The electronic structure and properties of crystals can be calculated *ab initio* with CRYSTAL at different levels of approximation ranging from Hartree-Fock (HF) to Kohn-Sham (KS) Density Functional Theory and including use of hybrid functionals. Expressing the crystalline wavefunction in terms of linear combinations of atomic orbitals (LCAO) allows easy interpretation of the electronic structure and direct comparison with molecular fragments. The release of the code presently distributed, CRYSTAL06 (http://www.cystal.unito.it), enables fully automated and efficient search for minimum energy structures and the computation of a variety of properties including structural, elastic, piezoelectric, dielectric, magnetic and electronic properties, and the simulation of vibrational spectra. Extensive use of symmetry, in both the real and reciprocal space, and low computational requirements make the program efficient and suitable for the study of complex structures with ordinary computer facilities. Recent achievements in the parallelization of the code and use of parallel linear algebra libraries now permit large-scale calculations for systems containing thousands of atoms in the unit cell with good scalability over thousands of processors on High Performance Computers. New developments also involve an efficient implementation of the Coupled-Perturbed (CP) HF/KS equations for the calculation of linear and nonlinear optical properties of insulators and semiconductors (electron polarization, dielectric and hyperpolarizability tensors). Application of the CPHF/CPKS method to the analytical calculation of various properties such as the piezoelectric tensor, infrared and Raman intensities is under development. The new features will be illustrated through examples of application.

Keywords: ab-initio periodical and cluster calculations, crystal structure and properties, DFT

MS.38.1

Phase field modeling of self-organized polycrystalline structures: Denrites, spherulites, eutectics

Laszlo Granasy1, Gyorgy Tegez1, Tamas Pusztai2, Gyula I Toth1, Laszlo Kornyei1

1Brunel University, BCAST, Kingston Lane, Uxbridge, Middlesex, UB8 3PH, UK, 2Research Institute for Solid State Physics & Optics, H-1525 Budapest, Hungary, E-mail: grana@szk.hu

Recent advances we made recently in phase field modeling of polycrystalline self-organized structures will be reviewed. Self-organized crystalline patterns are present in a variety of systems including metals, polymers, minerals, and biological systems. The fact that similar polycrystalline patterns are seen in systems of very different molecular structure suggests that a minimal model based on coarse-grained fields, which neglects details of the molecular interactions, might be feasible. Along these lines, we have developed a phase field models of polycrystalline solidification that rely on one or more orientation fields in representing crystallographic orientation. Our models have been applied for describing various self-organized structures including dendritic morphologies, disordered dendrites, spherulites, and eutectic structures in 2D and 3D. Our models consist of several mechanisms for nucleating new grains at the perimeter of the crystallites, including homogeneous and heterogeneous processes. It will be shown that a wide range of observed polycrystalline morphologies can be reproduced by varying only a few model parameters. Preliminary results for modeling dendritic and eutectic self-organization in an atomistic phase field theory (the phase field crystal model) will also be presented.

Keywords: high-temperature ceramics, single crystal, mechanical properties

MS.38.2

High temperature characteristics of undirectionally solidified ceramic eutectics

Yoshiharu Waku1, Hideyuki Yasuda2

1Shimane University, Department of Natural Resources Process Engineering, Interdisciplinary Faculty of Science and Engineering, 1060 Nishikawatsuchou, Matsue, Shimane, 690-8504, Japan, 2Osaka University, Suita, Osaka, 565-0871, Japan, E-mail: wakumgc@riko.shimane-u.ac.jp

We have recently developed ceramic eutectics, which are named Melt Growth Composites (MGCs). The binary MGCs (Al2O3/YAG and Al2O3/GAP binary systems) have a novel microstructure, in which continuous networks of single-crystal Al2O3 phases and single-crystal oxide compounds (YAG or GAP) interpenetrate without grain boundaries. To characterize the entangled structure of the typical MGCs, the X-ray computerized tomography (micro X-ray CT) was performed at a synchrotron radiation facility Spring8. The micro X-ray CT showed that the Al2O3 and the YAG are entangled with each other. Therefore, the MGCs have excellent high-temperature strength characteristics, creep resistance, superior oxidation resistance and thermal stability in the air atmosphere at very high temperatures. In the paper, high temperature characteristics of MGCs such as high temperature strength (Fig. 1), creep resistance, oxidation resistance and thermal stability of microstructure, and structural characteristics of the typical MGCs will be briefly introduced.

Keywords: self-organization, phase field theory, polycrystals

MS.38.3

Nanoparticle halo formation around colloids in binary solutions

Gabrielle G. Long1, Fan Zhang1, Pete R. Jemian1, Jan Ilavsky1, Valeria T. Milam2, Jennifer A. Lewis1

1Argonne National Laboratory, X-Ray Science Division, APS Building 401, 9700 South Cass Avenue, Argonne, IL, 60439, USA, 2Georgia Institute of Technology, Atlanta, GA, 30332, 1University of Illinois at Urbana-Champaign, Urbana, IL, 61801, E-mail: gglong@aps.anl.gov

Colloidal suspensions are widely used in applications such as photonic crystals and coatings, where nanoparticle engineering is a new model whereby interactions may be regulated to provide control over suspension stability. One such stabilizing mechanisms is nanoparticle “haloing.” This colloidal stabilization mechanism has been predicted theoretically and inferred experimentally in microsphere-nanoparticle mixtures that possess high charge and size asymmetry. The term “halo” implies the existence of a non-zero separation between the highly charged nanoparticles and the negligibly charged microspheres that they surround. For the first time, we were able to quantify this nanoparticle-microsphere particle...