Poster Sessions

P04.12.282

Pheromone binding and realease by honey bee PBP is driven by a pH induced domain swapping

Mariella Tegoni1, Marion Pesenti1, Silvia Spinelli1, Valerie Beziard2, Loïc Briand2, Jean-Claude Pernollet2, Valérie Campanacci1, Christian Cambillau1

1CNRS & Universites de Marseille, AFMB, Campus Luminy, 163 Av de Luminy, case 932, MARSEILLE CEDEX 90, PACA, 13288, France, 2INRA, UMR 1197 NOPA, Neurobiologie de l’Olfaction et de la Prise Alimentaire, F-78352 Jouy-en-Josas, France, E-mail : Mariella.Tegoni@afmb.univ-mrs.fr

The behavior and the perception of their surroundings by insects are in a large part driven by odors and pheromones. This is especially true with social insects, such as honey bee, where the queen controls the development and the caste status of the other individuals. Pheromone perception is a complex phenomenon relying on a cascade of detection events, initiated in antennae by pheromone recognition by a pheromone binding protein (PBP) and finishing with signal transduction at the axon membrane level. With an end to deciphering this initial step, we have determined the structures of the bee antennal PBP (ASP1) in the apo form or in complex with the main component of the queen mandibular pheromonal mixture, 9-keto-2(E)-decenoic acid (9-ODA) and with non pheromonal components. In the apo-protein the C-terminus obstructs the binding site, which involves the interplay of two factors: the presence of a ligand and a low pH. Ligand binding to ASP1 is favoured by low pH, opposite to what is observed with other PBPs such as those of Bombyx mori or Anopheles gambiae. At pH 7.0, ASP1 dimerizes forming a domain swapped structure, with loose affinity for pheromone. In contrast, Asp35Asn or Asn35Ala mutants are insensitive to pH and form the same monomer at pH 4.0 and pH 7.0. These results illustrate the influence of a unique residue in triggering ligand binding and protein fold, monomer or domain swapped dimer. We propose that this observation can be linked to the function of PBP when located in the lymph or in the vicinity of the SNMP co-receptor.

Keywords: insects behaviour, pheromone binding protein, domain swapping

P04.12.283

Structural basis of dynamic polymerization of DIX domains: A revised model of Wnt signaling

Naoki Shibata1, Thomas Schwarz-Romond1, Marc Fiedler2, F. Jonathan G. Butler1, Hirofumi Komori1, Yasuhiro Shomura1

1University of Hyogo, Graduate School of Biomedical Sciences, Hiroshima University, Japan, 2The RIKEN SPring-8 Center, Japan, E-mail: shibata@sci.u-hyogo.ac.jp

The Wnt signaling pathway controls numerous cell fates in animal development, and is also a major cancer pathway. A key negative cytoplasmic effector of this pathway is Axin, which promotes phosphorylation of β-catenin and its subsequent degradation. Another key cytoplasmic effector, Dishevelled (Dvl), a positive effector of this pathway, binds to the Wnt transmembrane receptors and interacts with Axin to transduce the Wnt signal. Both Dvl and Axin contain a DIX domain, a functionally important domain whose molecular properties and structure are unknown. We have determined the first crystal structure of the Axin-DIX domain at 2.9 Å resolution. DIX has a ubiquitin-like fold with five β-strands (β1-β5) and one α-helix. DIX interacts with neighboring molecules through a β-bridge between β2 and β4, forming filaments in the crystal by head-to-tail self-interaction through β-bridges. We also demonstrate that the DIX domain of Dvl2 mediates dynamic polymerization, which is essential for the signaling activity of Dvl2 in vivo. The purified DIX domain self-associates in vitro, and polymerizes gradually and reversibly in a concentration-dependent way, ultimately forming fibrils. Our studies point to a new mechanistic principle underlying Wnt signaling - namely signaling by reversible polymerization, whereby the DIX domain mediates formation of a dynamic interaction platform with a high local concentration of binding sites for transient signaling partners.

Keywords: crystal structure, Wnt signaling, axin

P04.12.284

Structure of CKI1RD, the receiver domain of the histidine kinase CKI1 from Arabidopsis thaliana

Jaromir Marek, Tomas Klumpler, Blanka Pekarova, Petra Borkovcova, Jan Hejatko, Lubomir Janda

Laboratory of Functional Genomics and Proteomics, Institute of Experimental Biology, Laboratory of Functional Genomics and Proteomics, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5/A2, Brno, CZ-625 00, Czech Republic, E-mail: marek@chemi.muni.cz

Cytokinins (CKs) are essential phytohormones regulating proper growth and development of plants. CK signal is transduced to the nucleus by a phosphorelay signal transduction pathway via modified two-component system. In A. thaliana, signal transduction through cell membrane into the cell is carried out by a family of membrane-associated sensory histidine kinases. One of them, CYTOKININ INDEPENDENT1 (CKI1) constitutively activates the CK signaling pathway and is essential for the female gametophyte development. Here we present crystal structure (2.0 Å resolution) of the receiver domain (CKI1RD, residues 979-1120) of CKI1. CKI1RD is a single domain......