complementarity is a widespread occurrence in the packing of molecules in crystals.


Keywords: electrostatic potential, crystal engineering, intermolecular interactions

MS.46.1

Structure and properties of ammonia borane based hydrogen storage materials

Bill David
STFC, ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, UK, E-mail: bill.david@rl.ac.uk

Ammonia borane contains more than 19wt% hydrogen and has received significant attention as a promising hydrogen storage material. Although the decomposition temperature of NH₃BH₃ is relatively low, its propensity to release deleterious decomposition products such as borazine has mitigated against its development as a hydrogen storage material. Here we present results that show that improved thermal desorption parameters may be obtained when one of the protonic hydrogens on the nitrogen is replaced by either a lithium or a sodium cation. Lithium and sodium amidoboranes have recently been shown to release two molar equivalents of H₂ at around 92°C. Structural analysis has shown that both LiNH₂BH₃ and NaNH₂BH₃ are isostructural and that the dihydrogen bond that is evident in ammonia borane is not present in these amidoboranes. We present neutron and X-ray powder diffraction measurements and provide a detailed comparison of ammonia borane with the alkali metal amidoboranes and other amidoboranes that show promising decomposition behaviour close to room temperature.

Keywords: hydrogen storage, in-situ powder diffraction, neutron and X-ray diffraction

MS.46.2

Light metal borohydrides: Going beyond crystal structures

Yaroslav Filinchuk, Dmitry Chernyshov, Vladimir Dmitriev
European Synchrotron Radiation Facility, Swiss-Norwegian Beam Lines, 6, rue Horowitz, Grenoble, Isere, 38043, France, E-mail: Yaroslav.Filinchuk@esrf.fr

Light borohydrides are considered as prospective materials for energy storage. However, due to their high stability they are not yet regarded being practical. In order to understand the stability and find ways to influence it we studied structure and transformations of some light borohydrides at various temperatures and pressures. New structures were solved from synchrotron powder diffraction data. Some complex cases include the simultaneous determination of a structure and a strong preferred orientation; solving a difficult structure in the space group P1; detection of the inversion symmetry breaking induced by ordering of hydrogen atoms. We show that hydrogen atoms can be accurately determined from synchrotron powder diffraction data measured with area detectors. Disorder of the borohydride groups and strong lattice anharmonicity were revealed from diffraction data measured at various temperatures. These phenomena, being ignored, lead to a failure of theoretical predictions of structural stability of light borohydrides. Pressure-temperature phase diagram of LiBH₄ was studied by diffraction and mechanisms of phase transitions were analyzed using a phenomenological model. It suggests an existence of cation-anion layers in all four known LiBH₄ phases. This conclusion is not trivial from purely geometrical point of view, but it can find a rational crystal-chemical explanation. The relative complexity of LiBH₄ structures and of the P-T phase diagram can be linked with the directional interaction of the tetrahedral BH₄ groups with spherical metal atoms. We hypothesize that the directional BH₄…M interaction in metal borohydrides leads to a formation of anion-centered complexes, determining structures of individual phases and mechanisms of their polymorphic transformations.

Keywords: hydrogen storage, neutron X-ray diffraction, structural transformations

MS.46.3

Structural investigation of metal borohydrides by X-ray/neutron diffraction and computational study

Toyoto Sato¹, Kenji Ohoyama¹, Tatsuo Noritake², Kazutoshi Miwa², Hai-Wen Li³, Yuko Nakamori¹, Shin-ichi Towitz¹, Shin-ichi Orimoto¹
¹Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577, Japan, ²Toyota Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan, E-mail: toyoto@imr.tohoku.ac.jp

Metal borohydrides, M(BH₄)ₓ (M: metal; n: valence of M), are promising candidates for hydrogen storage materials because they have high hydrogen gravimetric capacity (ex. LiBH₄: 18.4mass%). Structural investigation of M(BH₄)ₓ is an indispensable approach in order to understand their material properties. Whereas crystal structures of M(BH₄)ₓ with n = 1 (alkali metal borohydride) have been clarified, those with n ≥ 2 are, in many cases, still uncertain. So far, we clarified new crystal structures of Ca(BH₄)₂ (space group Fdd2 (No. 70) with a = 8.791(1) Å, b = 13.137(1) Å and c = 7.500(1) Å) and Y(BH₄)₂ (space group Pn-3 (No. 205) a = 10.771(4) Å), by using combination studies of powder x-ray/neutron diffraction and computation. Ca⁺ and [BH₄]⁻ arrangements of Ca(BH₄)₂ is a related TiO₂-type (anatase), and Y⁺ and [BH₄]⁻ arrangements of Y(BH₄)₂ is a distorted ReO₃-type. By using first-principles calculations based on the clarified crystal structures and estimated reactions (1/2)Ca + B + 2H₂ = (1/2)Ca(BH₄)₂ and (1/3)Y + B + 2H₂ = (1/3)Y(BH₄)₃, the heat of formation of Ca(BH₄)₂ and Y(BH₄)₃ were calculated to be -151 and -113 kJ/mol BH₄, respectively. They are in good agreement with the correlation between heat of formation for M(BH₄)ₓ and number of Pauling electronegativity of M³.


Keywords: hydrogen storage, neutron X-ray diffraction, density functional theory

MS.46.4

Powder diffraction investigations of a new class of rare-earth aluminum hydrides

Claudia Weidenthaler, Andre Pommerin, Michael Felderhoff, Ferdi Schueth
Max-Planck-Institut fuer Kohlenforschung, Kaiser-Wilhelm-Platz 1,