Poster Sessions

P04.01.16

Crystallization and preliminary X-ray analysis of Ca2+-free primary Ca2+-sensor of Na+/Ca2+ exchanger

Koji Tomoe1, Masashi Mima1, Chika Kawai1, Kumsun Paku1, Toshimasa Ishida1, Shigeru Sugiyama1, Hiroiyo Matsumura1,4, Tomoya Kitatani1,2, Hiroshi Y. Yoshikawa1,2, Syou Maki1,2, Hiroaki Adachi1,2,4, Kazumitsu Takano1,2,4, Satoshi Murakami1,3,4, Tsuyoshi Inoue1,2,4, Yusuke Morii1,2,4, Akihito Yamano1, Satomi Kita1, Takahiro Iwamoto1

1Osaka University of Pharmaceutical Sciences, Physical Chemistry, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan, 2Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, 3CREST, Japan Science and Technology Agency, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, 4SOSHO Inc., 1-6-18 Honmachi, Chuo-ku, Osaka 541-0053, Japan, 4Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan, 4School of Medicine, Fukuoka University, Fukuoka 814-0180, Japan, E-mail: tomo6@gly.oups.ac.jp

The plasma membrane Na+/Ca2+ exchanger (NCX) regulates intracellular Ca2+ levels in cardiac myocytes. Two Ca2+ binding domains (CBD1 and CBD2) exist in the large cytosolic loop of NCX. The binding of Ca2+ to CBD1 results in conformational changes that stimulate the exchange to exclude Ca2+, whereas CBD2 maintains the structure, suggesting CBD1 being the primarily Ca2+-sensor. To clarify the structural scaffold for the Ca2+-induced conformational transition of CBD1 at the atomic level, the X-ray structural analysis of its Ca2+-free form was tried: the structure of Ca2+-bound form is now available. Recombinant CBD1 (NCXI 372-508) with molecular weight of 16kDa was crystallized by the sitting-drop vapor-diffusion method at 293 K. The crystals belonged to hexagonal space group P6\textsubscript{1}2\textsubscript{1}2\textsubscript{1}, with unit-cell parameters a=b=56.99 Å, c=153.86 Å, β=120\degree, and contained one molecule per asymmetric unit (VM=2.25 Å3/Da). Diffraction data were collected to 3.00 Å using a R-AXIS IP detector and gave a data set with an overall Rmerge of 10.8 % and a completeness of 92.8 %.

Keywords: ion exchange, NCX, crystallization of proteins

P04.01.17

The crystal structure of villin domain 6

Hui Wang1, Anantasak Loonchanta1, Sakesit Chumnarnsilpa2, Robert Robinson1, Les Burtnick1

1The University of British Columbia, chemistry, 2036 Main Mall, Chemistry Department, Vancouver, BC, V6T1Z1, Canada, 2Institute of Molecular & Cell Biology, Proteos, Singapore, E-mail: hwui@chem.ubc.ca

Villin is an actin filament bundling, capping, severing and nucleating protein. Villin is regulated in these functions through calcium-binding, PIP2-binding and phosphorylation. Villin is related to gelsolin, in that it contains six homologous domains of the gelsolin/cofilin fold (V1-V6), but differs from gelsolin by having a seventh unrelated domain at the C-terminus. This extra domain, the villin head-piece (V-HP), binds to the side of actin-filaments and is generally thought to impart the bundling activity on villin, a property that is absent from gelsolin. To date only the structures of V1 and V-HP have been solved. Here we present the X-ray structure of V6 in an inactive buffer environment: low calcium, no PIP2 and no phosphorylation. The V6 structure contains a straight long helix which more closely resembles that of active gelsolin domain 6 (G6) rather than the inactive form in which the helix is bent. This suggests the role of calcium with respect to V6, in the context of the whole protein, is to release interdomain contacts that allow the straightening of this V6 helix, which in itself propagates further conformational changes.

Keywords: actin, villin, gelsolin

P04.01.18

Crystallization and X-ray structure analysis of Complex II from adult Ascaris suum mitochondria

Hironori Shimizu1, Shigeharu Harada2, Arhiro Osanai1, Daniel K Inaoka1, Hironori Otani1, Kimitoshi Sakamoto1, Kiyoshi Kita1

1Graduate school of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan, 113-0033, Japan, 2Kyoto Institute of Technology, (Gosyokaidou-cho, Matugasaki, Kyoto 606-8585, Japan), E-mail: shimizu.hironori.dx@daiichisankyo.co.jp

Mitochondrial complex II from adult *A. suum* consists of four subunits (Fp, Ip, CybL and CybS) and five prosthetic groups. Hydrophilic Fp and Ip subunits carry FAD and Fe-S clusters, respectively, and membrane-anchoring CybL and CybS subunits contain heme b. Adult *A. suum* living in a low-oxygen environment uses the anaerobic phosphoenolpyruvate carboxykinase-succinate pathway, and the complex II catalyzes the rhodoquinol oxidation in conjunction with the fumarate reduction. In this study, the *A. suum* complex II was crystallized and its crystal structures bound by malonate as well as by a specific inhibitor, flutolanil, were determined. Using sucrose monolaurate, the complex II structure (1ZOY) and refined to 2.8 Å resolution. The structure complexed with flutolanil was also determined at 2.9 Å resolution (R=0.25, free-R=0.28) at 2.8 Å resolution. The structure complexed with malonate was determined by the molecular replacement method using the porcine complex II structure (1ZOY) and refined to R=0.25 (free-R=0.28) at 2.8 Å resolution. The structure is highly conserved among complex IIIs. The binding site of rhodoquinone could be identified, and flutolanil, which shows more inhibitory effect to *A. suum* complex II (IC\textsubscript{50}=81 nM) than bovine complex II (16 μM), is bound to the same site as rhodoquinone. In order to study the structure-function relationship of *A. suum* complex II, the detailed examination of the structures is now in progress.

Keywords: actin, villin, gelsolin

P04.01.19

The crystal structure at 1.8 Å resolution of the calcium-bound human S100A13 at pH 7.5

Fabiana L. Imai1, Koji Nagata1, Naoto Yoneyzawa2, Minoru Nakano2, Masaru Tanokura1

1The University of Tokyo, Graduate School of Agricultural and Life Sciences, Graduate School of Agricultural and Life Sciences, Department
of Applied Biological Chemistry, Laboratory of Food Biotechnology, Bunkyo-ku, Yayoi 1-1-1, Tokyo, Tokyo, 113-8657, Japan, 2Chiba University, Department of Chemistry, Image-ku, Yayoi-cho 1-33, Chiba, 263-8522, E-mail: afabiana@mail.ecc.u-tokyo.ac.jp

S100A13 is a member of the S100 family of EF-hand-containing calcium-binding proteins. S100A13 plays an important role in the secretion of fibroblast growth factor-1 and interleukin-1α, two pro-angiogenic factors released by the non-classical endoplasmic reticulum-Golgi-independent secretory pathway. To gain insight into the structural basis of the interactions with these proteins, we determined the crystal structure of human S100A13 at pH 7.5 at 1.8-Å resolution. Human S100A13 was heterologously expressed in Escherichia coli purified and crystallized by the hanging-drop vapor diffusion method using PEG 3350 as the precipitant and at pH 7.5. The crystals diffracted X-rays from a synchrotron-radiation source beyond 1.8-Å resolution. The crystal space group was assigned as primitive orthorhombic P2₁2₁2₁ with unit-cell parameters a = 39.7Å, b = 59.2Å, c = 77.6Å. The structure was solved by molecular replacement and has been refined to a final R factor of 19.0% and a free R of 22.7%. The structure revealed that human S100A13 exists as a homodimer with two calcium ions bound to each protomer. The protomer is composed of 4 α-helices (α1-α4) forming a pair of EF-hand motifs. Dimerization occurs by hydrophobic interactions between helices α1 and α4 and by intermolecular hydrogen bonds between residues from helix α1 and the residues between α2 and α3 of both chains. Comparison between the crystal structures of human S100A13 at pH 7.5 (this study) and pH 6.0 (Li et al., 2007) exhibited recognizable differences in the relative orientation (ca. 2.5°) between the protomers within the dimer and also remarkable differences in the side-chain conformations of several amino-acid residues.

Keywords: calcium-binding proteins, EF-hand proteins, X-ray crystallography of proteins

P04.01.20

Acta Cryst. (2008). A64, C236

X-ray analysis of FliJ, a cytoplasmic component of the flagellar type III protein export apparatus

Tatsuya Ibuki1,2,3, Masafumi Shimada1,3, Minamino Tohru1,2,3, Imada Katsumi1,2,3, Namba Keiichi1,2,3

1Osaka University, Graduate School of Frontier Biosciences, tatsuya@fbs.osaka-u.ac.jp, Suita-city, osaka, 565-0871, Japan, 2Grad. Sch. of Frontier Biosci., Osaka Univ., 2Dynamic NanoMachine Project, ICORP, JST, E-mail: tatsuya@fbs.osaka-u.ac.jp

The flagellum is a motile organelle composed of the basal body rings and the tubular axial structure. The axial proteins synthesized in the cytoplasm are transferred into the central channel of the flagellum by the flagellar protein-export apparatus, which is classified into the type III protein export system. The apparatus is composed of six transmembrane proteins (FlhA, FlhB, FlhO, FliP, FliQ, FliR) and three soluble components (FliH, FliI, FliJ). FliJ is an essential component for protein export. Although FliJ is thought to be a general chaperone, its function is still unclear. Here we report purification, crystallization and X-ray analysis of FliJ. Native FliJ was difficult to handle because of its strong tendency to form insoluble aggregates. Recently, we found that FliJ with extra three residues attached to the N-terminus as a remainder of His-tag is highly soluble. We obtained hexagonal bi-pyramid crystals from this FliJ variant, and determined the structure at 2.2 angstrom resolution using anomalous data from a mercury derivative crystal collected at SPring-8 BL41XU. We will discuss details of the structure and possible function of FliJ.

Keywords: sister chromatid cohesion, crystallization, zinc finger

P04.01.22

Crystallization of carbohydrate oxidase from *Microdochium nivale*

Jarmila Duskova1, Jan Dohnalek1,2, Tereza Skalova1, Lars H. Östergaard1,3, Leonardo de Maria1, Petr Kolenko1, Andrea Stepankova1, Jindrich Hasek1

1Institute of Macromolecular Chemistry, Department of structure analysis, Heyrovského nam. 2, Praha 6, Praha, Czech Republic, 16200, Czech Republic, 2Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, Praha 6, Czech Republic, 3Novozymes A/S, Brudelsvej 26, DK-2880 Bagsvaerd, Denmark, E-mail: duskova@imc.cas.cz

Carbohydrate oxidase from *Microdochium nivale* is a flavoenzyme containing 475 amino acids with covalently linked flavin. The