Microsymposia

Muelheim, Nordrhein-Westfalen, 45470, Germany, E-mail : weidenthaler@mpi-muelheim.mpg.de

The development of materials for the reversible storage of hydrogen in solid-state compounds is one of the most challenging topics for material scientists. Up to now, all systems investigated do not fulfill the requirements of a successfully working storage material. For this reason, research has to be expanded to new classes of materials. A new group of complex rare-earth aluminum hydrides was synthesized and characterized by X-ray powder diffraction methods. For the synthesis of the compounds, NaAlH₄ and the corresponding salts (XCl₃ with X= Pr, Nd) were ball-milled for several hours. The evaluation of the products show the formation of NaCl and Al during milling. Additionally to these phases, a set of new reflections is present, which is assigned to a new structure type of complex rare-earth aluminum compounds. The decomposition behavior of the rare-earth phases was investigated by in situ X-ray powder diffraction methods. During temperature increase, the new phases decompose above 120°C and rare-earth hydrides are formed. At higher temperatures, the hydrides decompose in a second step and the rare-earth elements react with free aluminum and e.g. Nd₅Al₇-alloys are formed. The rehydrogenation behavior of the material was investigated by means of different in situ methods.

Keywords: hydrides, hydrogen storage, powder diffraction under non ambient conditions

MS.46.5


Neutron scattering studies on deuterium adsorbed pore framework compound, K₂Zn₃[Fe(CN)₆]₂
Jae-Hyuk Her¹,², Yun Liu³,⁴, Craig M Brown³,⁴, Dan A Neumann³,⁴, Steven S Kaye³,⁴, Jeffrey R Long³,⁴
¹National Institute of Standard and Technology, NIST Center for Neutron Research, 100 Bureau Drive, Stop 6102, Gaithersburg, MD, 20899-6102, USA, ²Department of Materials Science and Engineering, Univ. of Maryland, College Park, MD 20742, USA, ³Department of Chemistry, Univ. of California, Berkeley, CA 94720, USA, E-mail: jaehyuk.her@nist.gov

The biggest obstacle to realizing a hydrogen-energized vehicle is the on board hydrogen storage aspect. There are several different approaches to practically store/retrieve solid in state systems. Amongst them, physisorption provides reversible and fast sorption. A new group of complex rare-earth aluminum hydrides was synthesized and characterized by X-ray powder diffraction methods. For the synthesis of the compounds, NaAlH₄ and the corresponding salts (XCl₃ with X= Pr, Nd) were ball-milled for several hours. The evaluation of the products show the formation of NaCl and Al during milling. Additionally to these phases, a set of new reflections is present, which is assigned to a new structure type of complex rare-earth aluminum compounds. The decomposition behavior of the rare-earth phases was investigated by in situ X-ray powder diffraction methods. During temperature increase, the new phases decompose above 120°C and rare-earth hydrides are formed. At higher temperatures, the hydrides decompose in a second step and the rare-earth elements react with free aluminum and e.g. Nd₅Al₇-alloys are formed. The rehydrogenation behavior of the material was investigated by means of different in situ methods.

Keywords: hydrides, hydrogen storage, powder diffraction under non ambient conditions

MS.47.1


High pressure synthesis and physical property measurements of perovskite transition-metal oxides
Eiji Takayama-Muromachi
National Institute for Materials Science, MANA, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan, E-mail: muromachi.eiji@nims.go.jp

A breakthrough in materials has been often achieved triggered by discovery of a new key material. One of famous examples is the high-Tc superconductor which has opened new perspectives in physics, chemistry and materials science. Many other examples can be shown such as giant-magnetoresistant manganites, fullerene, carbon nanotube, MgB₂ superconductor, etc. Our institute has long history on high-pressure synthesis, and thanks to this we can use world highest class high-pressure apparatuses. Various unique structures do crystalize only with help of the high-pressure condition, which had lead to various novel physical properties in past. Thus, we are fully utilizing high-pressure conditions for the materials exploration to discover interesting advanced high-pressure materials such as new high Tc superconductors, magnetic materials, dielectric materials, multiferroic materials, etc. In particular, perovskite transition-metal oxides and related materials are one of the most important targets. In the symposium, I will report our recent results on i) room-temperature ferromagnet system of SrₓArₓCuO₄⁺₁ (A: Sr, Ca) with an ordered perovskite structure, ii) new bulk multiferroic (magnetic ferroelectric) and ferroelectric materials with the composition of BiMnO₃, PbMnO₃, and BiₓMnO₃ (M: transition metal), iii) manganite perovskite system of RMnO₃ (R: Ho, Er, Tm, Yb, Lu), etc. all of which can be prepared only under high pressure. Their high-pressure synthesis and structural and physical properties will be discussed thoroughly in the symposium

Keywords: high-pressure synthesis, perovskite structure, transition-metal oxides

MS.47.2


Synthesis and characterization of metal nitrides
Eugene Gregoryanz
CSEC, U. of edinburgh, JCMB buildings, Mayfield Rd., Edinburgh, Scotland, EH9 3JJ, UK, E-mail: e.gregoryanz@ed.ac.uk

The interest in the synthesis of the new materials has been always driven by the applications relevant to the technology and fundamental science. Transition metal carbides and nitrides form refractory high-strength high-hardness materials. Recent discovery of platinum nitride (PtN₂) showed the possibility of synthesis of the novel materials at high pressures (e.g. above 50 GPa) and temperatures and their recovery to the ambient conditions in the diamond anvil cell. Here, we present several novel transition and noble metal nitrides including IrNₓ and OsNₓ synthesized at extreme conditions having exceptionally high bulk moduli. Using synchrotron x-ray radiation, Raman spectroscopy, electron microprobe analysis and ab initio calculations we characterize the new materials and compare them with other nitrides.