Glutathione S-transferase (GST) is a superfamily of detoxification enzymes, represented by GSTa, GSTm, GSTp, etc. GSTa is the predominant isofrom of GST in human liver, playing important roles for our well being. GSTp is overexpressed in many forms of cancer, thus presenting an opportunity for selective targeting of cancer cells. Our structure-based design of prodrugs intended to release cytotoxic levels of nitric oxide in GSTp-overexpressing cancer cells yielded PABA/NO, which exhibited anticancer activity both in vitro and in vivo with a potency similar to that of cisplatin (Findlay et al. Mol. Pharmacol. 2004, 65, 1070-1079). Here, we present the details on structural modification, molecular modeling, and enzymatic characterization for the design of PABA/NO. The design was efficient because it was on the basis of the reaction mechanism and the structures of related GST isozymes at both the ground state and the transition state. The ground-state structures outlined the shape and property of the substrate-binding site in different isozymes, and the structural information at the transition-state indicated distinct conformations of the Meisenheimer complex of lead compounds in the active site of different isozymes, providing guidance for the modifications of the molecular structure of lead molecules. Two key alterations of a GSTa-selective compound led to the GSTp-selective PABA/NO.

Keywords: structure-based drug design, anticancer prodrug, PABA/NO

P04.15.359

Structure of the LBD of rat VDR in complex with a non-secosteroidal vitamin D3 analogue YR301

Shinji Kakuda1, Kazuhisa Okada1, Hiroshi Eguchi1, Kazuya Takanouchi1, Wataru Hakamata2, Masaaki Kurihara3, Midori Takimoto-Kamimura1

1TEIJIN PHARMA LIMITED, Teijin Institute for Bio-medical Research, 4-3-2, Ashihagaoka, Hino, Tokyo, 191-8512, Japan, 2Division of Organic Chemistry, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan, E-mail: s.kakuda@teijin.co.jp

The vitamin D receptor (VDR) is a ligand-inducible hormone receptor that mediates 1α,25(OH)2D3 action, determining the calcium and phosphate metabolism, induces potent cell differentiation activity and has immunosuppressive effects. Most analogues of 1α,25(OH)2D3 have been used clinically for some years. However, there is a risk of potential side effects, which limits the use of these substances. (2S)-3-[4-(3-[4-[(2R)-2-hydroxy-3,3-dimethylbutoyl]-3-methylphenyl]-pentan-3-yl]-2-methylphenoxy]propane-1,2-diol (YR301) has only strong activity in evaluated four stereoisomers of a novel synthetic non-secosteroidal vitamin D3 analogue LG902378. To understand the strong activity of YR301, the crystal structure of YR301 with the vitamin D receptor ligand-binding domain (VDR LBD) at 2.0 A was solved and compared with the structure of the rat VDR LBD-1α,25(OH)2D3 complex. YR301 and 1α,25(OH)2D3 share the same position and the diethyl-methyl groups occupy a similar space to CD rings of 1α,25(OH)2D3. YR301 has two characteristic hydroxyl groups which contribute to its potent activity. One is 2’-OH of YR301 which is hydrogen bonding to NE2 of both His 301 and His 393. Another is 2-OH of YR301 which is interacting with OG of Ser233 and NH1 of Arg270. Each hydroxyl group of YR301 exactly corresponds to 25-OH and 1-OH group of 1α,25(OH)2D3, respectively. The terminal hydroxyl group (3-OH) of YR301 is hydrogen bonded to Arg270 directly and also interacts with OH of Tyr232 and the backbone NH of Asp144 via water molecules indirectly. The substitution of the water molecules might be helpful for the design of more potent compounds.

Keywords: anticancer drug structural study, enzyme inhibitor drug design, enzyme structure

P04.15.360

Structural studies of glutathione S-transferase complexed to commonly used chemotherapy agents

Lorien J Parker1,2, Craig J Morton1, Mario Lo Bello1, Michael W Parker1,2

1St. Vincent’s Institute, The ACRF Rational Drug Discovery Facility, 9 Princes St, Fitzroy, Melbourne, Victoria, 3065, Australia, 2Bio21 Institute, University of Melbourne, 3Department of Biology University of Rome, Rome, Italy., E-mail: l.parker@svi.edu.au

Glutathione S-Transferases (GSTs), phase II detoxification enzymes, primarily function to remove toxic compounds from the cell [1]. They are, however, overexpressed in many cancers and shown to be deleterious to successful chemotherapy treatment by reacting with anti-cancer drugs. GSTs, therefore, have been identified as an attractive target for inhibitor drug design to increase the efficacy of treatment [2]. Drug resistance remains a limiting factor in cancer chemotherapy and thus understanding its mechanism represents an important step in improving cancer treatment. Many reports correlate over-expression of GST and reduced sensitivity to chemotherapy [1]. GSTs are hypothesised to catalyse conjugation of GSH to anti-cancer drugs forming inactive conjugates. This action represents one of a number of possible mechanisms involved in resistance to current chemotherapy treatment. One of the major aims of this work is to determine the 3D structures of these complexes and subsequently pursue structure-based drug design of human GST pi class enzyme (hGSTP1-1) with the aim of discovering effective and specific inhibitors. I have solved the structure of GST with multiple metal based anti-cancer drugs. The structure of the hGSTP1-1/drug complexes reveals a novel ligand binding site. The identification of this site represents a new means by which GST may be contributing to the development of resistance to chemotherapy treatment, in addition to detoxification by GSH conjugation, by sequestering the drugs at this novel site. This information, in conjunction with successful fragment screening, will be used in the design of novel, therapeutic GST inhibitors.


Keywords: nuclear receptors, vitamin D, structural drug design

P04.15.361

Crystal structure of human choline kinase in complex with hemicholinium

Bum-Soo Hong, Wolfram Tempel, Patrick J. Finerty, Abduljelil Allali-Hassani, Masoud Vedadi, Matthieu Schapira, Hee-Won Park

Structural Genomics Consortium, University of Toronto, 100-college
physiological substrate. The changes in active site size and shape this question, we implemented fragment-based screening by X-ray rigid-body helix motions, at a...alpha have been constitutively reported in mal...are brought about by unfavourable side-chain conformations and...crystallography for PNMT. We u...revealed upon binding inhibitors that are double the size of the...

hydrophobic interactions contributed by the C-terminal lobe. These 3D information provides the first molecular detailed view concerning the mode of inhibitory action and expand our understanding of the factors governing selectivity.

Keywords: tumorigenesis, antiproliferative and anticancer drug, inhibitor

P04.15.362


Fragment screening and structure-based design of adrenaline synthesis inhibitors

Jennifer L Martin1, Nyssa Drinkwater2, Christine L Gee3, Michael J McLeish4, Gary L Grunewald5

1University of Queensland, Institute for Molecular Bioscience, 306 Camrophy Road, Brisbane, Queensland, 4072, Australia, 2University of Queensland, 306 Camrophy Road, Brisbane, Queensland, 4072, Australia, 3University of Queensland, 306 Camrophy Road, Brisbane, Queensland, 4072, Australia, 4University of Michigan, Ann Arbor, Michigan, USA, 5Kansas University, Lawrence, Kansas, USA, E-mail: j.martin@immb.uq.edu.au

The enzyme phenylethanolamine N-methyltransferase (PNMT) catalyses the biosynthesis of adrenaline, a neurotransmitter linked to the central control of blood pressure. As part of an ongoing international collaboration to develop PNMT inhibitors, we found that the enzyme conceals a cryptic binding site (1-2). This site is revealed upon binding inhibitors that are double the size of the physiological substrate. The changes in active site size and shape are brought about by unfavourable side-chain conformations and rigid-body helix motions, at a modest estimated energetic cost of 2-3 kcal/mol. Our findings further underline the importance of incorporating protein flexibility in structure-based inhibitor design studies, and raise the question of whether such sites are accessible through moderate affinity fragment screening approaches. To address this question, we implemented fragment-based screening by X-ray crystallography for PNMT. We used the ActiveSight library of 384 compounds and found that a number of fragments bind to the PNMT active site. These will now be elaborated to develop potent and selective PNMT inhibitors.


Keywords: enzyme inhibitor drug design, structure-based drug design, binding enzyme inhibitors

P04.15.363


Design of anti-allergic inhibitors for human hematopoietic prostaglandin D synthase

Hiroshi Kikuchi1, Yui Kado1, Hiroyoshi Matsumura1, Yoshifumi Fukinishi1, Takayoshi Kinoshita1, Yasushi Okuno1, Isao Nakashishi1, Seiji Mimakata1, Tsuneaki Sakata1,2,4,5, Kohsuke Aritake5, Yoshihiro Urade4, Tsuyoshi Inoue1,3,5

1Grad. Sch. of Engineering, Osaka Univ., Applied Chemistry, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan, 2National Inst. of Advanced Industrial Science and Technology (AIST), 2-41-6, Aomi, Koto-ku,135-0064, Japan, 3Grad. Sch. of Agriculture and Life Sciences, Osaka Prefecture Univ., 1-1 Gakuen-cho, Osaka 599-8531, Japan, 4Grad. Sch. of Pharmaceutical Sciences, Kyoto Univ., Kyoto 606-8501, Japan, 5NPO BioGrid Center kansai, 1-4-2 Shinsenri-Higashimachi, Osaka 560-0082, Japan, 2Osaka Bioscience Inst.,Osaka 565-0874, Japan, E-mail: h_kikuchi@chem.eng. osaka-u.ac.jp

Structure-based drug design (SBDD) is not certainly major process in the pharmaceutical company, however, the cost for drug discovery is huge and gradually increased, therefore, the importance of SBDD is thought to be greater and greater. The novel in-silico screening methods of Multiple Target Screening (MTS) and Docking score index2 (DSI) using the matrix on the interaction between the protein structures and chemical compounds were developed. To examine the effect of these methods, we selected human hematopoietic prostaglandin D synthase (H-PGDS) as a target. H-PGDS catalyzes the isomerization of PGH2, a common intermediate of various prostanoids, to PGD2, an inflammatory mediator, in the presence of glutathione (GSH). Oral administration of the H-PGDS inhibitor of HQL-79 suppressed antigen-induced eosinophilic accumulation in the lung of wild-type mice and human H-PGDS-overexpressing mice, gliosis and demyelination in twitcher mice, and muscular dystrophy in mdx mice.4. The optimizing of the known inhibitor4 as well as the screening of a novel lead compound for human H-PGDS by using in silico method are now in progress.

References

Keywords: complex compounds crystal structure, structure-based drug design, antiallergy drugs

P04.15.364


Structure-based drug design in HIV protease- and tRNA-guanine transglycosylase inhibitor development

Andreas Heine1, Jar Bocicke1, Tina Ritschel1, Andrea Blum1, Benedict Sammet1, Simone Hoertner2, Philipp Kohler2, Francois Diederich2, Wibke E. Diederich1, Gerhard Klebe1, Andreas Blum1

1Philips-University Marburg, Department of Pharmaceutical Chemistry, Marbacher Weg 6, Marburg, Hessen, 35032, Germany, 2ETH-Zurich, Hoenggerberg HCI, 8093 Zurich, Switzerland, E-mail: heinea@mailer.