,u]

(13) y+1/2,x+1/2,z+1/2 [v,w,u]
(14) y+1/2,x+1/2,z+1/2 [v,w,u]
(15) y+1/2,x+1/2,z+1/2 [v,w,u]
(16) y+1/2,x+1/2,z+1/2 [v,w,u]

(17) x+1/2,z+1/2,y+1/2 [u,w,v]
(18) x+1/2,z+1/2,y+1/2 [u,w,v]
(19) x+1/2,z+1/2,y+1/2 [u,w,v]
(20) x+1/2,z+1/2,y+1/2 [u,w,v]

(21) z+1/2,y+1/2,x+1/2 [w,v,u]
(22) z+1/2,y+1/2,x+1/2 [w,v,u]
(23) z+1/2,y+1/2,x+1/2 [w,v,u]
(24) z+1/2,y+1/2,x+1/2 [w,v,u]

12 h 2..
x,0,1/2 [u,0,0]
 x,0,1/2 [u,0,0]
 1/2,x,0 [0,u,0]
 1/2,x,0 [0,u,0]

 0,1/2,x [0,0,u]
 0,1/2,x [0,0,u]
 1/2,x+1/2,0 [0,u,0]
 1/2,x+1/2,0 [0,u,0]

 x+1/2,0,1/2 [u,0,0]
 x+1/2,0,1/2 [u,0,0]
 0,1/2,x+1/2 [0,u,0]
 0,1/2,x+1/2 [0,u,0]

12 g 2..
x,1/2,0 [u,0,0]
 x,1/2,0 [u,0,0]
 0,x,1/2 [0,u,0]
 0,x,1/2 [0,u,0]

 1/2,0,x [0,0,u]
 1/2,0,x [0,0,u]
 0,x+1/2,1/2 [0,u,0]
 0,x+1/2,1/2 [0,u,0]

 x+1/2,1/2,0 [u,0,0]
 x+1/2,1/2,0 [u,0,0]
 1/2,0,x+1/2 [0,u,0]
 1/2,0,x+1/2 [0,u,0]

12 f 2..
x,0,0 [u,0,0]
 x,0,0 [u,0,0]
 0,x,0 [0,u,0]
 0,x,0 [0,u,0]

 0,0,x [0,0,u]
 0,0,x [0,0,u]
 1/2,x+1/2,1/2 [0,u,0]
 1/2,x+1/2,1/2 [0,u,0]

 x+1/2,1/2,1/2 [u,0,0]
 x+1/2,1/2,1/2 [u,0,0]
 1/2,1/2,x+1/2 [0,u,0]
 1/2,1/2,x+1/2 [0,u,0]

4 e .3.
x,x,x [u,u,u]
 x,x,x [u,u,u]
 x,x,x [u,u,u]

 x,x,x [u,u,u]
 x,x,x [u,u,u]
 x+1/2,x+1/2,x+1/2 [u,u,u]
 x+1/2,x+1/2,x+1/2 [u,u,u]

 x+1/2,x+1/2,x+1/2 [u,u,u]
 x+1/2,x+1/2,x+1/2 [u,u,u]
Symmetry of Special Projections

Along [0,0,1] p4m' m'

\[a^* = a \quad b^* = b \]

Origin at 1/2,0,z

Along [1,1,1] p31m'

\[a^* = (2a - b - c)/3 \quad b^* = (-a + 2b - c)/3 \]

Origin at x,x,x

Along [1,1,0] p1m'1

\[a^* = (-a + b)/2 \quad b^* = c/2 \]

Origin at x,x,0
Origin at 23

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad -1/4 \leq z \leq 1/4; \quad y \leq \min(x,1/2-x); \quad -y \leq z \leq y \]

Vertices

\begin{align*}
0,0,0 & \quad 1/2,0,0 \\
1/4,1/4,1/4 & \quad 1/4,1/4,-1/4
\end{align*}

Symmetry Operations

For \((0,0,0) + \text{set} \)

\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \quad 0,0,z \\
(3) & \quad 2 \quad 0,y,0 \\
(4) & \quad 2 \quad x,0,0 \\
(5) & \quad 3^+ \quad x,x,x \\
& \quad (3_{xyz}^1 | 0,0,0) \\
(6) & \quad 3^+ \quad x,x,x \\
& \quad (3_{xyz}^{-1} | 0,0,0) \\
(7) & \quad 3^+ \quad x,x,x \\
& \quad (3_{xyz} | 0,0,0) \\
(8) & \quad 3^+ \quad x,x,x \\
& \quad (3_{xyz}^{-1} | 0,0,0) \\
(9) & \quad 3^- \quad x,x,x \\
& \quad (3_{xyz} | 0,0,0) \\
(10) & \quad 3^- \quad x,x,x \\
& \quad (3_{xyz}^{-1} | 0,0,0) \\
(11) & \quad 3^- \quad x,x,x \\
& \quad (3_{xyz} | 0,0,0) \\
(12) & \quad 3^- \quad x,x,x \\
& \quad (3_{xyz}^{-1} | 0,0,0)
\end{align*}
<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n(1/2,1/2,1/2) \ x,x,z$</td>
<td>$m_{xy}</td>
</tr>
<tr>
<td>$c(0,0,1/2) \ x+1/2,x,z$</td>
<td>$m_{xy}</td>
</tr>
<tr>
<td>$4^+ \ 1/2,0,z;1/2,0,1/4$</td>
<td>$4_z</td>
</tr>
<tr>
<td>$4^- \ 0,1/2,z;0,1/2,1/4$</td>
<td>$4_z^{-1}</td>
</tr>
<tr>
<td>$a(1/2,0,0) \ x,y+1/2,y$</td>
<td>$m_{yz}</td>
</tr>
<tr>
<td>$b(0,1/2,0) \ x,y,x$</td>
<td>$m_{xz}</td>
</tr>
</tbody>
</table>

For $(0,1/2,1/2) +$ set

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t(0,1/2,1/2)$</td>
<td>$0,1/2,1/2$</td>
</tr>
<tr>
<td>$2(0,0,1/2) \ 0,1/4,z$</td>
<td>$2_z</td>
</tr>
<tr>
<td>$2(0,1/2,0) \ 0,y,1/4$</td>
<td>$2_y</td>
</tr>
<tr>
<td>$2(1/2,0,0) \ x,y,y$</td>
<td>$2_{xyz}</td>
</tr>
<tr>
<td>$g(1/4,0,1/4) \ x+1/4,x,z$</td>
<td>$m_{yz}</td>
</tr>
<tr>
<td>$g(1/4,0,-1/4) \ x+1/4,x,z$</td>
<td>$m_{yz}</td>
</tr>
<tr>
<td>$a(1/2,0,0) \ x,y,y$</td>
<td>$m_{yz}</td>
</tr>
<tr>
<td>$g(1/4,0,1/4) \ x+1/4,y,x$</td>
<td>$m_{xz}</td>
</tr>
</tbody>
</table>

For $(1/2,0,1/2) +$ set

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t(1/2,0,1/2)$</td>
<td>$1/2,0,1/2$</td>
</tr>
<tr>
<td>$2(0,0,1/2) \ 1/4,0,z$</td>
<td>$2_z</td>
</tr>
<tr>
<td>$2(0,1/2,0) \ 1/4,y,1/4$</td>
<td>$2_y</td>
</tr>
<tr>
<td>$2(1/2,0,0) \ x,0,1/4$</td>
<td>$2_{xyz}</td>
</tr>
<tr>
<td>$g(-1/4,1/4,0) \ x+1/4,x,z$</td>
<td>$m_{xy}</td>
</tr>
<tr>
<td>$g(1/4,1/4,0) \ x+1/4,x,z$</td>
<td>$m_{xy}</td>
</tr>
<tr>
<td>$g(0,1/4,1/4) \ x,y+1/4,y$</td>
<td>$m_{yz}</td>
</tr>
<tr>
<td>$g(0,1/4,-1/4) \ x+1/4,y,x$</td>
<td>$m_{yz}</td>
</tr>
<tr>
<td>$b(0,1/2,0) \ x,y,z$</td>
<td>$m_{xz}</td>
</tr>
</tbody>
</table>

219.1.1588 - 2 - 3596
Continued

\[\begin{align*}
(1) & \quad t(1/2,1/2,0) \\
(5) & \quad 3^* (1/3,1/3,1/3) \quad x+1/6, x+1/3, x \\
& \quad (3_{xyz}) [1/2,1/2,0] \\
(9) & \quad 3^* (1/3,1/3,1/3) \quad x+1/6, x+1/3, x \\
& \quad (3_{xyz}) [-1/2,1/2,0] \\
(13) & \quad c(0,0,1/2) \quad x,x,z \\
& \quad (m_{xz}) [0,0,1/2] \\
(17) & \quad g(0,1/4,1/4) \quad x,-1/4,1/4; 0,-1/4,1/4 \\
& \quad (m_{yz}) [0,0,1/2] \\
(21) & \quad g(1/4,0,1/4) \quad x+1/4, y+1/4, 0 \\
& \quad (m_{xz}) [0,0,1/2] \\
\end{align*}\]

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,0,1/2); t(1/2,0,1/2); (2); (3); (5); (13).

Positions

\[
\begin{align*}
\text{Multiplicity,} & \quad \text{Wyckoff letter,} \\
\text{Site Symmetry.} & \quad \text{Coordinates} \\
\end{align*}
\]

\[
\begin{align*}
\text{96} & \quad h \quad 1 \\
(1) & \quad x,y,z \quad [u,v,w] \\
(5) & \quad z,x,y \quad [w,u,v] \\
(9) & \quad y,z,x \quad [v,w,u] \\
(13) & \quad y+1/2, x+1/2, z+1/2 \quad [v,u,w] \\
(17) & \quad x+1/2, z+1/2, y+1/2 \quad [u,w,v] \\
(21) & \quad z+1/2, y+1/2, x+1/2 \quad [w,v,u] \\
\end{align*}
\]

\[
\begin{align*}
48 & \quad g \quad 2.. \\
& \quad x,1/4,1/4 [u,0,0] \\
& \quad 1/4,1/4 [u,0,0] \\
& \quad 1/4,1/4, x [0,0,u] \\
& \quad x+1/2,3/4,3/4 [u,0,0] \\
\end{align*}
\]

\[
\begin{align*}
48 & \quad f \quad 2.. \\
& \quad x,0,0 [u,0,0] \\
& \quad x,0,0 [0,u,0] \\
& \quad 0,x,0 [u,0,0] \\
& \quad 0,x,0 [0,u,0] \\
\end{align*}
\]

\[
219.1.1588 - 3 - 3597
\]
Continued

32 e .3. \(x,x,x [u,u,u]\) \(\overline{x},x,x [u,u,u]\)
\(\overline{x},x,x [u,u,u]\) \(x,x,x [u,u,u]\)
\(x+1/2,x+1/2,x+1/2 [u,u,u]\)
\(\overline{x}+1/2,\overline{x}+1/2,\overline{x}+1/2 [u,u,u]\)
\(\overline{x}+1/2,\overline{x}+1/2,\overline{x}+1/2 [u,u,u]\)

24 d \(\overline{4}\) \(1/4,0,0 [u,0,0]\) \(3/4,0,0 [\overline{u},0,0]\) \(0,1/4,0 [0,u,0]\)
\(0,3/4,0 [0,\overline{u},0]\) \(0,0,1/4 [0,0,u]\) \(0,0,3/4 [0,0,\overline{u}]\)

24 c \(\overline{4}\) \(0,1/4,1/4 [u,0,0]\) \(0,3/4,1/4 [\overline{u},0,0]\) \(1/4,0,1/4 [0,u,0]\)
\(1/4,0,3/4 [0,\overline{u},0]\) \(1/4,1/4 [0,0,u]\) \(3/4,1/4 [0,0,\overline{u}]\)

8 b 23. \(1/4,1/4,1/4 [0,0,0]\) \(3/4,3/4,3/4 [0,0,0]\)

8 a 23. \(0,0,0 [0,0,0]\) \(1/2,1/2,1/2 [0,0,0]\)

Symmetry of Special Projections

Along \([0,0,1]\) \(p4'm'm\)
\(a^* = a/2\) \(b^* = b/2\)
Origin at 0,0,z

Along \([1,1,1]\) \(p31m\)
\(a^* = (2a - b - c)/6\) \(b^* = (-a + 2b - c)/6\)
Origin at x,x,x

Along \([1,1,0]\) \(p_2'1m1\)
\(a^* = (-a + b)/2\) \(b^* = c/2\)
Origin at x-1/4,x+1/4,0
Origin at 231°

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad -1/4 \leq z \leq 1/4; \quad y \leq \min(x, 1/2-x); \quad -y \leq z \leq y\]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 1/4,1/4,1/4 \quad 1/4,1/4,-1/4\]

Symmetry Operations

For \((0,0,0) + \text{set}\)

\begin{align*}
(1) & \quad 1 \\
(2) & \quad (2) \quad 0,0,z \quad (2) \quad 0,y,0 \quad (4) \quad 2 \quad x,0,0 \\
(5) & \quad 3^+ \quad x,x,x \quad (3_{xyz}^+ | 0,0,0) \quad (7) \quad 3^+ \quad x,x,x \quad (3_{xyz}^{-1} | 0,0,0) \quad (8) \quad 3^+ \quad x,x,x \quad (3_{xyz}^{-1} | 0,0,0) \\
(9) & \quad 3^- \quad x,x,x \quad (3_{xyz}^{-1} | 0,0,0) \quad (10) \quad 3^- \quad x,x,x \quad (3_{xyz}^{-1} | 0,0,0) \quad (11) \quad 3^- \quad x,x,x \quad (3_{xyz}^{-1} | 0,0,0) \quad (12) \quad 3^- \quad x,x,x \quad (3_{xyz}^{-1} | 0,0,0)
\end{align*}
Continued

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(1 1/2,1/2,0)
(2) 2' 1/4,1/4,z
(2' 1/2,1/2,0)
(3) 2' (0,1/2,0) 1/4,y,0
(3' 1/2,1/2,0)
(4) 2' (1/2,0,0) x,1/4,0
(2' 1/2,1/2,0)

(5) 3' (1/3,1/3,1/3)
(3xyz 1/2,1/2,0)
(6) 3' x+1/2,x,x
(3xyz 1/2,1/2,0)
(7) 3' x+1/2,x,x
(3xyz 1/2,1/2,0)
(8) 3' (1/3,1/3,-1/3)
(3xyz 1/2,1/2,0)

For (0,0,0)' + set

(1) 1'
(1 0,0,0)' 0,0,z
(2) 2' 0,0,z
(2 0,0,0)' 0,0,0)
(3) 2' 0,y,0
(3' 0,0,0)'
(4) 2' 0,0,0)
(2' 0,0,0)'

(5) 3' x,x,x
(3xyz 0,0,0)'
(6) 3' x,x,x
(3xyz 0,0,0)'
(7) 3' x,x,x
(3xyz 0,0,0)'
(8) 3' x,x,x
(3xyz 0,0,0)'

(9) 3' x,x,x
(3xyz 0,0,0)'
(10) 3' x,x,x
(3xyz 0,0,0)'
(11) 3' x,x,x
(3xyz 0,0,0)'
(12) 3' x,x,x
(3xyz 0,0,0)'

(13) n' (1/2,1/2,1/2)
(x,x,z
(mxyz 1/2,1/2,1/2)'
(14) c' (0,0,1/2) x+1/2,x,z
(mxyz 1/2,1/2,1/2)'
(15) 4' x+1/2,0,0; x+1/2,1/2,0,1/4
(4' 1/2,1/2,1/2)'
(16) 4' x+1/2,0,0; x+1/2,1/2,1/4
(4' 1/2,1/2,1/2)'

(17) n' (1/2,1/2,1/2)
(x,y,y
(mxyz 1/2,1/2,1/2)'
(18) 4' x+1/2,0,1/4,1/4,0,1/2
(4' 1/2,1/2,1/2)'
(19) 4' x+1/2,0,1/4,1/4,0,1/2
(4' 1/2,1/2,1/2)'
(20) a' (1/2,0,0) x,y+1/2,y
(mxyz 1/2,1/2,1/2)'

(21) n' (1/2,1/2,1/2)
(x,y,x
(mxyz 1/2,1/2,1/2)'
(22) 4' x+1/2,0,y; 1/2,1/4,0
(4' 1/2,1/2,1/2)'
(23) b' (0,1/2,0) x+1/2,y,x
(mxyz 1/2,1/2,1/2)'
(24) 4' x+1/2,0,y; 1/2,1/4,0
(4' 1/2,1/2,1/2)'

(1) t' (0,1/2,1/2)
(1 0,1/2,1/2)'
(2) 2' (0,0,1/2) 0,1/4,z
(2' 0,1/2,1/2)'
(3) 2' (0,1/2,0) 0,y,1/4
(3' 0,1/2,1/2)'
(4) 2' x,1/4,1/4
(2' 0,1/2,1/2)'

(5) 3' (1/3,1/3,1/3)
(x+1/3,x+1/6,x
(3xyz 0,1/2,1/2)'
(6) 3' x+1/2,x,x
(3xyz 0,1/2,1/2)'
(7) 3' x+1/2,x,x
(3xyz 0,1/2,1/2)'
(8) 3' x+1/2,x,x
(3xyz 0,1/2,1/2)'

(9) 3' (1/3,1/3,1/3)
(x+1/6,x+1/6,x
(3xyz 0,1/2,1/2)'
(10) 3' x+1/2,x,x
(3xyz 0,1/2,1/2)'
(11) 3' x+1/2,x,x
(3xyz 0,1/2,1/2)'
(12) 3' x+1/2,x,x
(3xyz 0,1/2,1/2)'

219.2.1589 - 3 - 3601
Continued

For $\langle 1/2,0,1/2 \rangle + \text{set}$

(1) t' (1/2,1/2,0)
(1/2,1/2,0)'

(2) $2'$ (0,0,1/2) 1/4,0,z
(2' \mid 1/2,0,1/2)'

(3) $2'$ 1/4,y,1/4
(2' \mid 1/2,0,1/2)'

(4) $2'$ (1/2,0,0) x,0,1/4
(2' \mid 1/2,0,1/2)'

(5) $3'$ (1/3,1,3/3)

x+1/6,x-1/6,x
(3' \mid x+1/6,x+1/6,x)'

(6) $3'$ (1/3,-1/3,1/3)

x+1/6,x-1/6,x
(3' \mid x+1/6,x+1/6,x)'

(7) $3'$ x+1/2,x-1/2,x
(3' \mid x+1/2,x+1/2,x)'

(8) $3'$ x+1/2,x+1/2,x
(3' \mid x+1/2,x+1/2,x)'

(9) $3'$ (1/3,3,1/3)

x+1/6,x-1/6,x
(3' \mid x+1/6,x+1/6,x)'

(10) $3'$ x+1/2,x-1/2,x
(3' \mid x+1/2,x+1/2,x)'

(11) $3'$ x+1/2,x-1/2,x
(3' \mid x+1/2,x+1/2,x)'

(12) $3'$ (1/3,-1,3/3)

x+1/6,x+1/3,x
(3' \mid x+1/6,x+1/3,x)'

(13) g' (1/4,1/4,0) x-1/4,x,z
(m'_{xz} \mid 0,1/2,0)'

(14) g' (1/4,-1/4,0) x+1/4,x,z
(m'_{xy} \mid 0,1/2,0)'

(15) 4^{++} 1/4,1/4,z; 1/4,1/4,0
(4' \mid z,1/2,0,0)'

(16) 4^{++} 1/4,1/4,z; 1/4,1/4,0
(4' \mid z,1/2,0,0)'

(17) g' (0,1/4,1/4) x,y,y
(m'_{yz} \mid 0,1/2,0)'

(18) g' (0,1/4,-1/4) x,y,y
(m'_{yz} \mid 0,1/2,0)'

(19) 4^{++} 1/4,1/4,y; 1/4,0,1/4
(4' \mid y,0,1/2,0)'

(20) g' (0,1/4,-1/4) x,y,y
(m'_{yz} \mid 0,1/2,0)'

(21) b' (0,1/2,0) x,y,x
(m'_{xz} \mid 0,1/2,0)'

(22) b' (0,1/2,0) x,y,x
(m'_{xz} \mid 0,1/2,0)'

(23) b' (0,1/2,0) x,y,x
(m'_{xz} \mid 0,1/2,0)'

(24) 4^{++} 0,y,0; 0,1/4,0
(4' \mid y,0,1/2,0)'

For $\langle 1/2,1/2,0 \rangle + \text{set}$

(1) t' (1/2,1/2,0)
(1/2,1/2,0)'

(2) $2'$ 1/4,1/4,z
(2' \mid 1/2,1/2,0)'

(3) $2'$ (0,1/2,0) 1/4,y,0
(2' \mid 1/2,1/2,0)'

(4) $2'$ (1/2,0,0) x,1/4,0
(2' \mid 1/2,1/2,0)'

(5) $3'$ (1/3,1/3,1/3)

x+1/6,x+1/3,x
(3' \mid x+1/6,x+1/3,x)'

(6) $3'$ x+1/2,x-1/2,x
(3' \mid x+1/2,x+1/2,x)'

(7) $3'$ x+1/2,x-1/2,x
(3' \mid x+1/2,x+1/2,x)'

(8) $3'$ (1/3,1/3,1/3)

x+1/6,x+1/3,x
(3' \mid x+1/6,x+1/3,x)'

(9) $3'$ (1/3,1/3,1/3)

x+1/6,x+1/3,x
(3' \mid x+1/6,x+1/3,x)'

(10) $3'$ x+1/2,x-1/2,x
(3' \mid x+1/2,x+1/2,x)'

(11) $3'$ x+1/2,x-1/2,x
(3' \mid x+1/2,x+1/2,x)'

(12) $3'$ (1/3,1/3,1/3)

x+1/6,x+1/3,x
(3' \mid x+1/6,x+1/3,x)'

(13) c' (0,0,1/2) x,x,z
(m'_{xy} \mid 0,1/2,0)'

(14) c' (0,0,1/2) x,x,z
(m'_{xy} \mid 0,1/2,0)'

(15) 4^{++} 0,z; 0,0,1/4
(4' \mid 0,0,1/2)'

(16) 4^{++} 0,z; 0,0,1/4
(4' \mid 0,0,1/2)'

(17) g' (0,1/4,1/4) x,y,-1/4,y
(m'_{yz} \mid 0,1/2,0)'

(18) g' (0,1/4,-1/4) x,y,-1/4,y
(m'_{yz} \mid 0,1/2,0)'

(19) 4^{++} x,-1/4,1/4; 0,-1/4,1/4
(4' \mid 0,1/2,0)'

(20) g' (0,-1/4,1/4) x,y+1/4,y
(m'_{yz} \mid 0,1/2,0)'

(21) g' (1/4,0,1/4) x-1/4,y,x
(m'_{xz} \mid 0,0,1/2)'

(22) g' (1/4,0,1/4) x-1/4,y,x
(m'_{xz} \mid 0,0,1/2)'

(23) g' (1/4,0,1/4) x+1/4,y,x
(m'_{xz} \mid 0,0,1/2)'

(24) 4^{++} -1/4,1/4,y; -1/4,0,1/4
(4' \mid y,0,1/2,0)'

Generators selected
(1); (1,0,0); (0,0,1); (t,0,1,0); (t,0,1/2,1/2); (t,1/2,0,1/2); (2); (3); (5); (13); 1'.
Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) + (0,0,0)' + (0,1/2,1/2)' + (1/2,0,1/2)' + (1/2,1/2,0)'</td>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>96 h 11'</td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(1) x,y,z [0,0,0]</td>
<td>(3) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(5) z,x,y [0,0,0]</td>
<td>(7) z,x,y [0,0,0]</td>
</tr>
<tr>
<td>(9) y,z,x [0,0,0]</td>
<td>(11) y,z,x [0,0,0]</td>
</tr>
<tr>
<td>(13) y+1/2,x+1/2,z+1/2 [0,0,0] (14) y+1/2,x+1/2,z+1/2 [0,0,0]</td>
<td>(15) y+1/2,x+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(17) x+1/2,z+1/2,y+1/2 [0,0,0] (18) x+1/2,z+1/2,y+1/2 [0,0,0]</td>
<td>(19) x+1/2,z+1/2,y+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(21) z+1/2,y+1/2,x+1/2 [0,0,0] (22) z+1/2,y+1/2,x+1/2 [0,0,0]</td>
<td>(23) z+1/2,y+1/2,x+1/2 [0,0,0]</td>
</tr>
<tr>
<td>48 g 2..1' x,1/4,1/4 [0,0,0] x,3/4,1/4 [0,0,0] 1/4,x,1/4 [0,0,0] 1/4,x,3/4 [0,0,0]</td>
<td>(10) y,z,x [0,0,0]</td>
</tr>
<tr>
<td>1/4,1/4,x [0,0,0] 3/4,1/4,x [0,0,0] 3/4,x+1/2,3/4 [0,0,0] 1/4,x+1/2,3/4 [0,0,0]</td>
<td>(11) y,z,x [0,0,0]</td>
</tr>
<tr>
<td>x+1/2,3/4,3/4 [0,0,0] x+1/2,3/4,1/4 [0,0,0] 3/4,3/4,x+1/2 [0,0,0] 3/4,1/4,x+1/2 [0,0,0]</td>
<td>(12) y,z,x [0,0,0]</td>
</tr>
<tr>
<td>48 f 2..1' x,0,0 [0,0,0] x,0,0 [0,0,0] 0,x,0 [0,0,0] 0,x,0 [0,0,0]</td>
<td>(13) y+1/2,x+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>0,0,x [0,0,0] 0,0,x [0,0,0] 1/2,x+1/2,1/2 [0,0,0] 1/2,x+1/2,1/2 [0,0,0]</td>
<td>(16) y+1/2,x+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>x+1/2,1/2,1/2 [0,0,0] x+1/2,1/2,1/2 [0,0,0] 1/2,1/2,x+1/2 [0,0,0] 1/2,1/2,x+1/2 [0,0,0]</td>
<td>(19) x+1/2,z+1/2,y+1/2 [0,0,0]</td>
</tr>
<tr>
<td>32 e .3.1' x,x,x [0,0,0] x,x,x [0,0,0] x,x,x [0,0,0] x,x,x [0,0,0]</td>
<td>(20) x+1/2,z+1/2,y+1/2 [0,0,0]</td>
</tr>
<tr>
<td>x+1/2,x+1/2,x+1/2 [0,0,0] x+1/2,x+1/2,x+1/2 [0,0,0] x+1/2,x+1/2,x+1/2 [0,0,0]</td>
<td>(24) z+1/2,y+1/2,x+1/2 [0,0,0]</td>
</tr>
<tr>
<td>24 d 4 1' 1/4,0,0 [0,0,0] 3/4,0,0 [0,0,0] 0,1/4,0 [0,0,0] 0,1/4,0 [0,0,0]</td>
<td>(14) y+1/2,x+1/2,z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>0,3/4,0 [0,0,0] 0,0,1/4 [0,0,0] 0,0,1/4 [0,0,0] 0,0,1/4 [0,0,0]</td>
<td>(17) x+1/2,z+1/2,y+1/2 [0,0,0]</td>
</tr>
<tr>
<td>24 c 4 1' 0,1/4,1/4 [0,0,0] 0,3/4,1/4 [0,0,0] 1/4,0,1/4 [0,0,0] 1/4,0,1/4 [0,0,0]</td>
<td>(18) x+1/2,z+1/2,y+1/2 [0,0,0]</td>
</tr>
<tr>
<td>1/4,0,3/4 [0,0,0] 1/4,1/4 [0,0,0] 1/4,1/4 [0,0,0] 3/4,1/4 [0,0,0]</td>
<td>(21) z+1/2,y+1/2,x+1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 b 23.1' 1/4,1/4,1/4 [0,0,0] 3/4,3/4,3/4 [0,0,0]</td>
<td>(22) z+1/2,y+1/2,x+1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 a 23.1' 0,0,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]</td>
<td>(23) z+1/2,y+1/2,x+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>Space Group</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>p4mm1'</td>
<td>(a^* = a/2), (b^* = b/2)</td>
</tr>
<tr>
<td>[1,1,1]</td>
<td>p31m1'</td>
<td>(a^* = (2a - b - c)/6), (b^* = (-a + 2b - c)/6)</td>
</tr>
<tr>
<td>[1,1,0]</td>
<td>p1m11'</td>
<td>(a^* = (-a + b)/2), (b^* = c/2)</td>
</tr>
</tbody>
</table>

- \(a^* = a/2\)
- \(b^* = b/2\)
- \(a^* = (2a - b - c)/6\)
- \(b^* = (-a + 2b - c)/6\)
- \(a^* = (-a + b)/2\)
- \(b^* = c/2\)
Origin at 0,0,0

Asymmetric unit

\[0 \leq x < \frac{1}{2}; \quad 0 \leq y < \frac{1}{4}; \quad -\frac{1}{4} \leq z < \frac{1}{4}; \quad y < \min(x,\frac{1}{2} - x); \quad -y < z < y\]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 1/4,1/4,1/4 \quad 1/4,1/4,-1/4\]

Symmetry Operations

For \((0,0,0) + \text{set}\)

\[(1) \quad 1 \quad (2) \quad 2 \quad 0,0,z \quad (3) \quad 2 \quad 0,y,0 \quad (4) \quad 2 \quad x,0,0\]

\[(1) \quad 1 \quad (2) \quad 2 \quad 0,0,0 \quad (2) \quad 2 \quad 0,0,0 \quad (2) \quad 2 \quad 0,0,0\]

\[(5) \quad 3^+ \quad x,x,x \quad (3) \quad 3^+ \quad x,x,x \quad (4) \quad 3^- \quad x,x,x \quad (5) \quad 3^- \quad x,x,x\]

\[(6) \quad 3^- \quad \bar{x},\bar{x},\bar{x} \quad (3) \quad 3^- \quad \bar{x},\bar{x},\bar{x} \quad (4) \quad 3^- \quad \bar{x},\bar{x},\bar{x}\]

\[(7) \quad 3^- \quad \bar{x},\bar{x},\bar{x} \quad (3) \quad 3^- \quad \bar{x},\bar{x},\bar{x} \quad (4) \quad 3^- \quad \bar{x},\bar{x},\bar{x}\]

\[(8) \quad 3^- \quad \bar{x},\bar{x},\bar{x} \quad (3) \quad 3^- \quad \bar{x},\bar{x},\bar{x} \quad (4) \quad 3^- \quad \bar{x},\bar{x},\bar{x}\]

\[(9) \quad 3^- \quad x,x,x \quad (10) \quad 3^- \quad \bar{x},\bar{x},\bar{x} \quad (11) \quad 3^+ \quad \bar{x},\bar{x},\bar{x} \quad (12) \quad 3^- \quad \bar{x},\bar{x},\bar{x}\]

\[(3) \quad 3^- \quad \bar{x},\bar{x},\bar{x} \quad (3) \quad 3^- \quad \bar{x},\bar{x},\bar{x} \quad (3) \quad 3^- \quad \bar{x},\bar{x},\bar{x}\]
(13) n' (1/2,1/2,1/2) x,x,z
(m_{xy} | 1/2,1/2,1/2)

(14) c' (0,0,1/2) x+1/2,x,z
(m_{xy} | 1/2,1/2,1/2)

(15) 4' * 1/2,0,z; 1/2,0,1/4
(4_{z}' | 1/2,1/2,1/2)

(16) 4' * 0,1/2,z; 0,1/2,1/4
(4_{z}' | 1/2,1/2,1/2)

(17) n' (1/2,1/2,1/2) x,y,y
(m_{yz} | 1/2,1/2,1/2)

(18) 4'' x,1/2,0; 1/4,1/2,0
(4_{z}' | 1/2,1/2,1/2)

(19) 4' * x,0,1/2; 1/4,0,1/2
(4_{z}' | 1/2,1/2,1/2)

(20) a' (1/2,0,0) x,y+1/2,y
(m_{yz} | 1/2,1/2,1/2)

(21) n' (1/2,1/2,1/2) x,y,x
(m_{xz} | 1/2,1/2,1/2)

(22) 4' * 1/2,y,0; 1/2,1/4,0
(4_{y}' | 1/2,1/2,1/2)

(23) b' (0,1/2,0) x+1/2,y,x
(m_{xz} | 1/2,1/2,1/2)

(24) 4' * 0,y,1/2; 0,1/4,1/2
(4_{y}' | 1/2,1/2,1/2)

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2)
(1 | 0,1/2,1/2)

(2) 2 (0,0,1/2) 0,1/4,z
(2_{z} | 0,1/2,1/2)

(3) 2 (0,1/2,0) 0,y,1/4
(2_{y} | 0,1/2,1/2)

(4) 2 x,1/4,1/4
(2_{x} | 0,1/2,1/2)

(5) 3* (1/3,1/3,1/3) x-1/3,x-1/6,x
(3_{xyz} | 0,1/2,1/2)

(6) 3* x,x+1/2,x
(3_{xyz}^{-1} | 0,1/2,1/2)

(7) 3* (-1/3,1/3,1/3) x+1/3,x-1/6,x
(3_{xyz}^{-1} | 0,1/2,1/2)

(8) 3* x,x+1/2,x
(3_{xyz}^{-1} | 0,1/2,1/2)

(9) 3* (1/3,1/3,1/3) x+1/6,x+1/6,x
(3_{xyz}^{-1} | 0,1/2,1/2)

(10) 3* x+1/2,x+1/2,x
(3_{xyz}^{-1} | 0,1/2,1/2)

(11) 3* x+1/2,x+1/2,x
(3_{xyz}^{-1} | 0,1/2,1/2)

(12) 3* x+1/2,x+1/2,x
(3_{xyz}^{-1} | 0,1/2,1/2)

(13) g' (1/4,1/4,0) x+1/4,x,z
(m_{xy} | 1/2,0,0)

(14) g' (1/4,1/4,0) x+1/4,x,z
(m_{xy} | 1/2,0,0)

(15) 4' * 1/4,1/4,z; 1/4,1/4,0
(4_{z}' | 1/2,0,0)

(16) 4' * 1/4,1/4,z; 1/4,1/4,0
(4_{z}' | 1/2,0,0)

(17) a' (1/2,0,0) x,y,y
(m_{yz} | 1/2,0,0)

(18) 4' * x,0,0; 1/4,0,0
(4_{x} | 1/2,0,0)

(19) 4' * x,0,0; 1/4,0,0
(4_{x} | 1/2,0,0)

(20) a' (1/2,0,0) x,y,y
(m_{yz} | 1/2,0,0)

(21) g' (1/4,0,1/4) x+1/4,y,x
(m_{xz} | 1/2,0,0)

(22) 4' * x+1/4,y,x
(4_{y}' | 1/2,0,0)

(23) g' (1/4,0,1/4) x+1/4,y,x
(m_{xz} | 1/2,0,0)

(24) 4' * x+1/4,y,1/4; 1/4,0,1/4
(4_{y}' | 1/2,0,0)

For (1/2,0,1/2) + set

(1) t (1/2,0,1/2)
(1 | 1/2,0,1/2)

(2) 2 (0,0,1/2) 1/4,0,z
(2_{z} | 1/2,0,1/2)

(3) 2 (0,1/2,0) 1/4,y,1/4
(2_{y} | 1/2,0,1/2)

(4) 2 (1/2,0,0) 0,x,1/4
(2_{x} | 1/2,0,1/2)

(5) 3* (1/3,1/3,1/3) x+1/6,x+1/6,x
(3_{xyz}^{-1} | 1/2,0,1/2)

(6) 3* x+1/2,x-1/2,x
(3_{xyz}^{-1} | 1/2,0,1/2)

(7) 3* x+1/2,x-1/2,x
(3_{xyz}^{-1} | 1/2,0,1/2)

(8) 3* x+1/2,x-1/2,x
(3_{xyz}^{-1} | 1/2,0,1/2)

(9) 3* (1/3,1/3,1/3) x+1/6,x+1/3,x
(3_{xyz}^{-1} | 1/2,0,1/2)

(10) 3* x+1/2,x,x
(3_{xyz}^{-1} | 1/2,0,1/2)

(11) 3* x+1/2,x,x
(3_{xyz}^{-1} | 1/2,0,1/2)

(12) 3* (1/3,-1/3,1/3) x-1/6,x+1/3,x
(3_{xyz}^{-1} | 1/2,0,1/2)

(13) g' (1/4,1/4,0) x-1/4,x,z
(m_{xy} | 1/2,0,0)

(14) g' (-1/4,1/4,0) x-1/4,x,z
(m_{xy} | 1/2,0,0)

(15) 4' * 1/4,1/4,z; 1/4,1/4,0
(4_{z}' | 1/2,0,0)

(16) 4' * 1/4,1/4,z; -1/4,1/4,0
(4_{z}' | 1/2,0,0)

(17) g' (0,1/4,1/4) x,y+1/4,y
(m_{yz} | 1/2,0,0)

(18) 4' * x,1/4,-1/4; 0,1/4,-1/4
(4_{x} | 1/2,0,0)

(19) 4' * x,1/4,-1/4; 0,1/4,-1/4
(4_{x} | 1/2,0,0)

(20) g' (0,1/4,-1/4) x,y+1/4,y
(m_{yz} | 1/2,0,0)

(21) b' (0,1/2,0) x,y,x
(m_{xz} | 1/2,0,0)

(22) 4' * x,y,0; 0,1/4,0
(4_{y}' | 1/2,0,0)

(23) b' (0,1/2,0) x,y,x
(m_{xz} | 1/2,0,0)

(24) 4' * 0,y,0; 0,1/4,0
(4_{y}' | 1/2,0,0)
Continued 219.3.1590 F4'3c'
32 e .3. x,x,x [u,u,u]
 x,x,x [u,u,u]
 x,x,x [u,u,u]
 x+1/2,x+1/2,x+1/2 [u,u,u]
 x+1/2,x+1/2,x+1/2 [u,u,u]
24 d 4' 1/4,0,0 [0,0,0]
 3/4,0,0 [0,0,0]
 0,1/4,0 [0,0,0]
24 c 4' 0,1/4,1/4 [0,0,0]
 0,0,1/4 [0,0,0]
 1/4,0,3/4 [0,0,0]
7 b 23. 1/4,1/4,1/4 [0,0,0]
 3/4,3/4,3/4 [0,0,0]
8 a 23. 0,0,0 [0,0,0]
 1/2,1/2,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4m'm'
 a* = a/2 b* = b/2
 Origin at 0,0,z
Along [1,1,1] p31m'
 a* = (2a - b - c)/6 b* = (-a + 2b - c)/6
 Origin at x,x,x
Along [1,1,0] p1m'1
 a* = (-a + b)/2 b* = c/2
 Origin at x,x,0
Origin on \([1,1,1]\) at midpoint of three non-intersecting pairs of parallel 2 axes and of three non-intersecting pairs of parallel 21 axes

Asymmetric unit

\[\frac{1}{4} \leq x \leq \frac{1}{2}; \quad \frac{1}{4} \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2}; \quad z \leq \text{min}(x,y)\]

Vertices

\[
\begin{align*}
1/4, 1/4, 0 & \quad 1/2, 1/4, 0 & \quad 1/2, 1/2, 0 & \quad 1/4, 1/2, 0 \\
1/4, 1/4, 1/4 & \quad 1/2, 1/4, 1/4 & \quad 1/2, 1/2, 1/2 & \quad 1/4, 1/2, 1/4
\end{align*}
\]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad (0,0,0) \\
(2) & \quad (0,0,1/2) \quad \frac{1}{4}, 0, z \\
(3) & \quad (0,1/2,0) \quad 0, y, 1/4 \\
(4) & \quad (1/2,0,0) \quad x, 1/4, 0 \\
(5) & \quad 3^+ \quad x,x,x \\
(6) & \quad 3^+ \quad \frac{x+1}{2}, x, x \\
(7) & \quad 3^+ \quad x+1/2, x-1/2, x \\
(8) & \quad 3^+ \quad x, x+1/2, x \\
(9) & \quad 3^- \quad (-1/3, 1/2, 1/3) \\
(10) & \quad 3^- \quad (1/3, 1/3, -1/3) \\
(11) & \quad (1/3, -1/3, 1/3) \\
(12) & \quad \frac{x+1}{2}, x+1/6, x \\
(13) & \quad 3xyz \quad \frac{1}{2}, 1/4, 1/4 \\
(14) & \quad (1/4, 1/4, 1/4) \quad x,x,z \\
(15) & \quad 4^+ \quad \frac{1}{2}, 1/2, 1/4; \quad 1/2, 1/4, 1/8 \\
(16) & \quad 3^- \quad 1/4, z; \quad 0, 1/4, 3/8 \\
(17) & \quad 3xyz \quad 1/4, 1/4, 1/4 \\
(18) & \quad (1/4, 1/4, 1/4) \quad x, y, y \\
(19) & \quad 4^+ \quad 1/4, 1/4, 1/4 \\
(20) & \quad (1/4, 1/4, 1/4) \quad x, y+1/2, y \\
(21) & \quad (1/4, 1/4, 1/4) \quad x, y, x \\
(22) & \quad 4^+ \quad 3/4, 3/4, 3/4 \\
(23) & \quad d \quad 3/4, 3/4, 3/4 \\
(24) & \quad 4^- \quad -1/4, y, 1/2; \quad -1/4, 3/8, 1/2 \\
\end{align*}
\]

For \((1/2,1/2,1/2) + \) set

\[
\begin{align*}
(1) & \quad t(1/2,1/2,1/2) \\
(2) & \quad 0, 1/4, z \\
(3) & \quad 1/4, y, 0 \\
(4) & \quad x, 0, 1/4 \\
(5) & \quad 3^- \quad (1/2, 1/2, 1/2) \quad x, x, x \\
(6) & \quad 3^- \quad (1/6, 1/6, 1/6) \quad x-1/6, x+1/3, x \\
(7) & \quad 3^- \quad (1/6, 1/6, 1/6) \quad x+1/6, x+1/6, x \\
(8) & \quad 3^- \quad (1/6, 1/6, 1/6) \quad x+1/3, x+1/6, x \\
(9) & \quad 3^- \quad (1/2, 1/2, 1/2) \quad x, x, x \\
(10) & \quad 3^- \quad (1/6, 1/6, 1/6) \quad x+1/6, x+1/6, x \\
(11) & \quad 3^- \quad (1/6, 1/6, 1/6) \quad x+1/3, x+1/6, x \\
(12) & \quad 3^- \quad (1/6, 1/6, 1/6) \quad x-1/6, x+1/3, x \\
(13) & \quad d \quad (3/4, 3/4, 3/4) \quad x, x, z \\
(14) & \quad d \quad (1/4, 1/4, 1/4) \quad x+1/2, x, z \\
(15) & \quad 4^+ \quad 1/2, 1/4, z; \quad 1/2, 1/4, 1/8 \\
(16) & \quad 4^- \quad 0, 1/4, z; \quad 0, 1/4, 3/8 \\
(17) & \quad d \quad (3/4, 3/4, 3/4) \quad x, y, y \\
(18) & \quad d \quad (3/4, 3/4, 3/4) \quad x+1/2, 1/4; \quad 1/8, 1/2, 1/4 \\
(19) & \quad 4^- \quad 0, 1/4, 1/8; \quad 3/8, 0, 1/4 \\
(20) & \quad d \quad (1/4, 1/4, 1/4) \quad x, y+1/2, y \\
(21) & \quad d \quad (3/4, 3/4, 3/4) \quad x, y, x \\
(22) & \quad 4^- \quad 1/4, y, 0; \quad 1/4, 0, 3/8 \\
(23) & \quad d \quad (1/4, 1/4, 1/4) \quad x, y+1/2, y; \quad 1/4, 1/8, 1/2 \\
(24) & \quad 4^- \quad 1/4, y, 1/2; \quad 1/4, 1/8, 1/2 \\
\end{align*}
\]

Generators selected

\(1; t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13).\)
Positions

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x + 1/2, y + 1/2, z + 1/2 [u,v,w]</td>
</tr>
<tr>
<td>(3) x, y + 1/2, z + 1/2 [u,v,w]</td>
<td>(4) x + 1/2, y + 1/2, z [u,v,w]</td>
</tr>
<tr>
<td>(5) z,x,y [w,u,v]</td>
<td>(6) x + 1/2, y, z + 1/2 [u,v,w]</td>
</tr>
<tr>
<td>(7) z + 1/2, x + y + 1/2 [w,u,v]</td>
<td>(8) z, x + 1/2, y + 1/2 [w,u,v]</td>
</tr>
<tr>
<td>(9) y,z,x [v,w,u]</td>
<td>(10) y + 1/2, z, x + 1/2 [v,w,u]</td>
</tr>
<tr>
<td>(11) y + 1/2, z + 1/2, x [v,w,u]</td>
<td>(12) y + 1/2, z, x + 1/2 [v,w,u]</td>
</tr>
<tr>
<td>(13) y + 1/4, x + 1/4, z + 1/4 [v, w, u]</td>
<td>(14) y + 1/4, x + 3/4, z + 3/4 [v, w, u]</td>
</tr>
<tr>
<td>(15) x + 3/4, x + 1/4, z + 3/4 [u, v, w]</td>
<td>(16) y + 1/4, x + 3/4, z + 1/4 [v, u, w]</td>
</tr>
<tr>
<td>(17) x + 1/4, z + 1/4, y + 1/4 [v, w, u]</td>
<td>(18) x + 3/4, z + 3/4, y + 1/4 [u, v, w]</td>
</tr>
<tr>
<td>(19) x + 1/4, z + 1/4, y + 3/4 [u, v, w]</td>
<td>(20) x + 3/4, z + 1/4, y + 3/4 [u, w, v]</td>
</tr>
<tr>
<td>(21) z + 1/4, y + 1/4, x + 1/4 [w, v, u]</td>
<td>(22) z + 3/4, y + 1/4, x + 1/4 [w, v, u]</td>
</tr>
<tr>
<td>(23) z + 3/4, y + 1/4, x + 3/4 [w, v, u]</td>
<td>(24) z + 1/4, y + 3/4, x + 3/4 [w, v, u]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1] p4gm'**
 - \(a^* = (a - b)/2 \)
 - \(b^* = (a + b)/2 \)

- **Along [1,1,1] p31m**
 - \(a^* = (2a - b - c)/3 \)
 - \(b^* = (-a + 2b - c)/3 \)

- **Along [1,1,0] \(c_{\alpha}p1m1 \)**
 - \(a^* = (-a + b)/2 \)
 - \(b^* = c/2 \)

Origin at 0,1/4,z

- **Origin at x,x,x**

Origin at x,x+1/4,0
Origin on 31' [1,1,1] at midpoint of three non-intersecting pairs of parallel 21' axes and of three non-intersecting pairs of parallel 211' axes

Asymmetric unit
\[\frac{1}{4} \leq x \leq \frac{1}{2}; \quad \frac{1}{4} \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{2}; \quad z \leq \min(x,y) \]

Vertices

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4,1/4,0</td>
<td>1/2,1/4,0</td>
<td>1/2,1/2,0</td>
</tr>
<tr>
<td>1/4,1/4,1/4</td>
<td>1/2,1/4,1/2</td>
<td>1/2,1/2,1/2</td>
</tr>
<tr>
<td>1/4,1/2,1/4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(2) 2 (0,0,1/2) 1/4,0,z
(2 | 1/2,0,1/2)

(3) 2 (0,1/2,0) 0,y,1/4
(2 | 0,1/2,1/2)

(4) 2 (1/2,0,0) x,1/4,0
(2 | 1/2,1/2,0)

(5) 3' x,x,x
(3 | 0,0,0)

(6) 3' \text{ x+1/2, x}, \text{x}
(3 | 1/2,1/2,0)

(7) 3' \text{x+1/2, x-1/2, x}
(3 | 1/2,0,1/2)

(8) 3' \text{ x, x+1/2, x}
(3 | 0,1/2,1/2)

(9) 3' x,x,x
(3 | 1/2,1/2,0)

(10) 3' \text{-1/3,1/3,1/3}
(3 | 0,1/2,1/2)

(11) 3' \text{1/3,1/-3,1/3}
(3 | 0,1/2,1/2)

(12) 3' \text{1/3,-1/3,1/3}
(3 | 0,1/2,1/2)

(13) d (1/4,1/4,1/4) x,x,z
(m | 1/4,1/4,1/4)

(14) d (-1/4,1/4,3/4) x+1/2, x,z
(m | 1/4,3/4,3/4)

(15) 4' \text{1/2,1/4,1/4}
(3 | 1/2,1/2,0)

(16) 4' \text{0,3/4,1/2; 0,3/4,1/2}
(4 | 3/4,1/2,1/2)

(17) d (1/4,1/4,1/4) x,y,y
(m | 1/4,1/4,1/4)

(18) 4' \text{x,1/-2,1/-4; 3/8,1/-2,1/-4}
(4 | 3/4,3/4,3/4)

(19) 4' \text{x,0,3/4; 1/8,0,3/4}
(4 | 3/4,3/4,3/4)

(20) d (3/4,-1/4,1/4) x,y+1/2, y
(m | 3/4,1/4,1/4)

(21) d (1/4,1/4,1/4) x,y,x
(m | 1/4,1/4,1/4)

(22) 4' \text{3/4,3/4,3/4}
(3 | 0,1/2,1/2)

(23) d (1/4,3/4,-1/4) x+1/2, y,x
(m | 3/4,3/4,3/4)

(24) 4' \text{-1/4,1/-4,1/-4; -1/4,3/8,1/-2}
(4 | 1/4,3/4,3/4)

For (1/2,1/2,1/2) + set

(1) t (1/2,1/2,1/2)
(1 | 1/2,1/2,1/2)

(2) 2 0,1/4,z
(2 | 1/2,0,1/2)

(3) 2 1/4,y,0
(2 | 1/2,0,1/2)

(4) 2 x,0,1/4
(2 | 0,1/2,1/2)

(5) 3' (1/2,1/2,1/2) x,x,x
(3 | 1/2,1/2,1/2)

(6) 3' (1/6,-1/6,1/6)
(3 | 0,0,1/2)

(7) 3' (-1/6,1/6,-1/6)
(3 | 0,1/2,2/0)

(8) 3' (1/6,1/6,-1/6)
(3 | 1/2,0,0)

(9) 3' (1/2,1/2,1/2) x,x,x
(3 | 1/2,1/2,1/2)

(10) 3' (1/6,-1/6,-1/6)
(3 | 0,1/2,1/2)

(11) 3' (-1/6,-1/6,-1/6)
(3 | 0,1/2,1/2)

(12) 3' (-1/6,1/6,-1/6)
(3 | 0,1/2,1/2)

(13) d (3/4,3/4,3/4) x,x,z
(m | 3/4,3/4,3/4)

(14) d (1/-4,1/-4,1/-4) x+1/2, x,z
(m | 1/4,3/4,3/4)

(15) 4' 1/2,1/4,1/4;
(4 | 1/4,3/4,3/4)

(16) 4' 0,1/4,z; 0,1/4,3/8
(4 | 1/4,1/4,3/4)

(17) d (3/4,3/4,3/4) x,y,y
(m | 3/4,3/4,3/4)

(18) 4' x,1/2,1/4; 1/8,1/2,1/4
(4 | 1/4,3/4,3/4)

(19) 4' x,0,1/4; 3/8,0,1/4
(4 | 1/4,1/4,3/4)

(20) d (1/4,1/4,-1/4) x,y+1/2, y
(m | 1/4,3/4,3/4)

(21) d (3/4,3/4,3/4) x,y,x
(m | 3/4,3/4,3/4)

(22) 4' 1/4,y,0; 1/4,0,3/8
(4 | 1/4,3/4,3/4)

(23) d (-1/4,1/4,1/4) x+1/2, y,x
(4 | 3/4,1/4,3/4)

(24) 4' 1/4,y,1/2; 1/4,1/8,1/2
(4 | 3/4,1/4,3/4)
Continued

For (0,0,0) + set

<table>
<thead>
<tr>
<th>Positions</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,y,z</td>
<td>48</td>
</tr>
<tr>
<td>x+1/2,y+1/2,z+1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>x,y+1/2,z+1/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Generators selected

| (1) t (1/2,1/2,1/2) | (2) 2` (0,0,1/2) | (3) 2` (0,1,2,0) | (4) 2` (1,2,0,0) |

| Coordinates | (0,0,0) + (1/2,1/2,1/2) + (0,0,0)` + (1/2,1/2,1/2) + |

(1) x,y,z [0,0,0] (2) x+1/2,y+1/2,z+1/2 [0,0,0] (3) x,y+1/2,z+1/2 [0,0,0] (4) x+1/2,y+1/2,z+1/2 [0,0,0] (5) z,x,y [0,0,0] (6) z+1/2,x,y+1/2 [0,0,0] (7) z+1/2,x,y+1/2 [0,0,0] (8) z,x+1/2,y+1/2 [0,0,0]
Continued

(9) \(y,z,x \ [0,0,0] \)

(10) \(y,z+1/2,x+1/2 \ [0,0,0] \)

(11) \(y+1/2,z+1/2,x \ [0,0,0] \)

(12) \(y+1/2,z,x+1/2 \ [0,0,0] \)

(13) \(y+1/4,x+1/4,z+1/4 \ [0,0,0] \)

(14) \(y+1/4,x+1/4,z+3/4,y+1/4 \ [0,0,0] \)

(15) \(y+3/4,x+1/4,z+3/4 \ [0,0,0] \)

(16) \(y+3/4,x+3/4,z+1/4 \ [0,0,0] \)

(17) \(x+1/4,z+1/4,y+1/4 \ [0,0,0] \)

(18) \(x+1/4,z+3/4,y+1/4 \ [0,0,0] \)

(19) \(x+1/4,z+3/4,y+3/4 \ [0,0,0] \)

(20) \(x+3/4,z+1/4,y+3/4 \ [0,0,0] \)

(21) \(z+1/4,y+1/4,x+1/4 \ [0,0,0] \)

(22) \(z+3/4,y+1/4,x+3/4 \ [0,0,0] \)

(23) \(z+3/4,y+3/4,x+1/4 \ [0,0,0] \)

(24) \(z+1/4,y+3/4,x+3/4 \ [0,0,0] \)

24 d 2..1'

\(x,0,1/4 \ [0,0,0] \)

\(x+1/2,0,3/4 \ [0,0,0] \)

1/4,x,0 [0,0,0]

3/4,x+1/2,0 [0,0,0]

0,1/4,x [0,0,0]

0,3/4,x+1/2 [0,0,0]

1/4,x+1/4,1/2 [0,0,0]

1/4,x+3/4,0 [0,0,0]

x+1/4,1/2,1/4 [0,0,0]

\(x+3/4,0,1/4 \ [0,0,0] \)

1/2,1/4,x+1/4 [0,0,0]

0,1/4,x+3/4 [0,0,0]

16 c 3..1'

\(x,x \ [0,0,0] \)

\(x+1/2,x \ [0,0,0] \)

\(x+1/2,x+1/2 \ [0,0,0] \)

\(x+1/2,x+1/2,x \ [0,0,0] \)

\(x+1/4,x+1/4,x+1/4 \ [0,0,0] \)

\(x+1/4,x+3/4,x+3/4 \ [0,0,0] \)

\(x+3/4,x+1/4,x+3/4 \ [0,0,0] \)

\(x+3/4,x+3/4,x+1/4 \ [0,0,0] \)

12 b 41'

\(7/8,0,1/4 \ [0,0,0] \)

\(5/8,0,3/4 \ [0,0,0] \)

1/4,7/8,0 [0,0,0]

\(3/4,5/8,0 \ [0,0,0] \)

0,1/4,7/8 [0,0,0]

0,3/4,5/8 [0,0,0]

12 a 41'

\(3/8,0,1/4 \ [0,0,0] \)

\(1/8,0,3/4 \ [0,0,0] \)

1/4,3/8,0 [0,0,0]

\(3/4,1/8,0 \ [0,0,0] \)

0,1/4,3/8 [0,0,0]

0,3/4,1/8 [0,0,0]

\[\text{Symmetry of Special Projections} \]

\text{Along} [0,0,1] \quad \text{p4g}m1'

\(a^* = (a - b)/2 \)

\(b^* = (a + b)/2 \)

\text{Origin at} 0,1/4,z

\text{Along} [1,1,1] \quad \text{p31m}1'

\(a^* = (2a - b - c)/3 \)

\(b^* = (-a + 2b - c)/3 \)

\text{Origin at} x,x,x

\text{Along} [1,1,0] \quad \text{c1m}11'

\(a^* = (a + b)/2 \)

\(b^* = c/2 \)

\text{Origin at} x,x+1/4,0
Origin on 3 [1,1,1] at midpoint of three non-intersecting pairs of parallel 2 axes and of three non-intersecting pairs of parallel 21 axes

Asymmetric unit

\[\begin{align*}
1/4 \leq x & \leq 1/2; \\
1/4 \leq y & \leq 1/2; \\
0 \leq z & \leq 1/2; \\
z & \leq \text{min}(x,y)
\end{align*} \]

Vertices

\[\begin{align*}
1/4,1/4,0 & \\
1/2,1/4,0 & \\
1/2,1/2,0 & \\
1/4,1/2,0 & \\
1/4,1/4,1/4 & \\
1/2,1/4,1/2 & \\
1/2,1/2,1/2 & \\
1/4,1/2,1/4
\end{align*} \]

Symmetry Operations

For (0,0,0) + set

\[\begin{align*}
(1) & \quad 1 \\
(2) & \quad t(5/2,0,0); t(0,5/2,0); t(0,0,5/2); t(1/2,1/2,1/2); t(1,0,0,0)
\end{align*} \]

(5) \[3^+ x,x,x \]

\[\begin{align*}
(6) & \quad 3^+ x+1/2,x,x \\
(3_{yz}) & \quad 1/2,1/2,0
\end{align*} \]

(9) \[3^- x,x,x \]

\[\begin{align*}
(10) & \quad 3^+ x+1/2,x,x \quad x+1/6,x+1/6,x \\
(3_{yz})^- & \quad 1/2,1/2,0
\end{align*} \]

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13).
Continued 220.3.1593 14'3d'

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>No.</th>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x,y,z [u,v,w]</td>
<td>x+1/2,y+1/2,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>3</td>
<td>x,y+1/2,z+1/2 [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>x+1/2,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>z+1/2,x+1/2,y [w,u,v]</td>
<td>z,x+1/2,y+1/2 [w,u,v]</td>
</tr>
<tr>
<td>6</td>
<td>x,y+1/2,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>y+1/2,x+1/2,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>y+1/2,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>z+1/2,x,y [w,u,v]</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>z+1/2,x+1/2,z [w,u,v]</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>z+1/2,x+1/2,y [w,u,v]</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>z+1/2,x+1/2,z [w,u,v]</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>y,x+1/2,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>y+1/2,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>y+1/2,x+1/2,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>y+1/2,x+1/2,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>z,x+1/2,y+1/2 [w,u,v]</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>z+1/2,x+1/2,y+1/2 [w,u,v]</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>z+1/2,x+1/2,y+1/2 [w,u,v]</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>z+1/2,x+1/2,y+1/2 [w,u,v]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Origin at x,x,x

Symmetry

Along [0,0,1] p4g'm'

Along [1,1,1] p31m'

Along [1,1,0] c1m'1

Origin at 0,1/4,z

\(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \)

\(a^* = (2a - b - c)/3 \) \(b^* = (-a + 2b - c)/3 \) \(a^* = (-a + b)/2 \) \(b^* = c/2 \)
Origin at center \((m\overline{3}m)\)

Asymmetric unit \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq x; \quad z \leq y\)

Vertices \(0,0,0\) \(1/2,0,0\) \(1/2,1/2,0\) \(1/2,1/2,1/2\)

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad (0,0,0) \\

(2) & \quad 2 \quad 0,0,z \\
(2) & \quad (0,0,0) \\

(3) & \quad 2 \quad 0, y, 0 \\
(3) & \quad (0,0,0) \\

(4) & \quad 2 \quad x, 0, 0 \\
(4) & \quad (0,0,0) \\

(5) & \quad 3^+ \quad x, x, x \\
(5) & \quad (3_{xyz} \, | \, 0,0,0) \\

(6) & \quad 3^- \quad x, x, x \\
(6) & \quad (3_{xyz}^{-1} \, | \, 0,0,0) \\

(7) & \quad 3^+ \quad x, x, x \\
(7) & \quad (3_{xyz} \, | \, 0,0,0) \\

(8) & \quad 3^- \quad x, x, x \\
(8) & \quad (3_{xyz}^{-1} \, | \, 0,0,0) \\

(9) & \quad 3^+ \quad x, x, x \\
(9) & \quad (3_{xyz} \, | \, 0,0,0) \\

(10) & \quad 3^- \quad x, x, x \\
(10) & \quad (3_{xyz}^{-1} \, | \, 0,0,0) \\

(11) & \quad 3^+ \quad x, x, x \\
(11) & \quad (3_{xyz} \, | \, 0,0,0) \\

(12) & \quad 3^- \quad x, x, x \\
(12) & \quad (3_{xyz}^{-1} \, | \, 0,0,0)
\end{align*}
\]
Continued 221.1.1594 Pm3m

(13) 2 x,x,0
(2) x,y,0
(14) 2 x,x,0
(2) x,y,0
(15) 4 y,0,z
(4) y,0,0
(16) 4 z,0,0
(4) z,0,0

(17) 4 y,0,0
(2) y,0,0
(18) 2 y,0,0
(2) y,0,0
(19) 2 y,0,0
(2) y,0,0

(21) 4 y,0,0
(2) y,0,0
(22) 2 x,0,x
(2) x,0,x
(23) 4 y,0,x
(2) y,0,x

(25) m 0,0,0
(1) m 0,0,0
(26) m x,x,0
(2) m x,x,0
(27) m x,0,z
(2) m x,0,z

(29) m x,x,x; 0,0,0
(3) m x,x,x; 0,0,0
(30) m x,x,x; 0,0,0
(3) m x,x,x; 0,0,0
(31) m x,x,x; 0,0,0
(3) m x,x,x; 0,0,0

(37) m x,x,z
(2) m x,x,z
(38) m x,x,z
(2) m x,x,z

(41) m x,x,0; 0,0,0
(2) m x,x,0; 0,0,0
(42) m x,x,0; 0,0,0
(2) m x,x,0; 0,0,0

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

48 n 1

(1) x,y,z [u,v,w]
(2) y,z,x [u,v,w]
(3) x,y,z [u,v,w]
(4) x,z,y [u,v,w]
(5) z,x,y [w,u,v]
(6) z,x,y [w,u,v]
(7) z,x,y [w,u,v]
(8) z,x,y [w,u,v]
(9) y,z,x [v,w,u]
(10) y,z,x [v,w,u]
(11) y,z,x [v,w,u]
(12) y,z,x [v,w,u]
(13) y,z,x [v,w,u]
(14) y,z,x [v,w,u]
(15) y,z,x [v,w,u]
(16) y,z,x [v,w,u]
(17) y,z,x [v,w,u]
(18) y,z,x [v,w,u]
(19) y,z,x [v,w,u]
(20) y,z,x [v,w,u]
(21) y,z,x [v,w,u]
(22) y,z,x [v,w,u]
(23) y,z,x [v,w,u]
(24) y,z,x [v,w,u]
(25) y,z,x [v,w,u]
(26) y,z,x [v,w,u]
(27) y,z,x [v,w,u]
(28) y,z,x [v,w,u]
(29) y,z,x [v,w,u]
(30) y,z,x [v,w,u]
(31) y,z,x [v,w,u]
(32) y,z,x [v,w,u]
(33) y,z,x [v,w,u]
(34) y,z,x [v,w,u]
(35) y,z,x [v,w,u]
(36) y,z,x [v,w,u]

221.1.1594 - 2 - 3620
<table>
<thead>
<tr>
<th>Number</th>
<th>Symbol</th>
<th>Description</th>
<th>221.1.1594</th>
<th>Pm3m</th>
</tr>
</thead>
<tbody>
<tr>
<td>(37)</td>
<td>$y \cdot x \cdot z$</td>
<td>$\bar{v} \cdot u \cdot w$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(38)</td>
<td>$y \cdot x \cdot z$</td>
<td>$\bar{v} \cdot u \cdot w$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(39)</td>
<td>$y \cdot x \cdot z$</td>
<td>$\bar{v} \cdot u \cdot w$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(40)</td>
<td>$y \cdot x \cdot z$</td>
<td>$\bar{v} \cdot u \cdot w$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(41)</td>
<td>$x \cdot z \cdot y$</td>
<td>$\bar{u} \cdot w \cdot v$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(42)</td>
<td>$x \cdot z \cdot y$</td>
<td>$\bar{u} \cdot w \cdot v$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(43)</td>
<td>$x \cdot z \cdot y$</td>
<td>$\bar{u} \cdot w \cdot v$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(44)</td>
<td>$x \cdot z \cdot y$</td>
<td>$\bar{u} \cdot w \cdot v$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(45)</td>
<td>$z \cdot y \cdot x$</td>
<td>$\bar{w} \cdot v \cdot u$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(46)</td>
<td>$z \cdot y \cdot x$</td>
<td>$\bar{w} \cdot v \cdot u$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(47)</td>
<td>$z \cdot y \cdot x$</td>
<td>$\bar{w} \cdot v \cdot u$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(48)</td>
<td>$z \cdot y \cdot x$</td>
<td>$\bar{w} \cdot v \cdot u$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1:

<table>
<thead>
<tr>
<th>Number</th>
<th>Symbol</th>
<th>Description</th>
<th>221.1.1594</th>
<th>Pm3m</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>m</td>
<td>$x \cdot x \cdot z$</td>
<td>$\bar{u} \cdot 0 \cdot 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x \cdot x \cdot 0 \cdot 0 \cdot u$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x \cdot x \cdot 0 \cdot 0 \cdot 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x \cdot x \cdot 0 \cdot 0 \cdot 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>m</td>
<td>$z \cdot x \cdot x$</td>
<td>$\bar{0} \cdot 0 \cdot 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$z \cdot x \cdot x \cdot 0 \cdot 0 \cdot u$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$z \cdot x \cdot x \cdot 0 \cdot 0 \cdot 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$z \cdot x \cdot x \cdot 0 \cdot 0 \cdot 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>m</td>
<td>$x \cdot z \cdot x$</td>
<td>$\bar{0} \cdot 0 \cdot 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x \cdot z \cdot x \cdot 0 \cdot 0 \cdot u$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x \cdot z \cdot x \cdot 0 \cdot 0 \cdot 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$x \cdot z \cdot x \cdot 0 \cdot 0 \cdot 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>m</td>
<td>$z \cdot z \cdot x$</td>
<td>$\bar{0} \cdot 0 \cdot 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$z \cdot z \cdot x \cdot 0 \cdot 0 \cdot u$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$z \cdot z \cdot x \cdot 0 \cdot 0 \cdot 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$z \cdot z \cdot x \cdot 0 \cdot 0 \cdot 0$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2:

<table>
<thead>
<tr>
<th>Number</th>
<th>Symbol</th>
<th>Description</th>
<th>221.1.1594</th>
<th>Pm3m</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>j</td>
<td>$1/2 \cdot y \cdot y$</td>
<td>$\bar{0} \cdot 0 \cdot 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1/2 \cdot y \cdot y \cdot 0 \cdot 0 \cdot u$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1/2 \cdot y \cdot y \cdot 0 \cdot 0 \cdot 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1/2 \cdot y \cdot y \cdot 0 \cdot 0 \cdot 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>i</td>
<td>$y \cdot y \cdot 0$</td>
<td>$\bar{0} \cdot 0 \cdot 0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y \cdot y \cdot 0 \cdot 0 \cdot 0 \cdot u$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y \cdot y \cdot 0 \cdot 0 \cdot 0 \cdot 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$y \cdot y \cdot 0 \cdot 0 \cdot 0 \cdot 0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>h</td>
<td>mm2..</td>
<td>x,1/2,0 [0,0,0]</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,x [0,0,0]</td>
<td>1/2,0,x [0,0,0]</td>
<td>1/2,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/2 [0,0,0]</td>
<td>x,0,1/2 [0,0,0]</td>
<td>0,1/2, x [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>.3m</td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>4m.m</td>
<td>x,1/2,1/2 [0,0,0]</td>
<td>x,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,x,1/2 [0,0,0]</td>
<td>1/2,1/2, x [0,0,0]</td>
<td>1/2,1/2,x [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>e</td>
<td>4m.m</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,0 [0,0,0]</td>
<td>0,0,x [0,0,0]</td>
<td>0,0,x [0,0,0]</td>
</tr>
<tr>
<td>3</td>
<td>d</td>
<td>4/mm.m</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>4/mm.m</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>m3m</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>m3m</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1':
\[a^* = a \quad b^* = b \]

Origin at 0,0,z

Along [1,1,1] p6'm'm:
\[a^* = (2a - b - c)/3 \quad b^* = (-a + 2b - c)/3 \]

Origin at x,x,x

Along [1,1,0] p2mm1':
\[a^* = (-a + b)/2 \quad b^* = c \]

Origin at x,x,0
Origin at center \((m\overline{3}m1')\)

Asymmetric unit

\[
0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq x; \quad z \leq y
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 1/2,1/2,0 & \quad 1/2,1/2,1/2
\end{align*}
\]

Symmetry Operations

For 1 + set

\[
\begin{align*}
(1) & \quad 1 \quad (1|0,0,0) \\
(2) & \quad 2 \quad 0,0,z \quad (2|0,0,0) \\
(3) & \quad 2 \quad 0,y,0 \quad (2|0,0,0) \\
(4) & \quad 2 \quad x,0,0 \quad (2,|0,0,0) \\
(5) & \quad 3^+ \quad x,x,x \quad (3_{xyz},|0,0,0) \\
(6) & \quad 3^+ \quad x,x,x \quad (3_{xyz},|0,0,0) \\
(7) & \quad 3^+ \quad x,x,x \quad (3_{xyz},|0,0,0) \\
(8) & \quad 3^+ \quad x,x,x \quad (3_{xyz},|0,0,0) \\
(9) & \quad 3^- \quad x,x,x \quad (3_{xyz},|0,0,0) \\
(10) & \quad 3^- \quad x,x,x \quad (3_{xyz},|0,0,0) \\
(11) & \quad 3^- \quad x,x,x \quad (3_{xyz},|0,0,0) \\
(12) & \quad 3^- \quad x,x,x \quad (3_{xyz},|0,0,0)
\end{align*}
\]
Continued

13	2' x,x,0
14	2' x,x,0
15	4' x,0,0
16	4' x,0,0

17	4' x,0,0
18	4' x,0,0
19	2 0,0
20	4' x,0,0

21	4' 0,0,0
22	4' 0,0,0
23	2 0,0
24	2 0,0,0

25	0,0,0
26	0,0,0
27	0,0,0
28	0,0,0

For 1' + set

1	1'
2	1'
3	2'
4	2'

5	3' x,x,x
6	3' x,x,x
7	3' x,x,x
8	3' x,x,x

9	3' x,x,x
10	3' x,x,x
11	3' x,x,x
12	3' x,x,x

13	2' x,x,0
14	2' x,x,0
15	2' x,x,0
16	2' x,x,0

17	4' x,0,0
18	4' x,0,0
19	4' x,0,0
20	4' x,0,0

21	4' 0,0,0
22	4' 0,0,0
23	4' 0,0,0
24	4' 0,0,0

25	0,0,0
26	0,0,0
27	0,0,0
28	0,0,0

29	3' x,x,x
30	3' x,x,x
31	3' x,x,x
32	3' x,x,x

33	3' x,x,x
34	3' x,x,x
35	3' x,x,x
36	3' x,x,x

| 221.2.1595 | Pm3m1' |
Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); (25); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 n 11'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generator</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(5) z,x,y [0,0,0]</td>
<td>(6) z,x,y [0,0,0]</td>
</tr>
<tr>
<td>(9) y,z,x [0,0,0]</td>
<td>(10) y,z,x [0,0,0]</td>
</tr>
<tr>
<td>(13) y,z,x [0,0,0]</td>
<td>(14) y,z,x [0,0,0]</td>
</tr>
<tr>
<td>(17) x,z,y [0,0,0]</td>
<td>(18) x,z,y [0,0,0]</td>
</tr>
<tr>
<td>(21) z,y,x [0,0,0]</td>
<td>(22) z,y,x [0,0,0]</td>
</tr>
<tr>
<td>(25) x,y,z [0,0,0]</td>
<td>(26) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(29) z,x,y [0,0,0]</td>
<td>(30) z,x,y [0,0,0]</td>
</tr>
<tr>
<td>(33) y,z,x [0,0,0]</td>
<td>(34) y,z,x [0,0,0]</td>
</tr>
<tr>
<td>(37) y,x,z [0,0,0]</td>
<td>(38) y,x,z [0,0,0]</td>
</tr>
<tr>
<td>(41) x,z,y [0,0,0]</td>
<td>(42) x,z,y [0,0,0]</td>
</tr>
<tr>
<td>(45) z,y,x [0,0,0]</td>
<td>(46) z,y,x [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
</tr>
<tr>
<td>1' +</td>
</tr>
</tbody>
</table>

221.2.1595 - 3 - 3625
<table>
<thead>
<tr>
<th>Column</th>
<th>Index</th>
<th>Symbol</th>
<th>Coordinates</th>
<th>Coordinates</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 l m..1'</td>
<td>1/2,y,z [0,0,0]</td>
<td>1/2,y,z [0,0,0]</td>
<td>1/2,y,z [0,0,0]</td>
<td>1/2,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>z,1/2,y [0,0,0]</td>
<td>z,1/2,y [0,0,0]</td>
<td>z,1/2,y [0,0,0]</td>
<td>z,1/2,y [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,z,1/2 [0,0,0]</td>
<td>y,z,1/2 [0,0,0]</td>
<td>y,z,1/2 [0,0,0]</td>
<td>y,z,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,1/2,z [0,0,0]</td>
<td>y,1/2,z [0,0,0]</td>
<td>y,1/2,z [0,0,0]</td>
<td>y,1/2,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,z,y [0,0,0]</td>
<td>1/2,z,y [0,0,0]</td>
<td>1/2,z,y [0,0,0]</td>
<td>1/2,z,y [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>z,y,1/2 [0,0,0]</td>
<td>z,y,1/2 [0,0,0]</td>
<td>z,y,1/2 [0,0,0]</td>
<td>z,y,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>24 k m..1'</td>
<td>0,y,z [0,0,0]</td>
<td>0,y,z [0,0,0]</td>
<td>0,y,z [0,0,0]</td>
<td>0,y,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>z,0,y [0,0,0]</td>
<td>z,0,y [0,0,0]</td>
<td>z,0,y [0,0,0]</td>
<td>z,0,y [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,z,0 [0,0,0]</td>
<td>y,z,0 [0,0,0]</td>
<td>y,z,0 [0,0,0]</td>
<td>y,z,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,0,z [0,0,0]</td>
<td>y,0,z [0,0,0]</td>
<td>y,0,z [0,0,0]</td>
<td>y,0,z [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,z,y [0,0,0]</td>
<td>0,z,y [0,0,0]</td>
<td>0,z,y [0,0,0]</td>
<td>0,z,y [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>z,y,0 [0,0,0]</td>
<td>z,y,0 [0,0,0]</td>
<td>z,y,0 [0,0,0]</td>
<td>z,y,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>12 j m.m21'</td>
<td>1/2,y,y [0,0,0]</td>
<td>1/2,y,y [0,0,0]</td>
<td>1/2,y,y [0,0,0]</td>
<td>1/2,y,y [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,1/2,y [0,0,0]</td>
<td>y,1/2,y [0,0,0]</td>
<td>y,1/2,y [0,0,0]</td>
<td>y,1/2,y [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,y,1/2 [0,0,0]</td>
<td>y,y,1/2 [0,0,0]</td>
<td>y,y,1/2 [0,0,0]</td>
<td>y,y,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>12 i m.m21'</td>
<td>0,y,y [0,0,0]</td>
<td>0,y,y [0,0,0]</td>
<td>0,y,y [0,0,0]</td>
<td>0,y,y [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,0,y [0,0,0]</td>
<td>y,0,y [0,0,0]</td>
<td>y,0,y [0,0,0]</td>
<td>y,0,y [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y,y,0 [0,0,0]</td>
<td>y,y,0 [0,0,0]</td>
<td>y,y,0 [0,0,0]</td>
<td>y,y,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>12 h mm2..1'</td>
<td>x,1/2,0 [0,0,0]</td>
<td>x,1/2,0 [0,0,0]</td>
<td>x,1/2,0 [0,0,0]</td>
<td>x,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,0,x [0,0,0]</td>
<td>1/2,0,x [0,0,0]</td>
<td>1/2,0,x [0,0,0]</td>
<td>1/2,0,x [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [0,0,0]</td>
<td>x,0,1/2 [0,0,0]</td>
<td>x,0,1/2 [0,0,0]</td>
<td>x,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 g .3m1'</td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>6 f 4m.m1'</td>
<td>x,1/2,1/2 [0,0,0]</td>
<td>x,1/2,1/2 [0,0,0]</td>
<td>x,1/2,1/2 [0,0,0]</td>
<td>1/2,x,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,x,1/2 [0,0,0]</td>
<td>1/2,x,1/2 [0,0,0]</td>
<td>1/2,x,1/2 [0,0,0]</td>
<td>x,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>6 e 4m.m1'</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>3 d 4/mm.m1'</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>3 c 4/mm.m1'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
</tbody>
</table>
1 b \(m\overline{3}m1'\) 1/2,1/2,1/2 [0,0,0]
1 a \(m\overline{3}m1'\) 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm1'
\[a^* = a\quad b^* = b\]
Origin at 0,0,z

Along [1,1,1] p6mm1'
\[a^* = (2a - b - c)/3\quad b^* = (-a + 2b - c)/3\]
Origin at x,x,x

Along [1,1,0] p2mm1'
\[a^* = (-a + b)/2\quad b^* = c\]
Origin at x,x,0
Origin at center (m'3'm)

Asymmetric unit

0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ x; z ≤ y

Vertices

0,0,0 1/2,0,0 1/2,1/2,0 1/2,1/2,1/2

Symmetry Operations

1

(1) 1
(2) 2 0,0,z
(2z | 0,0,0)
(3) 2 0,y,0
(2y | 0,0,0)
(4) 2 x,0,0
(2x | 0,0,0)

(5) 3' x,x,x
(3xyz | 0,0,0)
(6) 3' x,x,x
(3xyz⁻¹ | 0,0,0)
(7) 3' x,x,x
(3xyz⁻¹ | 0,0,0)
(8) 3' x,x,x
(3xyz⁻¹ | 0,0,0)

(9) 3' x,x,x
(3xyz⁻¹ | 0,0,0)
(10) 3' x,x,x
(3xyz⁻¹ | 0,0,0)
(11) 3' x,x,x
(3xyz⁻¹ | 0,0,0)
(12) 3' x,x,x
(3xyz⁻¹ | 0,0,0)
Continued

(13) 2' x,x,0	(14) 2' x,x,0	(15) 4' 0,0,z	(16) 4' 0,0,z
(2y, 0,0,0)'	(2y, 0,0,0)'	(4z, 0,0,0)'	(4z, 0,0,0)'
(17) 4' x,0,0	(18) 2' 0,y,y	(19) 2' 0,y,y	(20) 4' x,0,0
(4z' 1,0,0)'	(2y, 0,0,0)'	(2y, 0,0,0)'	(4z, 0,0,0)'
(21) 4' 0,y,0	(22) 2' x,0,x	(23) 4' 0,y,0	(24) 2' x,0,x
(4y, 0,0,0)'	(2x, 0,0,0)'	(4y, 0,0,0)'	(2zx, 0,0,0)'
(25) 1' 0,0,0	(26) m' x,y,0	(27) m' x,0,z	(28) m' 0,y,0
(1', 0,0,0)'	(mxy, 0,0,0)'	(mxy, 0,0,0)'	(mxy, 0,0,0)'
(29) 3' x,x,x; 0,0,0	(30) 3' x,x,x; 0,0,0	(31) 3' x,x,x; 0,0,0	(32) 3' x,x,x; 0,0,0
(3xyz, 0,0,0)'	(3xyz, 0,0,0)'	(3xyz, 0,0,0)'	(3xyz, 0,0,0)'
(33) 3' x,x,x; 0,0,0	(34) 3' x,x,x; 0,0,0	(35) 3' x,x,x; 0,0,0	(36) 3' x,x,x; 0,0,0
(3xyz, 0,0,0)'	(3xyz, 0,0,0)'	(3xyz, 0,0,0)'	(3xyz, 0,0,0)'
(37) m x,x,z	(38) m x,x,z	(39) 4' 0,0,z; 0,0,0	(40) 4' 0,0,z; 0,0,0
(mxyz, 0,0,0)	(mxyz, 0,0,0)	(mxyz, 0,0,0)	(mxyz, 0,0,0)
(41) 4' x,0,0; 0,0,0	(42) m x,y,y	(43) m x,y,y	(44) 4' x,0,0; 0,0,0
(4y, 0,0,0)'	(mxy, 0,0,0)	(mxy, 0,0,0)	(4y, 0,0,0)
(45) 4' 0,y,0; 0,0,0	(46) m x,y,x	(47) 4' 0,y,0; 0,0,0	(48) m x,y,x
(4y, 0,0,0)'	(mxyz, 0,0,0)	(mxyz, 0,0,0)	(mxyz, 0,0,0)

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); (25).

Positions

Multiplicity
Wyckoff letter
Site Symmetry.

<table>
<thead>
<tr>
<th>48</th>
<th>n</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(3) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) z,x,y [w,u,v]</td>
<td>(6) z,x,y [w,u,v]</td>
<td>(7) z,x,y [w,u,v]</td>
</tr>
<tr>
<td>(9) y,z,x [v,w,u]</td>
<td>(10) y,z,x [v,w,u]</td>
<td>(11) y,z,x [v,w,u]</td>
</tr>
<tr>
<td>(13) y,z,x [v,w,u]</td>
<td>(14) y,z,x [v,w,u]</td>
<td>(15) y,z,x [v,w,u]</td>
</tr>
<tr>
<td>(17) x,z,y [u,w,v]</td>
<td>(18) x,z,y [u,w,v]</td>
<td>(19) x,z,y [u,w,v]</td>
</tr>
<tr>
<td>(21) z,y,x [u,w,v]</td>
<td>(22) z,y,x [u,w,v]</td>
<td>(23) z,y,x [u,w,v]</td>
</tr>
<tr>
<td>(25) x,y,z [u,v,w]</td>
<td>(26) x,y,z [u,v,w]</td>
<td>(27) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(29) z,x,y [w,u,v]</td>
<td>(30) z,x,y [w,u,v]</td>
<td>(31) z,x,y [w,u,v]</td>
</tr>
<tr>
<td>(33) y,z,x [v,w,u]</td>
<td>(34) y,z,x [v,w,u]</td>
<td>(35) y,z,x [v,w,u]</td>
</tr>
</tbody>
</table>

221.3.1596 - 2 - 3629
<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(37) $\overline{y}z, x [v, u, w]$</td>
<td>24 m..m $x, x, z [u, u, 0]$</td>
</tr>
<tr>
<td>(38) $y, x, z [v, u, w]$</td>
<td>$x, x, z [u, u, 0]$</td>
</tr>
<tr>
<td>(39) $\overline{y}, x, z [v, u, w]$</td>
<td>$x, x, z [u, u, 0]$</td>
</tr>
<tr>
<td>(40) $y, x, z [v, u, w]$</td>
<td>$x, x, z [u, u, 0]$</td>
</tr>
<tr>
<td>(41) $\overline{x}, z, y [u, w, v]$</td>
<td>24 l..m $1/2, y, z [0, v, w]$</td>
</tr>
<tr>
<td>(42) $\overline{x}, z, y [u, w, v]$</td>
<td>$1/2, y, z [0, v, w]$</td>
</tr>
<tr>
<td>(43) $x, z, y [u, w, v]$</td>
<td>$1/2, y, z [0, v, w]$</td>
</tr>
<tr>
<td>(44) $\overline{x}, z, y [u, w, v]$</td>
<td>$1/2, y, z [0, v, w]$</td>
</tr>
<tr>
<td>(45) $\overline{z}, y, x [w, v, u]$</td>
<td>24 k..m $0, y, z [0, v, w]$</td>
</tr>
<tr>
<td>(46) $\overline{z}, y, x [w, v, u]$</td>
<td>$0, y, z [0, v, w]$</td>
</tr>
<tr>
<td>(47) $z, y, x [w, v, u]$</td>
<td>$0, y, z [0, v, w]$</td>
</tr>
<tr>
<td>(48) $z, y, x [w, v, u]$</td>
<td>$0, y, z [0, v, w]$</td>
</tr>
<tr>
<td>(49) $y, 1/2, z [v, 0, w]$</td>
<td>12 j..m $1/2, y, y [u, u, v]$</td>
</tr>
<tr>
<td>(50) $y, 1/2, z [v, 0, w]$</td>
<td>$1/2, y, y [u, u, v]$</td>
</tr>
<tr>
<td>(51) $y, 1/2, z [v, 0, w]$</td>
<td>$1/2, y, y [u, u, v]$</td>
</tr>
<tr>
<td>(52) $y, 1/2, z [v, 0, w]$</td>
<td>$1/2, y, y [u, u, v]$</td>
</tr>
<tr>
<td>(53) $y, 1/2, z [v, 0, w]$</td>
<td>$1/2, y, y [u, u, v]$</td>
</tr>
<tr>
<td>(54) $y, 1/2, z [v, 0, w]$</td>
<td>$1/2, y, y [u, u, v]$</td>
</tr>
<tr>
<td>(55) $y, 1/2, z [v, 0, w]$</td>
<td>$1/2, y, y [u, u, v]$</td>
</tr>
<tr>
<td>(56) $y, 1/2, z [v, 0, w]$</td>
<td>$1/2, y, y [u, u, v]$</td>
</tr>
<tr>
<td>(57) $y, 1/2, z [v, 0, w]$</td>
<td>$1/2, y, y [u, u, v]$</td>
</tr>
<tr>
<td>(58) $y, 1/2, z [v, 0, w]$</td>
<td>$1/2, y, y [u, u, v]$</td>
</tr>
<tr>
<td>(59) $y, 1/2, z [v, 0, w]$</td>
<td>$1/2, y, y [u, u, v]$</td>
</tr>
<tr>
<td>12</td>
<td>h</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>1/2,0,x [0,0,u]</td>
</tr>
<tr>
<td></td>
<td>(x,0,1/2 [\bar{u},0,0])</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>(x,0,0) [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
</tr>
<tr>
<td></td>
<td>(1/2,\bar{x},1/2 [0,0,0])</td>
</tr>
<tr>
<td>6</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>(0,\bar{x},0 [0,0,0])</td>
</tr>
<tr>
<td>3</td>
<td>d</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along \([0,0,1]\)**: \(p4'm'm\)
 \(a^* = a\) \(b^* = b\)
 Origin at 0,0,z

- **Along \([1,1,1]\)**: \(p6mm\)
 \(a^* = (2a - b - c)/3\) \(b^* = (-a + 2b - c)/3\)
 Origin at x,x,x

- **Along \([1,1,0]\)**: \(p2mm1'\)
 \(a^* = (-a + b)/2\) \(b^* = c\)
 Origin at x,x,0
Origin at center (m\(\overline{3}\)m')

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq x; \quad z \leq y\]

Vertices

- 0,0,0
- 1/2,0,0
- 1/2,1/2,0
- 1/2,1/2,1/2

Symmetry Operations

1. \(1\)
 - (1) \(1\)
 - (2) \(2, 0, 0, 0\)
 - (3) \(2, 0, y, 0\)
 - (4) \(2, x, 0, 0\)
2. \(3\)
 - (5) \(3^+, x, x, x\)
 - (6) \(3^+, x, x, x\)
 - (7) \(3^+, x, x, x\)
 - (8) \(3^+, x, x, x\)
3. \(3\)
 - (9) \(3^-, x, x, x\)
 - (10) \(3^-, x, x, x\)
 - (11) \(3^-, x, x, x\)
 - (12) \(3^-, x, x, x\)
Continued

Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); (25). \)

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[
\begin{array}{cccc}
48 & n & 1 & \\
(1) & x,y,z & [u,v,w] & (2) \bar{x},\bar{y},\bar{z} & [\bar{u},\bar{v},\bar{w}] & (3) \bar{x},y,\bar{z} & [\bar{u},v,w] & (4) x,\bar{y},\bar{z} & [u,\bar{v},\bar{w}] \\
(5) & z,x,y & [w,u,v] & (6) \bar{z},\bar{x},y & [\bar{w},u,\bar{v}] & (7) \bar{z},x,\bar{y} & [w,\bar{u},\bar{v}] & (8) \bar{z},x,y & [w,u,\bar{v}] \\
(9) & y,z,x & [v,w,u] & (10) \bar{y},\bar{z},x & [\bar{v},w,\bar{u}] & (11) \bar{y},z,\bar{x} & [\bar{v},w,\bar{u}] & (12) \bar{y},z,x & [\bar{v},w,\bar{u}] \\
(13) & y,x,z & [\bar{v},\bar{u},w] & (14) \bar{y},\bar{x},\bar{z} & [\bar{v},\bar{u},w] & (15) \bar{y},x,z & [\bar{v},u,\bar{w}] & (16) \bar{y},x,z & [\bar{v},u,\bar{w}] \\
(17) & x,z,y & [\bar{u},\bar{w},v] & (18) \bar{x},\bar{z},y & [\bar{u},\bar{w},v] & (19) \bar{x},z,\bar{y} & [u,\bar{w},\bar{v}] & (20) \bar{x},z,y & [u,\bar{w},\bar{v}] \\
(21) & z,y,x & [w,\bar{v},u] & (22) \bar{z},\bar{y},x & [\bar{w},\bar{v},u] & (23) \bar{z},y,\bar{x} & [w,\bar{v},\bar{u}] & (24) \bar{z},y,\bar{x} & [w,\bar{v},\bar{u}] \\
(25) & \bar{x},y,\bar{z} & [u,v,w] & (26) x,y,\bar{z} & [v,\bar{u},w] & (27) x,\bar{y},z & [u,v,\bar{w}] & (28) x,\bar{y},z & [u,v,\bar{w}] \\
(29) & z,\bar{x},y & [w,\bar{u},v] & (30) \bar{z},x,y & [\bar{w},u,\bar{v}] & (31) \bar{z},x,\bar{y} & [w,u,\bar{v}] & (32) \bar{z},x,y & [w,u,\bar{v}] \\
(33) & \bar{y},z,\bar{x} & [v,\bar{w},u] & (34) y,z,\bar{x} & [v,\bar{w},u] & (35) y,\bar{z},x & [v,\bar{w},u] & (36) y,\bar{z},x & [v,\bar{w},u] \\
\end{array}
\]
<table>
<thead>
<tr>
<th>12</th>
<th>h</th>
<th>mm2..</th>
<th>x,1/2,0 [0,0,0]</th>
<th>x,1/2,0 [0,0,0]</th>
<th>0,x,1/2 [0,0,0]</th>
<th>0,x,1/2 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,0,x [0,0,0]</td>
<td>1/2,0,x [0,0,0]</td>
<td>1/2,x,0 [0,0,0]</td>
<td>1/2,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,0,1/2 [0,0,0]</td>
<td>x,0,1/2 [0,0,0]</td>
<td>0,1/2,x [0,0,0]</td>
<td>0,1/2,x [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>.3m'</td>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>4'm.m'</td>
<td>x,1/2,1/2 [0,0,0]</td>
<td>x,1/2,1/2 [0,0,0]</td>
<td>1/2,x,1/2 [0,0,0]</td>
<td>1/2,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,x,1/2 [0,0,0]</td>
<td>1/2,x,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,x [0,0,0]</td>
<td>1/2,1/2,x [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>e</td>
<td>4'm.m'</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td>3</td>
<td>d</td>
<td>4'/mm.m'</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>4'/mm.m'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>m3m'</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>m3m'</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1'
\[a^* = a \quad b^* = b \]
Origin at 0,0,z

Along [1,1,1] p6'mm'
\[a^* = (2a - b - c)/3 \quad b^* = (-a + 2b - c)/3 \]
Origin at x,x,x

Along [1,1,0] p2'mm'
\[a^* = c \quad b^* = (-a + b)/2 \]
Origin at x,x,0
Origin at center \(m'3'm'\)

Asymmetric unit

\[
0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq x; \quad z \leq y
\]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 1/2,1/2,0 & \quad 1/2,1/2,1/2 \\
\end{align*}
\]

Symmetry Operations

\[
\begin{align*}
(1) & \quad 1 & \quad (1|0,0,0) \\
(2) & \quad 2 & \quad 0,0,0, \quad (2_z|0,0,0) \\
(3) & \quad 2 & \quad 0,y,0, \quad (2_y|0,0,0) \\
(4) & \quad 2 & \quad x,0,0, \quad (2_x|0,0,0) \\
(5) & \quad 3^+ & \quad x,x,x, \quad (3_{xyz}|0,0,0) \\
(6) & \quad 3^+ & \quad x,x,x, \quad (3_{xyz}^{-1}|0,0,0) \\
(7) & \quad 3^+ & \quad x,x,x, \quad (3_{xyz}^{-1}|0,0,0) \\
(8) & \quad 3^+ & \quad x,x,x, \quad (3_{xyz}^{-1}|0,0,0) \\
(9) & \quad 3^+ & \quad x,x,x, \quad (3_{xyz}|0,0,0) \\
(10) & \quad 3^+ & \quad x,x,x, \quad (3_{xyz}|0,0,0) \\
(11) & \quad 3^+ & \quad x,x,x, \quad (3_{xyz}|0,0,0) \\
(12) & \quad 3^+ & \quad x,x,x, \quad (3_{xyz}|0,0,0) \\
\end{align*}
\]
Continued

Wyckoff letter, Multiplicity, Positions

Continued 221.5.1598

48 n 1

Generators selected (1): t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); (25).

Positions

221.5.1598

221.5.1598 - 2 - 3637
Continued

<table>
<thead>
<tr>
<th>12</th>
<th>h</th>
<th>m'm'2.. x,1/2,0 [u,0,0]</th>
<th>x,1/2,0 [u,0,0]</th>
<th>0,x,1/2 [0,u,0]</th>
<th>0,x,1/2 [0,u,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1/2,0,x [0,0,u]</td>
<td>1/2,0,x [0,0,u]</td>
<td>1/2,x,0 [0,u,0]</td>
<td>1/2,x,0 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,0,1/2 [u,0,0]</td>
<td>x,0,1/2 [u,0,0]</td>
<td>0,1/2,x [0,0,u]</td>
<td>0,1/2,x [0,0,u]</td>
</tr>
<tr>
<td>8</td>
<td>g</td>
<td>.3m' x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 f 4m'.m' x,1/2,1/2 [u,0,0]</td>
<td>x,1/2,1/2 [u,0,0]</td>
<td>1/2,x,1/2 [0,u,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,x,1/2 [0,u,0]</td>
<td>1/2,1/2,x [0,0,u]</td>
<td>1/2,1/2,x [0,0,u]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 e 4m'.m' x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
<td>0,x,0 [0,u,0]</td>
<td>0,x,0 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,0 [0,u,0]</td>
<td>0,0,x [0,0,u]</td>
<td>0,0,x [0,0,u]</td>
<td>0,0,x [0,0,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 d 4/m'm'.m' 1/2,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 c 4/m'm'.m' 0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 b m'3m' 1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 a m'3m' 0,0,0 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4m'm'</th>
<th>a⁺ = a</th>
<th>b⁺ = b</th>
<th>Origin at 0,0,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a⁺ = a</td>
<td>b⁺ = b</td>
<td>Origin at x,x,x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,1]</th>
<th>p6m'm'</th>
<th>a⁺ = (2a - b - c)/3</th>
<th>b⁺ = (-2b + c)/3</th>
<th>Origin at x,x,0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Along [1,1,0]</th>
<th>p2m'm'</th>
<th>a⁺ = (-a + b)/2</th>
<th>b⁺ = c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Origin at x,x,0</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (m\(\overline{3}\)m)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq x; \quad z \leq y\]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 1/2,1/2,1/2\]

Symmetry Operations

For \((0,0,0)\) + set

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((1</td>
</tr>
<tr>
<td>2</td>
<td>((2</td>
</tr>
<tr>
<td>3</td>
<td>((3</td>
</tr>
<tr>
<td>4</td>
<td>((4</td>
</tr>
</tbody>
</table>

\[\begin{align*}
(5) \quad &3^+ \quad x,x,x \\
&\quad \left(\begin{smallmatrix} x \quad x \quad x \\
\quad \end{smallmatrix}\right)
\end{align*}\]

\[\begin{align*}
(6) \quad &3^+ \quad x,x,x \\
&\quad \left(\begin{smallmatrix} x \quad x \quad x \\
\quad \end{smallmatrix}\right)
\end{align*}\]

\[\begin{align*}
(7) \quad &3^+ \quad x,x,x \\
&\quad \left(\begin{smallmatrix} x \quad x \quad x \\
\quad \end{smallmatrix}\right)
\end{align*}\]

\[\begin{align*}
(8) \quad &3^+ \quad x,x,x \\
&\quad \left(\begin{smallmatrix} x \quad x \quad x \\
\quad \end{smallmatrix}\right)
\end{align*}\]

\[\begin{align*}
(9) \quad &3^- \quad x,x,x \\
&\quad \left(\begin{smallmatrix} x \quad x \quad x \\
\quad \end{smallmatrix}\right)
\end{align*}\]

\[\begin{align*}
(10) \quad &3^- \quad x,x,x \\
&\quad \left(\begin{smallmatrix} x \quad x \quad x \\
\quad \end{smallmatrix}\right)
\end{align*}\]

\[\begin{align*}
(11) \quad &3^- \quad x,x,x \\
&\quad \left(\begin{smallmatrix} x \quad x \quad x \\
\quad \end{smallmatrix}\right)
\end{align*}\]

\[\begin{align*}
(12) \quad &3^- \quad x,x,x \\
&\quad \left(\begin{smallmatrix} x \quad x \quad x \\
\quad \end{smallmatrix}\right)
\end{align*}\]

\[\begin{align*}
(13) \quad &2 \quad x,x,0
\end{align*}\]

\[\begin{align*}
(14) \quad &2 \quad x,x,0
\end{align*}\]

\[\begin{align*}
(15) \quad &4^- \quad 0,0,z
\end{align*}\]

\[\begin{align*}
(16) \quad &4^- \quad 0,0,z
\end{align*}\]

\[\begin{align*}
(17) \quad &4^- \quad 0,y,0
\end{align*}\]

\[\begin{align*}
(18) \quad &2 \quad 0,y,y
\end{align*}\]

\[\begin{align*}
(19) \quad &2 \quad 0,y,y
\end{align*}\]

\[\begin{align*}
(20) \quad &4^- \quad x,0,0
\end{align*}\]

\[\begin{align*}
(21) \quad &4^- \quad 0,y,0
\end{align*}\]

\[\begin{align*}
(22) \quad &2 \quad x,0,x
\end{align*}\]

\[\begin{align*}
(23) \quad &4^- \quad y,0,0
\end{align*}\]

\[\begin{align*}
(24) \quad &2 \quad x,0,x
\end{align*}\]

\[\begin{align*}
(25) \quad &\overline{1} \quad 0,0,0
\end{align*}\]

\[\begin{align*}
(26) \quad &m \quad x,y,0
\end{align*}\]

\[\begin{align*}
(27) \quad &m \quad x,0,z
\end{align*}\]

\[\begin{align*}
(28) \quad &m \quad 0,y,z
\end{align*}\]

\[\begin{align*}
(29) \quad &3^+ \quad x,x,x;0,0,0
\end{align*}\]

\[\begin{align*}
(30) \quad &3^+ \quad x,x,x;0,0,0
\end{align*}\]

\[\begin{align*}
(31) \quad &3^+ \quad x,x,x;0,0,0
\end{align*}\]

\[\begin{align*}
(32) \quad &3^+ \quad x,x,x;0,0,0
\end{align*}\]

\[\begin{align*}
(33) \quad &3^- \quad x,x,x;0,0,0
\end{align*}\]

\[\begin{align*}
(34) \quad &3^- \quad x,x,x;0,0,0
\end{align*}\]

\[\begin{align*}
(35) \quad &3^- \quad x,x,x;0,0,0
\end{align*}\]

\[\begin{align*}
(36) \quad &3^- \quad x,x,x;0,0,0
\end{align*}\]

\[\begin{align*}
(37) \quad &m \quad x,x,z
\end{align*}\]

\[\begin{align*}
(38) \quad &m \quad x,x,z
\end{align*}\]

\[\begin{align*}
(39) \quad &4^- \quad 0,0,z;0,0,0
\end{align*}\]

\[\begin{align*}
(40) \quad &4^- \quad 0,0,z;0,0,0
\end{align*}\]

\[\begin{align*}
(41) \quad &4^- \quad 0,0,0;0,0,0
\end{align*}\]

\[\begin{align*}
(42) \quad &m \quad x,y,y
\end{align*}\]

\[\begin{align*}
(43) \quad &m \quad x,y,y
\end{align*}\]

\[\begin{align*}
(44) \quad &4^- \quad x,0,0;0,0,0
\end{align*}\]

\[\begin{align*}
(45) \quad &4^- \quad 0,y,0;0,0,0
\end{align*}\]

\[\begin{align*}
(46) \quad &m \quad x,y,x
\end{align*}\]

\[\begin{align*}
(47) \quad &4^- \quad y,0,0;0,0,0
\end{align*}\]

\[\begin{align*}
(48) \quad &m \quad x,y,x
\end{align*}\]

For \((1,0,0)^\prime\) + set

<table>
<thead>
<tr>
<th>No.</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((1</td>
</tr>
<tr>
<td>2</td>
<td>((2</td>
</tr>
<tr>
<td>3</td>
<td>((3</td>
</tr>
<tr>
<td>4</td>
<td>((4</td>
</tr>
</tbody>
</table>

\[\begin{align*}
(5) \quad &3^- \quad \left(\begin{smallmatrix} 1/3,1/3,1/3 \\
+2/3,x+1/3,x \\
(3_{xyz}|1,0,0)^\prime
\end{smallmatrix}\right)
\end{align*}\]

\[\begin{align*}
(6) \quad &3^- \quad \left(\begin{smallmatrix} 1/3,1/3,1/3 \\
+2/3,x+1/3,x \\
(3_{xyz}|1,0,0)^\prime
\end{smallmatrix}\right)
\end{align*}\]

\[\begin{align*}
(7) \quad &3^- \quad \left(\begin{smallmatrix} 1/3,1/3,1/3 \\
+2/3,x+1/3,x \\
(3_{xyz}|1,0,0)^\prime
\end{smallmatrix}\right)
\end{align*}\]

\[\begin{align*}
(8) \quad &3^- \quad \left(\begin{smallmatrix} 1/3,1/3,1/3 \\
+2/3,x+1/3,x \\
(3_{xyz}|1,0,0)^\prime
\end{smallmatrix}\right)
\end{align*}\]

\[\begin{align*}
(9) \quad &3^- \quad \left(\begin{smallmatrix} 1/3,1/3,1/3 \\
+2/3,x+1/3,x \\
(3_{xyz}|1,0,0)^\prime
\end{smallmatrix}\right)
\end{align*}\]

\[\begin{align*}
(10) \quad &3^- \quad \left(\begin{smallmatrix} 1/3,1/3,1/3 \\
+2/3,x+1/3,x \\
(3_{xyz}|1,0,0)^\prime
\end{smallmatrix}\right)
\end{align*}\]
Continued 221.6.1599 P \bar{m}3m

\[
\begin{array}{ll}
(13) & 2' (1/2,1/2,0) \ x+1,x+1/2,0 \\
(14) & 2' (-1/2,1/2,0) \ x+1,x-1/2,0 \\
(15) & 4' \ 1/2,-1/2,z \\
(16) & 4' \ 1/2,1/2,z \\
(17) & 4' \ (1,0,0) \ x,0,0 \\
(18) & 2' \ 1/2,y,y \\
(19) & 2' \ 1/2,y,-y \\
(20) & 2' (1,0,0) \ x,0,0 \\
(21) & 4' \ 1/2,y,-1/2 \\
(22) & 2' \ (1/2,0,1/2) \ x+1/2,0,x \\
(23) & 4' \ 1/2,y,1/2 \\
(24) & 2' \ x+1/2,0,x \\
(25) & \bar{1} \ 1/2,0,0 \\
(26) & a' (1,0,0) \ x,y,0 \\
(27) & a' (1,0,0) \ x,0,z \\
(28) & m' \ 1/2,y,z \\
(29) & 3' \ x,x-1,x; \\
(30) & 3' \ x,x+1/2,x; \\
(31) & 3' \ x,x+1,x; \\
(32) & 3' \ x,x+1,x; \\
(33) & 3' \ x+1,x+1,x; \\
(34) & 3' \ x+1,x-1,x; \\
(35) & 3' \ x+1,x,1; \\
(36) & 3' \ x+1,x-1,x; \\
(37) & g'(1/2,-1/2,0) \ x+1/2,x,z \\
(38) & g'(1/2,1/2,0) \ x+1/2,x,z \\
(39) & g' \ 1/2,1/2,z; 1/2,1/2,0 \\
(40) & g' \ 1/2,1/2,z; 1/2,1/2,0 \\
(41) & 4' \ x+1,0,0; 1/2,0,0 \\
(42) & a' (1,0,0) \ x,y,y \\
(43) & a' (1,0,0) \ x,y,y \\
(44) & 4' \ x+1,0,0; 1/2,0,0 \\
(45) & 4' \ 1/2,0,1/2; 1/2,0,1/2 \\
(46) & g'(1/2,0,1/2) \ x+1/2,y,x \\
(47) & g' \ 1/2,0,1/2; 1/2,0,-1/2 \\
(48) & g' \ 1/2,0,1/2) \ x+1/2,y,x \\
\end{array}
\]

Generators selected (1); t'(1,0,0); t'(0,1,0); t'(0,0,1); (2); (3); (5); (13); (25).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>n 1</td>
</tr>
</tbody>
</table>

\[
(0,0,0) + (1,0,0)'
\]

\[
\begin{array}{ll}
(1) & x,y,z \ [u,v,w] \\
(2) & \bar{x},\bar{y},z \ [\bar{u},\bar{v},w] \\
(3) & \bar{x},y,z \ [\bar{u},v,w] \\
(4) & x,y,z \ [u,v,w] \\
(5) & z,x,y \ [w,u,v] \\
(6) & z,x,y \ [w,u,v] \\
(7) & \bar{z},x,y \ [w,u,v] \\
(8) & \bar{z},x,y \ [w,u,v] \\
(9) & y,z,x \ [v,w,u] \\
(10) & y,z,x \ [v,w,u] \\
(11) & y,z,x \ [v,w,u] \\
(12) & \bar{y},z,x \ [\bar{v},\bar{w},u] \\
(13) & y,x,z \ [v,u,w] \\
(14) & y,x,z \ [v,u,w] \\
(15) & y,x,z \ [v,u,w] \\
(16) & \bar{y},x,z \ [\bar{v},u,w] \\
(17) & x,z,y \ [u,w,\bar{v}] \\
(18) & x,z,y \ [u,w,\bar{v}] \\
(19) & x,z,y \ [u,w,\bar{v}] \\
(20) & x,z,y \ [u,w,\bar{v}] \\
(21) & z,y,x \ [w,v,u] \\
(22) & z,y,x \ [w,v,u] \\
(23) & z,y,x \ [w,v,u] \\
(24) & z,y,x \ [w,v,u] \\
(25) & x,y,z \ [u,v,w] \\
(26) & x,y,z \ [u,v,w] \\
(27) & x,y,z \ [u,v,w] \\
(28) & x,y,z \ [u,v,w] \\
(29) & z,x,y \ [w,u,v] \\
(30) & z,x,y \ [w,u,v] \\
(31) & z,x,y \ [w,u,v] \\
(32) & z,x,y \ [w,u,v] \\
(33) & \bar{y},z,x \ [v,w,u] \\
(34) & y,z,x \ [v,w,u] \\
(35) & \bar{y},z,x \ [\bar{v},w,u] \\
(36) & y,z,x \ [v,w,u] \\
\end{array}
\]
(37) \(\bar{y}, x, z \) [\(v, u, w \)]	(38) \(y, x, z \) [\(v, u, w \)]	(39) \(y, x, z \) [\(v, u, w \)]	(40) \(y, x, z \) [\(v, u, w \)]
(41) \(x, z, y \) [\(u, w, v \)]	(42) \(x, z, y \) [\(u, w, v \)]	(43) \(x, y, z \) [\(u, w, v \)]	(44) \(x, z, y \) [\(u, w, v \)]
(45) \(z, y, x \) [\(w, v, u \)]	(46) \(z, y, x \) [\(w, v, u \)]	(47) \(z, y, x \) [\(w, v, u \)]	(48) \(z, y, x \) [\(w, v, u \)]

<p>| 48 m | 1/2, y, z [(0, v, w)] | 1/2, y, z [(0, v, w)] | 1/2, y, z [(0, v, w)] |
| 48 l | 1/2, y, z [(0, v, w)] | 1/2, y, z [(0, v, w)] | 1/2, y, z [(0, v, w)] |
| 48 k | 1/2, y, z [(0, v, w)] | 1/2, y, z [(0, v, w)] | 1/2, y, z [(0, v, w)] |
| 24 j | 1/2, y, z [(0, v, w)] | 1/2, y, z [(0, v, w)] | 1/2, y, z [(0, v, w)] |
| 24 i | 1/2, y, z [(0, v, w)] | 1/2, y, z [(0, v, w)] | 1/2, y, z [(0, v, w)] |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>h</th>
<th>mm2.</th>
<th>x,1/2,0 [0,0,w]</th>
<th>x,1/2,0 [0,0,w]</th>
<th>0,x,1/2 [w,0,0]</th>
<th>0,x,1/2 [w,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2,0,x [0,w,0]</td>
<td>1/2,0, x [0, w,0]</td>
<td>1/2,x,0 [0,0,w]</td>
<td>1/2,x,0 [0,0,w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x,0,1/2 [0,w,0]</td>
<td>x,0,1/2 [0,w,0]</td>
<td>0,1/2, x [w,0,0]</td>
<td>0,1/2, x [w,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>g</th>
<th>.3m</th>
<th>x,x,x [0,0,0]</th>
<th>x,x,x [0,0,0]</th>
<th>x,x,x [0,0,0]</th>
<th>x,x,x [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>f</td>
<td>4'm'.m</td>
<td>x,1/2,1/2 [0,0,0]</td>
<td>x,1/2,1/2 [0,0,0]</td>
<td>1/2,x,1/2 [0,0,0]</td>
<td>1/2,x,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>e</td>
<td>4m.m</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>d</td>
<td>4/m'm.m</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>c</td>
<td>4'/mm'.m</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>b</th>
<th>m3m</th>
<th>1/2,1/2,1/2 [0,0,0]</th>
<th>1/2,1/2,1/2 [0,0,0]</th>
<th>1/2,1/2,1/2 [0,0,0]</th>
<th>1/2,1/2,1/2 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>m3m</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1'
\(a^* = a \) \(b^* = b \)
Origin at 0,0,z

Along [1,1,1] p6mm1'
\(a^* = (2a - b - c)/3 \) \(b^* = (-a + 2b - c)/3 \)
Origin at x,x,x

Along [1,1,0] p2mm1'
\(a^* = (-a + b)/2 \) \(b^* = c \)
Origin at x,x,0
Origin at center (m\overline{3}m')

Asymmetric unit: 0 < x ≤ 1/2; 0 < y ≤ 1/2; 0 < z ≤ 1/2; 0 < y; z ≤ y

Vertices: (0,0,0) 1/2,0,0 1/2,1/2,0 1/2,1/2,1/2

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)
(2) 2 0,0,z
(2z | 0,0,0)
(3) 2 0,y,0
(2y | 0,0,0)
(4) 2 x,0,0
(2x | 0,0,0)
(5) 3' x,x,x
(3xyz | 0,0,0)
(6) 3' \bar{x},x,\bar{x}
(3xyz-1 | 0,0,0)
(7) 3' x,\bar{x},x
(3xyz | 0,0,0)
(8) 3' \bar{x},x,\bar{x}
(3xyz-1 | 0,0,0)
(9) 3' x,x,x
(3xyz | 0,0,0)
(10) 3' \bar{x},\bar{x},\bar{x}
(3xyz-1 | 0,0,0)
(11) 3' \bar{x},x,x
(3xyz | 0,0,0)
(12) 3' x,\bar{x},\bar{x}
(3xyz-1 | 0,0,0)
(13) 2' x,x,0
(2xy | 0,0,0)'
(14) 2' \bar{x},x,0
(2xy | 0,0,0)'
(15) 4' 0,0,z
(4z | 0,0,0)'
(16) 4' 0,0,z
(4z | 0,0,0)'
(17) 4' x,0,0
(4x | 0,0,0)'
(18) 2' x,0,y
(2xy | 0,0,0)'
(19) 2' \bar{x},0,y
(2xy | 0,0,0)'
(20) 4' x,0,0
(4x | 0,0,0)'
(21) 4' x,0,0
(4x | 0,0,0)'
(22) 2' \bar{x},z,0
(2xz | 0,0,0)'
(23) 4' \bar{x},z,0
(2xz | 0,0,0)'
(24) 2' \bar{x},0,x
(2xz | 0,0,0)'
(25) 1 0,0,0
(1 | 0,0,0)
(26) m x,0,y
(my | 0,0,0)
(27) m x,0,z
(mz | 0,0,0)
(28) m y,z
(mz | 0,0,0)
(29) 3' x,x,x; 0,0,0
(3xyz | 0,0,0)
(30) 3' \bar{x},\bar{x},\bar{x}; 0,0,0
(3xyz-1 | 0,0,0)
(31) 3' \bar{x},\bar{x},x; 0,0,0
(3xyz | 0,0,0)
(32) 3' \bar{x},\bar{x},x; 0,0,0
(3xyz-1 | 0,0,0)
(33) m' x,x,z
(mx | 0,0,0)'
(34) m' x,x,\bar{z}
(mx | 0,0,0)'
(35) m' x,\bar{x},x
(mx | 0,0,0)'
(36) m' x,\bar{x},x
(mx | 0,0,0)'
(37) m' x,x,z
(mx | 0,0,0)'
(38) m' x,x,\bar{z}
(mx | 0,0,0)'
(39) 4' 0,0,z; 0,0,0
(4z | 0,0,0)'
(40) 4' 0,0,z; 0,0,0
(4z | 0,0,0)'
(41) 4' x,0,0; 0,0,0
(4x | 0,0,0)'
(42) m' x,y,y
(my | 0,0,0)'
(43) m' x,y,y
(my | 0,0,0)'
(44) 4' x,0,0; 0,0,0
(4x | 0,0,0)'
(45) 4' x,0,0; 0,0,0
(4x | 0,0,0)'

For (1,0,0)'+ set

(1) t' (1,0,0)
(1 | 1,0,0)'
(2) 2' 1/2,0,z
(2z | 1,0,0)'
(2) 2' 1/2,0,z
(2z | 1,0,0)'
(4) 2' (1,0,0) x,0,0
(2 | 1,0,0)'
(5) 3' (1/3,1/3,1/3)
(3xyz | 1,0,0)'
(6) 3' (1/3,-1/3,1/3)
(3xyz | 1,0,0)'
(7) 3' (1/3,-1/3,-1/3)
(3xyz-1 | 1,0,0)'
(8) 3' (1/3,1/3,1/3)
(3xyz-1 | 1,0,0)'
(9) 3' (1/3,1/3,-1/3)
(3xyz | 1,0,0)'
(10) 3' (1/3,-1/3,1/3)
(3xyz | 1,0,0)'
(11) 3' (1/3,1/3,-1/3)
(3xyz | 1,0,0)'
(12) 3' (1/3,-1/3,1/3)
(3xyz | 1,0,0)'

221.7.1600 - 2 - 3646
(13) $2 \cdot (1/2,1/2,0) \ x+1, x+1/2, 0$

(2) $y + z \cdot (u, v, w)$

(14) $2 \cdot (-1/2,1/2,0) \ x+1, -1/2, 0$

(3) $x, y, z \cdot [u, v, w]$

(15) $4 \cdot -1/2, -1/2, z$

(4) $z, x, y \cdot [v, u, w]$

(16) $4 \cdot 1/2, 1/2, z$

(4) $x, y, z \cdot [u, v, w]$

Generators selected

(1); $t' (1,0,0)$; $t' (0,1,0)$; $t' (0,0,1)$; (2); (3); (5); (13); (25).

Positions
Continued

<table>
<thead>
<tr>
<th>Site Symmetry</th>
<th>Wyckoff letter, Multiplicity</th>
<th>Coordinates</th>
<th>Generators selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>96 n 1</td>
<td></td>
<td>(0,0,0) + (1,0,0)' +</td>
<td>(1); $t' (1,0,0)$; $t' (0,1,0)$; $t' (0,0,1)$; (2); (3); (5); (13); (25).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>48</td>
<td>m</td>
<td>m'</td>
<td>x,x,z [u,w,u]</td>
</tr>
<tr>
<td>48</td>
<td>l</td>
<td>m'</td>
<td>x,x,z [u,w,u]</td>
</tr>
<tr>
<td>48</td>
<td>k</td>
<td>m</td>
<td>x,x,z [u,w,u]</td>
</tr>
<tr>
<td>48</td>
<td>j</td>
<td>m'</td>
<td>z,x,x [u,u,w]</td>
</tr>
<tr>
<td>48</td>
<td>i</td>
<td>m'</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>24</td>
<td>j</td>
<td>m'</td>
<td>y,y [u,v]</td>
</tr>
<tr>
<td>24</td>
<td>i</td>
<td>m'</td>
<td>y,y [u,v]</td>
</tr>
</tbody>
</table>

Continued
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Symbol</th>
<th>Origin</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>mm'2'.. x,1/2,0 [0,0,w]</td>
<td>x,1/2,0 [0,0,w]</td>
<td>0,x,1/2 [w,0,0]</td>
<td>0,x,1/2 [w,0,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,0,x [0,w,0]</td>
<td>1/2,0,x [0,w,0]</td>
<td>1/2,x,0 [0,0,w]</td>
<td>1/2,x,0 [0,0,w]</td>
</tr>
<tr>
<td></td>
<td>x,0,1/2 [0,w,0]</td>
<td>x,0,1/2 [0,w,0]</td>
<td>0,1/2,x [w,0,0]</td>
<td>0,1/2,x [w,0,0]</td>
</tr>
<tr>
<td>16</td>
<td>.3m' x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
<td>x,x,x [u,u,u]</td>
</tr>
<tr>
<td></td>
<td>12 f 4m'.m' x,1/2,1/2 [u,0,0]</td>
<td>x,1/2,1/2 [u,0,0]</td>
<td>1/2,x,1/2 [0,u,0]</td>
<td>1/2,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td>1/2,1/2,0 [u,0,0]</td>
<td>1/2,1/2,0 [u,0,0]</td>
<td>1/2,1/2,0 [u,0,0]</td>
<td>1/2,1/2,0 [u,0,0]</td>
</tr>
<tr>
<td>12</td>
<td>e 4'm.m' x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td>0,0,x [0,0,0]</td>
<td>0,0,x [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>d 4'/m'm.m' 1/2,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>c 4/mm'.m' 1/2,1/2,0 [u,0,0]</td>
<td>1/2,0,1/2 [0,u,0]</td>
<td>1/2,1/2,0 [0,u,0]</td>
<td>1/2,1/2,0 [0,u,0]</td>
</tr>
<tr>
<td>2</td>
<td>b m3m' 1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a m3m' 0,0,0 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry Symbols

- **mm'2':** Along [0,0,1] p4mm1'
 - \(a^* = a, b^* = b \)
 - Origin at 0,0,0

- **.3m':** Along [1,1,1] p6mm1'
 - \(a^* = (2a - b - c)/3, b^* = (-a + 2b - c)/3 \)
 - Origin at x,x,x

- **m3m':** Along [1,1,0] p-2mm
 - \(a^* = (a + b)/2, b^* = c \)
 - Origin at x,x,1/2
Origin at 432, at -1/4,-1/4,-1/4 from center (3)

Asymmetric unit
- \(0 \leq x \leq 1/2;\)
- \(0 \leq y \leq 1/2;\)
- \(0 \leq z \leq 1/2;\)
- \(y \leq x;\)
- \(z \leq y\)

Vertices
- \((0,0,0)\)
- \((1/2,0,0)\)
- \((1/2,1/2,0)\)
- \((1/2,1/2,1/2)\)

Symmetry Operations

1. \(1\)
2. \(2 \ 0,0,z\)
3. \(2 \ 0,y,0\)
4. \(2 \ x,0,0\)
5. \(3^+ \ x,x,x\)
6. \(3^+ \ x,x,x\)
7. \(3^+ \ x,x,x\)
8. \(3^+ \ x,x,x\)
9. \(3^- \ x,x,x\)
10. \(3^- \ x,x,x\)
11. \(3^- \ x,x,x\)
12. \(3^- \ x,x,x\)
Continued 222.1.1601 Pn̄3n

(13) 2	x,x,0	(14) 2	x,x,0	(15) 4	0,0,z	(16) 4	0,0,z				
(2_{xyz})	0,0,0	(2_{xyz})	0,0,0	(4_{z})	0,0,0	(4_{z})	0,0,0				
(17) 4	x,0,0	(18) 2	0,y,y	(19) 2	0,y,y	(20) 4	x,0,0				
(4_{x})	0,0,0	(2_{yz})	0,0,0	(2_{yz})	0,0,0	(4_{x})	0,0,0				
(21) 4	0,y,0	(22) 2	x,0,x	(23) 4	0,y,0	(24) 2	x,0,x				
(4_{y})	0,0,0	(2_{wx})	0,0,0	(4_{y})	0,0,0						
(25) \bar{1}	1/4,1/4,1/4	(26) n	(1/2,1/2,0)	x,y,z	(27) n	(1/2,0,1/2)	x,1/4,z	(28) n	(1/2,1/2,1/2)		
(1)	1/2,1/2,1/2	(m_{yz})	1/2,1/2,12	(m_{yz})	1/2,1/2,12						
(29) 3^{+}	x,x,x;	1/4,1/4,1/4	(30) 3^{+}	x,-1,x;	-1/4,1/4,3/4	(31) 3^{+}	x,x+1,x;	1/4,3/4,-1/4	(32) 3^{+}	x+1,x,x;	3/4,-1/4,1/4
(3_{xyz})	1/2,1/2,12	(3_{xyz})	1/2,1/2,12	(3_{xyz})	1/2,1/2,12						
(33) 3^{-}	x,x,x;	1/4,1/4,1/4	(34) 3^{-}	x+1,-x,-x;	1/4,-1/4,3/4	(35) 3^{-}	x,x+1,-x+1;	-1/4,3/4,-1/4	(36) 3^{-}	x+1,-x,-x;	3/4,1/4,1/4
(3_{xyz})	1/2,1/2,12	(3_{xyz})	1/2,1/2,12	(3_{xyz})	1/2,1/2,12						
(37) c	(0,0,1/2)	x+1/2,\bar{x},-z	(38) n	(1/2,1/2,1/2)	x,x,z	(39) 4^{-}	0,1/2,z;	0,1/2,1/4	(40) 4^{+}	1/2,0,z;	1/2,0,1/4
(m_{wy})	1/2,1/2,12	(m_{wy})	1/2,1/2,12	(4_{z})	1/2,1/2,12	(4_{z})	1/2,1/2,12				
(41) 4^{-}	x,0,1/2;	1/4,0,1/2	(42) a	(1/2,0,0)	x,y+1/2,y	(43) n	(1/2,1/2,1/2)	x,y,y	(44) 4^{+}	x,1/2,0;	1/4,1/2,0
(4_{x})	1/2,1/2,12	(m_{wy})	1/2,1/2,12	(4_{z})	1/2,1/2,12	(4_{x})	1/2,1/2,12				
(45) 4^{+}	0,y,1/2;	0,1/4,1/2	(46) b	(0,1/2,0)	x+1/2,y,x	(47) 4^{-}	1/2,y,0;	1/2,1/4,0	(4^{+})	1/2,1/2,12	
(4_{y})	1/2,1/2,12	(m_{wy})	1/2,1/2,12	(4_{y})	1/2,1/2,12						

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); (25).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wyckoff letter</td>
<td>Coordinates</td>
</tr>
</tbody>
</table>

48 i 1

(1) x,y,z [u,v,w]	(2) \bar{x}, \bar{y},z [\bar{u}, \bar{v}, \bar{w}]	(3) \bar{x},y,z [\bar{u},v,w]	(4) x,\bar{y},\bar{z} [u,\bar{v},\bar{w}]
(5) z,x,y [w,u,v]	(6) z,\bar{x},y [w,\bar{u},\bar{v}]	(7) \bar{z},x,y [\bar{w},u,v]	(8) \bar{z},x,\bar{y} [\bar{w},u,\bar{v}]
(9) y,z,x [v,w,u]	(10) \bar{y},z,\bar{x} [\bar{v},w,u]	(11) y,\bar{z},\bar{x} [v,\bar{w},u]	(12) \bar{y},z,\bar{x} [\bar{v},\bar{w},u]
(13) y,x,z [v,u,\bar{w}]	(14) \bar{y},x,\bar{z} [\bar{v},u,\bar{w}]	(15) y,\bar{z},\bar{x} [u,\bar{w},\bar{v}]	(16) \bar{y},x,\bar{z} [\bar{v},u,\bar{w}]
(17) x,z,y [u,w,\bar{v}]	(18) \bar{x},z,\bar{y} [\bar{u},w,\bar{v}]	(19) x,\bar{z},y [u,\bar{w},v]	(20) x,\bar{z},\bar{y} [u,\bar{w},\bar{v}]
(21) z,y,x [v,w,\bar{u}]	(22) \bar{z},\bar{y},x [\bar{v},w,\bar{u}]	(23) z,y,\bar{x} [w,\bar{v},u]	(24) \bar{z},y,\bar{x} [\bar{v},w,\bar{u}]
(25) \bar{x}+1/2,\bar{y}+1/2,\bar{z}+1/2 [u,v,w]	(26) x+1/2,y+1/2,z+1/2 [u,\bar{v},\bar{w}]	(27) x+1/2,\bar{y}+1/2,z+1/2 [\bar{u},v,\bar{w}]	(28) \bar{x}+1/2,y+1/2,z+1/2 [u,\bar{v},\bar{w}]
(29) \bar{z}+1/2,x+1/2,\bar{y}+1/2 [w,u,\bar{v}]	(30) \bar{z}+1/2,x+1/2,\bar{y}+1/2 [\bar{w},u,\bar{v}]	(31) z+1/2,x+1/2,\bar{y}+1/2 [w,u,\bar{v}]	(32) z+1/2,x+1/2,\bar{y}+1/2 [w,u,\bar{v}]
(33) \bar{y}+1/2,\bar{z}+1/2,\bar{x}+1/2 [v,w,u]	(34) y+1/2,\bar{z}+1/2,x+1/2 [v,\bar{w},u]	(35) y+1/2,\bar{z}+1/2,x+1/2 [v,\bar{w},u]	(36) y+1/2,\bar{z}+1/2,x+1/2 [v,\bar{w},u]
Symmetry of Special Projections

Along $[0,0,1]$ p4mm1$'$

- $a^* = \frac{(a - b)/2}{2}$
- $b^* = \frac{(a + b)/2}{2}$

Origin at $0,0,z$

Along $[1,1,1]$ p6'm'm

- $a^* = \frac{(2a - b - c)/3}{2}$
- $b^* = \frac{(-a + 2b - c)/3}{2}$

Origin at x,x,x

Along $[1,1,0]$ p2mm1$'$

- $a^* = \frac{(-a + b)/2}{2}$
- $b^* = \frac{c/2}{2}$

Origin at $x,x,0$
Pn3n1' m3m1' Cubic
222.2.1602 P4/n32/n1'

Origin at 4321', at -1/4,-1/4,-1/4 from center (3 1')

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/2; y ≤ x; z ≤ y

Vertices
0,0,0 1/2,0,0 1/2,1/2,0 1/2,1/2,1/2

Symmetry Operations

For 1 + set

(1) 1
(1) 0,0,0

(2) 2 0,0,z
(2) 0,0,0

(3) 2 0,y,0
(3) 0,0,0

(4) 2 x,0,0
(4) 0,0,0

(5) 3+ x,x,x
(3xyz | 0,0,0)

(6) 3+ x,x,x
(3xyz-1 | 0,0,0)

(7) 3+ x,x,x
(3xyz-1 | 0,0,0)

(8) 3+ x,x,x
(3xyz-1 | 0,0,0)

(9) 3- x,x,x
(3xyz-1 | 0,0,0)

(10) 3- x,x,x
(3xyz | 0,0,0)

(11) 3- x,x,x
(3xyz | 0,0,0)

(12) 3- x,x,x
(3xyz | 0,0,0)
Continued 222.2.1602 Pn3n1'

(13) 2' x,x,0
(2,0,0,0)
(14) 2' x,x,0
(2,0,0,0)
(15) 4'-0,0,0
(4',0,0,0)
(16) 4'-0,0,0
(4',0,0,0)

(17) 4' x,0,0
(4',0,0,0)
(18) 2' 0,y,y
(2,0,0,0)
(19) 2' 0,y,y
(2,0,0,0)
(20) 4' x,0,0
(4,0,0,0)

(21) 4' 0,y,0
(4,0,0,0)
(22) 2 0,y,0
(2,0,0,0)
(23) 4' 0,y,0
(4',0,0,0)
(24) 2 0,y,0
(2,0,0,0)

(25) 1/4,1/4,1/4
(1/2,1/2,1/2)
(26) n (1/2,1/2,0) x,y,1/4
(m,1/2,1/2,1/2)
(27) n (1/2,0,1/2) x,1/4,z
(m,1/2,1/2,1/2)
(28) n (0,1/2,1/2) 1/4,y,z
(m,1/2,1/2,1/2)

(29) 3' x,x,x; 1/4,1/4,1/4
(3,1/2,1/2,1/2)
(30) 3' x,x,x; 1/4,1/4,3/4
(3,1/2,1/2,1/2)
(31) 3' x,x,x; 1/4,3/4,-1/4
(3,1/2,1/2,1/2)
(32) 3' x,x,x; 3/4,-1/4,1/4
(3,1/2,1/2,1/2)

(33) 3' x,x,x; 1/4,1/4,1/4
(3,1/2,1/2,1/2)
(34) 3' x,x,x; 1/4,1/4,3/4
(3,1/2,1/2,1/2)
(35) 3' x,x,x; -1/4,3/4,1/4
(3,1/2,1/2,1/2)
(36) 3' x,x,x; 3/4,1/4,-1/4
(3,1/2,1/2,1/2)

(37) c (0,0,1/2) x+1/2,x,z
(m,1/2,1/2,1/2)
(38) n (1/2,1/2,1/2) x,x,z
(m,1/2,1/2,1/2)
(39) 4' 0,1/2,z; 0,1/2,1/4
(4',1/2,1/2,1/2)
(40) 4' 1/2,0,z; 1/2,0,1/4
(4',1/2,1/2,1/2)

(41) 4' x,0,1/2; 1/4,0,1/2
(4',1/2,1/2,1/2)
(42) a (1/2,0,0) x,y+1/2,y
(m,1/2,1/2,1/2)
(43) n (1/2,1/2,1/2) x,y,y
(m,1/2,1/2,1/2)
(44) 4' x,1/2,0; 1/4,1/2,0
(4',1/2,1/2,1/2)

(45) 4' 0,y,1/2; 0,1/4,1/2
(4,1/2,1/2,1/2)
(46) b (0,1/2,0) x+1/2,y,x
(m,1/2,1/2,1/2)
(47) 4' 1/2,y,0; 1/2,1/4,0
(4',1/2,1/2,1/2)
(48) n (1/2,1/2,1/2) x,y,x
(m,1/2,1/2,1/2)

For 1' + set

(1) 1'
(0,0,0)
(2) 2' 0,0,z
(2,0,0,0)
(3) 2' 0,y,0
(2',0,0,0)
(4) 2' x,0,0
(2',0,0,0)

(5) 3' x,x,x
(3,0,0,0)
(6) 3' x,x,x
(3,0,0,0)
(7) 3' x,x,x
(3,0,0,0)
(8) 3' x,x,x
(3,0,0,0)

(9) 3' x,x,x
(3,0,0,0)
(10) 3' x,x,x
(3,0,0,0)
(11) 3' x,x,x
(3,0,0,0)
(12) 3' x,x,x
(3,0,0,0)

(13) 2' x,x,0
(2,0,0,0)
(14) 2' x,x,0
(2,0,0,0)
(15) 4' 0,0,0
(4',0,0,0)
(16) 4' 0,0,0
(4',0,0,0)

(17) 4' 0,y,0
(4',0,0,0)
(18) 2' 0,y,0
(2,0,0,0)
(19) 2' 0,y,0
(2',0,0,0)
(20) 4' 0,y,0
(4,0,0,0)

(21) 4' 0,y,0
(4,0,0,0)
(22) 2' x,0,x
(2,0,0,0)
(23) 4' 0,y,0
(4',0,0,0)
(24) 2' x,0,x
(2,0,0,0)

(25) 1' 1/4,1/4,1/4
(1/2,1/2,1/2)
(26) n' (1/2,1/2,0) x,y,1/4
(m',1/2,1/2,1/2)
(27) n' (1/2,0,1/2) x,1/4,z
(m',1/2,1/2,1/2)
(28) n' (0,1/2,1/2) 1/4,y,z
(m',1/2,1/2,1/2)

(29) 3' x,x,x; 1/4,1/4,1/4
(3,1/2,1/2,1/2)
(30) 3' x,x,x; 1/4,1/4,3/4
(3,1/2,1/2,1/2)
(31) 3' x,x,x; 1/4,3/4,-1/4
(3,1/2,1/2,1/2)
(32) 3' x,x,x; 3/4,-1/4,1/4
(3,1/2,1/2,1/2)

(33) 3' x,x,x; 1/4,1/4,1/4
(3,1/2,1/2,1/2)
(34) 3' x,x,x; 1/4,1/4,3/4
(3,1/2,1/2,1/2)
(35) 3' x,x,x; -1/4,3/4,1/4
(3,1/2,1/2,1/2)
(36) 3' x,x,x; 3/4,1/4,-1/4
(3,1/2,1/2,1/2)
Continued

| (37) c' (0,0,1/2) x+1/2,\bar{x},z | (38) n' (1/2,1/2,1/2) x,x,z | (39) \bar{4} \cdot \bar{1} 0,1/2,z; 0,1/2,1/4 | (40) \bar{4} \cdot \bar{1} 1/2,0,z; 1/2,0,1/4 |
| \begin{align*} (m_{xy} & | 1/2,1/2,12) \end{align*} | \begin{align*} (m_{xy} & | 1/2,1/2,12) \end{align*} | \begin{align*} (m_{yz} & | 1/2,1/2,12) \end{align*} | \begin{align*} (m_{yz} & | 1/2,1/2,12) \end{align*} |

| (41) \bar{4} \cdot \bar{1} x,0,1/2; 1/4,0,1/2 | (42) a' (1/2,2,0,0) x,y+1/2,\bar{y} | (43) n' (1/2,1/2,1/2) x,y,y | (44) \bar{4} \cdot \bar{1} x,1/2,0; 1/4,1/2,0 |
| \begin{align*} (4 \bar{m} x & \bar{y} \bar{z} | 1/2,1/2,12) \end{align*} | \begin{align*} (4 \bar{m} x & \bar{z} | 1/2,1/2,12) \end{align*} | \begin{align*} (4 \bar{m} x & \bar{z} | 1/2,1/2,12) \end{align*} | \begin{align*} (4 \bar{m} x & \bar{z} | 1/2,1/2,12) \end{align*} |

| (45) \bar{4} \cdot \bar{1} 0,y,1/2; 1/4,1/2 | (46) b' (0,1/2,0) x+1/2,y,\bar{x} | (47) \bar{4} \cdot \bar{1} 1/2,y,0; 1/2,1/4,0 | (48) \bar{n} (1/2,1/2,1/2) x,y,x |
| \begin{align*} (4 \bar{m} y & \bar{z} \bar{x} | 1/2,1/2,12) \end{align*} | \begin{align*} (4 \bar{m} y & \bar{z} \bar{x} | 1/2,1/2,12) \end{align*} | \begin{align*} (4 \bar{m} x & \bar{z} \bar{y} | 1/2,1/2,12) \end{align*} | \begin{align*} (4 \bar{m} x & \bar{z} \bar{y} | 1/2,1/2,12) \end{align*} |

Generators selected

1; t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); (25); 1'.

Positions

| Multiplicity, Wyckoff letter, Site Symmetry. |
| Coordinates |
| 1 + | 1' + |

(1) x,y,z [0,0,0]	(2) x,y,z [0,0,0]	(3) x,y,z [0,0,0]	(4) x,y,z [0,0,0]
(5) z,x,y [0,0,0]	(6) z,x,y [0,0,0]	(7) z,x,y [0,0,0]	(8) z,x,y [0,0,0]
(9) y,z,x [0,0,0]	(10) y,z,x [0,0,0]	(11) y,z,x [0,0,0]	(12) y,z,x [0,0,0]
(13) y,z,x [0,0,0]	(14) y,z,x [0,0,0]	(15) y,z,x [0,0,0]	(16) y,z,x [0,0,0]
(17) x,z,y [0,0,0]	(18) x,z,y [0,0,0]	(19) x,z,y [0,0,0]	(20) x,z,y [0,0,0]
(21) z,y,x [0,0,0]	(22) z,y,x [0,0,0]	(23) z,y,x [0,0,0]	(24) z,y,x [0,0,0]
(25) \bar{x}+1/2,\bar{y}+1/2,\bar{z}+1/2 [0,0,0]	(26) x+1/2,y+1/2,z+1/2 [0,0,0]	(27) x+1/2,y+1/2,z+1/2 [0,0,0]	(28) \bar{x}+1/2,y+1/2,z+1/2 [0,0,0]
(29) \bar{z}+1/2,\bar{x}+1/2,\bar{y}+1/2 [0,0,0]	(30) \bar{z}+1/2,\bar{x}+1/2,\bar{y}+1/2 [0,0,0]	(31) \bar{z}+1/2,\bar{x}+1/2,\bar{y}+1/2 [0,0,0]	(32) \bar{z}+1/2,\bar{x}+1/2,\bar{y}+1/2 [0,0,0]
(33) \bar{y}+1/2,\bar{z}+1/2,\bar{x}+1/2 [0,0,0]	(34) \bar{y}+1/2,\bar{z}+1/2,\bar{x}+1/2 [0,0,0]	(35) \bar{y}+1/2,\bar{z}+1/2,\bar{x}+1/2 [0,0,0]	(36) \bar{y}+1/2,\bar{z}+1/2,\bar{x}+1/2 [0,0,0]
(37) \bar{y}+1/2,\bar{z}+1/2,\bar{x}+1/2 [0,0,0]	(38) \bar{y}+1/2,\bar{z}+1/2,\bar{x}+1/2 [0,0,0]	(39) \bar{y}+1/2,\bar{z}+1/2,\bar{x}+1/2 [0,0,0]	(40) \bar{y}+1/2,\bar{z}+1/2,\bar{x}+1/2 [0,0,0]
(41) \bar{x}+1/2,\bar{z}+1/2,\bar{y}+1/2 [0,0,0]	(42) \bar{x}+1/2,\bar{z}+1/2,\bar{y}+1/2 [0,0,0]	(43) \bar{x}+1/2,\bar{z}+1/2,\bar{y}+1/2 [0,0,0]	(44) \bar{x}+1/2,\bar{z}+1/2,\bar{y}+1/2 [0,0,0]
(45) \bar{z}+1/2,\bar{y}+1/2,\bar{x}+1/2 [0,0,0]	(46) \bar{z}+1/2,\bar{y}+1/2,\bar{x}+1/2 [0,0,0]	(47) \bar{z}+1/2,\bar{y}+1/2,\bar{x}+1/2 [0,0,0]	(48) \bar{z}+1/2,\bar{y}+1/2,\bar{x}+1/2 [0,0,0]
24 h \quad ..21'			

<p>| 0,y,z [0,0,0] | 0,y,z [0,0,0] | 0,y,z [0,0,0] | 0,y,z [0,0,0] |
| y,0,z [0,0,0] | y,0,z [0,0,0] | y,0,z [0,0,0] | y,0,z [0,0,0] |
| y,y,z [0,0,0] | y,y,z [0,0,0] | y,y,z [0,0,0] | y,y,z [0,0,0] |</p>
<table>
<thead>
<tr>
<th>Plane Group</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2, $\tilde{y} + 1/2, \bar{y} + 1/2$ [0,0,0]</td>
<td>1/2, $y + 1/2, \bar{y} + 1/2$ [0,0,0]</td>
<td>1/2, $\tilde{y} + 1/2, y + 1/2$ [0,0,0]</td>
</tr>
<tr>
<td>$y + 1/2, 1/2, \bar{y} + 1/2$ [0,0,0]</td>
<td>$y + 1/2, 1/2, y + 1/2$ [0,0,0]</td>
<td>$y + 1/2, 1/2, \bar{y} + 1/2$ [0,0,0]</td>
</tr>
<tr>
<td>$y + 1/2, \bar{y} + 1/2, 1/2$ [0,0,0]</td>
<td>$y + 1/2, \bar{y} + 1/2, 1/2$ [0,0,0]</td>
<td>$y + 1/2, y + 1/2, 1/2$ [0,0,0]</td>
</tr>
<tr>
<td>24 g 2'..1'</td>
<td>x,0,1/2 [0,0,0]</td>
<td>$x,0,1/2$ [0,0,0]</td>
</tr>
<tr>
<td>16 f 3..1'</td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
</tr>
<tr>
<td>12 e 4..1'</td>
<td>x,0,0 [0,0,0]</td>
<td>$x,0,0$ [0,0,0]</td>
</tr>
<tr>
<td>12 d 4'..1'</td>
<td>1/4,0,1/2 [0,0,0]</td>
<td>3/4,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 c 3'..1'</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>6 b 42.21'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>2 a 4321'</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along $[0,0,1]$ p4mm$1'$

\[
a^* = \frac{a - b}{2} \quad b^* = \frac{a + b}{2}
\]
-origin at $0,0,z$

Along $[1,1,1]$ p6mm$1'$

\[
a^* = \frac{2a - b - c}{3} \quad b^* = \frac{-a + 2b - c}{3}
\]
-origin at x,x,x

Along $[1,1,0]$ p2mm$1'$

\[
a^* = \frac{-a + b}{2} \quad b^* = \frac{c}{2}
\]
-origin at $x,x,0$
Origin at 4'32', at -1/4,-1/4,-1/4 from center (3')

Asymmetric unit

Vertices

Symmetry Operations

(1) 1
(1) 0,0,0

(2) 2 0,0,z
(2) 0,0,0

(3) 2 0,y,0
(3) 0,0,0

(4) 2 x,0,0
(4) 0,0,0

(5) 3' x,x,x
(3) x,y,z

(6) 3' x,x,x
(6) x,y,z

(7) 3' x,x,x
(7) x,y,z

(8) 3' x,x,x
(8) x,y,z

(9) 3' x,x,x
(3) x,y,z

(10) 3' x,x,x
(3) x,y,z

(11) 3' x,x,x
(3) x,y,z

(12) 3' x,x,x
(3) x,y,z
Continued

<table>
<thead>
<tr>
<th>Generators selected</th>
<th>(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); (25).</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicity, Wyckoff letter, Site Symmetry.</td>
<td>48 i 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>x,y,z [u,v,w]</th>
<th>(2) x,y,z [u,v,w]</th>
<th>(3) x,y,z [u,v,w]</th>
<th>(4) x,y,z [u,v,w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>z,x,y [w,u,v]</td>
<td>(5) z,x,y [w,u,v]</td>
<td>(6) z,x,y [w,u,v]</td>
<td>(7) z,x,y [w,u,v]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>3</td>
<td>y,z,x [v,w,u]</td>
<td>(9) y,z,x [v,w,u]</td>
<td>(10) y,z,x [v,w,u]</td>
<td>(11) y,z,x [v,w,u]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>4</td>
<td>y,z,x [v,w,u]</td>
<td>(13) y,z,x [v,w,u]</td>
<td>(14) y,z,x [v,w,u]</td>
<td>(15) y,z,x [v,w,u]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>5</td>
<td>x,y,z [u,v,w]</td>
<td>(17) x,y,z [u,v,w]</td>
<td>(18) x,y,z [u,v,w]</td>
<td>(19) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>6</td>
<td>x,y,z [u,v,w]</td>
<td>(21) x,y,z [u,v,w]</td>
<td>(22) x,y,z [u,v,w]</td>
<td>(23) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>7</td>
<td>x,y,z [u,v,w]</td>
<td>(25) x,y,z [u,v,w]</td>
<td>(26) x,y,z [u,v,w]</td>
<td>(27) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>8</td>
<td>x,y,z [u,v,w]</td>
<td>(29) x,y,z [u,v,w]</td>
<td>(30) x,y,z [u,v,w]</td>
<td>(31) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>9</td>
<td>x,y,z [u,v,w]</td>
<td>(33) x,y,z [u,v,w]</td>
<td>(34) x,y,z [u,v,w]</td>
<td>(35) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>10</td>
<td>x,y,z [u,v,w]</td>
<td>(37) x,y,z [u,v,w]</td>
<td>(38) x,y,z [u,v,w]</td>
<td>(39) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>11</td>
<td>x,y,z [u,v,w]</td>
<td>(41) x,y,z [u,v,w]</td>
<td>(42) x,y,z [u,v,w]</td>
<td>(43) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>12</td>
<td>x,y,z [u,v,w]</td>
<td>(45) x,y,z [u,v,w]</td>
<td>(46) x,y,z [u,v,w]</td>
<td>(47) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>13</td>
<td>x,y,z [u,v,w]</td>
<td>(49) x,y,z [u,v,w]</td>
<td>(50) x,y,z [u,v,w]</td>
<td>(51) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>14</td>
<td>x,y,z [u,v,w]</td>
<td>(53) x,y,z [u,v,w]</td>
<td>(54) x,y,z [u,v,w]</td>
<td>(55) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>15</td>
<td>x,y,z [u,v,w]</td>
<td>(57) x,y,z [u,v,w]</td>
<td>(58) x,y,z [u,v,w]</td>
<td>(59) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>16</td>
<td>x,y,z [u,v,w]</td>
<td>(61) x,y,z [u,v,w]</td>
<td>(62) x,y,z [u,v,w]</td>
<td>(63) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>17</td>
<td>x,y,z [u,v,w]</td>
<td>(65) x,y,z [u,v,w]</td>
<td>(66) x,y,z [u,v,w]</td>
<td>(67) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>18</td>
<td>x,y,z [u,v,w]</td>
<td>(69) x,y,z [u,v,w]</td>
<td>(70) x,y,z [u,v,w]</td>
<td>(71) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>19</td>
<td>x,y,z [u,v,w]</td>
<td>(73) x,y,z [u,v,w]</td>
<td>(74) x,y,z [u,v,w]</td>
<td>(75) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>20</td>
<td>x,y,z [u,v,w]</td>
<td>(77) x,y,z [u,v,w]</td>
<td>(78) x,y,z [u,v,w]</td>
<td>(79) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>21</td>
<td>x,y,z [u,v,w]</td>
<td>(81) x,y,z [u,v,w]</td>
<td>(82) x,y,z [u,v,w]</td>
<td>(83) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>22</td>
<td>x,y,z [u,v,w]</td>
<td>(85) x,y,z [u,v,w]</td>
<td>(86) x,y,z [u,v,w]</td>
<td>(87) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>23</td>
<td>x,y,z [u,v,w]</td>
<td>(89) x,y,z [u,v,w]</td>
<td>(90) x,y,z [u,v,w]</td>
<td>(91) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>24</td>
<td>x,y,z [u,v,w]</td>
<td>(93) x,y,z [u,v,w]</td>
<td>(94) x,y,z [u,v,w]</td>
<td>(95) x,y,z [u,v,w]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>12</th>
<th>d</th>
<th>$\bar{4}..$</th>
<th>$1/4,0,1/2 [u,0,0]$</th>
<th>$3/4,0,1/2 [\bar{u},0,0]$</th>
<th>$1/2,1/4 [0,u,0]$</th>
<th>$1/2,3/4,0 [0,u,0]$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$0,1/2,1/4 [0,0,u]$</td>
<td>$0,1/2,3/4 [0,0,\bar{u}]$</td>
<td>$0,1/4,1/2 [0,\bar{u},0]$</td>
<td>$0,3/4,1/2 [0,u,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$1/4,1/2,0 [u,0,0]$</td>
<td>$3/4,1/2,0 [\bar{u},0,0]$</td>
<td>$1/2,0,3/4 [0,0,u]$</td>
<td>$1/2,0,1/4 [0,0,\bar{u}]$</td>
</tr>
<tr>
<td>8</td>
<td>c</td>
<td>$\bar{3}..$</td>
<td>$1/4,1/4,1/4 [0,0,0]$</td>
<td>$3/4,3/4,1/4 [0,0,0]$</td>
<td>$3/4,1/4,3/4 [0,0,0]$</td>
<td>$1/4,3/4,3/4 [0,0,0]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$1/4,1/4,3/4 [0,0,0]$</td>
<td>$3/4,3/4,3/4 [0,0,0]$</td>
<td>$1/4,3/4,1/4 [0,0,0]$</td>
<td>$3/4,1/4,1/4 [0,0,0]$</td>
</tr>
<tr>
<td>6</td>
<td>b</td>
<td>$4'2.2'$</td>
<td>$0,1/2,1/2 [0,0,0]$</td>
<td>$1/2,1/2 [0,0,0]$</td>
<td>$1/2,1/2 [0,0,0]$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$1/2,0,0 [0,0,0]$</td>
<td>$0,1/2,0 [0,0,0]$</td>
<td>$0,0,1/2 [0,0,0]$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>$4'32'$</td>
<td>$0,0,0 [0,0,0]$</td>
<td>$1/2,1/2,1/2 [0,0,0]$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Representations

Along $[0,0,1]$
- $p4m'm'$
 - $a^* = (a - b)/2$
 - $b^* = (a + b)/2$
 - Origin at $0,0,z$

Along $[1,1,1]$
- $p6mm$
 - $a^* = (2a - b - c)/3$
 - $b^* = (-a + 2b - c)/3$
 - Origin at x,x,x

Along $[1,1,0]$
- $p2m'm'$
 - $a^* = (-a + b)/2$
 - $b^* = c/2$
 - Origin at $x,x,1/4$
Origin at 4'32, at -1/4,-1/4,-1/4 from center (3)

Asymmetric unit

\(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/2; \quad y \leq x; \quad z \leq y\)

Vertices

\(0,0,0, \quad 1/2,0,0, \quad 1/2,1/2,0, \quad 1/2,1/2,1/2\)

Symmetry Operations

\begin{align*}
(1) \ 1 & \quad (2) \ 2 \ 0,0,z \quad (3) \ 2 \ 0,y,0 \quad (4) \ 2 \ x,0,0 \\
(1\mid0,0,0) & \quad (2\mid0,0,0) \quad (2\mid0,0,0) \quad (2\mid0,0,0) \\
(5) \ 3^+ \ x,x,x & \quad (6) \ 3^+ \ x,x,x \quad (7) \ 3^+ \ x,x,x \quad (8) \ 3^+ \ x,x,x \\
(3_{xyz}\mid0,0,0) & \quad (3_{xyz}\mid0,0,0) \quad (3_{xyz}\mid0,0,0) \quad (3_{xyz}\mid0,0,0) \\
(9) \ 3^- \ x,x,x & \quad (10) \ 3^- \ x,x,x \quad (11) \ 3^- \ x,x,x \quad (12) \ 3^- \ x,x,x \\
(3_{xyz}^{-1}\mid0,0,0) & \quad (3_{xyz}^{-1}\mid0,0,0) \quad (3_{xyz}^{-1}\mid0,0,0) \quad (3_{xyz}^{-1}\mid0,0,0)
\end{align*}
Continued

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); (25).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

48 i 1

(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w]
(5) z,x,y [w,u,v] (6) z,x,y [w,u,v] (7) z,x,y [w,u,v] (8) z,x,y [w,u,v]
(9) y,z,x [v,w,u] (10) y,z,x [v,w,u] (11) y,z,x [v,w,u] (12) y,z,x [v,w,u]
(13) x,y,z [u,v,w] (14) x,y,z [u,v,w] (15) x,y,z [u,v,w] (16) x,y,z [u,v,w]
(17) x,y,z [u,v,w] (18) x,y,z [u,v,w] (19) x,y,z [u,v,w] (20) x,y,z [u,v,w]
(21) x,y,z [u,v,w] (22) x,y,z [u,v,w] (23) x,y,z [u,v,w] (24) x,y,z [u,v,w]

(25) x+1/2, y+1/2, z+1/2 [u,v,w] (26) x+1/2, y+1/2, z+1/2 [u,v,w] (27) x+1/2, y+1/2, z+1/2 [u,v,w] (28) x+1/2, y+1/2, z+1/2 [u,v,w]
(29) z+1/2, x+1/2, y+1/2 [w,u,v] (30) z+1/2, x+1/2, y+1/2 [w,u,v] (31) z+1/2, x+1/2, y+1/2 [w,u,v] (32) z+1/2, x+1/2, y+1/2 [w,u,v]
(33) y+1/2, z+1/2, x+1/2 [v,w,u] (34) y+1/2, z+1/2, x+1/2 [v,w,u] (35) y+1/2, z+1/2, x+1/2 [v,w,u] (36) y+1/2, z+1/2, x+1/2 [v,w,u]
<table>
<thead>
<tr>
<th>12</th>
<th>d</th>
<th>4'..</th>
<th>1/4,0,1/2 [0,0,0]</th>
<th>3/4,0,1/2 [0,0,0]</th>
<th>1/2,1/4 [0,0,0]</th>
<th>1/2,3/4,0 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
<td>0,1/4,1/2 [0,0,0]</td>
<td>0,3/4,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/4,1/2,0 [0,0,0]</td>
<td>3/4,1/2,0 [0,0,0]</td>
<td>1/2,0,3/4 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>b</td>
<td>4'2.2'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,1/2,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>4'32'</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1'
\(\mathbf{a}^* = \frac{(\mathbf{a} - \mathbf{b})}{2} \quad \mathbf{b}^* = \frac{(\mathbf{a} + \mathbf{b})}{2} \)
Origin at 0,0,z

Along [1,1,1] p6'mm'
\(\mathbf{a}^* = \frac{(2\mathbf{a} - \mathbf{b} - \mathbf{c})}{3} \quad \mathbf{b}^* = \frac{(-\mathbf{a} + 2\mathbf{b} - \mathbf{c})}{3} \)
Origin at x,x,x

Along [1,1,0] p2'mm'
\(\mathbf{a}^* = \frac{\mathbf{c}}{2} \quad \mathbf{b}^* = \frac{(-\mathbf{a} + \mathbf{b})}{2} \)
Origin at x,x,0
Origin at 432, at -1/4,-1/4,-1/4 from center (3^*)

Asymmetric unit:
- $0 \leq x \leq 1/2$
- $0 \leq y \leq 1/2$
- $0 \leq z \leq 1/2$
- $y \leq x$
- $z \leq y$

Vertices:
- $0,0,0$
- $1/2,0,0$
- $1/2,1/2,0$
- $1/2,1/2,1/2$

Symmetry Operations:

1. 1
 - $(1|0,0,0)$

2. 2 0,0,z
 - $(2|_2|0,0,0)$

3. 2 0,y,0
 - $(2|_{y}|0,0,0)$

4. 2 x,0,0
 - $(2|x|0,0,0)$

5. 3^* x,x,x
 - $(3_{xyz}|0,0,0)$

6. 3^* x,x,x
 - $(3_{xyz}|0,0,0)$

7. 3^* x,x,x
 - $(3_{xyz}|0,0,0)$

8. 3^* x,x,x
 - $(3_{xyz}|0,0,0)$

9. 3^* x,x,x
 - $(3_{xyz}|0,0,0)$

10. 3^* x,x,x
 - $(3_{xyz}|0,0,0)$

11. 3^* x,x,x
 - $(3_{xyz}|0,0,0)$

12. 3^* x,x,x
 - $(3_{xyz}|0,0,0)$

222.5.1605 - 1 - 3667
Continued 222.5.1605 Pn'3'n'

Generators selected (1): t(1,0,0); t(0,1,0); t(0,0,1); (2): (3); (5); (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

48 i 1

(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w] (5) z,x,y [w,u,v] (6) z,x,y [w,u,v] (7) z,x,y [w,u,v] (8) z,x,y [w,u,v] (9) y,z,x [v,w,u] (10) y,z,x [v,w,u] (11) y,z,x [v,w,u] (12) y,z,x [v,w,u] (13) x,z,y [u,v,w] (14) x,z,y [u,v,w] (15) x,z,y [u,v,w] (16) x,z,y [u,v,w] (17) z,y,x [w,u,v] (18) z,y,x [w,u,v] (19) z,y,x [w,u,v] (20) z,y,x [w,u,v] (21) z,y,x [w,u,v] (22) z,y,x [w,u,v] (23) z,y,x [w,u,v] (24) z,y,x [w,u,v] (25) x+1/2,y+1/2,z+1/2 [u,v,w] (26) x+1/2,y+1/2,z+1/2 [u,v,w] (27) x+1/2,y+1/2,z+1/2 [u,v,w] (28) x+1/2,y+1/2,z+1/2 [u,v,w] (29) z+1/2,x+1/2,y+1/2 [w,u,v] (30) z+1/2,x+1/2,y+1/2 [w,u,v] (31) z+1/2,x+1/2,y+1/2 [w,u,v] (32) z+1/2,x+1/2,y+1/2 [w,u,v] (33) y+1/2,z+1/2,x+1/2 [v,w,u] (34) y+1/2,z+1/2,x+1/2 [v,w,u] (35) y+1/2,z+1/2,x+1/2 [v,w,u] (36) y+1/2,z+1/2,x+1/2 [v,w,u]
<table>
<thead>
<tr>
<th>Time</th>
<th>Action</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>222.5.1605</td>
<td>Continued</td>
<td>222.5.1605 Pn′3’n’</td>
</tr>
<tr>
<td>24 h</td>
<td>2..</td>
<td>0,y,y [0,v,v] 0,y,y [0,v,v] 0,y,y [0,v,v] 0,y,y [0,v,v] 0,y,y [0,v,v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,0,y [v,0,v] y,0,y [v,0,v] y,0,y [v,0,v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y,y,0 [v,v,0] y,y,0 [v,v,0] y,y,0 [v,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,y+1/2, y+1/2 [0,v,v] 1/2,y+1/2, y+1/2 [0,v,v] 1/2,y+1/2, y+1/2 [0,v,v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y+1/2,1/2, y+1/2 [v,0,v] y+1/2,1/2, y+1/2 [v,0,v] y+1/2,1/2, y+1/2 [v,0,v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y+1/2, y+1/2,1/2 [v,v,0] y+1/2, y+1/2,1/2 [v,v,0] y+1/2, y+1/2,1/2 [v,v,0]</td>
</tr>
<tr>
<td>24 g</td>
<td>2..</td>
<td>x,0,1/2 [u,0,0] x,0,1/2 [u,0,0] 1/2,x,0 [0,u,0] 1/2,x,0 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,x [0,0,u] 0,1/2,x [0,0,u] 0,x,1/2 [0,u,0] 0,x,1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,1/2,0 [u,0,0] x,1/2,0 [u,0,0] 1/2,0,x [0,0,u] 1/2,0,x [0,0,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,1/2,0 [u,0,0] x+1/2,1/2,0 [u,0,0] 0,x+1/2,1/2 [0,u,0] 0,x+1/2,1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,0,x+1/2 [0,0,u] 1/2,0,x+1/2 [0,0,u] 1/2,0,x+1/2 [0,0,u] 1/2,0,x+1/2 [0,0,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,0,1/2 [u,0,0] x+1/2,0,1/2 [u,0,0] 0,1/2,x+1/2 [0,u,0] 0,1/2,x+1/2 [0,u,0]</td>
</tr>
<tr>
<td>16 f</td>
<td>.3.</td>
<td>x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2, x+1/2, x+1/2 [u,u,u] x+1/2, x+1/2, x+1/2 [u,u,u] x+1/2, x+1/2, x+1/2 [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2, x+1/2, x+1/2 [u,u,u] x+1/2, x+1/2, x+1/2 [u,u,u] x+1/2, x+1/2, x+1/2 [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2, x+1/2, x+1/2 [u,u,u] x+1/2, x+1/2, x+1/2 [u,u,u] x+1/2, x+1/2, x+1/2 [u,u,u]</td>
</tr>
<tr>
<td>12 e</td>
<td>4..</td>
<td>x,0,0 [u,0,0] x,0,0 [u,0,0] x,0,0 [u,0,0] 0,x,0 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,0 [0,u,0] 0,x,0 [0,u,0] 0,x,0 [0,u,0] 0,x,0 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,0 [0,u,0] 0,x,0 [0,u,0] 0,x,0 [0,u,0] 0,x,0 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,x,0 [0,u,0] 0,x,0 [0,u,0] 0,x,0 [0,u,0] 0,x,0 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,1/2,1/2 [u,0,0] x+1/2,1/2,1/2 [u,0,0] 1/2,x+1/2,1/2 [0,u,0] 1/2,x+1/2,1/2 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,x+1/2,1/2 [0,u,0] 1/2,x+1/2,1/2 [0,u,0] 1/2,x+1/2,1/2 [0,u,0] 1/2,x+1/2,1/2 [0,u,0]</td>
</tr>
<tr>
<td>12</td>
<td>d</td>
<td>$\bar{4}'$..</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>c</td>
<td>$\bar{3}'$..</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>b</td>
<td>42.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>432</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: p4m'm'
 - $a^* = (a - b)/2$
 - $b^* = (a + b)/2$
 - Origin at 0,0,z

- **Along [1,1,1]**: p6m'm'
 - $a^* = (2a - b - c)/3$
 - $b^* = (-a + 2b - c)/3$
 - Origin at x,x,x

- **Along [1,1,0]**: p2m'm'
 - $a^* = (-a + b)/2$
 - $b^* = c/2$
 - Origin at x,x,0
Origin at center ($m\bar{3}$)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad z \leq \min(x, 1/2-x, y, 1/2-y) \]

Vertices

| 0,0,0 | 1/2,0,0 | 1/2,1/2,0 | 0,1/2,0 | 1/4,1/4,1/4 |

Symmetry Operations

(1) 1
(1) [0,0,0]

(2) 2 0,0,z
(2) [0,0,0]

(3) 2 0,y,0
(3) [0,0,0]

(4) 2 x,0,0
(4) [0,0,0]

(5) 3^+ x,x,x
(5) [xyz,0,0,0]

(6) 3^+ x,x,x
(6) [xyz,0,0,0]

(7) 3^+ x,x,x
(7) [xyz,0,0,0]

(8) 3^+ x,x,x
(8) [xyz,0,0,0]

(9) 3^- x,x,x
(9) [xyz^{-1},0,0,0]

(10) 3^- x,x,x
(10) [xyz^{-1},0,0,0]

(11) 3^- x,x,x
(11) [xyz^{-1},0,0,0]

(12) 3^- x,x,x
(12) [xyz^{-1},0,0,0]

223.1.1606 - 1 - 3671
Continued 223.1.1606 Pm3n

(13) 2 (1/2, 1/2, 0) x, x, 1/4
(2x, y, z [u, v, w])

(14) 2 x, x+1/2, 1/4
(2x, y, z [u, v, w])

(15) 4 (0, 0, 1/2) 1/2, 0, z
(4x, y, z [u, v, w])

(16) 4+ (0, 0, 1/2) 0, 1/2, z
(4x, y, z [u, v, w])

(17) 4 (1/2, 0, 0) x, 1/2, 0
(4x, y, z [u, v, w])

(18) 2 (0, 1/2, 1/2) 1/4, y, y
(2x, y, z [u, v, w])

(19) 2 1/4, y+1/2, y
(2x, y, z [u, v, w])

(20) 4+ (1/2, 0, 0) x, 0, 1/2
(4x, y, z [u, v, w])

(21) 4* (0, 1/2, 0) 1/2, y, 0
(4x, y, z [u, v, w])

(22) 2 (1/2, 0, 1/2) x, 1/4, x
(2x, y, z [u, v, w])

(23) 4* (0, 1/2, 0) 0, y, 1/2
(4x, y, z [u, v, w])

(24) 2 y+1/2, 1/4, x
(2x, y, z [u, v, w])

(25) x, y, z [u, v, w]
(3x, y, z [u, v, w])

(26) 3+ x, x, x; 0, 0, 0
(3x, y, z [u, v, w])

(27) m x, y, 0
(3x, y, z [u, v, w])

(28) m x, 0, z
(3x, y, z [u, v, w])

(29) 3+ x, x, x; 0, 0, 0
(3x, y, z [u, v, w])

(30) 3+ x, x, x; 0, 0, 0
(3x, y, z [u, v, w])

(31) 3+ x, x, x; 0, 0, 0
(3x, y, z [u, v, w])

(32) 3+ x, x, x; 0, 0, 0
(3x, y, z [u, v, w])

(33) 3+ x, x, x; 0, 0, 0
(3x, y, z [u, v, w])

(34) 3+ x, x, x; 0, 0, 0
(3x, y, z [u, v, w])

(35) 3+ x, x, x; 0, 0, 0
(3x, y, z [u, v, w])

(36) 3+ x, x, x; 0, 0, 0
(3x, y, z [u, v, w])

(37) c (0, 0, 1/2) x+1/2, x, z
(m x, y, z [u, v, w])

(38) n (1/2, 1/2, 1/2) x, x, z
(m x, y, z [u, v, w])

(39) 4* 0, 1/2, z; 0, 1/2, 1/4
(4x, y, z [u, v, w])

(40) 4* 1/2, 0, z; 1/2, 0, 1/4
(4x, y, z [u, v, w])

(41) 4* x, 0, 1/2; 1/4, 0, 1/2
(4x, y, z [u, v, w])

(42) a (1/2, 0, 0) x, y+1/2, y
(m x, y, z [u, v, w])

(43) n (1/2, 1/2, 1/2) x, y, y
(m x, y, z [u, v, w])

(44) 4* x, 1/2, 0; 1/4, 1/2, 0
(4x, y, z [u, v, w])

(45) 4+ 0, y, 1/2; 0, 1/4, 1/2
(4x, y, z [u, v, w])

(46) b (0, 1/2, 0) x+1/2, y, x
(m x, y, z [u, v, w])

(47) 4* 1/2, y, 0; 1/2, 1/4, 0
(4x, y, z [u, v, w])

(48) n (1/2, 1/2, 1/2) x, y, x
(m x, y, z [u, v, w])

Generators selected (1): t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5); (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

48 1 1

(1) x, y, z [u, v, w]
(2) x, y, z [u, v, w]
(3) x, y, z [u, v, w]
(4) x, y, z [u, v, w]

(5) z, x, y [w, u, v]
(6) z, x, y [w, u, v]
(7) z, x, y [w, u, v]
(8) z, x, y [w, u, v]

(9) y, z, x [v, w, u]
(10) y, z, x [v, w, u]
(11) y, z, x [v, w, u]
(12) y, z, x [v, w, u]

(13) y+1/2, x+1/2, z+1/2 [v, w, u]
(14) y+1/2, x+1/2, z+1/2 [v, w, u]
(15) y+1/2, x+1/2, z+1/2 [v, w, u]
(16) y+1/2, x+1/2, z+1/2 [v, w, u]

(17) x+1/2, z+1/2, y+1/2 [w, v, u]
(18) x+1/2, z+1/2, y+1/2 [w, v, u]
(19) x+1/2, z+1/2, y+1/2 [w, v, u]
(20) x+1/2, z+1/2, y+1/2 [w, v, u]

(21) z+1/2, y+1/2, x+1/2 [w, v, u]
(22) z+1/2, y+1/2, x+1/2 [w, v, u]
(23) z+1/2, y+1/2, x+1/2 [w, v, u]
(24) z+1/2, y+1/2, x+1/2 [w, v, u]

(25) x, y, z [u, v, w]
(26) x, y, z [u, v, w]
(27) x, y, z [u, v, w]
(28) x, y, z [u, v, w]

(29) z, x, y [w, u, v]
(30) z, x, y [w, u, v]
(31) z, x, y [w, u, v]
(32) z, x, y [w, u, v]

(33) y, z, x [v, w, u]
(34) y, z, x [v, w, u]
(35) y, z, x [v, w, u]
(36) y, z, x [v, w, u]
Continued

(37) $y + 1/2, x + 1/2, z + 1/2 \ [v, u, w]$

(38) $y + 1/2, x + 1/2, z + 1/2 \ [v, u, w]$

(39) $y + 1/2, x + 1/2, z + 1/2 \ [v, u, w]$

(40) $y + 1/2, x + 1/2, z + 1/2 \ [v, u, w]$

(41) $x + 1/2, z + 1/2, y + 1/2 \ [u, w, v]$

(42) $x + 1/2, z + 1/2, y + 1/2 \ [u, w, v]$

(43) $x + 1/2, z + 1/2, y + 1/2 \ [u, w, v]$

(44) $x + 1/2, z + 1/2, y + 1/2 \ [u, w, v]$

(45) $z + 1/2, y + 1/2, x + 1/2 \ [w, v, u]$

(46) $z + 1/2, y + 1/2, x + 1/2 \ [w, v, u]$

(47) $z + 1/2, y + 1/2, x + 1/2 \ [w, v, u]$

(48) $z + 1/2, y + 1/2, x + 1/2 \ [w, v, u]$

24 $k \ m_. \ 0, y, z \ [u, 0, 0] \ 0, y, z \ [u, 0, 0] \ 0, y, z \ [u, 0, 0]$

$z, 0, y \ [0, u, 0] \ z, 0, y \ [0, u, 0] \ z, 0, y \ [0, u, 0]$

$y, z, 0 \ [0, 0, u] \ y, z, 0 \ [0, 0, u] \ y, z, 0 \ [0, 0, u]$

$y + 1/2, 1/2, z + 1/2 \ [0, u, 0] \ y + 1/2, 1/2, z + 1/2 \ [0, u, 0] y + 1/2, 1/2, z + 1/2 \ [0, u, 0]$

$1/2, z + 1/2, y + 1/2 \ [u, 0, 0] \ 1/2, z + 1/2, y + 1/2 \ [u, 0, 0] 1/2, z + 1/2, y + 1/2 \ [u, 0, 0]$

$z + 1/2, y + 1/2, 1/2 \ [0, 0, u] \ 1/2, z + 1/2, y + 1/2 \ [0, 0, u] \ 1/2, z + 1/2, y + 1/2 \ [0, 0, u]$

24 $j \ .2$

$1/4, y, y + 1/2 \ [0, v, v] \ 3/4, y, y + 1/2 \ [0, v, v] \ 3/4, y, y + 1/2 \ [0, v, v]$

$y + 1/2, 1/4, y \ [v, 0, v] \ y + 1/2, 1/4, y \ [v, 0, v] \ y + 1/2, 1/4, y \ [v, 0, v]$

$y, y + 1/2, 1/4 \ [v, v, 0] \ y, y + 1/2, 1/4 \ [v, v, 0] \ y, y + 1/2, 1/4 \ [v, v, 0]$

$3/4, y, y + 1/2 \ [0, v, v] \ 1/4, y, y + 1/2 \ [0, v, v] \ 1/4, y, y + 1/2 \ [0, v, v]$

$y + 1/2, 3/4, y \ [v, 0, v] \ y + 1/2, 3/4, y \ [v, 0, v] \ y + 1/2, 3/4, y \ [v, 0, v]$

$y, y + 1/2, 3/4 \ [v, v, 0] \ y, y + 1/2, 3/4 \ [v, v, 0] \ y, y + 1/2, 3/4 \ [v, v, 0]$

16 $i \ .3.$

$x, x, x \ [u, u, u] \ x, x, x \ [u, u, u] \ x, x, x \ [u, u, u]$

$x + 1/2, x + 1/2, x + 1/2 \ [u, u, u] \ x + 1/2, x + 1/2, x + 1/2 \ [u, u, u] \ x + 1/2, x + 1/2, x + 1/2 \ [u, u, u]$

$x, x, x \ [u, u, u] \ x, x, x \ [u, u, u] \ x, x, x \ [u, u, u]$

$x + 1/2, x + 1/2, x + 1/2 \ [u, u, u] \ x + 1/2, x + 1/2, x + 1/2 \ [u, u, u] \ x + 1/2, x + 1/2, x + 1/2 \ [u, u, u]$

12 $h \ mm2.$

$x, 1/2, 0 \ [0, 0, 0] \ x, 1/2, 0 \ [0, 0, 0] \ 0, x, 1/2 \ [0, 0, 0] \ 0, x, 1/2 \ [0, 0, 0]$

$1/2, 0, x \ [0, 0, 0] \ 1/2, 0, x \ [0, 0, 0] \ 0, x + 1/2, 1/2 \ [0, 0, 0] \ 0, x + 1/2, 1/2 \ [0, 0, 0]$

$x + 1/2, 1/2, 0 \ [0, 0, 0] \ x + 1/2, 1/2, 0 \ [0, 0, 0] \ 1/2, 0, x + 1/2 \ [0, 0, 0] \ 1/2, 0, x + 1/2 \ [0, 0, 0]$
Continued

12 g	mm2..	\(x,0,1/2[0,0,0]\)	\(\overline{x},0,1/2[0,0,0]\)	\(1/2,x,0[0,0,0]\)	\(1/2,\overline{x},0[0,0,0]\)
0,1/2,x	[0,0,0]	0,1/2,\overline{x}[0,0,0]	\(1/2,\overline{x}+1/2,0[0,0,0]\)	\(1/2,\overline{x}+1/2,0[0,0,0]\)	
\(x+1/2,0,1/2[0,0,0]\)	\(\overline{x}+1/2,0,1/2[0,0,0]\)	\(0,1/2,\overline{x}+1/2[0,0,0]\)	\(0,1/2,\overline{x}+1/2[0,0,0]\)		

12 f	mm2..	\(x,0,0[0,0,0]\)	\(\overline{x},0,0[0,0,0]\)	\(0,x,0[0,0,0]\)	\(0,\overline{x},0[0,0,0]\)
0,0,x	[0,0,0]	0,0,\overline{x}[0,0,0]	\(1/2,x+1/2,1/2[0,0,0]\)	\(1/2,x+1/2,1/2[0,0,0]\)	
\(x+1/2,1/2,1/2[0,0,0]\)	\(\overline{x}+1/2,1/2,1/2[0,0,0]\)	\(1/2,1/2,x+1/2[0,0,0]\)	\(1/2,1/2,x+1/2[0,0,0]\)		

| 8 e | .32 | \(1/4,1/4,1/4[0,0,0]\) | \(3/4,3/4,1/4[0,0,0]\) | \(3/4,1/4,3/4[0,0,0]\) | \(1/4,3/4,3/4[0,0,0]\) |
| \(3/4,3/4,3/4[0,0,0]\) | \(1/4,1/4,3/4[0,0,0]\) | \(1/4,3/4,1/4[0,0,0]\) | \(3/4,1/4,1/4[0,0,0]\) |

| 6 d | \(\overline{4}m.2\) | \(1/4,1/2,0[0,0,0]\) | \(3/4,1/2,0[0,0,0]\) | \(0,1/4,1/2[0,0,0]\) |
| 0,3/4,1/2 | [0,0,0] | 1/2,0,1/4[0,0,0] | \(1/2,0,3/4[0,0,0]\) |

| 6 c | \(\overline{4}m.2\) | \(1/4,0,1/2[0,0,0]\) | \(3/4,0,1/2[0,0,0]\) | \(1/2,1,4,0[0,0,0]\) |
| 1/2,3/4,0 | [0,0,0] | 0,1/2,1/4[0,0,0] | \(0,1/2,3/4[0,0,0]\) |

| 6 b | mmm.. | \(0,1/2,1/2[0,0,0]\) | \(1/2,0,1/2[0,0,0]\) | \(1/2,1,2,0[0,0,0]\) |
| 0,1/2,0 | [0,0,0] | 1/2,0,0[0,0,0] | \(0,0,1/2[0,0,0]\) |

| 2 a | m\(\overline{3}\). | \(0,0,0[0,0,0]\) | \(1/2,1/2,1/2[0,0,0]\) |

Symmetry of Special Projections

| Along \([0,0,1]\) | p4mm1' | \(a^* = a\) \(b^* = b\) |
| Origin at 0,1/2,z | \(a^* = (2a - b - c)/3\) \(b^* = (-a + 2b - c)/3\) |

| Along \([1,1,1]\) | p6'm'm | \(a^* = (2a - b - c)/3\) \(b^* = (-a + 2b - c)/3\) |
| Origin at \(x,x,x\) | \(a^* = c/2\) \(b^* = (-a + b)/2\) |

| Along \([1,1,0]\) | \(p_{2a^*}2mm\) |
| \(a^* = (2a - b - c)/3\) \(b^* = (-a + 2b - c)/3\) |
| Origin at \(x,x,1/4\) | |
Origin at center (m\(\overline{3}1\)')

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad z \leq \min(x, 1/2-x, y, 1/2-y)\]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 0,1/2,0 \quad 1/4,1/4,1/4\]

Symmetry Operations

For 1 + set

\begin{align*}
(1) & \quad 1 \\
(1\!0,0,0) & \quad (2) \quad 0,0,z \quad (2\!z,0,0) \\
 & \quad (3) \quad 0,y,0 \quad (2\!y,0,0) \\
 & \quad (4) \quad 2 \times 0,0 \quad (2\!,0,0) \\
(5) & \quad 3^+ x,x,x \\
(3_{xyz}\!0,0,0) & \quad (6) \quad 3^+ \overline{x},\overline{x},\overline{x} \\
 & \quad (3_{xyz}\!^{-1}0,0,0) \\
 & \quad (7) \quad 3^+ x,x,\overline{x} \\
 & \quad (3_{xyz}\!^{-1}0,0,0) \\
 & \quad (8) \quad 3^+ \overline{x},\overline{x},x \\
 & \quad (3_{xyz}\!^{-1}0,0,0) \\
(9) & \quad 3^- x,x,x \\
(3_{xyz}\!^{-1}0,0,0) & \quad (10) \quad 3^- \overline{x},\overline{x},\overline{x} \\
 & \quad (3_{xyz}\!0,0,0) \\
 & \quad (11) \quad 3^- x,\overline{x},\overline{x} \\
 & \quad (3_{xyz}\!0,0,0) \\
 & \quad (12) \quad 3^- \overline{x},x,\overline{x} \\
 & \quad (3_{xyz}\!0,0,0)
\end{align*}
Continued 223.2.1607 Pm3n1'

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); (25); 1'.

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

Continued 223.2.1607 Pm3n1'

48 I 11'

(1) x,y,z [0,0,0]
(2) x,y,z [0,0,0]
(3) x,y,z [0,0,0]
(4) x,y,z [0,0,0]

(5) z,x,y [0,0,0]
(6) z,x,y [0,0,0]
(7) z,x,y [0,0,0]
(8) z,x,y [0,0,0]

(9) y,z,x [0,0,0]
(10) y,z,x [0,0,0]
(11) y,z,x [0,0,0]
(12) y,z,x [0,0,0]

(13) y+1/2,x+1/2,z+1/2 [0,0,0]
(14) y+1/2,x+1/2,z+1/2 [0,0,0]
(15) y+1/2,x+1/2,z+1/2 [0,0,0]
(16) y+1/2,x+1/2,z+1/2 [0,0,0]

(17) x+1/2,z+1/2,y+1/2 [0,0,0]
(18) x+1/2,z+1/2,y+1/2 [0,0,0]
(19) x+1/2,z+1/2,y+1/2 [0,0,0]
(20) x+1/2,z+1/2,y+1/2 [0,0,0]

(21) z+1/2,y+1/2,x+1/2 [0,0,0]
(22) z+1/2,y+1/2,x+1/2 [0,0,0]
(23) z+1/2,y+1/2,x+1/2 [0,0,0]
(24) z+1/2,y+1/2,x+1/2 [0,0,0]

(25) x,y,z [0,0,0]
(26) x,y,z [0,0,0]
(27) x,y,z [0,0,0]
(28) x,y,z [0,0,0]

(29) z,x,y [0,0,0]
(30) z,x,y [0,0,0]
(31) z,x,y [0,0,0]
(32) z,x,y [0,0,0]

(33) y,z,x [0,0,0]
(34) y,z,x [0,0,0]
(35) y,z,x [0,0,0]
(36) y,z,x [0,0,0]

(37) y+1/2,x+1/2,z+1/2 [0,0,0]
(38) y+1/2,x+1/2,z+1/2 [0,0,0]
(39) y+1/2,x+1/2,z+1/2 [0,0,0]
(40) y+1/2,x+1/2,z+1/2 [0,0,0]

(41) x+1/2,z+1/2,y+1/2 [0,0,0]
(42) x+1/2,z+1/2,y+1/2 [0,0,0]
(43) x+1/2,z+1/2,y+1/2 [0,0,0]
(44) x+1/2,z+1/2,y+1/2 [0,0,0]

(45) z+1/2,y+1/2,x+1/2 [0,0,0]
(46) z+1/2,y+1/2,x+1/2 [0,0,0]
(47) z+1/2,y+1/2,x+1/2 [0,0,0]
(48) z+1/2,y+1/2,x+1/2 [0,0,0]

24 k m..1' 0,y,z [0,0,0]
0,y,z [0,0,0]
0,y,z [0,0,0]
0,y,z [0,0,0]

z,0,y [0,0,0]
z,0,y [0,0,0]
z,0,y [0,0,0]
z,0,y [0,0,0]

y,z,0 [0,0,0]
y,z,0 [0,0,0]
y,z,0 [0,0,0]
y,z,0 [0,0,0]

223.2.1607 - 3 - 3677
<table>
<thead>
<tr>
<th></th>
<th>d</th>
<th>m.21'</th>
<th>1/4,1/2,0 [0,0,0]</th>
<th>3/4,1/2,0 [0,0,0]</th>
<th>0,1/4,1/2 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0,3/4,1/2 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
<td>1/2,0,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>m.21'</td>
<td>1/4,0,1/2 [0,0,0]</td>
<td>3/4,0,1/2 [0,0,0]</td>
<td>1/2,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/2,3/4,0 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>mmm..1'</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td>m3.1'</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1'
\(\mathbf{a}^* = \mathbf{a} \quad \mathbf{b}^* = \mathbf{b} \)
Origin at 0,1/2,z

Along [1,1,1] p6mm1'
\(\mathbf{a}^* = (2\mathbf{a} - \mathbf{b} - \mathbf{c})/3 \quad \mathbf{b}^* = (-\mathbf{a} + 2\mathbf{b} - \mathbf{c})/3 \)
Origin at x,x,x

Along [1,1,0] p2mm1'
\(\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c}/2 \)
Origin at x,x,0
Origin at center (m\(^3\)\(^n\))

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad z \leq \min(x, 1/2-x, y, 1/2-y)\]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 0,1/2,0 \quad 1/4,1/4,1/4\]

Symmetry Operations

\begin{align*}
(1) & \quad 1 \\
& \quad (1|0,0,0) \\
(2) & \quad 2 \quad 0,0,z \\
& \quad (2z|0,0,0) \\
(3) & \quad 2 \quad 0,y,0 \\
& \quad (2y|0,0,0) \\
(4) & \quad 2 \quad x,0,0 \\
& \quad (2x|0,0,0) \\
(5) & \quad 3^+ \quad x,x,x \\
& \quad (3_{xyz}|0,0,0) \\
(6) & \quad 3^+ \quad x,x,x \\
& \quad (3_{xyz}^{-1}|0,0,0) \\
(7) & \quad 3^+ \quad x,x,x \\
& \quad (3_{xyz}^{-1}|0,0,0) \\
(8) & \quad 3^+ \quad x,x,x \\
& \quad (3_{xyz}^{-1}|0,0,0) \\
(9) & \quad 3^{-}\quad x,x,x \\
& \quad (3_{xyz}^{-1}|0,0,0) \\
(10) & \quad 3^{-}\quad x,x,x \\
& \quad (3_{xyz}^{-1}|0,0,0) \\
(11) & \quad 3^{-}\quad x,x,x \\
& \quad (3_{xyz}^{-1}|0,0,0) \\
(12) & \quad 3^{-}\quad x,x,x \\
& \quad (3_{xyz}^{-1}|0,0,0) \\
\end{align*}
Continued

223.3.1608 Pm3n

13) $2^{'} (1/2,1/2,0) \ x,x,1/4$
 $\begin{cases} \text{continued} \\ 3 \end{cases}$

17) $4^{'} (1/2,0,0) \ x,1/2,0$
 $\begin{cases} \text{continued} \\ 4 \end{cases}$

21) $4^{'} (0,1/2,0) \ 1/2,y,0$
 $\begin{cases} \text{continued} \\ 5 \end{cases}$

25) $1^{'} 0,0,0$
 $\begin{cases} \text{continued} \\ 6 \end{cases}$

29) $3^{'} x,x,x; 0,0,0$
 $\begin{cases} \text{continued} \\ 7 \end{cases}$

33) $3^{'} x,x,x; 0,0,0$
 $\begin{cases} \text{continued} \\ 8 \end{cases}$

37) $c (0,0,1/2) \ x+1/2,\bar{z},z$
 $\begin{cases} \text{continued} \\ 9 \end{cases}$

41) $4^{'} x,0,1/2; 1/4,0,1/2$
 $\begin{cases} \text{continued} \\ 10 \end{cases}$

45) $4^{'} 0,y,1/2; 0,1/4,1/2$
 $\begin{cases} \text{continued} \\ 11 \end{cases}$

Generators selected

(1): $t(1,0,0); t(0,1,0); t(0,0,1)$; (2); (3); (5); (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

48 1 1

(1) $x,y,z [u,v,w]$
 (2) $\bar{x},\bar{y},\bar{z} [u,\bar{v},w]$
 (3) $x,y,z [u,v,w]$
 (4) $x,\bar{y},\bar{z} [u,\bar{v},w]$

(5) $z,x,y [w,u,v]$
 (6) $z,\bar{x},\bar{y} [w,\bar{u},v]$
 (7) $\bar{z},x,y [w,u,\bar{v}]$
 (8) $\bar{z},x,y [w,u,v]$

(9) $y,z,x [v,w,u]$
 (10) $\bar{y},z,\bar{x} [v,w,u]$
 (11) $y,z,\bar{x} [v,w,u]$
 (12) $\bar{y},z,x [\bar{v},w,u]$

(13) $y+1/2,x+1/2,z+1/2 [v,\bar{u},w]$ (14) $y+1/2,x+1/2,z+1/2 [v,u,w]$ (15) $y+1/2,x+1/2,z+1/2 [v,u,\bar{w}]$
 (16) $y+1/2,x+1/2,z+1/2 [v,\bar{u},\bar{w}]$

(17) $x+1/2,z+1/2,y+1/2 [u,\bar{w},v]$ (18) $x+1/2,z+1/2,y+1/2 [u,w,\bar{v}]$
 (19) $x+1/2,z+1/2,y+1/2 [u,w,v]$ (20) $x+1/2,z+1/2,y+1/2 [u,\bar{w},v]$

(21) $z+1/2,y+1/2,x+1/2 [\bar{w},\bar{v},u]$ (22) $z+1/2,y+1/2,x+1/2 [\bar{w},\bar{u},v]$ (23) $\bar{z}+1/2,y+1/2,x+1/2 [\bar{w},\bar{v},u]$
 (24) $\bar{z}+1/2,y+1/2,x+1/2 [\bar{w},\bar{u},v]$

(25) $\bar{x},\bar{y},\bar{z} [u,\bar{v},w]$ (26) $x,\bar{y},\bar{z} [u,\bar{v},w]$ (27) $x,\bar{y},\bar{z} [u,\bar{v},w]$ (28) $x,\bar{y},\bar{z} [u,\bar{v},w]$

(29) $\bar{z},x,y [w,\bar{u},v]$ (30) $\bar{z},x,y [w,u,\bar{v}]$
 (31) $\bar{z},x,y [w,u,v]$ (32) $\bar{z},x,y [w,u,v]$

(33) $y,z,\bar{x} [v,\bar{w},u]$ (34) $y,z,\bar{x} [v,w,u]$ (35) $\bar{y},\bar{z},\bar{x} [\bar{w},w,u]$ (36) $\bar{y},\bar{z},\bar{x} [\bar{w},w,u]$

223.3.1608 - 2 - 3681
<table>
<thead>
<tr>
<th>12</th>
<th><code>g</code></th>
<th>`m'm', x,0,1/2 [u,0,0]</th>
<th><code>x,0,1/2 [u,0,0]</code></th>
<th><code>1/2,x,0 [0,u,0]</code></th>
<th><code>1/2,x,0 [0,u,0]</code></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><code>0,1/2,x [0,0,u]</code></td>
<td><code>0,1/2,x [0,0,u]</code></td>
<td><code>1/2,x+1/2,0 [0,u,0]</code></td>
<td><code>1/2,x+1/2,0 [0,u,0]</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>x+1/2,0,1/2 [u,0,0]</code></td>
<td><code>x+1/2,0,1/2 [u,0,0]</code></td>
<td><code>0,1/2,x+1/2 [0,u,0]</code></td>
<td><code>0,1/2,x+1/2 [0,u,0]</code></td>
</tr>
<tr>
<td>12</td>
<td><code>f</code></td>
<td><code>m'm', x,0,0 [u,0,0]</code></td>
<td><code>x,0,0 [u,0,0]</code></td>
<td><code>0,x,0 [0,u,0]</code></td>
<td><code>0,x,0 [0,u,0]</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>0,0,x [0,0,u]</code></td>
<td><code>0,0,x [0,0,u]</code></td>
<td><code>1/2,x+1/2,1/2 [0,u,0]</code></td>
<td><code>1/2,x+1/2,1/2 [0,u,0]</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>x+1/2,1/2,1/2 [u,0,0]</code></td>
<td><code>x+1/2,1/2,1/2 [u,0,0]</code></td>
<td><code>1/2,1/2,x+1/2 [0,u,0]</code></td>
<td><code>1/2,1/2,x+1/2 [0,u,0]</code></td>
</tr>
<tr>
<td>8</td>
<td><code>e</code></td>
<td><code>.32'</code></td>
<td><code>1/4,1/4,1/4 [u,u,u]</code></td>
<td><code>3/4,3/4,1/4 [u,u,u]</code></td>
<td><code>3/4,1/4,3/4 [u,u,u]</code></td>
</tr>
<tr>
<td>6</td>
<td><code>d</code></td>
<td><code>4,m', 1/4,1/2,0 [u,0,0]</code></td>
<td><code>3/4,1/2,0 [u,0,0]</code></td>
<td><code>0,1/4,1/2 [0,u,0]</code></td>
<td><code>0,1/4,1/2 [0,u,0]</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>0,3/4,1/2 [0,u,0]</code></td>
<td><code>1/2,0,1/4 [0,u,0]</code></td>
<td><code>1/2,0,3/4 [0,u,0]</code></td>
<td><code>1/2,0,3/4 [0,u,0]</code></td>
</tr>
<tr>
<td>6</td>
<td><code>c</code></td>
<td><code>4,m', 1/4,0,1/2 [u,0,0]</code></td>
<td><code>3/4,0,1/2 [u,0,0]</code></td>
<td><code>1/2,1/4,0 [0,u,0]</code></td>
<td><code>1/2,1/4,0 [0,u,0]</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>1/2,3/4,0 [0,u,0]</code></td>
<td><code>0,1/2,1/4 [0,u,0]</code></td>
<td><code>0,1/2,3/4 [0,u,0]</code></td>
<td><code>0,1/2,3/4 [0,u,0]</code></td>
</tr>
<tr>
<td>6</td>
<td><code>b</code></td>
<td><code>m'm', 0,1/2,1/2 [0,0,0]</code></td>
<td><code>1/2,0,1/2 [0,0,0]</code></td>
<td><code>1/2,1/2,0 [0,0,0]</code></td>
<td><code>1/2,1/2,0 [0,0,0]</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>0,1/2,0 [0,0,0]</code></td>
<td><code>1/2,0,0 [0,0,0]</code></td>
<td><code>0,0,1/2 [0,0,0]</code></td>
<td><code>0,0,1/2 [0,0,0]</code></td>
</tr>
<tr>
<td>2</td>
<td><code>a</code></td>
<td><code>m', 0,0,0 [0,0,0]</code></td>
<td><code>1/2,1/2,1/2 [0,0,0]</code></td>
<td><code>1/2,1/2,1/2 [0,0,0]</code></td>
<td><code>1/2,1/2,1/2 [0,0,0]</code></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- Along [0,0,1] `p4'm'm`
 - `a` = `a` `b` = `b`
 - `Origin at 0,1/2,z`
- Along [1,1,1] `p6mm`
 - `a` = `(2a - b - c)/3` `b` = `(-a + 2b - c)/3`
 - `Origin at x,x,x`
- Along [1,1,0] `p2mm`
 - `a` = `c/2` `b` = `(-a + b)/2`
 - `Origin at x,x,0`
Origin at center (m\bar{3})

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{2}; \quad 0 \leq z \leq \frac{1}{4}; \quad z \leq \min(x, \frac{1}{2}-x, y, \frac{1}{2}-y) \]

Vertices

\[0,0,0 \quad \frac{1}{2},0,0 \quad \frac{1}{2},\frac{1}{2},0 \quad 0,\frac{1}{2},0 \quad \frac{1}{4},\frac{1}{4},\frac{1}{4} \]

Symmetry Operations

(1)\quad 1
(2)\quad 2 \quad 0,0,0 \quad (2_z|0,0,0)
(3)\quad 2 \quad 0,0,0 \quad (2_y|0,0,0)
(4)\quad 2 \quad x,0,0 \quad (2_x|0,0,0)

(5)\quad 3^+ \quad x,x,x \quad (3_{xyz}|0,0,0)
(6)\quad 3^+ \quad x,x,x \quad (3_{xyz}^{-1}|0,0,0)
(7)\quad 3^+ \quad x,x,x \quad (3_{xyz}^{-1}|0,0,0)
(8)\quad 3^+ \quad \bar{x},\bar{x},\bar{x} \quad (3_{xyz}^{-1}|0,0,0)

(9)\quad 3^- \quad x,x,x \quad (3_{xyz}^{-1}|0,0,0)
(10)\quad 3^- \quad x,x,x \quad (3_{xyz}|0,0,0)
(11)\quad 3^- \quad \bar{x},\bar{x},\bar{x} \quad (3_{xyz}|0,0,0)
(12)\quad 3^- \quad \bar{x},\bar{x},\bar{x} \quad (3_{xyz}|0,0,0)
Continued

(13)	2' (1/2,1/2,0)	x,x,1/4
(14)	2' x,x+1/2,1/4	
(15)	4' (0,0,1/2)	1/2,0,z
(16)	4' (0,0,1/2)	0,1/2,z
(17)	4' (1/2,0,0)	x,1/2,0
(18)	2' (0,1/2,1/2)	1/4,y,y
(19)	2' 1/4,y+1/2,y	
(20)	4' (1/2,0,0)	x,0,1/2
(21)	4' (0,1/2,0)	1/2,y,0
(22)	2' (1/2,1/2,1/2)	x,1/4,x
(23)	4' (0,1/2,0)	0,y,1/2
(24)	2' x+1/2,1/4,x	
(25)	1,0,0	
(1)	0,0,0	
(26)	m x,y,0	
(27)	m x,0,z	
(28)	m y,z,0	
(29)	3' x,x,x; 0,0,0	
(30)	3' x,x,x; 0,0,0	
(31)	3' x,x,x; 0,0,0	
(32)	3' x,x,x; 0,0,0	
(33)	3' x,x,x; 0,0,0	
(34)	3' x,x,x; 0,0,0	
(35)	3' x,x,x; 0,0,0	
(36)	3' x,x,x; 0,0,0	
(37)	c' (0,0,1/2)	
(38)	n' (1/2,1/2,1/2)	
(39)	4' 0,1/2,z; 0,1/2,1/4	
(40)	4' 1/2,0,z; 1/2,0,1/4	
(41)	4' x,0,1/2; 1/4,0,1/2	
(42)	a' (1/2,0,0)	
(43)	n' (1/2,1/2,1/2)	
(44)	4' x,1/2,0; 1/4,1/2,0	
(45)	4' 0,y,1/2; 0,1/4,1/2	
(46)	b' (0,1/2,0)	
(47)	4' 1/2,y,0; 1/2,1/4,0	
(48)	n' (1/2,1/2,1/2)	

Generators selected

(1): t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); (25).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

48 1 1

(1)	x,y,z [u,v,w]
(2)	x,y,z [u,v,w]
(3)	x,y,z [u,v,w]
(4)	x,y,z [u,v,w]
(5)	z,x,y [w,u,v]
(6)	z,x,y [w,u,v]
(7)	z,x,y [w,u,v]
(8)	z,x,y [w,u,v]
(9)	y,z,x [v,w,u]
(10)	y,z,x [v,w,u]
(11)	y,z,x [v,w,u]
(12)	y,z,x [v,w,u]
(13)	y+1/2,x+1/2,z+1/2 [v,u,w]
(14)	y+1/2,x+1/2,z+1/2 [v,u,w]
(15)	y+1/2,x+1/2,z+1/2 [v,u,w]
(16)	y+1/2,x+1/2,z+1/2 [v,u,w]
(17)	x+1/2,z+1/2,y+1/2 [u,w,v]
(18)	x+1/2,z+1/2,y+1/2 [u,w,v]
(19)	x+1/2,z+1/2,y+1/2 [u,w,v]
(20)	x+1/2,z+1/2,y+1/2 [u,w,v]
(21)	z+1/2,y+1/2,x+1/2 [w,v,u]
(22)	z+1/2,y+1/2,x+1/2 [w,v,u]
(23)	z+1/2,y+1/2,x+1/2 [w,v,u]
(24)	z+1/2,y+1/2,x+1/2 [w,v,u]
(25)	x,y,z [u,v,w]
(26)	x,y,z [u,v,w]
(27)	x,y,z [u,v,w]
(28)	x,y,z [u,v,w]
(29)	z,x,y [w,u,v]
(30)	z,x,y [w,u,v]
(31)	z,x,y [w,u,v]
(32)	z,x,y [w,u,v]
(33)	y,z,x [v,w,u]
(34)	y,z,x [v,w,u]
(35)	y,z,x [v,w,u]
(36)	y,z,x [v,w,u]
(37) \(y+1/2, x+1/2, z+1/2 \) \([v,u,w]\) (38) \(y+1/2, x+1/2, z+1/2 \) \([v,u,w]\) (39) \(y+1/2, x+1/2, z+1/2 \) \([v,u,w]\) (40) \(y+1/2, x+1/2, z+1/2 \) \([v,u,w]\) (41) \(x+1/2, y+1/2, z+1/2 \) \([w,v,\bar{u},\bar{v}]\) (42) \(x+1/2, y+1/2, z+1/2 \) \([u,\bar{v},w]\) (43) \(x+1/2, y+1/2, z+1/2 \) \([u,\bar{v},w]\) (44) \(x+1/2, y+1/2, z+1/2 \) \([u,\bar{v},w]\) (45) \(z+1/2, y+1/2, x+1/2 \) \([w,v,u]\) (46) \(z+1/2, y+1/2, x+1/2 \) \([w,v,u]\) (47) \(z+1/2, y+1/2, x+1/2 \) \([w,v,u]\) (48) \(z+1/2, y+1/2, x+1/2 \) \([w,v,u]\)

24 k m.. 0,y,z [u,0,0] 0,y,z [u,0,0] 0,y,z [u,0,0]
24 j .2'

1/4,y,y+1/2 [u,v,v] 3/4,y,y+1/2 [u,v,v] 3/4,y,y+1/2 [u,v,v] 1/4,y,y+1/2 [u,v,v]

y+1/2,1/4, y [v,u,v] y+1/2,1/4, y [v,u,v] y+1/2,1/4, y [v,u,v] y+1/2,1/4, y [v,u,v]

y,y+1/2,1/4 [v,v,u] y,y+1/2,1/4 [v,v,u] y,y+1/2,1/4 [v,v,u] y,y+1/2,1/4 [v,v,u]

1/2, y+1/2,1/4 [v,u,v] 1/2, y+1/2,1/4 [v,u,v] 1/2, y+1/2,1/4 [v,u,v] 1/2, y+1/2,1/4 [v,u,v]

y,y+1/2,1/4 [v,v,u] y,y+1/2,1/4 [v,v,u] y,y+1/2,1/4 [v,v,u] y,y+1/2,1/4 [v,v,u]

16 i .3. x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u]

x+1/2,x+1/2,x+1/2 [u,u,u] x+1/2,x+1/2,x+1/2 [u,u,u] x+1/2,x+1/2,x+1/2 [u,u,u]

x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u]

x+1/2,x+1/2,x+1/2 [u,u,u] x+1/2,x+1/2,x+1/2 [u,u,u] x+1/2,x+1/2,x+1/2 [u,u,u]

12 h mm2.. x,1/2,0 [0,0,0] x,1/2,0 [0,0,0] 0,x,1/2 [0,0,0] 0,x,1/2 [0,0,0]

1/2,0,x [0,0,0] 1/2,0,x [0,0,0] 0,x+1/2,1/2 [0,0,0] 0,x+1/2,1/2 [0,0,0]

x+1/2,1/2,0 [0,0,0] x+1/2,1/2,0 [0,0,0] 1/2,0,x+1/2 [0,0,0] 1/2,0,x+1/2 [0,0,0]
<table>
<thead>
<tr>
<th></th>
<th>mm2..</th>
<th>x,0,1/2 [0,0,0]</th>
<th>x,0,1/2 [0,0,0]</th>
<th>1/2,x,0 [0,0,0]</th>
<th>1/2,x,0 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 g</td>
<td>0,1/2,x [0,0,0]</td>
<td>0,1/2,x [0,0,0]</td>
<td>1/2,x+1/2,0 [0,0,0]</td>
<td>1/2,x+1/2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,0,1/2 [0,0,0]</td>
<td>x+1/2,0,1/2 [0,0,0]</td>
<td>0,1/2,x+1/2 [0,0,0]</td>
<td>0,1/2,x+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>12 f</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,0,x [0,0,0]</td>
<td>0,0,x [0,0,0]</td>
<td>1/2,x+1/2,1/2 [0,0,0]</td>
<td>1/2,x+1/2,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x+1/2,1/2,1/2 [0,0,0]</td>
<td>x+1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,x+1/2 [0,0,0]</td>
<td>1/2,1/2,x+1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>6 d</td>
<td>1/4,1/2,0 [0,0,0]</td>
<td>3/4,1/2,0 [0,0,0]</td>
<td>0,1/4,1/2 [0,0,0]</td>
<td>0,1/4,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,3/4,1/2 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
<td>1/2,0,3/4 [0,0,0]</td>
<td>1/2,0,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>6 c</td>
<td>1/4,0,1/2 [0,0,0]</td>
<td>3/4,0,1/2 [0,0,0]</td>
<td>1/2,1,4/0 [0,0,0]</td>
<td>1/2,1,4/0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2,3/4,0 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>6 b</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,1,2,0 [0,0,0]</td>
<td>1/2,1,2,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>2 a</td>
<td>m3.</td>
<td>m3.</td>
<td>m3.</td>
<td>m3.</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Orientation</th>
<th>Symmetry</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p4mm1'</td>
<td>0,1/2,z</td>
</tr>
<tr>
<td>a = a</td>
<td>a = (2a - b - c)/3</td>
<td>Origin at 0,1/2,z</td>
</tr>
<tr>
<td>b = b</td>
<td>b = (-a + 2b - c)/3</td>
<td></td>
</tr>
<tr>
<td>Along [1,1,1]</td>
<td>p6'mm'</td>
<td>x,x,x</td>
</tr>
<tr>
<td>a = c/2</td>
<td>a = c/2</td>
<td>Origin at x,x,x</td>
</tr>
<tr>
<td>b = (-a + b)/2</td>
<td>b = (-a + b)/2</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (m'3')

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4;
z ≤ min(x, 1/2-x, y, 1/2-y)

Vertices
0,0,0 1/2,0,0 1/2,1/2,0 0,1/2,0 1/4,1/4,1/4

Symmetry Operations

(1) 1
(1) 0,0,0
(1) 0,0,0

(2) 2 0,0,z
(2) 0,0,0
(2) 0,0,0

(3) 2 0,y,0
(3) 0,0,0
(3) 0,0,0

(4) 2 x,0,0
(4) 0,0,0
(4) 0,0,0

(5) 3' x,x,x
(3) x,y,x
(3) x,y,x

(6) 3' x,x,x
(3) x,y,x
(3) x,y,x

(7) 3' x,x,x
(3) x,y,x
(3) x,y,x

(8) 3' x,x,x
(3) x,y,x
(3) x,y,x

(9) 3' x,x,x
(3) x,y,x
(3) x,y,x

(10) 3' x,x,x
(3) x,y,x
(3) x,y,x

(11) 3' x,x,x
(3) x,y,x
(3) x,y,x

(12) 3' x,x,x
(3) x,y,x
(3) x,y,x
Continued

(13) 2 (1/2,1/2,0) x,x,1/4	(14) 2 x,x+1/2,1/4	(15) 4' (0,0,1/2) 1/2,0,z	(16) 4' (0,0,1/2) 0,1/2,z
(2y) 1/2,1/2,1/2	(2y) 1/2,1/2,1/2	(4z) 1/2,1/2,1/2	(4z) 1/2,1/2,1/2
(17) 4' (1/2,0,0) x,1/2,0	(18) 2 (0,1/2,1/2) 1/4,y,y	(19) 2 1/4,y+1/2,y	(20) 4' (1/2,0,0) x,0,1/2
(4x) 1/2,1/2,1/2	(2y) 1/2,1/2,1/2	(2y) 1/2,1/2,1/2	(4x) 1/2,1/2,1/2
(21) 4' (0,1/2,0) 1/2,y,0	(22) 2 (1/2,0,1/2) x,1/4,x	(23) 4' (0,1/2,0) 0,y,1/2	(24) 2 x+1/2,1/4,x
(4y) 1/2,1/2,1/2	(2y) 1/2,1/2,1/2	(4y) 1/2,1/2,1/2	(2x) 1/2,1/2,1/2
(25) t' 0,0,0	(26) m' x,y,0	(27) m' x,0,z	(28) m' 0,y,z
(1 0,0,0)'	(m_x 0,0,0)'	(m_y 0,0,0)'	(m_y 0,0,0)'
(29) 3++ x,x,x; 0,0,0	(30) 3++ x,x,x; 0,0,0	(31) 3++ x,x,x; 0,0,0	(32) 3++ x,x,x; 0,0,0
(3xyz 0,0,0)'	(3xyz 0,0,0)'	(3xyz 0,0,0)'	(3xyz 0,0,0)'
(33) 3+ x,x,x; 0,0,0	(34) 3+ x,x,x; 0,0,0	(35) 3+ x,x,x; 0,0,0	(36) 3+ x,x,x; 0,0,0
(3xyz 0,0,0)'	(3xyz 0,0,0)'	(3xyz 0,0,0)'	(3xyz 0,0,0)'
(37) c' (0,0,1/2) x+1/2,z,z	(38) n' (1/2,1/2,1/2) x,x,z	(39) 4'' x,x,x; 0,1/2,z; 0,1/2,1/4	(40) 4'' 1/2,0,z; 1/2,0,1/4
(m_y 1/2,1/2,12)'	(m_y 1/2,1/2,12)'	(4z) 1/2,1/2,12)'	(4z) 1/2,1/2,12)'
(41) 4+ x,0,1/2; 1/4,0,1/2	(42) a' (1/2,0,0) x,y+1/2,y	(43) n' (1/2,1/2,1/2) x,y,y	(44) 4' x,1/2,0; 1/4,1/2,0
(4y) 1/2,1/2,12)'	(m_y 1/2,1/2,12)'	(m_y 1/2,1/2,12)'	(4x) 1/2,1/2,12)'
(45) 4+ x,0,1/2; 0,1/4,1/2	(46) b' (0,1/2,0) x+1/2,y,x	(47) 4' x,x,x; 1/2,0,y; 1/2,1/4,0	(48) n' (1/2,1/2,1/2) x,y,x
(4y) 1/2,1/2,12)'	(m_y 1/2,1/2,12)'	(4y) 1/2,1/2,12)'	(m_y 1/2,1/2,12)'

Generators selected

(1): t(1,0,0); t(0,1,0); t(0,0,1); (2): (3); (5): (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

48	1
1	(1) x,y,z [u,v,w] (2) x+y,z [u,v,w] (3) x,y,z [u,v,w] (4) x+y,z [u,v,w]
5	(5) z,x,y [w,u,v] (6) z,x,y [w,u,v] (7) z,x,y [w,u,v] (8) z,x,y [w,u,v]
9	(9) y,z,x [v,w,u] (10) y,z,x [v,w,u] (11) y,z,x [v,w,u] (12) y,z,x [v,w,u]
13	(13) y+1/2,x+1/2,z+1/2 [v,u,w] (14) y+1/2,x+1/2,z+1/2 [v,u,w] (15) y+1/2,x+1/2,z+1/2 [v,u,w] (16) y+1/2,x+1/2,z+1/2 [v,u,w]
17	(17) x+1/2,z+1/2,y+1/2 [u,w,v] (18) x+1/2,z+1/2,y+1/2 [u,w,v] (19) x+1/2,z+1/2,y+1/2 [u,w,v] (20) x+1/2,z+1/2,y+1/2 [u,w,v]
21	(21) z+1/2,y+1/2,x+1/2 [w,v,u] (22) z+1/2,y+1/2,x+1/2 [w,v,u] (23) z+1/2,y+1/2,x+1/2 [w,v,u] (24) z+1/2,y+1/2,x+1/2 [w,v,u]
25	(25) x,y,z [u,v,w] (26) x,y,z [u,v,w] (27) x,y,z [u,v,w] (28) x,y,z [u,v,w]
29	(29) z,x,y [w,u,v] (30) z,x,y [w,u,v] (31) z,x,y [w,u,v] (32) z,x,y [w,u,v]
33	(33) y,z,x [v,w,u] (34) y,z,x [v,w,u] (35) y,z,x [v,w,u] (36) y,z,x [v,w,u]
Continued

$$y + 1/2, x + 1/2, z + 1/2$$

<table>
<thead>
<tr>
<th>24</th>
<th>k</th>
<th>m'..</th>
<th>0, y, z [0, v, w]</th>
<th>0, y, z [0, v, w]</th>
<th>0, y, z [0, v, w]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, y, z [0, v, w]</td>
<td>0, y, z [0, v, w]</td>
<td>0, y, z [0, v, w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z, 0, y [w, 0, v]</td>
<td>z, 0, y [w, 0, v]</td>
<td>z, 0, y [w, 0, v]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y, z, 0 [v, w, 0]</td>
<td>y, z, 0 [v, w, 0]</td>
<td>y, z, 0 [v, w, 0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y + 1/2, 1/2, z + 1/2 [v, 0, w]</td>
<td>y + 1/2, 1/2, z + 1/2 [v, 0, w]</td>
<td>y + 1/2, 1/2, z + 1/2 [v, 0, w]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2, z + 1/2, y + 1/2 [0, w, v]</td>
<td>1/2, z + 1/2, y + 1/2 [0, w, v]</td>
<td>1/2, z + 1/2, y + 1/2 [0, w, v]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z + 1/2, y + 1/2, 1/2 [w, v, 0]</td>
<td>z + 1/2, y + 1/2, 1/2 [w, v, 0]</td>
<td>z + 1/2, y + 1/2, 1/2 [w, v, 0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24</th>
<th>j</th>
<th>.. .2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4, y, y + 1/2 [0, v, v]</td>
<td>3/4, y, y + 1/2 [0, v, v]</td>
<td>3/4, y, y + 1/2 [0, v, v]</td>
</tr>
<tr>
<td>y + 1/2, 1/4, y [v, 0, v]</td>
<td>y + 1/2, 3/4, y [v, 0, v]</td>
<td>y + 1/2, 1/4, y [v, 0, v]</td>
</tr>
<tr>
<td>y, y + 1/2, 1/4 [v, v, 0]</td>
<td>y, y + 1/2, 3/4 [v, v, 0]</td>
<td>y, y + 1/2, 1/4 [v, v, 0]</td>
</tr>
<tr>
<td>3/4, y, y + 1/2 [0, v, v]</td>
<td>1/4, y, y + 1/2 [0, v, v]</td>
<td>3/4, y, y + 1/2 [0, v, v]</td>
</tr>
<tr>
<td>y + 1/2, 3/4, y [v, 0, v]</td>
<td>y + 1/2, 1/4, y [v, 0, v]</td>
<td>y + 1/2, 3/4, y [v, 0, v]</td>
</tr>
<tr>
<td>y, y + 1/2, 3/4 [v, v, 0]</td>
<td>y, y + 1/2, 1/4 [v, v, 0]</td>
<td>y, y + 1/2, 3/4 [v, v, 0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>i</th>
<th>.. .3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, x, x [u, u, u]</td>
<td>x, x, x [u, u, u]</td>
<td>x, x, x [u, u, u]</td>
</tr>
<tr>
<td>x + 1/2, x + 1/2, x + 1/2 [u, u, u]</td>
<td>x + 1/2, x + 1/2, x + 1/2 [u, u, u]</td>
<td>x + 1/2, x + 1/2, x + 1/2 [u, u, u]</td>
</tr>
<tr>
<td>x + 1/2, x + 1/2, x + 1/2 [u, u, u]</td>
<td>x + 1/2, x + 1/2, x + 1/2 [u, u, u]</td>
<td>x + 1/2, x + 1/2, x + 1/2 [u, u, u]</td>
</tr>
<tr>
<td>x + 1/2, x + 1/2, x + 1/2 [u, u, u]</td>
<td>x + 1/2, x + 1/2, x + 1/2 [u, u, u]</td>
<td>x + 1/2, x + 1/2, x + 1/2 [u, u, u]</td>
</tr>
<tr>
<td>x + 1/2, x + 1/2, x + 1/2 [u, u, u]</td>
<td>x + 1/2, x + 1/2, x + 1/2 [u, u, u]</td>
<td>x + 1/2, x + 1/2, x + 1/2 [u, u, u]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>h</th>
<th>m' m'2..</th>
<th>x, 1/2, 0 [u, 0, 0]</th>
<th>0, x, 1/2 [0, u, 0]</th>
<th>0, x, 1/2 [0, u, 0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>x, 1/2, 0 [u, 0, 0]</td>
<td>0, x, 1/2 [0, u, 0]</td>
<td>0, x, 1/2 [0, u, 0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2, 0, x [0, 0, u]</td>
<td>0, x, 1/2 [0, u, 0]</td>
<td>0, x, 1/2 [0, u, 0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x + 1/2, 1/2, 0 [u, 0, 0]</td>
<td>1/2, 0, x + 1/2 [0, 0, u]</td>
<td>1/2, 0, x + 1/2 [0, 0, u]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

223.5.1610 - 3 - 3690
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4m'm'</th>
<th>Along [1,1,1]</th>
<th>p6m'm'</th>
<th>Along [1,1,0]</th>
<th>p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = a)</td>
<td>(b^* = b)</td>
<td>(a^* = (2a - b - c)/3)</td>
<td>(b^* = (-a + 2b - c)/3)</td>
<td>(a^* = (-a + b)/2)</td>
<td>(b^* = c/2)</td>
</tr>
<tr>
<td>Origin at 0,1/2,z</td>
<td>Origin at x,x,x</td>
<td>Origin at x,x,0</td>
<td>Origin at x,x,0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12	g	m'm'2.. x,0,1/2 [u,0,0]	\(x,0,1/2 [u,0,0] \)	1/2,0 [0,u,0]	1/2,0 [0,u,0]
0,1/2,x [0,0,u]	0,1/2,x [0,0,u]	1/2,0+1/2,0 [0,u,0]	1/2,0+1/2,0 [0,u,0]		
x+1/2,0,1/2 [u,0,0]	x+1/2,0,1/2 [u,0,0]	0,1/2,x+1/2 [0,u,0]	0,1/2,x+1/2 [0,u,0]		

12	f	m'm'2.. x,0,0 [u,0,0]	\(x,0,0 [u,0,0] \)	0,x,0 [0,u,0]	0,x,0 [0,u,0]
0,0,x [0,0,u]	0,0,x [0,0,u]	1/2,0+1/2,1/2 [0,u,0]	1/2,0+1/2,1/2 [0,u,0]		
x+1/2,1/2,1/2 [u,0,0]	x+1/2,1/2,1/2 [u,0,0]	1/2,1/2,x+1/2 [0,u,0]	1/2,1/2,x+1/2 [0,u,0]		

| 8 | e | .32 | 1/4,1/4,1/4 [0,0,0] | 3/4,3/4,1/4 [0,0,0] | 3/4,3/4,1/4 [0,0,0] | 3/4,3/4,1/4 [0,0,0] |
| 3/4,3/4,3/4 [0,0,0] | 3/4,1/4,1/4 [0,0,0] | 1/4,3/4,1/4 [0,0,0] | 3/4,1/4,1/4 [0,0,0] |

| 6 | d | \(\bar{4}m'.2 \) | 1/4,1/2,0 [0,0,0] | 3/4,1/2,0 [0,0,0] | 0,1/4,1/2 [0,0,0] |
| 0,3/4,1/2 [0,0,0] | 0,3/4,1/2 [0,0,0] | 1/2,0,1/4 [0,0,0] | 1/2,0,1/4 [0,0,0] |

| 6 | c | \(\bar{4}m'.2 \) | 1/4,0,1/2 [0,0,0] | 3/4,0,1/2 [0,0,0] | 1/2,1/4,0 [0,0,0] |
| 1/2,3/4,0 [0,0,0] | 1/2,3/4,0 [0,0,0] | 0,1/2,1/4 [0,0,0] | 0,1/2,3/4 [0,0,0] |

| 6 | b | m'm'm'.. | 0,1/2,1/2 [0,0,0] | 1/2,0,1/2 [0,0,0] | 1/2,1/2,0 [0,0,0] |
| 0,1/2,0 [0,0,0] | 0,1/2,0 [0,0,0] | 1/2,0,0 [0,0,0] | 0,0,1/2 [0,0,0] |

| 2 | a | m'3'.. | 0,0,0 [0,0,0] | 1/2,1/2,1/2 [0,0,0] | 1/2,1/2,1/2 [0,0,0] |
Origin at $\bar{4}3m$, at $-1/4,-1/4,-1/4$ from center ($\bar{3}m$)

Asymmetric unit

$0 \leq x \leq 1/2$; $0 \leq y \leq 1/2$; $-1/4 \leq z \leq 1/4$; $y \leq x$; $\max(x-1/2,-y) \leq z \leq \min(1/2-x,y)$

Vertices

0,0,0 1/2,0,0 1/2,1/2,0 1/4,1/4,1/4 1/4,1/4,-1/4

Symmetry Operations

1 2 0,0,z (2) 0,y,0 (3) 2 x,0,0 (4) 2 x,0,0

$0,0,0$ $0,0,0$ $0,0,0$ $0,0,0$

$2,0,0$ $2,0,0$ $2,0,0$ $2,0,0$

$3_x^+ x,x,x$ $3_y x,x,x$ $3_z x,x,x$ $3_x^+ x,x,x$

$(3_{xyz}|0,0,0)$ $(3_{xyz}^{-1}|0,0,0)$ $(3_{xyz}^{-1}|0,0,0)$ $(3_{xyz}^{-1}|0,0,0)$

$3_x^+ x,x,x$ $3_y x,x,x$ $3_z x,x,x$ $3_x^+ x,x,x$

$(3_{xyz}^{-1}|0,0,0)$ $(3_{xyz}^{-1}|0,0,0)$ $(3_{xyz}^{-1}|0,0,0)$ $(3_{xyz}^{-1}|0,0,0)$
Continued

<table>
<thead>
<tr>
<th>Generators selected</th>
<th>(1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); (25).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positions</td>
<td>Coordinates</td>
</tr>
<tr>
<td>Multiplicity,</td>
<td></td>
</tr>
<tr>
<td>Wyckoff letter,</td>
<td></td>
</tr>
<tr>
<td>Site Symmetry.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>48</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(2)</td>
<td>\bar{x},\bar{y},z [\bar{u},\bar{v},w]</td>
</tr>
<tr>
<td>(3)</td>
<td>\bar{x},y,\bar{z} [\bar{u},v,w]</td>
</tr>
<tr>
<td>(4)</td>
<td>x,\bar{y},\bar{z} [u,\bar{v},w]</td>
</tr>
<tr>
<td>(5)</td>
<td>z,x,y [w,u,v]</td>
</tr>
<tr>
<td>(6)</td>
<td>\bar{z},\bar{x},\bar{y} [w,\bar{u},\bar{v}]</td>
</tr>
<tr>
<td>(7)</td>
<td>\bar{z},x,y [w,\bar{u},v]</td>
</tr>
<tr>
<td>(8)</td>
<td>\bar{z},x,\bar{y} [w,\bar{u},v]</td>
</tr>
<tr>
<td>(9)</td>
<td>y,z,x [v,w,u]</td>
</tr>
<tr>
<td>(10)</td>
<td>\bar{y},\bar{x},z [v,\bar{w},u]</td>
</tr>
<tr>
<td>(11)</td>
<td>\bar{y},z,\bar{x} [v,\bar{w},u]</td>
</tr>
<tr>
<td>(12)</td>
<td>\bar{y},z,x [v,\bar{w},u]</td>
</tr>
<tr>
<td>(13)</td>
<td>y+1/2,x+1/2,z+1/2 [v,w,u]</td>
</tr>
<tr>
<td>(14)</td>
<td>\bar{y}+1/2,\bar{x}+1/2,\bar{z}+1/2 [\bar{v},\bar{w},\bar{u}]</td>
</tr>
<tr>
<td>(15)</td>
<td>y+1/2,x+1/2,z+1/2 [v,w,u]</td>
</tr>
<tr>
<td>(16)</td>
<td>\bar{y}+1/2,\bar{x}+1/2,\bar{z}+1/2 [\bar{v},\bar{w},\bar{u}]</td>
</tr>
<tr>
<td>(17)</td>
<td>x+1/2,z+1/2,y+1/2 [u,w,v]</td>
</tr>
<tr>
<td>(18)</td>
<td>\bar{x}+1/2,z+1/2,y+1/2 [\bar{u},w,\bar{v}]</td>
</tr>
<tr>
<td>(19)</td>
<td>x+1/2,z+1/2,y+1/2 [u,w,v]</td>
</tr>
<tr>
<td>(20)</td>
<td>\bar{x}+1/2,z+1/2,y+1/2 [\bar{u},w,\bar{v}]</td>
</tr>
<tr>
<td>(21)</td>
<td>z+1/2,y+1/2,x+1/2 [w,v,u]</td>
</tr>
<tr>
<td>(22)</td>
<td>\bar{z}+1/2,\bar{y}+1/2,\bar{x}+1/2 [w,\bar{v},\bar{u}]</td>
</tr>
<tr>
<td>(23)</td>
<td>z+1/2,y+1/2,x+1/2 [w,v,u]</td>
</tr>
<tr>
<td>(24)</td>
<td>\bar{z}+1/2,\bar{y}+1/2,\bar{x}+1/2 [w,\bar{v},\bar{u}]</td>
</tr>
<tr>
<td>(25)</td>
<td>\bar{z}+1/2,\bar{y}+1/2,\bar{x}+1/2 [w,\bar{v},\bar{u}]</td>
</tr>
<tr>
<td>(26)</td>
<td>z+1/2,y+1/2,x+1/2 [w,v,u]</td>
</tr>
<tr>
<td>(27)</td>
<td>\bar{z}+1/2,\bar{y}+1/2,\bar{x}+1/2 [\bar{w},\bar{v},\bar{u}]</td>
</tr>
<tr>
<td>(28)</td>
<td>z+1/2,y+1/2,x+1/2 [w,v,u]</td>
</tr>
<tr>
<td>(29)</td>
<td>\bar{z}+1/2,\bar{y}+1/2,\bar{x}+1/2 [w,\bar{v},\bar{u}]</td>
</tr>
<tr>
<td>(30)</td>
<td>z+1/2,y+1/2,x+1/2 [w,v,u]</td>
</tr>
<tr>
<td>(31)</td>
<td>\bar{z}+1/2,\bar{y}+1/2,\bar{x}+1/2 [w,\bar{v},\bar{u}]</td>
</tr>
<tr>
<td>(32)</td>
<td>z+1/2,y+1/2,x+1/2 [w,v,u]</td>
</tr>
<tr>
<td>(33)</td>
<td>\bar{z}+1/2,\bar{y}+1/2,\bar{x}+1/2 [w,\bar{v},\bar{u}]</td>
</tr>
<tr>
<td>(34)</td>
<td>y+1/2,z+1/2,x+1/2 [v,w,u]</td>
</tr>
<tr>
<td>(35)</td>
<td>\bar{y}+1/2,\bar{z}+1/2,\bar{x}+1/2 [\bar{v},\bar{w},\bar{u}]</td>
</tr>
<tr>
<td>(36)</td>
<td>y+1/2,z+1/2,x+1/2 [v,w,u]</td>
</tr>
<tr>
<td>(37)</td>
<td>\bar{y}+1/2,\bar{z}+1/2,\bar{x}+1/2 [\bar{v},\bar{w},\bar{u}]</td>
</tr>
</tbody>
</table>

224.1.1611 - 2 - 2207
Symmetry of Special Projections

Along [0,0,1] p4mm1'
\(a^* = (a - b)/2 \) \(b^* = (a + b)/2 \)
Origin at 0,0,z

Along [1,1,1] p6'm'm
\(a^* = (2a - b - c)/3 \) \(b^* = (-a + 2b - c)/3 \)
Origin at x,x,x

Along [1,1,0] p2mm1'
\(a^* = (-a + b)/2 \) \(b^* = c \)
Origin at x,x,1/4
Origin at 4 3m1', at -1/4,-1/4,-1/4 from center (3 m1')

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad -1/4 \leq z \leq 1/4; \quad y \leq x; \quad \max(x-1/2,-y) \leq z \leq \min(1/2-x,y)\]

Vertices

\(0,0,0\)
\(1/2,0,0\)
\(1/2,1/2,0\)
\(1/4,1/4,1/4\)
\(1/4,1/4,-1/4\)

Symmetry Operations

For 1 + set

\(1\)
\(1 (1,0,0,0)\)

\(2\)
\(2 0,0,z\)
\(2_1 0,0,0\)

\(3^+\)
\(x,x,x\)
\(3_{xyz} | 0,0,0\)

\(3^-\)
\(x,x,x\)
\(3_{xyz}^{-1} | 0,0,0\)

\(10\)
\(3' x,x,x\)
\(3_{xyz} | 0,0,0\)

\(11\)
\(3' x,x,x\)
\(3_{xyz}^{-1} | 0,0,0\)
Continued

224.2.1612 Pn3m1'

\begin{align*}
(13) & \quad 2 \ (1/2,1/2,0) \quad x,x,1/4 \\
& \quad (2_{xy}) 1/2,1/2,1/2) \\
(17) & \quad 4' \ (1/2,0,0) \quad x,1/2,0 \\
& \quad (4_{x}^{-1}) 1/2,1/2,1/2) \\
(21) & \quad 4' \ (0,1/2,0) \quad 1/2,y,0 \\
& \quad (4_{y}) 1/2,1/2,1/2) \\
(25) & \quad \overline{1} \ 1/4,1/4,1/4 \\
& \quad (1/2,1/2,12) \\
(29) & \quad 3' \ x,x,x; 1/4,1/4,1/4 \\
& \quad (3_{xyz}) 1/2,1/2,12) \\
(33) & \quad \overline{3} \ x,x,x; 1/4,1/4,1/4 \\
& \quad (3_{xyz}) 1/2,1/2,12) \\
(37) & \quad m \ x,x,z \\
& \quad (m_{yz}) 0,0,0) \\
(41) & \quad 4' \ x,0,0; 0,0,0 \\
& \quad (4_{x}) 0,0,0) \\
(45) & \quad 4' \ y,0,0; 0,0,0 \\
& \quad (4_{y}) 0,0,0) \\
(49) & \quad m \ x,y,y \\
& \quad (m_{yz}) 0,0,0) \\
(53) & \quad m \ x,z \\
& \quad (m_{yz}) 0,0,0) \\
(57) & \quad m \ x,z \\
& \quad (m_{yz}) 0,0,0) \\
(61) & \quad m \ x,y \\
& \quad (m_{yz}) 0,0,0) \\
(65) & \quad m \ x,y \\
& \quad (m_{yz}) 0,0,0) \\

& \quad \text{For 1' + set}

(1) 1' \\
(1 \ 0,0,0) \\
(5) 3' \ x,x,x \\
(3_{xyz}) 0,0,0) \\
(9) 3' \ x,x,x \\
(3_{xyz}) 0,0,0) \\
(13) 2' \ (1/2,1/2,0) \ x,x,1/4 \\
(2_{xy}) 1/2,1/2,1/2) \\
(17) 4' \ (1/2,0,0) \ x,1/2,0 \\
(4_{x}) 1/2,1/2,1/2) \\
(21) 4' \ (0,1/2,0) \ 1/2,y,0 \\
(4_{y}) 1/2,1/2,1/2) \\
(25) \overline{1} \ 1/4,1/4,1/4 \\
(1/2,1/2,12) \\
(29) 3' \ x,x,x; 1/4,1/4,1/4 \\
(3_{xyz}) 1/2,1/2,12) \\
(33) \overline{3} \ x,x,x; 1/4,1/4,1/4 \\
(3_{xyz}) 1/2,1/2,12) \\

(14) 2 \ x,x+1/2,1/4 \\
(2_{xy}) 1/2,1/2,1/2) \\
(18) 2 \ (0,1/2,1/2) \ 1/4,y,y \\
(2_{yz}) 1/2,1/2,1/2) \\
(22) 2 \ (1/2,0,1/2) \ x,1/4,x \\
(2_{yz}) 1/2,1/2,1/2) \\
(26) n' \ (1/2,1/2,0) \ x,y,1/4 \\
(2_{yz}) 1/2,1/2,1/2) \\
(30) 3' \ x-1,x+1,x; -1/4,1/4,3/4 \\
(3_{xyz}) 1/2,1/2,12) \\
(34) 3' \ x+1,x-1,x; -1/4,1/4,3/4 \\
(3_{xyz}) 1/2,1/2,12) \\
(38) m \ x,x,z \\
(3_{xyz}) 0,0,0) \\
(42) m \ x,y,y \\
(3_{xyz}) 0,0,0) \\
(46) m \ x,y,x \\
(3_{xyz}) 0,0,0) \\
(50) m \ x,z \\
(3_{xyz}) 0,0,0) \\
(54) m \ x,z \\
(3_{xyz}) 0,0,0) \\
(58) m \ x,z \\
(3_{xyz}) 0,0,0) \\
(62) m \ x,z \\
(3_{xyz}) 0,0,0) \\
(66) m \ x,z \\
(3_{xyz}) 0,0,0) \\
(70) m \ x,z \\
(3_{xyz}) 0,0,0) \\
(74) m \ x,z \\
(3_{xyz}) 0,0,0) \\

(15) 4' \ (0,0,1/2) \ 1/2,0,z \\
(4_{z}) 1/2,1/2,1/2) \\
(19) 2' \ 1/4,y+1/2,y \\
(2_{yz}) 1/2,1/2,1/2) \\
(23) 4' \ (0,1/2,0) \ 0,y,1/2 \\
(4_{y}) 1/2,1/2,1/2) \\
(27) n' \ (1/2,0,1/2) \ x,1/4,z \\
(2_{yz}) 1/2,1/2,1/2) \\
(31) 3' \ x,x+1,x; 1/4,3/4,-1/4 \\
(3_{xyz}) 1/2,1/2,12) \\
(35) 3' \ x,x+1,x; -1/4,3/4,1/4 \\
(3_{xyz}) 1/2,1/2,12) \\
(39) 4' \ 0,0,z; 0,0,0 \\
(4_{z}) 0,0,0) \\
(43) m \ x,y,y \\
(3_{xyz}) 0,0,0) \\
(47) 4' \ 0,y,0; 0,0,0 \\
(3_{xyz}) 0,0,0) \\
(51) m \ x,z \\
(3_{xyz}) 0,0,0) \\
(55) m \ x,z \\
(3_{xyz}) 0,0,0) \\
(59) m \ x,z \\
(3_{xyz}) 0,0,0) \\
(63) m \ x,z \\
(3_{xyz}) 0,0,0) \\
(67) m \ x,z \\
(3_{xyz}) 0,0,0) \\
(71) m \ x,z \\
(3_{xyz}) 0,0,0) \\
(75) m \ x,z \\
(3_{xyz}) 0,0,0) \\

(16) 4' \ (0,1/2,0) \ x,0,1/2 \\
(2_{yz}) 1/2,1/2,1/2) \\
(20) 4' \ (1/2,0,0) \ x,0,1/2 \\
(2_{yz}) 1/2,1/2,1/2) \\
(24) 2' \ x+1,2/1,4,x \\
(2_{yz}) 1/2,1/2,1/2) \\
(28) n' \ (0,1/2,1/2) \ 1/4,y,z \\
(2_{yz}) 1/2,1/2,1/2) \\
(32) 3' \ x+1,x,x; 3/4,-1/4,1/4 \\
(3_{xyz}) 1/2,1/2,12) \\
(36) 3' \ x+1,x,x; 3/4,1/4,1/4 \\
(3_{xyz}) 1/2,1/2,12) \\

(20) 4' \ (1/2,0,0) \ x,0,1/2 \\
(2_{yz}) 1/2,1/2,1/2) \\
(24) 2' \ x+1,2/1,4,x \\
(2_{yz}) 1/2,1/2,1/2) \\
(28) n' \ (0,1/2,1/2) \ 1/4,y,z \\
(2_{yz}) 1/2,1/2,1/2) \\
(32) 3' \ x+1,x,x; 3/4,-1/4,1/4 \\
(3_{xyz}) 1/2,1/2,12) \\
(36) 3' \ x+1,x,x; 3/4,1/4,1/4 \\
(3_{xyz}) 1/2,1/2,12) \\

224.2.1612 - 2 - 3697
Continued 224.2.1612 Pn\(^3\)m1'

(37) \(m' \), \(x, x, z \)
\((m_{yz}|0,0,0)' \)
(38) \(m' \), \(x, x, z \)
\((m_{xy}|0,0,0)' \)
(39) \(\bar{4}^{+} \), \(0,0, z \); \(0,0,0 \)
\((4_{z}^{-}|0,0,0)' \)
(40) \(\bar{4}^{+} \), \(0,0, z \); \(0,0,0 \)
\((4_{z}^{-}|0,0,0)' \)

(41) \(\bar{4}^{-} \), \(x, 0, 0; 0,0,0 \)
\((4_{x}^{-}|0,0,0)' \)
(42) \(m' \), \(x, y, y \)
\((m_{yz}|0,0,0)' \)
(43) \(m' \), \(x, y, y \)
\((m_{yz}|0,0,0)' \)
(44) \(\bar{4}^{-} \), \(0,0,0 \)
\((4_{x}^{-}|0,0,0)' \)

(45) \(\bar{4}^{-} \), \(0, y, 0; 0,0,0 \)
\((4_{y}^{-}|0,0,0)' \)
(46) \(m' \), \(x, y, x \)
\((m_{x}|0,0,0)' \)
(47) \(\bar{4}^{-} \), \(0, y, 0; 0,0,0 \)
\((4_{y}^{-}|0,0,0)' \)
(48) \(m' \), \(x, y, x \)
\((m_{x}|0,0,0)' \)

Generators selected
(1); \(t(1,0,0); t(0,1,0); t(0,0,1) \); (2); (3); (5); (13); (25); \(1' \).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1 +</td>
<td>1' +</td>
</tr>
</tbody>
</table>

Continued 224.2.1612 Pn\(^3\)m1'

48

(1) \(x, y, z [0,0,0] \)
(2) \(\bar{x}, \bar{y}, \bar{z} [0,0,0] \)
(3) \(\bar{x}, \bar{y}, \bar{z} [0,0,0] \)
(4) \(x, y, z [0,0,0] \)
(5) \(z, x, y [0,0,0] \)
(6) \(\bar{z}, \bar{x}, \bar{y} [0,0,0] \)
(7) \(\overline{z}, x, y [0,0,0] \)
(8) \(z, x, y [0,0,0] \)

(9) \(y, z, x [0,0,0] \)
(10) \(\bar{y}, \bar{z}, \bar{x} [0,0,0] \)
(11) \(\bar{y}, \bar{z}, \bar{x} [0,0,0] \)
(12) \(y, z, x [0,0,0] \)
(13) \(y+1/2, x+1/2, z+1/2 [0,0,0] \)
(14) \(\bar{y}+1/2, \bar{x}+1/2, \bar{z}+1/2 [0,0,0] \)
(15) \(y+1/2, x+1/2, z+1/2 [0,0,0] \)
(16) \(\bar{y}+1/2, \bar{x}+1/2, \bar{z}+1/2 [0,0,0] \)
(17) \(x+1/2, z+1/2, y+1/2 [0,0,0] \)
(18) \(\bar{x}+1/2, \bar{z}+1/2, \bar{y}+1/2 [0,0,0] \)
(19) \(x+1/2, \bar{z}+1/2, \bar{y}+1/2 [0,0,0] \)
(20) \(\bar{x}+1/2, \bar{z}+1/2, y+1/2 [0,0,0] \)
(21) \(z+1/2, y+1/2, \bar{x}+1/2 [0,0,0] \)
(22) \(\bar{z}+1/2, \bar{y}+1/2, x+1/2 [0,0,0] \)
(23) \(z+1/2, \bar{y}+1/2, \bar{x}+1/2 [0,0,0] \)
(24) \(\bar{z}+1/2, \bar{y}+1/2, x+1/2 [0,0,0] \)
(25) \(x+1/2, \bar{y}+1/2, \bar{z}+1/2 [0,0,0] \)
(26) \(\bar{x}+1/2, \bar{y}+1/2, \bar{z}+1/2 [0,0,0] \)
(27) \(x+1/2, \bar{y}+1/2, \bar{z}+1/2 [0,0,0] \)
(28) \(\bar{x}+1/2, \bar{y}+1/2, \bar{z}+1/2 [0,0,0] \)
(29) \(\bar{z}+1/2, \bar{x}+1/2, \bar{y}+1/2 [0,0,0] \)
(30) \(z+1/2, x+1/2, y+1/2 [0,0,0] \)
(31) \(\bar{z}+1/2, \bar{x}+1/2, \bar{y}+1/2 [0,0,0] \)
(32) \(z+1/2, \bar{x}+1/2, \bar{y}+1/2 [0,0,0] \)
(33) \(\bar{y}+1/2, \bar{z}+1/2, x+1/2 [0,0,0] \)
(34) \(y+1/2, \bar{z}+1/2, x+1/2 [0,0,0] \)
(35) \(\bar{y}+1/2, \bar{z}+1/2, x+1/2 [0,0,0] \)
(36) \(y+1/2, \bar{z}+1/2, x+1/2 [0,0,0] \)

(37) \(\bar{y}, \bar{z}, \overline{z} [0,0,0] \)
(38) \(y, x, z [0,0,0] \)
(39) \(\bar{y}, \bar{x}, \bar{z} [0,0,0] \)
(40) \(y, x, z [0,0,0] \)
(41) \(x, y, z [0,0,0] \)
(42) \(x, \bar{z}, \bar{y} [0,0,0] \)
(43) \(x, \bar{z}, \bar{y} [0,0,0] \)
(44) \(x, \bar{z}, \bar{y} [0,0,0] \)

(45) \(z, \bar{y}, \bar{x} [0,0,0] \)
(46) \(z, \bar{y}, \bar{x} [0,0,0] \)
(47) \(z, \bar{y}, \bar{x} [0,0,0] \)
(48) \(z, y, x [0,0,0] \)

24

\(x, x, z [0,0,0] \)
\(\bar{x}, \bar{x}, \bar{z} [0,0,0] \)
\(\bar{x}, \bar{x}, \bar{z} [0,0,0] \)
\(x, x, z [0,0,0] \)
\(z, x, x [0,0,0] \)
\(\bar{z}, \bar{x}, \bar{x} [0,0,0] \)
\(\bar{z}, \bar{x}, \bar{x} [0,0,0] \)
\(x, z, x [0,0,0] \)
\(\bar{x}, \bar{z}, \bar{x} [0,0,0] \)
\(\bar{x}, \bar{z}, \bar{x} [0,0,0] \)
Continued

12 f 2.221' 1/4,0,1/2 [0,0,0] 3/4,0,1/2 [0,0,0] 1/2,1/4,0 [0,0,0]
 1/2,3/4,0 [0,0,0] 0,1/2,1/4 [0,0,0] 0,1/2,3/4 [0,0,0]
 1/4,1/2,0 [0,0,0] 3/4,1/2,0 [0,0,0] 0,1/4,1/2 [0,0,0]
 0,3/4,1/2 [0,0,0] 1/2,0,1/4 [0,0,0] 1/2,0,3/4 [0,0,0]

8 e .3m1' x,x,x [0,0,0] x,x,x [0,0,0]
 x,x,x [0,0,0] x,x,x [0,0,0]
 x+1/2,x+1/2,x+1/2 [0,0,0] x+1/2,x+1/2,x+1/2 [0,0,0]

6 d 42.m1' 0,1/2,1/2 [0,0,0] 1/2,0,1/2 [0,0,0] 1/2,1/2,0 [0,0,0]
 0,1/2,0 [0,0,0] 1/2,0,0 [0,0,0] 0,0,1/2 [0,0,0]

4 c 3m1' 3/4,3/4,3/4 [0,0,0] 1/4,1/4,3/4 [0,0,0] 1/4,3/4,1/4 [0,0,0]
 3/4,3/4,3/4 [0,0,0] 1/4,3/4,1/4 [0,0,0] 3/4,1/4,3/4 [0,0,0]

4 b 3m1' 1/4,1/4,1/4 [0,0,0] 3/4,3/4,1/4 [0,0,0] 3/4,1/4,3/4 [0,0,0]
 1/4,1/4,1/4 [0,0,0] 3/4,3/4,1/4 [0,0,0] 1/4,3/4,3/4 [0,0,0]

2 a 43m1' 0,0,0 [0,0,0] 1/2,1/2,1/2 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm1'
\(\mathbf{a}^* = (\mathbf{a} - \mathbf{b})/2 \quad \mathbf{b}^* = (\mathbf{a} + \mathbf{b})/2 \)
Origin at 0,0,z

Along [1,1,1] p6mm1'
\(\mathbf{a}^* = (2\mathbf{a} - \mathbf{b} - \mathbf{c})/3 \quad \mathbf{b}^* = (-\mathbf{a} + 2\mathbf{b} - \mathbf{c})/3 \)
Origin at x,x,x

Along [1,1,0] 2mm1'
\(\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c} \)
Origin at x,x,1/4
Origin at $\overline{4}3m$, at $-1/4,-1/4,-1/4$ from center ($3'm$)

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad -1/4 \leq z \leq 1/4; \quad y \leq x; \quad \text{max}(x-1/2,-y) \leq z \leq \text{min}(1/2-x,y)$

Vertices

$0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 1/4,1/4,1/4 \quad 1/4,1/4,-1/4$

Symmetry Operations

(1) 1 \hspace{1cm} (2) 2 0,0,z \hspace{1cm} (3) 2 0,y,0 \hspace{1cm} (4) 2 x,0,0
(1*0,0,0) (2*0,0,0) (2*y,0,0) (2*z,0,0)

(5) $3^+ x,x,x$ \hspace{1cm} (6) $3^+ x,x,x$ \hspace{1cm} (7) $3^+ x,x,x$ \hspace{1cm} (8) $3^+ x,x,x$
($3_{xyz}[0,0,0]$ ($3_{xyz}[0,0,0]$ ($3_{xyz}[0,0,0]$ ($3_{xyz}[0,0,0]$)

(9) $3^- x,x,x$ \hspace{1cm} (10) $3^- x,x,x$ \hspace{1cm} (11) $3^- x,x,x$ \hspace{1cm} (12) $3^- x,x,x$
($3_{xyz}^{-1}[0,0,0]$ ($3_{xyz}^{-1}[0,0,0]$ ($3_{xyz}^{-1}[0,0,0]$ ($3_{xyz}^{-1}[0,0,0]$)

224.3.1613 - 1 - 3701
Continued

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 I 1</td>
<td></td>
</tr>
</tbody>
</table>

1. x, y, z [u,v,w]
2. $\bar{x}, \bar{y}, \bar{z}$ [u,\bar{v},w]
3. \bar{x}, y, \bar{z} [\bar{u},v,w]
4. x, \bar{y}, \bar{z} [u,\bar{v},w]

5. z, x, y [w,u,v]
6. \bar{z}, x, \bar{y} [w,\bar{u},v]
7. \bar{z}, \bar{x}, y [w,\bar{u},v]
8. \bar{z}, x, y [w,u,\bar{v}]

9. y, z, x [v,w,u]
10. y, z, x [v,w,u]
11. \bar{y}, z, \bar{x} [v,\bar{w},u]
12. \bar{y}, z, x [v,\bar{w},u]

(13) $y+1/2, x+1/2, \bar{z}+1/2 [v, u, w]$ (14) $y+1/2, x+1/2, z+1/2 [v, u, w]$ (15) $y+1/2, x+1/2, z+1/2 [v, u, \bar{w}]$ (16) $y+1/2, x+1/2, z+1/2 [v, \bar{u}, w]$

(17) $x+1/2, z+1/2, \bar{y}+1/2 [u, w, v]$ (18) $x+1/2, z+1/2, y+1/2 [u, w, v]$ (19) $x+1/2, \bar{z}+1/2, y+1/2 [u, w, \bar{v}]$ (20) $x+1/2, \bar{z}+1/2, y+1/2 [u, \bar{w}, v]$

(21) $z+1/2, y+1/2, x+1/2 [\bar{w}, v, u]$ (22) $z+1/2, y+1/2, x+1/2 [\bar{w}, v, u]$ (23) $\bar{z}+1/2, y+1/2, x+1/2 [\bar{w}, v, u]$ (24) $\bar{z}+1/2, y+1/2, x+1/2 [\bar{w}, v, u]$

(25) $\bar{z}+1/2, \bar{z}+1/2, z+1/2 [u, \bar{v}, w]$ (26) $\bar{z}+1/2, \bar{z}+1/2, \bar{z}+1/2 [u, \bar{v}, w]$ (27) $\bar{z}+1/2, y+1/2, z+1/2 [u, \bar{v}, w]$ (28) $\bar{z}+1/2, y+1/2, \bar{z}+1/2 [u, \bar{v}, w]$

(29) $\bar{z}+1/2, \bar{z}+1/2, \bar{z}+1/2 [\bar{u}, \bar{v}, w]$ (30) $\bar{z}+1/2, \bar{z}+1/2, \bar{z}+1/2 [\bar{u}, \bar{v}, w]$ (31) $\bar{z}+1/2, \bar{z}+1/2, \bar{z}+1/2 [\bar{u}, \bar{v}, w]$ (32) $\bar{z}+1/2, \bar{z}+1/2, \bar{z}+1/2 [\bar{u}, \bar{v}, w]$

(33) $\bar{y}+1/2, \bar{z}+1/2, x+1/2 [v, w, u]$ (34) $\bar{y}+1/2, \bar{z}+1/2, x+1/2 [v, w, u]$ (35) $\bar{y}+1/2, \bar{z}+1/2, x+1/2 [v, w, u]$ (36) $\bar{y}+1/2, \bar{z}+1/2, x+1/2 [v, w, u]$
Symmetry of Special Projections

Along \([0,0,1]\) \(p4\'mm'\)

- \(a^* = (a - b)/2\)
- \(b^* = (a + b)/2\)

Origin at \(0,0,z\)

Along \([1,1,1]\) \(p6mm\)

- \(a^* = (2a - b - c)/3\)
- \(b^* = (-a + 2b - c)/3\)

Origin at \(x,x,x\)

Along \([1,1,0]\) \(p2mm1'\)

- \(a^* = (-a + b)/2\)
- \(b^* = c\)

Origin at \(x,x,1/4\)
Origin at $\overline{4}3m'$, at $-1/4,-1/4,-1/4$ from center ($\overline{3}m'$)

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad -1/4 \leq z \leq 1/4; \quad y \leq x; \quad \max(x-1/2,-y) \leq z \leq \min(1/2-x,y)$

Vertices

$0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 1/4,1/4,1/4 \quad 1/4,1/4,-1/4$

Symmetry Operations

1. 1
2. $2 \begin{pmatrix} 0,0,z \end{pmatrix}$
3. $2 \begin{pmatrix} 0,y,0 \end{pmatrix}$
4. $2 \begin{pmatrix} x,0,0 \end{pmatrix}$

5. $3^+ \begin{pmatrix} x,x,x \end{pmatrix}$
6. $3^+ \begin{pmatrix} x,x,x \end{pmatrix}$
7. $3^+ \begin{pmatrix} x,x,x \end{pmatrix}$
8. $3^- \begin{pmatrix} x,x,x \end{pmatrix}$

9. $3^- \begin{pmatrix} 0,0,0 \end{pmatrix}$
10. $3^- \begin{pmatrix} 0,0,0 \end{pmatrix}$
11. $3^- \begin{pmatrix} 0,0,0 \end{pmatrix}$
12. $3^- \begin{pmatrix} 0,0,0 \end{pmatrix}$
Continued 224.2.1612 Pn\(\bar{3} \)m1'

(13) 2' (1/2,1/2,0)	(x,x,1/4) (2_{xy}	1/2,1/2,1/2)'	
(14) 2'	(x,x+1/2,1/4) (2_{xy}	1/2,1/2,1/2)'	
(15) 4'	(0,0,1/2)	(2_{xy}	1/2,1/2,1/2)'
(16) 4'	(0,0,1/2)	(2_{xy}	1/2,1/2,1/2)'

(17) 4'	(1/2,0,0)	(x,1/2,0) (4_{x}	1/2,1/2,1/2)'
(18) 2'	(0,1/2,1/2)	(1/4,y,y) (2_{xy}	1/2,1/2,1/2)'
(19) 2'	(1/4,y+1/2,y) (2_{xy}	1/2,1/2,1/2)'	
(20) 4''	(1/2,0,0)	(x,0,1/2) (4_{x}	1/2,1/2,1/2)'

(21) 4''	(0,1/2,0)	(1/2,y,0) (4_{y}	1/2,1/2,1/2)'
(22) 2'	(1/2,0,1/2)	(x,1/4,x) (2_{xy}	1/2,1/2,1/2)'
(23) 4''	(0,1/2,0)	(0,y,1/2) (4_{x}	1/2,1/2,1/2)'
(24) 2'	(x+1/2,1/4,x) (2_{xy}	1/2,1/2,1/2)'	

(25)	1/4,1,4,1/4	(1/2,1/2,1,12)	
(26) n	(1/2,1/2,0)	(x,y,1/4) (m_{xy}	1/2,1/2,12)
(27) n	(1/2,0,1/2)	(x,1/4,z) (m_{xy}	1/2,1/2,12)
(28) n	(0,1/2,1/2)	(1/4,y,z) (m_{xy}	1/2,1/2,12)

(29) 3'	x,x,x;	1/4,1,4,1/4
(30) 3'	x-1,x+1,-x;	1/4,1,4,3/4
(31) 3'	x+1,x;	1/4,3/4,-1/4
(32) 3'	x+1,x;	3/4,-1/4,1/4

(33) 3'	x,x,x;	1/4,1,4,1/4
(34) 3'	x+1,-x-1,x;	1/4,-1/4,3/4
(35) 3'	x,x+1,-x;	-1/4,3/4,1/4
(36) 3'	x+1,x;	3/4,1/4,-1/4

(37) m'	x,x,z	(m_{yz}	0,0,0)'
(38) m'	x,x,z	(m_{yz}	0,0,0)'
(39) 4''	0,0,z;	0,0,0	
(40) 4''	0,0,z;	0,0,0	

(41) 4''	x,0,0;	0,0,0	
(42) m'	x,y,y	(m_{yz}	0,0,0)'
(43) m'	x,y,y	(m_{yz}	0,0,0)'
(44) 4''	x,0,0;	0,0,0	
(45) 4''	y,0,0;	0,0,0	
(46) m'	x,y,x	(m_{yz}	0,0,0)'
(47) 4''	y,0,0;	0,0,0	
(48) m'	x,y,x	(m_{yz}	0,0,0)'

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

48 1 1

(1) x,y,z	[u,v,w]
(2) x,y,z	[u,v,w]
(3) x,y,z	[u,v,w]
(4) x,y,z	[u,v,w]

(5) x,z,y	[w,u,v]
(6) z,x,y	[w,u,v]
(7) z,x,y	[w,u,v]
(8) z,x,y	[w,u,v]

(9) y,z,x	[v,w,u]
(10) y,z,x	[v,w,u]
(11) y,z,x	[v,w,u]
(12) y,z,x	[v,w,u]

(13) y+1/2,x+1/2,z+1/2	[v,u,w]
(14) y+1/2,x+1/2,z+1/2	[v,u,w]
(15) y+1/2,x+1/2,z+1/2	[v,u,w]
(16) y+1/2,x+1/2,z+1/2	[v,u,w]

(17) x+1/2,z+1/2,y+1/2	[u,w,v]
(18) x+1/2,z+1/2,y+1/2	[u,w,v]
(19) x+1/2,z+1/2,y+1/2	[u,w,v]
(20) x+1/2,z+1/2,y+1/2	[u,w,v]

(21) z+1/2,y+1/2,x+1/2	[w,v,u]
(22) z+1/2,y+1/2,x+1/2	[w,v,u]
(23) z+1/2,y+1/2,x+1/2	[w,v,u]
(24) z+1/2,y+1/2,x+1/2	[w,v,u]

(25) z+1/2,y+1/2,z+1/2	[w,u,v]
(26) x+1/2,y+1/2,z+1/2	[u,v,w]
(27) x+1/2,y+1/2,z+1/2	[u,v,w]
(28) x+1/2,y+1/2,z+1/2	[u,v,w]

(29) z+1/2,x+1/2,y+1/2	[w,u,v]
(30) z+1/2,x+1/2,y+1/2	[w,u,v]
(31) z+1/2,x+1/2,y+1/2	[w,u,v]
(32) z+1/2,x+1/2,y+1/2	[w,u,v]

(33) y+1/2,z+1/2,x+1/2	[v,w,u]
(34) y+1/2,z+1/2,x+1/2	[v,w,u]
(35) y+1/2,z+1/2,x+1/2	[v,w,u]
(36) y+1/2,z+1/2,x+1/2	[v,w,u]

224.4.1414 - 2 - 3706
<table>
<thead>
<tr>
<th>Continued</th>
<th>224.2.1612</th>
<th>Pn3m1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>((37) \ y, x, z \ [v, u, w])</td>
<td>((38) \ y, x, z \ [v, u, w])</td>
<td>((39) \ y, x, z \ [v, u, w])</td>
</tr>
<tr>
<td>((40) y, x, z \ [v, u, w])</td>
<td>((41) x, z, y \ [u, w, v])</td>
<td>((42) x, z, y \ [u, w, v])</td>
</tr>
<tr>
<td>((43) x, z, y \ [u, w, v])</td>
<td>((44) x, z, y \ [u, w, v])</td>
<td>((45) z, y, x \ [w, v, u])</td>
</tr>
<tr>
<td>((46) z, y, x \ [w, v, u])</td>
<td>((47) z, y, x \ [w, v, u])</td>
<td>((48) z, y, x \ [w, v, u])</td>
</tr>
<tr>
<td>(24 \ k)</td>
<td>(24 \ k)</td>
<td>(24 \ k)</td>
</tr>
<tr>
<td>(x, x, z \ [u, u, w])</td>
<td>(x, x, z \ [u, u, w])</td>
<td>(x, x, z \ [u, u, w])</td>
</tr>
<tr>
<td>(z, x, z \ [w, u, u])</td>
<td>(z, x, x \ [w, u, u])</td>
<td>(z, x, x \ [w, u, u])</td>
</tr>
<tr>
<td>(x, x, z \ [u, w, u])</td>
<td>(x, z, x \ [u, w, u])</td>
<td>(x, z, x \ [u, w, u])</td>
</tr>
<tr>
<td>(x+1/2, x+1/2, z+1/2 \ [u, u, w])</td>
<td>(x+1/2, x+1/2, z+1/2 \ [u, u, w])</td>
<td>(x+1/2, x+1/2, z+1/2 \ [u, u, w])</td>
</tr>
<tr>
<td>(x+1/2, z+1/2, x+1/2 \ [u, w, w])</td>
<td>(x+1/2, z+1/2, x+1/2 \ [u, w, w])</td>
<td>(x+1/2, z+1/2, x+1/2 \ [u, w, w])</td>
</tr>
<tr>
<td>(z+1/2, x+1/2, x+1/2 \ [w, w, w])</td>
<td>(z+1/2, x+1/2, x+1/2 \ [w, w, w])</td>
<td>(z+1/2, x+1/2, x+1/2 \ [w, w, w])</td>
</tr>
<tr>
<td>(24 \ j)</td>
<td>(24 \ j)</td>
<td>(24 \ j)</td>
</tr>
<tr>
<td>(1/4, y, y+1/2 \ [u, v, v])</td>
<td>(3/4, y, y+1/2 \ [u, v, v])</td>
<td>(3/4, y, y+1/2 \ [u, v, v])</td>
</tr>
<tr>
<td>(y+1/2, 1/4, y \ [v, u, v])</td>
<td>(y+1/2, 1/4, y \ [v, u, v])</td>
<td>(y+1/2, 1/4, y \ [v, u, v])</td>
</tr>
<tr>
<td>(y+1/2, 1/4 \ [v, v, u])</td>
<td>(y+1/2, 1/4 \ [v, v, u])</td>
<td>(y+1/2, 1/4 \ [v, v, u])</td>
</tr>
<tr>
<td>(1/4, y+1/2, y \ [v, v, v])</td>
<td>(3/4, y+1/2, y \ [v, v, v])</td>
<td>(3/4, y+1/2, y \ [v, v, v])</td>
</tr>
<tr>
<td>(y, y+1/2 \ [v, v, u])</td>
<td>(y, y+1/2 \ [v, v, u])</td>
<td>(y, y+1/2 \ [v, v, u])</td>
</tr>
<tr>
<td>(1/4, y+1/2, y \ [v, v, u])</td>
<td>(3/4, y+1/2, y \ [v, v, u])</td>
<td>(3/4, y+1/2, y \ [v, v, u])</td>
</tr>
<tr>
<td>(y+1/2, y, 1/4 \ [v, v, u])</td>
<td>(y+1/2, y, 1/4 \ [v, v, u])</td>
<td>(y+1/2, y, 1/4 \ [v, v, u])</td>
</tr>
<tr>
<td>(24 \ i)</td>
<td>(24 \ i)</td>
<td>(24 \ i)</td>
</tr>
<tr>
<td>(1/4, y, y+1/2 \ [u, v, v])</td>
<td>(3/4, y, y+1/2 \ [u, v, v])</td>
<td>(3/4, y, y+1/2 \ [u, v, v])</td>
</tr>
<tr>
<td>(y+1/2, 1/4 \ [v, u, v])</td>
<td>(y+1/2, 1/4 \ [v, u, v])</td>
<td>(y+1/2, 1/4 \ [v, u, v])</td>
</tr>
<tr>
<td>(y+1/2, 1/4 \ [v, v, u])</td>
<td>(y+1/2, 1/4 \ [v, v, u])</td>
<td>(y+1/2, 1/4 \ [v, v, u])</td>
</tr>
<tr>
<td>(1/4, y+1/2, y \ [u, v, v])</td>
<td>(3/4, y+1/2, y \ [u, v, v])</td>
<td>(3/4, y+1/2, y \ [u, v, v])</td>
</tr>
<tr>
<td>(y, 1/4, y+1/2 \ [v, u, v])</td>
<td>(y, 1/4, y+1/2 \ [v, u, v])</td>
<td>(y, 1/4, y+1/2 \ [v, u, v])</td>
</tr>
<tr>
<td>(y+1/2, y, 1/4 \ [v, v, u])</td>
<td>(y+1/2, y, 1/4 \ [v, v, u])</td>
<td>(y+1/2, y, 1/4 \ [v, v, u])</td>
</tr>
<tr>
<td>(24 \ h)</td>
<td>(24 \ h)</td>
<td>(24 \ h)</td>
</tr>
<tr>
<td>(x, 0, 1/2 \ [u, 0, 0])</td>
<td>(x, 0, 1/2 \ [u, 0, 0])</td>
<td>(1/2, x, 0 \ [0, u, 0])</td>
</tr>
<tr>
<td>(0, 1/2, x \ [0, u, 0])</td>
<td>(1/2, x \ [0, u, 0])</td>
<td>(1/2, x + 1/2, 0 \ [u, 0, 0])</td>
</tr>
<tr>
<td>(x + 1/2, 0, 1/2 \ [u, 0, 0])</td>
<td>(x + 1/2, 0, 1/2 \ [u, 0, 0])</td>
<td>(0, 1/2, x + 1/2 \ [0, 0, u])</td>
</tr>
<tr>
<td>(0, 1/2, x + 1/2 \ [0, 0, u])</td>
<td>(0, 1/2, x + 1/2 \ [0, 0, u])</td>
<td>(0, 1/2, x + 1/2 \ [0, 0, u])</td>
</tr>
</tbody>
</table>
Continued

\[\begin{align*}
\bar{x} + 1/2, 1/2, 0 & \quad [u, 0, 0] & \bar{x} + 1/2, 1/2, 0 & \quad [\bar{u}, 0, 0] & 0, x + 1/2, 1/2 & \quad [0, u, 0] & 0, x + 1/2, 1/2 & \quad [0, \bar{u}, 0] \\
1/2, 0, x + 1/2 & \quad [0, 0, u] & 1/2, 0, x + 1/2 & \quad [0, 0, \bar{u}] & 0, x + 1/2 & \quad [0, u, 0] & 0, x + 1/2 & \quad [0, \bar{u}, 0] \\
\bar{x}, 1/2, 0 & \quad [\bar{u}, 0, 0] & x, 1/2 & \quad [u, 0, 0] & 1/2, 0, x & \quad [0, 0, u] & 1/2, 0, x & \quad [0, 0, \bar{u}] \\
\end{align*}\]

12 \quad g \quad 2m'm' \quad x, 0, 0 & \quad [u, 0, 0] & \bar{x}, 0, 0 & \quad [\bar{u}, 0, 0] & 0, x & \quad [0, u, 0] & 0, \bar{x}, 0 & \quad [0, \bar{u}, 0] \\
0, 0, x & \quad [0, 0, u] & 0, 0, x & \quad [0, u, 0] & 1/2, x + 1/2, 1/2 & \quad [0, u, 0] & 1/2, x + 1/2, 1/2 & \quad [0, \bar{u}, 0] \\
x + 1/2, 1/2, 1/2 & \quad [u, 0, 0] & \bar{x} + 1/2, 1/2, 1/2 & \quad [\bar{u}, 0, 0] & 1/2, 1/2, x + 1/2 & \quad [0, u, 0] & 1/2, 1/2, x + 1/2 & \quad [0, \bar{u}, 0] \\
\end{align*}\]

12 \quad f \quad 222' \quad 1/4, 0, 1/2 & \quad [u, 0, 0] & 3/4, 0, 1/2 & \quad [\bar{u}, 0, 0] & 1/2, 1/4, 0 & \quad [0, u, 0] \\
1/2, 3/4, 0 & \quad [0, \bar{u}, 0] & 0, 1/2, 1/4 & \quad [0, 0, u] & 0, 1/2, 3/4 & \quad [0, 0, \bar{u}] \\
1/4, 1/2, 0 & \quad [u, 0, 0] & 3/4, 1/2, 0 & \quad [\bar{u}, 0, 0] & 0, 1/4, 1/2 & \quad [0, u, 0] \\
0, 3/4, 1/2 & \quad [0, \bar{u}, 0] & 1/2, 0, 1/4 & \quad [0, 0, u] & 1/2, 0, 3/4 & \quad [0, 0, \bar{u}] \\
\end{align*}\]

8 \quad e \quad .3m' \quad x, x, x & \quad [u, u, u] & \bar{x}, x, x & \quad [\bar{u}, u, u] \\
x, x, x & \quad [u, u, \bar{u}] & x, x, x & \quad [u, u, u] \\
x + 1/2, x + 1/2, x + 1/2 & \quad [\bar{u}, \bar{u}, u] & \bar{x} + 1/2, x + 1/2, x + 1/2 & \quad [u, u, u] \\
x + 1/2, x + 1/2, x + 1/2 & \quad [\bar{u}, \bar{u}, u] & \bar{x} + 1/2, x + 1/2, x + 1/2 & \quad [u, u, u] \\
\end{align*}\]

6 \quad d \quad 4'2m' \quad 0, 1/2, 1/2 & \quad [0, 0, 0] & 1/2, 0, 1/2 & \quad [0, 0, 0] & 1/2, 1/2, 0 & \quad [0, 0, 0] \\
0, 1/2, 0 & \quad [0, 0, u] & 1/2, 0, 0 & \quad [0, 0, 0] & 0, 0, 1/2 & \quad [0, 0, 0] \\
\end{align*}\]

4 \quad c \quad .3m' \quad 3/4, 3/4, 1/4 & \quad [u, u, u] & 1/4, 1/4, 3/4 & \quad [\bar{u}, \bar{u}, u] & 1/4, 1/4, 1/4 & \quad [u, u, u] & 3/4, 1/4, 1/4 & \quad [\bar{u}, \bar{u}, u] \\
4 \quad b \quad .3m' \quad 1/4, 1/4, 1/4 & \quad [u, u, u] & 3/4, 3/4, 1/4 & \quad [\bar{u}, \bar{u}, u] & 3/4, 1/4, 3/4 & \quad [u, u, u] & 1/4, 3/4, 3/4 & \quad [\bar{u}, \bar{u}, u] \\
2 \quad a \quad 4'3m' \quad 0, 0, 0 & \quad [0, 0, 0] & 1/2, 1/2, 1/2 & \quad [0, 0, 0] \\
\end{align*}\]

Symmetry of Special Projections

Along [0, 0, 1] \quad p4mm1' \quad \begin{align*}
a^* &= (a - b)/2 & b^* &= (a + b)/2 \\
\text{Origin at } 0, 0, z \\
\end{align*}
Along [1, 1, 1] \quad p6'mm' \quad \begin{align*}
a^* &= (2a - b - c)/3 & b^* &= (-a + 2b - c)/3 \\
\text{Origin at } x, x, x \\
\end{align*}
Along [1, 1, 0] \quad p2'mm' \quad \begin{align*}
a^* &= a & b^* &= -(a + b)/2 \\
\text{Origin at } x, x, 1/4 \\
\end{align*}
Origin at $4\bar{3}m'$, at $-1/4,-1/4,-1/4$ from center ($\bar{3}m'$)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad -1/4 \leq z \leq 1/4; \quad y \leq x; \quad \max(x-1/2,-y) \leq z \leq \min(1/2-x,y)\]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 1/4,1/4,1/4 \quad 1/4,1/4,-1/4\]

Symmetry Operations

1. \[1\]
2. \[2, 0,0,z\]
3. \[2, 0,y,0\]
4. \[2, x,0,0\]
5. \[3 \cdot x,x,x\]
6. \[3 \cdot x,x,x\]
7. \[3 \cdot x,x,x\]
8. \[3 \cdot x,x,x\]
9. \[3 \cdot x,x,x\]
10. \[3 \cdot x,x,x\]
11. \[3 \cdot x,x,x\]
12. \[3 \cdot x,x,x\]
Continued

\[\begin{array}{llll}
(13) & 2 (1/2,1/2,0) & x,x,1/4 & (14) & 2 \ x,x+1/2,1/4 \\
 & (2_{xy}) & 1/2,1/2,1/2 & (2_{xy}) & 1/2,1/2,1/2 \\
(17) & 4 (1/2,0,0) & x,1/2,0 & (18) & 2 (0,1/2,1/2) & 1/4,y,y \\
 & (4_{-x}^{-1}) & 1/2,1/2,1/2 & (2_{yz}) & 1/2,1/2,1/2 \\
(21) & 4 (0,1/2,0) & 1/2,y,0 & (22) & 2 (1/2,1/2,1/2) & x,1/4,x \\
 & (4_{y}) & 1/2,1/2,1/2 & (2_{xz}) & 1/2,1/2,1/2 \\
(25) & \tilde{1} & 1/4,1/4,1/4 & (26) & n' (1/2,1/2,0) & x,y,1/4 \\
 & (1,1/2,1/2,12)' & & (27) & n' (1/2,1/2,1/2)' & x,1/4,z \\
(29) & \tilde{3}^{-+} & x,x,x; 1/4,1/4,1/4 & (30) & \tilde{3}^{-+} & x,x+1,1,x; -1/4,1/4,3/4 \\
 & (3_{xyz}) & 1/2,1/2,12)' & (3_{xyz}) & 1/2,1/2,12)' & 1/4,3/4,1/4 \\
(33) & \tilde{3}^{-+} & x,x,x; 1/4,1/4,1/4 & (34) & \tilde{3}^{-+} & x,x+1,1,x; -1/4,3/4,1/4 \\
 & (3_{xyz}) & 1/2,1/2,12)' & (3_{xyz}) & 1/2,1/2,12)' & 3/4,1/4,-1/4 \\
(37) & m' & x,x,z & (38) & m' & x,y,0 \\
 & (m_{xy}) & 0,0,0)' & & (m_{xy}) & 0,0,0)' \\
(41) & \tilde{4}^{-+} & x,0,0; 0,0,0 & (42) & m' & x,y,y \\
 & (4_{-z}^{-1}) & 0,0,0)' & & (m_{yz}) & 0,0,0)' \\
(45) & \tilde{4}^{-+} & y,0,0; 0,0,0 & (46) & m' & x,x,x \\
 & (4_{z}^{-1}) & 0,0,0)' & & (m_{xz}) & 0,0,0)' \\
\end{array}\]

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

48 1

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x, y, z [u, v, w]</td>
</tr>
<tr>
<td>(5) z,x,y [w,u,v]</td>
<td>(6) z, x, y [w, u, v]</td>
</tr>
<tr>
<td>(9) y,z,x [v,w,u]</td>
<td>(10) y, z, x [v,w,u]</td>
</tr>
<tr>
<td>(13) y+1/2, x+1/2, z+1/2 [v,w,u]</td>
<td>(14) y+1/2, x+1/2, z+1/2 [v,w,u]</td>
</tr>
<tr>
<td>(17) x+1/2, z+1/2, y+1/2 [u,w,v]</td>
<td>(18) x+1/2, z+1/2, y+1/2 [u,w,v]</td>
</tr>
<tr>
<td>(21) z+1/2, y+1/2, x+1/2 [w,v,u]</td>
<td>(22) z+1/2, y+1/2, x+1/2 [w,v,u]</td>
</tr>
<tr>
<td>(25) x+1/2, y+1/2, z+1/2 [u,v,w]</td>
<td>(26) x+1/2, y+1/2, z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(29) z+1/2, x+1/2, y+1/2 [w,u,v]</td>
<td>(30) z+1/2, x+1/2, y+1/2 [w,u,v]</td>
</tr>
<tr>
<td>(33) y+1/2, z+1/2, x+1/2 [v,w,u]</td>
<td>(34) y+1/2, z+1/2, x+1/2 [v,w,u]</td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); (25).

Coordinates
Continued

<table>
<thead>
<tr>
<th>224.5.1615</th>
<th>Pn'3'm'</th>
</tr>
</thead>
</table>

(37) $\bar{y}, x, z [v, u, w]$	(38) $y, x, z [v, u, w]$	(39) $\bar{y}, x, z [v, u, w]$	(40) $y, x, z [v, u, w]$
(41) $x, z, y [u, w, v]$	(42) $x, z, y [u, w, v]$	(43) $x, z, y [u, w, v]$	(44) $x, z, y [u, w, v]$
(45) $\bar{z}, y, x [w, v, u]$	(46) $\bar{z}, y, x [w, v, u]$	(47) $\bar{z}, y, x [w, v, u]$	(48) $z, y, x [w, v, u]$

24 \quad k \quad \ldots m'

\begin{align*}
x, x, z [u, u, w] & \quad \bar{x}, x, z [u, u, w] \\
z, x, x [w, u, u] & \quad \bar{z}, x, x [w, u, u] \\
x, z, x [u, u, w] & \quad \bar{x}, z, x [u, u, w] \\
x + 1/2, x + 1/2, z + 1/2 [u, u, w] & \quad \bar{x} + 1/2, x + 1/2, z + 1/2 [u, u, w] \\
x + 1/2, z + 1/2, x + 1/2 [u, w, u] & \quad \bar{x} + 1/2, z + 1/2, x + 1/2 [u, w, u] \\
z + 1/2, x + 1/2, x + 1/2 [w, u, u] & \quad \bar{z} + 1/2, x + 1/2, x + 1/2 [w, u, u] \\
\end{align*}

24 \quad j \quad \ldots 2

\begin{align*}
1/4, y, y + 1/2 [0, v, v] & \quad 3/4, \bar{y}, y + 1/2 [0, v, v] \\
y + 1/2, 1/4, y [v, 0, v] & \quad y + 1/2, 3/4, y [v, 0, v] \\
y, y + 1/2, 1/4 [v, v, 0] & \quad \bar{y}, \bar{y} + 1/2, 3/4 [v, v, 0] \\
1/4, \bar{y} + 1/2, \bar{y} [0, v, v] & \quad 3/4, y + 1/2, y [0, v, v] \\
\bar{y}, 1/4, \bar{y} + 1/2 [v, 0, v] & \quad y, 3/4, \bar{y} + 1/2 [v, 0, v] \\
\bar{y} + 1/2, y, 1/4 [v, v, 0] & \quad y + 1/2, \bar{y}, 3/4 [v, v, 0] \\
\end{align*}

24 \quad i \quad \ldots 2

\begin{align*}
1/4, y, \bar{y} + 1/2 [0, v, v] & \quad 3/4, y, \bar{y} + 1/2 [0, v, v] \\
y + 1/2, 1/4, y [v, 0, v] & \quad y + 1/2, 3/4, y [v, 0, v] \\
y, \bar{y} + 1/2, 1/4 [v, v, 0] & \quad \bar{y}, y + 1/2, 3/4 [v, v, 0] \\
1/4, \bar{y}, \bar{y} + 1/2, \bar{y} [0, v, v] & \quad 3/4, y + 1/2, y [0, v, v] \\
y, 1/4, \bar{y} + 1/2 [v, 0, v] & \quad y, 3/4, \bar{y} + 1/2 [v, 0, v] \\
\bar{y} + 1/2, y, 1/4 [v, v, 0] & \quad y + 1/2, \bar{y}, 3/4 [v, v, 0] \\
\end{align*}

24 \quad h \quad \ldots 2

\begin{align*}
x, 0, 1/2 [u, 0, 0] & \quad \bar{x}, 0, 1/2 [u, 0, 0] \\
0, 1/2, x [0, 0, u] & \quad 0, 1/2, \bar{x} [0, 0, \bar{u}] \\
x + 1/2, 0, 1/2 [u, 0, 0] & \quad x + 1/2, 0, 1/2 [u, 0, 0] \\
\end{align*}

224.5.1615 - 3 - 3711
Continued

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>12</th>
<th>g</th>
<th>2.m'm'</th>
<th>x,0,0 [u,0,0]</th>
<th>x,0,0 [u,0,0]</th>
<th>0,x,0 [0,u,0]</th>
<th>0,x,0 [0,u,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2,0,x+1/2 [0,u,0]</td>
<td>1/2,0,x+1/2 [0,u,0]</td>
<td>0,x,1/2 [0,u,0]</td>
<td>0,x,1/2 [0,u,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x,1/2 [0,u,0]</td>
<td>x,1/2 [0,u,0]</td>
<td>1/2,0,x [0,0,u]</td>
<td>1/2,0,x [0,0,u]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>f</th>
<th>2.22</th>
<th>1/4,0,1/2 [0,0,0]</th>
<th>3/4,0,1/2 [0,0,0]</th>
<th>1/2,1/4,0 [0,0,0]</th>
<th>0,0,1/2 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2,3/4,0 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4,1/2,0 [0,0,0]</td>
<td>3/4,1/2,0 [0,0,0]</td>
<td>0,1/4,1/2 [0,0,0]</td>
<td>0,1/4,1/2 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,3/4,1/2 [0,0,0]</td>
<td>1/2,0,1/4 [0,0,0]</td>
<td>1/2,0,3/4 [0,0,0]</td>
<td>1/2,0,3/4 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>e</th>
<th>.3m'</th>
<th>x,x,x [u,u,u]</th>
<th>x,x,x [u,u,u]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0,x [0,0,u]</td>
<td>0,0,x [0,0,u]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>d</th>
<th>2.a'</th>
<th>0,1/2,1/2 [0,0,0]</th>
<th>1/2,0,1/2 [0,0,0]</th>
<th>1/2,1/2,0 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,1/2,0 [0,0,0]</td>
<td>1/2,0,0 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td>0,0,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>c</th>
<th>.3'm'</th>
<th>3/4,3/4,3/4 [0,0,0]</th>
<th>1/4,1,4,3/4 [0,0,0]</th>
<th>1/4,3,1/4,4 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4,1,4,1/4 [0,0,0]</td>
<td>3/4,3,1/4,4 [0,0,0]</td>
<td>1/4,3,1/4,4 [0,0,0]</td>
<td>1/4,3,1/4,4 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>b</th>
<th>.3'm'</th>
<th>1/4,1,4,1/4 [0,0,0]</th>
<th>3/4,3,1/4,4 [0,0,0]</th>
<th>3/4,1,4,3/4 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4,1,4,3/4 [0,0,0]</td>
<td>3/4,1,4,3/4 [0,0,0]</td>
<td>3/4,1,4,3/4 [0,0,0]</td>
<td>3/4,1,4,3/4 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>a</th>
<th>2.3'm'</th>
<th>0,0,0 [0,0,0]</th>
<th>1/2,1,2/1 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2,x+1/2,x+1/2 [0,0,u]</td>
<td>1/2,x+1/2,x+1/2 [0,0,u]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Origin at 0,0,z

\(\mathbf{a}^* = \frac{\mathbf{a} - \mathbf{b}}{2} \)
\(\mathbf{b}^* = \frac{\mathbf{a} + \mathbf{b}}{2} \)

Origin at x,x,x

\(\mathbf{a}^* = \frac{(2\mathbf{a} - \mathbf{b} - \mathbf{c})}{3} \)
\(\mathbf{b}^* = \frac{(-\mathbf{a} + 2\mathbf{b} - \mathbf{c})}{3} \)

Origin at x,x,1/4

\(\mathbf{a}^* = \frac{(-\mathbf{a} + \mathbf{b})}{2} \)
\(\mathbf{b}^* = \mathbf{c} \)
Origin at $\bar{4}3m$, at $-1/4,-1/4,-1/4$ from center ($\bar{3}m$)

Asymmetric unit

\[
\begin{align*}
0 \leq x & \leq 1/2; \\
0 \leq y & \leq 1/2; \\
-1/4 \leq z & \leq 1/4; \\
y & \leq x; \\
\max(x-1/2,-y) & \leq z \leq \min(1/2-x,y)
\end{align*}
\]

Symmetry Operations

<table>
<thead>
<tr>
<th>Set</th>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1</td>
<td>$m_{x,y,z}$ 0,0,0</td>
</tr>
<tr>
<td></td>
<td>(1) 0,0,0</td>
<td>$m_{x,y,z}$ 0,0,0</td>
</tr>
<tr>
<td></td>
<td>(1) 0,0,0</td>
<td>$m_{x,y,z}$ 0,0,0</td>
</tr>
<tr>
<td>(5)</td>
<td>$3^* x,x,x$</td>
<td>$(3_{xyz})^* 0,0,0$</td>
</tr>
<tr>
<td></td>
<td>$(3_{xyz})^* 0,0,0$</td>
<td>$(3_{xyz})^* 0,0,0$</td>
</tr>
<tr>
<td>(9)</td>
<td>$3^* x,x,x$</td>
<td>$(3_{xyz})^* 0,0,0$</td>
</tr>
<tr>
<td></td>
<td>$(3_{xyz})^* 0,0,0$</td>
<td>$(3_{xyz})^* 0,0,0$</td>
</tr>
<tr>
<td>(13)</td>
<td>$2 (1/2,1/2,0)$</td>
<td>$x,x,1/4$</td>
</tr>
<tr>
<td></td>
<td>$(2_{xy})^* 1/2,1/2,1/2$</td>
<td>$(2_{xy})^* 1/2,1/2,1/2$</td>
</tr>
<tr>
<td>(17)</td>
<td>$4^* (1/2,0,0)$</td>
<td>$x,1/2,0$</td>
</tr>
<tr>
<td></td>
<td>$(4_{y})^* 1/2,1/2,1/2$</td>
<td>$(4_{y})^* 1/2,1/2,1/2$</td>
</tr>
<tr>
<td>(21)</td>
<td>$4^* (1/2,0,0)$</td>
<td>$x,1/2,0$</td>
</tr>
<tr>
<td></td>
<td>$(4_{y})^* 1/2,1/2,1/2$</td>
<td>$(4_{y})^* 1/2,1/2,1/2$</td>
</tr>
<tr>
<td>(25)</td>
<td>$\bar{1} 1/4,1/4,1/4$</td>
<td>$n_{x,y,z}$ 0,0,0</td>
</tr>
<tr>
<td></td>
<td>$(1_{xy})^* 1/2,1/2,1/2$</td>
<td>$(1_{xy})^* 1/2,1/2,1/2$</td>
</tr>
<tr>
<td>(29)</td>
<td>$3^* x,x,x$</td>
<td>$(3_{xyz})^* 1/2,1/2,1/2$</td>
</tr>
<tr>
<td></td>
<td>$(3_{xyz})^* 1/2,1/2,1/2$</td>
<td>$(3_{xyz})^* 1/2,1/2,1/2$</td>
</tr>
<tr>
<td>(33)</td>
<td>$3^* x,x,x$</td>
<td>$(3_{xyz})^* 1/2,1/2,1/2$</td>
</tr>
<tr>
<td></td>
<td>$(3_{xyz})^* 1/2,1/2,1/2$</td>
<td>$(3_{xyz})^* 1/2,1/2,1/2$</td>
</tr>
<tr>
<td>(37)</td>
<td>$m x,y,z$</td>
<td>$(m_{x,y,z}) 0,0,0$</td>
</tr>
<tr>
<td></td>
<td>$(m_{x,y,z}) 0,0,0$</td>
<td>$(m_{x,y,z}) 0,0,0$</td>
</tr>
<tr>
<td></td>
<td>$(m_{x,y,z}) 0,0,0$</td>
<td>$(m_{x,y,z}) 0,0,0$</td>
</tr>
<tr>
<td>(41)</td>
<td>$4^* x,0,0$</td>
<td>$(4_{y})^* 0,0,0$</td>
</tr>
<tr>
<td></td>
<td>$(4_{y})^* 0,0,0$</td>
<td>$(4_{y})^* 0,0,0$</td>
</tr>
<tr>
<td>(45)</td>
<td>$4^* y,0,0$</td>
<td>$(4_{y})^* 0,0,0$</td>
</tr>
<tr>
<td></td>
<td>$(4_{y})^* 0,0,0$</td>
<td>$(4_{y})^* 0,0,0$</td>
</tr>
</tbody>
</table>

For (0,0,0) + set

<table>
<thead>
<tr>
<th>Set</th>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>$t^* (1,0,0)$</td>
<td>$m_{x,y,z}$ 0,0,0</td>
</tr>
<tr>
<td></td>
<td>(1) 1,0,0</td>
<td>$(m_{x,y,z}) 0,0,0$</td>
</tr>
<tr>
<td>(5)</td>
<td>$3^* (1,3,1/3,3/1)$</td>
<td>$(3_{xyz})^* 1/2,1/2,1/2$</td>
</tr>
<tr>
<td></td>
<td>$(3_{xyz})^* 1/2,1/2,1/2$</td>
<td>$(3_{xyz})^* 1/2,1/2,1/2$</td>
</tr>
<tr>
<td>(9)</td>
<td>$3^* (1,3,1/3,3/1)$</td>
<td>$(3_{xyz})^* 1/2,1/2,1/2$</td>
</tr>
<tr>
<td></td>
<td>$(3_{xyz})^* 1/2,1/2,1/2$</td>
<td>$(3_{xyz})^* 1/2,1/2,1/2$</td>
</tr>
</tbody>
</table>
Continued 224.6.1616 Pn3m

(13) 2' x+1/2, x, 1/4
(24) 2' (1/2, 1/2, 0) x, x - 1/2, 1/4
(25) 2' x, y - 1/2, x - 1/4
(36) 2' (1/2, 0, 1/2) x + 1/2, y - 1/2, 1/4

Generators selected 1; t'(1,0,0); t'(0,1,0); t'(0,0,1); (2); (3); (5); (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,0,0)</td>
<td>(0,0,0) + (1,0,0)' +</td>
</tr>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
</tr>
<tr>
<td>(5) z,x,y [w,u,v]</td>
<td>(6) z,x,y [w,u,v]</td>
</tr>
<tr>
<td>(9) y,z,x [v,w,u]</td>
<td>(10) y,z,x [v,w,u]</td>
</tr>
<tr>
<td>(13) y+1/2, x+1/2, z+1/2 [v,u,w]</td>
<td>(14) y+1/2, x+1/2, z+1/2 [v,u,w]</td>
</tr>
<tr>
<td>(17) x+1/2, z+1/2, y+1/2 [u,w,v]</td>
<td>(18) x+1/2, z+1/2, y+1/2 [u,w,v]</td>
</tr>
<tr>
<td>(21) z+1/2, y+1/2, x+1/2 [w,v,u]</td>
<td>(22) z+1/2, y+1/2, x+1/2 [w,v,u]</td>
</tr>
<tr>
<td>(25) x+1/2, y+1/2, z+1/2 [w,v,u]</td>
<td>(26) x+1/2, y+1/2, z+1/2 [w,v,u]</td>
</tr>
<tr>
<td>(29) z+1/2, y+1/2, x+1/2 [w,v,u]</td>
<td>(30) z+1/2, x+1/2, y+1/2 [w,v,u]</td>
</tr>
<tr>
<td>(33) y+1/2, z+1/2, x+1/2 [v,w,u]</td>
<td>(34) y+1/2, z+1/2, x+1/2 [v,w,u]</td>
</tr>
</tbody>
</table>

224.6.1616 - 3 - 3715
Continued

<table>
<thead>
<tr>
<th>224.6.1616 P F n3m</th>
</tr>
</thead>
</table>

\[
x + 1/2, 1/2, 0 [0, v, w] + 1/2, 1/2, 0 [0, v, w]
\]

\[
x + 1/2, 1/2, 0 [0, v, w] + 1/2, 1/2, 0 [0, v, w]
\]

\[
x + 1/2, 1/2, 0 [0, v, w] + 1/2, 1/2, 0 [0, v, w]
\]

<table>
<thead>
<tr>
<th>24 g 2.mm</th>
<th>24 f 2'2'2</th>
</tr>
</thead>
</table>

\[
x, 0, 0 [0, 0, 0] + 1/2, 1/2, 0 [0, v, w]
\]

\[
x, 0, 0 [0, 0, 0] + 1/2, 1/2, 0 [0, v, w]
\]

\[
x, 0, 0 [0, 0, 0] + 1/2, 1/2, 0 [0, v, w]
\]

<table>
<thead>
<tr>
<th>16 e .3m</th>
<th>12 d 4'2'm</th>
</tr>
</thead>
</table>

\[
x, x, x [0, 0, 0] + 1/2, 1/2, 0 [0, v, w]
\]

\[
x, x, x [0, 0, 0] + 1/2, 1/2, 0 [0, v, w]
\]

\[
x, x, x [0, 0, 0] + 1/2, 1/2, 0 [0, v, w]
\]

<table>
<thead>
<tr>
<th>8 c .3'm</th>
<th>8 b .3'm</th>
</tr>
</thead>
</table>

\[
x, x, x [0, 0, 0] + 1/2, 1/2, 0 [0, v, w]
\]

\[
x, x, x [0, 0, 0] + 1/2, 1/2, 0 [0, v, w]
\]

\[
x, x, x [0, 0, 0] + 1/2, 1/2, 0 [0, v, w]
\]

<table>
<thead>
<tr>
<th>4 a 4'3m</th>
</tr>
</thead>
</table>

\[
x, x, x [0, 0, 0] + 1/2, 1/2, 0 [0, v, w]
\]

\[
x, x, x [0, 0, 0] + 1/2, 1/2, 0 [0, v, w]
\]

\[
x, x, x [0, 0, 0] + 1/2, 1/2, 0 [0, v, w]
\]

Symmetry of Special Projections

- **Along [0,0,1]** $p4mm1'$
 \[\mathbf{a}^* = (\mathbf{a} - \mathbf{b})/2 \]
 \[\mathbf{b}^* = (\mathbf{a} + \mathbf{b})/2 \]
 \(\text{Origin at } 0,0,z \)

- **Along [1,1,1]** $p6mm1$
 \[\mathbf{a}^* = (2\mathbf{a} - \mathbf{b} - \mathbf{c})/3 \]
 \[\mathbf{b}^* = (-\mathbf{a} + 2\mathbf{b} - \mathbf{c})/3 \]
 \(\text{Origin at } x,x,x \)

- **Along [1,1,0]** $p2mm1$
 \[\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \]
 \[\mathbf{b}^* = \mathbf{c} \]
 \(\text{Origin at } x,x,1/4 \)
Origin at $\bar{4}3m'$, at -1/4,-1/4,-1/4 from center ($\bar{3}m'$)

Asymmetric unit

$0 \leq x \leq 1/2;$ $0 \leq y \leq 1/2;$ $-1/4 \leq z \leq 1/4;$

$y \leq x$; max$(x-1/2,-y) \leq z \leq \min(1/2-x,y)$

Vertices

$0,0,0$ $1/2,0,0$ $1/2,1/2,0$ $1/4,1/4,1/4$ $1/4,1/4,-1/4$

Symmetry Operations

For $(0,0,0)$ + set

(1) 1

(1 0,0,0)

(2) 2' $0,0,z$

(2z | 0,0,0)

(3) 2' $0,y,0$

(2y | 0,0,0)

(4) 2' $x,0,0$

(2x | 0,0,0)

(5) $3^* x,x,x$

(3_{xyz} | 0,0,0)

(6) $3^* x,y,x$

(3_{xyz}^{-1} | 0,0,0)

(7) $3^* x,x,y$

(3_{xyz}^{-1} | 0,0,0)

(8) $3^* x,x,x$

(3_{xyz} | 0,0,0)

(9) $3^* x,x,x$

(3_{xyz}^{-1} | 0,0,0)

(10) $3^* x,x,x$

(3_{xyz} | 0,0,0)

(11) $3^* x,x,x$

(3_{xyz} | 0,0,0)

(12) $3^* x,x,x$

(3_{xyz} | 0,0,0)

(13) $2' (1/2,1/2,0)$ $x,x,1/4$

($2x | 1/2,1/2,1/2$)

(14) $2' x,x,1+1/2,1/4$

($2x | 1/2,1/2,1/2$)

(15) $4^* (0,0,1/2) 1/2,0,z$

($4z | 1/2,1/2,1/2$)

(16) $4^* (0,0,1/2) 0,1/2,z$

($4z | 1/2,1/2,1/2$)

(17) $4^* (1/2,0,0) x,1/2,0$

($4x | 1/2,1/2,1/2$)

(18) $2' (0,1/2,1/2) y,1/4,y$

($2y | 1/2,1/2,1/2$)

(19) $2' 1/4,y+1/2,y$

($2y | 1/2,1/2,1/2$)

(20) $4^* (1/2,0,0) x,0,1/2$

($4x | 1/2,1/2,1/2$)

(21) $4^* (0,1/2,0) 1/2,y,0$

($4y | 1/2,1/2,1/2$)

(22) $2' (1/2,1/2,0) x,1/4,x$

($2z | 1/2,1/2,1/2$)

(23) $3^* (0,1/2,0) 0,y,1/2$

($3x | 1/2,1/2,1/2$)

(24) $2' 1+1/2,1/4,x$

($2x | 1/2,1/2,1/2$)

(25) $3^* 1/4,1/4,1/4$

($1 | 1/2,1/2,1/2$)

(26) $n (1/2,1/2,0) x,y,1/4$

($m | 1/2,1/2,1/2$)

(27) $m (1/2,0,1/2) x,1/4,z$

($m | 1/2,1/2,1/2$)

(28) $n (0,1/2,1/2) 1/4,y,z$

($m | 1/2,1/2,1/2$)

(29) $3^* x,x,x; 1/4,1/4,1/4$

($3 | 1/2,1/2,1/2$)

(30) $3^* x,-1+x,1+x; -1/4,1/4,3/4$

($3 | 1/2,1/2,1/2$)

(31) $3^* x,x+1,x,1/4,3/4$; $-1/4,1/4,3/4$

($3 | 1/2,1/2,1/2$)

(32) $3^* x+x+1,x; 3/4,-1/4,1/4$

($3 | 1/2,1/2,1/2$)

(33) $3^* x,x,x; 1/4,1/4,1/4$

($3 | 1/2,1/2,1/2$)

(34) $3^* x+1,x-1,x; 1/4,-1/4,3/4$

($3 | 1/2,1/2,1/2$)

(35) $3^* x,x+1,x; -1/4,3/4,1/4$

($3 | 1/2,1/2,1/2$)

(36) $3^* x+x+1,x,1; 3/4,3/4,-1/4$

($3 | 1/2,1/2,1/2$)

(37) $m^* x,x,z$

($m_{xy} | 0,0,0$)

(38) $m^* x,x,z$

($m_{xy} | 0,0,0$)

(39) $4^* x,0,z; 0,0,0$

($4z | 0,0,0$)

(40) $4^* x,0,0; 0,0,0$

($4z | 0,0,0$)

(41) $4^{-1} x,0,0; 0,0,0$

($4x | 0,0,0$)

(42) $m^* x,y,y$

($m_{yz} | 0,0,0$)

(43) $m^* x,y,y$

($m_{yz} | 0,0,0$)

(44) $4^* x,0,0; 0,0,0$

($4x | 0,0,0$)

(45) $4^* x,0,0; 0,0,0$

($4x | 0,0,0$)

(46) $m^* x,y,x$

($m_{xz} | 0,0,0$)

(47) $4^* x,y,0; 0,0,0$

($4y | 0,0,0$)

(48) $m^* x,y,x$

($m_{xz} | 0,0,0$)

For $(1,0,0)$ + set

(1) $t' (1,0,0)$

(1 | 1,0,0$)

(2) $2' 1/2,0,z$

($2z | 1,0,0$)

(3) $2' 1/2,y,0$

($2y | 1,0,0$)

(4) $2' (1,0,0) x,0,0$

($2x | 1,0,0$)

(5) $3^* (1/3,1/3,1/3)$

$x+2/3,x+1/3,x$

($3_{xyz} | 0,0,0$)

(6) $3^* (1/3,-1/3,1/3)$

$x+2/3,x-1/3,x$

($3_{xyz}^{-1} | 0,0,0$)

(7) $3^* (1/3,-1/3,1/3)$

$x+2/3,x-1/3,x$

($3_{xyz}^{-1} | 1,0,0$)

(8) $3^* (1/3,1/3,1/3)$

$x+2/3,x+1/3,x$

($3_{xyz} | 1,0,0$)

(9) $3^* (1/3,1/3,1/3)$

$x+1/3,x+1/3,x$

($3_{xyz}^{-1} | 0,0,0$)

(10) $3^* (1/3,-1/3,1/3)$

$x+1/3,x-1/3,x$

($3_{xyz}^{-1} | 0,0,0$)

(11) $3^* (1/3,1/3,-1/3)$

$x+1/3,x+1/3,x$

($3_{xyz} | 1,0,0$)

(12) $3^* (1/3,1/3,-1/3)$

$x+1/3,x+1/3,x$

($3_{xyz} | 1,0,0$)
Generators selected

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (1,0,0)' +</td>
</tr>
<tr>
<td>(2) x,y,z [u,v,w]</td>
<td>(1,0,0) + (0,0,0)' +</td>
</tr>
<tr>
<td>(4) x+1/2,x,1/4</td>
<td>(0,0,0) + (1,0,0)</td>
</tr>
<tr>
<td>(5) z,x,y [w,u,v]</td>
<td>(0,0,0) + (1,0,0)</td>
</tr>
<tr>
<td>(8) z,x,y [w,u,v]</td>
<td>(0,0,0) + (1,0,0)</td>
</tr>
<tr>
<td>(3) x,y,z [u,v,w]</td>
<td>(0,0,0) + (1,0,0)</td>
</tr>
<tr>
<td>(10) y,z,x [v,w,u]</td>
<td>(0,0,0) + (1,0,0)</td>
</tr>
<tr>
<td>(11) y,z,x [v,w,u]</td>
<td>(0,0,0) + (1,0,0)</td>
</tr>
<tr>
<td>(12) y,z,x [v,w,u]</td>
<td>(0,0,0) + (1,0,0)</td>
</tr>
<tr>
<td>(13) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(0,0,0) + (1,0,0)</td>
</tr>
<tr>
<td>(14) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(0,0,0) + (1,0,0)</td>
</tr>
<tr>
<td>(15) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(0,0,0) + (1,0,0)</td>
</tr>
<tr>
<td>(16) y+1/2,x+1/2,z+1/2 [v,u,w]</td>
<td>(0,0,0) + (1,0,0)</td>
</tr>
</tbody>
</table>

Continued
Continued 224.7.1617

<table>
<thead>
<tr>
<th>Expression</th>
<th>224.7.1617</th>
<th>$P_{F_n}n^3m'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(37) $\bar{y}, x, z [v, u, w]$</td>
<td>(38) $y, x, z [v, u, w]$</td>
<td>(39) $\bar{y}, x, z [v, u, w]$</td>
</tr>
<tr>
<td>(41) $x, z, y [u, w, v]$</td>
<td>(42) $x, z, y [u, w, v]$</td>
<td>(43) $x, z, y [u, w, v]$</td>
</tr>
<tr>
<td>(45) $z, y, x [w, v, u]$</td>
<td>(46) $z, y, x [w, v, u]$</td>
<td>(47) $z, y, x [w, v, u]$</td>
</tr>
<tr>
<td>$x, x, z [u, u, w]$</td>
<td>$x, x, z [u, u, w]$</td>
<td>$x, x, z [u, u, w]$</td>
</tr>
<tr>
<td>$x, z, x [u, w, u]$</td>
<td>$x, z, x [u, w, u]$</td>
<td>$x, z, x [u, w, u]$</td>
</tr>
<tr>
<td>$x+1/2, x+1/2, z+1/2 [u, u, w]$</td>
<td>$x+1/2, x+1/2, z+1/2 [u, u, w]$</td>
<td>$x+1/2, x+1/2, z+1/2 [u, u, w]$</td>
</tr>
<tr>
<td>$x+1/2, x+1/2, x+1/2 [u, v, w]$</td>
<td>$x+1/2, x+1/2, x+1/2 [u, w, u]$</td>
<td>$x+1/2, x+1/2, x+1/2 [u, w, u]$</td>
</tr>
<tr>
<td>$z+1/2, x+1/2, x+1/2 [w, u, u]$</td>
<td>$z+1/2, x+1/2, x+1/2 [w, u, u]$</td>
<td>$z+1/2, x+1/2, x+1/2 [w, u, u]$</td>
</tr>
<tr>
<td>$1/4, y, y+1/2 [0, v, v]$</td>
<td>$3/4, y, y+1/2 [0, v, v]$</td>
<td>$3/4, y, y+1/2 [0, v, v]$</td>
</tr>
<tr>
<td>$y+1/2, 1/4, y [v, 0, v]$</td>
<td>$y+1/2, 3/4, y [v, 0, v]$</td>
<td>$y+1/2, 3/4, y [v, 0, v]$</td>
</tr>
<tr>
<td>$y, y+1/2, 1/4 [v, v, 0]$</td>
<td>$y, y+1/2, 3/4 [v, v, 0]$</td>
<td>$y, y+1/2, 3/4 [v, v, 0]$</td>
</tr>
<tr>
<td>$1/4, y+1/2, y [0, v, v]$</td>
<td>$3/4, y+1/2, y [0, v, v]$</td>
<td>$3/4, y+1/2, y [0, v, v]$</td>
</tr>
<tr>
<td>$y, 1/4, y+1/2 [0, v, v]$</td>
<td>$y, 3/4, y+1/2 [0, v, v]$</td>
<td>$y, 3/4, y+1/2 [0, v, v]$</td>
</tr>
<tr>
<td>$y+1/2, y, 1/4 [v, v, 0]$</td>
<td>$y+1/2, y, 3/4 [v, v, 0]$</td>
<td>$y+1/2, y, 3/4 [v, v, 0]$</td>
</tr>
<tr>
<td>$1/4, y, y+1/2 [u, v, v]$</td>
<td>$3/4, y, y+1/2 [u, v, v]$</td>
<td>$3/4, y, y+1/2 [u, v, v]$</td>
</tr>
<tr>
<td>$y+1/2, 1/4, y [v, u, v]$</td>
<td>$y+1/2, 3/4, y [v, u, v]$</td>
<td>$y+1/2, 3/4, y [v, u, v]$</td>
</tr>
<tr>
<td>$y, y+1/2, 1/4 [v, v, u]$</td>
<td>$y, y+1/2, 3/4 [v, v, u]$</td>
<td>$y, y+1/2, 3/4 [v, v, u]$</td>
</tr>
<tr>
<td>$1/4, y+1/2, y [u, v, v]$</td>
<td>$3/4, y+1/2, y [u, v, v]$</td>
<td>$3/4, y+1/2, y [u, v, v]$</td>
</tr>
<tr>
<td>$y, 1/4, y+1/2 [v, u, v]$</td>
<td>$y, 3/4, y+1/2 [v, u, v]$</td>
<td>$y, 3/4, y+1/2 [v, u, v]$</td>
</tr>
<tr>
<td>$y+1/2, y, 1/4 [v, v, u]$</td>
<td>$y+1/2, y, 3/4 [v, v, u]$</td>
<td>$y+1/2, y, 3/4 [v, v, u]$</td>
</tr>
</tbody>
</table>

224.7.1617 - 4 - 3721
Continued

\[
\begin{align*}
\bar{x} + 1/2, 1/2, 0 & \quad [0, v, w] \\
& \quad x + 1/2, 1/2, 0 \quad [0, v, \bar{w}] \\
& \quad 0, x + 1/2, 1/2 \quad [w, 0, v] \\
& \quad 0, x + 1/2, 1/2 \quad [w, 0, \bar{v}] \\
\bar{1}/2, 0, \bar{x} + 1/2 & \quad [v, w, 0] \\
& \quad 1/2, 0, x + 1/2 \quad [v, \bar{w}, 0] \\
& \quad 0, \bar{x}, 1/2 \quad [\bar{v}, 0, w] \\
& \quad 0, \bar{x}, 1/2 \quad [\bar{v}, 0, \bar{w}] \\
\bar{x}, 1/2, 0 & \quad [0, w, \bar{v}] \\
& \quad x, 1/2, 0 \quad [0, w, v] \\
& \quad 1/2, 0, x \quad [w, v, 0] \\
& \quad 1/2, 0, x \quad [w, v, \bar{w}] \\
24 & \quad g \quad 2m'm' \quad x, 0, 0 \quad [0, u, 0] \\
& \quad \bar{x}, 0, 0 \quad [\bar{u}, 0, 0] \\
& \quad 0, x, 0 \quad [0, u, 0] \\
& \quad 0, x, 0 \quad [0, \bar{u}, 0] \\
& \quad x + 1/2, 1/2, 1/2 \quad [u, 0, 0] \\
& \quad x + 1/2, 1/2, 1/2 \quad [\bar{u}, 0, 0] \\
& \quad 1/2, x + 1/2, 1/2 \quad [0, u, 0] \\
& \quad 1/2, x + 1/2, 1/2 \quad [0, \bar{u}, 0] \\
24 & \quad f \quad 2':2' \quad 1/4, 0, 1/2 \quad [0, v, v] \\
& \quad 3/4, 0, 1/2 \quad [0, v, \bar{v}] \\
& \quad 1/2, 1/4, 0 \quad [v, v, 0] \\
& \quad 0, 1/2, 1/4 \quad [v, v, \bar{v}] \\
& \quad 1/4, 1/2, 0 \quad [0, v, v] \\
& \quad 3/4, 1/2, 0 \quad [0, \bar{v}, v] \\
& \quad 0, 1/4, 1/2 \quad [v, v, 0] \\
& \quad 0, 1/4, 1/2 \quad [v, \bar{v}, v] \\
16 & \quad e \quad .3m' \quad x, x, x \quad [u, u, u] \\
& \quad \bar{x}, x, x \quad [\bar{u}, \bar{u}, \bar{u}] \\
& \quad \bar{x}, x, x \quad [\bar{u}, u, u] \\
& \quad \bar{x}, x, x \quad [u, u, u] \\
& \quad x + 1/2, x + 1/2, x + 1/2 \quad [\bar{u}, u, u] \\
& \quad x + 1/2, x + 1/2, x + 1/2 \quad [\bar{u}, \bar{u}, \bar{u}] \\
& \quad 1/2, x + 1/2, x + 1/2 \quad [u, u, u] \\
& \quad 1/2, x + 1/2, x + 1/2 \quad [u, \bar{u}, \bar{u}] \\
12 & \quad d \quad \bar{4}2'.m' \quad 0, 1/2, 1/2 \quad [u, 0, 0] \\
& \quad 1/2, 0, 1/2 \quad [0, u, 0] \\
& \quad 1/2, 1/2 \quad [0, 0, u] \\
& \quad 1/2, 1/2 \quad [0, 0, u] \\
& \quad 0, 1/2, 0 \quad [0, u, 0] \\
& \quad 1/2, 0, 0 \quad [u, 0, 0] \\
& \quad 0, 0, 1/2 \quad [0, 0, u] \\
8 & \quad c \quad .3'm' \quad 3/4, 3/4, 3/4 \quad [0, 0, 0] \\
& \quad 1/4, 1/4, 3/4 \quad [0, 0, 0] \\
& \quad 1/4, 3/4, 1/4 \quad [0, 0, 0] \\
& \quad 3/4, 1/4, 1/4 \quad [0, 0, 0] \\
8 & \quad b \quad .3'm' \quad 1/4, 1/4, 1/4 \quad [u, u, u] \\
& \quad 3/4, 3/4, 1/4 \quad [u, u, u] \\
& \quad 3/4, 1/4, 3/4 \quad [u, u, u] \\
& \quad 1/4, 3/4, 3/4 \quad [u, u, u] \\
4 & \quad a \quad \bar{4}3'm' \quad 0, 0, 0 \quad [0, 0, 0] \\
& \quad 1/2, 1/2, 1/2 \quad [0, 0, 0] \\

\textbf{Symmetry of Special Projections}

\begin{align*}
\text{Along } [0,0,1] & \quad \text{p4mm}
\quad a^* = (a - b)/2 \\
\quad \text{b}^* = (a + b)/2 \\
\text{Origin at } 0,0,2 \\
\text{Along } [1,1,1] & \quad \text{p6mm}
\quad a^* = (2a - b - c)/3 \\
\quad \text{b}^* = (-a + 2b - c)/3 \\
\text{Origin at } x,x,x \\
\text{Along } [1,1,0] & \quad \text{p}_{2}2\text{mm}
\quad a^* = (-a + b)/2 \\
\quad \text{b}^* = c \\
\text{Origin at } x-1/4,x+1/4,1/4
\end{align*}
Origin at center (m\(\bar{3}\)m)

Asymmetric unit
0 \(\leq\) x \(\leq\) 1/2; 0 \(\leq\) y \(\leq\) 1/4; 0 \(\leq\) z \(\leq\) 1/4; y \(\leq\) min(x, 1/2-x); z \(\leq\) y

Vertices 0,0,0 1/2,0,0 1/4,1/4,0 1/4,1/4,1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(1|0,0,0)

(2) 2 0,0,z
(2|0,0,0)

(3) 2 y,0,0
(2|0,0,0)

(4) 2 x,0,0
(2|0,0,0)

(5) 3' x,x,x
(3_{xyz}|0,0,0)

(6) 3' x,x,x
(3_{xyz}|0,0,0)

(7) 3' x,x,x
(3_{xyz}|0,0,0)

(8) 3' x,x,x
(3_{xyz}|0,0,0)

(9) 3' x,x,x
(3_{xyz}^{-1}|0,0,0)

(10) 3' x,x,x
(3_{xyz}^{-1}|0,0,0)

(11) 3' x,x,x
(3_{xyz}^{-1}|0,0,0)

(12) 3' x,x,x
(3_{xyz}^{-1}|0,0,0)
Continued

(13) 2 \(x, x, 0\)

(14) 2 \(x, x, 0\)

(15) 4\(^+\) 0, 0, 0

(16) 4\(^+\) 0, 0, 0

(2\(x_y\) 0, 0, 0)

(2\(x_y\) 0, 0, 0)

(4\(_x\) 0, 0, 0)

(4\(_x\) 0, 0, 0)

(17) 4\(^+\) 0, 0, 0

(18) 2 0, 0, 0

(19) 2 0, 0, 0

(20) 4\(^+\) 0, 0, 0

(4\(_x\) 0, 0, 0)

(4\(_x\) 0, 0, 0)

(4\(_y\) 0, 0, 0)

(4\(_y\) 0, 0, 0)

(21) 4\(^+\) 0, 0, 0

(22) 2 0, 0, 0

(23) 4\(^+\) 0, 0, 0

(24) 2 0, 0, 0

(4\(_y\) 0, 0, 0)

(4\(_y\) 0, 0, 0)

(2\(_x\) 0, 0, 0)

(2\(_x\) 0, 0, 0)

(25) 1 0, 0, 0

(26) m 0, 0, 0

(27) m 0, 0, 0

(28) m 0, 0, 0

(1\(_x\) 0, 0, 0)

(1\(_x\) 0, 0, 0)

(4\(_y\) 0, 0, 0)

(4\(_y\) 0, 0, 0)

(3) 3\(^+\) x, x, x; 0, 0, 0

(3\(_xyz\) 0, 0, 0)

(3\(_xyz\) 0, 0, 0)

(3\(_xyz\) 0, 0, 0)

(3\(_xyz\) 0, 0, 0)

(37) m 0, 0, 0

(38) m 0, 0, 0

(39) 4\(^+\) 0, 0, 0

(40) 4\(^+\) 0, 0, 0

(4\(_y\) 0, 0, 0)

(4\(_y\) 0, 0, 0)

(4\(_y\) 0, 0, 0)

(4\(_y\) 0, 0, 0)

(41) 4\(^+\) x, 0, 0; 0, 0, 0

(42) m 0, 0, 0

(43) m 0, 0, 0

(44) 4\(^+\) x, 0, 0; 0, 0, 0

(4\(_y\) 0, 0, 0)

(4\(_y\) 0, 0, 0)

(4\(_y\) 0, 0, 0)

(4\(_y\) 0, 0, 0)

(45) 4\(^+\) 0, y, 0; 0, 0, 0

(46) m 0, 0, 0

(47) 4\(^+\) 0, y, 0; 0, 0, 0

(48) m 0, 0, 0

(4\(_y\) 0, 0, 0)

(4\(_y\) 0, 0, 0)

(4\(_y\) 0, 0, 0)

(4\(_y\) 0, 0, 0)

For \((0,1/2,1/2) + \text{set}\)

(1) t 0, 1/2, 1/2

(2) 2 0, 0, 1/2

(3) 2 0, 1/2, 0

(4) 2 0, 1/2, 1/2

(1\(_x\) 0, 1/2, 1/2)

(2\(_x\) 0, 1/2, 1/2)

(3\(_x\) 0, 1/2, 1/2)

(4\(_x\) 0, 1/2, 1/2)

(5) 3\(^+\) 1/3, 1/3, 1/3

(6) 3\(^+\) 1/3, 1/3, 1/3

(7) 3\(^+\) 1/3, 1/3, 1/3

(8) 3\(^+\) 1/3, 1/3, 1/3

x-1/3, x-1/3, x

x-1/3, x-1/3, x

x-1/3, x-1/3, x

x-1/3, x-1/3, x

(3\(_xyz\) 0, 1/2, 1/2)

(3\(_xyz\) 0, 1/2, 1/2)

(3\(_xyz\) 0, 1/2, 1/2)

(3\(_xyz\) 0, 1/2, 1/2)

(9) 3\(^+\) 1/3, 1/3, 1/3

(10) 3\(^+\) 1/3, 1/3, 1/3

(11) 3\(^+\) 1/3, 1/3, 1/3

(12) 3\(^+\) 1/3, 1/3, 1/3

x-1/3, x-1/3, x

x-1/3, x-1/3, x

x-1/3, x-1/3, x

x-1/3, x-1/3, x

(3\(_xyz\) 0, 1/2, 1/2)

(3\(_xyz\) 0, 1/2, 1/2)

(3\(_xyz\) 0, 1/2, 1/2)

(3\(_xyz\) 0, 1/2, 1/2)

(13) 2 0, 1/4, 1/4

(14) 2 0, 1/4, 1/4

(15) 4\(^+\) 0, 0, 1/2

(16) 4\(^+\) 0, 0, 1/2

(2\(_x\) 0, 1/2, 1/2)

(2\(_x\) 0, 1/2, 1/2)

(4\(_y\) 0, 1/2, 1/2)

(4\(_y\) 0, 1/2, 1/2)

(17) 4\(^+\) 0, 1/2, 0

(18) 2 0, 1/2, 0

(19) 2 0, 1/2, 0

(20) 4\(^+\) 0, 1/2, 0

(4\(_y\) 0, 1/2, 1/2)

(4\(_y\) 0, 1/2, 1/2)

(4\(_y\) 0, 1/2, 1/2)

(4\(_y\) 0, 1/2, 1/2)

(21) 4\(^+\) 0, 1/2, 0

(22) 2 0, 1/2, 0

(23) 4\(^+\) 0, 1/2, 0

(24) 2 0, 1/2, 0

(4\(_y\) 0, 1/2, 1/2)

(4\(_y\) 0, 1/2, 1/2)

(4\(_y\) 0, 1/2, 1/2)

(4\(_y\) 0, 1/2, 1/2)

(25) t 0, 1/4, 1/4

(26) b 0, 1/2, 0

(27) c 0, 1/2, 0

(28) n 0, 1/2, 1/2

(1\(_x\) 0, 1/2, 1/2)

(1\(_x\) 0, 1/2, 1/2)

(1\(_x\) 0, 1/2, 1/2)

(1\(_x\) 0, 1/2, 1/2)

(29) 3\(^+\) x+1/2, x

(30) 3\(^+\) x+1/2, x

(31) 3\(^+\) x+1/2, x

(32) 3\(^+\) x+1/2, x

0, 1/2, 0

0, 1/2, 0

0, 1/2, 0

0, 1/2, 0

(3\(_xyz\) 0, 1/2, 1/2)

(3\(_xyz\) 0, 1/2, 1/2)

(3\(_xyz\) 0, 1/2, 1/2)

(3\(_xyz\) 0, 1/2, 1/2)
Continued 225.1.1618

(33) \(3^+ \cdot x-1/2, x-1/2, x; 0, 0, 1/2\)

(34) \(3^- \cdot x+1/2, x-1/2, x; 0, 0, 1/2\)

(35) \(3^- \cdot x-1/2, x+1/2, x; 1/2, 1/2, 0\)

(36) \(3^- \cdot x+1/2, x+1/2, x; 1/2, 1/2, 0\)

(37) \(g (-1/4, 1/4, 1/2) \cdot x+1/4, x, z \cdot (m_x y, 0, 1/2, 1/2)\)

(38) \(g (1/4, 1/4, 1/2) \cdot x-1/4, x, z \cdot (m_x y, 0, 1/2, 1/2)\)

(39) \(g (-1/4, 1/4, 1/2) \cdot x-1/4, x, z \cdot (m_x y, 0, 1/2, 1/2)\)

(40) \(4^+ \cdot 1/4, 1/4, z; 1/4, 1/4, 1/4 \cdot (m_x y, 0, 1/2, 1/2)\)

(41) \(4^- \cdot x, 0, 1/2; 0, 0, 1/2\)

(42) \(m \cdot x, y+1/2, y \cdot (m_{y z}, 0, 1/2, 1/2)\)

(43) \(g (0, 0, 1/2) \cdot x, y, y \cdot (m_{y z}, 0, 1/2, 1/2)\)

(44) \(4^+ \cdot x, 1/2, 0; 0, 1/2, 0 \cdot (m_{y z}, 0, 1/2, 1/2)\)

(45) \(4^- \cdot -1/4, 1/4, 1/4; -1/4, 1/4, 1/4\)

(46) \(g (-1/4, 1/4, 1/4) \cdot x+1/4, y, x \cdot (m_x z, 0, 1/2, 1/2)\)

(47) \(4^- \cdot 1/4, y, 1/4; 1/4, 1/4, 1/4 \cdot (m_{x z}, 0, 1/2, 1/2)\)

(48) \(g (1/4, 1/2, 1/4) \cdot x-1/4, y, x \cdot (m_x z, 0, 1/2, 1/2)\)

For \((1/2,0,1/2) + \) set

(1) \(t (1/2,0,1/2)\)

(2) \(2 \cdot (0,0,1/2) \cdot 1/4,0,z\)

(3) \(2 \cdot 1/4,y,1/4\)

(4) \(2 \cdot (1/2,0,0) \cdot x,0,1/2\)

(2_1 \cdot 1/2,0,1/2)\)

(2_2 \cdot 1/2,0,1/2)\)

(5) \(3^+ \cdot (1/3,1/3,1/3) \cdot x+1/6,x-1/6,x\)

(6) \(3^+ \cdot (1/3,1/3,1/3) \cdot x+1/6,x+1/6,x\)

(7) \(3^+ \cdot x+1/2,x-1/2,x\)

(8) \(3^- \cdot x+1/2,x+1/2,x\)

(9) \(3 \cdot (1/3,1/3,1/3) \cdot x+1/6,x-1/6,x\)

(10) \(3^- \cdot x+1/2,x,x\)

(11) \(3^- \cdot x+1/2,x, x\)

(12) \(3 \cdot (1/3,1/3,1/3) \cdot x+1/6,x+1/3,x\)

(13) \(2 \cdot (1/4,1/4,0) \cdot x,x-1/4,1/4\)

(14) \(2 \cdot (1/4,1/4,0) \cdot x,x+1/4,1/4\)

(15) \(4 \cdot (0,0,1/2) \cdot 1/4,-1/4,z\)

(16) \(4^- \cdot (0,0,1/2) \cdot 1/4,1/4,z\)

(17) \(4^- \cdot (1/2,0,0) \cdot x,1/4,1/4\)

(18) \(2 \cdot (0,1/4,1/4) \cdot 1/4,y-1/4,y\)

(19) \(2 \cdot (0,-1/2,1/2) \cdot 1/4,y+1/4,y\)

(20) \(4^- \cdot (1/2,0,0) \cdot x,-1/4,1/4\)

(21) \(4^- \cdot 1/2,y,0\)

(22) \(2 \cdot (1/2,0,1/2) \cdot x,0,x\)

(23) \(4^- \cdot y,0,1/2\)

(24) \(2 \cdot x+1/2,0,x\)

(25) \(a \cdot 1/4,0,1/4\)

(26) \(a \cdot (1/2,0,0) \cdot x,y,1/4\)

(27) \(n \cdot (1/2,0,1/2) \cdot x,0,z\)

(28) \(c \cdot (0,0,1/2) \cdot 1/4,y,z\)

(29) \(3^- \cdot x-1/2,x+1/2,x; 0,0,1/2\)

(30) \(3^- \cdot x-1/2,x+1/2,x; 0,0,1/2\)

(31) \(3^+ \cdot x+1/2,x+1/2,x; 1/2,1/2,0\)

(32) \(3^- \cdot x+1/2,x+1/2,x; 1/2,1/2,0\)

(33) \(3^- \cdot x+1/2,x,x; 1/2,0,0\)

(34) \(3^- \cdot x+1/2,x,x; 1/2,0,0\)

(35) \(3^- \cdot x+1/2,x,x; 1/2,0,0\)

(36) \(3^- \cdot x+1/2,x,x; 1/2,0,0\)

(37) \(g (1/4,-1/4,1/2) \cdot x+1/4,x, z \cdot (m_x y, 1/2,0,1/2)\)

(38) \(g (1/4,1/4,1/2) \cdot x+1/4,x, z \cdot (m_x y, 1/2,0,1/2)\)

(39) \(4^- \cdot 1/4,1/4,z; 1/4,1/4,1/4 \cdot (m_x y, 1/2,0,1/2)\)

(40) \(4^- \cdot 1/4,-1/4,z; 1/4,-1/4,1/4 \cdot (m_x y, 1/2,0,1/2)\)

(41) \(4^- \cdot x,-1/4,1/4; 1/4,-1/4,1/4\)

(42) \(g (1/2,-1/4,1/4) \cdot x,y+1/4,y \cdot (m_y z, 1/2,0,1/2)\)

(43) \(g (1/2,1/4,1/4) \cdot x,y-1/4,y \cdot (m_y z, 1/2,0,1/2)\)

(44) \(4^- \cdot x,1/4,1/4; 1/4,1/4,1/4 \cdot (m_y z, 1/2,0,1/2)\)

(45) \(4^- \cdot 0,1/2,0,0\)

(46) \(m \cdot x+1/2,y,x \cdot (m_z, 1/2,0,1/2)\)

(47) \(4^- \cdot 1/2,y,0; 1/2,0,0\)

(48) \(g (1/2,0,1/2) \cdot x, y, x \cdot (m_z, 1/2,0,1/2)\)
Continued 225.1.1618 Fm3m

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(2) 2 1/4,1/4,z
(3) 2 (0,1/2,0) 1/4,y,0
(4) 2 (1/2,0,0) x,1/4,0
(5) 3+ (1/3,1/3,1/3)
 x+1/6,x+1/3,x
(3_{xyz}^{-1}|1/2,1/2,0)
(6) 3+ x+1/2,x,x
(7) 3+ x+1/2,x,x
(8) 3+ (1/3,1/3,-1/3)
 x+1/6,x+1/3,x
(3_{xyz}^{-1}|1/2,1/2,0)
(9) 3+ (1/3,1/3,1/3)
 x+1/3,x+1/6,x
(3_{xyz}^{-1}|1/2,1/2,0)
(10) 3+ x,x+1/2,x
(11) 3+ (1/3,1/3,-1/3)
 x+1/3,x+1/6,x
(12) 3+ x,x+1/2,x
(13) 2 (1/2,1/2,0)
 x,x,0
(14) 2 x,x+1/2,0
(15) 4+ 1/2,0,z
(16) 4+ 0,1/2,z
(17) 4+ (1/2,0,0)
 x,1/4,-1/4
(4_{y}^{-1}|1/2,1/2,0)
(18) 2 (0,1/4,1/4)
 1/4,y+1/4,y
(2_{xy}|1/2,1/2,0)
(19) 2 (0,1/4,-1/4)
 1/4,y+1/4,y
(2_{yz}|1/2,1/2,0)
(20) 4+ (1/2,0,0)
 x,1/4,1/4
(4_{z}^{-1}|1/2,1/2,0)
(21) 4+ (0,1/2,0)
 1/4,y,-1/4
(4_{y}^{-1}|1/2,1/2,0)
(22) 2 (1/4,0,1/4)
 x+1/4,1/4,x
(2_{xy}|1/2,1/2,0)
(23) 4+ (0,1/2,0)
 1/4,y,1/4
(4_{y}^{-1}|1/2,1/2,0)
(24) 2 (1/4,0,-1/4)
 x+1/4,1/4,x
(2_{xz}|1/2,1/2,0)
(25) 1/4,1/4,0
(1/2,1/2,0)
(26) n (1/2,1/2,0)
 x,y,0
(27) a (1/2,0,0)
 x,1/4,z
(28) b (0,1/2,0)
 1/4,y,z
(29) 3+ x+1/2,x,x;
 1/2,0
(3_{xyz}^{-1}|1/2,1/2,0)
(30) 3+ x-1/2,x+1,x;
 0,1/2,1/2
(3_{xyz}^{-1}|1/2,1/2,0)
(31) 3+ x-1/2,x+1,x;
(3_{xyz}^{-1}|1/2,1/2,0)
(32) 3+ x+1/2,x,x;
(3_{xyz}^{-1}|1/2,1/2,0)
(33) 3+ x,x+1/2,x;
 0,1/2,0
(3_{xyz}^{-1}|1/2,1/2,0)
(34) 3+ x+1,x-1/2,x;
 0,1/2,0
(3_{xyz}^{-1}|1/2,1/2,0)
(35) 3+ x,x+1/2,x;
(3_{xyz}^{-1}|1/2,1/2,0)
(36) 3+ x+1,x-1/2,x;
(3_{xyz}^{-1}|1/2,1/2,0)
(37) m x+1/2,x,z
(3_{xyz}^{-1}|1/2,1/2,0)
(38) g (1/2,1/2,0)
 x,x,z
(39) 4+ 0,1/2,z; 0,1/2,0
(4_{y}^{-1}|1/2,1/2,0)
(40) 4+ 1/2,0,z; 1/2,0,0
(4_{z}^{-1}|1/2,1/2,0)
(41) 4+ x,1/4,1/4;
 1/4,1/4,1/4
(4_{y}^{-1}|1/2,1/2,0)
(42) g (1/2,1/2,0)
 x,y+1/4,y
(43) g (1/2,1/4,1/4)
 x,y+1/4,y
(44) 4+ x,1/4,-1/4;
 1/4,1/4,1/4
(4_{x}^{-1}|1/2,1/2,0)
(45) 4+ 1/4,y,1/4;
 1/4,1/4,1/4
(4_{y}^{-1}|1/2,1/2,0)
(46) g (1/2,1/2,0)
 x+1/4,y,x
(47) 4+ 1/4,y,-1/4;
 1/4,1/4,1/4
(4_{y}^{-1}|1/2,1/2,0)
(48) g (1/4,1/2,1/4)
 x+1/4,y,x
(4_{x}^{-1}|1/2,1/2,0)

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

192 I 1

(1) x,y,z [u,v,w]
(2) x, y, z [u, v, w]
(3) x, y, z [u, v, w]
(4) x, y, z [u, v, w]
(5) z, x, y [w, u, v]
(6) z, x, y [w, u, v]
(7) z, x, y [w, u, v]
(8) z, x, y [w, u, v]

225.1.1618 - 4 - 3726
(9) y,z,x [v,w,u]
(10) y,z,x [v,w,u]
(11) y,z,x [v,w,u]
(12) y,z,x [v,w,u]
(13) y,x,z [v,u,w]
(14) y,x,z [v,u,w]
(15) y,x,z [v,u,w]
(16) y,x,z [v,u,w]
(17) x,z,y [u,w,v]
(18) x,z,y [u,w,v]
(19) x,z,y [u,w,v]
(20) x,z,y [u,w,v]
(21) z,y,x [w,v,u]
(22) z,y,x [w,v,u]
(23) z,y,x [w,v,u]
(24) z,y,x [w,v,u]
(25) x,y,z [u,v,w]
(26) x,y,z [u,v,w]
(27) x,y,z [u,v,w]
(28) x,y,z [u,v,w]
(29) z,x,y [w,u,v]
(30) z,x,y [w,u,v]
(31) z,x,y [w,u,v]
(32) z,x,y [w,u,v]
(33) y,z,x [v,w,u]
(34) y,z,x [v,w,u]
(35) y,z,x [v,w,u]
(36) y,z,x [v,w,u]
(37) y,x,z [v,u,w]
(38) y,x,z [v,u,w]
(39) y,x,z [v,u,w]
(40) y,x,z [v,u,w]
(41) x,z,y [u,w,v]
(42) x,z,y [u,w,v]
(43) x,z,y [u,w,v]
(44) x,z,y [u,w,v]
(45) z,y,x [w,v,u]
(46) z,y,x [w,v,u]
(47) z,y,x [w,v,u]
(48) z,y,x [w,v,u]

96 k ..m x,x,z [u,u,0]
z,x,x [0,u,u]
x,z,x [u,0,u]
x,x,z [u,u,0]

96 j m.. 0,y,z [u,0,u]
z,0,y [0,u,0]
y,z,0 [0,u,u]
y,0,z [0,u,0]

48 i m.m2 1/2,y,y [0,0,0]
y,1/2,y [0,0,0]
y,y,1/2 [0,0,0]

48 h m.m2 0,y,y [0,0,0]
y,0,y [0,0,0]
y,y,0 [0,0,0]

225.1.1618 - 5 - 3727
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Origin</th>
<th>a*</th>
<th>b*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Along [0,0,1]</td>
<td>p4mm1'</td>
<td>(\frac{a}{2})</td>
<td>(\frac{b}{2})</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Along [1,1,1]</td>
<td>p6'm'm</td>
<td>(\frac{2a - b - c}{6})</td>
<td>(\frac{-a + 2b - c}{6})</td>
</tr>
<tr>
<td>Origin at x,x,x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Along [1,1,0]</td>
<td>c2mm1'</td>
<td>(\frac{-a + b}{2})</td>
<td>(c)</td>
</tr>
<tr>
<td>Origin at x,x,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Origin at center ($m\bar{3}m'$)

Asymmetric unit

$0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/4; \quad y \leq \min(x,1/2-x); \quad z \leq y$

Vertices

$0,0,0 \quad 1/2,0,0 \quad 1/4,1/4,0 \quad 1/4,1/4,1/4$

Symmetry Operations

For $(0,0,0) + \text{set}$

1. 1
2. $2 \cdot 0,0,z$
3. $2 \cdot 0,y,0$
4. $2 \cdot x,0,0$
5. $3^+ x,x,x$
6. $3^+ x,x,x$
7. $3^+ x,x,x$
8. $3^+ x,x,x$
9. $3^- x,x,x$
10. $3^- x,x,x$
11. $3^- x,x,x$
12. $3^- x,x,x$

$Fm\bar{3}m'$ $m\bar{3}m'$ Cubic

225.2.1619 225.2.1619
Continued

<table>
<thead>
<tr>
<th>(13) 2 x,x,0</th>
<th>(14) 2 x,x,0</th>
<th>(15) 4 0,0,z</th>
<th>(16) 4 0,0,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>2xy</td>
<td>0,0,0)</td>
<td>(2xy</td>
<td>0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(17) 4 x,0,0</th>
<th>(18) 2 0,y,y</th>
<th>(19) 2 0,y,y</th>
<th>(20) 4 x,0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4xz</td>
<td>0,0,0)</td>
<td>(2yz</td>
<td>0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(21) 4 0,y,0</th>
<th>(22) 2 x,0,x</th>
<th>(23) 4 0,y,0</th>
<th>(24) 2 x,0,x</th>
</tr>
</thead>
<tbody>
<tr>
<td>4y</td>
<td>0,0,0)</td>
<td>(2xz</td>
<td>0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(25) 1 0,0,0</th>
<th>(26) m x,y,0</th>
<th>(27) m x,0,z</th>
<th>(28) m 0,y,z</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10,0,0,0)</td>
<td>(mxy</td>
<td>0,0,0)</td>
<td>(mx</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(29) 3 x,x;x,0,0,0</th>
<th>(30) 3 x,x;x,0,0,0</th>
<th>(31) 3 x,x,x;0,0,0</th>
<th>(32) 3 x,x,x;0,0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3)xyz</td>
<td>0,0,0)</td>
<td>(3)xyz</td>
<td>0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(33) 3 x,x,x;0,0,0</th>
<th>(34) 3 x,x,x;0,0,0</th>
<th>(35) 3 x,x,x;0,0,0</th>
<th>(36) 3 x,x,x;0,0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3xyz</td>
<td>0,0,0)</td>
<td>(3xyz</td>
<td>0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(37) m x,x,z</th>
<th>(38) m x,x,z</th>
<th>(39) m x,y,y</th>
<th>(40) m 0,0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mxy</td>
<td>0,0,0)</td>
<td>(mxy</td>
<td>0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(41) 4 x,0,0;0,0,0</th>
<th>(42) m x,y,y</th>
<th>(43) m x,y,y</th>
<th>(44) m 0,0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4y</td>
<td>0,0,0)</td>
<td>(mxy</td>
<td>0,0,0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(45) 4 0,y,0;0,0,0</th>
<th>(46) m x,y,x</th>
<th>(47) m 0,0,0</th>
<th>(48) m 0,0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4y</td>
<td>0,0,0)</td>
<td>(mxy</td>
<td>0,0,0)</td>
</tr>
</tbody>
</table>

For (0,1/2,1/2) + set

<table>
<thead>
<tr>
<th>(1) t (0,1/2,1/2)</th>
<th>(2) 2 (0,0,1/2)</th>
<th>(3) 2 (0,1/2,0)</th>
<th>(4) 2 x,1/4,1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0,2,1/2)</td>
<td>(2z</td>
<td>0,1/2,1/2)</td>
<td>(2y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(5) 3 (1/3,1/3,1/3)</th>
<th>(6) 3 (0,1/2,1/2)</th>
<th>(7) 3 (-1/3,1/3,1/3)</th>
<th>(8) 3 x,x+1/2,x</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3xyz</td>
<td>0,1/2,1/2)</td>
<td>(3xyz</td>
<td>0,1/2,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(9) 3 (1/3,1/3,1/3)</th>
<th>(10) 3 (0,1/2,1/2)</th>
<th>(11) 3 (0,1/2,1/2)</th>
<th>(12) 3 x,x+1/2,x</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3xyz</td>
<td>0,1/2,1/2)</td>
<td>(3xyz</td>
<td>0,1/2,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(13) 2 (1/4,1/4,0)</th>
<th>(14) 2 (1/4,1/4,0)</th>
<th>(15) 4 (0,0,1/2)</th>
<th>(16) 4 (0,0,1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2xy</td>
<td>0,1/2,1/2)</td>
<td>(2xy</td>
<td>0,1/2,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(17) 4 x,1/2,0</th>
<th>(18) 2 (0,1/2,1/2)</th>
<th>(19) 2 (0,1/2,1/2)</th>
<th>(20) 4 x,1/2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4y</td>
<td>0,1/2,1/2)</td>
<td>(2y</td>
<td>0,1/2,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(21) 4 (0,1/2,0)</th>
<th>(22) 2 (1/4,0,1/4)</th>
<th>(23) 4 (0,1/2,0)</th>
<th>(24) 4 (1/4,0,1/4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4z</td>
<td>0,1/2,1/2)</td>
<td>(2yz</td>
<td>0,1/2,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(25) 1 (0,1/2,1/2)</th>
<th>(26) b (0,1/2,0)</th>
<th>(27) c (0,0,1/2)</th>
<th>(28) n (0,1/2,1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10,0,1/2,1/2)</td>
<td>(mz</td>
<td>0,1/2,1/2)</td>
<td>(mx</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(29) 3 x,x+1/2,x</th>
<th>(30) 3 x,x+1/2,x</th>
<th>(31) 3 x,x+1/2,x</th>
<th>(32) 3 x,x+1/2,x</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3xyz</td>
<td>0,1/2,1/2)</td>
<td>(3xyz</td>
<td>0,1/2,1/2)</td>
</tr>
</tbody>
</table>
Continued 225.2.1619 Fm3m1'
Continued

For $(1/2,1/2,0) + \text{set}$

$(1) \ t (1/2,1/2,0)$
$(1/2,1/2,0)$

$(5) \ 3^* (1/3,1/3,1/3)$
$x+1/6,x+1/3,x$
$(3_{xyz}|_{1/2,1/2,0})$

$(9) \ 3^* (1/3,1/3,1/3)$
$x+1/3,x+1/6,x$
$(3_{xyz}|^{-1}_{1/2,1/2,0})$

$(13) \ 2 (1/2,1/2,0)$
$x,x,0$
$(2_{xy}|_{1/2,1/2,0})$

$(17) \ 4^* (1/2,0,0)$
$x,1/4,-1/4$
$(4_{x}|_{1/2,1/2,0})$

$(25) \ 1/4,1/4,0$
$(1/4,1/2,0)$

$(29) \ 3^* \ x+1/2,x,x$
$1/2,0$
$(3_{xyz}|_{1/2,1/2,0})$

$(33) \ 3^* \ x,x+1/2,x$
$0,1/2,0$
$(3_{xyz}|^{-1}_{1/2,1/2,0})$

$(37) \ m \ x+1/2,x,z$
$(m_{xy}|_{1/2,1/2,0})$

$(41) \ 4^* \ x,1/4,1/4; 1/4,1/4,1/4$
$(4_{x}|^{-1}_{1/2,1/2,0})$

$(45) \ 4^* \ 1/4,1/4,1/4; 1/4,1/4,1/4$
$(4_{y}|_{1/2,1/2,0})$

For $(0,0,0)^\prime + \text{set}$

$(1) \ 1^\prime$
$(1 | 0,0,0)^\prime$

$(5) \ 3^* \ x,x,x$
$(3_{xyz}|_{0,0,0})^\prime$

$(9) \ 3^* \ x,x,x$
$(3_{xyz}|^{-1}_{0,0,0})^\prime$

$(13) \ 2^* \ x,x,0$
$(2_{xy}|_{0,0,0})^\prime$

$(17) \ 4^* \ x,0,0$
$(4_{x}|^{-1}_{0,0,0})^\prime$
Continued

<table>
<thead>
<tr>
<th>Generators selected</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,0,0) + (0,1/2,1/2,0) + (1/2,0,1/2,0) + (1/2,1/2,0) + (0,0,0)' + (0,1/2,1/2,0)' + (1/2,0,1/2,0)' + (1/2,1/2,0)' +</td>
</tr>
<tr>
<td>(1) x,y,z [0,0,0]</td>
<td>(2) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(5) z,x,y [0,0,0]</td>
<td>(6) z,x,y [0,0,0]</td>
</tr>
<tr>
<td>(9) y,z,x [0,0,0]</td>
<td>(10) y,z,x [0,0,0]</td>
</tr>
<tr>
<td>(13) y,x,z [0,0,0]</td>
<td>(14) y,x,z [0,0,0]</td>
</tr>
<tr>
<td>(17) x,z,y [0,0,0]</td>
<td>(18) x,z,y [0,0,0]</td>
</tr>
<tr>
<td>(21) z,y,x [0,0,0]</td>
<td>(22) z,y,x [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(4) x,y,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(8) z,x,y [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(12) y,z,x [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(16) y,x,z [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(20) x,z,y [0,0,0]</td>
</tr>
<tr>
<td></td>
<td>(24) z,y,x [0,0,0]</td>
</tr>
</tbody>
</table>

225.2.1619 - 7 - 3735
Continued

| 24 | e | 4m.m1' x,0,0 [0,0,0] | $\bar{x},0,0 [0,0,0]$ | 0,x,0 [0,0,0] |
| 24 | d | m.mm1' 0,1/4,1/4 [0,0,0] | 0,3/4,1/4 [0,0,0] | 1/4,0,1/4 [0,0,0] |

8	c	$\overline{4}3m1'$ 1/4,1/4,1/4 [0,0,0]	1/4,1/4,3/4 [0,0,0]
4	b	m3m1' 1/2,1/2,1/2 [0,0,0]	
4	a	m3m1' 0,0,0 [0,0,0]	

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1] p4mm1'</th>
<th>Along [1,1,1] p6mm1'</th>
<th>Along [1,1,0] c2mm1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^* = a/2$</td>
<td>$a^* = (2a - b - c)/6$</td>
<td>$a^* = (-a + b)/2$</td>
</tr>
<tr>
<td>$b^* = b/2$</td>
<td>$b^* = (-a + 2b - c)/6$</td>
<td>$b^* = c$</td>
</tr>
<tr>
<td>Origin at 0,0,z</td>
<td>Origin at x,x,x</td>
<td>Origin at x,x,0</td>
</tr>
</tbody>
</table>
Fm'3'm
225.3.1620

Asymmetric unit:

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/4; \quad y \leq \min(x, 1/2-x); \quad z \leq y \]

Vertices:

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 1/4,1/4,0 & \quad 1/4,1/4,1/4
\end{align*}
\]

Symmetry Operations:

For \((0,0,0) + \) set:

\[
\begin{align*}
(1) & \quad 1 \\
(1,0,0,0) & \quad (2) & \quad 0,0,z \\
(2,0,0,0) & \quad (3) & \quad 0,y,0 \\
(2,y,0,0) & \quad & \quad (4) & \quad 0,x,0 \\
(2,0,0,0) & \quad (5) & \quad 1,x,x \\
(3_{xyz}|0,0,0) & \quad (6) & \quad x,x,x \\
(3_{xyz}^{-1}|0,0,0) & \quad (7) & \quad x,x,x \\
(3_{xyz}^{-1}|0,0,0) & \quad & \quad (8) & \quad x,x,x \\
(3_{xyz}^{-1}|0,0,0) & \quad (9) & \quad x,x,x \\
(3_{xyz}^{-1}|0,0,0) & \quad (10) & \quad x,x,x \\
(3_{xyz}^{-1}|0,0,0) & \quad (11) & \quad x,x,x \\
(3_{xyz}^{-1}|0,0,0) & \quad & \quad (12) & \quad x,x,x \\
(3_{xyz}^{-1}|0,0,0)
\end{align*}
\]
Continued 225.3.1620 Fm'3'm

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
 (1/2,1/2,0)

(5) 3* (1/3,1/3,1/3)
 x+1/6,x+1/3,x
 (3_{xyz}|1/2,1/2,0)

(9) 3* (1/3,1/3,1/3)
 x+1/3,x+1/6,x
 (3_{xyz}|1/2,1/2,0)

(13) 2' (1/2,1/2,0)
 x,x,0
 (2_{xy}|1/2,1/2,0)

(17) 4' (1/2,0,0) x,1/4,-1/4
 (4_{y}|1/2,1/2,0)

(21) 4' (0,1/2,0) 1/4,y,-1/4
 (4_{y}|1/2,1/2,0)

(25) 1' 1/4,1/4,0
 (1'|1/2,1/2,0)

(29) 3' x+1/2,x,x;
 (3_{xyz}|1/2,1/2,0)

(33) 3' x,x+1/2; x;
 (3_{xyz}|1/2,1/2,0)

(37) m x+1/2,x,z
 (m_{xy}|1/2,1/2,0)

(41) 4' x,1/4,1/4; 1/4,1/4,1/4
 (4_{y}|1/2,1/2,0)

(45) 4' 1/4,y,1/4; 1/4,1/4,1/4
 (4_{y}|1/2,1/2,0)

Generators selected (1); t(1/0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

192 I 1

0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +

(1) x,y,z [u,v,w]
(2) x,y,z [u,v,w]
(3) x,y,z [u,v,w]
(4) x,y,z [u,v,w]
(5) z,x,y [w,u,v]
(6) z,x,y [w,u,v]
(7) z,x,y [w,u,v]
(8) z,x,y [w,u,v]
Continued 225.3.1620

(9) \(y, z, x \) [v, w, u]

(10) \(\bar{y}, z, x \) [v, w, u]

(11) \(y, z, x \) [v, w, u]

(12) \(\bar{y}, z, x \) [v, w, u]

(13) \(y, x, z \) [v, u, w]

(14) \(\bar{y}, x, z \) [v, u, w]

(15) \(y, x, z \) [v, u, w]

(16) \(\bar{y}, x, z \) [v, u, w]

(17) \(x, z, y \) [u, w, v]

(18) \(\bar{x}, z, y \) [u, w, v]

(19) \(x, z, y \) [u, w, v]

(20) \(\bar{x}, z, y \) [u, w, v]

(21) \(z, y, x \) [w, v, u]

(22) \(\bar{z}, y, x \) [w, v, u]

(23) \(z, y, x \) [w, v, u]

(24) \(\bar{z}, y, x \) [w, v, u]

(25) \(x, y, z \) [u, v, w]

(26) \(\bar{x}, y, z \) [u, v, w]

(27) \(x, y, z \) [u, v, w]

(28) \(\bar{x}, y, z \) [u, v, w]

(29) \(z, x, y \) [w, u, v]

(30) \(\bar{z}, x, y \) [w, u, v]

(31) \(z, x, y \) [w, u, v]

(32) \(\bar{z}, x, y \) [w, u, v]

(33) \(y, z, x \) [v, w, u]

(34) \(\bar{y}, z, x \) [v, w, u]

(35) \(y, z, x \) [v, w, u]

(36) \(\bar{y}, z, x \) [v, w, u]

(37) \(y, x, z \) [v, u, w]

(38) \(\bar{y}, x, z \) [v, u, w]

(39) \(y, x, z \) [v, u, w]

(40) \(\bar{y}, x, z \) [v, u, w]

(41) \(x, z, y \) [u, w, v]

(42) \(\bar{x}, z, y \) [u, w, v]

(43) \(x, z, y \) [u, w, v]

(44) \(\bar{x}, z, y \) [u, w, v]

(45) \(z, y, x \) [w, v, u]

(46) \(\bar{z}, y, x \) [w, v, u]

(47) \(z, y, x \) [w, v, u]

(48) \(\bar{z}, y, x \) [w, v, u]

96 \(k \) \(...

x, x, z [u, u, 0]

z, x, x [0, u, 0]

x, x, z [u, 0, u]

x, x, z [u, u, 0]

x, x, x [u, u, 0]

z, x, x [0, u, u]

x, x, x [0, u, 0]

96 \(j \) \(...

0, y, z [0, v, w]

0, z, 0 [w, 0, v]

z, 0, y [w, 0, v]

y, z, 0 [v, w, 0]

0, z, 0 [v, w, 0]

0, y, 0 [w, 0, v]

0, y, 0 [w, 0, v]

0, y, 0 [w, 0, v]

48 \(i \) \(...

1/2, y, y [0, v, w]

0, y, 0 [w, 0, v]

48 \(h \) \(...

0, y, 0 [w, 0, v]

225.3.1620 - 5 - 3742
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>48</th>
<th>g</th>
<th>2.mm</th>
<th>x,1/4,1/4 [0,0,0]</th>
<th>x,3/4,1/4 [0,0,0]</th>
<th>1/4,x,1/4 [0,0,0]</th>
<th>1/4,x,3/4 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4,1/4,x [0,0,0]</td>
<td>1/4,1/4,x [0,0,0]</td>
<td>1/4,x,3/4 [0,0,0]</td>
<td>3/4,x,3/4 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x,1/4,3/4 [0,0,0]</td>
<td>x,1/4,1/4 [0,0,0]</td>
<td>1/4,1/4,x [0,0,0]</td>
<td>1/4,3/4,x [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>f</td>
<td>.3m</td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
</tr>
<tr>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>e</td>
<td>4'm'.m</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td>0,x,0 [0,0,0]</td>
<td>0,0,x [0,0,0]</td>
<td>0,0,x [0,0,0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>d</td>
<td>m'.mm</td>
<td>0,1/4,1/4 [0,0,0]</td>
<td>0,3/4,1/4 [0,0,0]</td>
<td>1/4,0,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>1/4,0,3/4 [0,0,0]</td>
<td>1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>c</td>
<td>43m</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>1/4,1/4,3/4 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>b</td>
<td>m'3'm</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>m'3'm</td>
<td>0,0,0 [0,0,0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: \(p4'm'm \)
 \(a^* = a/2 \quad b^* = b/2 \)
 Origin at 0,0,z

- **Along [1,1,1]**: \(p6mm \)
 \(a^* = (2a - b - c)/6 \quad b^* = (-a + 2b - c)/6 \)
 Origin at x,x,x

- **Along [1,1,0]**: \(c2mm1\)'
 \(a^* = (-a + b)/2 \quad b^* = c \)
 Origin at x,x,0
Origin at center (m\overline{3}m')

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/4; 0 ≤ z ≤ 1/4; y ≤ min(x, 1/2-x); z ≤ y

Vertices
0,0,0 1/2,0,0 1/4,1/4,0 1/4,1/4,1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2 0,0,z
(3) 2 0,y,0
(4) 2 x,0,0

(5) 3' x,x,x
(6) 3' x,x,x
(7) 3' x,x,x
(8) 3' x,x,x

(3_{xyz})|0,0,0)
(3_{xyz})|0,0,0)
(3_{xyz})|0,0,0)
(3_{xyz})|0,0,0)

(9) 3' x,x,x
(10) 3' x,x,x
(11) 3' x,x,x
(12) 3' x,x,x

(3_{xyz}^{-1})|0,0,0)
(3_{xyz}^{-1})|0,0,0)
(3_{xyz}^{-1})|0,0,0)
(3_{xyz}^{-1})|0,0,0)
Continued

For (0,1/2,1/2) + set

<table>
<thead>
<tr>
<th>225.4.1621</th>
<th>Fm3m'</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13</th>
<th>2' x,x,0</th>
<th>20</th>
<th>4‘+ 0,0,0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2_x</td>
<td>0,0,0)'</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2’ x,x,0</td>
<td>21</td>
<td>4‘+ 0,0,0</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(2_y</td>
<td>0,0,0)'</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4‘+ 0,0,0</td>
<td>22</td>
<td>2’ x,0,0</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(4z'</td>
<td>0,0,0)'</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4‘+ 0,0,0</td>
<td>23</td>
<td>4‘+ 0,0,0</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(4z'</td>
<td>0,0,0)'</td>
<td></td>
</tr>
</tbody>
</table>

For (0,1/2,1/2) + set

<table>
<thead>
<tr>
<th>1</th>
<th>t (0,1/2,1/2)</th>
<th>2</th>
<th>2 (0,0,1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,1/2,1/2)</td>
<td></td>
<td>(0,1/2,1/2)</td>
</tr>
<tr>
<td>3</td>
<td>2 (0,1/2,0)</td>
<td>4</td>
<td>2 x,1/4,1/4</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(0,1/2,1/2)</td>
<td></td>
<td>(2_z</td>
</tr>
<tr>
<td>5</td>
<td>3‘+ 0,0,0</td>
<td>6</td>
<td>3‘+ 0,0,0</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(3_yz</td>
<td>0,0,0)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3‘+ 0,0,0</td>
<td>8</td>
<td>3‘+ 0,0,0</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(0,1/2,1/2)</td>
<td></td>
<td>(0,1/2,1/2)</td>
</tr>
<tr>
<td>9</td>
<td>3‘+ 0,0,0</td>
<td>10</td>
<td>3‘+ 0,0,0</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(3_yz</td>
<td>0,0,0)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3‘+ 0,0,0</td>
<td>12</td>
<td>3‘+ 0,0,0</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(0,1/2,1/2)</td>
<td></td>
<td>(0,1/2,1/2)</td>
</tr>
<tr>
<td>13</td>
<td>2’ (1/4,1/4,0)</td>
<td>24</td>
<td>2' (-1/4,1/4,0)</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>x+1/4,1/4</td>
<td></td>
<td>x-1/4,1/4</td>
</tr>
<tr>
<td>14</td>
<td>2’ (0,1/2,1/2)</td>
<td>25</td>
<td>2’ (0,1/2,1/2)</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(2_y</td>
<td>0,1/2,1/2)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4‘+ 0,0,0</td>
<td>26</td>
<td>2’ (1,0,1/2)</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(4z'</td>
<td>0,1/2,1/2)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4‘+ 0,0,0</td>
<td>27</td>
<td>2’ (1,0,1/2)</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(4z'</td>
<td>0,1/2,1/2)</td>
<td></td>
</tr>
</tbody>
</table>

For (0,1/2,1/2) + set

<table>
<thead>
<tr>
<th>1</th>
<th>t (0,1/2,1/2)</th>
<th>2</th>
<th>2 (0,0,1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0,1/2,1/2)</td>
<td></td>
<td>(0,1/2,1/2)</td>
</tr>
<tr>
<td>3</td>
<td>2 (0,1/2,0)</td>
<td>4</td>
<td>2 x,1/4,1/4</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(0,1/2,1/2)</td>
<td></td>
<td>(2_z</td>
</tr>
<tr>
<td>5</td>
<td>3‘+ 0,0,0</td>
<td>6</td>
<td>3‘+ 0,0,0</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(3_yz</td>
<td>0,0,0)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3‘+ 0,0,0</td>
<td>8</td>
<td>3‘+ 0,0,0</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(0,1/2,1/2)</td>
<td></td>
<td>(0,1/2,1/2)</td>
</tr>
<tr>
<td>9</td>
<td>3‘+ 0,0,0</td>
<td>10</td>
<td>3‘+ 0,0,0</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(3_yz</td>
<td>0,0,0)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3‘+ 0,0,0</td>
<td>12</td>
<td>3‘+ 0,0,0</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(0,1/2,1/2)</td>
<td></td>
<td>(0,1/2,1/2)</td>
</tr>
<tr>
<td>13</td>
<td>2’ (1/4,1/4,0)</td>
<td>24</td>
<td>2' (-1/4,1/4,0)</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>x+1/4,1/4</td>
<td></td>
<td>x-1/4,1/4</td>
</tr>
<tr>
<td>14</td>
<td>2’ (0,1/2,1/2)</td>
<td>25</td>
<td>2’ (0,1/2,1/2)</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(2_y</td>
<td>0,1/2,1/2)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4‘+ 0,0,0</td>
<td>26</td>
<td>2’ (1,0,1/2)</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(4z'</td>
<td>0,1/2,1/2)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4‘+ 0,0,0</td>
<td>27</td>
<td>2’ (1,0,1/2)</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>(4z'</td>
<td>0,1/2,1/2)</td>
<td></td>
</tr>
</tbody>
</table>

For (0,1/2,1/2) + set
<table>
<thead>
<tr>
<th>Set</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>(3^* x-1/2, x-1/2, x; 0, 0, 1/2)</td>
<td>Fm3m'</td>
</tr>
<tr>
<td>34</td>
<td>(3^* x+1/2, x-1/2, x; 0, 0, 1/2)</td>
<td>Fm3m'</td>
</tr>
<tr>
<td>35</td>
<td>(3^* x-1/2, x+1/2, x; -1/2, 1/2, 0)</td>
<td>Fm3m'</td>
</tr>
<tr>
<td>36</td>
<td>(3^* x+1/2, x+1/2, x; 1/2, 1/2, 0)</td>
<td>Fm3m'</td>
</tr>
<tr>
<td>37</td>
<td>(g^* (-1/4, 1/4, 1/2) x+1/4, \overline{x}, z)</td>
<td>Fm3m'</td>
</tr>
<tr>
<td>38</td>
<td>(g^* (1/4, 1/4, 1/2) x-1/4, x, z)</td>
<td>Fm3m'</td>
</tr>
<tr>
<td>39</td>
<td>(4^* -1/4, 1/4, z; -1/4, 1/4, 1/4 (4^* x, 0, 1/2, 1/2))</td>
<td>Fm3m'</td>
</tr>
<tr>
<td>40</td>
<td>(4^* 1/4, 1/4, z; 1/4, 1/4, 1/4 (4^* x, 0, 1/2, 1/2))</td>
<td>Fm3m'</td>
</tr>
<tr>
<td>41</td>
<td>(4^* x, 0, 1/2; 0, 0, 1/2 (4^* x, 0, 1/2, 1/2))</td>
<td>Fm3m'</td>
</tr>
<tr>
<td>42</td>
<td>(m^* x, y+1/2, y (m^* x, 0, 1/2, 1/2))</td>
<td>Fm3m'</td>
</tr>
<tr>
<td>43</td>
<td>(g^* (0, 1/2, 1/2) x, y, y (m^* y, 0, 1/2, 1/2))</td>
<td>Fm3m'</td>
</tr>
<tr>
<td>44</td>
<td>(4^* x, 1/2, 0; 0, 1/2, 0)</td>
<td>Fm3m'</td>
</tr>
<tr>
<td>45</td>
<td>(4^* -1/4, y, 1/4; -1/4, 1/4, 1/4 (4^* x, 0, 1/2, 1/2))</td>
<td>Fm3m'</td>
</tr>
<tr>
<td></td>
<td>(g^* (1/4, 1/2, 1/4) x+1/4, y, x)</td>
<td>Fm3m'</td>
</tr>
<tr>
<td></td>
<td>((4^* x, 0, 1/2, 1/2))</td>
<td>Fm3m'</td>
</tr>
</tbody>
</table>

For \((1/2, 0, 1/2)\) set:

<table>
<thead>
<tr>
<th>Set</th>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>(2 (1/2, 0, 1/2))</td>
<td>Fm3m'</td>
</tr>
<tr>
<td>47</td>
<td>(4^* 1/4, y, 1/4; 1/4, 1/4, 1/4 (4^* x, 0, 1/2, 1/2))</td>
<td>Fm3m'</td>
</tr>
<tr>
<td>48</td>
<td>(g^* (1/4, 1/2, 1/4) x-1/4, y, x)</td>
<td>Fm3m'</td>
</tr>
<tr>
<td></td>
<td>((m^* x, 0, 1/2, 1/2))</td>
<td>Fm3m'</td>
</tr>
</tbody>
</table>

Continued 225.4.1621 Fm3m'
Continued
225.4.1621 Fm3m'

(1) t (1/2,1/2,0) + set
(1) 1/2,1/2,0)
(2) 2 1/4,1/4,z
(2) 1/2,1/2,0)
(3) 2 0,1/2,0) 1/4,y,0
(3) 1/2,1/2,0) x,1/4,0
(4) 2 1/2,0,0) + x,1/4,0
(4) 1/2,1/2,0) + x,1/4,0
(5) 3+ (1/3,1/3,1/3)
(5) 3+ x+1/2,x,x
(6) 3+ x+1/2,x,x
(7) 3+ x+1/2,x,x
(8) 3+ (1/3,1/3,-1/3)
(9) 3+ (1/3,1/3,-1/3)
(10) 3+ x,x+1/2,x
(11) 3+ x,x+1/2,x
(12) 3+ x,x+1/2,x
(13) 2' (1/2,1/2,0) + x,x,0
(14) 2' x,x+1/2,0
(15) 4+ * 1/2,0,z
(16) 4+ * 0,1/2,z
(17) 4+ ' (1/2,0,0) + x,1/4,-1/4
(18) 2' (0,1/4,1/4) 1,4,y+1/4,y
(19) 2' (0,1/4,-1/4) 1,4,y+1/4,y
(20) 4+ ' (1/2,0,0) + x,1/4,1/4
(21) 4+ ' (0,1/2,0) + 1,4,y,-1/4
(22) 2' (1/4,0,1/4) x+1/4,1/4,x
(23) 4+ ' (0,1/2,0) + 1,4,y,1/4
(24) 2' (1/4,0,-1/4) x+1/4,1/4,x
(25) 1/4,1/4,0
(26) n 1/2,1/2,0)
(27) a (1/2,0,0) + x,1/4,0
(28) b (0,1/2,0) + 1/4,y,z
(29) 3+ x+1/2,x,x;
(30) 3+ x+1/2,x,x;
(31) 3+ x+1/2,x,x;
(32) 3+ x+1/2,x,x;
(33) 3+ x+1/2,x,x;
(34) 3+ x+1/2,x,x;
(35) 3+ x+1/2,x,x;
(36) 3+ x+1/2,x,x;
(37) m' x+1/2,x,z
(38) g' (1/2,1/2,0) x,x,z
(39) 4+ * 0,1/2,z; 0,1/2,0
(40) 4+ * 0,1/2,z; 0,1/2,0
(41) 4+ ' x,1/4,1/4; 1/4,1/4,1/4
(42) g' (1/2,1/4,-1/4) x,y+1/4,y
(43) g' (1/2,1/4,1/4) x,y+1/4,y
(44) 4+ ' x,1/4,-1/4; 1/4,1/4,-1/4
(45) 4+ ' x,1/4,-1/4; 1/4,1/4,-1/4
(46) g' (1/4,1/2,-1/4) x+1/4,y,x
(47) 4+ ' 1/4,y,-1/4; 1/4,1/4,-1/4
(48) g' (1/4,1/2,1/4) x+1/4,y,x

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

192 1 1

(1) x,y,z [u,v,w]
(2) x,y,z [u,v,w]
(3) x,y,z [u,v,w]
(4) x,y,z [u,v,w]
(5) z,x,y [w,u,v]
(6) z,x,y [w,u,v]
(7) z,x,y [w,u,v]
(8) z,x,y [w,u,v]

Coordinates

(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +
48 g 2.m'm' x,1/4,1/4 [u,0,0] \bar{x},3/4,1/4 [\bar{u},0,0] 1/4,\bar{x},1/4 [0,\bar{u},0] 1/4,\bar{x},3/4 [0,\bar{u},0]

1/4,1/4,x [0,0,u] 3/4,1/4,\bar{x} [0,0,\bar{u}] 1/4,\bar{x},3/4 [0,\bar{u},0] 3/4,\bar{x},3/4 [0,\bar{u},0]

x,1/4,3/4 [\bar{u},0,0] \bar{x},1/4,1/4 [u,0,0] 1/4,1/4,\bar{x} [0,0,u] 1/4,3/4,x [0,0,u]

32 f .3m' x,x,x [u,u,u] \bar{x},\bar{x},x [\bar{u},\bar{u},u] \bar{x},x,x [u,\bar{u},u] \bar{x},x,x [u,\bar{u},u]

x,x,\bar{x} [\bar{u},\bar{u},\bar{u}] \bar{x},x,\bar{x} [\bar{u},\bar{u},\bar{u}] x,x,\bar{x} [u,u,\bar{u}] \bar{x},\bar{x},x [u,\bar{u},\bar{u}]

24 e 4'm.m' x,0,0 [0,0,0] \bar{x},0,0 [0,0,0] 0,x,0 [0,0,0]

0,\bar{x},0 [0,0,0] 0,0,x [0,0,0] 0,\bar{x},0 [0,0,0]

24 d m.m'm' 0,1/4,1/4 [u,0,0] 0,3/4,1/4 [\bar{u},0,0] 1/4,0,1/4 [0,u,0]

1/4,0,3/4 [0,\bar{u},0] 1/4,1/4,0 [0,0,u] 3/4,1/4,0 [0,0,\bar{u}]

8 c 4'3m' 1/4,1/4,1/4 [0,0,0] 1/4,1/4,3/4 [0,0,0]

4 b m3m' 1/2,1/2,1/2 [0,0,0]

4 a m\bar{3}m' 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4mm1' Along [1,1,1] p6'mm' Along [1,1,0] c2'mm'
\text{s}{\text{a}^*} = a/2 \text{s}{\text{b}^*} = b/2 \text{s}{\text{a}^*} = (2a - b - c)/6 \text{s}{\text{b}^*} = (-a + 2b - c)/6 \text{s}{\text{a}^*} = c \text{s}{\text{b}^*} = (-a + b)/2

Origin at 0,0,z Origin at x,x,x Origin at x,x,0
Origin at center (m’3’m’)

Asymmetric unit

\[0 \leq x \leq \frac{1}{2}; \quad 0 \leq y \leq \frac{1}{4}; \quad 0 \leq z \leq \frac{1}{4}; \quad y \leq \min(x, \frac{1}{2} - x); \quad z \leq y \]

Vertices

\[(0,0,0) \quad \frac{1}{2},0,0 \quad \frac{1}{4},\frac{1}{4},0 \quad \frac{1}{4},\frac{1}{4},\frac{1}{4}\]

Symmetry Operations

For \((0,0,0) + \text{set}\)

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 \quad 0,0,z \\
(3) & \quad 2 \quad y,0,0 \\
(4) & \quad 2 \quad x,0,0 \\
(5) & \quad 3^+ \quad x,x,x \\
(6) & \quad 3^+ \quad x,x,x \\
(7) & \quad 3+ \quad x,x,x \\
(8) & \quad 3^+ \quad x,x,x \\
(9) & \quad 3^- \quad x,x,x \\
(10) & \quad 3^- \quad x,x,x \\
(11) & \quad 3^- \quad x,x,x \\
(12) & \quad 3^- \quad x,x,x
\end{align*}
\]

\[
\begin{align*}
(1) & \quad 1 \\
(2) & \quad 0,0,0 \\
(3) & \quad 0,0,0 \\
(4) & \quad 0,0,0 \\
(5) & \quad 0,0,0 \\
(6) & \quad 0,0,0 \\
(7) & \quad 0,0,0 \\
(8) & \quad 0,0,0 \\
(9) & \quad 0,0,0 \\
(10) & \quad 0,0,0 \\
(11) & \quad 0,0,0 \\
(12) & \quad 0,0,0
\end{align*}
\]
Continued

225.5.1622

Fm'3m'

(13) 2 x,x,0
(2,xy | 0,0,0)
(14) 2 x,x,0
(2,xy | 0,0,0)
(15) 4' 0,0,0
(4, | 0,0,0)
(16) 4' 0,0,0
(4, | 0,0,0)
(17) 4' x,0,0
(4,x | 0,0,0)
(18) 2 0,y,y
(2,yz | 0,0,0)
(19) 2 0,y,y
(2,yz | 0,0,0)
(20) 4' x,0,0
(4, | 0,0,0)
(21) 4' 0,y,0
(4,y | 0,0,0)
(22) 2 x,0,x
(2,xz | 0,0,0)
(23) 4' 0,y,0
(4, | 0,0,0)
(24) 2 x,0,x
(2,xz | 0,0,0)
(25) 1' 0,0,0
(1 | 0,0,0)
(26) m' x,y,0
(m,xy | 0,0,0)
(27) m' x,0,z
(m,xy | 0,0,0)
(28) m' 0,y,z
(m,xy | 0,0,0)
(29) 3' x,x,x; 0,0,0
(3,xyz | 0,0,0)
(31) 3' x,x,x; 0,0,0
(3,xyz | 0,0,0)
(32) 3' x,x,x; 0,0,0
(3,xyz | 0,0,0)
(33) 3' x,x,x; 0,0,0
(3,xyz | 0,0,0)
(34) 3' x,x,x; 0,0,0
(3,xyz | 0,0,0)
(36) 3' x,x,x; 0,0,0
(3,xyz | 0,0,0)
(37) m' x,x,z
(m,xyz | 0,0,0)
(38) m' x,x,z
(m,xyz | 0,0,0)
(39) 4' 0,0,z; 0,0,0
(4, | 0,0,0)
(40) 4' 0,0,z; 0,0,0
(4, | 0,0,0)
(41) 4' x,0,0; 0,0,0
(4,x | 0,0,0)
(42) m' x,y,y
(m,xy | 0,0,0)
(43) m' x,y,y
(m,xy | 0,0,0)
(44) 4' x,0,0; 0,0,0
(4,x | 0,0,0)
(45) 4' 0,y,0; 0,0,0
(4,y | 0,0,0)
(46) m' x,y,x
(m,xyz | 0,0,0)
(47) 4' 0,y,0; 0,0,0
(4, | 0,0,0)
(48) m' x,y,x
(m,xyz | 0,0,0)

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2)
(2) t (0,1/2,1/2)
(3) 2 (0,1/2,0) 0,1/4,z
(2,y | 0,1/2,1/2)
(4) 2 x,1/4,1/4
(2,z | 0,1/2,1/2)
(5) 3' (1/3,1/3,1/3)
(3,xyz | 0,1/2,1/2)
(6) 3' x,x+1/2,x
(3,xyz | 0,1/2,1/2)
(7) 3' (-1/3,1/3,1/3)
(3,xyz | 0,1/2,1/2)
(8) 3' x,x+1/2,x
(3,xyz | 0,1/2,1/2)
(9) 3' (1/3,1/3,1/3)
(3,xyz | 0,1/2,1/2)
(10) 3' (-1/3,1/3,1/3)
(3,xyz | 0,1/2,1/2)
(11) 3' x,x+1/2,x+1/2,x
(3,xyz | 0,1/2,1/2)
(12) 3' x,x+1/2,x+1/2,x
(3,xyz | 0,1/2,1/2)
(13) 2 (1/4,1/4,0)
(2,xy | 0,1/2,1/2)
(14) 2 (-1/4,1/4,0)
(2,xy | 0,1/2,1/2)
(15) 4' (0,0,1/2) 1/4,1/4,z
(4, | 0,1/2,1/2)
(16) 4' (0,0,1/2) -1/4,1/4,z
(4, | 0,1/2,1/2)
(17) 4' x,1/2,0
(4,x | 0,1/2,1/2)
(18) 2 (0,1/2,1/2)
(2,z | 0,1/2,1/2)
(19) 2 0,y+1/2,y
(2,yz | 0,1/2,1/2)
(20) 4' x,0,1/2
(4,z | 0,1/2,1/2)
(21) 4' (0,1/2,0) 1/4,y,1/4
(4,y | 0,1/2,1/2)
(22) 2 (1/4,0,1/4)
(2,yz | 0,1/2,1/2)
(23) 4' (0,1/2,0) -1/4,y,1/4
(4, | 0,1/2,1/2)
(24) 2 (-1/4,0,1/4)x,x+1/4,1/4,x
(2,xz | 0,1/2,1/2)
(25) 1' 0,1/4,1/4
(1 | 0,1/2,1/2)
(26) b' (0,1/2,0)
(2,yz | 0,1/2,1/2)
(27) c' (0,0,1/2)
(2,yz | 0,1/2,1/2)
(28) n' (0,1/2,1/2)
(2,yz | 0,1/2,1/2)
(29) 3' x,x+1/2,x;
0,1/2,0
(3,xyz | 0,1/2,1/2)
(30) 3' x,x+1/2,x;
0,1/2,0
(3,xyz | 0,1/2,1/2)
Continued

(33) $\tilde{\mathbf{3}}^* \cdot x-1/2,x-1/2,x; \quad 0,0,1/2$

(34) $\tilde{\mathbf{3}}^* \cdot x+1/2,x-1/2,x; \quad 0,0,1/2$

(35) $\tilde{\mathbf{3}}^* \cdot x-1/2,x+1/2,x; \quad 1/2,1/2,0$

(36) $\tilde{\mathbf{3}}^* \cdot x+1/2,x+1/2,x; \quad 1/2,1/2,0$

(37) g' (-1/4,1/4,1/4) \quad x+1/4,\bar{x},z \quad (m_yz) [0,1/2,1/2]'

(38) $g' (1/4,1/4,1/4) \quad x-1/4,x,z \quad (m_yz) [0,1/2,1/2]'

(39) $\tilde{\mathbf{4}} \cdot -1/4,1/4,4,4,1/4 \quad z; 1/4,1/4,1/4 \quad (\bar{z}) [0,1/2,1/2]'$

(40) $\tilde{\mathbf{4}} \cdot 1/4,1/4,4,1/4 \quad z; 1/4,1/4,1/4 \quad (\bar{z}) [0,1/2,1/2]'$

(41) $\tilde{\mathbf{4}} \cdot x,0,1/2; 0,0,1/2$

(42) $\tilde{\mathbf{4}} \cdot x,y+1/2,y$

(43) $g' (0,1/2,1/2) \quad x,0,1/2$

(44) $\tilde{\mathbf{4}} \cdot x,1/2,0; 0,1/2,0$

(45) $\tilde{\mathbf{4}} \cdot -1/4,y,1/4,-1/4,1/4,1/4$

For (1/2,0,1/2) + set

(1) t (1/2,0,1/2)

(2) 2 (0,0,1/2) \quad 1/4,0,z

(3) 2 \quad 1/4,y+1/4

(4) 2 (1/2,0,0) \quad x,0,1/2

(5) 3' (1/3,1/3,1/3)

(6) 3' (1/3,-1/3,1/3)

(7) 3' \quad x+1/2, x-1/2, x

(8) 3' \quad x+1/2, x+1/2, x

(9) 3 (1/3,1/3,1/3)

(10) 3' \quad x+1/2, x+1/2, x

(11) 3' \quad x+1/2, x+1/2, x

(12) 3 (1/3,-1/3,1/3)

(13) 2 (1/4,1/4,0) \quad x,x-1/4,1/4

(14) 2 (1/4,-1,1/4) \quad x,x+1/4,1/4

(15) 4' (0,0,1/2) \quad 1/4,-1,4/4,1/4

(16) 4' (0,0,1/2) \quad 1/4,-1,4/4,1/4

(17) 2 (1/2,0,1/2)

(18) 2 (0,1/4,1/4) \quad x,x-1/6,1/2

(19) 2 (0,-1,2,1/2) \quad x,x+1/4,1/4

(20) 4' (1/2,0,0) \quad x,x-1/4,1/4

(21) 4' \quad 1/2,y,0

(22) 2 (1/2,0,1/2) \quad x,y,x

(23) 4' \quad 0,y,1/2

(24) 2 \quad x+1/2,0,x

(25) 2 \quad 0,y,1/2

(26) 2 (1/2,0,1/2) \quad x,y+1/2, x+1/2, x

(27) n' (1/2,0,1/2) \quad x,y+1/2, x+1/2, x

(28) c' (0,0,1/2) \quad 1/4,y, z

(29) 3' \cdot x-1/2,x-1/2,x; \quad 0,0,1/2

(30) 3' \cdot x-1/2,x+1/2,x; \quad 0,0,1/2

(31) 3' \cdot x+1/2,x+1/2,x; \quad 0,0,1/2

(32) 3' \cdot x+1/2,x-1/2,x; \quad 0,0,1/2

(33) 3' \cdot x+1/2,x; \quad 1/2,0,0

(34) 3' \cdot x+1/2,x, x; \quad 1/2,0,0

(35) 3' \cdot x+1/2,x, x; \quad 1/2,0,0

(36) 3' \cdot x+1/2,x, x; \quad 1/2,0,0

(37) g' (1/4,-1,1/4,1/4) \quad x+1/4,\bar{x},z

(38) g' (1/4,1/4,1/4,1/4) \quad x+1/4,x,z

(39) 4' \cdot 1/4,1/4,1/4 \quad z; 1/4,1/4,1/4

(40) 4' \cdot 1/4,1/4,1/4 \quad z; 1/4,1/4,1/4

(41) \tilde{\mathbf{4}} \cdot x,-1/4,1/4,1/4 \quad x,y+1/4,1/4,1/4

(42) g' (1/2,-1,4,1/4) \quad x,y-1/4,1/4,1/4

(43) g' (1/2,1/2,1/2) \quad x,y+1/4,1/4,1/4

(44) g' (1/2,1/2,1/2) \quad x,y+1/4,1/4,1/4

(45) \tilde{\mathbf{4}} \cdot x,0,1/2; 0,0,1/2

(46) \tilde{\mathbf{4}} \cdot x,0,1/2; 0,0,1/2

(47) 4' \cdot 1/2,y,0; 1/2,0,0

(48) 4' \cdot 1/2,y,0; 1/2,0,0
Continued

225.5.1622 Fm'3'm'

For (1/2,1/2,0) + set

\begin{align*}
(1) & \ t(1/2,1/2,0) \\
(2) & \ t(1/2,1/2,0) \\
(3) & \ t(1/2,1/2,0) \\
(4) & \ t(1/2,1/2,0) \\
(5) & \ t(1/3,1/3,1/3) \\
(6) & \ t(1/2,1/2,0) \\
(7) & \ t(1/2,1/2,0) \\
(8) & \ t(1/2,1/2,0) \\
(9) & \ x+1/2,x,x+1/2 \\
(10) & \ x+1/2,x,x+1/2 \\
(11) & \ x+1/2,x,x+1/2 \\
(12) & \ x+1/2,x,x+1/2 \\
(13) & \ x+1/2,x,x+1/2 \\
(14) & \ x+1/2,x,x+1/2 \\
(15) & \ x+1/2,x,x+1/2 \\
(16) & \ x+1/2,x,x+1/2 \\
(17) & \ x+1/2,x,x+1/2 \\
(18) & \ x+1/2,x,x+1/2 \\
(19) & \ x+1/2,x,x+1/2 \\
(20) & \ x+1/2,x,x+1/2 \\
(21) & \ x+1/2,x,x+1/2 \\
(22) & \ x+1/2,x,x+1/2 \\
(23) & \ x+1/2,x,x+1/2 \\
(24) & \ x+1/2,x,x+1/2 \\
(25) & \ x+1/2,x,x+1/2 \\
(26) & \ x+1/2,x,x+1/2 \\
(27) & \ x+1/2,x,x+1/2 \\
(28) & \ x+1/2,x,x+1/2 \\
(29) & \ x+1/2,x,x+1/2 \\
(30) & \ x+1/2,x,x+1/2 \\
(31) & \ x+1/2,x,x+1/2 \\
(32) & \ x+1/2,x,x+1/2 \\
(33) & \ x+1/2,x,x+1/2 \\
(34) & \ x+1/2,x,x+1/2 \\
(35) & \ x+1/2,x,x+1/2 \\
(36) & \ x+1/2,x,x+1/2 \\
(37) & \ x+1/2,x,x+1/2 \\
(38) & \ x+1/2,x,x+1/2 \\
(39) & \ x+1/2,x,x+1/2 \\
(40) & \ x+1/2,x,x+1/2 \\
(41) & \ x+1/2,x,x+1/2 \\
(42) & \ x+1/2,x,x+1/2 \\
(43) & \ x+1/2,x,x+1/2 \\
(44) & \ x+1/2,x,x+1/2 \\
(45) & \ x+1/2,x,x+1/2 \\
(46) & \ x+1/2,x,x+1/2 \\
(47) & \ x+1/2,x,x+1/2 \\
(48) & \ x+1/2,x,x+1/2 \\
\end{align*}

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13); (25).

Positions

Multiplicity
Wyckoff letter,
Site Symmetry.

192 l 1

(1) x,y,z [u,v,w]
(2) x,y,z [u,v,w]
(3) x,y,z [u,v,w]
(4) x,y,z [u,v,w]
(5) z,x,y [w,u,v]
(6) z,x,y [w,u,v]
(7) z,x,y [w,u,v]
(8) z,x,y [w,u,v]

\begin{align*}
\text{Coordinates} \\
(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +
\end{align*}
48 g 2.m'm' x,1/4,1/4 [u,0,0] x,3/4,1/4 [u,0,0] 1/4,x,1/4 [0,u,0] 1/4,x,3/4 [0,u,0]
1/4,1/4,x [0,0,u] 3/4,1/4,x [0,0,u] 1/4,x,3/4 [0,u,0] 3/4,x,3/4 [0,u,0]
x,1/4,3/4 [u,0,0] x,1/4,1/4 [u,0,0] 1/4,1/4,x [0,0,u] 1/4,3/4,x [0,0,u]
32 f .3m' x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u] x,x,x [u,u,u]
24 e 4m'.m' x,0,0 [u,0,0] x,0,0 [u,0,0] 0,x,0 [0,u,0] 0,x,0 [0,u,0]
0,x,0 [0,u,0] 0,0,x [0,u,0] 0,0,x [0,u,0]
24 d m'.m'm' 0,1/4,1/4 [0,0,0] 0,3/4,1/4 [0,0,0] 1/4,0,1/4 [0,0,0] 1/4,0,1/4 [0,0,0]
1/4,0,3/4 [0,0,0] 1/4,1/4,0 [0,0,0] 3/4,1/4,0 [0,0,0] 3/4,1/4,0 [0,0,0]
8 c 43'm' 1/4,1/4,1/4 [0,0,0] 1/4,1/4,3/4 [0,0,0]
4 b m33'm' 1/2,1/2,1/2 [0,0,0]
4 a m3m' 0,0,0 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] p4m'm'
\[a^* = a/2 \quad b^* = b/2\]
Origin at 0,0,z

Along [1,1,1] p6m'm'
\[a^* = (2a - b - c)/6 \quad b^* = (-a + 2b - c)/6\]
Origin at x,x,x

Along [1,1,0] c2m'm'
\[a^* = (-a + b)/2 \quad b^* = c\]
Origin at x,x,0
Origin at center ($m\overline{3}$)

Asymmetric unit

\begin{align*}
0 \leq x & \leq 1/2; & 0 \leq y & \leq 1/4; & 0 \leq z & \leq 1/4; & y \leq \min(x, 1/2-x); & z \leq y
\end{align*}

Vertices

\begin{align*}
0,0,0 & & 1/2,0,0 & & 1/4,1/4,0 & & 1/4,1/4,1/4
\end{align*}

Symmetry Operations

For \((0,0,0) + \text{ set}\)

\begin{align*}
(1) & & 1 & & (2) & & 2 \ 0,0,z & & (3) & & 2 \ 0,y,0 & & (4) & & 2 \ x,0,0 & \\
(1) & & (0,0,0) & & (2) & & \ (2z,0,0,0) & & (3) & & \ (2y,0,0,0) & & (4) & & \ (2x,0,0,0) \\
(5) & & 3^{+} \ x,z,\bar{x} & & (6) & & 3^{+} \ x,\bar{x},x & & (7) & & 3^{+} \ x,\bar{x},x & & (8) & & 3^{+} \ x,\bar{x},x \\
(3_{xyz}|0,0,0) & & (3_{xyz}|1,0,0) & & (3_{xyz}|1,0,0) & & (3_{xyz}|0,0,0) & & (3_{xyz}|0,0,0) & & (3_{xyz}$^{-1}$|0,0,0) \\
(9) & & 3^{+} \ x,\bar{x},x & & (10) & & 3^{+} \ x,\bar{x},x & & (11) & & 3^{+} \ x,\bar{x},x & & (12) & & 3^{+} \ x,\bar{x},x \\
(3_{xyz}|0,0,0) & & (3_{xyz}|0,0,0) & & (3_{xyz}|0,0,0) & & (3_{xyz}|0,0,0) & & (3_{xyz}$^{-1}$|0,0,0) & & (3_{xyz}$^{-1}$|0,0,0)
\end{align*}
Continued

(33) $3^+ \ x-1/2,x-1/2,x$; $0,0,1/2$

(34) $3^+ x+1/2,x-1/2,x$; $0,0,1/2$

(35) $3^+ x-1/2,x+1/2,x$; $-1/2,1/2,0$

(36) $3^+ x+1/2,x+1/2,x$; $1/2,1/2,0$

(37) $g (1/4,-1/4,0)$ $x+1/4,x,z$

(38) $g (1/4,1/4,0)$ $x+1/4,x,z$

(39) $4^+ 1/4,1/4,z; 1/4,1/4,0$

(40) $4^+ 1/4,-1/4,z; 1/4,-1/4,0$

(41) $4^+ x,0,0; 1/4,0,0$

(42) $a (1/2,0,0)$ x,y,\bar{y}

(43) $a (1/2,0,0)$ x,y,y

(44) $4^+ x,0,0; 1/4,0,0$

(45) $4^+ 1/4,y,1/4; 1/4,0,1/4$

(46) $g (1/4,0,-1/4) x+1/4,y,x$

(47) $4^+ 1/4,y,-1/4; 1/4,0,-1/4$

(48) $g (1/4,0,1/4) x+1/4,y,x$

For $(1/2,0,1/2) +$ set

(1) $t (1/2,0,1/2)$

(2) $2 (0,0,1/2) 1/4,0,z$

(3) $2 1/4,y,1/4$

(4) $2 (1/2,0,0) x,0,1/4$

(5) $3^+ (1/3,1/3,1/3)$ $x+1/6,x-1/6,x$

(6) $3^+ (1/3,-1/3,1/3)$ $x+1/6,x+1/6,x$

(9) $3^+ (1/3,1/3,1/3)$ $x-1/6,x+1/3,x$

(10) $3^+ x+1/2,x,\bar{x}$

(11) $3^+ x+1/2,\bar{x},x$

(12) $3^+ (1/3,-1/3,1/3)$ $x-1/6,x+1/3,x$

(13) $2 (1/4,1/4,0)$ $x,x+1/4,0$

(14) $2 (-1/4,1/4,0) x,x+1/4,0$

(15) $4^+ 1/4,1/4,z$

(16) $4^+ -1/4,1/4,z$

(17) $4^+ x,1/4,-1/4$

(18) $2 (0,1/4,1/4) 0,y+1/4,y$

(19) $2 (0,1/4,-1/4) 0,y+1/4,y$

(20) $4^+ -1/4,1/4,z$

(21) $4^+ (0,1/2,0) 0,y,0$

(22) $2 x,1/4,x$

(23) $4^+ (0,1/2,0) 0,y,0$

(24) $2 1/4,x$

(25) $\bar{1} 1/4,0,1/4$

(1) $1/2,0,1/2$

(26) $a (1/2,0,0) x,y,1/4$

(27) $n (1/2,0,1/2) x,0,z$

(28) $c (0,0,1/2) 1/4,y,z$

(29) $3^+ x-1/2,x+1/2,x$; $0,0,1/2$

(30) $3^+ x-1/2,x+1/2,x$; $0,0,1/2$

(31) $3^+ x+1/2,\bar{x}+1/2,x$; $1/2,1/2,0$

(32) $3^+ x+1/2,\bar{x}-1/2,x$; $1/2,-1/2,0$

(33) $3^+ x+1/2,x,x$; $1/2,0,0$

(34) $3^+ x+1/2,x,-1,x$; $1/2,0,0$

(35) $3^+ x+1/2,x+1,x$; $0,1/2,1/2$

(36) $3^+ x+1/2,x,x$; $0,1/2,1/2$

(37) $g (-1/4,1/4,0)$ $x+1/4,x,z$

(38) $g (1/4,1/4,0) x-1/4,x,z$

(39) $4^+ -1/4,1/4,z; -1/4,1/4,0$

(40) $4^+ 1/4,1/4,z; 1/4,1/4,0$

(41) $4^+ x,1/4,1/4; 0,1/4,1/4$

(42) $g (0,1/4,-1/4) x,y+1/4,y$

(43) $g (0,1/4,1/4) x,y+1/4,y$

(44) $4^+ x,1/4,-1/4; 0,1/4,-1/4$

(45) $4^+ 0,y,0; 0,1/4,0$

(46) $b (0,1/2,0) \bar{x},y,x$

(47) $4^+ 0,y,0; 0,1/4,0$

(48) $b (0,1/2,0) x,y,x$

226.1.1623 - 3 - 3758
Continued 226.1.1623 Fm3c

For (1/2,1/2,0) + set

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>t (1/2,1/2,0)</td>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0)</td>
</tr>
<tr>
<td>2</td>
<td>2 1/4,1/4, z</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(2z1/2,1/2,0)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2 (0,1/2,0) 1/4,y,0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(2z1/2,1/2,0)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3+ x+1/2,x, x</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3+ x+1/2,x, x</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3+ (1/3,1/3,1/3) x+1/6,x+1/3,x</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3+ (1/3,1/3,1/3) x+1/3,x+1/6,x</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3- x,x+1/2,x</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3+ (1/3,1/3,1/3) x+1/3,x+1/6,x</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3- x,x+1/2,x</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2 x,x,1/4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2 x,x,1/4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4+ (0,0,1/2) 0,0,z</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4+ (0,0,1/2) 0,0,z</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4+ x,1/4,1/4</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4+ (0,1/4,1/4) 0,y-1/4,y</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4+ (0,1/4,1/4) 0,y+1/4,y</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4+ x,-1/4,1/4</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4+ 1/4,y,1/4</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2 (1/4,0,1/4) x-1/4,0,x</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4+ -1/4,y,1/4</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2 (-1/4,0,1/4) x-1/4,0,x</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>(1/2,1/2,0)</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>n (1/2,1/2,0) x,y,0</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>a (1/2,0,0) 1/4,y,z</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>b (0,1/2,0) 1/4,y,z</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>3+ x+1/2,x,x; 1/2,0</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3+ x+1/2,x,x; 1/2,0</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>3+ x+1/2,x,x+1/2,x; 1/2,0</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3+ x+1/2,x,x; 1/2,0</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3- x+1/2,x; 0,1/2</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3- x+1/2,x; 0,1/2</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>3- x+1/2,x; 0,1/2</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>3- x+1,1/2,x, 1/2,x</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>c (0,0,1/2) x,x,z</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>c (0,0,1/2) x,x,z</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>4+ 0,0,z; 0,0,1/4</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>4+ 0,0,z; 0,0,1/4</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>4- x,-1/4,1/4, 0,-1/4,1/4</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>g (0,-1/4,1/4) x,y+1/4,y</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>g (0,1/4,1/4) x,y-1/4,y</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>4+ x,1/4,1/4; 0,1/4,1/4</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>4+ x,-1/4,1/4; 0,-1/4,0,1/4</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>g (-1/4,1/4,0) x+1/4,y,x</td>
<td></td>
</tr>
</tbody>
</table>

Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13); (25).
Symmetry of Special Projections

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetry of Special Projections</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Along $[0,0,1]$
p4mm1'
$a^* = a/2$
$b^* = b/2$
Origin at 0,0,z

Along $[1,1,1]$
p6'm'm
$a^* = (2a - b - c)/6$
$b^* = (-a + 2b - c)/6$
Origin at x,x,x

Along $[1,1,0]$
p2mm1'
$a^* = (-a + b)/4$
$b^* = c/2$
Origin at x,x,0
Origin at center \((m\overline{3}1')\)

Asymmetric unit: \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/4; \quad y \leq \min(x,1/2-x); \quad z \leq y\)

Vertices: \((0,0,0)\), \((1/2,0,0)\), \((1/4,1/4,0)\), \((1/4,1/4,1/4)\)

Symmetry Operations:

For \((0,0,0)\) + set:

1. \((1) \bar{1}\)
2. \((2) \bar{0},0,z\)
3. \((3) \bar{2},0,y,0\)
4. \((4) \bar{2},x,0,0\)
5. \((5) \bar{3}^+ x,x,x\)
6. \((6) \bar{3}^- x,x,x\)
7. \((7) \bar{3}^+ x,x,x\)
8. \((8) \bar{3}^- x,x,x\)
9. \((9) 3^- x,x,x\)
10. \((10) 3^+ x,x,x\)
11. \((11) 3^- x,x,x\)
12. \((12) 3^+ x,x,x\)

\(226.2.1624\) - 1 - 3762
Continued

(13) 2 (1/2,1/2,0) x,x,1/4
(2_{xy}|1/2,1/2,1/2)

(14) 2 x,x+1/2,1/4
(2_{xy}|1/2,1/2,1/2)

(15) 4' (0,0,1/2) 1/2,0,z
(4_{z}^{-1}|1/2,1/2,1/2)

(16) 4' (0,0,1/2) 0,1/2,z
(4_{z}|1/2,1/2,1/2)

(17) 4' (1/2,0,0) x,1/2,0
(4_{xy}^{-1}|1/2,1/2,1/2)

(18) 2 (0,1/2,1/2) 1/4,y,y
(2_{y}|1/2,1/2,1/2)

(19) 2 1/4,y+1/2,y
(2_{y}|1/2,1/2,1/2)

(20) 4' (1/2,0,0) x,0,1/2
(4_{x}|1/2,1/2,1/2)

(21) 4' (0,1/2,0) 1/2,y,0
(4_{y}|1/2,1/2,1/2)

(22) 2 (1/2,0,1/2) x,1/4,x
(2_{xz}|1/2,1/2,1/2)

(23) 4' (0,1/2,0) 0,y,1/2
(4_{y}^{-1}|1/2,1/2,1/2)

(24) 2 x+1/2,1/4,x
(2_{xz}|1/2,1/2,1/2)

(25) 1 0,0,0
(1|0,0,0)

(26) m x,y,0
(m_{y}|0,0,0)

(27) m x,0,z
(m_{y}|0,0,0)

(28) m 0,y,z
(m_{x}|0,0,0)

(29) 3^+ x,x,x; 0,0,0
(3_{xy}^{-1}|0,0,0)

(30) 3^+ x,x,x; 0,0,0
(3_{xy}^{-1}|0,0,0)

(31) 3^+ x,x,x; 0,0,0
(3_{xy}^{-1}|0,0,0)

(32) 3^+ x,x,x; 0,0,0
(3_{xy}^{-1}|0,0,0)

(33) 3^+ x,x,x; 0,0,0
(3_{xy}^{-1}|0,0,0)

(34) 3^- x,x,x; 0,0,0
(3_{xy}^{-1}|0,0,0)

(35) 3^- x,x,x; 0,0,0
(3_{xy}^{-1}|0,0,0)

(36) 3^- x,x,x; 0,0,0
(3_{xy}^{-1}|0,0,0)

(37) c (0,0,1/2) x+1/2,x,z
(m_{y}|1/2,1/2,1/2)

(38) n (1/2,1/2,1/2) x,x,z
(m_{y}|1/2,1/2,1/2)

(39) 4' 0,1/2,z; 0,1/2,1/4
(4_{z}^{-1}|1/2,1/2,1/2)

(40) 4^+ 1/2,0,z; 1/2,0,1/4
(4_{x}|1/2,1/2,1/2)

(41) 4^- x,0,1/2; 1/4,0,1/2
(4_{xy}^{-1}|1/2,1/2,1/2)

(42) a (1,0,2,0) x,y+1/2,y
(m_{y}|1/2,2,1,1/2)

(43) n (1/2,1/2,1/2) x,y,y
(m_{y}|1/2,2,1,1/2)

(44) 4^- x,1/2,0; 1/4,1,2,0
(4_{x}|1/2,1/2,1/2)

(45) 4^- 0,1/2,0; 1/4,1,2,0
(4_{xy}|1/2,1/2,1/2)

(46) b (0,1/2,0) x+1/2,y,x
(m_{yz}|1/2,1/2,1/2)

(47) 4^- 1/2,y,0; 1/2,1/4,0
(4_{y}^{-1}|1/2,1/2,1/2)

(48) n (1/2,1/2,1/2) x,y,x
(m_{yz}|1/2,1/2,1/2)

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2)
(1 0,1/2,1/2)

(2) 2 (0,0,1/2) 0,1/4,z
(2_{z}|0,1/2,1/2)

(3) 2 (0,1/2,0) 0,y,1/4
(2_{y}|0,1/2,1/2)

(4) 2 x,1/4,1/4
(2_{z}|0,1/2,1/2)

(5) 3^+ (1/3,1/3,1/3)
(3_{xy}^{-1}|0,1/2,1/2)

(6) 3^- x,x+1/2,x
(3_{xy}^{-1}|0,1/2,1/2)

(7) 3^- (-1/3,1/3,1/3)
(3_{xy}^{-1}|0,1/2,1/2)

(8) 3^- x,x+1/2,x
(3_{xy}^{-1}|0,1/2,1/2)

(9) 3^- (-1/3,1/3,1/3)
(3_{xy}^{-1}|0,1/2,1/2)

(10) 3^- x,x+1/2,x+1/2,x
(3_{xy}^{-1}|0,1/2,1/2)

(11) 3^- x,x+1/2,x+1/2,x
(3_{xy}^{-1}|0,1/2,1/2)

(12) 3^- x,-1/2,x+1/2,x
(3_{xy}^{-1}|0,1/2,1/2)

(13) 2 (1/4,1/4,0)
(2_{xy}^{-1}|1/2,0,0)

(14) 2 (1/4,-1/4,0) x,x+1/4,0
(2_{xy}^{-1}|1/2,0,0)

(15) 4^- 1/4,-1/4,z
(4_{z}^{-1}|1/2,0,0)

(16) 4^- 1/4,1/4,z
(4_{z}^{-1}|1/2,0,0)

(17) 4^- (1/2,0,0) x,0,0
(4_{xy}^{-1}|1/2,0,0)

(18) 2 1/4,y,y
(2_{xy}^{-1}|1/2,0,0)

(19) 2 1/4,y,y
(2_{xy}^{-1}|1/2,0,0)

(20) 4^+ (1/2,0,0) x,0,0
(4_{x}|1/2,0,0)

(21) 4^- 1/4,y,-1/4
(4_{xy}^{-1}|1/2,0,0)

(22) 2 (1/4,0,1/4) x+1/4,0,x
(2_{xz}|1/2,0,0)

(23) 4^- 1/4,y,1/4
(4_{xy}^{-1}|1/2,0,0)

(24) 2 (1/4,0,-1/4) x+1/4,0,x
(2_{xz}|1/2,0,0)

(25) 1 0,1/4,1/4
(1|0,1/2,1/2)

(26) b (0,1/2,0) x,y,1/4
(m_{z}|0,1/2,1/2)

(27) c (0,0,1/2) x,1/4,z
(m_{z}|0,1/2,1/2)

(28) n (0,1/2,1/2) 0,y,z
(m_{z}|0,1/2,1/2)

(29) 3^- x,x+1/2;x;
0,1/2,0
(3_{xy}^{-1}|0,1/2,1/2)

(30) 3^- x,x+1/2;x;
0,1/2,0
(3_{xy}^{-1}|0,1/2,1/2)

(31) 3^- x,x+1/2;x;
0,1/2,0
(3_{xy}^{-1}|0,1/2,1/2)

(32) 3^- x,x+1/2;x;
0,1/2,0
(3_{xy}^{-1}|0,1/2,1/2)
For \((1/2,1/2,0) + \text{set}\)

1. \((1/0,0,0)'
 (2) 2' 0,0,0
 (3) 0,0,0'
 (4) 2' x,0,0
 (5) 2' 0,0,0

2. \((1/2,1/2,0) \times x,1/4
 (2) x,1/4,1/4
 (3) 2 (1/2,1/2,0) 1/4,y,0
 (4) 2 (1/2,1/2,0) x,1/4,0

3. \((3/1,3/1,3)
 x+1/6,x+1/3,x
 (3,xyz) 1/2,1/2,0)
 (6) 3' x+1/2,x,x
 (7) 3' x+1/2,x,x
 (8) 3' x+1/2,x,x

4. \((4/1,4/1,4)
 x+1/3,x+1/6,x
 (3,xyz) 1/2,1/2,0)
 (11) 3' (1/3,1/3,-1/3)
 x+1/3,x+1/6,x
 (3,xyz) 1/2,1/2,0)

5. \((2/0,0,0)
 0,0,1/4
 (m,xyz 1/2,1/2,0)
 (3) 0,0,1/4
 (4) 0,0,1/4

6. \((1/2,1/4,0)
 x,1/4,1/4
 (2,xyz 0,1/2,0)
 (11) 3' x,1/4,-1/2,1/4
 (2,xyz 0,1/2,0)

7. \((3/1,4/3)
 x,1/2,1/2,0)
 (3) 0,1/2,1/2,0
 (4) 3' x+1/2,1/2,0

8. \((4/1,0,1/4)
 x+1/4,0,1/4
 (2,xyz 0,1/2,0)
 (23) 4' -1,1/4,y,1/4
 (2,xyz 0,1/2,0)

9. \((2/0,0,0)
 x,1/2,1/2,0)
 (3,xyz 0,1/2,0)
 (27) a (1/2,0,0) x,1/4,0
 (2,xyz 0,1/2,0)

10. \((2/0,0,0)
 x,0,1/2
 (m,xyz 0,1/2,0)
 (3) 0,0,1/4
 (4) 0,0,1/4

11. \((2/0,0,0)
 x,0,1/2
 (m,xyz 0,1/2,0)
 (11) 3' x,1/2,1/2,0
 (2,xyz 0,1/2,0)

12. \((2/0,0,0)
 x,0,1/2
 (m,xyz 0,1/2,0)
 (27) a (1/2,0,0) x,1/4,0
 (2,xyz 0,1/2,0)

13. \((2/0,0,0)
 x,0,1/2
 (m,xyz 0,1/2,0)
 (3) 0,0,1/4
 (4) 0,0,1/4

14. \((2/0,0,0)
 x,0,1/2
 (m,xyz 0,1/2,0)
 (11) 3' x,1/2,1/2,0
 (2,xyz 0,1/2,0)

15. \((2/0,0,0)
 x,0,1/2
 (m,xyz 0,1/2,0)
 (27) a (1/2,0,0) x,1/4,0
 (2,xyz 0,1/2,0)
Continued

(22) $2^\prime (1/2,0,1/2)$ x,1/4,x

(23) $4^\prime (0,1/2,0)$ 0,y,1/2

(24) $2^\prime x+1/2,1/4,x$

(25) $m^\prime x,y,0$

(26) $m^\prime x,0,z$

(27) $m^\prime y,0,0$

(28) $m^\prime 0,y,z$

(29) $3^\prime \cdot x,x,x; 0,0,0$

(30) $3^\prime \cdot x,x; 0,0,0$

(31) $3^\prime \cdot x,x; 0,0,0$

(32) $3^\prime \cdot x,x; 0,0,0$

(33) $3^\prime \cdot x,x,x; 0,0,0$

(34) $3^\prime \cdot x,x,x; 0,0,0$

(35) $3^\prime \cdot x,x,x; 0,0,0$

(36) $3^\prime \cdot x,x,x; 0,0,0$

(37) $0,0,0,0,0$

(38) $n^\prime (1/2,1/2,1/2)$ x,x,z

(39) $4^\prime \cdot 0,1/2,z; 0,1/2,1/4$

(40) $4^\prime \cdot 1/2,0,z; 1/2,0,1/4$

(41) $a^\prime (1/2,0,0)$ x,y+1/2,y

(42) $a^\prime (1/2,0,0)$ x,y+1/2,y

(43) $n^\prime (1/2,1/2,1/2)$ x,y,y

(44) $4^\prime \cdot x,1/2,0,; 1/4,1/2,0$

(45) $b^\prime (0,1/2,0)$ x+1/2,y,x

(46) $b^\prime (0,1/2,0)$ x+1/2,y,x

(47) $4^\prime \cdot 1/2,1/4,0$

(48) $n^\prime (1/2,1/2,1/2)$ x,y,x

(26) $m^\prime 1/4,1/4,0$

(27) $m^\prime 1/2,0,0$

(28) $m^\prime 1/2,0,0$

(29) $3^\prime \cdot x,x+1/2,x; 0,1/2$

(30) $3^\prime \cdot x,x+1/2,x; 0,1/2$

(31) $3^\prime \cdot x,x+1/2,x; 0,1/2$

(32) $3^\prime \cdot x,x+1/2,x; 0,1/2$

(33) $3^\prime \cdot x+1/2,x+1/2,x; 0,0,1/2$

(34) $3^\prime \cdot x+1/2,x+1/2,x; 0,0,1/2$

(35) $3^\prime \cdot x+1/2,x+1/2,x; 0,0,1/2$

(36) $3^\prime \cdot x+1/2,x+1/2,x; 0,0,1/2$

(37) $g^\prime (1/4,-1/4,0)$ x+1/4,x,z

(38) $g^\prime (1/4,1/4,0)$ x+1/4,x,z

(39) $4^\prime \cdot 1/4,1/4,z; 1/4,1/4,0$

(40) $4^\prime \cdot 1/4,1/4,z; 1/4,1/4,0$
Continued

For \((1/2,0,1/2)' + \) set

\[
\begin{align*}
(1) & \quad t' (1/2,0,1/2) \\
& \quad (1/2,0,1/2)' \\
(2) & \quad 2' (0,0,1/2) \quad 1/4,0,z \\
& \quad (2_2,1/2,0,1/2)' \\
(3) & \quad 2' (1/2,0,0) \quad 1/4,y,1/4 \\
& \quad (2_2,1/2,0,1/2)' \\
(4) & \quad 2' (1/2,0,0) \quad x,0,1/4 \\
& \quad (2_2,1/2,0,1/2)'
\end{align*}
\]

For \((1/2,1/2,0)' + \) set

\[
\begin{align*}
(1) & \quad t' (1/2,2,1/2) \\
& \quad (1/2,1/2,0)' \\
(2) & \quad 2' (0,0,1/2) \quad 1/4,0,z \\
& \quad (2_2,1/2,2,1/2)' \\
(3) & \quad 2' (1/2,0,0) \quad 1/4,y,1/4 \\
& \quad (2_2,1/2,2,1/2)' \\
(4) & \quad 2' (1/2,0,0) \quad x,0,1/4 \\
& \quad (2_2,1/2,2,1/2)'
\end{align*}
\]
Continued

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
<td>j</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>(0,1,2/1,2)</td>
<td>(1/2,0,1/2)</td>
<td>(0,1,2/1,2)</td>
</tr>
<tr>
<td>(0,0,1/2)</td>
<td>(1/2,1/2,0)</td>
<td>(0,0,1/2)</td>
</tr>
<tr>
<td>(0,1/2,1,2)</td>
<td>(1/2,0,1/2)</td>
<td>(0,1/2,1,2)</td>
</tr>
<tr>
<td>(0,1/2,0)</td>
<td>(1/2,1/2,0)</td>
<td>(0,1/2,0)</td>
</tr>
<tr>
<td>(0,1/2,1)</td>
<td>(1/2,0,1/2)</td>
<td>(0,1/2,1)</td>
</tr>
<tr>
<td>(0,1/2,0)</td>
<td>(1/2,1/2,0)</td>
<td>(0,1/2,0)</td>
</tr>
<tr>
<td>(0,1/2,1)</td>
<td>(1/2,0,1/2)</td>
<td>(0,1/2,1)</td>
</tr>
<tr>
<td>(0,1/2,0)</td>
<td>(1/2,1/2,0)</td>
<td>(0,1/2,0)</td>
</tr>
<tr>
<td>(0,1/2,1)</td>
<td>(1/2,0,1/2)</td>
<td>(0,1/2,1)</td>
</tr>
<tr>
<td>(0,1/2,0)</td>
<td>(1/2,1/2,0)</td>
<td>(0,1/2,0)</td>
</tr>
</tbody>
</table>

Generators selected: (1); (1,0,0); (0,1,0); (t(0,0,1)); (t(0,1/2,1/2)); (t(1,2/0,1/2)); (2); (3); (5); (13); (25); 1'.

Positions

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
</tr>
<tr>
<td>(0,1/2,1/2,+)</td>
</tr>
<tr>
<td>(0,0,0)' +</td>
</tr>
<tr>
<td>(0,1/2,1/2,')' +</td>
</tr>
<tr>
<td>(1/2,0,1/2)' +</td>
</tr>
<tr>
<td>(1/2,1/2,0)' +</td>
</tr>
</tbody>
</table>

226.2.1624 Fm3c1'
Continued

226.2.1624

Fm3c1'

(25) $x, y, z \ [0,0,0]$

(26) $x, y, z \ [0,0,0]$

(27) $x, y, z \ [0,0,0]$

(28) $x, y, z \ [0,0,0]$

(29) $z, x, y \ [0,0,0]$

(30) $z, x, y \ [0,0,0]$

(31) $z, x, y \ [0,0,0]$

(32) $z, x, y \ [0,0,0]$

(33) $y, z, x \ [0,0,0]$

(34) $y, z, x \ [0,0,0]$

(35) $y, z, x \ [0,0,0]$

(36) $y, z, x \ [0,0,0]$

(37) $y + 1/2, x + 1/2, z + 1/2 \ [0,0,0]$

(38) $y + 1/2, x + 1/2, z + 1/2 \ [0,0,0]$

(39) $y + 1/2, x + 1/2, z + 1/2 \ [0,0,0]$

(40) $y + 1/2, x + 1/2, z + 1/2 \ [0,0,0]$

(41) $x + 1/2, z + 1/2, y + 1/2 \ [0,0,0]$

(42) $x + 1/2, z + 1/2, y + 1/2 \ [0,0,0]$

(43) $x + 1/2, z + 1/2, y + 1/2 \ [0,0,0]$

(44) $x + 1/2, z + 1/2, y + 1/2 \ [0,0,0]$

(45) $z + 1/2, y + 1/2, x + 1/2 \ [0,0,0]$

(46) $z + 1/2, y + 1/2, x + 1/2 \ [0,0,0]$

(47) $z + 1/2, y + 1/2, x + 1/2 \ [0,0,0]$

(48) $z + 1/2, y + 1/2, x + 1/2 \ [p$

96 $i \quad m..1'$

$0, y, z \ [0,0,0]$

$z, 0, y \ [0,0,0]$

$y, z, 0 \ [0,0,0]$

$y + 1/2, 1/2, z + 1/2 \ [0,0,0]$

$y + 1/2, 1/2, z + 1/2 \ [0,0,0]$

$y + 1/2, 1/2, z + 1/2 \ [0,0,0]$

$y + 1/2, 1/2, z + 1/2 \ [0,0,0]$

$1/2, z + 1/2, y + 1/2 \ [0,0,0]$

$1/2, z + 1/2, y + 1/2 \ [0,0,0]$

$1/2, z + 1/2, y + 1/2 \ [0,0,0]$

$1/2, z + 1/2, y + 1/2 \ [0,0,0]$

$z + 1/2, y + 1/2, 1/2 \ [0,0,0]$

$z + 1/2, y + 1/2, 1/2 \ [0,0,0]$

$z + 1/2, y + 1/2, 1/2 \ [0,0,0]$

$z + 1/2, y + 1/2, 1/2 \ [0,0,0]$

96 $h \\quad .21'$

$1/4, y, y \ [0,0,0]$

$3/4, y, y \ [0,0,0]$

$3/4, y, y \ [0,0,0]$

$3/4, y, y \ [0,0,0]$

$y, 1/4, y \ [0,0,0]$

$y, y, 1/4 \ [0,0,0]$

$1/4, y, y \ [0,0,0]$

$3/4, y, y \ [0,0,0]$

$y, y, 3/4 \ [0,0,0]$

64 $g \quad .3.1'$

$x, x \ [0,0,0]$

$x, x \ [0,0,0]$

$x, x \ [0,0,0]$

$x, x \ [0,0,0]$

$x + 1/2, x + 1/2, x + 1/2 \ [0,0,0]$

$x + 1/2, x + 1/2, x + 1/2 \ [0,0,0]$

$x + 1/2, x + 1/2, x + 1/2 \ [0,0,0]$

$x + 1/2, x + 1/2, x + 1/2 \ [0,0,0]$

$x + 1/2, x + 1/2, x + 1/2 \ [0,0,0]$

$x + 1/2, x + 1/2, x + 1/2 \ [0,0,0]$

$x + 1/2, x + 1/2, x + 1/2 \ [0,0,0]$

$x + 1/2, x + 1/2, x + 1/2 \ [0,0,0]$

$x + 1/2, x + 1/2, x + 1/2 \ [0,0,0]$

$x + 1/2, x + 1/2, x + 1/2 \ [0,0,0]$

$x + 1/2, x + 1/2, x + 1/2 \ [0,0,0]$

$48 f \\quad .4.1'$

$x, 1/4, 1/4 \ [0,0,0]$

$x, 3/4, 1/4 \ [0,0,0]$

$x, 3/4, 1/4 \ [0,0,0]$

$x, 3/4, 1/4 \ [0,0,0]$

$x, 1/4, 1/4 \ [0,0,0]$

$1/4, x, 1/4 \ [0,0,0]$

$1/4, x, 1/4 \ [0,0,0]$

$1/4, x, 1/4 \ [0,0,0]$

$3/4, x, 1/4 \ [0,0,0]$

226.2.1624 - 8 - 3769
Symmetry of Special Projections

Along [0,0,1] p4mm1' Along [1,1,1] p6mm1' Along [1,1,0] p2mm1'
\(a^* = a/2 \quad b^* = b/2 \quad a^* = (2a - b - c)/6 \quad b^* = (-a + 2b - c)/6 \quad a^* = (-a + b)/4 \quad b^* = c/2 \)
Origin at 0,0,z Origin at x,x,x Origin at x,x,0
Origin at center (m3)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/4; \quad y \leq \min(x, 1/2-x); \quad z \leq y\]

Vertices

\[(0,0,0) \quad 1/2,0,0 \quad 1/4,1/4,0 \quad 1/4,1/4,1/4\]

Symmetry Operations

For \((0,0,0) + \) set

\[(1) 1 \quad (1) 0,0,0\]

\[(5) 3^+ x,x,x \quad (6) 3^+ x,x,x \quad (7) 3^+ x,x,x \quad (8) 3^- x,x,x\]

\[(9) 3^- x,x,x \quad (10) 3^- x,x,x \quad (11) 3^- x,x,x \quad (12) 3^- x,x,x\]

\[
\begin{align*}
(5) & \quad (3) x,y,0 \\
& \quad (0,0,0) \\
& \quad (2,0,0) \\
& \quad (3,0,0) \\
& \quad (4,0,0) \\
\end{align*}
\]
(13) $2' (1/2,1/2,0)$ x,x,1/4

(14) $2' x,x+1/2,1/4$

(15) $4' (0,0,1/2)$ 1/2,0,2

(16) $4' (0,0,1/2)$ 0,1/2,2

(17) $4' (1/2,0,0)$ x,1/2,0

(18) $2' (0,1/2,0)$ 1/4,y,y

(19) $2' 1/4,y+1/2,y$

(20) $4' (1/2,0,0)$ x,0,1/2

(21) $4' (0,1/2,0)$ 1/2,y,y

(22) $2' (1/2,1/2,0)$ x,1/4,x

(23) $4' (0,1/2,0)$ 0,$y,1/2$

(24) $2' x+1/2,1/4,x$

(25) $1' 0,0,0$

(26) $m' x,y,0$

(27) $m' x,0,z$

(28) $m' 0,y,z$

(29) $3' x,x,x; 0,0,0$

(30) $3' x,x,x; 0,0,0$

(31) $3' x,x,x; 0,0,0$

(32) $3' x,x,x; 0,0,0$

(33) $3' x,x,x; 0,0,0$

(34) $3' x,x,x; 0,0,0$

(35) $3' x,x,x; 0,0,0$

(36) $3' x,x,x; 0,0,0$

(37) $c (0,0,1/2)$ x+1/2,x,z

(38) $n (1/2,1/2,1/2)$ x,x,z

(39) $4' 0,1/2,z; 0,1/2,1/4$

(40) $4' 1/2,0,z; 1/2,0,1/4$

(41) $4' x,0,1/2; 1/4,0,1/2$

(42) $a (1/2,0,0)$ x,y+1/2,y

(43) $n (1/2,1/2,1/2)$ x,y,y

(44) $4' x,1/2,0; 1/4,1/2,0$

(45) $4' 0,1/2,0; 0,1/4,1/2$

(46) $b (0,1/2,0)$ x+1/2,y,

(47) $4' 1/2,y,0; 1/2,1/4,0$

(48) $n (1/2,1/2,1/2)$ x,y,x

For (0,1/2,1/2) + set

(1) $t (0,1/2,1/2)$

(2) $t (0,1/2,1/2)$

(3) $t (0,1/2,1/2)$

(4) $t (0,1/2,1/2)$

(5) $3' (1/3,1/3,1/3)$ x-1/3,x-1/6,x

(6) $3' x,x+1/2,$

(7) $3' x+1/3,x-1/6,x$

(8) $3' x+1/2,$

(9) $3' (1/3,1/3,1/3)$ x-1/6,$x+1/6,x$

(10) $3' x+1/2,$

(11) $3' x+1/2,$

(12) $3' x-1/2,$

(13) $2' (1/4,1/4,0)$ x,$x-1/4,0$

(14) $2' x,x+1/4,0$

(15) $4' 1/4,-1/4,z$

(16) $4' 1/4,1/4,z$

(17) $4' (1/2,0,0)$ x,0,0

(18) $2' 1/4,$

(19) $2' y,y$

(20) $4' (1/2,0,0)$ x,0,0

(21) $4' (1/4,0,1/4)$ x,$x+1/4,0$

(22) $2' (1/2,0,0)$

(23) $4' 1/4,1/4$

(24) $2' (1/2,0,0)$

(25) $1' 0,1/2,1/4$

(26) $b' (0,1/2,0)$ x,$y,1/4$

(27) $c (0,0,1/2)$ x,$1/4,z$

(28) $n (0,1/2,1/2)$

(29) $3' x,x+1/2,$

(30) $3' x,x+1/2,$

(31) $3' x,x+1/2,$

(32) $3' x,x+1/2,$

226.3.1625 - 2 - 3772
Continued

226.3.1625

Fm'3c

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
 (1 1/2,1/2,0)

(5) 3' (1/3,1/3,1/3)
 x+1/6,x+1/3,x
 (3xyz |1/2,1/2,0)
 (3xyz |1/2,1/2,0)

(9) 3' (1/3,1/3,1/3)
 x+1/3,x+1/6,x
 (3xyz |1/2,1/2,0)
 (3xyz |1/2,1/2,0)

(13) 2' x,x,1/4
 (2xy |0,0,1/2)
 (2xy |0,0,1/2)

(17) 4' x,1/4,1/4
 (4x |0,0,1/2)
 (4x |0,0,1/2)

(21) 4' 1/4,y,1/4
 (4y |0,0,1/2)
 (4y |0,0,1/2)

(25) 1' 1/4,1/4,0
 (1 1/2,1/2,0)
 (1 1/2,1/2,0)'

(29) 3' x+1/2,x,x;
 (3xyz |1/2,1/2,0)
 (3xyz |1/2,1/2,0)

(33) 3' x,x+1/2;x;
 (3xyz |1/2,1/2,0)
 (3xyz |1/2,1/2,0)

(37) c (0,0,1/2) x,x,z
 (mxy |0,0,1/2)
 (mxy |0,0,1/2)

(41) 4' x,-1/4,1/4; 0,-1/4,1/4
 (4x |0,0,1/2)
 (4x |0,0,1/2)

(45) 4' -1/4,y,1/4; -1/4,0,1/4
 (4y |0,0,1/2)
 (4y |0,0,1/2)

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

192 j 1

(1) x,y,z [u,v,w]
 (2) x,y,z [u,v,w]
 (3) x,y,z [u,v,w]
 (4) x,y,z [u,v,w]

(5) z,x,y [w,u,v]
 (6) z,x,y [w,u,v]
 (7) z,x,y [w,u,v]
 (8) z,x,y [w,u,v]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Case</th>
<th>Projection</th>
<th>2</th>
<th>4'</th>
<th>4'</th>
<th>4'm'</th>
<th>4'm'</th>
<th>m'3'</th>
<th>4'32'</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 f</td>
<td>4'..</td>
<td>x,1/4,1/4 [0,0,0]</td>
<td>x,3/4,1/4 [0,0,0]</td>
<td>1/4,x,1/4 [0,0,0]</td>
<td>1/4,x,3/4 [0,0,0]</td>
<td>1/4,1/4,x [0,0,0]</td>
<td>3/4,1/4,x [0,0,0]</td>
<td>x,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>48 e</td>
<td>m'm'2..</td>
<td>x,0,0 [u,0,0]</td>
<td>x,0,0 [u,0,0]</td>
<td>0,x,0 [u,0,0]</td>
<td>0,x,0 [u,0,0]</td>
<td>0,0,x [u,0,0]</td>
<td>0,0,x [u,0,0]</td>
<td>1/2,x+1/2,1/2 [u,0,0]</td>
</tr>
<tr>
<td>24 d</td>
<td>4'm'..</td>
<td>0,1/4,1/4 [0,0,0]</td>
<td>0,3/4,1/4 [0,0,0]</td>
<td>0,3/4,1/4 [0,0,0]</td>
<td>1/4,0,1/4 [0,0,0]</td>
<td>1/4,0,3/4 [0,0,0]</td>
<td>1/4,0,3/4 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>24 c</td>
<td>4'm'2'</td>
<td>1/4,0,0 [u,0,0]</td>
<td>3/4,0,0 [u,0,0]</td>
<td>3/4,0,0 [u,0,0]</td>
<td>0,1/4,0 [u,0,0]</td>
<td>0,3/4,0 [u,0,0]</td>
<td>0,3/4,0 [u,0,0]</td>
<td>0,0,1/4 [0,0,u]</td>
</tr>
<tr>
<td>8 b</td>
<td>m'3'</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td>8 a</td>
<td>4'32'</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,3/4 [0,0,0]</td>
<td>3/4,3/4,3/4 [0,0,0]</td>
<td>3/4,3/4,3/4 [0,0,0]</td>
<td>3/4,3/4,3/4 [0,0,0]</td>
<td>3/4,3/4,3/4 [0,0,0]</td>
<td>3/4,3/4,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: \(p4'm'm \)
 - \(a^* = a/2 \)
 - \(b^* = b/2 \)
 - Origin at 0,0,z

- **Along [1,1,1]**: \(p6mm \)
 - \(a^* = (2a - b - c)/6 \)
 - \(b^* = (-a + 2b - c)/6 \)
 - Origin at x,x,x

- **Along [1,1,0]**: \(p2mm1' \)
 - \(a^* = (-a + b)/4 \)
 - \(b^* = c/2 \)
 - Origin at x,x,0
Origin at center (m\(3\))

Asymmetric unit

- \(0 \leq x \leq 1/2;\)
- \(0 \leq y \leq 1/4;\)
- \(0 \leq z \leq 1/4;\)
- \(y \leq \min(x, 1/2-x);\)
- \(z \leq y\)

Vertices

- \(0,0,0\)
- \(1/2,0,0\)
- \(1/4,1/4,0\)
- \(1/4,1/4,1/4\)

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. \((1) 1\)
2. \((2) 2 \ 0,0,z\)
3. \((3) 2 \ 0,y,0\)
4. \((4) 2 \ x,0,0\)
5. \((5) 3^+ \ x,x,x\)
 \(\left(3_{xyz}\right)0,0,0\)
6. \((6) 3^+ \ x,x,x\)
 \(\left(3_{xyz}^{-1}\right)0,0,0\)
7. \((7) 3^+ \ x,x,x\)
 \(\left(3_{xyz}^{-1}\right)0,0,0\)
8. \((8) 3^+ \ x,x,x\)
 \(\left(3_{xyz}^{-1}\right)0,0,0\)
9. \((9) 3^- \ x,x,x\)
 \(\left(3_{xyz}\right)0,0,0\)
10. \((10) 3^- \ x,x,x\)
 \(\left(3_{xyz}\right)0,0,0\)
11. \((11) 3^- \ x,x,x\)
 \(\left(3_{xyz}\right)0,0,0\)
12. \((12) 3^- \ x,x,x\)
 \(\left(3_{xyz}\right)0,0,0\)
(33) $\bar{3}' x-1/2, x-1/2, x$; $0,0,1/2$
(3) $\bar{3}' x+1/2, x-1/2, x$; $0,0,1/2$
(3) $\bar{3}' x-1/2, x+1/2, x$; $-1/2,1/2,0$
(3) $\bar{3}' x+1/2, x+1/2, x$; $1/2,1/2,0$

(37) $g'(1/4,-1/4,0) x+1/4, x, z$
(38) $g'(1/4,1/4,0) x+1/4, x, z$
(39) $4^{*} -1/4,1/4, z; 1/4,1/4,0$
(40) $4^{*} -1/4,1/4, z; 1/4,1/4,0$

(41) $\bar{4}' -1,0,0; 1/4,0,0$
(42) $a'(1/2,0,0) y, y, y$
(43) $a'(1/2,0,0) y, y, y$
(44) $4^{*} x, 0,0; 1/4,0,0$

(45) $4^{*} -1,4,1/4; 1/4,0,1/4$
(46) $g'(1/4,0,-1/4) x+1, y, x$
(47) $4^{*} -1,4, y,-1/4; 1/4,0,-1/4$
(48) $g'(1/4,0,1/4) x+1, y, x$

For $(1/2,0,1/2) + \text{set}$

(1) $t (1/2,0,1/2) + \text{set}$
(2) $2 (0,0,1/2) 1/4,0, z$
(3) $2 y 1/4,1/4, z$
(4) $2 (1,2,0,1/2) 0,1/4,0$

(5) $3^{1} (3,1,3,1/3)$ $x+1/6, x+1/6, x$
(6) $3^{1} (3,1,3,1/3)$ $x+1/6, x+1/6, x$
(7) $3^{1} x+1/2, x+1/2, x$
(8) $3^{1} x+1/2, x+1/2, x$

(9) $3 (1,3,1,3)$ $x+1/6, x+1/3, x$
(10) $3^{1} x+1/2, x+1/2, x$
(11) $3^{1} x+1/2, x+1/2, x$
(12) $3 (1,3,1,3)$ $x+1/6, x+1/3, x$

(13) $2^{1} (1/4,1/4,0) x, x+1/4,0$
(14) $2^{1} (1/4,1/4,0) x, x+1/4,0$
(15) $4^{*} -1/4,1/4, z$
(16) $4^{*} -1,4,1/4, z$

(17) $4^{*} x, 1/4,-1/4$
(18) $2^{1} (0,1/4,1/4) 0, y+1, y$
(19) $2^{1} (0,1/4,1/4) 0, y+1, y$
(20) $4^{*} x, 1,4,1/4$

(21) $4^{*} (0,1/2,0) 0, y, 0$
(22) $2^{1} x, 1/4, x$
(23) $4^{*} (0,1/2,0) 0, y, 0$
(24) $2^{1} x, 1/4, x$

(25) $t (1/4,0,1/4) 1/4,0,1/4$
(26) $a (1/2,0,0) x, y, 1/4$
(27) $n (1/2,0,1/2) 0, x, 0$
(28) $c (0,0,1/2) 1/4, y, z$

(29) $3^{1} x-1/2, x-1/2, x$
(30) $3^{1} x-1/2, x-1/2, x$
(31) $3^{1} x+1/2, x+1/2, x$
(32) $3^{1} x+1/2, x+1/2, x$

(33) $3^{1} x+1/2, x, x$
(34) $3^{1} x+1/2, x, x$
(35) $3^{1} x+1/2, x, x$
(36) $3^{1} x+1/2, x, x$

(37) $g'(-1/4,1/4,0) x+1/4, x, z$
(38) $g'(1/4,1/4,0) x+1/4, x, z$
(39) $4^{*} -1/4,1/4, z; -1/4,1/4,0$
(40) $4^{*} -1/4,1/4, z; -1/4,1/4,0$

(41) $4^{*} x, 1/4,1/4; 0,1/4,1/4$
(42) $g'(0,1/4,1/4) x, y+1/4, y$
(43) $g'(0,1/4,1/4) x, y+1/4, y$
(44) $4^{*} x, 1/4,-1/4; 0,1/4,-1/4$

(45) $4^{*} y, 0, 0; 0,1/4,0$
(46) $b' (0,1/2,0) x, y, x$
(47) $4^{*} y, 0, 0; 0,1/4,0$
(48) $b' (0,1/2,0) x, y, x$
Continued 226.4.1626 Fm\(3c'\) & 226.4.1626 & Fm\(3c'\) \\
For \((1/2,1/2,0) + \) set \\
\begin{align*}
(1) & t \ (1/2,1/2,0) \\
(2) & 2 \ 1/4,1/4,z \\
(3) & 2 \ (0,1/2,0) \ 1/4,y,0 \\
(4) & 2 \ (1/2,0,0) \ x,1/4,0 \\
(5) & 3^* \ (1/3,1/3,1/3) \\
(6) & 3^* \ x+1/2,x,x \\
(7) & 3^* \ x+1/2,x,x \\
(8) & 3^* \ (1/3,1/3,-1/3) \\
(9) & 3 \ (1/3,1/3,1/3) \\
(10) & 3 \ x,x+1/2,x \\
(11) & 3 \ (1/3,1/3,-1/3) \\
(12) & 3 \ x,x+1/2,x \\
(13) & 2' \ x,x,1/4 \\
(14) & 2' \ x,x,1/4 \\
(15) & 4' \ (0,0,1/2) \ 0,0,z \\
(16) & 4' \ (0,0,1/2) \ 0,0,z \\
(17) & 4' \ x,1/4,1/4 \\
(18) & 2' \ (0,1/4,1/4) \ 0,y-1/4,y \\
(19) & 2' \ (0,-1/4,1/4) \ 0,y+1/4,y \\
(20) & 4' \ (-1/4,1/4,1/4) \\
(21) & 4' \ -1/4,y,1/4 \\
(22) & 2' \ (-1/4,0,1/4) \ x-1/4,y,x \\
(23) & 4' \ -1/4,y,1/4 \\
(24) & 2' \ (-1/4,0,1/4) \ x+1/4,0,x \\
(25) & 1/4,1/4,0 \\
(26) & n \ (1/2,1/2,0) \\
(27) & a \ (1/2,0,0) \ x,1/4,z \\
(28) & b \ (0,1/2,0) \ 1/4,y,z \\
(29) & 3^* \ x+1/2,x,x; \\
(30) & 3^* \ x-1/2,x,x; \\
(31) & 3^* \ x-1/2,x,x; \\
(32) & 3^* \ x+1/2,x,x; \\
(33) & 3^* \ x+1/2,x,x; \\
(34) & 3^* \ x+1/2,x,x; \\
(35) & 3^* \ x+1/2,x,x; \\
(36) & 3^* \ x+1/2,x,x; \\
(37) & c' \ (0,0,1/2) \ x,x,z \\
(38) & c' \ (0,0,1/2) \ x,x,z \\
(39) & 4' \ (0,0,1/2) \ 0,0,z; \\
(40) & 4' \ (0,0,1/2) \ 0,0,z; \\
(41) & 4' \ x-1/4,1/4; \\
(42) & g' \ (0,-1/4,1/4) \ x,y+1/4,y \\
(43) & g' \ (0,1/4,1/4) \ x,y-1/4,y \\
(44) & 4' \ x,1/4,1/4; \\
(45) & 4' \ -1/4,y,1/4; \\
(46) & g' \ (1/4,0,1/4) \ x+1/4,y,x \\
(47) & 4' \ 1/4,y,1/4; \\
(48) & g' \ (1/4,0,1/4) \ x-1/4,y,x \\
\end{align*}

Generators selected \((1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,0); (2); (3); (5); (13); (25).\)

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>192 j 1</td>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +</td>
</tr>
</tbody>
</table>

\((1) \ x,y,z \ [u,v,w] \ (2) \ x,y,z \ [u,v,w] \ (3) \ x,y,z \ [u,v,w] \ (4) \ x,y,z \ [u,v,w] \ (5) \ z,x,y \ [w,u,v] \ (6) \ z,x,y \ [w,u,v] \ (7) \ z,x,y \ [w,u,v] \ (8) \ z,x,y \ [w,u,v] \)
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>48 f</th>
<th>4'..</th>
<th>x,1/4,1/4 [0,0,0]</th>
<th>x,3/4,1/4 [0,0,0]</th>
<th>1/4,x,1/4 [0,0,0]</th>
<th>1/4,x,3/4 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1/4,1/4,x [0,0,0]</td>
<td>3/4,1/4,x [0,0,0]</td>
<td>x,3/4,3/4 [0,0,0]</td>
<td>x,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4,x,3/4 [0,0,0]</td>
<td>3/4,x,1/4 [0,0,0]</td>
<td>3/4,3/4,x [0,0,0]</td>
<td>1/4,3/4,x [0,0,0]</td>
</tr>
<tr>
<td>48 e</td>
<td>mm2..</td>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,0,x [0,0,0]</td>
<td>0,0,x [0,0,0]</td>
<td>1/2,x+1/2,1/2 [0,0,0]</td>
<td>1/2,x+1/2,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/2,1/2,1/2 [0,0,0]</td>
<td>x+1/2,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,x+1/2 [0,0,0]</td>
<td>1/2,1/2,x+1/2 [0,0,0]</td>
</tr>
<tr>
<td>24 d</td>
<td>4'/m..</td>
<td>0,1/4,1/4 [0,0,0]</td>
<td>0,3/4,1/4 [0,0,0]</td>
<td>1/4,0,1/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4,0,3/4 [0,0,0]</td>
<td>1/4,1/4,0 [0,0,0]</td>
<td>3/4,1/4,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>24 c</td>
<td>4'm.2'</td>
<td>1/4,0,0 [0,0,0]</td>
<td>3/4,0,0 [0,0,0]</td>
<td>0,1/4,0 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,3/4,0 [0,0,0]</td>
<td>0,0,1/4 [0,0,0]</td>
<td>0,0,3/4 [0,0,0]</td>
<td></td>
</tr>
<tr>
<td>8 b</td>
<td>m3.</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 a</td>
<td>4'32'</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,3/4 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0,0,1]**: p4mm1'
 \(a^* = a/2 \) \(b^* = b/2 \)
 Origin at 0,0,z

- **Along [1,1,1]**: p6'mm'
 \(a^* = (2a - b - c)/6 \) \(b^* = (-a + 2b - c)/6 \)
 Origin at x,x,x

- **Along [1,1,0]**: p2mm'
 \(a^* = c/2 \) \(b^* = -(a + b)/4 \)
 Origin at x,x,0

226.4.1626 - 6 - 3782
Origin at center (m'3')

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/4; \quad 0 \leq z \leq 1/4; \quad y \leq \min(x,1/2-x); \quad z \leq y\]

Vertices
\[0,0,0 \quad 1/2,0,0 \quad 1/4,1/4,0 \quad 1/4,1/4,1/4\]

Symmetry Operations

For \((0,0,0) + \) set

\[(1) \begin{array}{c} 1 \\ (1) 0,0,0 \end{array} \]

\[(2) \begin{array}{c} 2 \quad 0,0,z \\ (2) 0,0,0 \end{array} \]

\[(3) \begin{array}{c} 2 \quad 0,y,0 \\ (2) 0,0,0 \end{array} \]

\[(4) \begin{array}{c} 2 \quad x,0,0 \\ (2) 0,0,0 \end{array} \]

\[(5) \begin{array}{c} 3^+ \quad x,x,x \\ (3_{xyz}0,0,0) \end{array} \]

\[(6) \begin{array}{c} 3^+ \quad x,x,x \\ (3_{xyz}0,0,0) \end{array} \]

\[(7) \begin{array}{c} 3^+ \quad x,x,x \\ (3_{xyz}0,0,0) \end{array} \]

\[(8) \begin{array}{c} 3^+ \quad x,x,x \\ (3_{xyz}0,0,0) \end{array} \]

\[(9) \begin{array}{c} 3^- \quad x,x,x \\ (3_{xyz}^{-1}0,0,0) \end{array} \]

\[(10) \begin{array}{c} 3^- \quad x,x,x \\ (3_{xyz}^{-1}0,0,0) \end{array} \]

\[(11) \begin{array}{c} 3^- \quad x,x,x \\ (3_{xyz}0,0,0) \end{array} \]

\[(12) \begin{array}{c} 3^- \quad x,x,x \\ (3_{xyz}0,0,0) \end{array} \]
(13)	$2 \begin{pmatrix} 1/2,1/2,0 \end{pmatrix}$	$0,0,0$	$0,1/2,1/2$
(14)	$2 \begin{pmatrix} x, x+1/2,1/4 \end{pmatrix}$	$0,0,0$	$0,1/2,1/2$
(15)	$4 \begin{pmatrix} 0,0,1/2 \end{pmatrix}$	$1/2,0,z$	$1/2,0,z$
(16)	$4 \begin{pmatrix} 0,1/2,0 \end{pmatrix}$	$1/2,0,z$	$1/2,0,z$
(17)	$4 \begin{pmatrix} 1/2,0,0 \end{pmatrix}$	$x,1/2,0$	$1/2,1/2,1/2$
(18)	$2 \begin{pmatrix} 0,1/2,1/2 \end{pmatrix}$	$1/4, y, y$	$1/2,1/2,1/2$
(19)	$2 \begin{pmatrix} 1/4, y+1/2, y \end{pmatrix}$	$1/2,1/2,1/2$	$1/2,1/2,1/2$
(20)	$4 \begin{pmatrix} 1/2,0,0 \end{pmatrix}$	$x,0,1/2$	$1/2,1/2,1/2$
(21)	$4 \begin{pmatrix} 0,1/2,0 \end{pmatrix}$	$0,1/2,0$	$1/2,1/2,1/2$
(22)	$2 \begin{pmatrix} 1/2,0,1/2 \end{pmatrix}$	$x,1/4, x$	$1/2,1/2,1/2$
(23)	$4 \begin{pmatrix} 0,1/2,0 \end{pmatrix}$	$0,1/2,1/2$	$1/2,1/2,1/2$
(24)	$2 \begin{pmatrix} x, x+1/2,1/4 \end{pmatrix}$	$1/2,1/2,1/2$	$1/2,1/2,1/2$

Continued
Continued

(33) $\overline{3}'$ x-1/2, x-1/2, x;
$\overline{3}'$ x+1/2, x-1/2, x;
$\overline{3}'$ x-1/2, x+1/2, x;

$\overline{3}'$ x+1/2, x+1/2, x;

(34) $\overline{3}'$ x+1/2, x-1/2, x;
$\overline{3}'$ x-1/2, x+1/2, x;

$\overline{3}'$ x+1/2, x+1/2, x;

(35) $\overline{3}'$ x-1/2, x+1/2, x;
$\overline{3}'$ x-1/2, x+1/2, x;

$\overline{3}'$ x+1/2, x+1/2, x;

(36) $\overline{3}'$ x+1/2, x+1/2, x;

$\overline{3}'$ x+1/2, x+1/2, x;

(37) g' (1/4, -1/4, 0) x+1/4, x, z

(38) g' (1/4, 1/4, 0) x+1/4, x, z

(39) $4'$ 1/4, 1/4, z; 1/4, 1/4, 0

$4'$ 1/4, 1/4, z; 1/4, 1/4, 0

(40) $4'$ 1/4, -1/4, z; 1/4, -1/4, 0

$4'$ 1/4, -1/4, z; 1/4, -1/4, 0

(41) $4'$ x, 0, 0; 1/4, 0, 0

$4'$ x, 1/4, -1/4

$4'$ x, 1/4, -1/4

(42) g' (1/2, 0, 0) x, y, y

$4'$ x, 1/4, -1/4

$4'$ x, 1/4, -1/4

(43) a' (1/2, 0, 0) x, y, y

$4'$ x, 1/4, -1/4

$4'$ x, 1/4, -1/4

(44) $4'$ x, 0, 0; 1/4, 0, 0

$4'$ x, 0, 0; 1/4, 0, 0

(45) $4'$ 1/4, y, 1/4; 1/4, 0, 1/4

$4'$ 1/4, y, 1/4; 1/4, 0, 1/4

$4'$ 1/4, y, 1/4; 1/4, 0, 1/4

(46) g' (1/4, 0, -1/4) x+1/4, y, x

$4'$ 1/4, y, 1/4; 1/4, 0, 1/4

$4'$ 1/4, y, 1/4; 1/4, 0, 1/4

(47) $4'$ 1/4, y, -1/4; 1/4, 0, -1/4

$4'$ 1/4, y, -1/4; 1/4, 0, -1/4

$4'$ 1/4, y, -1/4; 1/4, 0, -1/4

(48) g' (1/4, 0, 1/4) x+1/4, y, x

$4'$ 1/4, y, -1/4; 1/4, 0, -1/4

$4'$ 1/4, y, -1/4; 1/4, 0, -1/4

For (1/2, 0, 1/2) + set

(1) t (1/2, 0, 1/2)

(2) 2 (0, 0, 1/2)

(3) 2 (1/4, y, 1/4)

(4) 2 (1/2, 0, 0)

(1/2, 0, 1/2)

(2) 2 (1/2, 0, 1/2)

(3) 2 (1/2, 0, 1/2)

(4) 2 (1/2, 0, 1/2)

(5) $3'$ (1/3, 1/3, 1/3)

$3'$ (1/3, 1/3, 1/3)

$3'$ (1/3, 1/3, 1/3)

(6) $3'$ (1/3, 1/3, 1/3)

$3'$ (1/3, 1/3, 1/3)

$3'$ (1/3, 1/3, 1/3)

(7) $3'$ (1/3, 1/3, 1/3)

$3'$ (1/3, 1/3, 1/3)

$3'$ (1/3, 1/3, 1/3)

(8) $3'$ (1/3, 1/3, 1/3)

$3'$ (1/3, 1/3, 1/3)

$3'$ (1/3, 1/3, 1/3)

(9) $3'$ (1/3, 1/3, 1/3)

$3'$ (1/3, 1/3, 1/3)

$3'$ (1/3, 1/3, 1/3)

(10) $3'$ (1/3, 1/3, 1/3)

$3'$ (1/3, 1/3, 1/3)

$3'$ (1/3, 1/3, 1/3)

(11) $3'$ (1/3, 1/3, 1/3)

$3'$ (1/3, 1/3, 1/3)

$3'$ (1/3, 1/3, 1/3)

(12) $3'$ (1/3, 1/3, 1/3)

$3'$ (1/3, 1/3, 1/3)

$3'$ (1/3, 1/3, 1/3)
Continued

226.5.1627 Fm’3c’

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(1/2,1/2,0)
(2) 2 1/4,1/4,z
(2) |1/2,1/2,0)
(3) 2 (0,1/2,0) 1/4,y,0
(3) |1/2,1/2,0)
(4) 2 (1/2,0,0) x,1/4,0
(4) |1/2,1/2,0)
(5) 3* (1/3,1/3,1/3) x+1/6,x+1/3,x
(3) |1/2,1/2,0)
(6) 3* x+1/2,x,x
(3) |1/2,1/2,0)
(7) 3* x+1/2,x,x
(3) |1/2,1/2,0)
(8) 3* (1/3,1/3,-1/3) x+1/6,x+1/3,x
(3) |1/2,1/2,0)
(9) 3* (1/3,1/3,1/3) x+1/3,x+1/6,x
(3) |1/2,1/2,0)
(10) 3* x,x+1/2,x
(3) |1/2,1/2,0)
(11) 3* (1/3,1/3,-1/3) x+1/3,x+1/6,x
(3) |1/2,1/2,0)
(12) 3* x,x+1/2,x
(3) |1/2,1/2,0)
(13) 2 x,x,1/4
(2) |0,0,1/2)
(14) 2 x,x,1/4
(2) |0,0,1/2)
(15) 4* (0,0,1/2) 0,0,z
(4) |0,0,1/2)
(16) 4* (0,0,1/2) 0,0,z
(4) |0,0,1/2)
(17) 4* x,1/4,1/4
(2) |0,0,1/2)
(18) 2 (0,1/4,1/4) 0,y-1/4,y
(2) |0,0,1/2)
(19) 2 (0,-1/4,1/4) 0,y+1/4,y
(2) |0,0,1/2)
(20) 4* x,-1/4,1/4
(2) |0,0,1/2)
(21) 4* 1/4,1/4,1/4
(2) |0,0,1/2)
(22) 2 (1/4,0,1/4) x-1/4,0,x
(2) |0,0,1/2)
(23) 4* -1/4,1/4,1/4
(2) |0,0,1/2)
(24) 2 (-1/4,0,1/4) x+1/4,0,x
(2) |0,0,1/2)
(25) 1' 1/4,1/4,0
(1) |1/2,1/2,0)
(26) n' (1/2,1/2,0) x,y,0
(26) |1/2,1/2,0)
(27) a' (1/2,0,0) x,1/4,z
(27) |1/2,1/2,0)
(28) b' (0,1/2,0) 1/4,y,z
(28) |1/2,1/2,0)
(29) 3' x+1/2,x,x;
(3) |1/2,1/2,0)
(30) 3' x+1/2,x+1/2,x;
(3) |1/2,1/2,0)
(31) 3' x+1/2,x+1/2,x;
(3) |1/2,1/2,0)
(32) 3' x+1/2,x+1/2,x;
(3) |1/2,1/2,0)
(33) 3' x+1/2,x+1/2,x+1/2;
(3) |1/2,1/2,0)
(34) 3' x+1/2,x+1/2,x;
(3) |1/2,1/2,0)
(35) 3' x+1/2,x+1/2,x;
(3) |1/2,1/2,0)
(36) 3' x+1/2,x+1/2,x;
(3) |1/2,1/2,0)
(37) c' (0,0,1/2) x,x,z
(3) |0,0,1/2)
(38) c' (0,0,1/2) x,x,z
(3) |0,0,1/2)
(39) 4* 1/4,0,1/4
(4) |0,0,1/2)
(40) 4* 1/4,0,1/4
(4) |0,0,1/2)
(41) 4* 1/4,0,1/4
(4) |0,0,1/2)
(42) 4* 1/4,0,1/4
(4) |0,0,1/2)
(43) 4* 1/4,0,1/4
(4) |0,0,1/2)
(44) 4* 1/4,0,1/4
(4) |0,0,1/2)
(45) 4* 1/4,0,1/4
(4) |0,0,1/2)
(46) 4* 1/4,0,1/4
(4) |0,0,1/2)
(47) 4* 1/4,0,1/4
(4) |0,0,1/2)
(48) 4* 1/4,0,1/4
(4) |0,0,1/2)

Generators selected

(1): t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13); (25).

Positions Coordinates

Multiplicity, Wyckoff letter, Site Symmetry.

192 j 1

(1) x,y,z [u,v,w]
(2) x,y,z [u,v,w]
(3) x,y,z [u,v,w]
(4) x,y,z [u,v,w]
(5) z,x,y [w,u,v]
(6) z,x,y [w,u,v]
(7) z,x,y [w,u,v]
(8) z,x,y [w,u,v]
Continued

48 f 4.. x,1/4,1/4 [u,0,0] \(\tilde{x},3/4,1/4 [u,0,0] \) \(1/4,x,1/4 [0,u,0] \) \(1/4,\tilde{x},3/4 [0,\tilde{u},0] \)
 1/4,1/4,x [u,0,u] 3/4,1/4,\tilde{x} [0,0,\tilde{u}] \(\tilde{x},3/4,3/4 [u,0,0] \) \(x,1/4,3/4 [u,0,0] \)
 3/4,\tilde{x},3/4 [0,\tilde{u},0] 3/4,\tilde{x},1/4 [0,u,0] \(3/4,3/4,\tilde{x} [0,0,\tilde{u}] \) \(1/4,3/4,x [0,u,0] \)

48 e m'm'2.. x,0,0 [u,0,0] \(\tilde{x},0,0 [u,0,0] \) 0,0,x [u,0,0] \(0,\tilde{x},0 [0,\tilde{u},0] \)
 x+1/2,1/2,1/2 [u,0,u] \(\tilde{x}+1/2,1/2,1/2 [u,0,u] \) \(1/2,\tilde{x}+1/2,1/2 [0,\tilde{u},0] \) \(1/2,\tilde{x}+1/2,1/2 [0,\tilde{u},0] \)

24 d 4/m'. 0,1/4,1/4 [0,0,0] 0,3/4,1/4 [0,0,0] \(1/4,0,1/4 [0,0,0] \)
 1/4,0,3/4 [0,0,0] 1/4,1/4,0 [0,0,0] \(3/4,1/4,0 [0,0,0] \)

24 c \(\overline{4} \)m'.2 1/4,0,0 [0,0,0] 3/4,0,0 [0,0,0] \(0,1/4,0 [0,0,0] \)
 0,3/4,0 [0,0,0] \(0,0,1/4 [0,0,0] \) \(0,0,3/4 [0,0,0] \)

8 b m'\(\overline{3} \). 0,0,0 [0,0,0] \(1/2,1/2,1/2 [0,0,0] \)

8 a 432 1/4,1/4,1/4 [0,0,0] \(3/4,3/4,3/4 [0,0,0] \)

Symmetry of Special Projections

Along [0,0,1] p4m'm'
\(a^* = a/2 \) \(b^* = b/2 \)
Origin at 0,0,z

Along [1,1,1] p6m'm'
\(a^* = (2a - b - c)/6 \) \(b^* = (-a + 2b - c)/6 \)
Origin at x,x,x

Along [1,1,0] p2m'm'
\(a^* = (-a + b)/4 \) \(b^* = c/2 \)
Origin at x,x,0
Origin at $\overline{4}3m$, at -1/8,-1/8,-1/8 from center ($\overline{3}m$)

Asymmetric unit:
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/8; \quad -1/8 \leq z \leq 1/8; \quad y \leq \min(1/2-x, x); \quad -y \leq z \leq y\]

Vertices:
0,0,0 \quad 1/2,0,0 \quad 3/8,1/8,1/8 \quad 1/8,1/8,1/8 \quad 3/8,1/8,-1/8 \quad 1/8,1/8,-1/8

Symmetry Operations

For (0,0,0) + set

(1) 1
(2) 2 (0,0,1/2) 0,1/4,z
 $\overline{2}z$ 0,1/2,1/2

(5) 3^+ x,x,x
 3^+ (1/3,-1/3,1/3)
 $x+1/6,x+1/6,x$
 3_{xyz}^{-1} 1/2,0,1/2

(9) 3^- x,x,x
 3^- (0,0,0)
 3^- (1/3,1/3,-1/3)
 $x+1/6,x+1/3,x$
 3_{xyz}^{-1} 1/2,1/2,0

(3) 2 (0,1/2,0) 1/4,y,0
 $\overline{2}y$ 1/2,1/2,0

(6) 3^+ x,x,x
 3^+ (1/3,-1/3,1/3)
 $x+1/3,x-1/6,x$
 3_{xyz}^{-1} 0,1/2,1/2

(7) 3^- x,x,x
 3^- (1/3,1/3,-1/3)
 $x+1/6,x+1/3,x$
 3_{xyz}^{-1} 1/2,1/2,0

(10) 3^- x,x,x
 3^- (1/3,1/3,-1/3)
 $x+1/6,x+1/3,x$
 3_{xyz}^{-1} 1/2,1/2,0

(11) 3^- x,x,x
 3^- (1/3,1/3,-1/3)
 $x+1/6,x+1/3,x$
 3_{xyz}^{-1} 1/2,1/2,0

(12) 3^- x,x,x
 3^- (1/3,1/3,-1/3)
 $x+1/6,x+1/3,x$
 3_{xyz}^{-1} 1/2,1/2,0

227.1.1628 - 1 - 3789
(13) 2 (1/2,1/2,0) x,x-1/4,3/8
(2,xy \ |3/4,1/4,3/4)

(17) 4e (3/4,0,0) x,1/2,1/4
(4,xy \ |3/4,1/4,3/4)

(21) 4e (0,1/4,0) 3/4,y,0
(4,xy \ |3/4,1/4,3/4)

(25) \(\overline{1} 1/8,1/8,1/8
(1 |1/4,1/4,1/4)

(29) 3e x,x,x;
(3,xyz |1/4,1/4,1/4)

(33) 3e x,x,x;
(3,xyz |1/4,1/4,1/4)

(37) g (1/4,-1,1/4,1/2) x+1/4,x,z
(m,xyz |0,2,0,1/2)

(41) 4e x,-1/4,1/4; 1/4,-1,1/4,1/4
(4e |1/2,0,1/2)

For (0,1/2,1/2) + set

(1) t (0,1/2,1/2)
(1 |0,1/2,1/2)

(5) 3e (1/3,1/3,1/3)

x-1/3,x-1/6,x
(3,xyz |0,1/2,1/2)

(9) 3e (1/3,1/3,1/3)

x-1/6,x+1/6,x
(3,xyz |0,1/2,1/2)

(13) 2 (3/4,3/4,0) x,x,1/8
(2,xy |3/4,3/4,1/4)

(17) 4e (3/4,0,0) x,1/2,-1/4
(4,xy |3/4,3/4,1/4)

(21) 4e (0,3/4,0) 1/2,y,-1/4
(4,xy |3/4,3/4,1/4)

(25) \(\overline{1} 1/8,3/8,3/8
(1 |1/4,3/4,3/4)

(29) 3e x,x+1/2,x;
(3,xyz |1/4,3/4,3/4)

227.1.1628 - Fd3m
For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
 (1) 1/2,1/2,0)
(2) 2 (0,0,1/2) 1/4,0,z
 (2) 1/2,0,1/2)
(3) 2 0,y,0
(4) 2 x,1/4,1/4
 (2,0,1/2,1/2)
(5) 3*(1/3,1/3,1/3)
 x+1/6,x+1/3,x
 (3,1/2,1/2,0)
(6) 3* x,x+1/2,x
 (3,xyz 1,0,1/2)
(7) 3* x+1/2,x-1/2,x
 (3,xyz 1,0,1/2)
(8) 3* x,x,x
(9) 3* (1/3,1/3,1/3)
 x+1/3,x+1/6,x
 (3,xyz -1 1/2,1/2,0)
(10) 3* x,x,x
 (3,xyz 0,0,0)
(11) 3* x+1/2,x+1/2,x
 (3,xyz 0,1/2,1/2)
(12) 3* (1/3,1/3,1/3)
 x-1/6,x+1/3,x
 (3,xyz 1,0,1/2)
(13) 2 (1/2,1/2,0) x,x+1/4,3/8
 (2,xyz 1/4,3/4,1/4)
(14) 2 x,x+3/4,1/8
 (2,xyz 3/4,3/4,1/4)
(15) 4* (0,0,3/4) 1/2,-1/4,z
 (4,xyz 3/4,1,4/4)
(16) 4* (0,0,1/4) 0,1/4,z
 (4,xyz 1/4,1,4/4)
(17) 4* (1/4,0,0) x,3/4,0
 (4,xyz -1 1/4,3,4/4)
(18) 2 (0,1/4,1/4) 1/8,y,y
 (2,xyz 1,0,1/2)
(19) 2 (0,1/4,-1/4) 3/8,y+1/2,y
 (2,xyz 3/4,3,4/4)
(20) 4* (3,4,0,0) x,-1/4,1/2
 (4,xyz 1/4,1,4/4)
(21) 4* (0,3/4,0) 1/2,y,1/4
 (4,xyz 1,0,1/2)
(22) 2 (3/4,0,3/4) x,1/8,x
 (2,xyz 3/4,1,4/4)
(23) 4* (0,1/4,0) 0,y,1/4
 (4,xyz 1,1/4,4/4)
(24) 2 (1/4,-3/4) x+1/2,3/8,x
 (2,xyz 3/4,3,4/4)
(25) 3+ 1/2,1/2,1/2
 (1/2,1/2,1/2)
(26) 6 d (3/4,1/4,0) x,y,3/8
 (m,xyz 1/4,3,4/4)
(27) d (1/4,0,1/4) x,1/8,z
 (m,xyz 1/4,1,4/4)
(28) d (0,3/4,3/4) 1/8,y,z
 (m,xyz 1/4,3,4/4)
(29) 3* x+1/2,x,x;
 5/8,1/8,1/8
 (3,xyz 1/4,3,4/4)
(30) 3* x-3/2,x+1,x;
 -5/8,1/8,7/8
 (3,xyz -1 1/4,3,4/4)
(31) 3* x+1/2,x+1,x;
 5/8,7/8,1/8
 (3,xyz -1 1/4,3,4/4)
(32) 3* x+1/2,x,x;
 3/8,1/8,1/8
 (3,xyz -1 1/4,3,4/4)
(33) 3* x,x+1/2,x;
 1/8,5/8,1/8
 (3,xyz -1 1/4,3,4/4)
(34) 3* x+1/2,x-1/2,x;
 1/8,-1/8,3/8
 (3,xyz 1/4,1,4/4)
(35) 3* x-1/2,x+1,x;
 -5/8,7/8,1/8
 (3,xyz 1/4,3,4/4)
(36) 3* x+1,x,x;
 7/8,1/8,-1/8
 (3,xyz 1/4,3,4/4)
(37) g (-1/4,1/4,1/2) x+1/4,x,z
 (m,xyz 0,1/2,1/2)
(38) g (1/2,1/2,0) x,x,z
 (m,xyz 1/2,1/2,0)
(39) 4* 1/4,1/4,z; 1/4,1/4,1/4
 (4,xyz 1/2,0,1/2)
(40) 4* 0,0,z; 0,0,0
 (4,xyz 0,0,0)
(41) 4* x,0,1/2; 0,0,1/2
 (4,xyz 0,1/2,1/2)
(42) m x,y,y
 (m,xyz 0,0,0)
(43) g (1/2,1/4,1/4) x,y+1/4,y
 (m,xyz 1/2,1/2,0)
(44) 4* x,1/4,1/4; 1/4,1/4,1/4
 (4,xyz 1/2,0,1/2)
(45) 4* -1/4,y,1/4; -1/4,1/4,1/4
 (4,xyz 0,1/2,1/2)
(46) m x+1/2,y,x
 (m,xyz 1/2,0,1/2)
(47) 4* 0,y; 0,0,0
 (4,xyz 0,0,0)
(48) g (1/4,1/2,1/4) x+1/4,y,x
 (m,xyz 1/2,1/2,0)

Coordinates
(1) t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1,0,1/2); (2); (3); (5); (13); (25).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

Continued}

227.1.1628 Fd3m

(1) x,y,z [u,v,w]
(2) x, y+1/2,z+1/2 [u,v,w]
(3) x+1/2,y+1/2,z [u,v,w]
(4) x+1/2,y,z+1/2 [u,v,w]
(5) z,x,y [w,u,v]
(6) z+1/2,x+1/2,y [w,u,v]
(7) z,x+1/2,y+1/2 [w,u,v]
(8) z+1/2,x+1/2,y [w,u,v]
32 e .3m x,x,x [0,0,0] \bar{x}, \bar{x}+1/2, x+1/2 [0,0,0]

x+1/2,x+1/2,x [0,0,0] x+1/2, x, x+1/2 [0,0,0]

x+3/4,x+1/4, x+3/4 [0,0,0] x+1/4, x+1/4, x+1/4 [0,0,0]

x+1/4, x+3/4, x+3/4 [0,0,0] x+3/4, x+3/4, x+1/4 [0,0,0]

16 d .\bar{3}m 5/8, 5/8, 5/8 [0,0,0] 3/8, 7/8, 1/8 [0,0,0] 7/8, 1/8, 3/8 [0,0,0] 1/8, 3/8, 7/8 [0,0,0]

16 c .\bar{3}m 1/8, 1/8, 1/8 [0,0,0] 7/8, 3/8, 5/8 [0,0,0] 3/8, 5/8, 7/8 [0,0,0] 5/8, 7/8, 3/8 [0,0,0]

8 b \bar{4}3m 1/2, 1/2, 1/2 [0,0,0] 1/4, 3/4, 1/4 [0,0,0]

8 a \bar{4}3m 0,0,0 [0,0,0] 3/4, 1/4, 3/4 [0,0,0]

Symmetry of Special Projections

Along [0,0,1] \quad p_{\sigma}^\prime 4m'm'

\textbf{a}^* = (a - b)/4 \quad \textbf{b}^* = (a + b)/4

Origin at 1/4,0,z

Along [1,1,1] \quad p6'm'm'

\textbf{a}^* = (2a - b - c)/6 \quad \textbf{b}^* = (-a + 2b - c)/6

Origin at x,x,x

Along [1,1,0] \quad c2mm1'

\textbf{a}^* = (-a + b)/2 \quad \textbf{b}^* = c

Origin at x,x,1/8
Origin at $\bar{4}3m1'$, at $-1/8,-1/8,-1/8$ from center ($\bar{3}m1'$)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/8; \quad -1/8 \leq z \leq 1/8; \quad y \leq \min(1/2-x,x); \quad -y \leq z \leq y\]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 3/8,1/8,1/8 \quad 1/8,1/8,1/8 \quad 3/8,1/8,-1/8 \quad 1/8,1/8,-1/8\]

Symmetry Operations

For \((0,0,0) + \text{set}\)

\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 (0,0,1/2) \quad 0,1/4,z \quad (2z,0,1/2,1/2) \\
(3) & \quad 2 (0,1/2,0) \quad 1/4,y,0 \quad (2z,1/2,1/2,0) \\
(4) & \quad 2 (1/2,0,0) \quad x,0,1/4 \quad (2z,1/2,0,1/2) \\
(5) & \quad 3^* \quad x,x,x \quad (3_{xyz} | 0,0,0) \\
(6) & \quad 3^* \quad (1/3,-1/3,1/3) \quad x+1/6, x+1/6, x \\
(7) & \quad 3^* \quad (-1/3,1/3,1/3) \quad x+1/3, x-1/6, x \\
(8) & \quad 3^* \quad (1/3,1/3,-1/3) \quad x+1/6, x+1/3, x \\
(9) & \quad 3^- \quad x,x,x \quad (3_{xyz}^{-1} | 0,0,0) \\
(10) & \quad 3^- \quad x,x+1/2, x \quad (3_{xyz}^{-1} | 1/2,1/2,0) \\
(11) & \quad 3^- \quad x+1/2, x, x \quad (3_{xyz}^{-1} | 1/2,0,1/2) \\
(12) & \quad 3^- \quad x-1/2, x+1/2, x \quad (3_{xyz}^{-1} | 0,1/2,1/2)
\end{align*}
Continued 227.2.1629 Fd\overline{3}m1'

(33) $\tilde{3}'$ x-1/2,x-1/2,x;
 $\overline{3}'$ x+1/2,x+1/2,x;
 1/8,1/8,5/8
 (3__{xyz}^{-1} 1/4,3/4,3/4)

(37) m x+1/2,x,z
 (m_{xy} 1/2,1/2,0)

(41) $\overline{4}'$ x,1/4,1/4; 1/4,1/4,1/4
 (4_{x}^{-1} 1/2,1/2,0)

(45) $\overline{4}'$ 1/4,y,1/4; 1/4,1/4,1/4
 (4_{y} 1/2,1/2,0)

For (1/2,0,1/2) + set

(1) t (1/2,0,1/2)
(1/2,0,1/2)

(5) $3'$ (1/3,1/3,1/3)
 x+1/6,x-1/6,x
 1/2,0,1/2
 (3__{xyz}^{-1} 1/2,0,1/2)

(9) $3'$ (1/3,1/3,1/3)
 x-1/6,x+1/6,x
 1/2,0,1/2
 (3__{xyz}^{-1} 1/2,0,1/2)

(13) 2 (1/4,1/4,0)
 x,x,1/8
 (2_{xy} 1/4,1/4,1/4)

(17) $4'$ (1/4,0,0)
 x,1/4,0
 (4_{x}^{-1} 1/4,1/4,1/4)

(21) $\overline{4}'$ (0,1/4,0)
 1/4,y,0
 (4_{y} 1/4,1/4,1/4)

(25) $\overline{1}$ 3/8,1/8,3/8
 (1/3,1/8,3/4)

(29) $\overline{3}'$ x-1/2,x-1/2,x;
 1/8,1/8,5/8
 (3__{xyz}^{-1} 3/4,1/4,3/4)

(33) $\tilde{3}'$ x+1/2,x+1/2,x;
 5/8,1/8,1/8
 (3__{xyz}^{-1} 3/4,1/4,3/4)

(37) m x,x,z
 (m_{xy} 1/2,0,1/2)

(41) $\overline{4}'$ x,0,0; 0,0,0
 (4_{x}^{-1} 0,0,0)

(45) $\overline{4}'$ 0,y,0; 0,0,0
 (4_{y} 0,0,0)

Continued 227.2.1629 Fd\overline{3}m1'

(34) $\overline{3}'$ x+1,x-3/2,x;
 1/8,-5/8,7/8
 (3__{xyz} 3/4,1/4,3/4)

(38) g (1/4,1/4,1/2)
 x+1/4,x,z
 (m_{xy} 1/2,1/2,0)

(42) m x,y+1/2,y
 (m_{yz} 1/2,1/2,0)

(46) g (1/4,1/2,-1/4)
 x+1/4,y,x
 (m_{xz} 1/2,1/2,0)
For $(1/2,1/2,0) + \text{set}$

(1) $t (1/2,1/2,0)$
 (1 1/2,1/2,0)

(2) $s (0,0,1/2) 1/4,0,z$
 $(2_s | 1/2,1/2,0)$

(3) $s (0,y,0)$
 $(2_s | 0,0,0)$

(4) $s x,1/4,1/4$
 $(2_s | 0,1/2,1/2)$

(5) $s^* (1/3,1,3/1,3)$
 $x+1/6,x+1/3,x$
 $(3_{xyz}^* | 1,2,1/2,0)$

(6) $s^* x,x+1/2,x$
 $(3_{xyz}^* | 0,1,2,1/2)$

(7) $s^* x+1/2,x-1/2,x$
 $(3_{xyz}^* | 1/2,0,1/2)$

(8) $s^* x,x,x$
 $(3_{xyz}^* | 0,0,0)$

(9) $s^* (1/3,1,3/1,3)$
 $x+1/3,x+1/6,x$
 $(3_{xyz}^* | 1/2,1/2,0)$

(10) $s^* x,x,x$
 $(3_{xyz}^* | 0,0,0)$

(11) $s^* x+1/2,x+1/2,x$
 $(3_{xyz}^* | 1/2,0,1/2)$

(12) $s^* (1,3,1,3,1/3)$
 $x-1/6, x+1/3, x$
 $(3_{xyz}^* | 1/2,0,1/2)$

(13) $s (1/2,1/2,0) x,x+1/4,3/8$
 $(2_s | 1/4,3/4,3/4)$

(14) $s x,x+3/4,1/8$
 $(2_s | 3/4,3/4,1/4)$

(15) $s^* (0,0,3/4) 1/2,-1/4,z$
 $(2_s | 1/4,1/4,1/4)$

(16) $s^* (0,1,1/4) 0,1/4,z$
 $(2_s | 1/4,1/4,1/4)$

(17) $s^* (1/4,0,0) x,3/4,0$
 $(4_{yz}^* | 1/4,3/4,3/4)$

(18) $s x,y+1/2, y$
 $(4_{yz}^* | 1/4,3/4,3/4)$

(19) $s (0,1,4,1/4) 1/8,y,y$
 $(2_s | 3/4,3/4,1/4)$

(20) $s^* (3,4,0,0) x,-1/4,1/2$
 $(2_s | 3/4,3/4,1/4)$

(21) $s^* (0,3,4,0) 1/2,y,1/4$
 $(4_{yz}^* | 1/4,3/4,3/4)$

(22) $s x,1/8,x$
 $(4_{yz}^* | 3/4,1/4,3/4)$

(23) $s^* (0,1,4,0) 0,y,1/4$
 $(4_{yz}^* | 1/4,1/4,1/4)$

(24) $s (1/4,0,-1/4) x+1,3/8,x$
 $(2_s | 3/4,3/4,1/4)$

(25) $s^* (3,8,3,8,1/8)$
 $(2_{xyz} | 1/4,3/4,1/4)$

(26) $d (3/4,1/4,0) x,y,3/8$
 $(m_{xy} | 3/4,1/4,3/4)$

(27) $d (1/4,0,1/4) x,1/8,z$
 $(m_{xy} | 1/4,1/4,1/4)$

(28) $d (0,3/4,3/4) 1/8,y,z$
 $(m_{xy} | 1/4,1/4,3/4)$

(29) $s^* x+1/2,x,x$
 $(5/8,1/8,1/8)$

(30) $s^* x-3/2,x+1,x$
 $(3_{xyz}^* | 3/4,3/4,1/4)$

(31) $s^* x+1/2,x+1,x$
 $(3_{xyz}^* | 1/4,3/4,3/4)$

(32) $s^* x+1/2,x,x$
 $(3_{xyz}^* | 1/4,1/4,3/4)$

(33) $s^* x,x+1/2,x$
 $(1/8,5/8,1/8)$

(34) $s^* x+1/2,x-1/2,x$
 $(3_{xyz}^* | 1/4,1/4,1/4)$

(35) $s^* x-1/2,x+1,x$
 $(3_{xyz}^* | 1/4,1/4,3/4)$

(36) $s^* x+1,x,x$
 $(3_{xyz}^* | 1/4,3/4,3/4)$

(37) $s^* (1,4,1,4/2) x+1/4,x,z$
 $(m_{xz} | 0,1/2,1/2)$

(38) $s (1,2,1/2,0) x,x,z$
 $(m_{xz} | 2,1/2,2,0)$

(39) $s^* (1,4,1,4/2) z,1/4,1/4,1/4$
 $(4_{yz}^* | 1/2,0,1/2)$

(40) $s^* 0,0,0; 0,0,0$
 $(4_{yz}^* | 0,0,0)$

(41) $s^* (0,1/2,0; 0,0,1/2)$
 $(4_{yz}^* | 0,1/2,1/2)$

(42) $s m x,y,y$
 $(m_{yz} | 0,0,0)$

(43) $s m x,y,1/4,y$
 $(m_{yz} | 1/2,1/2,0)$

(44) $s^* x,1/4,1/4,1/4,1/4$
 $(m_{xz} | 1/2,1/2,0)$

(45) $s^* -1/4,y,1/4; -1/4,1/4,1/4$
 $(4_{yz}^* | 1/4,1/4,1/4)$

(46) $s m x+1/2,y,x$
 $(m_{xz} | 1/2,0,1/2)$

(47) $s^* 0,y,0; 0,0,0$
 $(4_{yz}^* | 0,0,0)$

(48) $s (1,4,1/2,1/4) x+1/4,y,x$
 $(m_{xz} | 1/2,1/2,0)$

For $(0,0,0)' + \text{set}$

(1) $1'$
 (1 0,0,0)'

(2) $2'(0,0,1/2) 0,1/4,z$
 $(2_z | 0,1/2,1/2)$

(3) $2'(0,1/2,0) 1/4,y,0$
 $(2_z | 1/2,1/2,0)'$

(4) $2'(1/2,0,0) x,0,1/4$
 $(2_z | 0,1/2,1/2)'$

(5) $s^* ' x,x,x$
 $(3_{xyz} | 0,0,0)'$

(6) $s^* ' (1/3,-1,3/1,3)$
 $x+1/6,x+1/6,x$
 $(3_{xyz} | 1/2,0,1/2)'$

(7) $s^* ' (-1/3,1,3,1/3)$
 $x+1/3,x-1/6,x$
 $(3_{xyz} | 0,1/2,1/2)'$

(8) $s^* ' (1/3,1,3,-1/3)$
 $x+1/6,x+1/3,x$
 $(3_{xyz} | 0,1/2,1/2)'$

(9) $s^* ' x,x,x$
 $(3_{xyz} | 0,0,0)'$

(10) $s^* ' x,x+1/2,x$
 $(3_{xyz} | 1/2,0,1/2)'$

(11) $s^* ' x+1/2,x,x$
 $(3_{xyz} | 1/2,0,1/2)'$

(12) $s^* ' x-1/2,x+1/2,x$
 $(3_{xyz} | 0,1/2,1/2)'$

(13) $2'(1/2,1/2,0) x,x-1/4,3/8$
 $(2_s | 1/4,1/4,1/4,3/4)'$

(14) $2'(x,x+1/4,1/8$
 $(2_s | 1/4,1/4,1/4,1/4)'$

(15) $s^* ' (0,0,3/4) 1/2,1/4,z$
 $(4_{yz}^* | 1/4,3/4,3/4)'$

(16) $s^* ' (0,0,1/4) 0,3/4,z$
 $(4_{yz}^* | 3/4,3/4,1/4)'$
Continued 227.2.1629 Fd3m1'

(37) m' x+1/2, x, z (38) g' (1/4,1/4,1/2) x-1/4,x,z (39) 3- ' 0,0,0; z, 0,0,0 (40) 4- ' 1/4,-1/4,z; 1/4,-1/4,1/4
(m_y, 1/2,1/2,0') (m_x, 0,1/2,1/2,0') (4-z, 0,0,0,0') (4-z', 1/2,0,1/2,0')

(41) 4- ' x,1/4,1/4; 1/4,1,1/4,1/4 (42) g' (1/2,-1/4,1/4) x,y+1/4, y (43) g' (0,1/2,1/2) x,y,y (44) 4- ' x,0,0; 0,0,0
(4-z, 1/2,0,1/2,0') (m_yz, 1/2,0,1/2,0') (m_yz, 0,1/2,1/2,0') (4-z, 0,0,0,0')

(45) 4- ' 1/4,y,1/4; 1/4,1,1/4,1/4 (46) m' x,y,x (47) 4- ' 1/2,y,0; 1/2,0,0 (48) g' (1/4,1/2,1/4) x-1/4,y,x
(4-z, 1/2,0,1/2,0') (m_xz, 0,0,0,0') (4-z, 1/2,0,1/2,0')

For (1/2,0,1/2)' + set

(1) t' (1/2,0,1/2) (2) 2' 1/4,1/4,z (3) 2' (0,1/2,0) 0,y,1/4 (4) 2' x,0,0
(1/2,0,1/2)' (2/2,1/2,0,0)' (2/2,0,1/2,1/2,0)' (2/2,0,1/2,1/2,0)' (2/2,0,1/2,1/2,0)'

(5) 3+ ' (1/3,1/3,1/3) x+1/6,x-1/6,x (6) 3' x,x,x (7) 3' x+1/2,x,x (8) 3' x+1/2,x,x
(x,1/2,0,1/2)' (m_xz, 1/2,0,1/2,0') (3_xz, 1/2,0,1/2,0') (3_xz, 1/2,0,1/2,0') (3_xz, 1/2,0,1/2,0)'

(9) 3+ ' (1/3,1/3,1/3) x+1/6,x-1/6,x (10) 3' (-1/3,1/3,1/3) x+1/6,x+1/6,x (11) 3' x,x,x (12) 3' x,x+1/2,x
(3_xz, 1/2,0,1/2,0') (3_xz, 1/2,0,1/2,0') (3_xz, 0,1/2,2/1,0') (3_xz, 0,1/2,2/1,0') (3_xz, 0,1/2,2/1,0)'

(13) 2' (1/4,1/4,0) x,x,1/8 (14) 2' (1/4,1/4,0) x,x+1/2,3/8 (15) 4' (0,0,1/4) 3/4,0,z (16) 4' (0,0,3/4) -1/4,1,2,3
(2/2,1/4,1/4,1/4)' (2/2,1/4,1/4,1/4)' (4_z, 3/4,1/4,3/4)' (4_z, 1/4,3/4,3/4)' (4_z, 1/4,3/4,3/4)'

(17) 4' (1/4,0,0) x,1/4,0 (18) 2' (0,3/4,3/4) 1/8,y,y (19) 2' (0,-1/4,1/4) 3/8,y+1/2,y (20) 4' (3/4,0,0) x,1/4,1/2
(4_z, 1/4,1/4,1/4)' (2/2,1/4,1/4,1/4)' (2/2,1/4,1/4,1/4)' (2/2,1/4,1/4,1/4)' (2/2,1/4,1/4,1/4)'

(21) 4' (0,1/4,0) 1/4,y,0 (22) 2' (1/2,0,1/2) x+1/4,3/8,x (23) 4' (0,3/4,0) -1/4,y,y,1/2 (24) 2' x+3/4,1/8,x
(4_z, 1/4,1/4,1/4)' (2/2,1/4,1/4,1/4)' (4_z, 1/4,3/4,3/4)' (4_z, 1/4,3/4,3/4)'

(25) 1- 3/8,1/8,3/8 (26) d' (3/4,3/4,0) x,1/8,1/8 (27) d' (1/4,0,3/4) 3/4,1/4,3/4 (28) d' (0,1/4,1/4) 1/8,y,z
(3, 3/4,1/4,3/4)' (m_xz, 3/4,1/4,3/4) (m_xz, 1/4,3/4,3/4) (m_xz, 1/4,3/4,3/4) (m_xz, 1/4,3/4,3/4)'

(29) 3' x-1/2-x-1/2,x; 1/8,1/8,5/8 (30) 3' x-1/2,x+1/2,x; -1/8,1/8,3/8 (31) 3' x-1/2,x+3/2,x; 1/8,8,5/8 (32) 3' x+3/2, x+1/2,x; 1/8,8,5/8
(3_xz, 3/4,1/4,3/4)' (3_xz, 3/4,1/4,3/4)' (3_xz, 3/4,1/4,3/4)' (3_xz, 1/4,3/4,1/4)' (3_xz, 3/4,3/4,3/4)'

(33) 3' x+1/2,x,x; 5/8,1/8,1/8 (34) 3' x+1/2, x-1, x; 1/8,-1/8,7/8 (35) 3' x+1/2, x-1, x; 1/8,-1/8,7/8 (36) 3' x+3/2, x-1, x; 7/8,1/8,5/8
(3_xz, 3/4,1/4,3/4)' (3_xz, 1/4,3/4,1/4)' (3_xz, 1/4,3/4,1/4)' (3_xz, 1/4,3/4,1/4)' (3_xz, 3/4,3/4,3/4)'

(37) m' x, x, z (38) g' (1/4,1/4,1/2) x+1/4,x,z (39) 3- ' 0,1/2,z; 0,1/2,0 (40) 4- ' 1/4,1/4,z; 1/4,1/4,1/4
(m_y, 0,0,0,0') (m_xz, 1/2,0,1/2,0') (m_xz, 0,1/2,0,1/2,0') (4_z, 0,1/2,1/2,0')

(41) 4- ' x,0,0; 0,0,0 (42) m' x,y+1/2,y (43) g' (1/2,1/4,1/4) x,y-1/4,y (44) 4- ' x,1/4,-1/4; 1/4,1/4,1/4
(4-z, 0,0,0,0') (m_yz, 1/2,0,1/2,0') (m_yz, 1/2,0,1/2,0') (4-z, 1/2,0,1/2,0')

(45) 4- ' 0, y,0; 0,0,0 (46) g' (1/4,1/2,-1/4) x+1/4,y,x (47) 4- ' 1/4,y, y; 1/4,1/4,1/4 (48) g' (1/2,0,1/2) x,y,x
(4-z, 0,0,0,0') (m_xz, 1/2,0,1/2,0') (m_xz, 1/2,0,1/2,0') (m_xz, 1/2,0,1/2,0)'

For (1/2,1/2,0)'+ set

(1) t' (1/2,1/2,0) (2) 2' (0,0,1/2) 1/4,0,z (3) 2' 0,y,0 (4) 2' x,1/4,1/4
(1/2,1/2,0)' (1/2,0,1/2,0)' (2,0,1/2,0)' (2,0,1/2,0)' (2,0,1/2,0)'

227.2.1629 - 6 - 3800
(5) 3^\ast $(1/3,1/3,1/3)$

$x+1/6, x+1/3, x$

$(3_{xyz} \ 1/2,1/2,0)'$

(6) 3^\ast \(x, x+1/2, x\)

(7) 3^\ast \(x+1/2, x-1/2, x\)

(8) 3^\ast \(x, x, x\)

Positions

Continued 227.2.1629 Fd3m1'

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13); (25); 1'.

Full list of Wyckoff positions

Continued
Continued

<table>
<thead>
<tr>
<th>16</th>
<th>d</th>
<th>$\bar{3}m1'$</th>
<th>5/8,5/8,5/8 [0,0,0]</th>
<th>3/8,7/8,1/8 [0,0,0]</th>
<th>7/8,1/8,3/8 [0,0,0]</th>
<th>1/8,3/8,7/8 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>c</td>
<td>$\bar{3}m1'$</td>
<td>1/8,1/8,1/8 [0,0,0]</td>
<td>7/8,3/8,5/8 [0,0,0]</td>
<td>3/8,5/8,7/8 [0,0,0]</td>
<td>5/8,7/8,3/8 [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>b</td>
<td>$4\bar{3}m1'$</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/4,3/4,1/4 [0,0,0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>a</td>
<td>$4\bar{3}m1'$</td>
<td>0,0,0 [0,0,0]</td>
<td>3/4,1/4,3/4 [0,0,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1'

$\text{a}^* = (\text{a} - \text{b})/4$ $\text{b}^* = (\text{a} + \text{b})/4$

Origin at 0,0,z

Along [1,1,1] p6mm1'

$\text{a}^* = (2\text{a} - \text{b} - \text{c})/6$ $\text{b}^* = (-\text{a} + 2\text{b} - \text{c})/6$

Origin at x,x,x

Along [1,1,0] c2mm1'

$\text{a}^* = (-\text{a} + \text{b})/2$ $\text{b}^* = \text{c}$

Origin at x,x,1/8
Fd'3'm

227.3.1630

Symmetry Operations

For (0,0,0) + set

(1) 1
(1) 0,0,0
(10) 3' x,x+1/2,x
(3_{xyz}^{-1}|0,0,0)
(11) 3' x+1/2,x,x
(3_{xyz}|1/2,0,1/2)
(12) 3' x-1/2,x+1/2,x
(3_{xyz}|0,1/2,1/2)

(2) 2 (0,0,1/2) 0,1/4,z
(2) 1/2,0,1/2,0
(2) y+1/6,x+1/6,x
(2) x+1/3, x-1/6,x
(2) x+1/6, x+1/3,x
(2) x+1/3, x-1/2, 1/2
(2) x+1/2, 1/2,0

(3) 2 (0,1/2,0) 1/4,y,0
(3) 1/2,1/2,0,y
(3) x+1/6, x+1/3, x
(3) x+1/3, x-1/2, 1/2
(3) x+1/2, 1/2,0

(4) 2 (1/2,0,0) x,0,1/4
(4) 1/2,0,1/2

(5) 3' x,x,x
(5) 0,0,0
(5) x+1/6, x+1/6,x
(5) x+1/3, x-1/6,x
(5) x+1/6, x+1/3,x
(5) x+1/3, x-1/2, 1/2
(5) x+1/2, 1/2,0

(6) 3' (1/3,-1/3,1/3)
(6) x+1/6,x+1/6,x
(6) x+1/3, x-1/6,x
(6) x+1/6, x+1/3,x
(6) x+1/3, x-1/2, 1/2
(6) x+1/2, 1/2,0

(7) 3' (-1/3,1/3,1/3)
(7) x+1/6,x+1/6,x
(7) x+1/3, x-1/6,x
(7) x+1/6, x+1/3,x
(7) x+1/3, x-1/2, 1/2
(7) x+1/2, 1/2,0

(8) 3' (1/3,1/3,-1/3)
(8) x+1/6,x+1/6,x
(8) x+1/3, x-1/6,x
(8) x+1/6, x+1/3,x
(8) x+1/3, x-1/2, 1/2
(8) x+1/2, 1/2,0

(9) 3' x,x,x
(9) 0,0,0
(9) x+1/6, x+1/6,x
(9) x+1/3, x-1/6,x
(9) x+1/6, x+1/3,x
(9) x+1/3, x-1/2, 1/2
(9) x+1/2, 1/2,0

(3_{xyz}^{-1}|0,0,0)
(3_{xyz}|1/2,1/2,0)
(3_{xyz}^{-1}|1/2,1/2,0)

(3_{xyz}^{-1}|0,0,0)
(3_{xyz}|1/2,0,1/2)
(3_{xyz}^{-1}|0,1/2,1/2)

Origin at 43m, at -1/8,-1/8,-1/8 from center (3'm)

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/8; -1/8 ≤ z ≤ 1/8; y ≤ min(1/2-x,x);
-y ≤ z ≤ y

Vertices
0,0,0 1/2,0,0 3/8,1/8,1/8 1/8,1/8,1/8 3/8,1/8,-1/8 1/8,1/8,-1/8 1/8,1/8,-1/8

Symmetry Operations

For (0,0,0) + set

(1) 1
(1) 0,0,0
(10) 3' x,x+1/2,x
(3_{xyz}^{-1}|0,0,0)
(11) 3' x+1/2,x,x
(3_{xyz}^{-1}|1/2,0,1/2)
(12) 3' x-1/2,x+1/2,x
(3_{xyz}^{-1}|0,1/2,1/2)

227.3.1630 - 1 - 3804
(33) $\overline{3}'\cdot x-1/2, x-1/2,$
$sym\; x-1/2, x-1/2,$
$1/8, 1/8, 5/8$
$(\overline{3}_{xyz}\; 1/4, 1/4, 1/4')$

(37) $m\; x+1/2, \overline{x}, z$
$(m_{xyz}\; 1/2, 1/2, 0)$

(41) $\overline{4}\cdot x, 1/4, 1/4,$
$sym\; x, 1/4, 1/4,$
$1/2, 0, 1/2$
$(\overline{4}_{x}\; 1/2, 1/2, 0)$

(45) $\overline{4}\cdot 1/4, y, 1/4,$
$sym\; 1/4, y, 1/4,$
$1/2, 1/2, 0$
$(\overline{4}_{y}\; 1/2, 1/2, 0)$

$\overline{3}'\cdot x+1/2, x+1/2,$
$sym\; x+1/2, x+1/2,$
$1/8, 1/8, 1/8$
$(\overline{3}_{xyz}\; 3/4, 1/4, 1/4')$

(38) $g\; (1/4, 1/4, 1/2)$
$(m_{xy}\; 0, 1/2, 1/2)$

(42) $g\; (1/2, -1/4, 1/4)$
$(m_{yz}\; 0, 1/2, 1/2)$

(46) $g\; (1/4, 1/2, -1/4)$
$(m_{xz}\; 1/2, 1/2, 0)$

(47) $\overline{4}\cdot 1/2, y, 0,$
$sym\; 1/2, y, 0,$
$1/2, 0, 0$
$(\overline{4}_{y}\; 1/2, 0, 1/2)$

$\overline{3}'\cdot x+1/2, x+1/2,$
$sym\; x+1/2, x+1/2,$
$1/8, 1/8, 1/8$
$(\overline{3}_{xyz}\; 3/4, 1/4, 1/4')$

(39) $4\cdot 0, 0, z,$
$sym\; 0, 0, z,$
$0, 0, 0$
$(4_{z}\; 0, 0, 0)$

(43) $g\; (0, 1/2, 1/2)$
$(m_{yz}\; 0, 1/2, 1/2)$

$\overline{4}\cdot x, 0, 0,$
$sym\; x, 0, 0,$
$0, 0, 0$
$(\overline{4}_{x}\; 0, 0, 0)$

$\overline{3}'\cdot x+1/2, x+1/2,$
$sym\; x+1/2, x+1/2,$
$1/8, 1/8, 1/8$
$(\overline{3}_{xyz}\; 1/4, 1/4, 1/4')$

(48) $g\; (1/4, 1/2, 1/4)$
$(m_{xz}\; 0, 1/2, 1/2)$

For $(1/2, 0, 1/2) +$ set

(1) $(1/2, 0, 1/2)$

(2) $(1/2, 1/2, 0)$

(3) $(0, 1/2, 0)$

(4) $(1/2, 0, 0)$

(5) $3'$
$sym\; x, x, x,$
$1/4, 1/4, 1/4$
$x+1/6, x+1/6,$
$(3_{xyz}\; 1/2, 0, 1/2)$

(9) $3'$
$sym\; x, x, x,$
$1/4, 1/4, 1/4$
$x+1/6, x+1/6,$
$(3_{xyz}\; 1/2, 0, 1/2)$

(13) $2'$
$sym\; x, x, x,$
$1/4, 1/4, 1/4$
$(2_{xy}\; 1/4, 1/4, 1/4')$

(14) $2'$
$sym\; x, x, x,$
$1/4, 1/4, 3/8$
$(2_{xy}\; 1/4, 1/4, 1/4)$

(18) $2'$
$sym\; x, x, x,$
$0, 3/4, 3/4$
$(2_{yz}\; 1/4, 1/4, 1/4)$

(19) $2'$
$sym\; x, x, x,$
$0, 3/4, 3/4$
$(2_{yz}\; 1/4, 1/4, 1/4)$

(22) $2'$
$sym\; x, x, x,$
$0, 3/4, 3/4$
$(2_{xy}\; 1/4, 1/4, 1/4)$

(26) d'$
$sym\; x, x, x,$
$3/4, 3/4, 3/4$
$(d_{xyz}\; 3/4, 3/4, 3/4')$

(27) d'$
$sym\; x, x, x,$
$3/4, 3/4, 3/4$
$(d_{xyz}\; 3/4, 3/4, 3/4')$

(30) $3'$
$sym\; x, x, x,$
$1/8, 1/8, 1/8$
$(\overline{3}_{xyz}\; 3/4, 1/4, 1/4)$

(31) $\overline{3}'\;
$sym\; x, x, x,$
$1/8, 1/8, 1/8$
$(\overline{3}_{xyz}\; 3/4, 1/4, 1/4')$

(32) $\overline{3}'\;
$sym\; x, x, x,$
$1/8, 1/8, 1/8$
$(\overline{3}_{xyz}\; 3/4, 1/4, 1/4)$

(33) $\overline{3}'\;
$sym\; x, x, x,$
$5/8, 1/8, 1/8$
$(\overline{3}_{xyz}\; 3/4, 1/4, 1/4)$

(35) $\overline{3}'\;
$sym\; x, x, x,$
$5/8, 1/8, 1/8$
$(\overline{3}_{xyz}\; 3/4, 1/4, 1/4)$

(36) $\overline{3}'\;
$sym\; x, x, x,$
$5/8, 1/8, 1/8$
$(\overline{3}_{xyz}\; 3/4, 1/4, 1/4)$

(37) $m\; x, x, z$
$(m_{xyz}\; 0, 0, 0)$

(40) $4'$
$sym\; x, x, x,$
$1/4, 1/4, 1/4$
$(4_{x}\; 1/2, 1/2, 0)$

(41) $4'$
$sym\; x, x, x,$
$0, 0, 0$
$(4_{y}\; 0, 0, 0)$

(42) $m\; x, y, 1/2,$
$(m_{yz}\; 0, 1/2, 1/2)$

(43) $g\; (1/2, 1/4, 1/4)$
$(m_{yz}\; 1/2, 0, 1/2)$

(44) $4'$
$sym\; x, x, x,$
$1/4, 1/4, 1/4$
$(4_{x}\; 1/2, 1/2, 0)$

(45) $4'$
$sym\; x, x, x,$
$0, 0, 0$
$(4_{y}\; 0, 0, 0)$

$\overline{3}'\cdot x+1/2, x+1/2,$
$sym\; x+1/2, x+1/2,$
$1/8, 1/8, 1/8$
$(\overline{3}_{xyz}\; 3/4, 1/4, 1/4)$

(39) $4\cdot 0, 1/2, z,$
$sym\; 0, 1/2, z,$
$0, 1/2, 0$
$(4_{z}\; 1/2, 1/2, 0)$

(43) $g\; (1/2, 1/4, 1/4)$
$(m_{yz}\; 1/2, 0, 1/2)$

(47) $\overline{4}\cdot 1/4, y, 1/4,$
$sym\; 1/4, y, 1/4,$
$1/4, 1/4, 1/4$
$(\overline{4}_{y}\; 1/4, 1/4, 1/4)$

(48) $g\; (1/2, 0, 1/2)$
$(m_{xz}\; 1/2, 0, 1/2)$
For (1/2, 1/2, 0) + set

(1) t (1/2, 1/2, 0)
(1) t (1/2, 1/2, 0)

(5) 3' (1/3, 1/3, 1/3)
(5) 3' (1/3, 1/3, 1/3)

(9) 3' (1/3, 1/3, 1/3)
(9) 3' (1/3, 1/3, 1/3)

(13) 2' (1/2, 1/2, 0)
(13) 2' (1/2, 1/2, 0)

(17) 4' (1/4, 0, 0)
(17) 4' (1/4, 0, 0)

(21) 4' (0, 3/4, 0)
(21) 4' (0, 3/4, 0)

(25) 1' (3/8, 3/8, 1/8)
(25) 1' (3/8, 3/8, 1/8)

(29) 3' x+1/2, x; x, x (m_y x+1/2, x)
(29) 3' x+1/2, x; x, x (m_y x+1/2, x)

(33) 3' x, x+1/2, x; 1/8, 5/8, 1/8
(33) 3' x, x+1/2, x; 1/8, 5/8, 1/8

(37) g (-1/4, 1/4, 1/2)
(37) g (-1/4, 1/4, 1/2)

(41) 4' (0, 1/2, 0; 0, 0, 1/2
(41) 4' (0, 1/2, 0; 0, 0, 1/2

(45) 4' -1/4, y, 1/4; -1/4, 1/4, 1/4
(45) 4' -1/4, y, 1/4; -1/4, 1/4, 1/4

Generators selected
(1); t(1, 0, 0); t(0, 1, 0); t(0, 1/2, 1/2); t(1, 2/0, 1/2); (2); (3); (5); (13); (25).

Positions
Multplicity, Wyckoff letter, Site Symmetry.

192 i 1

(1) x, y, z [u, v, w]
(6) z+1/2, x, y+1/2 [w, u, v]

(2) x, y+1/2, z+1/2 [u, v, w]
(7) z, x+1/2, y+1/2 [w, u, v]

(3) x+1/2, y+1/2, z [u, v, w]
(8) z+1/2, x+1/2, y [w, u, v]

(4) x, y+1/2, z+1/2 [u, v, w]
(9) 3- (1/3, -1/3, 1/3)

(10) x, x, x
(11) x+1/2, x+1/2, x

(12) x+1/2, x+1/2, x
(13) 2' (1/2, 1/2, 0)
(14) 2' x, x+3/4, 1/8
(15) 4' 0, 0, 3/4 1/2, -1/4, z
(16) 4' 0, 0, 1/4 0, 1/4, z

(17) 4' (1/4, 0, 0)
(18) 2' 0, 1/4, 1/4; 1/8, y, y
(19) 2' 0, 1/4, 1/4; 1/8, y, y
(20) 4' (3/4, 0, 0)
(21) 4' (0, 3/4, 0)
(22) 2' (3/4, 0, 3/4)
(23) 4' 0, 1/4, 0
(24) 2' (1/4, 0, -1/4)

(25) 1' (3/8, 3/8, 1/8)
(26) d' (3/4, 1/4, 0)
(27) d' 1/4, 0, 1/4
(28) d' 0, 3/4, 3/4

(29) 3' x+1/2, x; 5/8, 1/8
(30) 3' x+1/2, x; 5/8, 1/8
(31) 3' x+1/2, x+1, x; 5/8, 7/8, 1/8
(32) 3' x+1/2, x; 3/8, 1/8, 1/8

(33) 3' x, x+1/2, x; 1/8, 5/8, 1/8
(34) 3' x+1/2, x; 1/8, 5/8, 1/8
(35) 3' x+1/2, x+1, x; 5/8, 7/8, 1/8
(36) 3' x+1/2, x; 7/8, 1/8, 1/8

(37) g (-1/4, 1/4, 1/2) x+1/4, x, z
(38) g (1/2, 1/2, 0) x, x, z
(39) 4' 1, 1/4, 1/4, z; 1/4, 1/4, 1/4
(40) 4' 0, 0, z; 0, 0, 0

(41) 4' x, 0, 1/2; 0, 0, 1/2
(42) m x, y, y
(43) g (1/2, 1/4, 1/4) x, y+1, y+1, y+1, y+1
(44) 4' x, 1/4, 1/4, 1/4

(45) 4' -1/4, y, 1/4; -1/4, 1/4, 1/4
(46) m x+1/2, y, x
(47) 4' 0, 0, 0
(48) g (1/4, 1/2, 1/4)

227.3.1630 - 4 - 3807
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>32 e</th>
<th>.3m</th>
<th>x,x,x [0,0,0]</th>
<th>x,x+1/2,x+1/2 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x+1/2,x+1/2,x [0,0,0]</td>
<td>x+1/2,x,x+1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+3/4,x+1/4,x+3/4 [0,0,0]</td>
<td>x+1/4,x+1/4,x+1/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x+1/4,x+3/4,x+3/4 [0,0,0]</td>
<td>x+3/4,x+3/4,x+1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

16 d	.3' m	5/8,5/8,5/8 [0,0,0]	7/8,1/8,3/8 [0,0,0]	1/8,3/8,7/8 [0,0,0]
16 c	.3' m	1/8,1/8,1/8 [0,0,0]	7/8,3/8,5/8 [0,0,0]	5/8,7/8,3/8 [0,0,0]
8 b	43m	1/2,1/2,1/2 [0,0,0]	1/4,3/4,1/4 [0,0,0]	
8 a	43m	0,0,0 [0,0,0]	3/4,1/4,3/4 [0,0,0]	

Symmetry of Special Projections

Along [0,0,1]
\(a^* = (a - b)/4 \)
\(b^* = (a + b)/4 \)
Origin at 0,0,z

Along [1,1,1]
\(a^* = (2a - b - c)/6 \)
\(b^* = (-a + 2b - c)/6 \)
Origin at x,x,x

Along [1,1,0]
\(a^* = c \)
\(b^* = -(a + b)/2 \)
Origin at x,x,1/8
Origin at 4'3m', at -1/8,-1/8,-1/8 from center (3m')

Asymmetric unit
\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/8; \quad -1/8 \leq z \leq 1/8; \quad y \leq \min(1/2-x,x); \quad -y \leq z \leq y\]

Vertices
\[0,0,0 \quad 1/2,0,0 \quad 3/8,1/8,1/8 \quad 1/8,1/8,1/8 \quad 3/8,1/8,-1/8 \quad 1/8,1/8,-1/8\]

Symmetry Operations
For \((0,0,0) + \) set

1. \((1) 1\)
 \(\begin{pmatrix} 1 \\ 0,0,0 \end{pmatrix}\)

2. \((2) 2\)
 \(\begin{pmatrix} 0,0,1/2 \\ 1/4,z \end{pmatrix}\)

3. \((3) 2\)
 \(\begin{pmatrix} 0,1/2,0 \\ 1/4,y,0 \end{pmatrix}\)

4. \((4) 2\)
 \(\begin{pmatrix} 1/2,0,0 \\ x,0,1/4 \end{pmatrix}\)

5. \((5) 3^+\)
 \(\begin{pmatrix} x,x,x \end{pmatrix}\)

6. \((6) 3^+\)
 \(\begin{pmatrix} 1/3,-1/3,1/3 \\ x+1/6, x+1/6, x \end{pmatrix}\)

7. \((7) 3^+\)
 \(\begin{pmatrix} 1/3,1/3,1/3 \\ x+1/3, x-1/6, x \end{pmatrix}\)

8. \((8) 3^+\)
 \(\begin{pmatrix} 1/3,1/3,-1/3 \\ x+1/6, x+1/3, x \end{pmatrix}\)

9. \((9) 3^-\)
 \(\begin{pmatrix} x,x,x \end{pmatrix}\)

10. \((10) 3^-\)
 \(\begin{pmatrix} x,x+1/2, x \end{pmatrix}\)

11. \((11) 3^-\)
 \(\begin{pmatrix} +1/2, x, x \end{pmatrix}\)

12. \((12) 3^-\)
 \(\begin{pmatrix} x-1/2, x+1/2, x \end{pmatrix}\)
Continued

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(2) 2 (0,0,1/2) 1/4,0,z
(3) 2 (0,y,0) (2z) (2,0,1/2)
(4) 2 x,1/4,1/4 (2z) (0,1/2,1/2)
(5) 3* (1/3,1/3,1/3) x+1/6,x+1/3,x
(3xyz) (1/2,1/2,0)
(6) 3* x,x+1/2,x
(7) 3* x+1/2,x-1/2,x
(8) 3* x,x,x
(9) 3' (1/3,1/3,1/3) x+1/3,x+1/6,x
(3xyz) (1/2,1/2,0)
(10) 3' x,x,x
(11) 3' x+1/2,x+1/2,x
(12) 3' (1/3,-1/3,1/3) x-1/6,x+1/3,x
(13) 2' (1/2,1/2,0) x,x+1/4,3/8
(2xyz) (1/4,3/4,3/4)' (2) 2 x, x+3/4,1/8
(2xyz) (3,1/4,1/4,1/4)' (15) 4* (0,0,3/4) 1/2,-1/4, z
(4z) (2) 1/4,1/4,1/4)' (16) 4* (0,1/4,0) 0,1/4, z
(4z) (2) 1/4,1/4,1/4)' (17) 4* (1/4,0,0) x,3/4,0
(4z) (1/4,3/4,3/4)' (19) 2' (0,1/4,-1/4) 3/8,y+1/2, y
(2xyz) (3,1/4,1/4,1/4)' (20) 4* (3/4,0,0) x,-1/4,1/2
(4z) (3,1/4,1/4,1/4)' (18) 2' (0,1/4,1/4) 1/8,y,y
(2xyz) (3,1/4,1/4,1/4)' (21) 4* (0,3/4,0) 1/2,y,1/4
(4z) (1/4,3/4,3/4)' (22) 2' (3/4,0,3/4) x,1/8,x
(2xyz) (3,1/4,1/4,1/4)' (23) 4' (0,1/4,0) 0,y,1/4
(4z) (1/4,1/4,1/4)' (24) 2' (1/4,0,-1/4) x+1/2,3/8,x
(2xyz) (3,1/4,1/4,1/4)' (25) 1/2 3/4,3/4,1/8
(3,1/4,1/4,1/4) (26) d (3/4,1,1/4) x,y,3/8
(3xyz) (3,1/4,1/4,1/4) (27) d (1/4,0,1/4) x,1/8,z
(3xyz) (3,1/4,1/4,1/4) (28) d (0,3/4,3/4) 1/8,y,z
(3xyz) (3,1/4,1/4,1/4) (29) 3* x+1/2,x,x;
(3xyz) (5,1/8,1/8) (31) 3* x+1/2,x+1, x;
(3xyz) (3,1/4,3/4,1/4) (32) 3* x+1/2,x; x;
(3xyz) (3,1/4,3/4,1/4) (33) 3* x,x+1/2,x;
(3xyz) (5,1/8,1/8) (35) 3* x-1/2,x+1, x;
(3xyz) (3,1/4,3/4,1/4) (36) 3* x+1, x;
(3xyz) (3,1/4,3/4,1/4) (37) g' (-1/4,1/4,1/2) x+1/4,x,z
(mxyz) (0,1/2,1/2)' (38) g' (1/2,1/2,0) x,x,x
(mxyz) (1/2,1/2,0)' (39) 4* 1/4,1/4,z; 1/4,1/4,1/4
(4z) (1/2,0,1/2)' (40) 4* 0,0,0; 0,0,0
(4z) (1/2,0,1/2)' (41) 4' x,0,1/2; 0,0,1/2
(4z) (0,1/2,1/2)' (42) m' x,y,y
(mxyz) (0,0,0)' (43) g' (1/2,1/4,1/4) x,y+1/4,y
(mxyz) (1/2,1/2,0)' (44) 4' x,1/4,1/4; 1/4,1/4,1/4
(4z) (1/2,0,1/2)' (45) 4' x,-1/4,y,1/4; -1/4,1,4,1/4
(4z) (0,1/2,1/2)' (46) m' x+1/2,y,x
(mxyz) (1/2,0,1/2)' (47) 4' y,0; 0,0,0
(4z) (0,0,0)' (48) m' x+1/2,y,x
(mxyz) (1/2,0,1/2)' (49) 4' y,0; 0,0,0
(4z) (0,0,0)' (49) 4' y,0; 0,0,0

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.
192 i 1

(1) x,y,z [u,v,w]
(2) x, y+1/2,z+1/2 [u,v,w]
(3) x+1/2,y+1/2,z [u,v,w]
(4) x+1/2,y+z+1/2 [u,v,w]
(5) x+1/2,y,z+1/2 [w,u,v]
(6) z+1/2,x+1/2 [w,u,v]
(7) z, x+1/2,y+1/2 [w,u,v]
(8) z+1/2,x+1/2, y [w,u,v]
Symmetry of Special Projections

Along $[0,0,1]$ $p4mm'$
\[\mathbf{a}^* = (\mathbf{a} - \mathbf{b})/4 \quad \mathbf{b}^* = (\mathbf{a} + \mathbf{b})/4 \]
Origin at $0,0,z$

Along $[1,1,1]$ $p6mm'$
\[\mathbf{a}^* = (2\mathbf{a} - \mathbf{b} - \mathbf{c})/6 \quad \mathbf{b}^* = (-\mathbf{a} + 2\mathbf{b} - \mathbf{c})/6 \]
Origin at x,x,x

Along $[1,1,0]$ $c2mm'$
\[\mathbf{a}^* = \mathbf{c} \quad \mathbf{b}^* = -(\mathbf{a} + \mathbf{b})/2 \]
Origin at $x,x,1/8$
Origin at \(\bar{4}3m' \), at \(-1/8, -1/8, -1/8\) from center \((3m')\)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/8; \quad -1/8 \leq z \leq 1/8; \quad y \leq \min(1/2-x,x); \quad -y \leq z \leq y \]

Vertices

\[0,0,0 \quad 1/2,0,0 \quad 3/8,1/8,1/8 \quad 1/8,1/8,1/8 \quad 3/8,1/8,-1/8 \quad 1/8,1/8,-1/8 \]

Symmetry Operations

For \((0,0,0)\) set

\[
\begin{align*}
(1) & \quad 1 \\
(1) & \quad 0,0,0 \\
(5) & \quad x,x,x \\
(3_{xyz} | 0,0,0) & \\
(9) & \quad x,x,x \\
(3_{xyz}^{-1}| 0,0,0) & \\
(2) & \quad 2 (0,0,1/2) \quad 0,1/4,z \\
& \quad (2\bar{1}) 0,1/2,1/2 \\
(6) & \quad 3^{-} (1/3,-1/3,1/3) \\
& \quad x+1/6,x+1/6,x \\
& \quad (3_{xyz}^{-1}| 1/2,0,1/2) \\
(10) & \quad 3^{-} x, x+1/2,x \\
& \quad (3_{xyz}^{-1}| 1/2,1/2,0) \\
(12) & \quad 3^{-} x, x+1/2,x \\
& \quad (3_{xyz}^{-1}| 0,1/2,1/2) \\
(3) & \quad 2 (0,1/2,0) \quad 1/4,y,0 \\
& \quad (2\bar{1} 1/2,1/2,0) \\
(7) & \quad 3^{-} (-1/3,1/3,1/3) \\
& \quad x+1/3,x-1/6,x \\
& \quad (3_{xyz}^{-1}| 0,1/2,1/2) \\
(11) & \quad 3^{-} \bar{x}, \bar{x}+1/2,\bar{x} \\
& \quad (3_{xyz}^{-1}| 1/2,0,1/2) \\
(8) & \quad 3^{-} (1/3,1/3,-1/3) \\
& \quad x+1/6,x+1/3,x \\
& \quad (3_{xyz}^{-1}| 1/2,1/2,0) \\
(4) & \quad 2 (1/2,0,0) \quad x,0,1/4 \\
& \quad (2\bar{1} 1/2,0,1/2) \\
(11) & \quad 3^{-} \bar{x}, \bar{x}+1/2,\bar{x} \\
& \quad (3_{xyz}^{-1}| 1/2,0,1/2) \\
\end{align*}
\]
For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(1) 1/2,1/2,0

(2) 2 (0,0,1/2) 1/4,0,z
(2) 0,0,1/2

(3) 2 0,y,0
(3) 0,0,0

(4) 2 x,1/4,1/4
(4) 0,1/2,1/4

(5) 3' (1/3,1/3,1/3)
(3) 1/3,1/3,1/3

x+1/6,x+1/3,x
(3) x

(3) x+1/2,x+1/2
(3) x

(7) 3' x+1/2,x-1/2
(7) x

(8) 3' x,x,x
(8) x

(9) 3' (1/3,1/3,1/3)
(9) 1/3,1/3,1/3

x+1/6,x+1/3,x
(3) x

(3) x
(3) x

(11) 3' x+1/2,x+1/2,x
(11) x

(12) 3' (1/3,1/3,1/3)
(12) x-1/6,x+1/3,x

(3) x+1/2,x+1/2
(3) x

(13) 2 (1/2,1/2,0)
(13) 1/2,1/2,0

x,x+1/4,3/8
(3) x

(14) 2 x,x+3/4,1/8
(14) x

(15) 4' (0,0,3/4) 1/2,-1/4,z
(15) x

(16) 4* (0,0,1/4) 0,1/4,z
(16) x

(17) 4' (1/4,0,0) x,3/4,0
(17) x

(18) 2 (0,1/4,1/4) 1/8,y,y
(18) x

(19) 2 (0,1/4,-1/4) 3/8,y+1/2,y
(19) x

(20) 4* (3/4,0,0) x,-1/4,1/2
(20) x

(21) 4* (0,3/4,0) 1/2,y,1/4
(21) x

(22) 2 (3/4,0,3/4) x,1/8,x
(22) x

(23) 4' (0,1/4,0) 0,y,1/4
(23) x

(24) 2 (1/4,0,-1/4) x+1/2,3/8,x
(24) x

(25) 1' 3/8,3/8,1/8
(25) x

(26) d' (3/4,1/4,0) x,y,3/8
(26) x

(27) d' (1/4,1/4,0) x,1/8,z
(27) x

(28) d' (0,3/4,3/4) 1/8,y,z
(28) x

(29) 3' x+1/2,x;
(29) x

(30) 3' x-3/2,x+1,x;
(30) x

(31) 3' x+1/2,x+1,x;
(31) x

(32) 3' x+1/2,x,x;
(32) x

(33) 3' x,x+1/2,x;
(33) x

(34) 3' x+1/2,x-1/2,x;
(34) x

(35) 3' x-1/2,x+1,x;
(35) x

(36) 3' x+1,x;
(36) x

(37) g' (-1/4,1/4,1/2) x+1/4,x,z
(37) x

(38) g' (1/2,1/2,0) x,y,x
(38) x

(39) 4' 1/4,1/4,z; 1/4,1/4,1/4
(39) x

(40) g' 0,0,z; 0,0,0
(40) x

(41) 4' x,0,1/2; 0,0,1/2
(41) x

(42) m' x,y,y
(42) x

(43) g' (1/2,1/4,1/4) x,y+1/4,y
(43) x

(44) 4' x,1/4,1/4; 1/4,1/4,1/4
(44) x

(45) 4' -1/4,y,1/4; -1/4,1/4,1/4
(45) x

(46) m' x+1/2,y,x
(46) x

(47) 4' 0,y,0; 0,0,0
(47) x

(48) g' (1/4,1/2,1/4) x+1/4,y,x
(48) x

Generators selected
(1): t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

192 1

(1) x,y,z [u,v,w]

(2) x,y+1/2,z+1/2 [u,v,w]

(3) x+1/2,y+1/2,z [u,v,w]

(4) x+1/2,y,z+1/2 [u,v,w]

(5) z,x,y [w,u,v]

(6) z+1/2,x,y+1/2 [w,u,v]

(7) z,x+1/2,y+1/2 [w,u,v]

(8) z+1/2,x+1/2,y [w,u,v]

227.5.1632 - 4 - 3819
Symmetry of Special Projections

8	a	\(4\bar{3}m'\)	0,0,0	3/4,1/4,3/4 [0,0,0]		
16	d	\(\bar{3}m'\)	5/8,5/8,5/8 [u,u,u]	3/8,7/8,1/8 [u,u,u]	7/8,1/8,3/8 [u,u,u]	1/8,3/8,7/8 [u,u,u]
16	c	\(\bar{3}m'\)	1/8,1/8,1/8 [u,u,u]	7/8,3/8,5/8 [u,u,u]	3/8,5/8,7/8 [u,u,u]	5/8,7/8,3/8 [u,u,u]

Symmetry of Special Projections

- **Along \([0,0,1]\)**
 - \(p4m'm'\)
 - \(a^* = (a - b)/4\)
 - \(b^* = (a + b)/4\)
 - Origin at 0,0,z

- **Along \([1,1,1]\)**
 - \(p6m'm'\)
 - \(a^* = (2a - b - c)/6\)
 - \(b^* = (-a + 2b - c)/6\)
 - Origin at x,x,x

- **Along \([1,1,0]\)**
 - \(c2m'm'\)
 - \(a^* = (-a + b)/2\)
 - \(b^* = c\)
 - Origin at x,x,1/8
Origin at center (3), at 3/8,3/8,3/8 from 23

Asymmetric unit
-1/8 ≤ x ≤ 3/8; -1/8 ≤ y ≤ 0; -1/4 ≤ z ≤ 0; y ≤ min(1/4-x,x); -y-1/4 ≤ z ≤ y

Vertices
-1/8,-1/8,-1/8 3/8,-1/8,-1/8 1/4,0,0 0,0,0 1/4,0,-1/4 0,0,-1/4

Symmetry Operations
For (0,0,0) + set

1 0,0,0 1 (1) 1
(1) 0,1/2,0 1/8,3/8,3/8

(2) 2 0,1/2,0 1/8,3/8,3/8
(2) 0,1/2,0 1/8,3/8,3/8

(2) 1/4,3/4,1/2 1/4,3/4,1/2
(2) 1/4,3/4,1/2 1/4,3/4,1/2

(3) 3 0,0,0 0,0,0 0,0,0
(3) 3 0,0,0 0,0,0 0,0,0

(3) x,y,z 1/2,1/2,1/2
(3) x,y,z 1/2,1/2,1/2

(3) x,y,z 3/4,1/2,1/2
(3) x,y,z 3/4,1/2,1/2

(3) x,y,z 1/4,3/4,1/2
(3) x,y,z 1/4,3/4,1/2

(3) x,y,z 1/4,3/4,1/2
(3) x,y,z 1/4,3/4,1/2
Continued

(13) \(2 \ (1/2,1/2,0) \ x,x-1/4,0 \)
(2) \(3 \ x,x+1/2,1/4 \)
(14) \(4 \ (0,0,3/4) \ 1/8,-1/8,z \)
(15) \(4 \ (0,0,1/4) \ -3/8,3/8,z \)
(16) \(4 \ (0,1/4,1/4) \ 1/4,0,3/4 \)

(17) \(4 \ (3/4,0,0) \ x,1/8,-1/8 \)
(18) \(2 \ (0,1/2,1/2) \ 0,y+1/4,y \)
(19) \(2 \ 1/4,y+1/2,y \)
(20) \(4 \ (1/4,0,0) \ x,-3/8,3/8 \)
(4) \(1/4,0,3/4 \)

(21) \(4 \ (0,1/4,0) \ 3/8,y,-3/8 \)
(4) \(3/4,1/4,0 \)
(22) \(2 \ (1/2,0,1/2) \ x-1/4,0,x \)
(23) \(4 \ (0,3/4,0) \ -1/8,y,1/8 \)
(4) \(1/4,0,3/4 \)
(24) \(2 \ 1/2,1/2,1/2 \)

(25) \(\bar{1} \ 0,0,0 \)
(26) \(d \ (3/4,1/4,0) \ x,y,1/4 \)
(27) \(d \ (1/4,0,3/4) \ x,1/4,z \)
(28) \(d \ (0,3/4,1/4) \ 1/4,y,z \)
(29) \(3^+ \ x,x;x; \)
(30) \(\bar{3} \ x,x,x; \)
(31) \(\bar{3} \ x,x,x; \)
(32) \(3^+ \ x,x,x; \)
(33) \(\bar{3} \ x,x,x; \)
(34) \(\bar{3} \ x,x,x; \)
(35) \(\bar{3} \ x,x,x; \)
(36) \(3^+ \ x,x,x; \)
(37) \(g \ (-1/4,1/4,1/2) \ x+1/2,x,z \)
(38) \(n \ (1/2,1/2,1/2) \ x,x,z \)
(39) \(g \ (3/4,3/4,0) \ 1/4,3/4) \)
(40) \(4 \ (1/8,1/8,z) \ 1/8,1/8,3/8 \)
(4) \(1/4,0,3/4 \)

(41) \(4 \ (3/4,3/8,3/8) \ 1/8,3/8,3/8 \)
(4) \(1/4,3/4,0 \)
(42) \(g \ (0,-1/4,1/4) \ x,y+1/2,y \)
(43) \(n \ (1/2,1/2,1/2) \ x,y,y \)
(44) \(4 \ (1/8,1/8,z) \ 1/8,1/8,3/8 \)
(4) \(1/4,0,3/4 \)

(45) \(4 \ (1/4,0,1/4) \ x+1/2,y,x \)
(46) \(g \ (1/4,0,1/4) \ 1/8,1/8,3/8 \)
(47) \(4 \ (1/4,0,1/4) \ 1/8,1/8,3/8 \)
(48) \(n \ (1/2,1/2,1/2) \ x,y,x \)
(4) \(1/4,0,3/4 \)

For \(0,1/2,1/2\) + set
Generators selected \[(1); \ t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

\[192 \ h \ 1\]

(1) \(x,y,z \ [u,v,w]\)
(2) \(x+1/4,y+3/4,z+1/2 \ [u,v,w]\)
(3) \(x+3/4,y+1/2,z+1/4 \ [u,v,w]\)
(4) \(z+3/4,x+1/4,z+1/4 \ [u,v,w]\)
(5) \(z+1/2,x+1/4,y+3/4 \ [w,u,v]\)

\[228.1.1633 - 4 - 3825\]
Continued

<table>
<thead>
<tr>
<th>48</th>
<th>d</th>
<th>4..</th>
<th>7/8,1/8,1/8 [u,0,0]</th>
<th>3/8,5/8,5/8 [u,0,0]</th>
<th>1/8,7/8,1/8 [0,u,0]</th>
<th>5/8,3/8,5/8 [0,u,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/8,1/8,7/8 [0,0,u]</td>
<td>5/8,5/8,3/8 [0,0,u]</td>
<td>7/8,1/8,7/8 [0,u,0]</td>
<td>3/8,5/8,3/8 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5/8,3/8,7/8 [u,0,0]</td>
<td>1/8,7/8,3/8 [u,0,0]</td>
<td>7/8,3/8,1/8 [0,0,u]</td>
<td>3/8,7/8,5/8 [0,u,0]</td>
</tr>
<tr>
<td>32</td>
<td>c</td>
<td>.3.</td>
<td>0,0,0 [u,u,u]</td>
<td>1/4,3/4,1/2 [u,u,u]</td>
<td>3/4,1/2,1/4 [u,u,u]</td>
<td>1/2,1/4,3/4 [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4,1/4,0 [u,u,u]</td>
<td>1/2,1/2,1/2 [u,u,u]</td>
<td>1/4,0,3/4 [u,u,u]</td>
<td>0,3/4,1/4 [u,u,u]</td>
</tr>
<tr>
<td>32</td>
<td>b</td>
<td>.32</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
<td>1/2,3/4,0 [0,0,0]</td>
<td>3/4,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4,3/4,3/4 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>1/2,1/4,0 [0,0,0]</td>
<td>1/4,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>16</td>
<td>a</td>
<td>23.</td>
<td>1/8,1/8,1/8 [0,0,0]</td>
<td>7/8,3/8,7/8 [0,0,0]</td>
<td>7/8,7/8,7/8 [0,0,0]</td>
<td>1/8,5/8,1/8 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Origin at 1/8,3/8,z</th>
<th>Along [0,0,1] p4m'm'</th>
<th>a* = (a - b)/4, b* = (a + b)/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (2a - b - c)/6</td>
<td>Origin at x,x,x</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Origin at x-1/4,x+1/4,0</th>
<th>Along [1,1,0] p2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (-a + b)/4, b* = c/2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Origin at x,x,x</th>
<th>Along [1,1,1] p6m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (2a - b - c)/6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Origin at x,x,x</th>
<th>Along [1,1,0] p2mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a* = (-a + b)/4, b* = c/2</td>
<td></td>
</tr>
</tbody>
</table>
Origin at center (31’), at 3/8,3/8,3/8 from 231’

Asymmetric unit
-1/8 ≤ x ≤ 3/8; -1/8 ≤ y ≤ 0; -1/4 ≤ z ≤ 0; y ≤ min(1/4-x,x); -y-1/4 ≤ z ≤ y

Vertices
-1/8,-1/8,-1/8 3/8,-1/8,-1/8 1/4,0,0 0,0,0 1/4,0,-1/4 0,0,-1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 0,0,0)

(5) 3' x,x,x
(3_{xyz} | 0,0,0)

(9) 3' x,x,x
(3_{xyz}^{-1} | 0,0,0)

(2) 2 (0,0,1/2) 1/8,3/8,z
(2_2 | 1/4,3/4,1/2)

(6) 3' (1/3,-1/3,1/3)
\bar{x}+1/6, \bar{x}+5/12, \bar{x}
(3_{xyz}^{-1} | 2,1/4,3/4)

(10) 3' x+1/4,x+1/2, \bar{x}
(3_{xyz} | 3/4,1/2,1/4)

(3) 2 (0,1/2,0) 3/8,y,1/8
(2_2 | 3/4,1/2,1/4)

(7) 3' (-1/3,1/3,1/3)
\bar{x}+7/12, \bar{x}-1/6, \bar{x}
(3_{xyz}^{-1} | 1/4,3/4,1/2)

(11) 3' \bar{x}+3/4, \bar{x}+1/4, x
(3_{xyz} | 1/2,1/4,3/4)

(4) 2 (1/2,0,0) x,1/8,3/8
(2_2 | 1/2,1/4,3/4)

(8) 3' (1/3,1/3,-1/3)
\bar{x}+5/12, \bar{x}+7/12, x
(3_{xyz}^{-1} | 3/4,1/2,1/4)

(12) 3' \bar{x}-1/2, x+3/4, \bar{x}
(3_{xyz}^{-1} | 1/4,3/4,1/2)
Continued 228.2.1634 Fd3c1'

(33) $\bar{3}$' x-1/2, x-1/2, x;
(34) $\bar{3}$' x+1/4, x-1/2, x;
(35) $\bar{3}$' x+1/4, x+5/4, x;
(36) $\bar{3}$' x+3/2, x-3/4, x;

(37) c (0, 0, 1/2) x+1/4, x, z
(m_{xy} | 1/4, 1/4, 1/2)

(38) g (1/4, 1/4, 0) x+1/4, x, z
(m_{xy} | 1/2, 0, 0)

(39) $\bar{4}$' 1/8, 5/8, z; 1/8, 5/8, 3/8
($ m_{yz} | 3, 1/4, 1/2$)

(40) $\bar{4}$' 3/8, 3/8, 3/8; 3/8, 3/8, 1/8
($ m_{yz} | 0, 3/4, 1/4$)

(41) $\bar{4}$' x, -1/8, 3/8; 1/8, -1/8, 3/8
($ m_{yz} | 0, 3/4, 1/4$)

(42) g (0, 1/4, -1/4) x, y+1/2, y
($ m_{yz} | 0, 3/4, 1/4$)

(43) a (1/2, 0, 0) x, y, y
($ m_{yz} | 1/2, 0, 0$)

(44) $\bar{4}$' x, 5/8, 1/8; 3/8, 5/8, 1/8
($ m_{yz} | 3, 0, 3/4$)

(45) $\bar{4}$' -1/8, y, 3/8; -1/8, 1/8, 3/8
($ m_{xy} | 3/4, 1/4, 1/2$)

(46) b (0, 1/2, 0) x+3/4, y, x
($ m_{xy} | 3/4, 1/2, 3/4$)

(47) $\bar{4}$' 1/8, y, 1/8; 1/8, 3/8, 1/8
($ m_{xy} | 0, 3/4, 1/4$)

(48) g (1/4, 0, 1/4) x+1/4, y, x
($ m_{xy} | 1/2, 0, 0$)

For (1/2, 0, 1/2) + set

(1) t (1/2, 0, 1/2)

(2) 2 3/8, 3/8, z

(3) 2 (0, 1/2, 0) 1/8, y, 3/8

(4) 2 x, 1/8, 1/8

(5) 3^+ (1/3, 1/3, 1/3) x+1/6, x-1/6, x
($ m_{xy} | 1/2, 0, 1/2$)

(6) 3^+ x, x+1/4, x

(7) 3^+ x+3/4, x, x

(8) 3^+ x+1/4, x+3/4, x

(9) 3 (1/3, 1/3, 1/3) x+1/6, x-1/3, x
($ m_{xy} \mid 1/2, 0, 1/2$)

(10) 3' (-1/3, 1/3, 1/3) x+5/12, x+1/6, x

(11) 3' x+1/4, x+1/4, x

(12) 3' x, x+3/4, x

(13) 2 (1/4, 1/4, 0) x, x, 1/4

(14) 2 (-1/4, 1/4, 0) x, x+1/4, 0

(15) 4' (0, 0, 1/4) 3/8, -3/8, z

(16) 4^* (0, 0, 3/4) -1/8, 5/8, z

(17) 4' (1/4, 0, 0) x, 3/8, 1/8

(18) 2 (0, 3/4, 3/4) 1/4, y, y

(19) 2 (0, 1/4, -1/4) 0, y+1/4, y

(20) 4' (3/4, 0, 0) x, -1/8, 1/8

(21) 4^* (0, 1/4, 0) 3/8, y, 1/8

(22) 2 (1/2, 0, 1/2) x+1/4, 0, x

(23) 4^* (0, 3/4, 0) -1/8, y, 5/8

(24) 2 x, 1/4, x

(25) $\bar{1}$ 1/4, 0, 1/4

(26) d (1/4, 1/4, 0) x, y, 0

(27) d (3/4, 0, 1/4) x, 1/4, z

(28) d (0, 3/4, 3/4) 0, y, z

(29) $\bar{3}$' x-1/2, x-1/2, x;

(30) $\bar{3}$' x-3/2, x+3/4, x;

(31) $\bar{3}$' x-1/4, x+1/2, x;

(32) $\bar{3}$' x+3/4, x-1/4, x;

(33) $\bar{3}$' x+1/2, x, x;

(34) $\bar{3}$' x+5/4, x-1, x;

(35) $\bar{3}$' x-3/4, x+3/4, x;

(36) $\bar{3}$' x+1/2, x-1/4, x;

(37) c (0, 0, 1/2) x+3/4, x, z

(38) g (1/4, 1/4, 0) x-1/4, x, z

(39) $\bar{4}'$ 1/8, 1/8, z; 1/8, 1/8, 3/8

(40) $\bar{4}'$ 3/8, -1/8, z; 3/8, 1/8, 1/8

(41) $\bar{4}'$ x, 1/8, 5/8; 3/8, 1/8, 5/8

(42) a (1/2, 0, 0) x, y+1/4, y

(43) g (0, 1/4, 1/4) x, y+1/4, y

(44) $\bar{4}'$ x, 3/8, 3/8; 1/8, 3/8, 3/8

(45) $\bar{4}'$ 1/8, y, 5/8; 1/8, 3/8, 5/8

(46) b (1/4, 0, 1/4) x+1/2, y, x

(47) $\bar{4}'$ 3/8, y, -1/8; 3/8, 1/8, -1/8

(48) b (0, 1/2, 0) x, y, x
Continued 228.2.1634 Fd\(^{3}\)c1'

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>192 h 11'</td>
<td>(0,0,0) + (0,1/2,1/2,) + (1/2,0,1/2) + (1/2,1/2,0) +</td>
</tr>
<tr>
<td></td>
<td>(0,0,0)' + (0,1/2,1/2,')' + (1/2,0,1/2') + (1/2,1/2,0')' +</td>
</tr>
</tbody>
</table>

(1) x,y,z [0,0,0]	(2) x+1/4,y+3/4,z+1/2 [0,0,0]
	(3) x+3/4,y+1/2,z+1/4 [0,0,0]
	(4) x+1/2,y+1/4,z+3/4 [0,0,0]
(5) z,x,y [0,0,0]	(6) z+1/2,x+1/4,y+3/4 [0,0,0]
	(7) z+1/4,x+3/4,y+1/2 [0,0,0]
	(8) z+3/4,x+1/2,y+1/4 [0,0,0]
(9) y,z,x [0,0,0]	(10) y+3/4,z+1/2,x+1/4 [0,0,0]
	(11) y+1/2,z+1/4,x+3/4 [0,0,0]
	(12) y+1/4,z+3/4,x+1/2 [0,0,0]
(13) y+3/4,x+1/4,z [0,0,0]	(14) y+1/2,x+1/2,z+1/2 [0,0,0]
	(15) y+1/4,x,z+3/4 [0,0,0]
	(16) y+3/4,z+1/4 [0,0,0]
(17) x+3/4,z+1/4,y [0,0,0]	(18) x,z+3/4,y+1/4 [0,0,0]
	(19) x+1/2,z+1/2,y+1/2 [0,0,0]
	(20) x+1/4,z,y+3/4 [0,0,0]

228.2.1634 - 7 - 3834
<table>
<thead>
<tr>
<th>228.2.1634</th>
<th>Fd3c1$'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(21) $z+3/4,y+1/4,x$ [0,0,0]</td>
<td>(22) $z+1/4,y,x+3/4$ [0,0,0]</td>
</tr>
<tr>
<td>(25) x,y,z [0,0,0]</td>
<td>(26) $x+3/4,y+1/4,z+1/2$ [0,0,0]</td>
</tr>
<tr>
<td>(29) \bar{z},x,y [0,0,0]</td>
<td>(30) $\bar{z}+1/2,x+3/4,y+1/4$ [0,0,0]</td>
</tr>
<tr>
<td>(33) \bar{y},z,x [0,0,0]</td>
<td>(34) $y+1/4,z+1/2,x+3/4$ [0,0,0]</td>
</tr>
<tr>
<td>(37) $\bar{y}+1/4,x+3/4,z$ [0,0,0]</td>
<td>(38) $y+1/2,x+1/2,z+1/2$ [0,0,0]</td>
</tr>
<tr>
<td>(41) $x+y+1/4,z+3/4,y$ [0,0,0]</td>
<td>(42) $x,z+1/4,y+3/4,x$ [0,0,0]</td>
</tr>
<tr>
<td>(45) $\bar{z}+1/4,y+3/4,x$ [0,0,0]</td>
<td>(46) $z+3/4,y,x+1/4$ [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>96</th>
<th>g</th>
<th>.21'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4,y,y [0,0,0]</td>
<td>$0,\bar{y}+3/4,y+1/2$ [0,0,0]</td>
<td>$1/2,y+1/2,y+1/4$ [0,0,0]</td>
</tr>
<tr>
<td>$\bar{y},1/4,y$ [0,0,0]</td>
<td>$\bar{y}+1/2,0,y+3/4$ [0,0,0]</td>
<td>$y+1/4,1/2,y+1/2$ [0,0,0]</td>
</tr>
<tr>
<td>$y,\bar{y},1/4$ [0,0,0]</td>
<td>$y+3/4,\bar{y}+1/2,0$ [0,0,0]</td>
<td>$y+1/2,\bar{y}+1/4,1/2$ [0,0,0]</td>
</tr>
<tr>
<td>3/4, y,y [0,0,0]</td>
<td>$0,y+1/4,y+1/2$ [0,0,0]</td>
<td>$1/2,\bar{y}+1/2,\bar{y}+3/4$ [0,0,0]</td>
</tr>
<tr>
<td>$y,3/4,y$ [0,0,0]</td>
<td>$y+1/2,0,y+1/4$ [0,0,0]</td>
<td>$\bar{y}+3/4,1/2,\bar{y}+1/2$ [0,0,0]</td>
</tr>
<tr>
<td>$\bar{y},y,3/4$ [0,0,0]</td>
<td>$y+1/4,\bar{y}+1/2,0$ [0,0,0]</td>
<td>$\bar{y}+1/2,\bar{y}+3/4,1/2$ [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>96</th>
<th>f</th>
<th>2..1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,1/8,1/8 [0,0,0]</td>
<td>$x+1/4,5/8,5/8$ [0,0,0]</td>
<td>$1/8,x+1/8$ [0,0,0]</td>
</tr>
<tr>
<td>1/8,1/8,x [0,0,0]</td>
<td>$5/8,5/8,\bar{x}+1/4$ [0,0,0]</td>
<td>$7/8,\bar{x}+1/4,7/8$ [0,0,0]</td>
</tr>
<tr>
<td>x+3/4,3/8,7/8 [0,0,0]</td>
<td>$\bar{x},7/8,3/8$ [0,0,0]</td>
<td>$7/8,3/8,\bar{x}$ [0,0,0]</td>
</tr>
<tr>
<td>x,7/8,7/8 [0,0,0]</td>
<td>$x+3/4,3/8,3/8$ [0,0,0]</td>
<td>$7/8,\bar{x},7/8$ [0,0,0]</td>
</tr>
<tr>
<td>7/8,7/8,\bar{x} [0,0,0]</td>
<td>$3/8,3/8,x+3/4$ [0,0,0]</td>
<td>$1/8,\bar{x}+3/4,1/8$ [0,0,0]</td>
</tr>
<tr>
<td>$\bar{x}+1/4,5/8,1/8$ [0,0,0]</td>
<td>$x,1/8,5/8$ [0,0,0]</td>
<td>$1/8,5/8,x$ [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>64</th>
<th>e</th>
<th>.3.1'</th>
</tr>
</thead>
<tbody>
<tr>
<td>x,x,x [0,0,0]</td>
<td>$\bar{x}+1/4,\bar{x}+3/4,x+1/2$ [0,0,0]</td>
<td>$\bar{x}+1/4,\bar{x}+3/4,x+1/2$ [0,0,0]</td>
</tr>
<tr>
<td>$\bar{x}+3/4,x+1/2,x+1/4$ [0,0,0]</td>
<td>$x+1/2,x+1/4,\bar{x}+3/4$ [0,0,0]</td>
<td>$x+1/2,x+1/4,\bar{x}+3/4$ [0,0,0]</td>
</tr>
<tr>
<td>$x+3/4,x+1/4,\bar{x}$ [0,0,0]</td>
<td>$\bar{x}+1/2,\bar{x}+1/2,\bar{x}+1/2$ [0,0,0]</td>
<td>$\bar{x}+1/2,\bar{x}+1/2,\bar{x}+1/2$ [0,0,0]</td>
</tr>
<tr>
<td>$x+1/4,\bar{x}+1/2,x+3/4$ [0,0,0]</td>
<td>$\bar{x}+1/2,x+3/4,x+1/4$ [0,0,0]</td>
<td>$\bar{x}+1/2,x+3/4,x+1/4$ [0,0,0]</td>
</tr>
<tr>
<td>$\bar{x}+1/4,\bar{x}+3/4,x$ [0,0,0]</td>
<td>$x+1/2,x+1/2,x+1/2$ [0,0,0]</td>
<td>$x+1/2,x+1/2,x+1/2$ [0,0,0]</td>
</tr>
<tr>
<td>$\bar{x}+3/4,x,x+1/4$ [0,0,0]</td>
<td>$x,\bar{x}+1/4,x+3/4$ [0,0,0]</td>
<td>$x,\bar{x}+1/4,x+3/4$ [0,0,0]</td>
</tr>
</tbody>
</table>

228.2.1634 - 8 - 3835
228.2.1634

Fd$\overline{3}$c1'

Continued

<table>
<thead>
<tr>
<th>48</th>
<th>d</th>
<th>0.41'</th>
<th>7/8,1/8,1/8 [0,0,0]</th>
<th>3/8,5/8,5/8 [0,0,0]</th>
<th>1/8,7/8,1/8 [0,0,0]</th>
<th>5/8,3/8,5/8 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/8,1/8,7/8 [0,0,0]</td>
<td>5/8,5/8,3/8 [0,0,0]</td>
<td>7/8,1/8,7/8 [0,0,0]</td>
<td>3/8,5/8,3/8 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5/8,3/8,7/8 [0,0,0]</td>
<td>1/8,7/8,3/8 [0,0,0]</td>
<td>7/8,3/8,1/8 [0,0,0]</td>
<td>3/8,7/8,5/8 [0,0,0]</td>
</tr>
<tr>
<td>32</td>
<td>c</td>
<td>0.31'</td>
<td>0,0,0 [0,0,0]</td>
<td>1/4,3/4,1/2 [0,0,0]</td>
<td>3/4,1/2,1/4 [0,0,0]</td>
<td>1/2,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4,1/4,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/4,0,3/4 [0,0,0]</td>
<td>0,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>32</td>
<td>b</td>
<td>0.321</td>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
<td>1/2,3/4,0 [0,0,0]</td>
<td>3/4,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4,3/4,3/4 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>1/2,1/4,0 [0,0,0]</td>
<td>1/4,0,1/2 [0,0,0]</td>
</tr>
<tr>
<td>16</td>
<td>a</td>
<td>23.1'</td>
<td>1/8,1/8,1/8 [0,0,0]</td>
<td>7/8,3/8,7/8 [0,0,0]</td>
<td>7/8,7/8,7/8 [0,0,0]</td>
<td>1/8,5/8,1/8 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4mm1'

- $a^* = (a - b)/4$
- $b^* = (a + b)/4$
-Origin at 1/8,3/8,z

Along [1,1,1] p6mm1'

- $a^* = (2a - b - c)/6$
- $b^* = (-a + 2b - c)/6$
-Origin at x,x,x

Along [1,1,0] p2mm1'

- $a^* = (-a + b)/4$
- $b^* = c/2$
-Origin at x,x,0
Origin at center (3'), at 3/8,3/8,3/8 from 23

Asymmetric unit
-1/8 ≤ x ≤ 3/8; -1/8 ≤ y ≤ 0; -1/4 ≤ z ≤ 0; y ≤ min(1/4-x,x); -y-1/4 ≤ z ≤ y

Vertices
-1/8,-1/8,-1/8 3/8,-1/8,-1/8 1/4,0,0 0,0,0 1/4,0,-1/4 0,0,-1/4

Symmetry Operations
For (0,0,0) + set

(1) 1
(1) 0,0,0

(2) 2 (0,0,1/2) 1/8,3/8,z (2) 1/4,3/4,1/2
(2) 1/4,3/4,1/2

(3) 2 (0,1/2,0) 3/8,y,1/8 (3) 3/4,1/2,1/4
(3) 3/4,1/2,1/4

(4) 2 (1/2,0,0) x,1/8,3/8 (4) 1/2,1/4,3/4
(4) 1/2,1/4,3/4

(5) 3' x,x,x
(5) 3',1/3,-1/3,1/3

X+1/6,x+5/12,x (3_1,1/2,1/4,3/4)
(3_1,1/2,1/4,3/4)

(6) 3' (1/3,-1/3,1/3) x+7/12,x-1/6,x (3_1^{-1},1/4,3/4,1/2)
(3_1^{-1},1/4,3/4,1/2)

(7) 3' (-1/3,1/3,1/3) (3_1^{-1},1/4,3/4,1/2)
(3_1^{-1},1/4,3/4,1/2)

(8) 3' (1/3,1/3,-1/3) x+5/12,x+7/12,x (3_1^{-1},3/4,1/2,1/4)
(3_1^{-1},3/4,1/2,1/4)

(9) 3' x,x,x
(9) 3',3/4,1/2,1/4

(3_1,3/4,1/2,1/4)
(3_1,3/4,1/2,1/4)

(10) 3' x+1/4,x+1/2,x (3_1,1/2,1/4,3/4)
(3_1,1/2,1/4,3/4)

(11) 3' x+3/4,x+1/4,x (3_1^{-1},1/4,3/4,1/2)
(3_1^{-1},1/4,3/4,1/2)

(12) 3' x-1/2,x+3/4,x (3_1^{-1},1/4,3/4,1/2)
(3_1^{-1},1/4,3/4,1/2)
Continued 228.3.1635 Fd33c

(33) $3' \cdot x-1/2, x-1/2, x$

(34) $3' \cdot x+1/4, x-1/2, x$

(35) $3' \cdot x+1/4, x+5/4, x$

(36) $3' \cdot x+3/2, x-3/4, x$

(37) $c(0,0,1/2) \quad x+1/4, x_\infty, z$

(38) $g(1/4,1/4,0) \quad x+1/4, x_\infty, z$

(39) $4' \cdot 1/8, 5/8, z; 1/8, 5/8, 3/8$

(40) $4' \cdot 3/8, 3/8, z; 3/8, 3/8, 1/8$

(41) $4' \cdot x-1/8, 3/8; 1/8, -1/8, 3/8$

(42) $g(0,1/4, -1/4) \quad x, y+1/2, y$

(43) $a(1/2,0,0) \quad x, y, y$

(44) $4' \cdot x, 5/8, 1/8; 3/8, 5/8, 1/8$

(45) $4' \cdot -1/8, y, 3/8; -1/8, 1/8, 3/8$

(46) $b(0,1/2,0) \quad x+3/4, y, x$

(47) $4' \cdot 1/8, y, 1/8; 1/8, 3/8, 1/8$

(48) $g(1/4,0,1/4) \quad x+1/4, y, x$

For $(1/2,0,1/2) + set$

(1) $t(1/2,0,1/2)$

(2) $2 \cdot 3/8, 3/8, z$

(3) $2 \cdot 0,1/2,0 \cdot 1/8, y, 3/8$

(4) $2 \cdot x, 1/8, 1/8$

(5) $3^+ (1/3,1/3,1/3)$

(6) $3^+ x, x+1/4, x$

(7) $3^+ x+3/4, x_\infty$

(8) $3^+ x+1/4, x_\infty+3/4, x$

(9) $3 \cdot (1/3,1/3,1/3)$

(10) $3' \cdot -1/3, 1/3, 1/3$

(11) $3' \cdot x+1/4, x+1/4, x$

(12) $3' \cdot x, x+3/4, x$

(13) $2' (1/4,1/4,0) \quad x, x, 1/4$

(14) $2' (-1/4,1/4,0) \quad x, x+1/4, 0$

(15) $4' \cdot (0,0,1/4) \quad 3/8, -3/8, z$

(16) $4' \cdot (0,0,3/4) \quad 1/4,0,3/4$}

(17) $4' (1/4,0,0) \quad x, 3/8, 1/8$

(18) $2' (0,3/4,3/4) \quad 1/4, y, y$

(19) $2' (0,1/4, -1/4) \quad 0, y+1/4, y$

(20) $4' \cdot (3/4,0,0) \quad x, -1/8, 1/8$

(21) $4' \cdot (0,1/4,0) \quad 3/8, y, 1/8$

(22) $2' (1/2,0,1/2) \quad x+1/4, 0, x$

(23) $4' \cdot (0,3/4,0) \quad -1/8, y, 5/8$

(24) $2' \cdot x, 1/4, x$

(25) $\tilde{1} \cdot 1/4, 0, 1/4$

(26) $d' (1/4,1/4,0) \quad x, y, 0$

(27) $d' (3/4,0,1/4) \quad x, 1/4, z$

(28) $d' (0,3/4,3/4) \quad 0, y, z$

(29) $3' \cdot x-1/2, x-1/2, x$

(30) $3' \cdot x-3/2, x+3/4, x$

(31) $3' \cdot x-1/4, x+1/2, x$

(32) $3' \cdot x+3/4, x-1/4, x$

(33) $3' \cdot x+1/2, x, x$

(34) $3' \cdot x+5/4, x, 1/4$

(35) $3' \cdot x+3/4, x+3/4, x$

(36) $3' \cdot x+1/2, x+1/4, x$

(37) $c(0,0,1/2) \quad x+3/4, \infty, z$

(38) $g(1/4,1/4,0) \quad x-1/4, x, z$

(39) $4' \cdot 1/8, 1/8, z; 1/8, 1/8, 3/8$

(40) $4' \cdot 3/8, -1/8, z; 3/8, -1/8, 1/8$

(41) $\overline{4} \cdot x, 1/8, 5/8; 3/8, 1/8, 5/8$

(42) $a(1/2,0,0) \quad x, y+1/4, y$

(43) $g(0,1/4,1/4) \quad x, y+1/4, y$

(44) $4' \cdot x, 3/8, 3/8; 1/8, 3/8, 3/8$

(45) $\overline{4} \cdot 1/8, y, 5/8; 1/8, 3/8, 5/8$

(46) $b(-1/4,0,1/4) \quad x+1/2, y, x$

(47) $\overline{4} \cdot 3/8, y, -1/8; 3/8, 1/8, -1/8$

(48) $b(0,1/2,0) \quad x, y, x$

(49) $(m_{xyz}) 1/4, 0, 1/2$
Continued 228.3.1635 Fd'3c

For (1/2,1/2,0) + set

<table>
<thead>
<tr>
<th>Positions</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t (1/2,1/2,0)</td>
<td>(0,0,0) + (0,1/2,1/2) + (1/2,0,1/2) + (1/2,1/2,0) +</td>
</tr>
<tr>
<td>(1) 1/2,1/2,0</td>
<td></td>
</tr>
<tr>
<td>(5) 3* (1/3,1/3,1/3)</td>
<td>(3)* x+3/4,y+1/4,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(x+1/6,x+1/3,x)</td>
<td>(3)* x+3/4,y+1/4,z+1/2 [u,v,w]</td>
</tr>
<tr>
<td>(3)* x+3/4,y+1/4,z+1/2</td>
<td></td>
</tr>
<tr>
<td>(9) 3' (1/3,1/3,1/3)</td>
<td>(3') x+1/4,x+1/4,x+1/4</td>
</tr>
<tr>
<td>(x+1/3,x+1/6,x)</td>
<td>(3') x+1/4,x+1/4,x+1/4</td>
</tr>
<tr>
<td>(3)* x+1/4,x+1/4,x+1/4</td>
<td></td>
</tr>
</tbody>
</table>

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13); (25).
Symmetry of Special Projections

Along [0,0,1]
$p4'mm'$
$a^* = (a - b)/4$
$b^* = (a + b)/4$
Origin at 1/8,3/8,z

Along [1,1,1]
$p6mm$
$a^* = (2a - b - c)/6$
$b^* = (-a + 2b - c)/6$
Origin at x,x,x

Along [1,1,0]
$p2mm1'$
$a^* = (-a + b)/4$
$b^* = c/2$
Origin at x,x,0

<table>
<thead>
<tr>
<th>48</th>
<th>d</th>
<th>4..</th>
<th>7/8,1/8,1/8 [u,0,0]</th>
<th>3/8,5/8,5/8 [u,0,0]</th>
<th>1/8,7/8,1/8 [0,u,0]</th>
<th>5/8,3/8,5/8 [0,0,u]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/8,1/8,7/8 [0,0,u]</td>
<td>5/8,5/8,3/8 [0,0,u]</td>
<td>7/8,1/8,7/8 [0,0,u]</td>
<td>3/8,5/8,3/8 [0,0,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5/8,3/8,7/8 [u,0,0]</td>
<td>1/8,7/8,3/8 [u,0,0]</td>
<td>7/8,3/8,1/8 [0,u,0]</td>
<td>3/8,7/8,5/8 [0,u,0]</td>
</tr>
<tr>
<td>32</td>
<td>c</td>
<td>.3'.</td>
<td>0,0,0 [0,0,0]</td>
<td>1/4,3/4,1/2 [0,0,0]</td>
<td>3/4,1/2,1/4 [0,0,0]</td>
<td>1/2,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4,1/4,0 [0,0,0]</td>
<td>1/2,1/2,1/2 [0,0,0]</td>
<td>1/4,0,3/4 [0,0,0]</td>
<td>0,3/4,1/4 [0,0,0]</td>
</tr>
<tr>
<td>32</td>
<td>b</td>
<td>.32'</td>
<td>1/4,1/4,1/4 [u,u,u]</td>
<td>0,1/2,3/4 [u,u,u]</td>
<td>1/2,3/4,0 [u,u,u]</td>
<td>3/4,0,1/2 [u,u,u]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4,3/4,3/4 [u,u,u]</td>
<td>0,1/2,1/4 [u,u,u]</td>
<td>1/2,1/4,0 [u,u,u]</td>
<td>1/4,0,1/2 [u,u,u]</td>
</tr>
<tr>
<td>16</td>
<td>a</td>
<td>23.</td>
<td>1/8,1/8,1/8 [0,0,0]</td>
<td>7/8,3/8,7/8 [0,0,0]</td>
<td>7/8,7/8,7/8 [0,0,0]</td>
<td>1/8,5/8,1/8 [0,0,0]</td>
</tr>
</tbody>
</table>
Origin at center (3), at 3/8,3/8,3/8 from 23

Asymmetric unit
-1/8 ≤ x ≤ 3/8;
-1/8 ≤ y ≤ 0;
-1/4 ≤ z ≤ 0;
y ≤ min(1/4-x,x);
-y-1/4 ≤ z ≤ y

Vertices
-1/8,-1/8,-1/8 3/8,-1/8,-1/8 1/4,0,0 0,0,0 1/4,0,-1/4 0,0,-1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(1 | 0,0,0)

(5) 3+ x,x,x
(3_xyz | 0,0,0)

(9) 3+ x,x,x
(3_xyz⁻¹ | 0,0,0)

(2) 2 (0,0,1/2) 1/8,3/8,3/8 (2, 1/4,3/4,1/2)

(6) 3+ (1/3,-1/3,1/3)
\(x+1/6, x+5/12, x\) (3_xyz⁻¹ | 1/2, 1/4, 3/4)

(7) 3+ (-1/3,1/3,1/3)
\(x+7/12, x-1/6, x\) (3_xyz⁻¹ | 1/4, 3/4, 1/2)

(8) 3+ (1/3,1/3,-1/3)
\(x+5/12, x+7/12, x\) (3_xyz⁻¹ | 3/4, 1/2, 1/4)

(10) 3+ x+1/4, x+1/2, x (3_xyz | 3/4, 1/2, 1/4)

(11) 3+ x+3/4, x+1/4, x (3_xyz⁻¹ | 1/2, 1/4, 3/4)

(12) 3+ x+1/2, x+3/4, x (3_xyz⁻¹ | 1/4, 3/4, 1/2)
Continued

(13) $2^r (1/2, 1/2, 0, 0)$, $x, x+1/4, 0$

(14) $2^r (1/2, 1/2, 1/4)$, $x, x, x+1/2, 1/4$

(15) $4^s (0, 0, 3/4, 1/8, -1/8, 1/4, 0, 3/4, 3/4, 0)$

(16) $4^s (0, 1/4, 0, 0, 1/4, 3/4, 1/4, 0)$

(17) $4^s (3/4, 0, 0, 0)$, $x, 1/8, 1/8$

(18) $2^r (0, 1/2, 1/2, 0, 0, 1/4, y+1/4, y, x+1/2, 1/2, 1/4)$

(19) $2^r (1/2, 1/2, 1/4, 0, 1/4, 3/4, 0)$

(20) $4^s (1/4, 0, 0, 0, 1/4, 3/4, 1/4, 0)$

(21) $4^s (0, 1/4, 0, 0, 3/4, 1/4, 0)$, $x, 1/4, 0$

(22) $2^r (1/2, 0, 1/2, 0, 0, 1/4, 0, 1/4, 3/4, 4/4)$

(23) $4^s (0, 3/4, 0, 0, -1/8, 1/8, 1/4, 0, 1/4, 3/4, 1/4, 0)$

(24) $2^r (3/4, 1/4, 0, 0, 1/4, 3/4, 1/4, 0)$

(25) $1 \cdot 0, 0, 0$

(26) $d (3/4, 1/4, 0, 0, 1/4, 3/4, 1/4, 0)$

(27) $d (1/4, 0, 1/4, 0, 1/4, 3/4, 1/4, 0)$

(28) $d (0, 1/4, 1/4, 0, 1/4, 3/4, 1/4, 0)$

(29) $3^s 3, x, 0, 0$

(30) $3^s 3, x, x, 0, 0$

(31) $3^s 3, x, x, x, 0, 0$

(32) $3^s 3, x, x, x, 0, 0$

(33) $3^s 3, x, x, x, 0, 0$

(34) $3^s 3, x, x, x, 0, 0$

(35) $3^s 3, x, x, x, 0, 0$

(36) $3^s 3, x, x, x, 0, 0$

(37) $g' (1/4, 1/4, 1/4, 0, 0, 1/4, 3/4, 1/4, 0)$, $x, x, x, 0, 0, 1/4, 3/4, 1/4, 0$

(38) $n' (1/2, 1/2, 1/2, 0, 0, 1/4, 3/4, 1/4, 0)$, $x, x, x, 0, 0, 1/4, 3/4, 1/4, 0$

(39) $g' (1/4, 1/4, 1/4, 0, 0, 1/4, 3/4, 1/4, 0)$, $x, x, x, 0, 0, 1/4, 3/4, 1/4, 0$

(40) $g' (1/4, 1/4, 1/4, 0, 0, 1/4, 3/4, 1/4, 0)$, $x, x, x, 0, 0, 1/4, 3/4, 1/4, 0$

(41) $4^s 4, 1/4, 3/4, 3/4, 0, 0, 1/4, 3/4, 1/4, 0$

(42) $4^s 4, 1/4, 3/4, 3/4, 0, 0, 1/4, 3/4, 1/4, 0$

(43) $4^s 4, 1/4, 3/4, 3/4, 0, 0, 1/4, 3/4, 1/4, 0$

(44) $4^s 4, 1/4, 3/4, 3/4, 0, 0, 1/4, 3/4, 1/4, 0$

(45) $4^s 4, 1/4, 3/4, 3/4, 0, 0, 1/4, 3/4, 1/4, 0$

(46) $4^s 4, 1/4, 3/4, 3/4, 0, 0, 1/4, 3/4, 1/4, 0$

(47) $4^s 4, 1/4, 3/4, 3/4, 0, 0, 1/4, 3/4, 1/4, 0$

(48) $4^s 4, 1/4, 3/4, 3/4, 0, 0, 1/4, 3/4, 1/4, 0$

For $(0, 1/2, 1/2, +)$ set
Continued

(1) t (1/2,1/2,0)
(1/2,1/2,0)

(2) 2 (0,0,1/2) 3/8,1/8,1/8
(2, 3/4,1/4,1/2)

(3) 2 1/8,1/8,1/8
(2, |1/4,0,1/4)

(4) 2 x,3/8,3/8
(2, |0,3/4,3/4)

(5) 3⁺ (1/3,1/3,1/3)

(6) 3⁺ x,x+3/4,x

(3, 0,3/4,3/4)

(7) 3⁺ x+3/4,x-1/2,x

(3, 1/4,1/4,1/2)

(8) 3⁺ x+1/4,x+1/4,x

(3, -1/4,0,1/4)

(9) 3' (1/3,1/3,1/3)

(10) 3' x+1/4,x,x

(11) 3' x+3/4,x+3/4,x

(12) 3' (1/3,-1/3,1/3)

(3, -1/6,x+7/12,x

(3, 1/4,1/4,1/2)

(13) 2' (1/2,1/2,0)

(14) 2' x,x,1/4

(15) 4⁺ (0,0,3/4) 5/8,-1/8,z

(4, 3/4,1/2,3/4)

(16) 4⁺ (0,0,1/4) 1/8,3/8,z

(4, 1/2,1/4,1/4)

(17) 4⁺ (1/4,0,0)

(18) 2' (0,1/4,1/4)

(19) 2' (0,-1/4,1/4)

(20) 4⁺ (3/4,0,0)

(4, 3/4,1/2,3/4)

(21) 4⁺ (0,3/4,0)

(22) 2' (3/4,0,3/4)

(23) 4⁺ (1/4,0,0)

(4, 1/2,1/4,1/4)

(24) 2' (-1/4,0,1/4)

(2,0,0,1/2)

(25) 1/4,1/4,0

(26) d (1/4,3/4,0)

(27) d (3/4,0,3/4)

(28) d (0,1/4,1/4)

(29) 3⁺

(30) 3⁺ x+1/2,x,x;

(3, 1/2,0,0)

(3, -1/4,0,1/4)

(3, 0,3/4,3/4)

(3, 1/4,3/4,1/2)

(3, 0,1/4,1/4)

(3, 1/4,3/4,1/2)

(3) x+y,x+3/4,x; 0,1/2,0

(3, -1/4,0,1/4)

(3, 0,3/4,3/4)

(3, 1/4,3/4,1/2)

(3) x+1/2,x,z;

(3, 0,0,1/2)

(3, 0,1/2,1/2)

(3, 0,0,1/2)

(3, 0,1/2,1/2)

(3) x+y,x+3/4,x; 0,1/2,0

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(0,1/2,1/2); t(1/2,0,1/2); (2); (3); (5); (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

192 h 1

(1) x,y,z [u,v,w]

(2) x+1/4,y+3/4,z+1/2 [u,v,w]

(3) x+3/4,y+1/2,z+1/4 [u,v,w]

(4) x+1/2,y+1/4,z+3/4 [u,v,w]

(5) z,x,y [w,u,v]

(6) z+1/2,x+1/4,y+3/4 [w,u,v]

(7) z+1/4,x+3/4,y+1/2 [w,u,v]

(8) z+3/4,x+1/2,y+1/4 [w,u,v]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0,0,0</td>
<td>1/4,3/4,1/2</td>
<td>3/4,1/2,1/4</td>
<td>1/2,1/4,3/4</td>
</tr>
<tr>
<td>c</td>
<td>3/4,1/4,0</td>
<td>1/2,1/2,1/2</td>
<td>1/4,0,3/4</td>
<td>0,3/4,1/4</td>
</tr>
<tr>
<td>d</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Along [0,0,1]</th>
<th>p4 4m'm'</th>
<th>Along [1,1,1]</th>
<th>p6mm'</th>
<th>Along [1,1,0]</th>
<th>p2m'm'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^* = (a - b)/4)</td>
<td>(b^* = (a + b)/4)</td>
<td>(a^* = (2a - b - c)/6)</td>
<td>(b^* = (-a + 2b - c)/6)</td>
<td>(a^* = (-a + b)/4)</td>
<td>(b^* = c/2)</td>
</tr>
</tbody>
</table>

Origin at 1/8,5/8,z | Origin at x,x,x | Origin at x,x,0
Origin at center (3’), at 3/8,3/8,3/8 from 23

Asymmetric unit
-1/8 ≤ x ≤ 3/8;
-1/8 ≤ y ≤ 0;
-1/4 ≤ z ≤ 0;
y ≤ min(1/4-x,x);
-y-1/4 ≤ z ≤ y

Vertices
-1/8,-1/8,-1/8
3/8,-1/8,-1/8
1/4,0,0
0,0,0
1/4,0,-1/4
0,0,-1/4

Symmetry Operations
For (0,0,0) + set

(1) 1
(1) 0,0,0

(2) 2 (0,0,1/2) 1/8,3/8,z
(2) 1/4,3/4,1/2

(3) 2 (0,1/2,0) 3/8,y,1/8
(2) 3/4,1/2,1/4

(4) 2 (1/2,0,0) x,1/8,3/8
(2) 1/2,1/4,3/4

(5) 3’ x,x,x
(3) 1/3,-1/3,1/3

(6) 3’ (1/3,-1/3,1/3)
(3) 1/2,1/4,3/4

(7) 3’ (-1/3,1/3,1/3)
(3) 1/4,3/4,1/2

(8) 3’ (1/3,1/3,-1/3)
(3) 3/4,1/2,1/4

(9) 3’ x,x,x
(3) 0,0,0

(10) 3’ x+1/4,x+1/2,x
(3) 3/4,1/2,1/4

(11) 3’ x+3/4,x+1/4,x
(3) 1/2,1/4,3/4

(12) 3’ x-1/2,x+3/4,x
(3) 1/4,3/4,1/2
Continued 228.5.1637 Fd'3c'

(33)	$\bar{3}$' x-1/2,x-1/2,x;
(34)	$\bar{3}$' x+1/4,x-1/2,x;
(35)	$\bar{3}$' x+1/4,x+5/4,x;
(36)	$\bar{3}$' x+3/2,x-3/4,x;

(37)	c' (0,0,1/2) x+1/4,x,z
(38)	g' (1/4,1/4,0) x+1/4,x,z
(39)	$\bar{4}$' 1/8,5/8,z; 1/8,5/8,3/8
(40)	$\bar{4}$' 3/8,3/8,3/8; 3/8,3/8,1/8

(41)	$\bar{4}$' x,-1/8,3/8; 1/8,-1/8,3/8
(42)	g' (0,1/4,-1/4) x,y+1/2,y
(43)	a' (1/2,0,0) x,y,y
(44)	$\bar{4}$' x,5/8,1/8; 3/8,5/8,1/8

(45)	$\bar{4}$' -1/8,y,3/8; -1/8,1/8,3/8
(46)	b' (0,1/2,0) x+3/4,y,x
(47)	$\bar{4}$' 1/8,y,1/8; 1/8,3/8,1/8
(48)	g' (1/4,0,1/4) x+1/4,y,x

For (1/2,0,1/2) + set

(1)	t (1/2,0,1/2)
(2)	2 3/8,3/8,z
(3)	0 (0,1/2,0) 1/8,y,3/8
(4)	2 x,1/8,1/8

(5)	3^* (1/3,1/3,1/3)
(6)	3* $\bar{x},x+1/4,x$
(7)	3* x+3/4,\bar{x},\bar{x}
(8)	3* $\bar{x}+1/4,\bar{x}+3/4,x$

(9)	3 (1/3,1/3,1/3)
(10)	3* (-1/3,1/3,1/3)
(11)	3* $\bar{x}+1/4,\bar{x}+3/4,x$
(12)	3* $\bar{x},x+3/4,\bar{x}$

(13)	2 (1/4,1/4,0) x,x,1/4
(14)	2 (-1/4,1/4,0) x,x+1/4,0
(15)	4* (0,0,1/4) 3/8,-3/8,z
(16)	4* (0,0,3/4) -1/8,5/8,z

(17)	4* (1/4,0,0) x,3/8,1/8
(18)	2 (0,3/4,3/4) 1/4,y,y
(19)	2 (0,1/4,-1/4) 0,y+1/4,\bar{y}
(20)	4* (3/4,0,0) x,-1/8,1/8

(21)	4* (0,1/4,0) 3/8,y,1/8
(22)	2 (1/2,0,1/2) x+1/4,0,x
(23)	4* (0,3/4,0) -1/8,y,5/8
(24)	2 $\bar{x},1/4,x$

(25)	$\bar{1}$ 1/4,0,1/4
(26)	d' (1/4,1/4,0) x,y,0
(27)	d' (3/4,0,1/4) x,1/4,z
(28)	d' (0,3/4,3/4) 0,y,z

(29)	$\bar{3}$' x-1/2,x-1/2,x;
(30)	$\bar{3}$' x+3/4,x+3/4,x;
(31)	$\bar{3}$' x-1/4,x+1/2,x;
(32)	$\bar{3}$' x+3/4,x-1/4,x;

(33)	$\bar{3}$' x+1/2,x,x;
(34)	$\bar{3}$' x+5/4,x+1/4,x;
(35)	$\bar{3}$' x-3/4,x+3/4,x;
(36)	$\bar{3}$' x+1/2,x-1/4,x;

(37)	c' (0,0,1/2) x+3/4,x,z
(38)	g' (1/4,1/4,0) x-1/4,x,z
(39)	$\bar{4}$' 1/8,8/18,z; 1/8,1/8,3/8
(40)	$\bar{4}$' 3/8,-1/8,z; 3/8,-1/8,1/8

(41)	$\bar{4}$' x,1/8,5/8; 3/8,1/8,5/8
(42)	a' (1/2,0,0) x,y+1/4,y
(43)	g' (0,1/4,1/4) x,y+1/4,y
(44)	$\bar{4}$' x,3/8,3/8; 1/8,3/8,1/8

(45)	$\bar{4}$' 1/8,y,5/8; 1/8,3/8,5/8
(46)	g' (-1/4,0,1/4) x+1/2,y,x
(47)	$\bar{4}$' 3/8,y,-1/8; 3/8,1/8,1/8
(48)	b' (0,1/2,0) x,y,x

For (1/2,0,1/2) + set
Generators selected

For (1/2,1/2,0) + set

(1) t (1/2,1/2,0)
(2) 2 (0,0,1/2) 3/8,1/8,1/8
(3) 2 1/8,y,1/8
(4) 2 x,3/8,3/8
(1/2,1/2,0)
(3/4,1/4,1/2) 0,1/4,0,1/4
(0,3/4,3/4)

(5) 3' (1/3,1/3,1/3)
(6) 3' x,x+3/4,x
(7) 3' x+3/4,x-1/2,x
(8) 3' x+1/4,x+1/4,x
(3xz) 1/2,1/2,0)
(0,3/4,3/4)
(3/4,1/4,1/2) 1/4,0,1/4
(3xy)

(9) 3' (1/3,1/3,1/3)
(10) 3' x+1/4,x,x
(11) 3' x+3/4,x+3/4,x
(12) 3' (1/3,-1/3,1/3)
(3xz)-1 1/2,1/2,0)
(3/4,1/4,1/2)
(3xz)

(13) 2 (1/2,1/2,0) x,x+1/4,0
(2xy) 1/4,3/4,0
(14) 2 x,x+1/4,0
(2xy) 0,0,1/2
(15) 4' (0,0,3/4) 5/8,1/8,1/8
(4z) 3/4,1/2,3/4
(16) 4' (0,0,1/4) 1/8,3/8,z
(4z) 1/2,1/4,1/4

(17) 4' (1/4,0,0) x,3/8,-3/8
(4x) -1 1/4,3/4,0
(18) 2 (0,1/4,1/4) 1/4,y,y
(2xy) 1/2,1/4,1/4
(19) 2 (0,-1/4,1/4) 0,y+1/4,y
(2xy) 0,0,1/2
(20) 4' (3/4,0,0) x,-1/8,5/8
(4z) 3/4,1/2,3/4

(21) 4' (0,3/4,0) 1/8,y,-1/8
(4y) 1/4,3/4,0
(22) 2 (3/4,0,3/4) x,1/4,x
(2xy) 3/4,1/2,3/4
(23) 4' (0,1/4,0) 1/8,y,3/8
(4y) 1/2,1/4,1/4
(24) 2 (-1/4,0,1/4) x+1/4,0,x
(2xy) 0,0,1/2

(25) 1' 1/4,1/4,0
(1/2,1/2,0)
(26) d' (1/4,3/4,0) x,y,1/4
(2m) 1/4,3/4,1/2)
(27) d' (3/4,0,3/4) x,0,z
(2m) 3/4,0,3/4)
(28) d' (0,1/4,1/4) 0,y,z
(2m) 0,1/4,1/4)

(29) 3' x+1/2,x,x;
(30) 3' x+1/2,x+1/4,x;
(3yz) 1/2,1/2,0)
(31) 3' x+1/4,x+1,x;
(3yz) 0,1/4,1/4)
(32) 3' x+3/4,x-3/4,x;
(3yz) 3/4,-3/4,0
(3yz)

(33) 3' x,x+1/2,x;
(34) 3' x+3/4,x-3/2,x;
(3yz) 1/2,1/2,0)
(35) 3' x+1/4,x+1/4,x;
(3yz) 0,1/4,1/4)
(36) 3' x+1/4,x+1/4,x;
(3yz) 3/4,1/2,1/4
(3yz)

(37) g' (1/4,-1/4,0) x+1/2,x,x;
(38) c' (0,0,1/2) x,x,z
(myz) 3/4,1/4,0)
(39) 4' -1/8,3/8,z; -1/8,3/8,1/8
(4z) 1/4,1/2,1/4)
(40) 4' 5/8,1/8,z; 5/8,1/8,3/8
(4z) 1/2,3/4,3/4)

(41) 4' x,1/8,1/8; 3/8,1/8,1/8
(4y) 1/4,1/4,0)
(42) a' (1/2,0,0) x,y+3/4,y
(myz) 1/4,3/4,3/4)
(43) g' (0,1/4,1/4) x,y+1/4,y
(4y) 0,0,1/2)
(44) 4' x,3/8,-1/8; 1/8,3/8,-1/8
(4y) 1/4,1/2,1/4)

(45) 4' 3/8,3/8; 3/8,1/8,3/8
(4y) 3/4,1/4,0)
(46) b' (0,1/2,0) x+1/4,y,x
(myz) 1/4,1/2,1/4)
(47) 4' 5/8,y,1/8; 5/8,3/8,1/8
(4y) 1/2,3/4,3/4)
(48) g' (1/4,0,1/4) x-1/4,y,x
(myz) 0,0,1/2)

Positions

Multiplicity, Wyckoff letter, Site Symmetry.
192 h 1

(1) x,y,z [u,v,w]
(2) x+1/4,y+3/4,z+1/2 [u,v,w]
(3) x+3/4,y+1/2,z+1/2 [u,v,w]
(4) x+1/2,y+1/4,z+3/4 [u,v,w]
(5) z,y,x [w,u,v]
(6) z+1/2,x+1/4,y+3/4 [w,u,v]
(7) z+1/4,x+3/4,y+1/2 [w,u,v]
(8) z+3/4,x+1/2,y+1/4 [w,u,v]

228.5.1637 - 4 - 3852
Continued
228.5.1637

Fd'3 'c'

(9) y,z,x [v,w,u] (10) y+3/4,z+1/2, x+1/4 [v,w,u] (11) y+1/2, z+1/4, x+3/4 [v,w,u] (12) y+1/4, z+3/4, x+1/2 [v,w,u]

(13) y+3/4,x+1/4, z [v,u,w] (14) y+1/2, x+1/2, z+1/2 [v,u,w] (15) y+1/4, x, z+3/4 [v,u,w] (16) y,x+3/4, z+1/4 [v,u,w]

(17) x+3/4,z+1/4, y [u,w,v] (18) x, z+3/4, y+1/4 [u,w,v] (19) x+1/2, z+1/2, y+1/2 [u,w,v] (20) x+1/4, z, y+3/4 [u,w,v]

(21) z+3/4, y+1/4, x [w,v,u] (22) z+1/4, y+1/4 [w,v,u] (23) z, y+3/4, x+1/4 [w,v,u] (24) z+1/2, y+1/2, x+1/2 [w,v,u]

(25) x, y, z [u,v,w] (26) x+3/4, y+1/4, z+1/2 [u,v,w] (27) x+1/4, y+1/2, z+3/4 [u,v,w] (28) x+1/2, y+3/4, z+1/4 [u,v,w]

(29) z, x, y [w,u,v] (30) z+1/2, x+3/4, y+1/4 [w,u,v] (31) z+3/4, x+1/4, y+1/2 [w,u,v] (32) z+1/4, x+1/2, y+3/4 [w,u,v]

(33) y, z, x [v,w,u] (34) y+1/4, z+1/2, x+3/4 [v,w,u] (35) y+1/2, z+3/4, x+1/4 [v,w,u] (36) y+3/4, z+1/4, x+1/2 [v,w,u]

(37) y+1/4, x+3/4, z [v,u,w] (38) y+1/2, x+1/2, z+1/2 [v,u,w] (39) y+3/4, x, z+1/4 [v,u,w] (40) y, x+1/4, z+3/4 [v,u,w]

(41) x+1/4, z+3/4, y [u,w,v] (42) x, z+1/4, y+3/4 [u,w,v] (43) x+1/2, z+1/2, y+1/2 [u,w,v] (44) x+3/4, z, y+1/4 [u,w,v]

(45) z+1/4, y+3/4, x [w,v,u] (46) z+3/4, y, x+1/4 [w,v,u] (47) z, y+1/4, x+3/4 [w,v,u] (48) z+1/2, y+1/2, x+1/2 [w,v,u]

96 g 2...

1/4,y, y [0,v,v] 0, y+3/4, y+1/2 [0,v,v] 1/2, y+1/2, y+1/4 [0,v,v] 3/4, y+1/4, y+3/4 [0,v,v]

y, 1/4, y [v,0,v] y+1/2, 0, y+3/4 [v,0,v] y+1/4, 1/2, y+1/2 [v,0,v] y+3/4, 3/4, y+1/4 [v,0,v]

y, y, 1/4 [v,v,0] y+3/4, y+1/2, 0 [v,v,0] y+1/2, y+1/4, 1/2 [v,v,0] y+1/4, y+3/4, 3/4 [v,v,0]

3/4, y, y [0,v,0] 0, y+1/4, y+1/2 [0,v,0] 1/2, y+1/2, y+3/4 [0,v,0] 1/4, y+3/4, y+1/4 [0,v,0]

y, 3/4, y [v,0,v] y+1/2, 0, y+1/4 [v,0,v] y+3/4, 1/2, y+1/2 [v,0,v] y+1/4, 1/4, y+3/4 [v,0,v]

y, y, 3/4 [v,v,0] y+1/4, y+1/2, 0 [v,v,0] y+1/2, y+3/4, 1/2 [v,v,0] y+3/4, y+1/4, 1/4 [v,v,0]

96 f 2...

x, 1/8, 1/8 [u,0,0] x+1/4, 5/8, 5/8 [u,0,0] 1/8, x, 1/8 [0,u,0] 5/8, x+1/4, 5/8 [0,u,0]

1/8, 1/8, x [0,0,u] 5/8, 5/8, x+1/4 [0,0,u] 7/8, x+1/4, 7/8 [0,u,0] 3/8, x+1/2, 3/8 [0,u,0]

x, 3/4, 3/4, 7/8 [u,0,0] x, 7/8, 3/8 [u,0,0] 7/8, 3/8, x [0,0,u] 3/8, 7/8, x+3/4 [0,0,u]

x, 7/8, 7/8 [u,0,0] x+3/4, 3/4, 3/8 [u,0,0] 7/8, x, 7/8 [0,u,0] 3/8, x+3/4, 3/8 [0,u,0]

7/8, 7/8, x [0,0,u] 3/8, 3/8, x+3/4 [0,0,u] 1/8, x+3/4, 1/8 [0,u,0] 5/8, x+1/2, 5/8 [0,u,0]

x+1/4, 5/8, 1/8 [u,0,0] x+1/4, 1/8, 5/8 [u,0,0] 1/8, 5/8, x [0,u,0] 5/8, 1/8, x+1/4 [0,u,0]

64 e .3.

x, x, x [u,u,u] x+1/4, x+3/4, x+1/2 [u,u,u]

x+3/4, x+1/2, x+1/4 [u,u,u] x+1/2, x+1/4, x+3/4 [u,u,u]

x+3/4, x+1/4, x [u,u,u] x+1/2, x+1/2, x+1/2 [u,u,u]

x+1/4, x, x+3/4 [u,u,u] x, x+3/4, x+1/4 [u,u,u]

x, x, x [u,u,u] x+3/4, x+1/4, x+1/2 [u,u,u]

x+1/4, x+1/2, x+3/4 [u,u,u] x+1/2, x+3/4, x+1/4 [u,u,u]
Continued

\[\begin{align*}
\bar{x} + 1/4, x + 3/4, x & \quad [u, u, u] \\
\bar{x} + 3/4, x + 1/4 & \quad [u, u, u] \\
\bar{x}, x + 1/4, x + 3/4 & \quad [u, u, u]
\end{align*} \]

48 d \(\bar{4}' \cdot \)
\[\begin{align*}
7/8, 1/8, 1/8 & \quad [0, 0, 0] \\
1/8, 1/8, 7/8 & \quad [0, 0, 0] \\
5/8, 3/8, 7/8 & \quad [0, 0, 0]
\end{align*} \]

32 c \(.3' \cdot \)
\[\begin{align*}
0, 0, 0 & \quad [0, 0, 0] \\
1/4, 3/4, 1/2 & \quad [0, 0, 0] \\
3/4, 1/4, 0 & \quad [0, 0, 0]
\end{align*} \]

32 b \(.32 \)
\[\begin{align*}
1/4, 1/4, 1/4 & \quad [0, 0, 0] \\
3/4, 3/4, 3/4 & \quad [0, 0, 0]
\end{align*} \]

16 a 23.
\[\begin{align*}
1/8, 1/8, 1/8 & \quad [0, 0, 0] \\
1/8, 7/8, 1/8 & \quad [0, 0, 0]
\end{align*} \]

Symmetry of Special Projections

Along \([0,0,1]\) p4m'm'
\[\begin{align*}
a^* &= (a - b)/4 \\
b^* &= (a + b)/4
\end{align*} \]
Origin at 1/8,3/8,z

Along \([1,1,1]\) p6m'm'
\[\begin{align*}
a^* &= (2a - b - c)/6 \\
b^* &= (-a + 2b - c)/6
\end{align*} \]
Origin at x,x,x

Along \([1,1,0]\) p2m'm'
\[\begin{align*}
a^* &= (-a + b)/4 \\
b^* &= c/2
\end{align*} \]
Origin at x,x,0
Origin at center (m\text{3}m)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad y \leq x; \quad z \leq \min(1/2-x,y)\]

Vertices

<table>
<thead>
<tr>
<th></th>
<th>0,0,0</th>
<th>1/2,0,0</th>
<th>1/2,1/2,0</th>
<th>1/4,1/4,1/4</th>
</tr>
</thead>
</table>

Symmetry Operations

For \((0,0,0) + \text{set}\)

1. \((1) \ 1\)
2. \((2) \ 0,0,z\)
3. \((2) \ 0,y,0\)
4. \((2) \ 0,0,0\)

5. \((3) \ x,x,x\)
6. \((3) \ x,x,x\)
7. \((3) \ x,x,x\)
8. \((3) \ x,x,x\)

9. \((3) \ x,x,x\)
10. \((3) \ x,x,x\)
11. \((3) \ x,x,x\)
12. \((3) \ x,x,x\)
<table>
<thead>
<tr>
<th>No.</th>
<th>Site Symmetry</th>
<th>Wyckoff letter, Site Symmetry</th>
<th>Generators selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>3⁻ x,x,x; 1/4,1/4,1/4</td>
<td>(m_xz) 1/2,1/2,1/2</td>
<td>(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13); (25).</td>
</tr>
<tr>
<td>34</td>
<td>3⁻ x⁺1,x⁻1,x; 1/4,-1/4,3/4</td>
<td>(m_xz) 1/2,1/2,1/2</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>3⁻ x,x⁺1,x; -1/4,3/4,1/4</td>
<td>(m_xz) 1/2,1/2,1/2</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>3⁻ x⁺1,x,x; 3/4,1/4,-1/4</td>
<td>(m_xz) 1/2,1/2,1/2</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>c (0,0,1/2) x⁺1/2,x,z</td>
<td>(m_yz) 1/2,1/2,1/2</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>n (1/2,1/2,1/2) x,x,z</td>
<td>(m_y) 1/2,1/2,1/2</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>4⁻ 0,1/2,z; 0,1/2,1/4</td>
<td>(m_y) 1/2,1/2,1/2</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>4⁺ 1/2,0,z; 1/2,0,1/4</td>
<td>(m_y) 1/2,1/2,1/2</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>4⁻ x,0,1/2; 1/4,0,1/2</td>
<td>(m_yz) 1/2,1/2,1/2</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>a (1/2,0,0) x⁺1/2,y,z</td>
<td>(m_y) 1/2,1/2,1/2</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>n (1/2,1/2,1/2) x,y,y</td>
<td>(m_y) 1/2,1/2,1/2</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>4⁺ x,1/2,0; 1/4,1/2,0</td>
<td>(m_y) 1/2,1/2,1/2</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>4⁺ 0,y,1/2; 0,1/4,1/2</td>
<td>(m_yz) 1/2,1/2,1/2</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>b (0,1/2,0) x⁺1/2,y,x</td>
<td>(m_y) 1/2,1/2,1/2</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>4⁻ 1/2,y,0; 1/2,1/4,0</td>
<td>(m_y) 1/2,1/2,1/2</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>n (1/2,1/2,1/2) x,y,x</td>
<td>(m_y) 1/2,1/2,1/2</td>
<td></td>
</tr>
</tbody>
</table>

Generators selected: (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.
<table>
<thead>
<tr>
<th>48</th>
<th>j</th>
<th>m..</th>
<th>0,y,z [u,0,0]</th>
<th>0,y,z [u,0,0]</th>
<th>0,y,z [u,0,0]</th>
<th>0,y,z [u,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>z,0,y [0,u,0]</td>
<td>z,0,y [0,u,0]</td>
<td>z,0,y [0,u,0]</td>
<td>z,0,y [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y,z,0 [0,u,0]</td>
<td>y,z,0 [0,u,0]</td>
<td>y,z,0 [0,u,0]</td>
<td>y,z,0 [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y,0,z [0,u,0]</td>
<td>y,0,z [0,u,0]</td>
<td>y,0,z [0,u,0]</td>
<td>y,0,z [0,u,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,z,y [u,0,0]</td>
<td>0,z,y [u,0,0]</td>
<td>0,z,y [u,0,0]</td>
<td>0,z,y [u,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>z,y,0 [0,u,0]</td>
<td>z,y,0 [0,u,0]</td>
<td>z,y,0 [0,u,0]</td>
<td>z,y,0 [0,u,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>48</th>
<th>i</th>
<th>..2</th>
<th>1/4,y,y+1/2 [0,v,v]</th>
<th>3/4,y,y+1/2 [0,v,v]</th>
<th>3/4,y,y+1/2 [0,v,v]</th>
<th>1/4,y,y+1/2 [0,v,v]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>y+1/2,1/4,y [v,0,v]</td>
<td>y+1/2,3/4,y [v,0,v]</td>
<td>y+1/2,3/4,y [v,0,v]</td>
<td>y+1/2,1/4,y [v,0,v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y+y+1/2,3/4 [v,v,0]</td>
<td>y+1/2,3/4 [v,v,0]</td>
<td>y+1/2,3/4 [v,v,0]</td>
<td>y+1/2,1/4 [v,v,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4,y,y+1/2 [0,v,v]</td>
<td>1/4,y,y+1/2 [0,v,v]</td>
<td>1/4,y,y+1/2 [0,v,v]</td>
<td>3/4,y,y+1/2 [0,v,v]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y+y+1/2,3/4 [v,v,0]</td>
<td>y+1/2,1/4,y [v,0,v]</td>
<td>y+1/2,3/4,y [v,0,v]</td>
<td>y+1/2,3/4 [v,v,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24</th>
<th>h</th>
<th>m.m2</th>
<th>0,y,y [0,0,0]</th>
<th>0,y,y [0,0,0]</th>
<th>0,y,y [0,0,0]</th>
<th>0,y,y [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>y,0,y [0,0,0]</td>
<td>y,0,y [0,0,0]</td>
<td>y,0,y [0,0,0]</td>
<td>y,0,y [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y,y,0 [0,0,0]</td>
<td>y,y,0 [0,0,0]</td>
<td>y,y,0 [0,0,0]</td>
<td>y,y,0 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24</th>
<th>g</th>
<th>mm2..</th>
<th>x,0,1/2 [0,0,0]</th>
<th>x,0,1/2 [0,0,0]</th>
<th>x,0,1/2 [0,0,0]</th>
<th>x,0,1/2 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,1/2,x [0,0,0]</td>
<td>0,1/2,x [0,0,0]</td>
<td>0,1/2,x [0,0,0]</td>
<td>0,1/2,x [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,1/2,0 [0,0,0]</td>
<td>x,1/2,0 [0,0,0]</td>
<td>x,1/2,0 [0,0,0]</td>
<td>x,1/2,0 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>f</th>
<th>.3m</th>
<th>x,x,x [0,0,0]</th>
<th>x,x,x [0,0,0]</th>
<th>x,x,x [0,0,0]</th>
<th>x,x,x [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>e</th>
<th>4m.m</th>
<th>x,0,0 [0,0,0]</th>
<th>x,0,0 [0,0,0]</th>
<th>x,0,0 [0,0,0]</th>
<th>x,0,0 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>d</th>
<th>4m.2</th>
<th>1/4,0,1/2 [0,0,0]</th>
<th>3/4,0,1/2 [0,0,0]</th>
<th>3/4,0,1/2 [0,0,0]</th>
<th>1/2,1/4,0 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1/2,3/4,0 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>1/2,1/4,0 [0,0,0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>c</th>
<th>.3m</th>
<th>1/4,1,4/1 [0,0,0]</th>
<th>3/4,3/4,1/4 [0,0,0]</th>
<th>3/4,1/4,3/4 [0,0,0]</th>
<th>1/4,3/4,3/4 [0,0,0]</th>
</tr>
</thead>
</table>

| 6 | b | 4/mm.m | 0,1/2,1/2 [0,0,0] | 1/2,0,1/2 [0,0,0] | 1/2,1/2,0 [0,0,0] | 1/2,1/2,0 [0,0,0] |

| 2 | a | m3m | 0,0,0 [0,0,0] | 0,0,0 [0,0,0] | 0,0,0 [0,0,0] | 0,0,0 [0,0,0] |
Symmetry of Special Projections

Along [0,0,1] p4mm1'
\[a^* = \frac{(a - b)}{2}, \quad b^* = \frac{(a + b)}{2} \]
Origin at 0,0,z

Along [1,1,1] p6'm'm
\[a^* = \frac{(2a - b - c)}{3}, \quad b^* = \frac{(-a + 2b - c)}{3} \]
Origin at x,x,x

Along [1,1,0] p2mm1'
\[a^* = \frac{(-a + b)}{2}, \quad b^* = \frac{c}{2} \]
Origin at x,x,0
Im3m1' \quad m3m1' \quad \text{Cubic} \\
229.2.1639 \quad 14/m32/m1' \\

Origin at center (m3m1')

Asymmetric unit

\begin{align*}
0 \leq x \leq 1/2; \\
0 \leq y \leq 1/2; \\
0 \leq z \leq 1/4; \\
y \leq x; \\
z \leq \min(1/2-x,y)
\end{align*}

Vertices

\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 1/2,1/2,0 & \quad 1/4,1/4,1/4
\end{align*}

Symmetry Operations

For \((0,0,0) +\text{ set}\)

\begin{align*}
(1) & \quad 1 \\
(1) & \quad (1,0,0,0) \\
(5) & \quad 3^+ x,x,x \\
& \quad (3_{xyz}[0,0,0]) \\
(9) & \quad 3^+ x,x,x \\
& \quad (3_{xyz}^{-1}[0,0,0]) \\
(2) & \quad 2 \quad 0,0,z \\
& \quad (2,0,0,0) \\
(6) & \quad 3^+ x,x,x \\
& \quad (3_{xyz}^{-1}[0,0,0]) \\
(10) & \quad 3^+ x,x,x \\
& \quad (3_{xyz}[0,0,0]) \\
(3) & \quad 2 \quad 0,y,0 \\
& \quad (2,0,0,0) \\
(7) & \quad 3^+ x,x,x \\
& \quad (3_{xyz}^{-1}[0,0,0]) \\
(11) & \quad 3^+ x,x,x \\
& \quad (3_{xyz}[0,0,0]) \\
(4) & \quad 2 \quad x,0,0 \\
& \quad (2,0,0,0) \\
(8) & \quad 3^+ x,x,x \\
& \quad (3_{xyz}^{-1}[0,0,0]) \\
(12) & \quad 3^+ x,x,x \\
& \quad (3_{xyz}[0,0,0])
\end{align*}
13	$x, x, 0$	14	$x, x, 0$	15	$4^\ast, 0, 0, \bar{z}$	16	$4^\ast, 0, 0, z$
17	$4^\ast, x, 0, 0$	18	$0, y, y$	19	$2, 0, y, \bar{y}$	20	$4^\ast, x, 0, 0$
21	$4^\ast, 0, y, 0$	22	$2, x, 0, x$	23	$4^\ast, 0, y, 0$	24	$2, \bar{x}, 0, x$
25	$1, 0, 0, 0$	26	$m, x, y, 0$	27	$m, x, 0, z$	28	$m, 0, y, z$
29	$3^\ast, x, x, x; 0, 0, 0$	30	$3^\ast, x, x, x; 0, 0, 0$	31	$3^\ast, x, x, x; 0, 0, 0$	32	$3^\ast, x, x, x; 0, 0, 0$
33	$3^\ast, x, x, x; 0, 0, 0$	34	$3^\ast, x, x, x; 0, 0, 0$	35	$3^\ast, x, x, x; 0, 0, 0$	36	$3^\ast, x, x, x; 0, 0, 0$
37	m, x, x, x	38	m, x, x, x	39	$4^\ast, 0, 0, z; 0, 0, 0$	40	$4^\ast, 0, 0, z; 0, 0, 0$
41	$4^\ast, x, 0, 0; 0, 0, 0$	42	m, y, y, y	43	m, x, y, y	44	$4^\ast, x, 0, 0; 0, 0, 0$
45	$4^\ast, 0, y, 0; 0, 0, 0$	46	m, x, y, x	47	$4^\ast, 0, y, 0; 0, 0, 0$	48	m, x, y, x

For $(1/2, 1/2, 1/2)$ + set

1	$(1/2, 1/2, 1/2)$	2	$(0, 0, 1/2)$	3	$(0, 1/2, 0)$	4	$(1/2, 0, 0)$
5	$(1/2, 1/2, 1/2)$	6	$(1, 6, -1, 6, 1, 6)$	7	$3^\ast, (-1, 6, 1, 6, -1, 6)$	8	$(1, 6, -1, 6, -1, 6)$
9	$(1/2, 1/2, 1/2)$	10	$(0, 1/2, 0)$	11	$(1, 6, -1, 6, 1, 6)$	12	$(1, 6, -1, 6, -1, 6)$
13	$(1/2, 1/2, 2/2)$	14	$(0, 1/2, 1/2)$	15	$(0, 0, 1/2)$	16	$(0, 0, 1/2)$
17	$(1/2, 1/2, 0)$	18	$(0, 1/2, 1/2)$	19	$(0, 1/2, 1/2)$	20	$(0, 1/2, 1/2)$
21	$(1/2, 1/2, 1/2)$	22	$(1, 6, 1, 6, -1, 6)$	23	$(1, 6, -1, 6, 1, 6)$	24	$(1, 6, -1, 6, -1, 6)$
25	$(1/2, 1/2, 2/2)$	26	$(0, 1/2, 0)$	27	$(0, 1/2, 0)$	28	$(0, 1/2, 0)$
29	$(3, 1/2, 1/2, 2/2)$	30	$(3, 1/2, 1/2, 2/2)$	31	$(3, 1/2, 1/2, 2/2)$	32	$(3, 1/2, 1/2, 2/2)$
Continued

(5) \(3^+\) (1/2,1/2,1/2) x,x,x

(9) \(3^-\) (1/2,1/2,1/2) x,x,x

(13) 2' (1/2,1/2,2) x,x,1/4

(17) 4^- (0,1/2,0) x,1/2,0

(21) \(\bar{1}\) 1/4,1/4,1/4

(25) \(\bar{3}\) x,x,x;

(29) \(\bar{3}^+\) x,x,x;

(33) \(\bar{3}^-\) x,x,x;

(37) \(c'\) (0,0,1/2) x+1/2,x,z

(41) \(\bar{4}\) x,0,1/2; 1/4,0,1/2

(45) \(\bar{4}^-\) 0,y,1/2; 0,1/4,1/2

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13); (25); 1'.

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

Coordinates

\[(0,0,0) + (1/2,1/2,1/2) + (0,0,0)' + (1/2,1/2,1/2)' + \]

\[(1,0,0), (0,1,0), (0,0,1), t(1/2,1/2,1/2), (2), (3), (5), (13), (25), 1'. \]
(17) $x, z, y \ [0,0,0]$
(18) $ar{x}, z, y \ [0,0,0]$
(19) $x, z, \bar{y} \ [0,0,0]$
(20) $x, z, y \ [0,0,0]$

(21) $z, y, x \ [0,0,0]$
(22) $z, \bar{y}, x \ [0,0,0]$
(23) $\bar{z}, y, x \ [0,0,0]$
(24) $\bar{z}, \bar{y}, x \ [0,0,0]$

(25) $\bar{x}, \bar{y}, z \ [0,0,0]$
(26) $x, y, \bar{z} \ [0,0,0]$
(27) $x, \bar{y}, z \ [0,0,0]$
(28) $\bar{x}, y, z \ [0,0,0]$

(29) $\bar{z}, x, y \ [0,0,0]$
(30) $\bar{z}, x, \bar{y} \ [0,0,0]$
(31) $z, x, \bar{y} \ [0,0,0]$
(32) $z, x, y \ [0,0,0]$

(33) $y, z, x \ [0,0,0]$
(34) $y, z, x \ [0,0,0]$
(35) $\bar{y}, z, x \ [0,0,0]$
(36) $y, z, \bar{x} \ [0,0,0]$

(37) $\bar{y}, x, z \ [0,0,0]$
(38) $y, x, z \ [0,0,0]$
(39) $\bar{y}, x, \bar{z} \ [0,0,0]$
(40) $y, \bar{x}, z \ [0,0,0]$

(41) $\bar{x}, \bar{z}, y \ [0,0,0]$
(42) $x, \bar{z}, y \ [0,0,0]$
(43) $x, z, y \ [0,0,0]$
(44) $\bar{x}, z, \bar{y} \ [0,0,0]$

(45) $\bar{z}, y, x \ [0,0,0]$
(46) $\bar{z}, y, x \ [0,0,0]$
(47) $\bar{z}, y, x \ [0,0,0]$
(48) $\bar{z}, y, x \ [0,0,0]$

48 k $m'1' \quad x, x, z \ [0,0,0]$
$\bar{x}, \bar{x}, z \ [0,0,0]$
$\bar{x}, \bar{z}, z \ [0,0,0]$
$x, z, \bar{x} \ [0,0,0]$

48 j $m'1' \quad 0, y, z \ [0,0,0]$
$0, \bar{y}, z \ [0,0,0]$
$0, y, \bar{z} \ [0,0,0]$
$0, \bar{y}, \bar{z} \ [0,0,0]$

48 i $..21'$
$\frac{1}{4}, y, \bar{y}+1/2 \ [0,0,0]$
$3/4, \bar{y}, \bar{y}+1/2 \ [0,0,0]$
$3/4, y, y+1/2 \ [0,0,0]$
$1/4, \bar{y}, y+1/2 \ [0,0,0]$

$y+1/2, 1/4, y \ [0,0,0]$
$\bar{y}+1/2, 3/4, \bar{y} \ [0,0,0]$
y+1/2, 3/4, y \ [0,0,0]$
$y+1/2, 1/4, \bar{y} \ [0,0,0]$

$\frac{3}{4}, \bar{y}+1/2 \ [0,0,0]$
$1/4, y, \bar{y}+1/2 \ [0,0,0]$
$1/4, \bar{y}, y+1/2 \ [0,0,0]$
$3/4, y, \bar{y}+1/2 \ [0,0,0]$

$y+1/2, 3/4, \bar{y} \ [0,0,0]$
$\bar{y}+1/2, 1/4, \bar{y} \ [0,0,0]$
$\bar{y}+1/2, 1/4, y \ [0,0,0]$
$\bar{y}+1/2, 3/4, y \ [0,0,0]$

$y+1/2, 3/4, y \ [0,0,0]$
$\bar{y}+1/2, 1/4 \ [0,0,0]$
$\bar{y}, \bar{y}+1/2, 1/4 \ [0,0,0]$
${y, \bar{y}+1/2, 3/4} \ [0,0,0]$
Symmetry of Special Projections

Along $[0,0,1]$ p4mm1'
$a^* = (a - b)/2$
$b^* = (a + b)/2$
Origin at 0,0,z

Along $[1,1,1]$ p6mm1'
$a^* = (2a - b - c)/3$
$b^* = (-a + 2b - c)/3$
Origin at x,x,x

Along $[1,1,0]$ p2mm1'
$a^* = (-a + b)/2$
$b^* = c/2$
Origin at x,x,0
Origin at center (m'3'm)

Asymmetric unit

\[0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad y \leq x; \quad z \leq \min(1/2-x,y) \]

Vertices

\[
\begin{align*}
0,0,0 & \quad 1/2,0,0 & \quad 1/2,1/2,0 & \quad 1/4,1/4,1/4
\end{align*}
\]

Symmetry Operations

For \((0,0,0) + \) set

\[
\begin{align*}
(1) & \quad 1 & \quad (2) & \quad 2 \ 0,0,z & \quad (3) & \quad 2 \ y,0,0 & \quad (4) & \quad 2 \ x,0,0 \\
& \quad (1) & \quad (2) & \quad (2) & \quad (2) & \quad (2) & \quad (2)
\end{align*}
\]

\[
\begin{align*}
(5) & \quad 3^+ \ x,x,x & \quad (6) & \quad 3^+ \ x,x,x & \quad (7) & \quad 3^+ \ x,x,x & \quad (8) & \quad 3^+ \ x,x,x \\
& \quad (3_{xyz}) & \quad (3_{xyz})
\end{align*}
\]

\[
\begin{align*}
(9) & \quad 3^- \ x,x,x & \quad (10) & \quad 3^- \ x,x,x & \quad (11) & \quad 3^- \ x,x,x & \quad (12) & \quad 3^- \ x,x,x \\
& \quad (3_{xyz}) & \quad (3_{xyz})
\end{align*}
\]
Continued

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>I</td>
<td>1</td>
</tr>
</tbody>
</table>

Coordinates

(0,0,0) + (1/2,1/2,1/2) +

Generators selected

(1): t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13); (25).

229.3.1640 - 3 - 3868
<table>
<thead>
<tr>
<th>48</th>
<th>j</th>
<th>m'</th>
<th>Continued</th>
<th>229.3.1640</th>
<th>Im'3m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, y, z [0, v, w]</td>
<td>3/4, y, y + 1/2 [u, v, v]</td>
<td>0, y, y [0, v, v]</td>
<td>0, y, y [0, v, v]</td>
<td>0, y, z [0, v, w]</td>
<td></td>
</tr>
<tr>
<td>z, 0, y [w, 0, v]</td>
<td>3/4, y, y + 1/2 [u, v, v]</td>
<td>y + 1/2, 3/4, y [v, u, v]</td>
<td>y + 1/2, 3/4, y [v, u, v]</td>
<td>0, y, z [0, v, w]</td>
<td></td>
</tr>
<tr>
<td>y, z, 0 [v, w, 0]</td>
<td>y + 1/2, 1/4 [v, u, v]</td>
<td></td>
</tr>
<tr>
<td>0, z, y [0, w, v]</td>
<td>3/4, y, y + 1/2 [u, v, v]</td>
<td>y + 1/2, 2/3, y [v, u, v]</td>
<td>y + 1/2, 2/3, y [v, u, v]</td>
<td>y + 1/2, 2/3, y [v, u, v]</td>
<td></td>
</tr>
<tr>
<td>z, y, 0 [w, v, 0]</td>
<td>y + 1/2, 2/4 [v, v, u]</td>
<td></td>
</tr>
<tr>
<td>0, y, y [0, v, v]</td>
<td></td>
</tr>
<tr>
<td>y, 0, y [v, 0, v]</td>
<td></td>
</tr>
<tr>
<td>y, y, 0 [v, v, 0]</td>
<td></td>
</tr>
<tr>
<td>0, 1/2, x [0, 0, u]</td>
<td>1/2, x, 0 [0, u, 0]</td>
<td>x, 1/2, x [0, 0, u]</td>
<td>x, 1/2, x [0, 0, u]</td>
<td>x, 1/2, x [0, 0, u]</td>
<td></td>
</tr>
<tr>
<td>0, 1/2, x [0, 0, u]</td>
<td>1/2, x, 0 [0, u, 0]</td>
<td></td>
</tr>
<tr>
<td>0, x, 0 [0, 0, u]</td>
<td></td>
</tr>
<tr>
<td>x, x, x [u, u, u]</td>
<td></td>
</tr>
<tr>
<td>x, x, x [u, u, u]</td>
<td></td>
</tr>
</tbody>
</table>

229.3.1640 - 4 - 3869
Symmetry of Special Projections

Along [0,0,1] p4'm'm
a* = (a - b)/2 b* = (a + b)/2
Origin at 0,0,z

Along [1,1,1] p6mm
a* = (2a - b - c)/3 b* = (-a + 2b - c)/3
Origin at x,x,x

Along [1,1,0] p2mm1*
a* = (-a + b)/2 b* = c/2
Origin at x,x,0

Continued
Origin at center (m3m')

Asymmetric unit

\[
0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad y \leq x; \quad z \leq \min(1/2-x,y)
\]

Vertices

\[
0,0,0 \quad 1/2,0,0 \quad 1/2,1/2,0 \quad 1/4,1/4,1/4
\]

Symmetry Operations

<table>
<thead>
<tr>
<th>For (0,0,0) + set</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1 (1),0,0,0</td>
</tr>
<tr>
<td>(2) 2 0,0,z</td>
</tr>
<tr>
<td>(3) 2 0,y,0</td>
</tr>
<tr>
<td>(4) 2 x,0,0</td>
</tr>
<tr>
<td>(5) 3' x,x,x (3_{xyz}</td>
</tr>
<tr>
<td>(6) 3' x,x,x (3_{xyz}</td>
</tr>
<tr>
<td>(7) 3' x,x,x (3_{xyz}</td>
</tr>
<tr>
<td>(8) 3' x,x,x (3_{xyz}</td>
</tr>
<tr>
<td>(9) 3' x,x,x (3_{xyz}</td>
</tr>
<tr>
<td>(10) 3' x,x,x (3_{xyz}</td>
</tr>
<tr>
<td>(11) 3' x,x,x (3_{xyz}</td>
</tr>
<tr>
<td>(12) 3' x,x,x (3_{xyz}</td>
</tr>
</tbody>
</table>
Continued

(33) $\bar{3}$ x,x,x; $1/4,1/4,1/4$
 (3$_{xy}$z) $1/2,1/2,1/2$
(34) $\bar{3}$ x+1,x-1,x; $1/4,-1/4,3/4$
 (3$_{xy}$z) $1/2,1/2,1/2$
(35) $\bar{3}$ x,x+1,x; $-1/4,3/4,1/4$
 (3$_{xy}$z) $1/2,1/2,1/2$
(36) $\bar{3}$ x+1,x,x; $3/4,1/4,-1/4$
 (3$_{xy}$z) $1/2,1/2,1/2$

(37) c' (0,0,1/2) x+1/2,x,z
 (m$_{yz}$) $1/2,1/2,1/2$
(38) n' (1/2,1/2,1/2) x,x,z
 (m$_{xy}$) $1/2,1/2,1/2$
(39) 4' - 0,1/2,z; 0,1/2,1/4
 (4'z) $1/2,1/2,1/2$
(40) 4' - 1/2,0,z; 1/2,0,1/4
 (4'z) $1/2,1/2,1/2$

(41) 4' x,0,1/2; 1/4,0,1/2
 (4'x) $1/2,1/2,1/2$
(42) a' (1/2,0,0) x+y+1/2,y
 (m$_{yz}$) $1/2,1/2,1/2$
(43) n' (1/2,1/2,1/2) x,y,y
 (m$_{yz}$) $1/2,1/2,1/2$
(44) 4' x,1/2,0; 1/4,1/2,0
 (4'x) $1/2,1/2,1/2$

(45) 4' 0,y,1/2; 0,1/4,1/2
 (4'y) $1/2,1/2,1/2$
(46) b' (0,1/2,0) x+1/2,y,x
 (m$_{xz}$) $1/2,1/2,1/2$
(47) 4' - 1/2,y,0; 1/2,1/4,0
 (4'y) $1/2,1/2,1/2$
(48) n' (1/2,1/2,1/2) x,y,x
 (m$_{xz}$) $1/2,1/2,1/2$

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13); (25).

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

96 l 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x,y,z [u,v,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(5) z,x,y [w,u,v]</td>
<td>(6) z,x,y [w,u,v]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(9) y,z,x [v,w,u]</td>
<td>(10) y,z,x [v,w,u]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(13) y,z,x [u,w]</td>
<td>(14) y,z,x [u,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(17) x,z,y [u,w]</td>
<td>(18) x,z,y [u,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(21) z,y,x [w,v]</td>
<td>(22) z,y,x [w,v]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(25) x,y,z [u,v,w]</td>
<td>(26) x,y,z [u,v,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(29) z,x,y [w,u,v]</td>
<td>(30) z,x,y [w,u,v]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(33) y,z,x [v,w,u]</td>
<td>(34) y,z,x [v,w,u]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(37) y,z,x [v,w,u]</td>
<td>(38) y,z,x [v,w,u]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(41) x,z,y [u,w]</td>
<td>(42) x,z,y [u,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(45) z,y,x [w,v,u]</td>
<td>(46) z,y,x [w,v,u]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>48 k m' x,x,z [u,u,w]</td>
<td>x,x,z [u,u,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td>x,x,z [u,u,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td>z,x,x [w,u,u]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td>x,x,x [u,w,u]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td>x,x,x [u,u,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td>x,x,x [u,w,u]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td>x,x,x [u,w,u]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td>x,x,x [u,u,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td>x,x,x [u,w,u]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
<tr>
<td></td>
<td>x,x,x [u,w,u]</td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
</tr>
</tbody>
</table>
Continued

\[z, x, x \ [w, u, u] \]

48 j m

\[0, y, z \ [u, 0, 0] \]

\[0, y, z \ [u, 0, 0] \]

\[0, y, z \ [u, 0, 0] \]

\[0, y, z \ [u, 0, 0] \]

\[0, y, z \ [u, 0, 0] \]

48 i ..

\[1/4, y, y + 1/2 \ [0, v, v] \]

\[3/4, y, y + 1/2 \ [0, v, v] \]

\[3/4, y, y + 1/2 \ [0, v, v] \]

\[1/4, y, y + 1/2 \ [0, v, v] \]

\[3/4, y, y + 1/2 \ [0, v, v] \]

\[y + 1/2, 1/4 \ [v, 0, v] \]

\[y + 1/2, 1/4 \ [v, 0, v] \]

\[y + 1/2, 1/4 \ [v, 0, v] \]

\[y + 1/2, 1/4 \ [v, 0, v] \]

\[y + 1/2, 1/4 \ [v, 0, v] \]

24 h m.m'2

\[0, y, y \ [u, 0, 0] \]

\[0, y, y \ [u, 0, 0] \]

\[0, y, y \ [u, 0, 0] \]

\[0, y, y \ [u, 0, 0] \]

\[0, y, y \ [u, 0, 0] \]

24 g mm2

\[x, 0, 1/2 \ [0, 0, 0] \]

\[x, 0, 1/2 \ [0, 0, 0] \]

\[1/2, x, 0 \ [0, 0, 0] \]

\[1/2, x, 0 \ [0, 0, 0] \]

\[1/2, x, 0 \ [0, 0, 0] \]

16 f .3m'

\[x, x, x \ [u, u, u] \]

\[x, x, x \ [u, u, u] \]

\[x, x, x \ [u, u, u] \]

\[x, x, x \ [u, u, u] \]

\[x, x, x \ [u, u, u] \]

12 e 4'm.m'

\[x, 0, 0 \ [0, 0, 0] \]

\[x, 0, 0 \ [0, 0, 0] \]

\[0, x, 0 \ [0, 0, 0] \]

\[0, x, 0 \ [0, 0, 0] \]

\[0, x, 0 \ [0, 0, 0] \]

12 d 4'm.2'

\[1/4, 0, 1/2 \ [0, 0, 0] \]

\[3/4, 0, 1/2 \ [0, 0, 0] \]

\[1/2, 3/4, 0 \ [0, 0, 0] \]

\[0, 1/2, 1/4 \ [0, 0, 0] \]

\[0, 1/2, 1/4 \ [0, 0, 0] \]

8 c .3m'

\[1/4, 1/4, 1/4 \ [u, u, u] \]

\[3/4, 3/4, 1/4 \ [u, u, u] \]

\[3/4, 1/4, 3/4 \ [u, u, u] \]

\[1/4, 3/4, 3/4 \ [u, u, u] \]

6 b 4'mm.m'

\[0, 1/2, 1/2 \ [0, 0, 0] \]

\[1/2, 0, 1/2 \ [0, 0, 0] \]

\[1/2, 1/2, 0 \ [0, 0, 0] \]

2 a m3m'

\[0, 0, 0 \ [0, 0, 0] \]

\[0, 0, 0 \ [0, 0, 0] \]

\[0, 0, 0 \ [0, 0, 0] \]

\[0, 0, 0 \ [0, 0, 0] \]
Symmetry of Special Projections

Along [0,0,1] p4mm1'
\[a^* = \frac{(a - b)}{2} \quad b^* = \frac{(a + b)}{2} \]
Origin at 0,0,z

Along [1,1,1] p6' mm'
\[a^* = \frac{(2a - b - c)}{3} \quad b^* = \frac{(-a + 2b - c)}{3} \]
Origin at x,x,x

Along [1,1,0] p2'mm'
\[a^* = \frac{c}{2} \quad b^* = \frac{(-a + b)}{2} \]
Origin at x,x,0
Origin at center (m'3'm')

Asymmetric unit
0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; y ≤ x; z ≤ min(1/2-x,y)

Vertices
0,0,0 1/2,0,0 1/2,1/2,0 1/4,1/4,1/4

Symmetry Operations

For (0,0,0) + set

(1) 1
(1') 0,0,0

(5) 3' x,x,x
(3_{xyz} | 0,0,0)

(9) 3' x,x,x
(3_{xyz}^{-1} | 0,0,0)

(2) 2 0,0,z
(2') 0,0,0

(6) 3' x,x,x
(3_{xyz}^{-1} | 0,0,0)

(10) 3' x,x,x
(3_{xyz} | 0,0,0)

(3) 2 0,y,0
(3') 0,0,0

(7) 3' x,x,x
(3_{xyz}^{-1} | 0,0,0)

(11) 3' x,x,x
(3_{xyz} | 0,0,0)

(4) 2 x,0,0
(4') 0,0,0

(8) 3' x,x,x
(3_{xyz}^{-1} | 0,0,0)
Continued

For \((1/2,1/2,1/2) + \text{set}\)

\[
\begin{align*}
(13) & \quad 2 \ x,x,0 \\
\quad (2_{xy}) 0,0,0 & \\
(14) & \quad 2 \ x,x,0 \\
\quad (2_{xy}) 0,0,0 & \\
(15) & \quad 4^+ \ 0,0,z \\
\quad (4_{z') 1,0,0) & \\
(16) & \quad 4^+ \ 0,0,z \\
\quad (4_{z'} 0,0,0) & \\
(17) & \quad 4^+ \ x,0,0 \\
\quad (4_{x'} 0,0,0) & \\
(18) & \quad 2 \ 0,y,y \\
\quad (2_{yz} 0,0,0) & \\
(19) & \quad 2 \ 0,y,y \\
\quad (2_{yz} 0,0,0) & \\
(20) & \quad 4^+ \ x,0,0 \\
\quad (4_{x'} 0,0,0) & \\
(21) & \quad 4^+ \ 0,y,0 \\
\quad (4_{y'} 0,0,0) & \\
(22) & \quad 2 \ x,0,x \\
\quad (2_{xz} 0,0,0) & \\
(23) & \quad 4^+ \ 0,y,0 \\
\quad (4_{y'} 0,0,0) & \\
(24) & \quad 2 \ x,0,x \\
\quad (2_{xz} 0,0,0) & \\
(25) & \quad \bar{1}^i \ 0,0,0 \\
\quad (\bar{1}^i 0,0,0) & \\
\quad (26) & \quad m' \ x,y,0 \\
\quad (m_{yz} 0,0,0') & \\
(27) & \quad m' \ x,0,z \\
\quad (m_{yz} 0,0,0') & \\
(28) & \quad m' \ 0,y,z \\
\quad (m_{yz} 0,0,0') & \\
(29) & \quad \bar{3}^+ \ x,x,x; 0,0,0 \\
\quad (\bar{3}_{xyz} 0,0,0') & \\
\quad (30) & \quad \bar{3}^+ \ x,x,x; 0,0,0 \\
\quad (\bar{3}_{xyz} 0,0,0') & \\
(31) & \quad \bar{3}^+ \ x,x,x; 0,0,0 \\
\quad (\bar{3}_{xyz} 0,0,0') & \\
(32) & \quad \bar{3}^+ \ x,x,x; 0,0,0 \\
\quad (\bar{3}_{xyz} 0,0,0') & \\
(33) & \quad \bar{3}^+ \ x,x,x; 0,0,0 \\
\quad (\bar{3}_{xyz} 0,0,0') & \\
\quad (34) & \quad \bar{3}^+ \ x,x,x; 0,0,0 \\
\quad (\bar{3}_{xyz} 0,0,0') & \\
\quad (35) & \quad \bar{3}^+ \ x,x,x; 0,0,0 \\
\quad (\bar{3}_{xyz} 0,0,0') & \\
\quad (36) & \quad \bar{3}^+ \ x,x,x; 0,0,0 \\
\quad (\bar{3}_{xyz} 0,0,0') & \\
(37) & \quad m' \ x,x,z \\
\quad (m_{yz} 0,0,0') & \\
\quad (38) & \quad m' \ x,x,z \\
\quad (m_{yz} 0,0,0') & \\
\quad (39) & \quad m' \ x,x,z \\
\quad (m_{yz} 0,0,0') & \\
\quad (40) & \quad m' \ x,x,z \\
\quad (m_{yz} 0,0,0') & \\
(41) & \quad \bar{4}^+ \ x,0,0; 0,0,0 \\
\quad (\bar{4}_{x'} 0,0,0') & \\
\quad (42) & \quad m' \ x,y,y \\
\quad (m_{yz} 0,0,0') & \\
\quad (43) & \quad m' \ x,y,y \\
\quad (m_{yz} 0,0,0') & \\
\quad (44) & \quad m' \ x,y,y \\
\quad (m_{yz} 0,0,0') & \\
(45) & \quad \bar{4}^+ \ 0,y,0; 0,0,0 \\
\quad (\bar{4}_{y'} 0,0,0') & \\
\quad (46) & \quad m' \ x,y,x \\
\quad (m_{yz} 0,0,0') & \\
\quad (47) & \quad m' \ x,y,x \\
\quad (m_{yz} 0,0,0') & \\
\quad (48) & \quad m' \ x,y,x \\
\quad (m_{yz} 0,0,0') & \\
\quad & 229.5.1642 - 2 \text{-} 3877
\end{align*}
\]
Continued

(33) \(y, z, x \) [v, w, u]
(34) \(x + 1, x - 1, x \)
(35) \(x, x + 1, x \)
(36) \(x + 1, x, x \)

(37) \(x, 0, 1/2 \) x + 1/2, x, z
(38) \(n' (1/2, 1/2, 1/2) \) x, x, z
(39) \(n' (1/2, 1/2, 1/2) \) x, x, z
(40) \(1/2, 0, z \) 1/2, 0, 1/4

(41) \(4^{-1} \) x, 0, 1/2; 1/4, 0, 1/2
(42) \(4^{-1} \) x, 0, 1/2; 1/4, 0, 1/2
(43) \(n' (1/2, 1/2, 1/2) \) x, y, y
(44) \(4^{-1} \) x, 1/2, 0; 1/4, 1/2, 0

(45) \(4^{-1} \) 0, y, 1/2; 0, 1/4, 1/2
(46) \(b' (0, 1/2, 0) x + 1/2, x, x \)
(47) \(4^{-1} \) 1/2, y, 0; 1/2, 1/4, 0
(48) \(n' (1/2, 1/2, 1/2) x, y, x \)

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

96 1 1

Coordinates

(0,0,0) + (1/2,1/2,1/2) +

(1) x,y,z [u,v,w]
(2) \(x, y, z [u, v, w] \)
(3) \(x, y, z [u, v, w] \)
(4) \(x, y, z [u, v, w] \)

(5) z,x,y [w,u,v]
(6) \(z, x, y [w, u, v] \)
(7) \(z, x, y [w, u, v] \)
(8) \(z, x, y [w, u, v] \)

(9) y,z,x [v,w,u]
(10) \(y, z, x [v, w, u] \)
(11) \(y, z, x [v, w, u] \)
(12) \(y, z, x [v, w, u] \)

(13) y,x,z [v,u,w]
(14) \(y, x, z [v, u, w] \)
(15) \(y, x, z [v, u, w] \)
(16) \(y, x, z [v, u, w] \)

(17) x,y,z [u,w,v]
(18) \(x, y, z [u, w, v] \)
(19) \(x, y, z [u, w, v] \)
(20) \(x, y, z [u, w, v] \)

(21) z,y,x [w,v,u]
(22) \(z, y, x [w, v, u] \)
(23) \(z, y, x [w, v, u] \)
(24) \(z, y, x [w, v, u] \)

(25) x,y,z [u,v,w]
(26) \(x, y, z [u, v, w] \)
(27) \(x, y, z [u, v, w] \)
(28) \(x, y, z [u, v, w] \)

(29) z,x,y [w,u,v]
(30) \(z, x, y [w, u, v] \)
(31) \(z, x, y [w, u, v] \)
(32) \(z, x, y [w, u, v] \)

(33) y,z,x [v,w,u]
(34) \(y, z, x [v, w, u] \)
(35) \(y, z, x [v, w, u] \)
(36) \(y, z, x [v, w, u] \)

(37) y,x,z [v,u,w]
(38) \(y, x, z [v, u, w] \)
(39) \(y, x, z [v, u, w] \)
(40) \(y, x, z [v, u, w] \)

(41) x,z,y [u,w,v]
(42) \(x, z, y [u, w, v] \)
(43) \(x, z, y [u, w, v] \)
(44) \(x, z, y [u, w, v] \)

(45) z,y,x [w,v,u]
(46) \(z, y, x [w, v, u] \)
(47) \(z, y, x [w, v, u] \)
(48) \(z, y, x [w, v, u] \)

229.5.1642 - 3 - 3878
<table>
<thead>
<tr>
<th>Column</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 j m'</td>
<td>(z, x, x) [(w, u, u)]</td>
</tr>
<tr>
<td>48 i</td>
<td>..2</td>
</tr>
<tr>
<td>24 h m'.m'2</td>
<td>(3/4, y, y+1/2) [(0, v, v)]</td>
</tr>
<tr>
<td>24 g m'm'2</td>
<td>(y+1/2, 1/4, y) [(v, 0, v)]</td>
</tr>
<tr>
<td>16 f .3m'</td>
<td>(x, x, x) [(u, u, u)]</td>
</tr>
<tr>
<td>12 e 4m'.m'</td>
<td>(x, 0, 0) [(u, 0, 0)]</td>
</tr>
<tr>
<td>12 d 4'm'.2</td>
<td>(1/2, 3/4, 0) [(0, 0, 0)]</td>
</tr>
<tr>
<td>8 c .3'm'</td>
<td>(1/4, 1/4, 1/4) [(0, 0, 0)]</td>
</tr>
<tr>
<td>6 b 4/m'm'.m'</td>
<td>(0, 1/2, 1/2) [(0, 0, 0)]</td>
</tr>
<tr>
<td>2 a m'3'm'</td>
<td>(0, 0, 0) [(0, 0, 0)]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>Direction</th>
<th>p4m' m'</th>
<th>p6m' m'</th>
<th>p2m' m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0,0,1]</td>
<td>(a^= (a - b)/2) (b^= (a + b)/2)</td>
<td>(a^= (2a - b - c)/3) (b^= (-a + 2b - c)/3)</td>
<td>(a^= (-a + b)/2) (b^= c/2)</td>
</tr>
<tr>
<td>Origin</td>
<td>0,0,z</td>
<td>x,x,x</td>
<td>x,x,0</td>
</tr>
</tbody>
</table>
Origin at center \((m\bar{3}m)\)

Asymmetric unit: \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad y < x; \quad z \leq \min(1/2-x,y)\)

Vertices: \(0,0,0\); \(1/2,0,0\); \(1/2,1/2,0\); \(1/4,1/4,1/4\)

Symmetry Operations

For \((0,0,0) + \text{ set}\)

1. \(1\)
2. \(2 \quad 0,0,z\)
3. \(2 \quad 0,y,0\)
4. \(2 \quad x,0,0\)

5. \(3^+ \ x,x,x\)
6. \(3^+ \ x,x,x\)
7. \(3^+ \ x,x,x\)
8. \(3^+ \ x,x,x\)

9. \(3^{-} \ x,x,x\)
10. \(3^{-} \ x,x,x\)
11. \(3^{-} \ x,x,x\)
12. \(3^{-} \ x,x,x\)

229.6.1643 - 1 - 3881
Continued

(33) $\bar{3}$: x,x,x;
\[\frac{1}{2}, \frac{1}{2}, 1/2 \]
(34) $\bar{3}$: x+1, x-1, x;
\[\frac{1}{2}, \frac{1}{2}, 1/2 \]
(35) $\bar{3}$: x, x+1, x;
\[\frac{1}{2}, \frac{1}{2}, 1/2 \]
(36) $\bar{3}$: x+1, x, x;
\[\frac{1}{2}, \frac{1}{2}, 1/2 \]

(37) c' (0,0,1/2) x+1/2, x, z
\[m_{xy} \] 1/2, 1/2, 1/2

(38) n' (1/2,1/2,1/2) x,x,z
\[m_{xy} \] 1/2, 1/2, 1/2

(39) 4' - 0,1/2,z; 0,1/2,1/4
\[4' \] 1/2,1/2,1/2

(40) 4' - 1/2,0,z; 1/2,0,1/4
\[4' \] 1/2,1/2,1/2

(41) 4' - x,0,1/2; 1/4,0,1/2
\[4' \] 1/2,1/2,1/2

(42) a' (1/2,0,0) x,y+1/2, y
\[m_{yx} \] 1/2,1/2,1/2

(43) n' (1/2,1/2,1/2) x,y,y
\[m_{yx} \] 1/2,1/2,1/2

(44) 4' - 1/2,1/2,0; 1/4,1,2,0
\[4' \] 1/2,1/2,1/2

(45) 4' - 0,y,1/2; 0,1/4,1/2
\[4' \] 1/2,1/2,1/2

(46) b' (0,1/2,0) x+1/2,y,x
\[m_{xz} \] 1/2,1/2,1/2

(47) 4' - 1/2,y,0; 1/2,1/4,0
\[4' \] 1/2,1/2,1/2

(48) n' (1/2,1/2,1/2) x,y,x
\[m_{xz} \] 1/2,1/2,1/2

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

96 l 1

(1) x,y,z [u,v,w] (2) x,y,z [u,v,w] (3) x,y,z [u,v,w] (4) x,y,z [u,v,w]

(5) z,x,y [w,u,v] (6) z,x,y [w,u,v] (7) z,x,y [w,u,v] (8) z,x,y [w,u,v]

(9) y,z,x [v,w,u] (10) y,z,x [v,w,u] (11) y,z,x [v,w,u] (12) y,z,x [v,w,u]

(13) y,z,x [v,u,w] (14) y,z,x [v,u,w] (15) y,z,x [v,u,w] (16) y,z,x [v,u,w]

(17) x,z,y [u,w,v] (18) x,z,y [u,w,v] (19) x,z,y [u,w,v] (20) x,z,y [u,w,v]

(21) z,y,x [w,v,u] (22) z,y,x [w,v,u] (23) z,y,x [w,v,u] (24) z,y,x [w,v,u]

(25) x,y,z [u,v,w] (26) x,y,z [u,v,w] (27) x,y,z [u,v,w] (28) x,y,z [u,v,w]

(29) z,x,y [w,u,v] (30) z,x,y [w,u,v] (31) z,x,y [w,u,v] (32) z,x,y [w,u,v]

(33) y,z,x [v,w,u] (34) y,z,x [v,w,u] (35) y,z,x [v,w,u] (36) y,z,x [v,w,u]

(37) y,z,x [v,u,w] (38) y,z,x [v,u,w] (39) y,z,x [v,u,w] (40) y,z,x [v,u,w]

(41) x,z,y [u,w,v] (42) x,z,y [u,w,v] (43) x,z,y [u,w,v] (44) x,z,y [u,w,v]

(45) z,y,x [w,v,u] (46) z,y,x [w,v,u] (47) z,y,x [w,v,u] (48) z,y,x [w,v,u]
<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>z,x,x [0,u,u]</td>
<td>z,x,x [0,u,u]</td>
<td>z,x,x [0,u,u]</td>
</tr>
<tr>
<td>48</td>
<td>j</td>
<td>mm2</td>
</tr>
<tr>
<td>1/4,y,y +1/2</td>
<td>1/4,y,y +1/2</td>
<td>1/4,y,y +1/2</td>
</tr>
<tr>
<td>24</td>
<td>h</td>
<td>mm2</td>
</tr>
<tr>
<td>0,y,y [0,0,0]</td>
<td>0,y,y [0,0,0]</td>
<td>0,y,y [0,0,0]</td>
</tr>
<tr>
<td>y,y,y [0,0,0]</td>
<td>y,y,y [0,0,0]</td>
<td>y,y,y [0,0,0]</td>
</tr>
<tr>
<td>1/2,y,y +1/2</td>
<td>1/2,y,y +1/2</td>
<td>1/2,y,y +1/2</td>
</tr>
<tr>
<td>16</td>
<td>f</td>
<td>.3m</td>
</tr>
<tr>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
</tr>
<tr>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
<td>x,x,x [0,0,0]</td>
</tr>
<tr>
<td>12</td>
<td>e</td>
<td>4m.m</td>
</tr>
<tr>
<td>x,0,0 [0,0,0]</td>
<td>x,0,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
<td>0,x,0 [0,0,0]</td>
</tr>
<tr>
<td>12</td>
<td>d</td>
<td>4m.2</td>
</tr>
<tr>
<td>1/4,0,1/2 [0,0,0]</td>
<td>3/4,0,1/2 [0,0,0]</td>
<td>1/2,1/4,0 [0,0,0]</td>
</tr>
<tr>
<td>1/2,3/4,0 [0,0,0]</td>
<td>0,1/2,1/4 [0,0,0]</td>
<td>0,1/2,3/4 [0,0,0]</td>
</tr>
<tr>
<td>8</td>
<td>c</td>
<td>.3m</td>
</tr>
<tr>
<td>1/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,1/4 [0,0,0]</td>
<td>3/4,1/4,3/4 [0,0,0]</td>
</tr>
<tr>
<td>6</td>
<td>b</td>
<td>4/mm.m</td>
</tr>
<tr>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>m3m</td>
</tr>
<tr>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
<td>0,0,0 [0,0,0]</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along [0,0,1] p4mm1'
\(a^* = \frac{(a - b)}{2} \quad b^* = \frac{(a + b)}{2} \)
Origin at 0,0,z

Along [1,1,1] p6mm1'
\(a^* = \frac{(2a - b - c)}{3} \quad b^* = \frac{(-a + 2b - c)}{3} \)
Origin at x,x,x

Along [1,1,0] p2mm1'
\(a^* = \frac{(-a + b)}{2} \quad b^* = \frac{c}{2} \)
Origin at x,x,0
Origin at center (m\(^3\)\(^\prime\)m)

Asymmetric unit:
- \(0 \leq x \leq 1/2; \quad 0 \leq y \leq 1/2; \quad 0 \leq z \leq 1/4; \quad y \leq x; \quad z \leq \min(1/2-x,y)

Vertices:
- 0,0,0
- 1/2,0,0
- 1/2,1/2,0
- 1/4,1/4,1/4

Symmetry Operations

For \((0,0,0) + \text{set}\):

1. \(1\)
2. \(2\) \((0,0,z)\)
3. \(2\) \((0,y,0)\)
4. \(2\) \((x,0,0)\)

5. \(3^+ x,x,x\)
6. \(3^+ x,x,x\)
7. \(3^+ x,x,x\)
8. \(3^+ x,x,x\)

9. \(3^- x,x,x\)
10. \(3^- x,x,x\)
11. \(3^- x,x,x\)
12. \(3^- x,x,x\)
Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (13); (25).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>l</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>(0,0,0) +</th>
<th>(1/2,1/2,1/2)' +</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(2) x, y, z [u,v,w]</td>
<td>(3) x, y, z [u,v,w]</td>
</tr>
<tr>
<td>(4) x, y, z [u,v,w]</td>
<td>(5) z, x, y [w,u,v]</td>
<td>(6) z, x, y [w,u,v]</td>
</tr>
<tr>
<td>(7) z, x, y [w,u,v]</td>
<td>(8) z, x, y [w,u,v]</td>
<td>(9) y, z, x [v,w,u]</td>
</tr>
<tr>
<td>(10) y, z, x [v,w,u]</td>
<td>(11) y, z, x [v,w,u]</td>
<td>(12) y, z, x [v,w,u]</td>
</tr>
<tr>
<td>(13) y, z, x [v,w,u]</td>
<td>(14) y, x, z [v,u,w]</td>
<td>(15) y, x, z [v,u,w]</td>
</tr>
<tr>
<td>(16) y, x, z [v,u,w]</td>
<td>(17) x, y, z [w,v,u]</td>
<td>(18) x, y, z [w,v,u]</td>
</tr>
<tr>
<td>(19) x, y, z [w,v,u]</td>
<td>(20) x, y, z [w,v,u]</td>
<td>(21) x, y, z [w,v,u]</td>
</tr>
<tr>
<td>(22) x, y, z [w,v,u]</td>
<td>(23) x, y, z [w,v,u]</td>
<td>(24) x, y, z [w,v,u]</td>
</tr>
<tr>
<td>(25) x, y, z [w,v,u]</td>
<td>(26) x, y, z [w,v,u]</td>
<td>(27) x, y, z [w,v,u]</td>
</tr>
<tr>
<td>(28) x, y, z [w,v,u]</td>
<td>(29) z, x, y [w,u,v]</td>
<td>(30) z, x, y [w,u,v]</td>
</tr>
<tr>
<td>(31) z, x, y [w,u,v]</td>
<td>(32) z, x, y [w,u,v]</td>
<td>(33) y, z, x [v,w,u]</td>
</tr>
<tr>
<td>(34) y, z, x [v,w,u]</td>
<td>(35) y, z, x [v,w,u]</td>
<td>(36) y, z, x [v,w,u]</td>
</tr>
<tr>
<td>(37) y, z, x [v,w,u]</td>
<td>(38) y, z, x [v,w,u]</td>
<td>(39) y, z, x [v,w,u]</td>
</tr>
<tr>
<td>(40) y, z, x [v,w,u]</td>
<td>(41) x, z, y [u,w,v]</td>
<td>(42) x, z, y [u,w,v]</td>
</tr>
<tr>
<td>(43) x, z, y [u,w,v]</td>
<td>(44) x, z, y [u,w,v]</td>
<td>(45) x, z, y [u,w,v]</td>
</tr>
<tr>
<td>(46) x, z, y [u,w,v]</td>
<td>(47) x, z, y [u,w,v]</td>
<td>(48) x, z, y [u,w,v]</td>
</tr>
<tr>
<td>(49) x, z, y [u,w,v]</td>
<td>(50) x, z, y [u,w,v]</td>
<td>(51) x, z, y [u,w,v]</td>
</tr>
<tr>
<td>(52) x, z, y [u,w,v]</td>
<td>(53) x, z, y [u,w,v]</td>
<td>(54) x, z, y [u,w,v]</td>
</tr>
<tr>
<td>(55) x, z, y [u,w,v]</td>
<td>(56) x, z, y [u,w,v]</td>
<td>(57) x, z, y [u,w,v]</td>
</tr>
<tr>
<td>(58) x, z, y [u,w,v]</td>
<td>(59) x, z, y [u,w,v]</td>
<td>(60) x, z, y [u,w,v]</td>
</tr>
</tbody>
</table>

229.7.1644 - 3 - 3888
<table>
<thead>
<tr>
<th>i</th>
<th>m'3m</th>
<th>j</th>
<th>m'..</th>
<th>k</th>
<th>m'2..</th>
<th>l</th>
<th>m'2'</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>z,x,x [0, u, u]</td>
</tr>
<tr>
<td>1/4, y, y + 1/2 [0, v, v]</td>
<td>24</td>
<td>y, y [0, v, v]</td>
<td>24</td>
<td>y, y [0, v, v]</td>
<td>24</td>
<td>y, y [0, v, v]</td>
<td>24</td>
</tr>
<tr>
<td>y + 1/2, 1/4, y [0, v, v]</td>
<td>24</td>
<td>y, y [0, v, v]</td>
<td>24</td>
<td>y, y [0, v, v]</td>
<td>24</td>
<td>y, y [0, v, v]</td>
<td>24</td>
</tr>
<tr>
<td>y + 1/2, 3/4, y [0, v, v]</td>
<td>24</td>
<td>y, y [0, v, v]</td>
<td>24</td>
<td>y, y [0, v, v]</td>
<td>24</td>
<td>y, y [0, v, v]</td>
<td>24</td>
</tr>
<tr>
<td>0, z, y [0, w, v]</td>
<td>16</td>
<td>x, x, x [u, u, u]</td>
<td>16</td>
<td>x, x, x [u, u, u]</td>
<td>16</td>
<td>x, x, x [u, u, u]</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>4m'.m</td>
<td>x,0,0 [0, 0, 0]</td>
<td>12</td>
<td>4m'.m</td>
<td>x,0,0 [0, 0, 0]</td>
<td>12</td>
<td>4m'.m</td>
</tr>
<tr>
<td>1/2, 1/2, 2/1 [0, 0, 0]</td>
<td>2</td>
<td>0, 0, 0 [0, 0, 0]</td>
<td>2</td>
<td>0, 0, 0 [0, 0, 0]</td>
<td>2</td>
<td>0, 0, 0 [0, 0, 0]</td>
<td>2</td>
</tr>
</tbody>
</table>
Symmetry of Special Projections

Along \([0,0,1]\) \(p_4m'm'\)
\(a^* = (a - b)/2\) \(b^* = (a + b)/2\)
Origin at \(1/2,0,z\)

Along \([1,1,1]\) \(p6mm1'\)
\(a^* = (2a - b - c)/3\) \(b^* = (-a + 2b - c)/3\)
Origin at \(x,x,x\)

Along \([1,1,0]\) \(p2mm1'\)
\(a^* = (-a + b)/2\) \(b^* = c/2\)
Origin at \(x,x,0\)
Origin at center (m\text{3}m')

Asymmetric unit
0 \leq x \leq 1/2; 0 \leq y \leq 1/2; 0 \leq z \leq 1/4; y \leq x; z \leq \min(1/2-x,y)

Vertices
0,0,0 1/2,0,0 1/2,1/2,0 1/4,1/4,1/4

Symmetry Operations
For (0,0,0) + set

(1) 1
(1) 0,0,0

(2) 2,0,0,z
(2) 0,0,0

(3) 2,0,y,0
(3) 0,0,0

(4) 2,x,0,0
(4) 0,0,0

(5) 3^+ x,x,x
(5) x,x,x
(3_{xyz}|0,0,0)

(6) 3^+ x,x,x
(6) x,x,x
(3_{xyz}^{-1}|0,0,0)

(7) 3^+ x,x,x
(7) x,x,x
(3_{xyz}^{-1}|0,0,0)

(8) 3^{-} x,x,x
(8) x,x,x
(3_{xyz}^{-1}|0,0,0)

(9) 3^+ x,x,x
(9) x,x,x
(3_{xyz}^{-1}|0,0,0)

(10) 3^+ x,x,x
(10) x,x,x
(3_{xyz}|0,0,0)

(11) 3^{-} x,x,x
(11) x,x,x
(3_{xyz}|0,0,0)

(12) 3^{-} x,x,x
(12) x,x,x
(3_{xyz}|0,0,0)
Continued

\[(33) \vec{3}' \begin{array}{c} x, x, x \\ 1/4, 1/4, 1/4 \\ (\vec{3}_{xyz})^{1/2, 1/2, 1/2} \end{array} \]
\[(34) \vec{3}' \begin{array}{c} x+1, x-1, x \\ 1/4, -1/4, 3/4 \\ (\vec{3}_{xyz})^{1/2, 1/2, 1/2} \end{array} \]
\[(35) \vec{3}' \begin{array}{c} x, x+1, x \\ -1/4, 3/4, 1/4 \\ (\vec{3}_{xyz})^{1/2, 1/2, 1/2} \end{array} \]
\[(36) \vec{3}' \begin{array}{c} x+1, x, x \\ 3/4, 1/4, -1/4 \\ (\vec{3}_{xyz})^{1/2, 1/2, 1/2} \end{array} \]

\[(37) c \begin{array}{c} (0,0,1/2) \\ x+1/2, x, z \\ (m_{yz})^{1/2, 1/2, 1/2} \end{array} \]
\[(38) n \begin{array}{c} (1/2, 1/2, 1/2) \\ x, x, z \\ (m_{yz})^{1/2, 1/2, 1/2} \end{array} \]
\[(39) 4^- \begin{array}{c} 0, 1/2, z \\ 1/2, 1/2, 1/2 \\ (m_{xz})^{1/2, 1/2, 1/2} \end{array} \]
\[(40) 4^- \begin{array}{c} 1/2, 0, z \\ 1/2, 0, 1/4 \\ (m_{xz})^{1/2, 1/2, 1/2} \end{array} \]

\[(41) 4^- \begin{array}{c} x, 0, 1/2 \\ 1/4, 0, 1/2 \\ (4^x)^{1/2, 1/2, 1/2} \end{array} \]
\[(42) a \begin{array}{c} (1/2, 0, 0) \\ y, x+1/2, y \\ (m_{yz})^{1/2, 1/2, 1/2} \end{array} \]
\[(43) n \begin{array}{c} (1/2, 1/2, 1/2) \\ x, y, y \\ (4^x)^{1/2, 1/2, 1/2} \end{array} \]

\[(44) 4^- \begin{array}{c} x, 1/2, 0 \\ 1/4, 1/2, 0 \\ (4^x)^{1/2, 1/2, 1/2} \end{array} \]

\[(45) 4^- \begin{array}{c} 0, y, 1/2 \\ 0, 1/4, 1/2 \\ (4_y)^{1/2, 1/2, 1/2} \end{array} \]
\[(46) b \begin{array}{c} (0, 1/2, 0) \\ x+1/2, y, x \\ (m_{xz})^{1/2, 1/2, 1/2} \end{array} \]
\[(47) 4^- \begin{array}{c} 1/2, y, 0 \\ 1/2, 1/4, 0 \\ (4^y)^{1/2, 1/2, 1/2} \end{array} \]
\[(48) n \begin{array}{c} (1/2, 1/2, 1/2) \\ x, y, x \\ (m_{xz})^{1/2, 1/2, 1/2} \end{array} \]

Generators selected

\[(1); (t(1,0,0); t(0,1,0); t(0,0,1); t'(1/2,1/2,1/2); (2); (3); (5); (13); (25). \]

Positions

Multiplicity,
Wyckoff letter,
Site Symmetry.

96 | l | 1

\[(1) x, y, z \begin{array}{c} [u, v, w] \end{array} \]
\[(5) z, x, y \begin{array}{c} [w, u, v] \end{array} \]
\[(9) y, z, x \begin{array}{c} [v, w, u] \end{array} \]
\[(13) y, z, x \begin{array}{c} [\bar{v}, u, w] \end{array} \]
\[(17) x, z, y \begin{array}{c} [\bar{u}, w, v] \end{array} \]
\[(21) z, y, x \begin{array}{c} [w, v, u] \end{array} \]
\[(25) x, y, z \begin{array}{c} [u, v, w] \end{array} \]
\[(29) z, x, y \begin{array}{c} [w, u, v] \end{array} \]
\[(33) y, z, x \begin{array}{c} [v, w, u] \end{array} \]
\[(37) y, z, x \begin{array}{c} [v, u, w] \end{array} \]
\[(41) x, z, y \begin{array}{c} [u, w, v] \end{array} \]
\[(45) z, y, x \begin{array}{c} [w, v, u] \end{array} \]

Coordinates

\[(0,0,0) + (1/2,1/2,1/2)' + \]

229.8.1645 - 3 - 3893
Symmetry of Special Projections

Along [0,0,1] p4mm1' \[a^* = (a - b)/2 \] \[b^* = (a + b)/2 \]
Origin at 0,0,z

Along [1,1,1] p6mm1' \[a^* = (2a - b - c)/3 \] \[b^* = (-a + 2b - c)/3 \]
Origin at x,x,x

Along [1,1,0] p2a* 2m'm' \[a^* = c/2 \] \[b^* = -(a + b)/2 \]
Origin at x,x,1/4
Origin at center (m'3'm')

Asymmetric unit: 0 ≤ x ≤ 1/2; 0 ≤ y ≤ 1/2; 0 ≤ z ≤ 1/4; y ≤ x; z ≤ min(1/2-x,y)

Vertices: 0,0,0, 1/2,0,0, 1/2,1/2,0, 1/4,1/2,1/4

Symmetry Operations:

For (0,0,0) + set

(1) 1
(1),0,0,0)

(2) 2 0,0,z
(2),0,0,0)

(3) 2 0,y,0
(2),0,0,0)

(4) 2 x,0,0
(2),0,0,0)

(9) 3+ x,x,x
(3*,0,0,0)

(6) 3* x,x,x
(3*,0,0,0)

(7) 3* x,x,x
(3*,0,0,0)

(8) 3* x,x,x
(3*,0,0,0)

(10) 3* x,x,x
(3*,0,0,0)

(11) 3* x,x,x
(3*,0,0,0)

(12) 3* x,x,x
(3*,0,0,0)
Continued

| (33) $\bar{3}$ | x,x,x; 1/4,1/2,1/2 | (34) $\bar{3}$ | x+1/2, x-1/2, x; 1/4,1/2,1/2 | (35) $\bar{3}$ | x,x,1; 1/4,1/4,1/4 | (36) $\bar{3}$ | x+1, x,x; 3/4,1/4,-1/4 |
| (3) xyz | (1/2,1/2,1/2) |

| (37) c (0,0,1/2) | x+1/2, x,z; m,y | (38) n (1/2,1/2,1/2) | x,x,z; m,y | (39) $\bar{4}$ | 0,1/2; z, 0,1/2,1/4 | (40) $\bar{4}$ | 1/2,0,0; 1/2,0,1/4 |
| (5) xyz | (1/2,1/2,1/2) | (5) xyz | (1/2,1/2,1/2) | (4) x^{-1} | 1/2,1/2,1/2 | (4) x^{-1} | 1/2,1/2,1/2 |

| (41) $\bar{4}$ | x,0,1/2; 1/4,0,1/2 | (42) a (1/2,0,0) | x,y+1/2, y,z; m,y | (43) n (1/2,1/2,1/2) | x,y,y; m,y | (44) $\bar{4}$ | x,1/2,0; 1/4,1/2,0 |
| (5) xyz | (1/2,1/2,1/2) | (5) xyz | (1/2,1/2,1/2) | (4) x^{-1} | 1/2,1/2,1/2 | (4) x^{-1} | 1/2,1/2,1/2 |

| (45) $\bar{4}$ | 0,y,1/2; 0,1/4,1/2 | (46) b (0,1/2,0) | x+1/2, y,x; m,y | (47) $\bar{4}$ | 1/2,2,y; 0,1/2,1/4,0 | (48) n (1/2,1/2,1/2) | x,y,x; m,y |
| (4) xyz | (1/2,1/2,1/2) | (4) xyz | (1/2,1/2,1/2) | (4) y^{-1} | 1/2,1/2,1/2 | (4) y^{-1} | 1/2,1/2,1/2 |

Generators selected

1. (1,0,0); 2. (0,1,0); 3. (0,0,1); 4. (1/2,1,1/2); 5. (1/2,1,1/2); 6. (2); 7. (3,5); 8. (13); 9. (25).

Positions

<table>
<thead>
<tr>
<th>Multiplicity, Wyckoff letter, Site Symmetry</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>l 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [u,v,w]</td>
<td>(0,0,0) + (1/2,1/2,1/2)' +</td>
</tr>
<tr>
<td>(5) z,x,y [w,u,v]</td>
<td></td>
</tr>
<tr>
<td>(9) y,z,x [v,w,u]</td>
<td></td>
</tr>
<tr>
<td>(12) y,z,x [v,w,u]</td>
<td></td>
</tr>
<tr>
<td>(16) y,x,z [v,u,w]</td>
<td></td>
</tr>
<tr>
<td>(24) z,y,x [w,v,u]</td>
<td></td>
</tr>
<tr>
<td>(28) x,y,z [u,v,w]</td>
<td></td>
</tr>
<tr>
<td>(32) z,x,y [w,u,v]</td>
<td></td>
</tr>
<tr>
<td>(36) y,z,x [v,w,u]</td>
<td></td>
</tr>
<tr>
<td>(40) y,z,x [v,w,u]</td>
<td></td>
</tr>
<tr>
<td>(44) x,z,y [u,w,v]</td>
<td></td>
</tr>
<tr>
<td>(48) z,y,x [w,v,u]</td>
<td></td>
</tr>
</tbody>
</table>

Continued

<table>
<thead>
<tr>
<th>k</th>
<th>m'</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>x,x,z [u,u,w]</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>x,x,z [u,u,w]</td>
<td>x,x,z [u,u,w]</td>
</tr>
<tr>
<td>x,z,x [w,u,u]</td>
<td>x,z,x [w,u,u]</td>
</tr>
<tr>
<td>x,z,x [w,u,u]</td>
<td>x,z,x [w,u,u]</td>
</tr>
<tr>
<td>x,z,x [u,u,w]</td>
<td>x,z,x [u,u,w]</td>
</tr>
<tr>
<td>x,z,x [u,u,w]</td>
<td>x,z,x [u,u,w]</td>
</tr>
</tbody>
</table>

229.9.1646 - 3 - 3898
<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
<th>Column 4</th>
<th>Column 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>j</td>
<td>m'..</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, y, z</td>
<td>[0, v, w]</td>
<td>0, y, z</td>
<td>[0, v, w]</td>
<td>0, y, z</td>
</tr>
<tr>
<td>z, 0, y</td>
<td>[w, 0, v]</td>
<td>z, 0, y</td>
<td>[w, 0, v]</td>
<td>z, 0, y</td>
</tr>
<tr>
<td>y, 0, z</td>
<td>[v, 0, w]</td>
<td>y, 0, z</td>
<td>[v, 0, w]</td>
<td>y, 0, z</td>
</tr>
<tr>
<td>0, y, z</td>
<td>[0, w, v]</td>
<td>0, y, z</td>
<td>[0, w, v]</td>
<td>0, y, z</td>
</tr>
<tr>
<td>z, y, 0</td>
<td>[w, v, 0]</td>
<td>z, y, 0</td>
<td>[w, v, 0]</td>
<td>z, y, 0</td>
</tr>
<tr>
<td>24</td>
<td>h</td>
<td>m'.m'2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, y, y</td>
<td>[0, v, v]</td>
<td>0, y, y</td>
<td>[0, v, v]</td>
<td>0, y, y</td>
</tr>
<tr>
<td>y, 0, y</td>
<td>[v, 0, v]</td>
<td>y, 0, y</td>
<td>[v, 0, v]</td>
<td>y, 0, y</td>
</tr>
<tr>
<td>y, y, 0</td>
<td>[v, v, 0]</td>
<td>y, y, 0</td>
<td>[v, v, 0]</td>
<td>y, y, 0</td>
</tr>
<tr>
<td>24</td>
<td>g</td>
<td>m'm'2..</td>
<td>x, 0, 1/2</td>
<td>u, 0, 0</td>
</tr>
<tr>
<td>0, 1/2, x</td>
<td>[0, 0, u]</td>
<td>0, 1/2, x</td>
<td>[0, 0, u]</td>
<td>0, 1/2, x</td>
</tr>
<tr>
<td>x, 1/2, 0</td>
<td>[0, u, 0]</td>
<td>x, 1/2, 0</td>
<td>[0, u, 0]</td>
<td>x, 1/2, 0</td>
</tr>
<tr>
<td>16</td>
<td>f</td>
<td>.3m'</td>
<td>x, x, x</td>
<td>[u, u, u]</td>
</tr>
<tr>
<td>x, x, x</td>
<td>[u, u, u]</td>
<td>x, x, x</td>
<td>[u, u, u]</td>
<td>x, x, x</td>
</tr>
<tr>
<td>12</td>
<td>e</td>
<td>4m'.m'</td>
<td>x, 0, 0</td>
<td>[u, 0, 0]</td>
</tr>
<tr>
<td>x, 0, 0</td>
<td>[u, 0, 0]</td>
<td>x, 0, 0</td>
<td>[u, 0, 0]</td>
<td>x, 0, 0</td>
</tr>
<tr>
<td>0, x, 0</td>
<td>[0, u, 0]</td>
<td>0, x, 0</td>
<td>[0, u, 0]</td>
<td>0, x, 0</td>
</tr>
<tr>
<td>12</td>
<td>d</td>
<td>4m'.2'</td>
<td>1/4, 0, 1/2</td>
<td>u, 0, 0</td>
</tr>
<tr>
<td>1/2, 3/4, 0</td>
<td>[0, u, 0]</td>
<td>1/2, 3/4, 0</td>
<td>[0, u, 0]</td>
<td>1/2, 3/4, 0</td>
</tr>
<tr>
<td>8</td>
<td>c</td>
<td>.3m'</td>
<td>1/4, 1/4, 1/4</td>
<td>u, u, u</td>
</tr>
<tr>
<td>3/4, 3/4, 1/4</td>
<td>u, u, u</td>
<td>3/4, 1/4, 3/4</td>
<td>u, u, u</td>
<td>3/4, 1/4, 3/4</td>
</tr>
<tr>
<td>6</td>
<td>b</td>
<td>4/m'm'.m'</td>
<td>0, 1/2, 1/2</td>
<td>[0, 0, 0]</td>
</tr>
<tr>
<td>1/2, 0, 1/2</td>
<td>[0, 0, 0]</td>
<td>1/2, 0, 1/2</td>
<td>[0, 0, 0]</td>
<td>1/2, 0, 1/2</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>m'3'm'</td>
<td>0, 0, 0</td>
<td>[0, 0, 0]</td>
</tr>
</tbody>
</table>

229.9.1646 - 4 - 3899
Symmetry of Special Projections

Along \([0,0,1]\) \(p4mm1'\)
\[\mathbf{a}^* = (\mathbf{a} - \mathbf{b})/2 \quad \mathbf{b}^* = (\mathbf{a} + \mathbf{b})/2\]
Origin at 0,0,z

Along \([1,1,1]\) \(p6mm1'\)
\[\mathbf{a}^* = (2\mathbf{a} - \mathbf{b} - \mathbf{c})/3 \quad \mathbf{b}^* = (\mathbf{a} + 2\mathbf{b} - \mathbf{c})/3\]
Origin at x,x,x

Along \([1,1,0]\) \(p2mm1'\)
\[\mathbf{a}^* = (-\mathbf{a} + \mathbf{b})/2 \quad \mathbf{b}^* = \mathbf{c}/2\]
Origin at x,x,0
Symmetry Operations

For $(0,0,0) + \text{set}$

<table>
<thead>
<tr>
<th>(1) t $(1/2,1/2,1/2)$</th>
<th>(2) $2 (0,0,1/2) 1/4,0,z$</th>
<th>(3) $2 (0,1/2,0) 0,y,1/4$</th>
<th>(4) $2 (1/2,0,0) x,1/4,0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1</td>
<td>0,0,0)$</td>
<td>$(2_z</td>
<td>1/2,0,1/2)$</td>
</tr>
<tr>
<td>(5) 3^+ x,x,x</td>
<td>(6) $3^- x+1/2,x,-x$</td>
<td>(7) $3^+ x+1/2,-x+1/2, x$</td>
<td>(8) $3^+ x,-x+1/2, x$</td>
</tr>
<tr>
<td>$(3_{xyz}</td>
<td>0,0,0)$</td>
<td>$(3_{xyz}^{-1}</td>
<td>1/2,1/2,0)$</td>
</tr>
<tr>
<td>(9) $3^- x,x,x$</td>
<td>(10) $3^- (-1,3,1/3,1/3)$ $x+1/6,x+1/6,x$</td>
<td>(11) $3^- (1,3,1/3,1/3)$ $x+1/3,x+1/3,x$</td>
<td>(12) $3^- (1,-3,1/3,1/3)$ $x-1/6,x+1/3,x$</td>
</tr>
<tr>
<td>$(3_{xyz}^{-1}</td>
<td>0,0,0)$</td>
<td>$(3_{xyz}^{-1}</td>
<td>1/2,1/2,0)$</td>
</tr>
</tbody>
</table>

For $(1/2,1/2,1/2) + \text{set}$

<table>
<thead>
<tr>
<th>(1) t $(1/2,1/2,1/2)$</th>
<th>(2) $2 (0,1/4,z)$</th>
<th>(3) $2 (1/4,y,0)$</th>
<th>(4) $2 (x,0,1/4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1</td>
<td>1/2,1/2,1/2)$</td>
<td>$(2_z</td>
<td>1/2,0,1/2)$</td>
</tr>
<tr>
<td>(5) 3^+ $(1/2,1/2,1/2)$ x,x,x</td>
<td>(6) $3^- (1/6,-1/6,1/6)$ $x-1/6,x+1/3,x,x$</td>
<td>(7) $3^- (-1/6,1/6,1/6)$ $x+1/6,x+1/6,x,x$</td>
<td>(8) $3^+ (1/6,1/6,-1/6)$ $x+1/3,x+1/6,x,x$</td>
</tr>
<tr>
<td>$(3_{xyz}</td>
<td>1/2,1/2,1/2)$</td>
<td>$(3_{xyz}^{-1}</td>
<td>0,0,1/2)$</td>
</tr>
</tbody>
</table>
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13); (25).

Positions

Coordinates

96 h 1

(0,0,0) + (1/2,1/2,1/2) +

(1) x,y,z [u,v,w]
(2) x+1/2,y,z+1/2 [u,v,w]
(3) x,y+1/2,z+1/2 [u,v,w]
(4) x+1/2,y+1/2,z [u,v,w]

(5) z,x,y [w,u,v]
(6) z+1/2,x+1/2,y [w,u,v]
(7) z+1/2,x,y+1/2 [w,u,v]
(8) z,x+1/2,y+1/2 [w,u,v]

(9) y,z,x [v,w,u]
(10) y,z+1/2,x+1/2 [v,w,u]
(11) y+1/2,z+1/2,x [v,w,u]
(12) y+1/2,z+1/2 [v,w,u]

(13) y+3/4,x+1/4,z+1/4 [v,u,w]
(14) y+3/4,x+3/4,z+3/4 [v,u,w]
(15) y+1/4,x+1/4,z+3/4 [v,u,w]
(16) y+1/4,x+3/4,z+1/4 [v,u,w]

(17) x+3/4,z,1/2,y+3/4 [u,w,v]
(18) x+1/4,z+1/4,y+1/4 [u,w,v]
(19) x+3/4,z+3/4,y+3/4 [u,w,v]
(20) x+1/4,z+1/4,y+3/4 [u,w,v]

(21) z+3/4,y+1/4,x+1/4 [w,v,u]
(22) z+1/4,y+3/4,x+1/4 [w,v,u]
(23) z+1/4,y+3/4,x+3/4 [w,v,u]
(24) z+3/4,y+3/4,x+3/4 [w,v,u]

(25) x,y,z [u,v,w]
(26) x+1/2,y,z+1/2 [u,v,w]
(27) x,y+1/2,z+1/2 [u,v,w]
(28) x+1/2,y+1/2,z [u,v,w]
Continued 230.1.1647

(29) \(z, x, y \) [w, u, v]
(30) \(z+1/2, x+1/2, y \) [w, u, v]
(31) \(z+1/2, x, y+1/2 \) [w, u, v]
(32) \(z, x+1/2, y+1/2 \) [w, u, v]
(33) \(y, z, x \) [v, w, u]
(34) \(y, z+1/2, x+1/2 \) [v, w, u]
(35) \(y+1/2, z+1/2, x \) [v, w, u]
(36) \(y+1/2, z, x+1/2 \) [v, w, u]
(37) \(y+1/4, x+3/4, z+3/4 \) [v, u, w]
(38) \(y+1/4, x+1/4, z+1/4 \) [v, u, w]
(39) \(y+3/4, x+3/4, z+1/4 \) [v, u, w]
(40) \(y+3/4, x+1/4, z+3/4 \) [v, u, w]
(41) \(x+1/4, z+3/4, y+3/4 \) [w, v, u]
(42) \(x+3/4, z+1/4, y+3/4 \) [w, v, u]
(43) \(x+1/4, z+1/4, y+1/4 \) [w, v, u]
(44) \(x+3/4, z+3/4, y+1/4 \) [w, v, u]
(45) \(z+1/4, y+3/4, x+1/4 \) [w, v, u]
(46) \(z+3/4, y+3/4, x+1/4 \) [w, v, u]
(47) \(z+3/4, y+1/4, x+3/4 \) [w, v, u]
(48) \(z+1/4, y+1/4, x+1/4 \) [w, v, u]

48 g 2

1/8, y, y+1/4 [0, v, v]
3/8, y, y+3/4 [0, v, v]
7/8, y+1/2, y+1/4 [0, v, v]
5/8, y+1/2, y+3/4 [0, v, v]

y+1/4, 1/8, y [v, 0, v]
y+3/4, 3/8, y [v, 0, v]
y+1/4, 7/8, y+1/2 [v, 0, v]
y+3/4, 5/8, y+1/2 [v, 0, v]

y, y+1/4, 1/8 [v, v, 0]
y, y+3/4, 3/8 [v, v, 0]
y+1/2, y+1/4, 7/8 [v, v, 0]
y+1/2, y+3/4, 5/8 [v, v, 0]

7/8, y, y+3/4 [0, v, v]
5/8, y+1/4 [0, v, v]
1/8, y+1/2, y+3/4 [0, v, v]
3/8, y+1/2, y+1/4 [0, v, v]

y+3/4, 7/8, y [v, 0, v]
y+1/4, 5/8, y [v, 0, v]
y+3/4, 1/8, y+1/2 [v, 0, v]
y+1/4, 3/8, y+1/2 [v, 0, v]

y, y+3/4, 7/8 [v, v, 0]
y, y+1/4, 5/8 [v, v, 0]
y+1/2, y+3/4, 1/8 [v, v, 0]
y+1/2, y+1/4, 3/8 [v, v, 0]

48 f 2

x, 0, 1/4 [u, 0, 0]
x+1/2, 0, 3/4 [u, 0, 0]
0, 1/4, x [0, 0, u]
0, 3/4, x+1/2 [0, 0, u]
3/4, x+1/4, 0 [0, u, 0]
3/4, x+3/4, 1/2 [0, u, 0]
x+3/4, 1/2, 1/4 [u, 0, 0]
x+1/4, 0, 1/4 [u, 0, 0]
0, 4/3, x+1/4, 0 [0, u, 0]
1/2, 1/4, x+3/4 [0, 0, u]

x, 0, 3/4 [u, 0, 0]
x+1/2, 0, 1/4 [u, 0, 0]
3/4, x, 0 [0, 0, u]
1/4, x+1/4, 0 [0, u, 0]
0, 3/4, x [0, 0, u]
0, 1/4, x+1/2 [0, u, 0]
1/4, x+3/4, 0 [0, u, 0]
1/4, x+1/4, 1/2 [0, u, 0]

x+1/4, 1/2, 3/4 [u, 0, 0]
x+3/4, 0, 3/4 [u, 0, 0]
0, 3/4, x+3/4 [0, u, 0]
1/2, 3/4, x+1/4 [0, u, 0]

32 e 3

x, x, x [u, u, u]
x+1/2, x, x+1/2 [u, u, u]
x, x+1/2, x+1/2 [u, u, u]
x+1/2, x+1/2, x [u, u, u]

x+3/4, x+1/4, x+1/4 [u, u, u]
x+3/4, x+3/4, x+3/4 [u, u, u]
x+1/4, x+1/4, x+3/4 [u, u, u]
x+1/4, x+3/4, x+1/4 [u, u, u]

x, x, x [u, u, u]
x+1/2, x, x+1/2 [u, u, u]
x, x+1/2, x+1/2 [u, u, u]
x+1/2, x+1/2, x [u, u, u]

x+1/4, x+3/4, x+3/4 [u, u, u]
x+1/4, x+1/4, x+1/4 [u, u, u]
x+3/4, x+3/4, x+1/4 [u, u, u]
x+3/4, x+1/4, x+3/4 [u, u, u]

12 d 4

3/8, 0, 1/4 [u, 0, 0]
1/8, 0, 3/4 [u, 0, 0]
1/4, 3/8, 0 [0, u, 0]
3/4, 1/8, 0 [0, u, 0]
0, 1/4, 3/8 [0, 0, u]
0, 3/4, 1/8 [0, 0, u]
3/4, 5/8, 0 [0, u, 0]
3/4, 3/8, 1/2 [0, u, 0]
1/8, 1/2, 1/4 [u, 0, 0]
7/8, 0, 1/4 [u, 0, 0]
0, 1/4, 7/8 [0, u, 0]
1/2, 1/4, 1/8 [0, u, 0]

24 c 2, 22

1/8, 0, 1/4 [0, 0, 0]
3/8, 0, 3/4 [0, 0, 0]
1/4, 1/8, 0 [0, 0, 0]
3/4, 3/8, 0 [0, 0, 0]
0, 1/4, 1/8 [0, 0, 0]
0, 3/4, 3/8 [0, 0, 0]
7/8, 0, 3/4 [0, 0, 0]
5/8, 0, 1/4 [0, 0, 0]
3/4, 7/8, 0 [0, 0, 0]
1/4, 5/8, 0 [0, 0, 0]
0, 3/4, 7/8 [0, 0, 0]
0, 1/4, 5/8 [0, 0, 0]

230.1.1647 - 4 - 3904
Symmetry of Special Projections

Along [0,0,1] p\textsubscript{4}m'm'
\begin{align*}
\mathbf{a}^* &= \mathbf{a}/2 \\
\mathbf{b}^* &= \mathbf{b}/2
\end{align*}
Origin at 1/4,0,z

Along [1,1,1] p\textsubscript{6'}m'm
\begin{align*}
\mathbf{a}^* &= (2\mathbf{a} - \mathbf{b} - \mathbf{c})/3 \\
\mathbf{b}^* &= (-\mathbf{a} + 2\mathbf{b} - \mathbf{c})/3
\end{align*}
Origin at x,x,x

Along [1,1,0] c\textsubscript{2}m'm'
\begin{align*}
\mathbf{a}^* &= (-\mathbf{a} + \mathbf{b})/2 \\
\mathbf{b}^* &= \mathbf{c}/2
\end{align*}
Origin at x,x+1/4,1/8
Origin at center \((\bar{3}1')\)

Asymmetric unit
\[-1/8 < x < 1/8; \quad -1/8 < y < 1/8; \quad 0 < z < 1/4; \quad \text{max}(x-x, y-y) < z\]

Vertices
<table>
<thead>
<tr>
<th>(x, y, z)</th>
<th>(1/8,1/8,1/8)</th>
<th>(-1/8,1/8,1/8)</th>
<th>(-1/8,-1/8,1/8)</th>
<th>(1/8,-1/8,1/8)</th>
<th>(1/8,1/8,1/4)</th>
<th>(-1/8,1/8,1/4)</th>
<th>(-1/8,-1/8,1/4)</th>
<th>(1/8,-1/8,1/4)</th>
</tr>
</thead>
</table>

Symmetry Operations

For \((0,0,0)\) + set

\(\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 (0,0,1/2) \\
(3) & \quad 2 (0,1/2,0) \\
(4) & \quad 2 (1/2,0,0) \\
(5) & \quad 3^+ x,x,x \\
(6) & \quad 3^+ x+1/2,x,x \\
(7) & \quad 3^+ x+1/2,x-1/2,x \\
(8) & \quad 3^+ \bar{x},x+1/2,x \\
(9) & \quad 3^+ x,x,x \\
(10) & \quad 3^+ (-1/3,1/3,1/3) \\
(11) & \quad 3^+ (1/3,1/3,-1/3) \\
(12) & \quad 3^+ (1/3,-1/3,1/3) \\
(3_{xyz})^{-1} & \quad 0,0,0 \\
(13) & \quad 2 (1/2,1/2,0) \\
(14) & \quad 2 (1/2,1/2,1/2) \\
(15) & \quad 4^* (0,0,3/4) \\
(16) & \quad 4^* (0,0,1/4) \\
(17) & \quad 4^* (3/4,0,0) \\
(18) & \quad 4^* (3/4,3/4,3/4) \\
(19) & \quad 4^* (3/4,3/4,3/4) \\
(20) & \quad 4^* (3/4,3/4,3/4) \\
(21) & \quad 4^* (1/2,0,1/2) \\
(22) & \quad 4^* (1/2,0,1/2) \\
(23) & \quad 4^* (0,3/4,0) \\
(24) & \quad 4^* (0,3/4,0) \\
(25) & \quad \bar{1} 0,0,0 \\
(26) & \quad a (1/2,0,0) \\
(27) & \quad c (0,0,1/2) \\
(28) & \quad b (0,1/2,0) \\
(29) & \quad \bar{3}^* x,x,x; 0,0,0 \\
(30) & \quad \bar{3}^* \bar{x}-1/2,x+1,\bar{x}; \\
(31) & \quad \bar{3}^* x+1/2,\bar{x}+1/2,\bar{x}; \\
(32) & \quad \bar{3}^* \bar{x}+1,\bar{x}+1,\bar{x}; \\
(3_{xyz})^{-1} & \quad 0,0,0 \\
(33) & \quad 3^* x,x,x; 0,0,0 \\
(34) & \quad 3^* x+1/2,x+1/2,\bar{x}; 0,0,1/2 \\
(35) & \quad 3^* \bar{x},x+1/2,x; 0,1/2,0 \\
(36) & \quad 3^* x+1/2,x,x; 1/2,0,0 \\
(3_{xyz})^{-1} & \quad 0,0,0 \\
(37) & \quad d (-1/4,1/4,1/4) \\
(38) & \quad d (1/4,1/4,1/4) \\
(39) & \quad d (1/4,1/4,1/4) \\
(40) & \quad d (1/4,1/4,1/4) \\
(41) & \quad \bar{4}^* x,0,3/4; 1/8,0,3/4 \\
(42) & \quad \bar{4}^* x,0,3/4; 1/8,0,3/4 \\
(43) & \quad \bar{4}^* x,0,3/4; 1/8,0,3/4 \\
(44) & \quad \bar{4}^* x,0,3/4; 1/8,0,3/4 \\
(45) & \quad \bar{4}^* -1/4,y,1/2; -1/4,3/8,1/2 \\
(46) & \quad \bar{4}^* -1/4,y,1/2; -1/4,3/8,1/2 \\
(47) & \quad \bar{4}^* -1/4,y,1/2; -1/4,3/8,1/2 \\
(48) & \quad \bar{4}^* -1/4,y,1/2; -1/4,3/8,1/2 \\
(3_{xyz})^{-1} & \quad 0,0,0 \\
(1) & \quad t (1/2,1/2,1/2) \\
(2) & \quad t (1/2,1/2,1/2) \\
(3) & \quad t (1/2,1/2,1/2) \\
(4) & \quad t (1/2,1/2,1/2) \\
(5) & \quad 3^* (1/2,1/2,1/2) \\
(6) & \quad 3^* (-1/6,1/6,1/6) \\
(7) & \quad 3^* (1/6,1/6,1/6) \\
(8) & \quad 3^* (1/6,1/6,1/6) \\
(3_{xyz})^{-1} & \quad 0,0,0 \\
\end{align*}\)

For \((1/2,1/2,1/2)\) + set

\(\begin{align*}
(1) & \quad 1 \\
(2) & \quad 2 (0,1/4,z) \\
(3) & \quad 2 (0,1/4,z) \\
(4) & \quad 2 (0,1/4,z) \\
(5) & \quad 3^* (1/2,1/2,1/2) \\
(6) & \quad 3^* (1/2,1/2,1/2) \\
(7) & \quad 3^* (1/2,1/2,1/2) \\
(8) & \quad 3^* (1/2,1/2,1/2) \\
(3_{xyz})^{-1} & \quad 0,0,1/2 \\
\end{align*}\)
Continued

Generators selected
(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13); (25); 1'.

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Wyckoff letter</th>
<th>Site Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>h</td>
<td>11'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(0,0,0)</th>
<th>(1/2,1/2,1/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0) +</td>
<td>(1/2,1/2,1/2) +</td>
</tr>
<tr>
<td>(1/2,1/2,1/2) +</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0,0)</td>
</tr>
<tr>
<td>(1/2,1/2,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(0,0,0)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) x,y,z [0,0,0]</td>
</tr>
<tr>
<td>(2) x+1/2, y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(3) x+y+1/2, z+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(4) x+1/2, y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(5) z+1/2, x+1/2, y [0,0,0]</td>
</tr>
<tr>
<td>(6) z+1/2, x+1/2, y+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(7) z+1/2, x+1/2, y [0,0,0]</td>
</tr>
<tr>
<td>(8) z+1/2, x+1/2, y+1/2 [0,0,0]</td>
</tr>
<tr>
<td>(9) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(10) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(11) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(12) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(13) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(14) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(15) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(16) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(17) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(18) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(19) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(20) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(21) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(22) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(23) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(24) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(25) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(26) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(27) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(28) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(29) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(30) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(31) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(32) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(33) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(34) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(35) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(36) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(37) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(38) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(39) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(40) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(41) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(42) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(43) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(44) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(45) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(46) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(47) y+1/2, z [0,0,0]</td>
</tr>
<tr>
<td>(48) y+1/2, z [0,0,0]</td>
</tr>
</tbody>
</table>

| (0,0,0) |
| (1/2,1/2,1/2) |
| (1/2,1/2,1/2) |
| (1/2,1/2,1/2) |

<table>
<thead>
<tr>
<th>48 g 21'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8,y+1/4 [0,0,0]</td>
</tr>
<tr>
<td>3/8,y+1/4 [0,0,0]</td>
</tr>
<tr>
<td>7/8,y+1/4 [0,0,0]</td>
</tr>
<tr>
<td>5/8,y+1/4 [0,0,0]</td>
</tr>
<tr>
<td>y+1/4,1/8,y [0,0,0]</td>
</tr>
<tr>
<td>y+3/4,3/8,y [0,0,0]</td>
</tr>
<tr>
<td>y+3/4,3/8,y [0,0,0]</td>
</tr>
<tr>
<td>y+3/4,3/8,y [0,0,0]</td>
</tr>
<tr>
<td>y+1/4,7/8,y+1/2 [0,0,0]</td>
</tr>
</tbody>
</table>

| (0,0,0) |
| (1/2,1/2,1/2) |
| (1/2,1/2,1/2) |
| (1/2,1/2,1/2) |

<table>
<thead>
<tr>
<th>48 f 21'</th>
</tr>
</thead>
<tbody>
<tr>
<td>x+1/2,0,3/4 [0,0,0]</td>
</tr>
</tbody>
</table>

<p>| 230.2.1648 - 5 - 3910 |</p>
<table>
<thead>
<tr>
<th>32</th>
<th>e</th>
<th>.3.1'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x, x, x [0, 0, 0]</td>
<td>x + 1/2, x, x + 1/2 [0, 0, 0]</td>
<td>x, x + 1/2, x + 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>x + 3/4, x + 1/4, x + 1/4 [0, 0, 0]</td>
<td>x + 3/4, x + 3/4, x + 3/4 [0, 0, 0]</td>
<td>x + 1/4, x + 1/4, x + 3/4 [0, 0, 0]</td>
</tr>
<tr>
<td>x, x, x [0, 0, 0]</td>
<td>x + 1/2, x, x + 1/2 [0, 0, 0]</td>
<td>x, x + 1/2, x + 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>x + 1/4, x + 3/4, x + 3/4 [0, 0, 0]</td>
<td>x + 1/4, x + 1/4, x + 1/4 [0, 0, 0]</td>
<td>x + 3/4, x + 3/4, x + 1/4 [0, 0, 0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>d</th>
<th>4,.1'</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8, 0, 1/4 [0, 0, 0]</td>
<td>1/8, 0, 3/4 [0, 0, 0]</td>
<td>1/4, 3/8, 0 [0, 0, 0]</td>
</tr>
<tr>
<td>0, 1/4, 3/8 [0, 0, 0]</td>
<td>0, 3/4, 1/8 [0, 0, 0]</td>
<td>3/4, 5/8, 0 [0, 0, 0]</td>
</tr>
<tr>
<td>1/8, 1/2, 1/4 [0, 0, 0]</td>
<td>7/8, 0, 1/4 [0, 0, 0]</td>
<td>0, 1/4, 7/8 [0, 0, 0]</td>
</tr>
<tr>
<td>24</td>
<td>c</td>
<td>2.221'</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/8, 0, 1/4 [0, 0, 0]</td>
<td>3/8, 0, 3/4 [0, 0, 0]</td>
<td>1/4, 1/8, 0 [0, 0, 0]</td>
</tr>
<tr>
<td>0, 1/4, 1/8 [0, 0, 0]</td>
<td>0, 3/4, 3/8 [0, 0, 0]</td>
<td>7/8, 0, 3/4 [0, 0, 0]</td>
</tr>
<tr>
<td>3/4, 7/8, 0 [0, 0, 0]</td>
<td>1/4, 5/8, 0 [0, 0, 0]</td>
<td>0, 3/4, 7/8 [0, 0, 0]</td>
</tr>
<tr>
<td>16</td>
<td>b</td>
<td>.321'</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/8, 1/8, 1/8 [0, 0, 0]</td>
<td>3/8, 7/8, 5/8 [0, 0, 0]</td>
<td>7/8, 5/8, 3/8 [0, 0, 0]</td>
</tr>
<tr>
<td>7/8, 7/8, 7/8 [0, 0, 0]</td>
<td>5/8, 1/8, 3/8 [0, 0, 0]</td>
<td>1/8, 3/8, 5/8 [0, 0, 0]</td>
</tr>
<tr>
<td>16</td>
<td>a</td>
<td>.3.1'</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0, 0, 0 [0, 0, 0]</td>
<td>1/2, 0, 1/2 [0, 0, 0]</td>
<td>0, 1/2, 1/2 [0, 0, 0]</td>
</tr>
<tr>
<td>3/4, 1/4, 1/4 [0, 0, 0]</td>
<td>3/4, 3/4, 3/4 [0, 0, 0]</td>
<td>1/4, 1/4, 3/4 [0, 0, 0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

- **Along [0, 0, 1]**: p4mm 1' (\(a^* = a/2\), \(b^* = b/2\), origin at 1/4, 0, z)
- **Along [1, 1, 1]**: p6mm 1' (\(a^* = (2a - b - c)/3\), \(b^* = (-a + 2b - c)/3\), origin at x, x, x)
- **Along [1, 1, 0]**: c2mm 1' (\(a^* = (-a + b)/2\), \(b^* = c/2\), origin at x, x + 1/4, 1/8)
Ia'3'd
230.3.1649

m'3'm

Cubic

l41/a'3'2/d
Origin at center \((\overline{3}) \)

Asymmetric unit:
- \(-1/8 \leq x \leq 1/8; \)
- \(-1/8 \leq y \leq 1/8; \)
- \(0 \leq z \leq 1/4; \)
- \(\max(x,-x,y,-y) \leq z\)

Vertices:
- \((0,0,0)\)
- \((1/8,1/8,1/8)\)
- \((-1/8,1/8,1/8)\)
- \((-1/8,-1/8,1/8)\)

Symmetry Operations

For \((0,0,0)\) + set

<table>
<thead>
<tr>
<th>(1) 1</th>
<th>(2) 2</th>
<th>(3) 3</th>
<th>(4) 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0,0))</td>
<td>((0,0,1/2))</td>
<td>((0,1/2,0))</td>
<td>((1/2,0,0))</td>
</tr>
<tr>
<td>((1,0,0))</td>
<td>((2,0,1/2))</td>
<td>((0,1/2,1))</td>
<td>((1/2,1,0))</td>
</tr>
<tr>
<td>((3,0,0))</td>
<td>((3,0,1/2))</td>
<td>((0,1/2,1))</td>
<td>((1/2,1,0))</td>
</tr>
</tbody>
</table>

\(\bar{x} = x+1/2, x, x\)

<table>
<thead>
<tr>
<th>(5) 3' x,x,x</th>
<th>(6) 3' (x+1/2, x, x)</th>
<th>(7) 3' (x+1/2, -x+1/2, x)</th>
<th>(8) 3' (x, x+1/2, x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((3,0,0))</td>
<td>((3,0,1/2))</td>
<td>((3,0,1/2))</td>
<td>((3,0,1/2))</td>
</tr>
<tr>
<td>((1,1,0))</td>
<td>((1,1,1))</td>
<td>((1,1,1))</td>
<td>((1,1,1))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(9) 3' x,x,x</th>
<th>(10) 3' ((-1/3,1/3,1/3)) x+1/6, x+1/6, x</th>
<th>(11) 3' ((-1/3,1/3,1/3)) x+1/6, x+1/6, x</th>
<th>(12) 3' ((-1/3,1/3,1/3)) x+1/6, x+1/6, x</th>
</tr>
</thead>
<tbody>
<tr>
<td>((3,0,0))</td>
<td>((3,0,1/2))</td>
<td>((3,0,1/2))</td>
<td>((3,0,1/2))</td>
</tr>
<tr>
<td>((0,1,0))</td>
<td>((0,1,1))</td>
<td>((0,1,1))</td>
<td>((0,1,1))</td>
</tr>
</tbody>
</table>

Symmetry Operations

For \((1/2,1/2,1/2)\) + set

<table>
<thead>
<tr>
<th>(1) t</th>
<th>(2) 2</th>
<th>(3) 2</th>
<th>(4) 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1/2,1/2,1/2))</td>
<td>((0,1/4,z))</td>
<td>((1/4,0,y))</td>
<td>((x,0,1/4))</td>
</tr>
<tr>
<td>((1/2,1/2,1/2))</td>
<td>((0,1/4,z))</td>
<td>((1/4,0,y))</td>
<td>((x,0,1/4))</td>
</tr>
</tbody>
</table>

\(\bar{x} = -x+1/2, -x+1, x\)

<table>
<thead>
<tr>
<th>(5) 3' x,x,x</th>
<th>(6) 3' ((-1/6,1/6,1/6)) x-1/6, x+1/3, x</th>
<th>(7) 3' ((-1/6,1/6,1/6)) x+1/6, x+1/6, x</th>
<th>(8) 3' ((-1/6,1/6,1/6)) x+1/6, x+1/6, x</th>
</tr>
</thead>
<tbody>
<tr>
<td>((3,0,0))</td>
<td>((3,0,1/2))</td>
<td>((3,0,1/2))</td>
<td>((3,0,1/2))</td>
</tr>
<tr>
<td>((0,1,0))</td>
<td>((0,1,1))</td>
<td>((0,1,1))</td>
<td>((0,1,1))</td>
</tr>
</tbody>
</table>

Symmetry Operations

For \((1/2,1/2,1/2)\) + set

<table>
<thead>
<tr>
<th>(1) t</th>
<th>(2) 2</th>
<th>(3) 2</th>
<th>(4) 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1/2,1/2,1/2))</td>
<td>((0,1/4,z))</td>
<td>((1/4,0,y))</td>
<td>((x,0,1/4))</td>
</tr>
<tr>
<td>((1/2,1/2,1/2))</td>
<td>((0,1/4,z))</td>
<td>((1/4,0,y))</td>
<td>((x,0,1/4))</td>
</tr>
</tbody>
</table>

\(\bar{x} = x+1/2, x, x\)

<table>
<thead>
<tr>
<th>(5) 3' x,x,x</th>
<th>(6) 3' ((-1/6,1/6,1/6)) x-1/6, x+1/3, x</th>
<th>(7) 3' ((-1/6,1/6,1/6)) x+1/6, x+1/6, x</th>
<th>(8) 3' ((-1/6,1/6,1/6)) x+1/6, x+1/6, x</th>
</tr>
</thead>
<tbody>
<tr>
<td>((3,0,0))</td>
<td>((3,0,1/2))</td>
<td>((3,0,1/2))</td>
<td>((3,0,1/2))</td>
</tr>
<tr>
<td>((0,1,0))</td>
<td>((0,1,1))</td>
<td>((0,1,1))</td>
<td>((0,1,1))</td>
</tr>
<tr>
<td>Generators selected</td>
<td>Coordinates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,0,0) + (1/2,1/2,1/2) +</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positions</th>
<th>Multiplicity, Wyckoff letter, Site Symmetry.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>96 h 1</td>
</tr>
</tbody>
</table>

(9) 3' (1/2,1/2,1/2) x,x,x	(10) 3' (1/6,-1/6,-1/6) x+1/6,x+1/6,x	(11) 3' (-1/6,-1/6,1/6) x+1/3,x+1/6,x	(12) 3' (-1/6,1/6,-1/6) x+1/6,x+1/3,x
(13) 2' (1/2,1/2,0) x,x+1/4,3/8	(14) 2' x,x+1/4,1/8	(15) 4' (0,0,1/4) 3/4,0,0	(16) 4' (0,0,1/4) 1/4,1/2,z
(17) 4' (1/4,0,0) x,3/4,0	(18) 2' (0,1/2,1/2) 3/8,y-1/4,y	(19) 2' (1/2,1/2,y)	(20) 4' (3/4,0,0) x,1/4,1/2
(21) 4' (0,3/4,0) 1/2,y,1/4	(20) 4' (0,1/2,0) 0,y,3/4	(21) 4' (0,1/2,0) 3/4,4/1,4	(22) 2' x+1/2,0,1/2
(25) 1' 1/2,1/2,1/2	(26) b' (0,1/2,0) x,y,0	(27) a' (1/2,0,0) x,0,z	(28) c' (0,0,1/2) z,y,0
(29) 3' (1/2,1/2,1/2) x,x,z	(30) 3' x-1/2,x,x;	(31) 3' x-1/2,x,x+1/2,x;	(32) 3' x,x-1/2,x
(33) 3' (1/2,1/2,1/2) x,x,z	(34) 3' x+1/2,x-1/2,x;	(35) 3' x,x+1/2,x;	(36) 3' x,x+1/2,x
(37) 4' (0,1/2,0) 1/4,1/4,1/4	(38) d (3/4,3/4,3/4) x,x,z	(39) 4' 0,1/4,z; 0,1/4,3/8	(40) 4' 1/2,1/4,z; 1/2,1/4,1/4
(41) 4' (0,1/2,0) 3/4,0,1/4	(42) d (1/4,1/4,1/4) x,y+1/2,y	(43) d (3/4,3/4,3/4) x,y,y	(44) 4' x,1/2,1/4; 1/8,1/2,1/4
(45) 4' (0,1/2,0) 1/4,1/4,1/4	(46) d (1/4,1/4,1/4) x+1/2,x,y,x	(47) 4' 1/4,4,0; 1/4,3/8,0	(48) d (3/4,3/4,3/4) x,y,x

230.3.1649 - 3 - 3914
Continued 230.3.1649 la'^3'd

230.3.1649 - 4 - 3915

(29) \(\overline{z}, x, y \ [w, u, v] \)
(30) \(\overline{z} + 1/2, x + 1/2, y [w, u, v] \)
(31) \(z + 1/2, x, y + 1/2 [w, u, v] \)
(32) \(z, x + 1/2, y + 1/2 [w, u, v] \)

(33) \(\overline{y}, z, x \ [v, w, u] \)
(34) \(y, z + 1/2, x + 1/2 [v, w, u] \)
(35) \(y + 1/2, z + 1/2, x [v, w, u] \)
(36) \(y + 1/2, z, x + 1/2 [v, w, u] \)

(37) \(y + 1/4, x + 3/4, z + 3/4 [v, u, w] \)
(38) \(y + 1/4, x + 1/4, z + 1/4 [v, u, w] \)
(39) \(y + 3/4, x + 3/4, z + 1/4 [v, u, w] \)
(40) \(y + 3/4, x + 1/4, z + 3/4 [v, u, w] \)
(41) \(x + 1/4, z + 3/4, y + 3/4 [u, w, v] \)
(42) \(x + 3/4, z + 1/4, y + 3/4 [u, w, v] \)
(43) \(x + 1/4, z + 1/4, y + 1/4 [u, w, v] \)
(44) \(x + 3/4, z + 3/4, y + 1/4 [u, w, v] \)

(45) \(z + 1/4, y + 3/4, x + 1/4 [w, v, u] \)

48 g ..2'

1/8, y + 1/4 [u, v, v] \(3/8, y, y + 3/4 [u, v, v] \)
(7/8, y + 1/4, 1/8, y [v, u, v] \(y + 1/4, 3/8, y [v, u, v] \)

(46) \(y + 3/4, 7/8, y [v, u, v] \)

ye + 3/4, 7/8, y [v, u, v] \(y + 1/4, 5/8, y [v, u, v] \)

y, y + 3/4, 7/8 [v, u, v] \(y, y + 1/4, 5/8 [v, u, v] \)

48 f 2.. x, 0, 1/4 [u, 0, 0] \(x + 1/2, 0, 3/4 [u, 0, 0] \)

0, 1/4, x [0, 0, u] \(3/4, x + 1/2 [0, 0, u] \)

(47) x + 3/4, 1/2, 1/4 [u, 0, 0] \(x + 1/4, 0, 1/4 [u, 0, 0] \)

0, 3/4, x [0, u, 0] \(1/4, x + 1/2 [0, u, 0] \)

(48) \(x + 1/4, 1/2, 3/4 [u, 0, 0] \)

32 e ..3.

x, x, x [u, u, u] \(x + 1/2, x, x + 1/2 [u, u, u] \)

x + 3/4, x + 1/4, z + 1/4 [u, u, u] \(x + 3/4, x + 3/4, x + 3/4 [u, u, u] \)

x, x, x [u, u, u] \(x + 1/2, x, x + 1/2 [u, u, u] \)

x + 1/2, x + 3/4, x + 3/4 [u, u, u] \(x + 1/2, x + 3/4, x + 3/4 [u, u, u] \)

12 d 4.. 3/8, 0, 1/4 [u, 0, 0] \(1/8, 0, 3/4 [u, 0, 0] \)

0, 1/4, 3/8 [0, 0, u] \(3/4, 1/8 [0, 0, u] \)

1/8, 1/2, 1/4 [u, 0, 0] \(1/8, 0, 1/4 [u, 0, 0] \)

24 c 2.2' 1/8, 0, 1/4 [u, 0, 0] \(7/8, 0, 3/4 [u, 0, 0] \)

0, 1/4, 1/8 [0, 0, u] \(7/8, 0, 3/4 [u, 0, 0] \)

3/4, 7/8, 0 [0, u, 0] \(0, 1/4, 5/8 [0, u, 0] \)
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>b</td>
<td>0.32'</td>
<td>1/8,1/8,1/8 [u,u,u]</td>
</tr>
<tr>
<td>16</td>
<td>a</td>
<td>0.3'</td>
<td>0,0,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3/4,1/4,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>

Symmetry of Special Projections

Along [0,0,1] p4'm'm
- \(a^* = a/2\)
- \(b^* = b/2\)
- Origin at \(1/4,0,0\)

Along [1,1,1] p6mm
- \(a^* = (2a - b - c)/3\)
- \(b^* = (-a + 2b - c)/3\)
- Origin at \(x,x,x\)

Along [1,1,0] c\(_p\) 2'm'm'
- \(a^* = c/2\)
- \(b^* = -(a + b)/2\)
- Origin at \(x,x+1/4,1/8\)
Symmetry Operations

Origin at center $(1/2,1/2,1/2)$

Asymmetric unit

- $1/8 < x < 1/8; -1/8 < y < 1/8; 0 < z < 1/4; max(x,-x,y,-y) < z$

Vertices

- $0,0,0$
- $1/8,1/8,1/8$
- $-1/8,1/8,1/8$
- $-1/8,-1/8,1/8$
- $1/8,-1/8,1/8$
- $1/8,1/8,1/4$
- $-1/8,1/8,1/4$
- $-1/8,-1/8,1/4$
- $1/8,-1/8,1/4$

Symmetry Operations

For $(0,0,0) + set$

<table>
<thead>
<tr>
<th>Operation</th>
<th>Transformation</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 1</td>
<td>$(1,0,0,0)$</td>
<td>$(1/2,0,1/2)$</td>
</tr>
<tr>
<td>(2) 2</td>
<td>$(0,0,1/2)$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>(3) 3</td>
<td>$(0,1/2,0)$</td>
<td>$y,1/4$</td>
</tr>
<tr>
<td>(4) 4</td>
<td>$(1/2,0,0)$</td>
<td>$x,1/4,0$</td>
</tr>
<tr>
<td>(5) 3' x,x,x</td>
<td>$(1/2,1/2,1/2)$</td>
<td>$x+1/2,x,x$</td>
</tr>
<tr>
<td>(6) 3' x,x,x</td>
<td>$(0,0,0,0)$</td>
<td>$1/2,1/2,0$</td>
</tr>
<tr>
<td>(7) 3' x,x,x</td>
<td>$(0,1/2,0,0)$</td>
<td>$y+1/2,0,1/2$</td>
</tr>
<tr>
<td>(8) 3' x,x,x</td>
<td>$(0,1/2,0,0)$</td>
<td>$y+1/2,0,1/2$</td>
</tr>
<tr>
<td>(9) 3' x,x,x</td>
<td>$(0,1/2,0,0)$</td>
<td>$y+1/2,0,1/2$</td>
</tr>
<tr>
<td>(10) 3' x,x,x</td>
<td>$(0,1/2,0,0)$</td>
<td>$y+1/2,0,1/2$</td>
</tr>
<tr>
<td>(11) 3' x,x,x</td>
<td>$(0,1/2,0,0)$</td>
<td>$y+1/2,0,1/2$</td>
</tr>
<tr>
<td>(12) 3' x,x,x</td>
<td>$(0,1/2,0,0)$</td>
<td>$y+1/2,0,1/2$</td>
</tr>
<tr>
<td>(13) 2' x,x</td>
<td>$(1/2,1/2,0)$</td>
<td>$x+1/2,1/2$</td>
</tr>
<tr>
<td>(14) 2' x,x</td>
<td>$(1/2,1/2,0)$</td>
<td>$x+1/2,1/2$</td>
</tr>
<tr>
<td>(15) 4' x</td>
<td>$(0,0,0)$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>(16) 4' x</td>
<td>$(0,0,0)$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>(17) 4' x</td>
<td>$(0,0,0)$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>(18) 4' x</td>
<td>$(0,0,0)$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>(19) 4' x</td>
<td>$(0,0,0)$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>(20) 4' x</td>
<td>$(0,0,0)$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>(21) 4' x</td>
<td>$(0,0,0)$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>(22) 4' x</td>
<td>$(0,0,0)$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>(23) 4' x</td>
<td>$(0,0,0)$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>(24) 4' x</td>
<td>$(0,0,0)$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>(25) 1</td>
<td>$(1/2,0,0)$</td>
<td>$x,y,1/4$</td>
</tr>
<tr>
<td>(26) 1</td>
<td>$(1/2,0,0)$</td>
<td>$x,y,1/4$</td>
</tr>
<tr>
<td>(27) 1</td>
<td>$(1/2,0,0)$</td>
<td>$x,y,1/4$</td>
</tr>
<tr>
<td>(28) 1</td>
<td>$(1/2,0,0)$</td>
<td>$x,y,1/4$</td>
</tr>
<tr>
<td>(29) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(30) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(31) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(32) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(33) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(34) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(35) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(36) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(37) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(38) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(39) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(40) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(41) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(42) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(43) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(44) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(45) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(46) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(47) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
<tr>
<td>(48) 3' x,x,x</td>
<td>$(0,0,0)$</td>
<td>$1/2,1/2$</td>
</tr>
</tbody>
</table>

For $(1/2,1/2,1/2) + set$

<table>
<thead>
<tr>
<th>Operation</th>
<th>Transformation</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) t $(1/2,1/2,1/2)$</td>
<td>$(1/2,1/2,1/2)$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>(2) t $(1/2,1/2,1/2)$</td>
<td>$(1/2,1/2,1/2)$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>(3) t $(1/2,1/2,1/2)$</td>
<td>$(1/2,1/2,1/2)$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>(4) t $(1/2,1/2,1/2)$</td>
<td>$(1/2,1/2,1/2)$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>(5) 3 $(1/2,1/2,1/2)$</td>
<td>$(1/2,1/2,1/2)$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>(6) 3 $(1/2,1/2,1/2)$</td>
<td>$(1/2,1/2,1/2)$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>(7) 3 $(1/2,1/2,1/2)$</td>
<td>$(1/2,1/2,1/2)$</td>
<td>$1/4,0,z$</td>
</tr>
<tr>
<td>(8) 3 $(1/2,1/2,1/2)$</td>
<td>$(1/2,1/2,1/2)$</td>
<td>$1/4,0,z$</td>
</tr>
</tbody>
</table>

230.4.1650 - 2 - 3918
Continued

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13); (25).

Positions

<table>
<thead>
<tr>
<th>Multiplicity</th>
<th>Coordinates</th>
</tr>
</thead>
</table>

96 | (0,0,0) + (1/2,1/2,1/2) + |

1 | x,y,z [u,v,w] |

230.4.1650 - 3 - 3919
Continued 230.4.1650

(29) \(z, x, y \ [w, u, v] \)

(30) \(z+1/2, x+1/2, y \ [w, u, v] \)

(31) \(z+1/2, x, y+1/2 \ [w, u, v] \)

(32) \(z, x+1/2, y+1/2 \ [w, u, v] \)

(33) \(y, z, x \ [v, w, u] \)

(34) \(y, z+1/2, x+1/2 \ [v, w, u] \)

(35) \(y+1/2, z+1/2, x \ [v, w, u] \)

(36) \(y+1/2, z, x+1/2 \ [v, w, u] \)

(37) \(y+1/4, x+3/4, z+3/4 \ [v, u, w] \)

(38) \(y+1/4, x+1/4, z+1/4 \ [v, u, w] \)

(39) \(y+3/4, x+3/4, z+1/4 \ [v, u, w] \)

(40) \(y+3/4, x+1/4, z+3/4 \ [v, u, w] \)

(41) \(x+1/4, z+3/4, y+3/4 \ [u, w, v] \)

(42) \(x+3/4, z+1/4, y+3/4 \ [u, w, v] \)

(43) \(x+1/4, z+1/4, y+1/4 \ [u, w, v] \)

(44) \(x+3/4, z+3/4, y+1/4 \ [u, w, v] \)

(45) \(z+1/4, y+3/4, x+3/4 \ [w, v, u] \)

48 g .2'

1/8, y, y+1/4 [u, v, v]

3/8, y+3/4 [u, v, v]

7/8, y+1/2, y+1/4 [v, u, v]

5/8, y+1/2, y+3/4 [u, u, v]

y+1/4,1/8, y [v, u, v]

y+3/4,3/8, y [v, u, v]

y+1/4,1/4,8, y [v, v, u]

y+1/4, y+3/4,3/8 [v, v, u]

7/8, y, y+3/4 [u, v, v]

5/8, y, y+1/4 [u, v, v]

y+3/4, 7/8, y [v, u, v]

y+1/4, 5/8, y [v, u, v]

y+1/4, 5/8, y+1/2 [v, v, u]

y+1/4, 3/8, y+1/2 [v, u, v]

y+1/2, y+3/4, 1/8 [v, v, u]

y+1/2, y+1/4, 3/8 [v, v, u]

48 f 2..

x, 0, 1/4 [u, 0, 0]

x+1/2, 0, 3/4 [u, 0, 0]

1/4, x, 0 [u, 0, 0]

3/4, x+1/2, 0 [u, 0, 0]

0, 1/4, x [0, 0, u]

0, 3/4, x+1/2 [0, 0, u]

3/4, x+1/4, 0 [u, 0, 0]

3/4, x+3/4, 1/2 [0, u, 0]

x+3/4, 1/2, 1/4 [u, 0, 0]

x+1/4, 0, 1/4 [u, 0, 0]

0, 1/4, x+1/4 [0, u, 0]

1/2, 1/4, x+3/4 [0, 0, u]

x+1/4, 0, 3/4 [u, 0, 0]

x+1/2, 0, 1/4 [u, 0, 0]

3/4, x+3/4, 0 [u, 0, 0]

1/4, x+1/4, 1/2 [0, u, 0]

0, 3/4, x [0, 0, u]

0, 1/4, x+1/2 [0, 0, u]

1/4, x+3/4, 0 [0, 0, u]

1/4, x+1/4, 1/2 [0, u, 0]

x+1/4, 1/2, 3/4 [u, 0, 0]

x+3/4, 0, 3/4 [u, 0, 0]

0, 3/4, x+3/4 [0, 0, u]

1/2, 3/4, x+1/4 [0, 0, u]

32 e .3.

x, x, x [u, u, u]

x+1/2, x, x+1/2 [u, u, u]

x, x+1/2, x+1/2 [u, u, u]

x+1/2, x+1/2, x [u, u, u]

x+3/4, x+1/4, x+1/4 [u, u, u]

x+3/4, x+3/4, x+3/4 [u, u, u]

x+1/4, x+1/4, x+1/4 [u, u, u]

x+1/4, x+3/4, x+1/4 [u, u, u]

x+1/4, x+1/4, x+1/4 [u, u, u]

x+3/4, x+1/4, x+3/4 [u, u, u]

12 d 4'.

3/8, 0, 1/4 [0, 0, 0]

1/8, 0, 3/4 [0, 0, 0]

1/4, 3/4, 8 [0, 0, 0]

3/4, 1/8, 0 [0, 0, 0]

0, 1/4, 3/8 [0, 0, 0]

0, 3/4, 1/8 [0, 0, 0]

3/4, 5/8, 0 [0, 0, 0]

3/4, 3/8, 1/2 [0, 0, 0]

1/8, 1/2, 1/4 [0, 0, 0]

7/8, 0, 1/4 [0, 0, 0]

0, 1/4, 7/8 [0, 0, 0]

1/2, 1/4, 1/8 [0, 0, u]

24 c 2.2'.

1/8, 0, 1/4 [u, 0, 0]

3/8, 0, 3/4 [u, 0, 0]

1/4, 1/8, 0 [u, 0, 0]

3/4, 3/8, 0 [u, 0, 0]

0, 1/4, 1/8 [0, 0, u]

0, 3/4, 3/8 [0, 0, u]

7/8, 0, 3/4 [u, 0, 0]

5/8, 0, 1/4 [u, 0, 0]

3/4, 7/8, 0 [u, 0, u]

1/4, 5/8, 0 [u, 0, u]

0, 3/4, 7/8 [0, 0, u]

0, 1/4, 5/8 [0, 0, u]

1/2, 3/4, 1/4 [0, 0, u]
| 16 | a | .3 | 0,0,0 [u,u,u] | 1/2,0,1/2 [u,u,u] | 0,1/2,1/2 [u,u,u] | 1/2,1/2,0 [u,u,u] |

Symmetry of Special Projections

Along [0,0,1] \(p_2 \cdot 4mm \)
- \(a^* = a/2 \)
- \(b^* = b/2 \)
- Origin at 1/2,1/4,z

Along [1,1,1] \(p_6'mm' \)
- \(a^* = (2a - b - c)/3 \)
- \(b^* = (-a + 2b - c)/3 \)
- Origin at x,x,x

Along [1,1,0] \(c2'mm' \)
- \(a^* = c/2 \)
- \(b^* = -(a + b)/2 \)
- Origin at x,x+1/4,1/8
Origin at center \((\overline{3}')\)

Asymmetric unit \(-1/8 \leq x \leq 1/8;\ -1/8 \leq y \leq 1/8;\ 0 \leq z \leq 1/4;\ \max(x,-x,y,-y) \leq z\)

Vertices
\[
\begin{aligned}
0,0,0 & \\
1/8,1/8,1/8 & \\
-1/8,1/8,1/8 & \\
1/8,1/8,1/4 & \\
-1/8,1/8,1/4 & \\
1/8,1/8,1/4 & \\
1/8,1/8,1/4 & \\
-1/8,-1/8,1/8 & \\
1/8,-1/8,1/8 & \\
-1/8,-1/8,1/4 & \\
1/8,-1/8,1/4 & \\
\end{aligned}
\]

Symmetry Operations

For \((0,0,0)\) + set

\[
\begin{array}{lllll}
(1) 1 & (2) 2 (0,0,1/2) 1/4,0,z & (3) 2 (0,1/2,0) 0,y,1/4 & (4) 2 (1/2,0,0) x,1/4,0 \\
(1,0,0,0) & (2_2 1/2,0,1/2) & (2_2 0,1/2,1/2) & (2_2 1/2,1/2,0) & \\

(5) 3' \ x,\ x,\ x & (6) 3' \ x+1/2,\ x,\ x & (7) 3' \ x+1/2,\ x-1/2,\ x & (8) 3' \ x,\ x+1/2,\ x \\
(3_{xyz} 0,0,0) & (3_{xyz} 1/2,1/2,0) & (3_{xyz} 1/2,0,1/2) & (3_{xyz} 0,1/2,1/2) & \\

(9) 3' \ x,\ x,\ x & (10) 3' \ (-1/3,1/3,1/3) \ x+1/6,\ x+1/6,\ x & (11) 3' \ (1/3,1/3,-1/3) \ x+1/3,\ x+1/6,\ x & (12) 3' \ (1/3,-1/3,1/3) \ x-1/6,\ x+1/3,\ x & \\
(3_{xyz} 0,0,0) & (3_{xyz} 1/2,1/2,0) & (3_{xyz} 1/2,0,1/2) & (3_{xyz} 1/2,0,1/2) & \\

(13) 2 (1/2,1/2,0) x,x-1/4,1/8 & (14) 2 (0,1/2,1/2) x,x+3/4,3/8 & (15) 4' \ (0,3/4,0) 1/4,0,z & (16) 4' \ (0,1/4,1/2) 1/4,1/4,1/4 & \\
(2_{xy} 3/4,1/4,1/4) & (2_{xy} 3/4,3/4,1/4) & (4_{z} 3/4,3/4,1/4) & (4_{z} 3/4,3/4,1/4) & \\

(17) 4' \ (3/4,0,0) x,1/4,0 & (18) 2 (0,1/2,1/2) 1/8,y+1/4,y & (19) 2 (0,3/4,1/4) y-3/4,\ y & (20) 4' \ (1/4,0,0) x,-1/4,1/2 & \\
(4_{z} 3/4,1/4,1/4) & (2_{xy} 1/4,1/4,1/4) & (2_{xy} 3/4,3/4,1/4) & (4_{z} 1/4,1/4,3/4) & \\

(21) 4' \ (0,1/4,0) 1/2,y,-1/4 & (22) 2 (1/2,0,1/2) x-1/4,1/8,x & (23) 4' \ (0,3/4,0) 0,y,1/4 & (24) 2 \ x+3/4,3/8,x & \\
(4_{z} 3/4,1/4,1/4) & (2_{xy} 1/4,1/4,1/4) & (4_{z} 3/4,3/4,1/4) & (2_{xy} 3/4,3/4,1/4) & \\

(25) \ 1' \ 0,0,0 & (26) a' \ (1/2,0,0) y,0,1/4 & (27) c' \ (0,0,1/2) x,1/4,z & (28) b' \ (0,1/2,0) 1/4,y,z & \\
(1 0,0,0)' & (m_{xy} 1/2,0,1/2)' & (m_{y} 0,1/2,1/2)' & (m_{y} 0,1/2,1/2)' & \\

(29) 3' \ x,x; 0,0,0 & (30) 3' \ x-1/2,x+1,x; 0,1/2,1/2 & (31) 3' \ x+1/2,x+1/2,x; 1/2,1/2,0 & (32) 3' \ x+1/2,x+1/2,x; 2,1/2,0 & \\
(3_{xyz} 0,0,0)' & (3_{xyz} 1/2,1/2,0)' & (3_{xyz} 1/2,0,1/2)' & (3_{xyz} 1/2,0,1/2)' & \\

(33) 3' \ x,x; 0,0,0 & (34) 3' \ x+1/2,x-1/2,x; 0,0,1/2 & (35) 3' \ x,x+1/2,x; 0,1/2,0 & (36) 3' \ x+1/2,x+1/2,x; 1/2,0,0 & \\
(3_{xyz} 0,0,0)' & (3_{xyz} 0,1/2,1/2)' & (3_{xyz} 1/2,1/2,0)' & (3_{xyz} 1/2,0,1/2)' & \\

(37) d' \ (-1/4,1/4,1/4) x+1/2,\ x,z & (38) d' \ (1/4,1/4,1/4) x,x,z & (39) 4' \ x,x; 0,3/4,1/4; 0,3/4,1/4 & (40) 4' \ x,-1/4,z; 1/2,-1/4,1/2 & \\
(m_{x} 1/4,3/4,3/4)' & (m_{xy} 1/4,1/4,1/4)' & (4_{z} 3/4,3/4,1/4)' & (4_{z} 3/4,1/4,3/4)' & \\

(41) 4' \ x,0,3/4; 1/8,0,3/4 & (42) d' \ (3/4,1/4,1/4) x,y+1/2,\ y & (43) 4' \ x,0,3/4; 1/8,0,3/4 & (44) 4' \ x,1/2,-1/4; 3/8,1/2,-1/4 & \\
(4_{z} 1/4,3/4,1/4)' & (m_{xy} 3/4,1/4,1/4)' & (m_{xy} 1/4,1/4,1/4)' & (4_{z} 3/4,1/4,3/4)' & \\

(45) 4' \ x,-1/4,y,1/2; -1/4,3/8,1/2; 46' d' \ (1/4,3/4,1/4) x+y+1/2,\ y & (47) 4' \ x,-1/4,y,1/2; -1/4,3/8,1/2; 46' d' \ (1/4,3/4,1/4) x,y+1/2,\ y & (48) 4' \ x,-1/4,y,1/2; -1/4,3/8,1/2; 46' d' \ (1/4,3/4,1/4) x,y+1/2,\ y & (48) 4' \ x,-1/4,y,1/2; -1/4,3/8,1/2; 46' d' \ (1/4,3/4,1/4) x,y+1/2,\ y & \\
(4_{y} 1/4,3/4,1/4)' & (m_{xz} 3/4,3/4,1/4)' & (m_{xz} 1/4,1/4,1/4)' & (m_{xz} 1/4,1/4,1/4)' & \\

For \((1/2,1/2,1/2)\) + set

\[
\begin{array}{llll}
(1) t (1/2,1/2,1/2) & (2) 2 0,1/4,z & (3) 2 1/4,y,0 & (4) 2 x,0,1/4 \\
(1 1/2,1/2,1/2) & (2_2 0,1/2,0) & (2_2 1/2,0,0) & (2_2 0,0,1/2) & \\

(5) 3' \ (1/2,1/2,1/2) x,x,x & (6) 3' \ (1/6,-1/6,1/6) x-1/6,x+1/3,\ x & (7) 3' \ (-1/6,1/6,1/6) x+1/6,x+1/6,\ x & (8) 3' \ (1/6,1/6,-1/6) x+1/3,\ x+1/6,\ x & \\
(3_{xyz} 1/2,1/2,1/2) & (3_{xyz} 1/2,1/2,1/2) & (3_{xyz} 1/2,1/2,1/2) & (3_{xyz} 1/2,1/2,1/2) & \\
\end{array}
\]
Continued

(9) 3' (1/2,1/2,1/2) x,x,x
(10) 3' (1/6, -1/6, -1/6) x+1/6, x+1/6, x
(3,xyz) 1/2,1/2,1/2

(11) 3' (-1/6, 1/6, 1/6) x+1/3, x+1/3, x
(3,xyz) 1/2,1/2,1/2

(12) 3' (-1/6, 1/6, -1/6) x+1/6, x+1/6, x
(3,xyz) 1/2,1/2,1/2

(13) 2 (1/2,1/2,0) x,x+1/4,3/8
(2,xyz) 1/4,3/4,3/4

(14) 2 x,x+1/4,1/8
(2,xyz) 1/4,1/4,1/4

(15) 4' (0,0,1/4) 3/4,0,z
(4,-1) 3/4,3/4,1/4

(16) 4' (0,0,3/4) 1/4,1/2,z
(4,-1) 3/4,3/4,1/4

(17) 4' (1/4,0,0) x,3/4,0
(4,-1) 1/4,3/4,3/4

(18) 2 (0,1/2,1/2) 3/8,y-1/4,y
(2,xyz) 1/4,1/4,1/4

(19) 2 1/8,y+1/4,y
(2,xyz) 1/4,1/4,1/4

(20) 4' (3/4,0,0) x,1/4,1/2
(4,-1) 3/4,3/4,1/4

(21) 4' (0,3/4,0) 1/2,y,1/4
(4,-1) 1/4,3/4,3/4

(22) 2 (1/2,0,1/2) x+1/4,3/8,x
(2,xyz) 3/4,3/4,1/4

(23) 4' (0,1/2,0) 0,y,3/4
(4,-1) 3/4,1/4,1/4

(24) 2 1/2,1/4,1/8,x
(2,xyz) 1/4,1/4,1/4

(25) 'd' 1/4,1/4,1/4
(1,1,1/2,1/2)

(26) b' (0,1/2,0) x,y,0
(m,0,1/2,0)

(27) a' (1/2,0,0) x,0,z
(m,1/2,0,0)

(28) c' (0,0,1/2) y,z,0
(m,0,0,1/2)

(29) 3' x,x,x;
(3,xyz) 1/2,1/2,1/2

(30) 3' x-1/2,x,x;
(3,xyz) 1/2,1/2,1/2

(31) 3' x-1/2,x,x+1/2,x;
(3,xyz) 1/2,1/2,1/2

(32) 3' x,x-1/2,x;
(3,xyz) 1/2,1/2,1/2

(33) 3' x,x,x;
(3,xyz) 1/2,1/2,1/2

(34) 3' x+1/2,x-1/2,x;
(3,xyz) 1/2,1/2,1/2

(35) 3' x,x+1/2,x;
(3,xyz) 1/2,1/2,1/2

(36) 3' x+1/2,x,x;
(3,xyz) 1/2,1/2,1/2

(37) d' (1/4,1/4,1/4) x+1/2,x,z
(3,xyz) 3/4,3/4,3/4

(38) d' (3/4,3/4,3/4) x,x,z
(m,0,1/2,0)

(39) d' 0,1/4,z; 0,1/4,3/8
(4,-1) 1/4,1/4,1/4

(40) d' 1/2,1/4,z; 1/2,1/4,1/4
(4,-1) 1/4,3/4,1/4

(41) d' x,0,1/4; 3/8,0,1/4
(4,-1) 3/4,1/4,1/4

(42) d' (1/4,1/4,1/4) x,y+1/2,y
(4,-1) 3/4,3/4,3/4

(43) d' (3/4,3/4,3/4) x,y,y
(m,0,1/2,0)

(44) d' x,1/2,1/4; 1/8,1,2,1/4
(4,-1) 1/4,1,4,3/4

(45) d' (1/4,1/4,1/4) x+1/2,y,x
(4,-1) 3/4,1/4,1/4

(46) d' (1/4,1/4,1/4) x+1/2,y,x
(4,-1) 1/4,1/4,1/4

(47) d' 1/4,y,0; 1/4,3/8,0
(4,-1) 1/4,3/4,1/4

(48) d' (3/4,3/4,3/4) x,y,x
(m,0,1/2,0)

Generators selected

(1); t(1,0,0); t(0,1,0); t(0,0,1); t(1/2,1/2,1/2); (2); (3); (5); (13); (25).

Positions

Multiplicity, Wyckoff letter, Site Symmetry.

96 h 1

(1) x,y,z [u,v,w]
(2) x+1/2,y,z+1/2 [u,v,w]
(3) x,y+1/2,z+1/2 [u,v,w]
(4) x+1/2,y+1/2,z [u,v,w]

(5) z,x,y [w,u,v]
(6) z+1/2,x+1/2,y [w,u,v]
(7) z+1/2,x,y+1/2 [w,u,v]
(8) z,x+1/2,y+1/2 [w,u,v]

(9) y,z,x [v,w,u]
(10) y,z+1/2,x+1/2 [v,w,u]
(11) y+1/2,z+1/2,x [v,w,u]
(12) y+1/2,z+1/2 [v,w,u]

(13) y+3/4,x+1/4,z+1/4 [v,u,w]
(14) y+3/4,x+3/4,z+3/4 [v,u,w]
(15) y+1/4,x+1/4,z+3/4 [v,u,w]
(16) y+1/4,x+3/4,z+1/4 [v,u,w]
(17) x+3/4,z+1/4,y+1/4 [u,w,v]
(18) x+1/4,z+3/4,y+1/4 [u,w,v]
(19) x+3/4,z+3/4,y+1/4 [u,w,v]
(20) x+1/4,z+1/4,y+3/4 [u,w,v]
(21) z+3/4,y+1/4,x+1/4 [w,v,u]
(22) z+1/4,y+3/4,x+1/4 [w,v,u]
(23) z+1/4,y+3/4,x+3/4 [w,v,u]
(24) z+3/4,y+3/4,x+3/4 [w,v,u]
(25) x,y,z [u,v,w]
(26) x+1/2,y+1/2 [u,v,w]
(27) x,y+1/2,z+1/2 [u,v,w]
(28) x+1/2,y+1/2,z [u,v,w]
Symmetry of Special Projections

<table>
<thead>
<tr>
<th>16 b</th>
<th>.32</th>
<th>1/8,1/8,1/8 [0,0,0]</th>
<th>3/8,7/8,5/8 [0,0,0]</th>
<th>7/8,5/8,3/8 [0,0,0]</th>
<th>5/8,3/8,7/8 [0,0,0]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>7/8,7/8,7/8 [0,0,0]</td>
<td>5/8,1/8,3/8 [0,0,0]</td>
<td>1/8,3/8,5/8 [0,0,0]</td>
<td>3/8,5/8,1/8 [0,0,0]</td>
</tr>
<tr>
<td>16 a</td>
<td>.3'</td>
<td>0,0,0 [0,0,0]</td>
<td>1/2,0,1/2 [0,0,0]</td>
<td>0,1/2,1/2 [0,0,0]</td>
<td>1/2,1/2,0 [0,0,0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/4,1/4,1/4 [0,0,0]</td>
<td>3/4,3/4,3/4 [0,0,0]</td>
<td>1/4,1/4,3/4 [0,0,0]</td>
<td>1/4,3/4,1/4 [0,0,0]</td>
</tr>
</tbody>
</table>