rosmann-like domain

P04.02.121

Crystallographic studies of ferredoxin-NAD(P)+ reductase from Chlorobium tepidum

Tomoo Shiba1, Norifumi Muraki1, Daisuke Seo2, Takeshi Sakurai2, Genji Kurisu1

1The University of Tokyo, Department of Life Sciences, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan, 2Kanazawa University, Kakuma, Kanazawa 920-1192, Japan, E-mail: tshiha@xtal.c.u-tokyo.ac.jp

Ferredoxin-NAD(P)+ reductase (FNR) is a key enzyme that catalyzes the photoreduction of NAD(P)+ to generate NAD(P)H during the final step of the photosynthetic electron-transport chain. FNR from the green sulfur bacterium Chlorobium tepidum is a homodimeric enzyme with a molecular weight of 90 kDa; it shares a high level of amino-acid sequence identity to thioredoxin reductase rather than to conventional plant-type FNRs. In order to understand the structural basis of the ferredoxin-dependency of this unique photosynthetic FNR, C. tepidum FNR has been heterologously expressed, purified and crystallized. The C. tepidum FNR was crystallized in two forms, I and II, from screening conditions consisting of 20% PEG 3350 containing 200 mM ammonium sulfate or diammominium tartrate as precipitant. Form I crystals belong to the orthorhombic space group C2221, with unit cell parameters a = 100.5, b = 128.0, c = 128.4 Å. Assuming the presence of one dimer in the asymmetric unit, the Matthews coefficient (V_M) is 2.6 Å³/Da corresponding to a solvent content of 53.2%. Form II crystals belong to the tetragonal space group P42_212, with unit-cell parameters a = b = 82.0, c = 162.7 Å. The V_M value of 3.5 Å³/Da indicates that the form II crystal contains one protein molecule per asymmetric unit. Diffraction data were collected from a form I crystal to 2.4 Å resolution on the synchrotron-radiation beamline NW12 at the Photon Factory.

Keywords: FNR, ferredoxin, thioredoxin reductase

P04.02.122

The crystal structure of the staphylococcal amidase AmiE reveals the active site of a metalloenzyme

Sebastian Zoll1, Bernhard Paetzold1, Martin Schlag2, Friedrich Goezz3, Thilo Stehle1,3

1Interfaculty Institute for Biochemistry, AG Stehle, Hoppe-Seyler-Strasse 4, Tuebingen, Baden-Wuerttemberg, 72076, Germany, 2Department of Microbial Genetics, Faculty of Biology, University of Tuebingen, Waldhaeuser Strasse 70/8, 72076 Tuebingen, Germany, 3Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA, E-mail: sebastian.zoll@uni-tuebingen.de

Staphylococcal or gram-positive bacteria that mainly colonise human skin and the upper respiratory tract. While most staphylococcal infections are averted by a working immune system, they can be life threatening in immunocompromised hosts. Among the most common diseases are endocarditis, pneumonia and the toxic shock syndrome. The ability of staphylococci to form biofilms upon attachment to polystyrene surfaces is another pathogenic factor and especially relevant in transplantation of medical prostheses. Peptidoglycan (PGN) hydrolases such as the major autolysin AtIE from Staphylococcus epidermidis play an important role in cell wall turnover, which renders them appealing targets for drug design.

During cell division AtIE splits the equatorial septum, thus allowing the formation of daughter cells. Deletion mutants exhibit a severely disordered division pattern and are biofilm-negative. We have determined the crystal structure of the catalytic domain AmiE, a N-acetylmuramyl-L-alanine amidase at 1.7Å resolution. The protein adopts a globular fold, with several α-helices surrounding a central β-sheet. Alignments with homologous proteins revealed a conserved surface cleft, which is capable of incorporating a PGN-like ligand. A divalent cation is bound in the active site and likely participates in catalysis. Analysis of the architecture of the binding site and the location of key residues allow us to postulate a mechanism of function, which is likely to be that of a metalloenzyme. Mutations of amino acids directly involved in catalysis resulted in severe changes of adjacent loops and a loss of activity. The high-resolution structure of AmiE advances our understanding in terms of ligand binding and enzymatic function, thus providing an excellent base for future drug design.

Keywords: AmiE, amidase, peptidoglycan

P04.02.123

Structure of the inactive mutant of arabinanase complexed with oligosaccharides

Satomi Fukuoka1, Yuri Sogabe1, Asako Yamaguchi1, Takayoshi Kinoshita1, Takuo Sakai2, Toshiji Tada1

1Osaka Prefecture University, Graduate School of Science, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan, 2KIG Biosearch, Sakai, Osaka, Japan, E-mail: fukuoka07@b.s.osakauf-u.ac.jp

The three-dimensional structure of the thermostable endo-α-1,5-L-arabinanase, ABN-TS, from a strain of Bacillus thermonitrificans TS-3, has been determined at 1.9 Å resolution. We have started the structure analysis of the inactive mutant of ABN-TS complexed with oligosaccharides to elucidate the substrate recognition and reaction mechanism of the enzyme. ABN-TS and the inactive mutant D27A were expressed in E.coli as His-tag fusion proteins at their C-termini. They were purified by Ni-affinity, anion-exchange, and size-exclusion chromatographic techniques. The activity of the purified WT (ABN-TS with His-tag) was assayed using debranched arabinan as a substrate by the Somogyi-Nelson method. The WT showed the same catalytic activity as the native ABN-TS, while the mutant D27A showed only very weak activity. The crystals of the inactive mutant complexed with oligosaccharides were prepared by co-crystallization and soaking methods using PEG8000 as a precipitant. Data collection and structure analysis are now in progress.

Keywords: arabinanase, glycoside hydrolase, crystal structure analysis

P04.02.124

Structure of endo-1,5-α-L-arabinanase from Penicillium chrysogenum

Mika Akiyoshi, Kyoko Ikoma, Asako Yamaguchi, Tetsuko Nakaniwa, Takayoshi Kinoshita, Tatsuji Sakamoto, Toshiji Tada

Osaka Prefecture University, Graduate School of Science, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan, E-mail : akiyoshi07@b.s.osakauf-u.ac.jp

Keywords: P. chrysogenum, arabinanase, crystal structure analysis

C269
Arabinanase hydrolyzes the α-1,5-L-arabinofuranoside linkage of arabinan distributed in hemicelluloses, which comprise a large fraction of plant cell walls. AbnS1 from *P.chrysogenum* 31B and ABN-TS from *Bacillus thermodenitrificans* TS-3, which hydrolyze arabinan through an endo mechanism, show optimal activity at 333 and 343 K, respectively. The X-ray crystallographic analysis has revealed that the thermostable ABN-TS has a unique motif consisting of a five-bladed β-propeller fold. Since AbnS1 have 32% homology with ABN-TS, X-ray analysis of the mesophilic AbnS1 should provide information towards clarify the structural features that cause the difference in the optimum temperature. The recombinant AbnS1 was overexpressed in *E. coli* as a C-terminal His-Tagged protein (AbnS1-His). The first purification step was a Ni-affinity column. Further purification steps were anion-exchange and gel filtration columns. The tag was not removed for the subsequent crystallization experiments, because AbnS1-His showed the same catalytic activity and optimum temperature as the native AbnS1. Crystals were obtained using PEG4000 as a precipitant. Data collection and structure analysis are under way.

Keywords: arabinanase, glycoside hydrolase, crystal structure

P04.02.125


Crystal structure of GMP synthetase (GuaA) from *T. thermophilus*

Mayumi Kanagawa1, Seiki Baba1,2, Hiroya Kawai1, Yoko Fukai3, Yumiko Inoue4, Noriko Nakagawa1,4, Akio Ebihara1, Seiki Kuramitsu1,4, Gota Kawai1,3, Gen-ichi Sampei1,5

1 RIKEN, Systems Glycobiology Research Group, 2-1 Hiroswaya, Wako, Saitama, 351-0198, Japan, 2 Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Hyogo, 679-5148, Japan, 3 Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashinoshio-shi, Chiba, 275-0016, Japan, 4 Graduate School of Science Osaka University, 1-1 Machikaneyma, Toyonaka, Osaka, 560-0043, Japan, 5 Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofuguka, Chofu-shi, Tokyo, 182-8585, Japan, E-mail: kanagawa@riken.jp

GMP synthetase (GuaA) catalyzes the last step to synthesize GMP in purine nucleotide biosynthetic pathway. This enzyme catalyzes a reaction in which xanthine 5'-monophosphate (XMP) is converted into GMP in the presence of ATP. The crystal structure of GuaA from *E. coli* (PDB ID 1GPM) has been determined with AMP and PPI, and the protein consists of three domains, class I glutamin amidotransferase domain, ATP pyrophosphatase domain, and dimerization domain. Here we determined crystal structures of GuaA from *Thermus thermophilus* HB8 in apo form (2YW8, space group C2, max res. = 2.1 Å, R = 23.3%, free R = 27.2%) and in complex with XMP (2YW8, space group C2, max res. = 2.2 Å, R = 23.6%, free R = 27.8%). The structure of GuaA in complex with XMP and without ATP is reported in *Acta Cryst.* (2008). A

Keywords: enzyme mechanisms, hydroperoxyflavin, structural change

P04.02.127


Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains

Jean Cavarelli, Nathalie Troffer-Charlier, Pierre Hassenboehler, Dino Moras, Vincent Cura

IGBMC, Structural Biology and genomics, 1, rue Laurent Fries, Illkirch, Alsace, 67404, France, E-mail: cava@igbmc.u-strasbg.fr

Post-translational methylation of arginine is a widespread epigenetic modification found in eukaryotes that is catalyzed by the protein arginine methyltransferases (PRMTs). PRMTs have been implicated in a variety of biological processes, such as regulation of transcription, translation and DNA repair. Coactivator-associated arginine methyltransferase 1 (CARM1, also known as PRMT4) was identified as an enhancer of the transcriptional activation by several nuclear hormone receptors. As a transcriptional coactivator, CARM1