catalyzed by different way among species. Higher eukaryotes, such as human, and some archaea use a single enzyme, AIR carboxylase (class II PurE). Other organisms such as plants, yeasts and prokaryotes use two enzymes, N^\prime- aminoimidazole ribonucleotide (N5-CAIR) synthetase (PurK) and CAIR mutase (class I PurE). N^\prime-CAIR synthetase converts AIR, ATP and bicarbonate to N5-CAIR, ADP, and Pi. Here, we determined crystal structures of PurK of *Aquifex aeolicus* VF5, *Thermus thermophilus* HB8 and *Sulfobolus tokodaii* strain7. The space group, maximum resolution and R-value (free R-value) for each structure is as follows: *A. aeolicus* (2204), P1, 2.35 Å, 23.2% (26.2%), *T. thermophilus* P41, 2.51 Å, 23.2% (28.2%) and *S. tokodaii* P62, 2.00 Å, 19.4% (22.8%). The structures for *T. thermophilus* and *S. tokodaii* were solved as complex with AMPPNP. We compared these three structures and E. coli structure, which has already been determined [1], to each other. These four PurK share similar overall structure, including dimer conformation, and consist of three domains, A, B, and C. However, PurK of *A. aeolicus*, *T. thermophilus* and *S. tokodaii* have extra α-helix and β-sheet in A-domain compared with that of *E. coli* and it is possible that this extra α-helix and β-sheet are responsible for thermostability of these proteins.

Keywords: nucleoside metabolism, N5-CAIR synthetase, thermophilic proteins

P04.02.112

Acta Cryst. (2008). A64, C266

Structural titration of two mobile loops in trigonal soybean β-amylose crystal with maltose

Bunzo Mikami, Aiko Tanabe, Younna Kang, Shigeru Utsumi

Graduate School of Agriculture, Kyoto University, Division of Applied Life Science, Gokasho, Uji, Kyoto, 611-0011, Japan, E-mail: mikami@kais.kyoto-u.ac.jp

Soybean β-amylose has two mobile loops in the active site, a flexible loop (residue 96-103) and an inner loop (residues 340-346). The flexible loop moves about 11 Å from open to closed form to make interactions with substrate. Though the movement is relatively small (about 3 Å), two different conformations of the inner loop (apo and product forms) have been found. In the trigonal β-amylose crystal, these two loops can move without symmetry interactions. In order to elucidate the relationship between the structural states of these loops and the catalytic mechanism, the structures of the wild and mutant (D101E and D101N) soybean β-amyloses were refined in the different maltose concentration (0-200 mM) at 1.0-1.5 Å resolutions with SHELXL. The refined structures of wild enzyme showed that the conformational changes of the flexible and inner loops correspond to the binding of maltose at subsites +1 to +2 and -2 to -1, respectively. It was found that the flexible loop of the inactive mutants moved abnormally without maltose binding to subsites -2 to -1. These results were in good agreement with the solution experiments of the enzyme.

Keywords: beta-amylose, enzymatic structure-activity relationships, enzyme ligand complexes

P04.02.113

Acta Cryst. (2008). A64, C266

The structure of the exo-arabinanase complex with arabinobiose

Yuri Sogebe, Takayoshi Kinoshita, Asako Yamaguchi, Tatsui Sakamoto, Toshihi Tada

Osaka Prefecture University, Graduate School of Science, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan, E-mail: sogebe06@b.s.osakafu-u.ac.jp

Penicillium chrysogenum exo-arabinanase (Abnx) hydrolyzes the α-1,5-L-arabinofuranosidase linkage of araban which is widely distributed in plant walls. The crystal structures of three arabinanases have revealed that the enzymes have a common unique fold consisting of five β-sheets, each of which is made up of four antiparallel β-strands. However, Abnx has a completely different primary structure from other arabinanases so far isolated. We have initiated an X-ray structure analysis of Abnx to clarify the three-dimensional structure and molecular mechanisms of the novel enzyme. The recombinant Abnx was expressed in *E. coli*. The purified enzyme was crystallized by 1.8 M MPD as a precipitant using the hanging-drop vapor diffusion method. The crystal of Abnx complexed with arabinobiose was obtained by soaking method and diffracted up to 1.04 Å resolution using synchrotron radiation at PF. The crystal belong to *P2_12_1* with unit cell parameters of *a* = 67.0, *b* = 77.1 and *c* = 79.6 Å. The structure of the complex was solved by the molecular replacement. The enzyme forms six-bladed β-propeller fold. Arabinobiose is located in the cleft formed across one face of the propellet. The center of the cleft is surrounded by three acidic residues, Glu42, Glu152 and Glu224, which are estimated to be active residues of Abnx.

Keywords: exo-arabinanase, complex, arabinobiose

P04.02.114

Crystallization and preliminary X-ray analysis of D-arabinose isomerase from Bacillus pallidus

Kosei Takeda, Hiromi Yoshida, Goro Takada, Ken Izumori, Shigehiro Kamitori

1Kagawa University, Life Science Research Center, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan, 2Kagawa University, Rare Sugar Research Center, 2393, Ikenobe, Miki-cho, Kagawa, 761-0795, Japan, E-mail:k_hornet0711@hotmail.com

Rare sugars are referred to as sugars which exist in an extremely scanty amount in nature and they have significance not only in food industries but also pharmaceutical industries. *Bacillus pallidus* D-arabinose isomerase (B. pallidus D-AI) can catalyze the isomerization between rare sugars, D-arabinose and D-ribulose. B. pallidus D-AI has a broad substrate specificity and it can also catalyze various sugar conversions. Therefore, it is very useful for the production of rare sugars from natural sugars. Recombinant B. pallidus D-AI was successfully overexpressed using Escherichia coli and purified. Crystals of B. pallidus D-AI were grown by the vapor diffusion method using a protein solution (10 mg/ml *B. pallidus* D-AI in 10 mM HEPES (pH 8.0)) and a reservoir solution (20% (w/v) polyethylene glycol 3,000, 100 mM citrate buffer (pH 6.0), 1 M potassium sodium tartrate). X-ray diffraction data were collected on the BL-5A beam line in the Photon Factory (Tsukuba, Japan) at a resolution of 2.3 Å. The initial phases were successfully determined by molecular replacement method using the structure of *E. coli* L-fucose isomerase (PDB code: 1FU1).
P04.02.115

Structures of NADH and NAD⁺ bound 3α-hydroxydehydrogenase from* Pseudomonas* sp. B-0831

Shota Nakamura¹, Maiko Koga², Sachiyko Kataoka³, Masayuki Oda², Tadayasu Ohkubo³, Yuji Kobayashi³

1Research Institute for Microbial Diseases, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan, 2Graduate School of Life and Environmental Sciences, Kyoto Prefectural University (1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan), 3Graduate School of Pharmaceutical Sciences, Osaka University (1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan), 4Osaka University of Pharmaceutical Sciences (4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan), E-mail: nshota@gen-info.osaka-u.ac.jp

Bacterial 3α-hydroxydehydrogenase (3αHSD) catalyzes the reaction of the reversible inter-conversion between 3α-hydroxyester and 3-ketosteroid in a coenzyme dependent manner. We reported the structure of 3αHSD of *Pseudomonas* sp. B-0831 (Ps3αHSD) complexed with NADH (*JBC*, 2006, **281**, 31876-84). The crystal which was obtained by co-crystallization with NADH, contained a dimer in an asymmetric unit of which one is apo-form and the other is holo-form. There was a distinct difference in the so-called substrate-binding loop (185-207) between these two subunits i.e. it consists of two α-helices in the holo-form while it is in disordered form in the apo-form. Here we obtained the complex by co-crystallization with NAD⁺, which contained a dimer in an asymmetric unit as well. In this case, the coenzyme was bound to the both monomers in the dimer. It is noteworthy that there was a conformational difference between these subunits. One of them has two α-helices in the so-called substrate-binding loop region, while the other, even though NAD⁺ was bound, takes a disordered form similar to the NADH complex. In these two alpha helices, there was a difference found in their mutual spatial arrangements between the respective complexes with NADH and NAD⁺. This difference which accompanies a shift of the hydrogen bond partner of Tyr200 from His150 in the complex with NADH to Val74, whereas with NAD⁺ results in loss of hydrogen bonding found between Tyr153 and NADH. This conformational change might play an important role in the coenzyme recognition of Ps3αHSD depending on the redox state.

Keywords: DNA repair enzymes, high-resolution protein structures, substrate binding

P04.02.117

Tertiary structure of the catalytic and chitin-binding domains of hyperthermophilic chitinase

Koichi Uegaki, Tsutomu Nakamura, Kazuhiko Ishikawa, Shouhei Mine

National Institute of Advanced Industrial Science and Technology(AIST), Midorigaoka 1-8-31, Ikeda, Osaka, 563-8577, Japan, E-mail : k-uegaki@aist.go.jp

A chitinase, engineered from the genes PF1233 and PF1234 of *Pyrococcus furiosus*, is a hyperthermophilic glycosidase that effectively hydrolizes both α and β crystalline chitin. This chitinase contains two catalytic domains (AD1 and AD2) and two chitin-binding domains (ChBD1 and ChBD2). We determined the crystal structures of ChBD2 and AD2 (to the resolution at 1.7 Å and 1.5 Å, respectively), which are important for the activity of the chitinase toward crystalline chitin. The structure of ChBD2 comprised a typical β-sandwich architecture, which consists of two four-stranded β-sheets, and was similar to that of other carbohydrate-binding module 2 family proteins, despite low sequence similarity. The chitin-binding