An X-ray constrained wavefunction (XCW) is a wavefunction constrained to reproduce the structure factors from X-ray charge density experiment [1]. XCW’s have primarily been used to obtain accurate images of the electron density in molecular crystals [1]. In this talk the XCW method is extended to the calculation of linear and non-linear optical response properties for several molecular crystals [2]. The theory used for the calculation of bulk (crystalline) susceptibilities and refractive indices from molecular polarisabilities will be reviewed. Results for several systems will be presented and discussed. I will also outline a method for improved structure determination based on using aspherical atomic densities obtained from quantum mechanical calculations. The new method allows the determination of ADP’s for hydrogen atoms from the X-ray data alone [3]. The possibility of using such aspherical densities in everyday structure refinement will be discussed.

Keywords: constrained wavefunction, charge density, linear and non-linear optics

MS.37.4

Acta Cryst. (2008). A64, C70

How and why elemental boron undergoes self charge transfer between 19 and 89 GPa

Carlo Gatti1, Artem R Oganov2,3, Juhua Chen4, Yanzhang Ma6

1CNR-ISTM, Physical Chemistry and Electrochemistry, via Golgi 19, Milano, MI, 20133, Italy, 2Laboratory of Crystallography, Department of Materials, ETH Zurich, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland, 3Geology Department, Moscow State University, 119992 Moscow, Russia, 4Center for the Study of Matters at Extreme Conditions, Florida International University, Miami, FL 33199, USA, 5Mineral Physics Institute and Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA, 6Department of Mechanical Engineering, Texas University of Technology, 7th St. & Boston Ave., Lubbock, Texas 79409, USA, E-mail: c.gatti@istm.cnr.it

Boron has nearly 20 polymorphs with non-trivial chemical bonding, complex structures and similar energies. It is the only light element for which the ground state is not experimentally established at ambient conditions. Using high-pressure experiments and an ab-initio evolutionary methodology, the structural stability of boron under pressure was explored.1 At low pressures (<19 GPa) boron adopts covalent structures based on isocahedral B$_2$ clusters, and at high pressures (>89 GPa) it forms a superconducting α-Ga-type phase. At intermediate pressures a new insulating phase, γ-B, has been found to be stable.1 Its structure consists of distorted B$_2$ clusters and B$_2$ pairs : (B$_3$)$_n$ (B$_3$)$_n$, with a significant charge transfer (CT), substantiated by several theoretical measurements and physical properties. Using Bader’s theory, 5 amounts to ~0.34-0.48, based on either PAW or DFT-LCAO densities. Electron charge flows from B$_2$ to B$_2$ units for their corresponding frozen 3D sublattices act as n-doped and p-doped semiconductors, respectively. The CT occurring in this unique phase affects its physical properties (electronic band gap, infrared absorption, dielectric properties, etc.) and results from the Lewis acid-base interaction of the B$_2$ and B$_2$ groups. It is the ability of boron to form clusters with very different electronic properties and the very low packing efficiency of isocahedral structures (34% for α-B$_2$) which leads to γ-B, the first experimentally established autoionized form of an element. An analysis of bonding within and between the B$_2$ and B$_2$ subunits and its relationship with the observed CT in γ-B is also outlined.1

Keywords: charge density and properties, chemical bond, high pressure

MS.37.5

Advances in quantum ab initio calculations with the CRYSTAL code

Roberto Orlando1, Bartolomeo Civalleri2, Roberto Dooves2, Carla Roetti2

1Università del Piemonte Orientale, Scienze e Tecnologie Avanzate, Via Bellini 25/G, Alessandria, AL, 15100, Italy, 2Università di Torino, Via P.