Keywords: nucleoside metabolism, halophilic enzymes, quaternary association of proteins

P04.14.352

Structure of vault purified from rat liver

Koji Kato1, Hideaki Tanaka1, Tomoyuki Sumizawa2, Eiki Yamashita1, Masato Yoshimura1, Yong Zhou1, Min Yao1, Isao Tanaka1, Kenji Iwasaki1, Tomitake Tsukihara1

1Osaka University, Institute for Protein Research, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan, 2University of Occupational and Environmental Health, 1-1 Isesakiwa, Yahatanishi, Kitakyushu, 807-8555, Japan, 3Taiwan Beaml ine Office at SPring-8 1-1-1 Kouto, S ayo-cho, Sayo-gun, Hyogo, Japan, 4Hokkaido University, Sapporo, 060-0810, Japan, E-mail: k-kato@protein.osaka-u.ac.jp

Vault is a 12.9-MDa ribonucleoprotein particle with a barrel-like shape that is highly conserved in a wide variety of eukaryotes. Multiple copies of two additional proteins, vault poly(ADP-ribose) polymerase and telomerase-associated protein 1, as well as a small vault RNA, are also associated with vaults. (Kedersha and Rome, Kickhoefer et al., Michael P. Kowalski et al.) The vault crystals belong to space group C2 with unit-cell parameters a=708.0 Å, b=385.0 Å, c=602.9 Å, β=124.8°. Rotational symmetry searches based on the R factor and correlation coefficient from non-crystallographic symmetry (NCS) averaging indicated that the particle has 39-fold dihedral symmetry (Kato et al.). Electron cryomicroscopy electron density was used as the starting model for phase improvement and phase extension. A model of the MVP was determined its crystallographic structure in the future.

references

Keywords: X-ray crystallography of biological macromolecules, crystallography of biological macromolecules, large molecular assemblies

P04.14.353

Macromolecular X-ray powder diffraction from the in vivo arm photophore of firefly squid

Keiko Miura1, Katsuaki Inoue1, Masatsugu Seidou2, Toshihaki Hamanaka1

1Japan Synchrotron Radiation Research Institute, Industrial Application Division, 1-1-1 Kouto, Sayo, Sayo-gun, Hyogo, 679-5198, Japan, 2Aichi Prefecture Univ. of Fine Arts and Music, 1-114 Mitsuagamine,Nagakute, Aichi-gun, Aichi,480-1194, Japan, 3Osaka Univ.Grad. School of Engineering Science,1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan, E-mail: miurakk@spring8.or.jp

The firefly squid, Watasenia scintillans, emits brilliant flashes of light from three tiny luminous organs which are located at the tip of each of the fourth pair of arms. The notable feature of the histology of the brachial organs is that they contain numerous rod-like bodies, which are 2.5-5 micrometer long and 1-3 micrometer thick, of protein assembly. Previously, its X-ray diffraction pattern was determined by directly irradiating a photophore at the tip of the fourth arms and showed numerous sharp reflections. It suggested that the rod-like bodies were made by micron-sized macromolecular crystal. X-ray diffraction data of the rod-like bodies extracted from the photophore were collected at room temperature at BL40B2/SPring-8 using its SAXS system with camera distance of 2111 mm and imaging plate system. The powder diffraction pattern was also observed from the extracted rod-like bodies, up to the resolution of 15 Å spacing with 5 minutes exposure. Indexing of the diffraction rings was done by using software McMmaille v.3.04 (A. Le Bail,2004) and suggested that the micro-crystal belonged to an orthorhombic space group P212121, with unit cell dimensions a=348 Å, b=195 Å, c=214 Å. The microscopic observation showed that the micro-crystal emitted a greenish fluorescent light by the excitation with 400-410 nm light. Since the luciferase of Watasenia is membrane-bound, the micro-crystal may be the storage of the luciferin binding protein. These results show that there is a unique macromolecular assembly in intact organs with the crystallographic manner and it is expected to be determined its crystallographic structure in the future.

Keywords: powder X-ray diffraction, protein crystallography applications, macromolecular assemblies

P04.15.354

Designing selective inhibitors to target NagZ a family 3 glycoside hydrolase

Misty D Balecwich1, Terry James1, Keith Stubbs2, David Vodadio2, Brian Mark1

1University of Manitoba, Microbiology, 79 Freedman Cres, Winnipeg, Manitoba, R2T2N2, Canada, 2Simon Fraser University, 8888 University Drive, Burnaby,BC, Canada, V5A 1S6, E-mail: m.balecwich@umanitoba.ca

NagZ is a family 3 beta-glucosaminidase involved in remodeling the bacterial cell wall. It removes terminal N-acetylgalactosamine residues from internalized cell wall degradation intermediates that are subsequently recycled back into the cell wall during biosynthesis. In the presence of beta-lactam antibiotics however, the NagZ product 1,6-anhydroMurNAc-oligopeptide accumulates in the bacterial cytosol to levels sufficient to induce the expression of the ampC beta-lactamase gene through direct activation of the AmpR transcriptional activator. Previously, the crystal structure of Vibrio cholerae NagZ in complex with PUGNAc, a potent and fairly selective inhibitor was determined to 1.7Å. This structure revealed a large open pocket beneath the 2-acetamido methyl group of the inhibitor. This is in contrast with the architecture of the human family 20 hexosaminidases and family 84 O-GlcNAcases. Family 20 and 84 enzymes form a tight envelope around the 2-acetamido group, holding it in position to participate as a nucleophile during catalysis. This structural difference suggests that extensions off the 2-acetamido group of PUGNAc would confer high inhibitor selectivity toward NagZ. Subsequent synthesis of derivatives two N-butylPUGNAc and Valeryl-PUGNAc possessing modifications to this region have been chosen for crystallographic analysis. These derivatives are potent and selective for NagZ. We present a detailed structural comparison of the family 3 NagZ:N-butylPUGNAc complex (to 2.5Å) with human family 20 and 84 glycosidase crystal
structures and discuss further design strategies for highly selective family 3 glycoside hydrolase inhibitors.

Keywords: glycosyl hydrolases, antibiotic resistance, structure-based drug design

P04.15.355
Acta Cryst. (2008). A64, C342

The crystal structure of AKR1C1 in complex with an active-site inhibitor

Urmil Dhagat¹, Satoshi Endo², Akira Harå¹, OsamAn El-Kabbani¹
¹Monash University, Medicinal Chemistry, 381 Royal Parade, Parkville, Melbourne, Victoria, 3052, Australia, ²Laboratory of Biochemistry, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan,
E-mail: urmil.dhagat@vcp.monash.edu.au

Hydroxysteroid dehydrogenases (HSDs) regulate a wide range of physiological processes including reproduction, development and homeostasis. AKR1C1, is a 20a-HSD involved in the conversion of progesterone to 20-hydroxyprogesterone. Increased activity of AKR1C1 in the endometrium and in breast tissues leads to the formation of tumor-promoting metabolites and to the development of endometriosis, breast cancer and endometrial cancer. At present, there are few known inhibitors that specifically bind and inhibit the adverse actions of AKR1C1. Here we present the first crystal structure of AKR1C1 in complex with potent inhibitor 3,5-dichlorosalicylic acid (IC50 = 44 nM). The crystal structure was solved at a resolution of 1.8 Å, with clear electron density corresponding to the inhibitor bound in the active site. The details of the enzyme-inhibitor interactions and selectivity against members of the AKR1C subfamily will also be discussed. The structural information obtained from this study will help speed up the drug design process for the development of more selective and potent compounds that can be used in the treatment of endometriosis and cancer.

Keywords: aldo-keto reductases, enzyme inhibitors, drug design

P04.15.356
Acta Cryst. (2008). A64, C342

Eimeria tenella lactate dehydrogenase as a target for anti-parasitics

Victoria Fairweather¹,², Robert Schwarzenbacher², Leo Brady¹
¹University of Bristol, Department of Biochemistry, School of Medical Sciences, University Walk, Bristol, Bristol, BS8 1TD, UK, ²University of Salzburg, Department of Molecular Biology, Billrothstr. 11, 5020 Salzburg, Austria,
E-mail: v.fairweather@bristol.ac.uk

Eimeria species are parasitic Apicomplexa protozoans that cause gastrointestinal coccidiosis infections in birds, and are associated with general morbidity and intestinal lesions. These parasitic infections lead to major losses within the broiler industry, a situation that is deteriorating due to emerging resistance to available therapeutics. By analogy with other Apicomplexa obligate parasites, in the intracellular stages of its lifecycle the Eimeria parasite relies heavily on glycolysis for ATP production, and hence on homolactic fermentation - the action of lactate dehydrogenase (LDH) - to restore the NADH/NAD⁺ balance. These parasites are therefore extremely sensitive to LDH inhibition. In common with the LDH of the malaria causing parasite Plasmodium falciparum (PILDH), Eimeria tenella LDH (EtLDH) has a characteristic five amino acid insert in a loop directly adjacent to the active site. As a consequence, we reasoned that compounds we have previously designed to specifically inhibit PILDH should cross-react with EtLDH. We are therefore undertaking crystallisation and structural analysis of EtLDH and its inhibitory complexes in order to explore the possibility of targeting EtLDH for novel veterinary therapeutics.

Keywords: lactate dehydrogenase, Eimeria tenella, enzyme inhibitors

P04.15.357
Acta Cryst. (2008). A64, C342

Crystal structure and structure based drug design of HU (histone like protein) from M.tuberculosis

Ramakumar Suryanarayananarao¹, Tuvin Bhowmick¹, Soumitra Ghosh¹, Ramagopal A Udupi¹, Nagaraja Valakunja¹
¹Indian Institute of Science, Physics, Raman Avenue, Bangalore, Karnataka, 560012, India, ²Microbiology and Cell Biology Department, Indian Institute of Science, Bangalore-560012, India, ³Albert Einstein College of Medicine, Bronx, New York, 10461, USA,
E-mail: ramak@physics.iisc.ernet.in

HU is an architectural protein for bacterial chromosome compaction and organization.HU is one of the most ubiquitous proteins in the bacterial cell. It is a small basic protein, binding non-specifically throughout the nucleoid. While the sequence of HU is highly conserved through most of the bacterial species, the HU in M.tuberculosis has a sequence longer than other HUs whose crystal structures have been elucidated (Anabaena (1P71): 94 residues). It has a sequence length of 214 amino acid residues suggesting the presence of an extra domain. As the protein has a possible role in overall gene architectural modification and a global control of gene expression, it makes this HU an important candidate for structural study. For the first time a complete functional N-terminal Domain of HU from M.tuberculosis [H37Rv] (1st 100 amino acid residues) containing the sub-domains for DNA binding and dimerization was crystallized, the crystals diffracted to 2.0Å. Crystal unit cell contains biological dimer of N-terminal region of HU protein. The structure was solved by molecular replacement method. The final Rcryst and Rfree are 20.6% and 25.0%. As the sequence is highly conserved among the other important mycobacterium species, like M.leprae, M.bovis, M.smegmatis etc., this structure is a good representative HU structure for the whole class and serves as an attractive target for drug design. Two types of drug molecules, one which can interfere with DNA-binding and other with HU dimerization, were designed computationally, utilizing the solved crystal structure of HU. The designed compounds interact with HU with high binding energies, as estimated computationally and could serve as lead molecule for drug design. Details of the 3-D models of HU-drug interactions will be discussed.

Keywords: Mycobacteria, histone like protein, structure aided drug design

P04.15.358

Structure-based design of anticancer prodrug PABA/NO

Xinhua Ji¹, Ajai Pal², Ravi Kalathur², Xu Hu², Yijun Gu¹,², Joseph Saavedra¹, Gregory Buzard¹, Aloka Srinivasan¹,