change of E1 play a key role of regulation.

Keywords: plants, EF-hand proteins, GTP-binding proteins

P04.02.176

Crystal structure and functional study of wild type and mutated Bacillus cereus NCTU2 chitinase

YinCheng Hsieh, YueJin Wu, ChuehYuan Kuo, HueiJu Tasi, YiHsin Pan, YawKuen Li, ChunJung Chen

1National Tsing Hua University, Institute of Bioinformatic and Structure Biology, 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, Hsinchu, Hsinchu, Taiwan, 1Department of Applied Chemistry, National Chiao-Tung University, 2Soft Matter, National Synchrotron Radiation Research Center, E-mail: yinchengh@gmail.com

Chitinases which hydrolyze chitin as carbon and nitrogen nutrient, occur in a wide range of organisms include in viruses, bacteria, fungi, insects, higher plants, and animals. Agene of family 18 chitinase from Bacillus cereus NCTU2 encodes a signal peptide (27 amino acids) and a mature protein (335 amino acids). The gene of family 18 chitinase from Bacillus cereus NCTU2 was overexpressed by E. coli BL21 (DE3) strain. ChiNCTU2 and mutant E145Q of MW 36 kDa have been crystallized using the hanging-drop vapor diffusion method with solution consisted of polyethylene glycerol 8000, sodium cacodylate and zinc acetate dihydrate. According to diffraction of ChiNCTU2 crystals at resolution 1.20 Å, the unit cell belongs to space group P21, and has parameters a = 50.789 Å, b = 48.788 Å and c = 66.867 Å. And E145Q crystal at resolution 1.49, the unit cell belongs to space group P1 and has parameters a = 61.306 50.820 Å, b = 72.888 Å and c = 76.343 Å. The protein structure of ChiNCTU2 is monomer by using multiwavelength anomalous dispersion method and the crystal packing of E145Q is tetramer by using molecular replacement method. Four residues Asp143, Glu145, Glu190 and Glu225 bind with zinc atoms in the catalytic domain of ChiNCTU2 protein structure. We proved that zinc atoms decline activity of ChiNCTU2 by detecting the amount of chitobioside using DNS (3,5-Dinitrosalicylic acid). According to structure and mutagenesis we found that E145, Q225 and Y227 are the most important residues for its function.

Keywords: chitin, chitinase, structure

P04.03.176


The structure of human diamine oxidase

Aaron P McGrath, Yen Le Hoang Nguyen, Kimberley M Hilmer, David M Dooley, Hans C Freeman, Charles A Collyer

1University of Sydney, School of Molecular and Microbial Biosciences, Building G08, University of Sydney, Sydney, NSW, 2006, Australia, 2Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA, E-mail: a.mcgrath@mmb.usyd.edu.au

The crystal structure of human diamine oxidase (hDAO), the first reported structure of a diamine oxidase (DAO), has been determined to 2.9 Å resolution. DAO, a copper-containing amine oxidase (CuAO), contains a 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor derived by post-translational modification of a tyrosine residue [1]. DAO is distinguishable among members of the CuAO enzyme family in its ability to oxidize diones, such as putrescine and cadaverine, as well as monoamines. DAO is involved in many biological processes. In mammals DAO is found in several tissues, with the highest reported expression levels found in the placenta, small intestine and kidneys. In particular, hDAO may play an important role in histamine metabolism [1]. We have grown orthorhombic crystals of hDAO belonging to the space group C2221, with unit-cell dimensions a=95.0, b=97.2, c=179.2 Å. These crystals diffracted to 2.9 Å in-house at 100 K. Data were integrated and scaled with the HKL suite of programs, DENZO and SCALEPACK. The data is 98.3% complete in the range 50-2.9 Å with an overall Rmerge of 8.4%. The most reasonable Matthews’ coefficient suggests there is one molecule in the asymmetric unit with 40% solvent content using 100 kDa as the molecular mass. The structure was solved by molecular replacement, Phaser v1.3 giving a Z-score of 26.2 with a search model created using CHAINSAW, with human vascular adhesion protein-1 (hvAP-1, PDB code 1US1) as the target. Initial rigid-body and restrained refinement has been carried out using REFMAC v5.2. 2Fo-Fc and Fo-Fc electron-density maps were inspected with, and modeled using COOT.


Keywords: diamine oxidase, amine oxidase, topaquinone

P04.03.177


The structure of human diamine oxidase

Rebecca D Hoeft, Ke Shi, Zu-Yi Gu, C. Kent Brown, Jeff Digre, Cathleen A Earhart, Douglas H Ohlendorf

University of Minnesota, Biochemistry, Molecular Biology and Biophysics, 6-155 Jackson Hall 321 Church Street SE, Minneapolis, MN, 55455, USA, E-mail: siem0027@umn.edu

Protopcatechuate 3,4-dioxygenase is a nonheme, iron containing enzyme that catalyzes the intradiol oxidative cleavage of 3,4-dihydroxybenzoic acid to ß-carboxy-cis,cis-muconic acid via incorporation of molecular oxygen into the aromatic ring of the substrate. In an attempt to further understand the factors involved in substrate turnover and mechanism, a series of second sphere residue mutants has been created and structurally and kinetically examined. These crystals diffract to high resolution and show clearly that alterations of these second sphere residues can dramatically affect the interactions with substrate and substrate analogs. A detailed structural and kinetic comparison of these mutants will be presented.

Keywords: structure and function, structural enzymology, metalloenzymes

P04.03.178


A study of protocatechuate 3,4-dioxygenase mutants and substrate interactions

Youichi Niimura, Shinichi Terawaki, Hirofumi Komori, Naoki Shibata, Yoshiki Higuchi

1University of Hyogo, Graduate School of Life Science, 2-3-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan, 2Faculty of Applied Bio-Science, Tokyo University of Agriculture, 1-1-1 sakuragaoka, setagaya-ku, Tokyo, 156-8502, Japan, E-mail: r07o002@stkt.u-hyogo.ac.jp

Rubperoxin (Rpr) was identified as an O2-induced protein in C286

Poster Sessions

change of EF1 play a key role of regulation.

Keywords: plants, EF-hand proteins, GTP-binding proteins

P04.03.177


The structure of human diamine oxidase

Koji Nishikawa, Yasuhiro Shomura, Shinji Kawasaki, Yu Sakai, Youichi Niimura, Shinichi Terawaki, Hirofumi Komori, Naoki Shibata, Yoshihi Higuchi

1University of Hyogo, Graduate School of Life Science, 2-3-1 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan, 2Faculty of Applied Bio-Science, Tokyo University of Agriculture, 1-1-1 sakuragaoka, setagaya-ku, Tokyo, 156-8502, Japan, E-mail: r07o002@stkt.u-hyogo.ac.jp

Rubperoxin (Rpr) was identified as an O2-induced protein in

C286