different from that of other nuclear receptors.

Keywords: nuclear receptor, Fushi tarazu factor 1, FTZ-F1

P04.01.38

X-ray diffuse scattering from protein crystals caused by the lattice defects

Kenji Kawamura1,2, Nobuo Niimura3, Ichiro Tanaka1, Yuuki Ohnishi1, Taro Yamada1

1Ibaraki university, 2Ibaraki, hitachi, nakanarusawa, 316-8511, Japan,
2Graduate School of Science and Engineering, Ibaraki Univ. Hitachi,
3College of Engineering, Ibaraki Univ. Hitachi, *Research Center of Frontier Applied Atomic Science., E-mail: 08nd602n@hcs.ibaraki.ac.jp*

High resolution X-ray protein crystallography needs a single crystal of high quality. The quality has been often described with a mosaicity. However, the intrinsic nature of the quality of protein crystal has not yet been understood well. Phenomenologically speaking, a crystal of poor quality causes the decrease of the Bragg reflection intensity and does not give higher order Bragg reflections. It has been developed to estimate the quality of proteins by measuring the B-factor. The B-factor consists of static and dynamic components and the quality of protein crystals may correspond to the orientation disorder of molecules in the crystal. Therefore the disorder structure will be determined by analyzing X-ray diffuse scattering on the foot of the Bragg reflections. We have carried out the measurement of the X-ray diffuse scattering from a cubic insulin crystal which has given medium resolution data (2.2Å). The size of the sample is about 0.3mm. We have used 4-circle diffractometer installed at BL10A in Photon Factory in KEK, Japan. The beam divergence is 1.23 × 10^-4 [rad]. We have measured several rocking curves of Bragg reflections of [100], [110] and [111] series at the ambient temperature and succeeded in observing the diffuse scattering on the foot of these Bragg reflections. In order to make the origin of the diffuse scattering clear, we are planning to measure several crystals which have grown under different crystallization condition and have different qualities.

Keywords: static and dynamic disorder, quality of protein crystals, diffuse scattering

P04.01.39

Structure of membrane-bound quinohemoprotein alcohol dehydrogenase

Masaru Goto1, Itoku Miyahara2, Ken Hirotsu3, Yoshiaki Kobayashi4, Tomoko Nakatsuka4, Hirohide Toyama5, Osao Adachi4, Kazunobu Matsushita4

1Toho University, Department of Biomolecular Science, Faculty of Sciences, 2-2-1 Miyama, Funabashi-City, Chiba, 274-8510, Japan, 2Osaka City University, 3-3-13 Sapporo Sumiyoshi-ku, Osaka-City, 558-8585, Japan, 3RIKEN Spring-8 Center, Harima Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan, 4Yamaguchi University, 1677-1 Yoshida, Yamaguchi-City, Yamaguchi, 753-8515, Japan, 5University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan, E-mail: goto@biomol.sci.toho-u.ac.jp

Many Gram-negative aerobic bacteria can grow on alcohols and sugars as the sole carbon and energy sources. In the periplasm of acetic acid bacteria, quinooprotein alcohol dehydrogenases (ADH) containing pyrroloquinoline quinone (PQQ) instead of nicotinamide or compounds as the prosthetic group catalyze the first step of acetic acid production, oxidation of ethanol to acetaldehyde. There are three types of ADHs. Type I ADH is a soluble, dimeric protein of identical subunits having a PQQ and a calcium ion in each active center, but no other redox cofactors. Type II ADH is a soluble, monomeric, having a PQQ-containing catalytic domain and an additional c domain with a covalently bound heme c. Type III ADH is a quinohemoprotein complex with three nonidentical subunits that catalyzes the oxidation of ethanol and the subsequent reduction of ubiquinone, and attached on the cytoplasmatic membrane of acetic acid bacteria. We report here 3.0 Å crystal structure of the type III membrane-bound quinohemoprotein ADH from Gluconobacter suboxydans refined to R-factor 29 %. Our structure reveals that the enzyme contains a large subunit A similar to the type II quinooprotein ADHs which have a eight-stranded propeller domain and a cytochrome c domain, a membrane-bound subunit B which has a novel three-heme cytochrome c structure, and a small subunit C which has unknown function. The PQQ is located near the axis of the propeller domain about 14 Å from the in subunit A. The shortest distances between four hemes are about 9 Å, 4 Å, and 8 Å, respectively.

Keywords: crystal structure analysis, membrane protein structures, heme proteins

P04.01.40

Rational crystallization of β-lactoglobulin and vitamin D, complex reveal a secondary binding site

Chun-Jung Chen1,2, Hong-Hsiang Guan1,3, Ming-Chi Yang2, Simon J.T. Moo1

1National Synchrotron Radiation Research Center, Research Division, No. 101, Hsin-Ann Road, Hsinchu, N/A, 30076, Taiwan, 2Department and College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, 3National Tsing Hua University, Hsinchu, Taiwan, E-mail: cjchen@nsrtc.org.tw

β-lactoglobulin (β-LG) is a major bovine milk protein with a predominantly β structure. The function of the only α-helix with three turns at the C-terminus is unknown. Vitamin D binds to the central calyx formed by the β-strands. Despite being one of the most investigated proteins whether there are two vitamin D binding-sites in each β-LG molecule has been a subject of controversy during the past forty years. In this study, we chose vitamin D3, instead of vitamin D2, and use rational approach to successfully form a β-LG-vitamin D3 complex for crystalization. The only difference of vitamin D3 from D2 is the latter being a double bond between the carbon positions 22 and 23. Vitamin D3 is well-fitted into the bulk of electron density at 2.4 Å-resolution around the calyx and the exosite. In the central calyx binding mode, the aliphatic tail of vitamin D3 clearly inserts into the binding cavity, where the 3-OH group of vitamin D3 binds externally. The electron density map suggests that the 3-OH group interacts with the carbonyl of Lys-60 forming a hydrogen bond. The second binding site, however, is near the surface at the C-terminus containing part of an α-helix and a β-strand I with 17.91 Å in length, while the span of vitamin D3 is about 12.51 Å. A remarkable feature of the second exosite is that it combines an amphipatic α-helix providing non-polar residues and a β-strand providing a non-polar and a buried polar residue. They are linked by a hydrophobic loop. Thus, the binding pocket furnishes strong hydrophobic force to stabilize vitamin D3 binding. This finding provides a new insight into the interaction between vitamin D3 and β-LG, in which the exosite may provide...
another route for the transport of vitamin D3 in vitamin D3 fortified dairy products.

Keywords: beta-lactoglobulin, vitamin D3, protein complex crystallization

P04.01.41

Large single crystal growth and preliminary neutron diffraction analysis of *Achromobacter protease I*

Yuki Ohnishi1, Takeharu Masaki1, Taro Yamada1, Kazuo Kurihara1, Ichiro Tanaka1, Nobuo Niimura1

1Ibaraki University, School of Engineering, 4-12-1 Nakarunawasa, Hitachi-shi, Ibaraki, 316-8511, Japan, 2Japan Atomic Energy Agency, 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki, 319-1195, Japan, E-mail: yonishi@mx.ibaraki.ac.jp

Acta Cryst. (2008). *A*64, C243

Keywords: RNA-protein interactions, protein crystallization, X-ray diffraction

C243

Abstract

Achromobacter protease I (API, E.C. 3.4.21.50) is one of the serine proteases produced by *Achromobacter lyticus* M497-1. API is distinct from the trypsin type serine protease in its lysozyme specificity, a higher peptidase activity, pH optimum ranging from pH 8.5-10.5 and stability against denaturation with urea and SDS, respectively. Due to these favorable properties as a protein-degrading enzyme, API is useful as the lysylendopeptidase for protein fragmentation and lysyl bond formation. From the X-ray structure analysis of API, several hydrogen bonds play an important role and one water molecule is located at an active site of this protein. To elucidate these results in detail by observing protons, hydrogen bonds and hydration structure of the protein, we have carried out neutron diffraction experiment. Neutron crystallography, however, needs a large single crystal on the basis of the crystallization phase diagram. A crystal of API grew up to 2.0 mm x 1.0 mm x 0.5 mm by vapor diffusion method with modified macroseeding procedure. Crystals were soaked in 50%PEG3350/D2O. The D:O exchanged structure was determined by x-ray diffraction experiment to obtain an initial model for neutron structure analysis. Neutron diffraction data were collected with the hanging-drop vapor diffusion method. We succeeded to obtain crystals from a condition containing 2-propanol as a precipitant, and the crystal diffracted to better than 3 Å on an in-house X-ray source.

Keywords: purification, crystallization, mRNA transport

P04.01.43

Crystallization and preliminary X-ray analysis of RNA aptamer in complex with human immunoglobulin G*

Shigeru Sugiyma1,2, Hiyoriyo Matsumura3,4,5,6,7, Tomoya Kitatani7,8, Asako Kobayashi1,2, Shin Miyakawa1,2, Yusuke Nomura1,8, Taichiro Sakamoto6,7, Yoshikazu Nakamura8, Shino Okada9, Megumi Yamakami10, Syou Maki11, Hiroshi Y Yoshikawa11, Hiroaki Adachi11,12, Kazufumi Takando13,14, Satoshi Murakami15,16, Tsuyoshi Inoue17,18, Yusuke Mori19,20

1Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan, 2School of Medical and Health Sciences, Kogakuin University, 1-17-1 Kita-Ku, Ota, Tokyo 144-8531, Japan, 3Department of Physics, School of Science, Kogakuin University, 1-17-1 Kita-Ku, Ota, Tokyo 144-8531, Japan, 4Department of Engineering, School of Science, Kogakuin University, 1-17-1 Kita-Ku, Ota, Tokyo 144-8531, Japan, 5Graduate School of Science, Kogakuin University, 1-17-1 Kita-Ku, Ota, Tokyo 144-8531, Japan, 6Japan Medical and Health Sciences, Kogakuin University, 1-17-1 Kita-Ku, Ota, Tokyo 144-8531, Japan, 7Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, Narashino-shi, Chiba 275-0016, Japan, 8Department of Basic Medical Sciences, Institute of Medical Research, Osaka University, 2-26-01, Suita, Osaka, 565-0871, Japan, 9SOSHO Inc., Osaka 541-0053, Japan, 10CREST JST, Osaka, Osaka 565-0871, Japan, E-mail: sugiyama@cryst.cei.eng.osaka-u.ac.jp

Aptamers are short DNA or RNA folded molecules that can be selected in vitro on the basis of their high affinity for a target molecule. An optimized 23-nucleotide aptamer was prepared, and was shown to bind to the Fc domain of human IgG, but not to other IgG’s, with high affinity. To obtain a more detailed insight into the molecular mechanism of RNA aptamer to recognize - and bind to - human IgG with high specificity and affinity, we have initiated a crystallographic study of RNA aptamer in complex with human IgG. Initial crystals of the RNA aptamer-human IgG complex were grown by the vapor-diffusion method. But polycrystals appeared within two weeks and were not of sufficient quality to diffract X-rays. After optimization of the crystallization condition, suitable crystals were obtained by combining the shaking and sitting-drop vapor-diffusion methods. We will report a comparative study of shaking-grown and traditional grown crystals of the RNA aptamer-human IgG complex.

Keywords: RNA-protein interactions, protein crystallization, X-ray diffraction